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A B S T R A C T   

Biodiesel is a good alternative to fossil fuels for conventional engines, but determining the properties of biodiesel 
can be a time-consuming and resource-intensive process. Therefore, the development of models capable of 
predicting these properties would be of great importance. In this work, different machine learning models were 
investigated for predicting the Iodine Value (IV) based on the distribution of fatty acid methyl esters (FAME). For 
this purpose, a database with 266 examples of biodiesel from different feedstocks (1st, 2nd and 3rd generation) 
was used along the leave-one-out methodology. The main results of the work are: the double bonds and the 
distribution of FAMEs are the best attributes for predicting IV and the XGBoost algorithm gives an absolute mean 
error of 11.4 units; the machine learning models for predicting biodiesel properties need to be trained on a large 
number and variety of biodiesel examples to better predict and generalize; the use of both ANNs and the hold-out 
approach of dividing the dataset into train/validate/test are not recommended due to the risk of overfitting and 
the algorithm’s dependence on which examples form each group given the currently available data. The leave- 
one-out method is most appropriate for estimating model performance.   

1. Introduction 

The importance of clean energy generation is growing over the years. 
In 2015 the United Nations (UN) promoted an affordable, reliable, 
sustainable and modern energy transition for all and the decarbon
ization of fuels plays a crucial role in the process [1]. Around 99.8% of 
transport is currently powered by internal combustion engines (ICEs) 
[2] and according to Senecal et al. [3], despite government policies, half 
of the vehicle fleet is still expected to be powered by ICEs by 2050. 
Therefore, one of the best options for reducing greenhouse gas emissions 
would be to find alternatives to fossil fuels that can be used in the current 
vehicle fleet. Considering the above facts, further research in the field of 
fuels such as biodiesel, it’s an appropriate approach [4]. 

Biodiesel can be produced by a variety of methods, but the most 
viable method is the transesterification of oils derived from a variety of 
feedstocks. In this process, lipids extracted from the feedstock react with 
methanol or ethanol in the presence of a catalyst (acid or basic) to 
convert triglycerides to fatty acid methyl or ethyl esters (FAME or 
FAEE). Depending on the origin of the feedstock, biodiesel can be clas
sified as “Biodiesel of 1st generation” when derived from edible crops 
[5] and “Biodiesel of 2nd generation” when derived from non-edible 

ones [6,7]. These feedstocks have been widely discussed as they affect 
the food chain and the use of arable land [8]. As a result of this concern, 
biodiesel of 3rd generation [8,9] and 4th generation [10,11] can be 
obtained from microalgae resources. Microalgae are photosynthetic 
microorganisms that can grow in freshwater, seawater or wastewater, 
and therefore do not require arable land for their cultivation, and are 
great carbon sequestrators [12]. 

Biodiesel must meet the requirements outlined in the EN 
14214:2012 + A2:2019 [13] and ASTM D6751 [14] standards. Both 
standards specify that several important properties must be within 
certain limits, as shown in Table 1. Testing for these properties is a 
time-consuming and costly process [15]. One of the critical conditions 
specified in the EN 14214:2012 + A2:2019 standard is that the fatty acid 
methyl esters (FAME) content must be greater than 96.5%. Since the 
molecular characteristics determine many of the remaining biodiesel 
properties, some researchers have attempted to predict the value of 
biodiesel properties from the FAME distribution to avoid performing all 
the tests included in the above standards [16,17]. 

Among all the mentioned properties, iodine value (IV) represents the 
unsaturated methyl esters constituents of biodiesel, which affect 
oxidative stability [18] and cold filter plugging point [19]. The IV is the 
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mass of iodine absorbed in 100 g of biodiesel through the reaction be
tween the I2 and the carbon-carbon double bonds, providing a measure 
of the degree of unsaturation [20]. These unsaturated methyl esters can 
react with atmospheric oxygen during storage and handling leading to 
the formation of primary oxidation products like peroxides and hydro
peroxides, which react forming numerous secondary oxidation products 
[21]. Subsequently, gums and sediments are formed by polymerization 
reactions [22]. All these changes result in variations of molecular 
composition and deterioration of the fuel quality. In addition, the IV is 
inversely related to cetane number (CN) and the NOx emissions increase 
with the IV [23]. Because of these facts the IV is limited to a maximum of 
120 g I2/100 g in the EN 14214 standard. 

Models to predict the IV of biodiesel help to understand a priori the 
oxidative stability and predict other properties, and also allow the se
lection of feedstocks to produce biodiesel. The approach followed by the 
proposed models to predict the IV of biodiesel has been mainly based on 
biodiesel composition (mass % of FAME) [24,25], composition-based 
indicators (molecular weight, modified degree of unsaturation) [26] 
or both [27]. Despite the high accuracy reported for these models, they 

are very limited by the range and type of FAME in the model calibration 
and have not been validated with additional datasets. In addition, these 
models have a limited scope as they are usually linear, and the problem 
seems to be more complex [26]. Therefore, techniques based on ma
chine learning [28] or deep learning [29] seem to be appropriate as they 
can model complex problems. These techniques have already been 
implemented with great results in other disciplines, such as the predic
tion of a gas turbine performance by Liu and Karimi [30] or an energy 
forecasting strategy by Ahmad et al. [31]. Although the have also been 
used to predict the properties of the biodiesel, the models developed lack 
generalization. Some do not use the proper performance metrics [32], 
others fail to ensure a robust data set as they generate artificial examples 
[33], or the methodology is not adequate for the number of examples 
used [34]. 

This work aims to develop a model for predicting iodine value and 
provide guidance on the experimental methodology required to create a 
generalized model, determining which is the best experimental meth
odology taking into account the size of the datasets commonly used in 
the literature. This work also intends to determine the importance of 
different attributes used to make the IV prediction. Various machine 
learning techniques will be applied to this end, and it is expected that 
new possibilities and deeper insights into the optimization of biodiesel 
production and use will be achieved. 

2. Material and methods 

This section describes the data base and several machine learning 
algorithms suitable for prediction. Since the IV is a continuous variable, 
the selection should focus on algorithms capable of predicting numeric 
values. 

2.1. Database description 

This work includes a database1 of 266 examples of biodiesel 
collected from the available literature from 2002 to 2022. The biodiesel 
come from more than 100 different feedstocks (edible and non-edible 
crops, microalgae …) to minimize bias. In the dataset the biodiesel 
came from the first, second and third generations with a distribution of 
153 examples of first generation, 83 of second generation and 30 of third 
generation. Similar works, such as those presented by Azam [35] or 
Wang [26], use smaller datasets, including from 10 to 46 biodiesel 
samples. 

The dataset presented in this work is composed out of 36 identified 
FAME. The column “Other” represent those FAMEs that could not be 
identified. The different FAMEs that appear in the dataset are: methyl 
butyric (C4:0), methyl hexanoate (C6:0), methyl octanoate (C8:0), 
methyl decanoate (C10:0), methyl laureate (C12:0), methyl tridecano
leate (C13:0), methyl myristate (C14:0), methyl meristoleate (C14:1), 
methyl pentadecanoate (C15:0), methyl pentadecenoate (C15:1), 
methyl palmitate (C16:0), methyl palmitoleate (C16:1), methyl hex
adecadienoate (C16:2), methyl hexadecatrienoate (C16:3), methyl 
hexadecatetraenoate (C16:4), methyl margarate (C17:0), methyl hep
tadecenoate (C17:1), methyl stearate (C18:0), methyl oleate (C18:1), 
methyl linoleate (C18:2), methyl linolenate (C18:3), methyl non
adecanoate (C19:0), methyl nonadecenoate (C19:1), methyl non
adecetrinoate (C19:3), methyl arachidate (C20:0), methyl eicosenoate 
(C20:1), methyl eicosadienoate (C20:2), methyl arachidoniate (C20:4), 
methyl eicosapentanoate (C20:5), methyl heneicosanoate (C21:0), 
methyl behenate (C22:0), methyl erucate (C22:1), methyl decosa
trienoate (C22:3), methyl decosapentaenoate (C22:5), methyl decosa
hexaenoate (C22:6) and methyl lignocerate (C24:0). 

The frequency of occurrence of the different FAMEs is shown in 

Table 1 
Range of biodiesel properties extracted from EN 14214:2012 + A2:2019 [13] 
and ASTM D6751 [14] standards.  

Property Units EN 14214 Test 
methods 

ASTM 
D6751 

Test 
methods 

FAME content % (m/ 
m) 

≥96.5 EN 
14103 

–  

Density at 15 ◦C kg/m3 860–900 ISO 
12185 

–  

Viscosity at 40 ◦C mm2/s 3.50–5.00 EN 
16896 

1.9− 6 D445 

Flash Point ◦C ≥101 ISO 3679 ≥130 D93 
Cetane Number 

(CN) 
– ≥51.0 EN 

16175 
≥47 D613 

Copper corrosion Class ≥1a ISO 2160 ≤3 D130 
Oxidative stability 

(110 ◦C) 
h ≥8 EN 

14112 
≥3 EN 

14112 
Acid value mg 

KOH/g 
≤0.50 EN 

14104 
≤0.5 D664 

Iodine Value (IV) g I2/ 
100 g 

≤120 EN 
14111 

–  

Methyl ester 
linoleic acid 

% (m/ 
m) 

≤12 EN 
14103 

–  

Methyl ester + 4 
double bonds 

% (m/ 
m) 

≤1 EN 
15779 

–  

Methanol content % (m/ 
m) 

≤0.2 EN 
14110 

≤0.2 EN 
14110 

Monoglycerides 
content 

% (m/ 
m) 

≤0.7 EN 
14105 

–  

Diglycerides 
content 

% (m/ 
m) 

≤0.2 EN 
14105 

–  

Triglycerides 
content 

% (m/ 
m) 

≤0.2 EN 
14105 

–  

Free Glycerine % (m/ 
m) 

≤0.02 EN 
14105 

≤0.02 D6584 

Total Glycerine % (m/ 
m) 

≤0.25 EN 
14105 

≤0.24 D6584 

Water content % (m/ 
m) 

≤0.050 ISO 
12937 

≤0.05 D2709 

Total 
contamination 

mg/kg ≤24 EN 
12662 

–  

Sulphated ash 
content 

% (m/ 
m) 

≤0.02 ISO 3987 ≤0.02 D874 

Sulphur content mg/kg- 
% (m/ 
m) 

≤10 ISO 
20846 

≤15 D5453 

Group I metals (Na 
+ K) 

mg/kg ≤5 EN 
14108 

≤5 EN 
14538 

Group II metals 
(Ca + Mg) 

mg/kg ≤5 EN 
14538 

≤5 EN 
14538 

Phosphorus 
content 

mg/kg- 
% (m/ 
m) 

≤4 EN 
14107 

≤10 D4951  

1 The database is publicly available at <link> (link will be posted when 
article is published). 
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Fig. 1. The FAMEs with the higher frequency are the methyl esters of the 
following fatty acids: C16:0, C18:0, C18:1, C18:2 and C18:3, whose 
presence ranged from 69.5 to 98.9% of the biodiesel simples. These four 
fatty acids are the most typical in commercial biodiesel according to 
Bukkarapu and Krishnasamy [36]. Barradas et al. [23] also found these 
fatty acids mainly in the 98 biodiesel samples used to predict viscosity, 
iodine number and induction period by applying artificial neural net
works. However, the dataset used in this work shows that many more 
FAMEs can be found in biodiesel. 

2.2. Data preparation 

2.2.1. Data filtering 
As mentioned in previous section our current dataset consists of 266 

biodiesel samples. The total concentration of FAME in each of them 
varied from 50% to 100%. The data were pre-filtered to include only 
biodiesels with at least a 90% of FAME content, this reduced the dataset 
to 241 biodiesel samples. According to the standard EN 14214:2012 +
A2:2019 [13], at least 96.5% of the total content must be FAME, but it is 
also known that most of the samples have to be distilled to reach this 
concentration [37]. The increase in FAME content due to distillation 
(reduction of impurities) is not expected to affect the prediction of IV. 

2.2.2. Attribute selection 
The aim of the model is to predict the IV using the FAME distribution 

as an input because this distribution is relatively easy to obtain. How
ever, throughout the literature, other parameters have been used to 
make the prediction: the molecular weight (Mw), the length of the FAME 
represented by the number of carbons (Cn) [38], the number of double 
bonds (DB), the non-polarity index (NPI) (Eq. (1)), saturated fatty acids 
(SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids 
(PUFA) [39] or “other” [26] referring to what gas chromatography 
recognizes as unidentified FAMEs. 

NPI =
Cn • Mw
∑

FAME
(1) 

Considering these factors, experiments will be conducted to deter
mine the attributes that best characterize the data and their importance 
in the prediction. 

2.3. Regression algorithms in machine learning 

There are many algorithms capable of predicting numeric values, 
and the most representative ones have been selected to be used in the 
experiments of this article. All these methods, which are described 
below, are available in the Python library Scikit-Learn [40]. 

2.3.1. Dummy regressor 
When faced with a new problem, it is advisable to start by using a 

very basic method to predict. The results obtained with this method, 
used as a baseline, represent the performance that the more sophisti
cated algorithms should outperform to verify that they are learning 
something useful from the data [41]. In the case of a problem where we 
need to predict a numerical value, it is typically used as a baseline to 
predict the mean value of the target variable observed in the data [41]. 
This algorithm is so simple that it does not use the attributes describing 
the examples and is implemented in Scikit-Learn under the name 
DummyRegressor. 

2.3.2. Linear regression 
Multivariable linear regression is a useful method when trying to 

solve a regression problem [42]. Linear regression fits a linear model in 
which a coefficient is learned for each of the attributes describing the 
examples along with an independent term. Linear regression performs 
well when there is a linear solution and the learned coefficients can be 
used to determine the relevance of the attributes, as long as the attri
butes have been previously scaled to the same scale [42], which is 
recommended. Obviously, if the problem has a nonlinear character, 

Fig. 1. Frequency distribution of the FAMEs presented in the current dataset.  
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linear regression performs worse. Within Scikit Learn, linear regression 
is implemented under the name LinearRegression. 

2.3.3. Decision tree 
Decision tree is an algorithm that performs successive splits of the 

input space until the examples are grouped into clusters that can share 
the same prediction [43]. At each step, the attribute that best discrim
inates the examples is selected and a thresholded split is applied to it, 
resulting in a new branch in the tree. A decision tree usually gives good 
results and is able to adapt to nonlinear problems [43]. Another 
advantage of a decision tree is that the trained model is human under
standable, so in addition to a prediction, there will be register of pa
rameters and their values used by the algorithm to make successive 
splits. Fig. 2 shows an example of a decision tree. The decision tree 
recursively splits the input space until it is able to find groups of ex
amples for which it can predict the same value. In the figure, the deci
sion tree will predict the value 0 if a example has a value less than or 
equal to 0.402 in attribute ×1 and a value greater than 0.708 in attribute 
x2. In the Scikit Learn library, the variant of decision trees for regression 
is implemented under the name DecisionTreeRegressor. 

2.3.4. Ensemble methods 
Combining several models can lead to a better model, this is the 

principle of ensemble methods [44]. The two most popular ensemble 
methods are bagging and boosting. 

2.3.4.1. Bagging. Bagging consists of randomly creating N training sets 
of equal size from the original dataset (using sampling with replace
ment). Then, a model is trained separately from each of these training 
sets, so that there are as many models as there are training subsets [45]. 
The prediction for a new example is computed by averaging the pre
dictions of all the models. The most representative algorithm of this type 
is Random Forest [46], which uses decision trees as the base algorithm 
to train from the N training sets. In Scikit Learn, the implementation is 
called RandomForestRegressor. 

2.3.4.2. Boosting. Boosting always uses the original dataset but per
forms model training using weak learners. Weak learners are algorithms 
that are not allowed to learn as much as they could learn from the data 
by introducing some limiting condition [47]. An example of a weak 
learner is a decision tree that is not allowed to generate more than two 
branches. The predictions of this weak learner will be strong for some 
examples in the training set and poor for others. Thus, a weight will be 
assigned to each of the examples in the training set, so that the next 
iteration will focus on the poorly predicted samples. This process will be 
repeated as many times as necessary. To obtain the prediction of a new 
example, all models are applied and the average is calculated. The most 
representative algorithm of this type is XGBoost [48], which uses 
restricted decision trees as weak learners. In scikit Learn, the 

implementation is called XGBRegressor. 

2.3.5. Support vector machine (SVM) 
SVM [49] has the ability to adapt to any type of problem by using 

different strategies or kernels. SVM for regression searches for the hy
perplane that best fits the examples in a continuous space. This is ach
ieved by projecting the examples into a higher dimensional space using 
kernel functions, and in that space will attempt to minimize the error 
while maximizing the margin [50]. The polynomial kernel and the radial 
basis function (RBF) kernel are the most popular nonlinear kernels. In 
Scikit Learn, the implementation of support vector machines is called 
SVR. 

2.3.6. Artificial neural network (ANN) 
ANN [51] is very popular because it is able to adapt to any type of 

problem no matter how difficult it may be, which means that it is 
difficult to train, and takes the risk of reaching overfitting situations 
[52]. The larger the training dataset, the lower the risk of overfitting. 

ANNs have a layered architecture where the number of layers, the 
number of neurons in each layer and the activation functions are 
modified to obtain different models. All ANNs must have an input layer, 
an output layer and the number of intermediate layers can vary. Fig. 3 
shows a diagram of one possible architecture for a 2-hidden layers ANN. 
The neural networks update the weights of the neurons in their different 
layers using a back-propagation mechanism based on the errors ob
tained. Within Scikit Learn ANNs for regression problems are imple
mented under the name MLPRegressor. 

Fig. 2. Example of a decision tree.  

Fig. 3. Example of a 2-hidden layers ANN architecture. xn represents the input 
variables and y the target variable. 
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2.4. Performance of a model 

Having introduced the main regression algorithms, let’s see how 
these algorithms should be trained and how the estimate of their per
formance is calculated. To calculate this estimate, some of the biodiesel 
in the database must be reserved for evaluation (test set), that is, they 
cannot be used to train the different algorithms [53]. The method used 
to reserve examples for testing can affect the estimation of model per
formance. This has led to the development of different methods, among 
which cross-validation and leave-one-out stand out the hold-out method 
(also known as the train/test experiment), which is strongly influenced 
by the examples that have been selected for the test set [53]. 

2.4.1. Cross validation 
In a cross-validation, the data are randomly divided into N partitions 

and N models are trained. In each model, the training set is formed by N- 
1 partitions, and the excluded partition is the test set. The performance 
estimate is obtained by calculating the average performance of the N 
models [54]. Fig. 4 shows an example of 5-fold cross-validation. As can 
be seen in the figure, in a 5-fold cross-validation, the data set is divided 
into 5 partitions of equal size and 5 models are trained. Each of these 5 
models is trained using the samples contained in 4 folds, leaving the 
remaining fold to evaluate the performance of the model. Each model 
uses a different fold as a test set, so all examples are used once to 
calculate performance. In addition, all examples are used N-1 times as 
part of the training set. 

Cross-validation is a widely used method because all examples are 
part of the test set in some of the training and because the number of 
models trained equals the number of partitions generated, which allows 
to control the time spent training the models [54]. 

2.4.2. Leave-one-out 
If the number of partitions in the cross-validation is the same as the 

number of examples in the dataset, this is called a leave-one-out 
experiment. This experiment is the best for evaluating the perfor
mance of a model, since each model is trained on all available examples 
except one (which is used as a test set) [55]. However, it is computa
tionally very expensive because it requires training as many models as 
there are examples in the dataset. 

This method represents an improvement in terms of the model’s 
learning ability and error generalization when compared to the tradi
tional train/test or hold-out approach. In the traditional approach, the 
results are heavily influenced by the examples selected for the test set 
when the data is scarce [53]. 

Considering the number of biodiesel examples available in the 
database and the current computing power of computers, the leave-one- 
out method is the most appropriate to estimate the performance of the 
models. 

2.5. Hyperparameter optimization 

Some algorithms have configurable mechanisms that allow them to 
work in different ways, such as the number of hidden layers or the 
activation function in an ANN. These mechanisms, known as hyper
parameters, cause learned models to behave differently and, in many 
cases, need to be tuned in order for the models to perform well [56]. 

Hyperparameter tuning must be performed only on the data used to 
train the model, not on the data used to estimate model performance. 
Otherwise, the performance estimation will be optimistic. This means 
that, for example, in a train/test experiment, only the examples in the 
training set can be used for hyperparameter tuning [57]. The simplest 
solution in this case is to split the training set into two new subsets, 
which are usually called the training set (about 70 or 80% of the sam
ples) and the validation set. This new training set will be used to train 
models with different hyperparameter settings that will be applied to the 
validation set. 

This simple solution is strongly influenced by the examples selected 
for the validation set, so instead of performing a training/validation split 
for the hyperparameter search, it is advisable to perform another cross- 
validation using only the examples that were in the initial training set 
[56]. 

The number of hyperparameter combinations that can be tested for 
an algorithm can be very large, so the combinations are often sampled in 
an organised fashion, with sampling using a grid search strategy being 
very popular [57]. The hyperparameter configuration chosen will be 
that of the model that performs best. 

2.6. Normalization of the data 

When the attributes used to describe the examples have different 
scales, the training of some algorithms becomes more difficult. To ach
ieve a better performance, the attributes can be standardized before 
training the model for those algorithms that need it. The standardization 
follows equation (2) [58], where z is the value after the standardization, 
x is the value of the attribute to be standardized, x is the mean of the 
attribute, and σ is the standard deviation of the attribute. 

z=
x − x

σ (2)  

2.7. Performance metrics 

The performance of the different models presented in this paper was 
computed using the most common metrics in regression tasks [59]. 
These are the mean absolute error (MAE), the mean squared error (MSE) 
and the coefficient of determination (R2), whose formulas are shown in 
the following equations: 

MAE=
1
n

∑n

i=1
|yi − ŷi| (3) 

Fig. 4. Conceptual diagram of a 5-fold cross-validation.  
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MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (4)  

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(5)  

where n represents the number of samples, yi is the actual value of the 
target variable, ŷi is the predicted value and y is the mean of the 
observed data. A perfect prediction will have an MAE and an MSE equal 
to 0, since they calculate the difference between the true value and the 
predicted value (in one case by calculating the absolute value and in the 
other by squaring the difference). If the prediction is not perfect, both 
the MAE and the MSE will have values greater than 0, with no known 
maximum value for the error, which sometimes makes it difficult to 
interpret the error obtained. The coefficient of determination solves this 
problem as its values are usually bounded between 0 and 1. If the pre
diction is perfect an R2 of 1 will be obtained, worse predictions will have 
values of R2 less than 1, obtaining 0 if the prediction is equivalent to 
predicting the observed average value. 

2.8. Procedure to train a machine learning model 

There are several steps involved in developing a predictive machine 
learning model. The first is to train the model and obtain an estimate of 
how the model will perform when presented with examples it did not see 
during the training phase. Fig. 5 illustrates this process.  

1. From the raw data, the examples (biodiesels) that are useful for 
training the model and the appropriate attributes (the characteristics 
that describe the biodiesels) are selected, thus obtaining the data set.  

2. From the data set, several divisions are made according to a cross- 
validation or leave-one-out strategy, so that there are several 
training and test sets. Since there are 241 examples of biodiesel, a 
leave-one-out experiment is chosen to train as many models as there 
are examples.  

3. To train each of the models, hyperparameter optimization will be 
performed using only the examples contained in the corresponding 
training set. A grid search strategy will be used to obtain the different 
combinations of hyperparameters, and a 5-fold cross-validation is 
used to obtain the performance of each combination.  

4. Each of the trained models is evaluated with its corresponding test 
set and the performance of each model is averaged to obtain the 
estimated performance for that algorithm. 

Finally, a model (with the obtained hyperparameters) can be trained 
using the entire data set. This model, which will be used in the future for 
prediction based on new biodiesels, will have the estimated performance 
previously obtained. 

3. Results and discussion 

The experiments described in section 2 were performed on the 241 
biodiesel samples to analyze different aspects for the prediction of IV. All 
the results were obtained by performing leave-one-out experiments. The 
experiments analyzed: i) the performance of popular machine learning 
algorithms in predicting IV, ii) the quality of different subsets of attri
butes, iii) the performance of other state-of-the-art methods, and iv) the 
relevance of the selected attributes for predicting IV. 

Fig. 5. Steps followed to obtain the performance of a model using leave-one-out and optimizing its hyperparameters through a grid search with cross-validation.  
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3.1. Attributes and algorithm performance 

It is critical to select the attributes that can adequately model the 
problem because some attributes may be irrelevant, redundant, or even 
misleading [60]. Reducing the number of attributes speeds up the 
learning process and prevents the algorithm from being fooled by 
meaningless parameters. According to the literature and the experi
mental method for obtaining IV, the attribute that must have the most 
importance in the IV prediction is the number of double bonds. The 
performance of the tested algorithms, with different attribute configu
rations, is summarized in Table 2. As expected, all the algorithms are 
able to learn using only the DB attribute (combination 1), as shown by 
the comparison between the baseline (to predict the mean observed 
value of IV) and the other algorithms. 

However, most of these algorithms performed better when making 
predictions based on the FAME distribution alone (combination 2). The 
poor performance of linear regression when using FAMEs is striking. 
This behavior is due to the fact that, as already seen in Fig. 1, the 
presence of some FAMEs is very rare (there is only one case), with which 
linear regression is not capable of learning an adequate coefficient for 
these FAMEs, making very large errors in the prediction for those bio
diesels with rare FAMEs. The other algorithms are able to detect these 
situations and ignore these FAMES. 

Since the DB number and FAME distribution are known to be 
important [26], they were used together in the combination 3. This 
combination of attributes is the one that provides the best results, with 
significantly better performance than the other combinations. All algo
rithms (except linear regression, as mentioned above) perform signifi
cantly better than the baseline. The worst performing models are the 
SVMs with linear and polynomial kernels, with an R2 of 0.592 and 0.586 
respectively, although this may be due to an inadequate choice of 
hyperparameters. Despite its simplicity, the decision tree performs well 
with an R2 of 0.702, which is not significantly different from more 
complex models such as ANNs with an R2 of 0.740. The three algorithms 
with the best results are SVM with an RBF kernel, RandomForest, and 
XGBoost, with R2 values of 0.770, 0.772, and 0.784, respectively. 

In addition, an attempt was made to use the DB and other common 
attributes to characterize biodiesel (combination 4). The results ob
tained using this combination of attributes are slightly better than those 
obtained using double bonds alone, but they are worse than those ob
tained using FAMEs explicitly. From these results it can be concluded 
that although there is a direct correlation between the number of double 
bonds and the iodine value since IV measures the amount of iodine 
needed to break the double bonds, DB is not the only parameter needed 
for prediction. Thus, not only the number of DB is important for pre
dicting IV, but also the type of FAME in which these DBs are located. 

3.2. Comparison of the proposed methodology with previous reported ones 

A comparison with 6 different methods presented in the literature 

was made measuring the performance of those proposals using the 
dataset and the methodology presented in this work.  

• System 1. This system was proposed by Azam et al. [35] and it is an 
empirical correlation which follows equation (6). In this formula, D 
represents the number of double bonds, Ai the percentage of the i-th 
FAME and Mwi and the molecular weight of the i-th FAME. In the 
dataset the product of D multiplied by Ai is equal to DB × 100 in the 
dataset used in this work. 

IV =
∑n

i=1

(254 • D • Ai)

Mwi
(6)    

• System 2. This system was proposed by Wang et al. [26] and follows 
equation (7). In this expression DU represents the average number of 
double bonds in the biodiesel as a percentage. DU is equal to DB ×
100 in the dataset used in this work. 

IV = 0.6683 • DU + 25.0364 (7)    

• System 3. This system that follows equation (8) was proposed by 
Knothe [61]. In this expression D represents the number of double 
bonds, Ai the ratio of the i-th FAME and Mwi and the molecular 
weight of the i-th FAME. In the dataset the product of D multiplied by 
Ai is equal to the DB used in this work. 

IV =
∑n

i=1
100 •

(253.81 • D • Ai)

Mwi
(8)    

• System 4. This system was proposed by Hoekman et al. [20] which 
follows equation (9). In this expression DU represents the average 
number of double bonds in the biodiesel as a percentage. It is 
equivalent to the DB attribute in the dataset used in this work. 

IV = 74.373 • DU + 12.71 (9)    

• System 5. This system was proposed by Oliveira et al. [23] and it is 
an Artificial Neural Network that proposes an architecture of 13 
neurons in the input layer, 24 neurons in the first hidden layer with 
the hyperbolic tangent as activation function, 6 neurons in the sec
ond hidden layer with the logistic activation function, and one 
neuron for the output layer. The neural network was trained using 
the 13 attributes proposed by Oliveira et al.: C8:0, C10:0, C12:0, 
C14:0, C16:0, C18:0, C18:1, C18:1 OH, C18:2, C18:3, C20:0, C20:1 
and C22:1.  

• System 6. This system was proposed by Mostafaei [38] and is an 
Adaptive Neuro-Fuzzy Interference System (ANFIS). The ANFIS 
system is a neural network in which the number of neurons, the 
number of layers, and their activation functions are predefined. In 

Table 2 
Performance of the algorithms with different combination of attributes.  

Algorithm Combination 1 Combination 2 Combination 3 Combination 4 

MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE R2 

Baseline 31.1 1513.9 − 0.008 30.5 1446.1 − 0.008 30.5 1446.1 − 0.008 31.1 1513.9 − 0.008 
Linear Regression 13.4 497.0 0.669 2.53E+12 1.43E+27 -1E+24 6.82E+12 3.28E+27 − 2.3E+24 12.5 465.2 0.690 
Decision Tree 15.4 787.4 0.476 17.2 640.0 0.554 13.4 428.1 0.702 17.8 856.0 0.430 
Random Forest 14.3 572.4 0.619 13.6 425.7 0.703 11.5 326.4 0.772 13.7 496.3 0.670 
XGBoost 13.5 491.0 0.673 14.0 407.2 0.716 11.4 309.7 0.784 13.9 488.3 0.675 
SVR-linear 12.2 514.1 0.658 13.6 726.9 0.493 12.7 585.3 0.592 12.6 481.0 0.680 
SVR-POLY 12.2 514.1 0.658 14.4 663.5 0.537 13.2 593.6 0.586 12.0 461.1 0.693 
SVR-RBF 12.3 513.2 0.658 11.6 340.6 0.762 11.2 329.7 0.770 12.1 458.6 0.695 
ANN 13.6 499.0 0.668 11.9 365.6 0.745 12.2 372.5 0.740 16.1 580.9 0.613 
Combination 1) Only Double Bound    Combination 2) Only FAME distribution    
Combination 3) FAME and DB    Combination 4) SFA, MUFA, PUFA, Cn, Mw, DB and NPI     
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particular, ANFIS has a fuzzification layer and a defuzzification layer 
that scale the data to apply fuzzy logic rules. The authors proposed to 
use 3 attributes for training the neural network, which are DB, 
MUFA, and PUFA. 

Since there is no available implementation of ANFIS algorithm in 
Scikit-Learn, the implementation available in MatLab within the Fuzzy 
Logic Toolbox was used. 

Fig. 6 shows a comparison between the results of the best model 
XGBoost (MAE = 11.4 [g I2/100 g], MSE = 309.7 and R2 = 0.784) 
against the results of the six different systems using a leave-one-out 
experiment. As the results reported in the previous section, correla
tions that depend entirely or strongly on the number of double bonds 
cannot adequately generalize a prediction. The model proposed in this 
paper shows an improvement of about 11.6% in MAE and 65.1% in MSE 
compared to the average of the empirical equations (systems 1 to 4). In 
addition, according to the MSE values, the use of these equations leads to 
larger failures when they occur. 

The model presented in this study shows an improvement of 50.9% 
and 28.1% in MAE, 113.9% and 318.5% in MSE and 28.5% and 48.3% in 
R2 with respect to system 5 [23] and system 6 [38], respectively. The 
results obtained with these systems are worse than those published by 
their authors in their articles. This may be due to the type of experiment 
they performed (in this article, leave-one-out was used for the reasons 
explained in section 2.2.7.2) or to the number of characteristics of the 
biodiesels used (the dataset of the current work includes 266 biodiesel 
examples from more than 100 different feedstocks, spanning the years 
2002–2022). 

3.3. Attributes relevance 

Based on the results explained in the previous sections, a final model 
was trained with the XGBoost algorithm using all the data from the 
dataset. After tuning its hyperparameters, the XGBoost was trained with 
100 estimators, a learning rate of 0.1, and using decision trees with a 
maximum depth of 2 (the meaning of these hyperparameters is 
explained in Ref. [48]). 

The relevance of the attributes to the algorithm is shown in Fig. 7. As 
expected, in Combination 3 the DB parameter is essential, accounting for 
70% of the prediction, while the distribution of FAMEs accounts for the 
remaining 30%. The right side of the figure shows the most important 
FAMEs for the prediction, representing only those whose significance 
exceeds 1%, while the rest are grouped under “Other FAME”. In Com
bination 2, by removing the DB attribute, the algorithm must extract the 
information about the number of double bonds from the remaining 

attributes. This is the reason why C18:1 and C18:2 become very 
important as these attributes appear in almost every biodiesel (see 
Fig. 1) and inform about the presence of double bonds. The rest of the 
FAMEs that are important and add information to the Combination 3 
also appear in the Combination 2. For the Combination 4, as expected, 
the DB and the FSA/MUFA/PUFA account for the 88% of the attribute 
relevance, which means that little information can be extracted from 
NPI, Mw and Cn to predict the IV value. 

These artificial intelligence techniques could be a breakthrough for 
the production biodiesel industry. If different models for predicting 
biodiesel properties were ensembled together, they could serve as a 
feedstock selection tool. In this way, only those feedstocks for which the 
model predicts good properties would proceed to development, saving 
time and money in performing all the characterization tests. 

On the other hand, although these systems allow us to obtain a 
relevance of the attributes in the prediction and thus to know what to 
pay attention to, further work should be done on their interpretability. 
Therefore, they should be combined with physicochemical laws to form 
hybrid systems [62], where it is not only known which attributes have 
the most information about the problem, but also how they affect the 
problem. In this sense we know that the IV is related to the number of 
double bonds of the FAMEs, but it is not yet known with certainty how it 
is affected by other features such as the number of double bonds in the 
same chain, or the length of the chain. 

4. Conclusions 

A total of 266 biodiesels were used for this study, covering samples 
from the years 2002–2022. Several algorithms were tested to predict the 
Iodine Value (IV) property. Different combinations of attributes were 
used, and the following conclusions were reached.  

• Machine learning models for predicting biodiesel properties need to 
be trained on a large number and variety of examples (e.g., biodiesel 
from different generations and with different FAME distributions 
than typical) to better predict and generalize.  

• The XGBoost algorithm provides the best results with the biodiesels 
included in our dataset. Although SVR with RBF kernel has a slightly 
smaller error in MAE, XGBoost is the algorithm with the highest R2 

and lowest MSE.  
• The use of ANNs is not recommended due to the risk of overfitting 

considering the currently available data. These models would require 
a larger dataset to perform adequately. In addition, algorithms such 
as ANFIS, which cannot work with more than 4 or 5 attributes, are 
also discouraged as they cannot cover the full spectrum of FAMEs.  

• With the currently available data, the hold-out approach of dividing 
the dataset into train/validate/test is also discouraged. Due to the 
limited number of examples, the performance of the algorithm de
pends on which examples form each group. Therefore, the use of a 
leave-one-out experiment is recommended.  

• Although the number of double bonds is the most important 
parameter for predicting IV, the results are much better when the 
distribution of FAMEs is also included as input data. 
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Abbrevations 

ANFIS Artificial neuro-fuzzy interference system 

ANN Artificial neural network 
ASME American society of mechanical engineers 
CN Cetane number 
EN European norm 
FAME Fatty acid methyl ester 
FAEE Fatty acid ethyl ester 
ICEs Internal combustion engines 
IV Iodine value 
LM Levenberg-Marquardt 
MUFA Mono-unsaturated fatty acids 
PUFA Poly-unsaturated fatty acids 
RBF Radial basis function 
SFA Saturated fatty acids 
SVM Support vector machine 
SVR Support vector regressor 
UN United Nations  

Nomenclature 
Ca Calcium 
CO2 Carbon dioxide 
Cn Carbon number 
DB Number of double bonds 
I2 Molecular iodine 

Fig. 7. Relevance of the attributes.  
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K Potassium 
MAE Mean absolute error 
Mg Magnesium 
MSE Mean squared error 
Mw Molecular weight 
Na Sodium 
NPI Non polarity index 
NOx Nitrogen oxides 
R2 Coefficient of determination 
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Baêta JG. Internal combustion engines and biofuels: examining why this robust 
combination should not be ignored for future sustainable transportation. Renew 
Sustain Energy Rev 2021;148:111292. https://doi.org/10.1016/j. 
rser.2021.111292. 

[5] Hosseinzadeh-Bandbafha H, Tan YH, Kansedo J, Mubarak NM, Liew RK, Yek PNY, 
et al. Assessing biodiesel production using palm kernel shell-derived sulfonated 
magnetic biochar from the life cycle assessment perspective. Energy 2023;282: 
128758. https://doi.org/10.1016/j.energy.2023.128758. 

[6] Badawy T, Mansour MS, Daabo AM, Abdel Aziz MM, Othman AA, Barsoum F, et al. 
Selection of second-generation crop for biodiesel extraction and testing its impact 
with nano additives on diesel engine performance and emissions. Energy 2021;237: 
121605. https://doi.org/10.1016/j.energy.2021.121605. 

[7] Chauhan BS, Kumar N, Cho HM. A study on the performance and emission of a 
diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 2012;37: 
616–22. https://doi.org/10.1016/j.energy.2011.10.043. 

[8] Galadima A, Muraza O. Biodiesel production from algae by using heterogeneous 
catalysts: a critical review. Energy 2014;78:72–83. https://doi.org/10.1016/j. 
energy.2014.06.018. 

[9] Al-Jabri H, Das P, Khan S, AbdulQuadir M, Thaher MI, Hoekman K, et al. 
A comparison of bio-crude oil production from five marine microalgae – using life 
cycle analysis. Energy 2022;251:123954. https://doi.org/10.1016/j. 
energy.2022.123954. 

[10] Dutta K, Daverey A, Lin J-G. Evolution retrospective for alternative fuels: first to 
fourth generation. Renew Energy 2014;69:114–22. https://doi.org/10.1016/j. 
renene.2014.02.044. 

[11] Aro E-M. From first generation biofuels to advanced solar biofuels. Ambio 2016;45 
(Suppl 1):S24–31. https://doi.org/10.1007/s13280-015-0730-0. 

[12] Shelare SD, Belkhode PN, Nikam KC, Jathar LD, Shahapurkar K, Soudagar MEM, 
et al. Biofuels for a sustainable future: examining the role of nano-additives, 
economics, policy, internet of things, artificial intelligence and machine learning 
technology in biodiesel production. Energy 2023;282:128874. https://doi.org/ 
10.1016/j.energy.2023.128874. 

[13] CTN 51/SC 3. EN 14214:2013 V2+A2:2019 Liquid petroleum products - fatty acid 
methyl esters (FAME) for use in diesel engines and heating applications - 
requirements and test methods. 2019. 

[14] D02.E0. ASTM D6751-20a standard specification for biodiesel fuel blend stock 
(B100) for middle distillate fuels. 2023. 

[15] Ahmad J, Awais M, Rashid U, Ngamcharussrivichai C, Raza Naqvi S, Ali I. 
A systematic and critical review on effective utilization of artificial intelligence for 
bio-diesel production techniques. Fuel 2023;338:127379. https://doi.org/ 
10.1016/j.fuel.2022.127379. 

[16] Yang H, Ring Z, Briker Y, McLean N, Friesen W, Fairbridge C. Neural network 
prediction of cetane number and density of diesel fuel from its chemical 
composition determined by LC and GC–MS. Fuel 2002;81:65–74. https://doi.org/ 
10.1016/S0016-2361(01)00121-1. 

[17] Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob A del R. 
Predicting cetane number, kinematic viscosity, density and higher heating value of 
biodiesel from its fatty acid methyl ester composition. Fuel 2012;91:102–11. 
https://doi.org/10.1016/j.fuel.2011.06.070. 

[18] Sorate KA, Bhale PV. Biodiesel properties and automotive system compatibility 
issues. Renew Sustain Energy Rev 2015;41:777–98. https://doi.org/10.1016/j. 
rser.2014.08.079. 

[19] Sarin A. Biodiesel: production and properties. Royal Society of Chemistry; 2012. 
[20] Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel 

composition, properties, and specifications. Renew Sustain Energy Rev 2012;16: 
143–69. https://doi.org/10.1016/j.rser.2011.07.143. 

[21] Jain S, Sharma MP. Stability of biodiesel and its blends: a review. Renew Sustain 
Energy Rev 2010;14:667–78. https://doi.org/10.1016/j.rser.2009.10.011. 

[22] Mittelbach M. Diesel fuel derived from vegetable oils, VI: specifications and quality 
control of biodiesel. Bioresour Technol 1996;56:7–11. https://doi.org/10.1016/ 
0960-8524(95)00172-7. 

[23] Barradas Filho AO, Barros AKD, Labidi S, Viegas IMA, Marques DB, Romariz ARS, 
et al. Application of artificial neural networks to predict viscosity, iodine value and 
induction period of biodiesel focused on the study of oxidative stability. Fuel 2015; 
145:127–35. https://doi.org/10.1016/j.fuel.2014.12.016. 

[24] Gopinath A, Puhan S, Nagarajan G. Theoretical modeling of iodine value and 
saponification value of biodiesel fuels from their fatty acid composition. Renew 
Energy 2009;34:1806–11. https://doi.org/10.1016/j.renene.2008.11.023. 

[25] Alviso D, Artana G, Duriez T. Prediction of biodiesel physico-chemical properties 
from its fatty acid composition using genetic programming. Fuel 2020;264:116844. 
https://doi.org/10.1016/j.fuel.2019.116844. 

[26] Wang L, Yu H, He X, Liu R. Influence of fatty acid composition of woody biodiesel 
plants on the fuel properties. J Fuel Chem Technol 2012;40:397–404. https://doi. 
org/10.1016/S1872-5813(12)60018-8. 

[27] Kalayasiri P, Jeyashoke N, Krisnangkura K. Survey of seed oils for use as diesel 
fuels. J Am Oil Chem Soc 1996;73:471–4. https://doi.org/10.1007/BF02523921. 

[28] Mahesh B. Machine Learning Algorithms - A Review 2018;9. 
[29] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. https://doi. 

org/10.1038/nature14539. 
[30] Liu Z, Karimi IA. Gas turbine performance prediction via machine learning. Energy 

2020;192:116627. https://doi.org/10.1016/j.energy.2019.116627. 
[31] Ahmad T, Huanxin C, Zhang D, Zhang H. Smart energy forecasting strategy with 

four machine learning models for climate-sensitive and non-climate sensitive 
conditions. Energy 2020;198:117283. https://doi.org/10.1016/j. 
energy.2020.117283. 

[32] Thangaraja J, Zigan L, Rajkumar S. A machine learning framework for evaluating 
the biodiesel properties for accurate modeling of spray and combustion processes. 
Fuel 2023;334:126573. https://doi.org/10.1016/j.fuel.2022.126573. 

[33] Suvarna M, Jahirul MI, Aaron-Yeap WH, Augustine CV, Umesh A, Rasul MG, et al. 
Predicting biodiesel properties and its optimal fatty acid profile via explainable 
machine learning. Renew Energy 2022;189:245–58. https://doi.org/10.1016/j. 
renene.2022.02.124. 

[34] Ghiasi MM, Mohammadzadeh O, Zendehboudi S. Reliable connectionist tools to 
determine biodiesel cetane number based on fatty acids methyl esters content. 
Energy Convers Manag 2022;264:115601. https://doi.org/10.1016/j. 
enconman.2022.115601. 

[35] Mohibbe Azam M, Waris A, Nahar NM. Prospects and potential of fatty acid methyl 
esters of some non-traditional seed oils for use as biodiesel in India. Biomass 
Bioenergy 2005;29:293–302. https://doi.org/10.1016/j.biombioe.2005.05.001. 

[36] Bukkarapu KR, Krishnasamy A. A critical review on available models to predict 
engine fuel properties of biodiesel. Renew Sustain Energy Rev 2022;155:111925. 
https://doi.org/10.1016/j.rser.2021.111925. 

[37] Bachler C, Schober S, Mittelbach M. Simulated distillation for biofuel analysis. 
Energy Fuel 2010;24:2086–90. https://doi.org/10.1021/ef901295s. 

[38] Mostafaei M. ANFIS models for prediction of biodiesel fuels cetane number using 
desirability function. Fuel 2018;216:665–72. https://doi.org/10.1016/j. 
fuel.2017.12.025. 

[39] Giakoumis EG, Sarakatsanis CK. A comparative assessment of biodiesel cetane 
number predictive correlations based on fatty acid composition. Energies 2019;12: 
422. https://doi.org/10.3390/en12030422. 

[40] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit- 
learn: machine learning in Python. JMLR 2011;12:2825–30. 

[41] Trenchevski A, Kalendar M, Gjoreski H, Efnusheva D. Prediction of air pollution 
concentration using weather data and regression models. 2020. 

[42] Kenney JF, Keeping ES. Mathematics of statistics. vol. First. third ed. D. Van 
Nostrand Comppany, Inc.; 1962. 

[43] Quinlan JR. Induction of decision trees. Mach Learn 1986;1:81–106. https://doi. 
org/10.1007/BF00116251. 

[44] Dietterich TG. Ensemble methods in machine learning. In: Multiple classifier 
systems. Berlin, Heidelberg: Springer; 2000. p. 1–15. https://doi.org/10.1007/3- 
540-45014-9_1. 

[45] Breiman L. Bagging predictors. Mach Learn 1996;24:123–40. https://doi.org/ 
10.1007/BF00058655. 

[46] Breiman L. Random forest. Mach Learn 2001;45:5–32. https://doi.org/10.1023/A: 
1010933404324. 

[47] Schapire RE. A brief introduction to boosting. Proceedings of the 16th international 
joint conference on Artificial intelligenceume 2. San Francisco, CA, USA: Morgan 
Kaufmann Publishers Inc.; 1999. p. 1401–6. 

[48] Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 
22nd ACM SIGKDD international conference on knowledge discovery and data 
mining. San Francisco California USA: ACM; 2016. p. 785–94. https://doi.org/ 
10.1145/2939672.2939785. 

[49] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273–97. 
https://doi.org/10.1007/BF00994018. 

[50] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge: 
Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511809682. 

[51] Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. 
Redwood City, Calif: Addison-Wesley Pub. Co; 1991. 

[52] Lawrence S, Giles CL. Overfitting and neural networks: conjugate gradient and 
backpropagation. Proceedings of the IEEE-INNS-ENNS international Joint 
conference on neural networks. IJCNN 2000. Neural Comput: New Challenges and 
Perspectives for the New Millennium 2000;1:114–9. https://doi.org/10.1109/ 
IJCNN.2000.857823. vol.1. 

G. Díez Valbuena et al.                                                                                                                                                                                                                        

https://www.un.org/sustainabledevelopment/energy/
https://doi.org/10.1007/s40430-019-2076-1
https://doi.org/10.1007/s40430-019-2076-1
https://doi.org/10.1016/j.rineng.2019.100060
https://doi.org/10.1016/j.rser.2021.111292
https://doi.org/10.1016/j.rser.2021.111292
https://doi.org/10.1016/j.energy.2023.128758
https://doi.org/10.1016/j.energy.2021.121605
https://doi.org/10.1016/j.energy.2011.10.043
https://doi.org/10.1016/j.energy.2014.06.018
https://doi.org/10.1016/j.energy.2014.06.018
https://doi.org/10.1016/j.energy.2022.123954
https://doi.org/10.1016/j.energy.2022.123954
https://doi.org/10.1016/j.renene.2014.02.044
https://doi.org/10.1016/j.renene.2014.02.044
https://doi.org/10.1007/s13280-015-0730-0
https://doi.org/10.1016/j.energy.2023.128874
https://doi.org/10.1016/j.energy.2023.128874
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref13
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref13
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref13
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref14
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref14
https://doi.org/10.1016/j.fuel.2022.127379
https://doi.org/10.1016/j.fuel.2022.127379
https://doi.org/10.1016/S0016-2361(01)00121-1
https://doi.org/10.1016/S0016-2361(01)00121-1
https://doi.org/10.1016/j.fuel.2011.06.070
https://doi.org/10.1016/j.rser.2014.08.079
https://doi.org/10.1016/j.rser.2014.08.079
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref19
https://doi.org/10.1016/j.rser.2011.07.143
https://doi.org/10.1016/j.rser.2009.10.011
https://doi.org/10.1016/0960-8524(95)00172-7
https://doi.org/10.1016/0960-8524(95)00172-7
https://doi.org/10.1016/j.fuel.2014.12.016
https://doi.org/10.1016/j.renene.2008.11.023
https://doi.org/10.1016/j.fuel.2019.116844
https://doi.org/10.1016/S1872-5813(12)60018-8
https://doi.org/10.1016/S1872-5813(12)60018-8
https://doi.org/10.1007/BF02523921
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref28
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.energy.2019.116627
https://doi.org/10.1016/j.energy.2020.117283
https://doi.org/10.1016/j.energy.2020.117283
https://doi.org/10.1016/j.fuel.2022.126573
https://doi.org/10.1016/j.renene.2022.02.124
https://doi.org/10.1016/j.renene.2022.02.124
https://doi.org/10.1016/j.enconman.2022.115601
https://doi.org/10.1016/j.enconman.2022.115601
https://doi.org/10.1016/j.biombioe.2005.05.001
https://doi.org/10.1016/j.rser.2021.111925
https://doi.org/10.1021/ef901295s
https://doi.org/10.1016/j.fuel.2017.12.025
https://doi.org/10.1016/j.fuel.2017.12.025
https://doi.org/10.3390/en12030422
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref40
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref40
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref41
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref41
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref42
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref42
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref47
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref47
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref47
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/BF00994018
https://doi.org/10.1017/CBO9780511809682
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref51
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref51
https://doi.org/10.1109/IJCNN.2000.857823
https://doi.org/10.1109/IJCNN.2000.857823


Energy 292 (2024) 130638

11

[53] Blum A, Kalai A, Langford J. Beating the hold-out: bounds for K-fold and 
progressive cross-validation. Proceedings of the twelfth annual conference on 
Computational learning theory. Santa Cruz California USA: ACM; 1999. p. 203. 
https://doi.org/10.1145/307400.307439. 8. 

[54] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and 
model selection (Montreal) Canada 1995;2:1137–43. 

[55] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning data 
mining, interference and prediction. 2009. New York: Springter. 

[56] Yang L, Shami A. On hyperparameter optimization of machine learning algorithms: 
theory and practice. Neurocomputing 2020;415:295–316. https://doi.org/ 
10.1016/j.neucom.2020.07.061. 

[57] Feurer M, Hutter F. Hyperparameter optimization. In: Hutter F, Kotthoff L, 
Vanschoren J, editors. Automated machine learning: methods, systems, challenges. 

Cham: Springer International Publishing; 2019. p. 3–33. https://doi.org/10.1007/ 
978-3-030-05318-5_1. 

[58] Kreyszig E. Advanced engineering mathematics. tenth ed. New York: Wiley; 1979. 
p. p880. 

[59] Carpenter RG. Principles and procedures of statistics, with special reference to the 
biological sciences. Eugen Rev 1960;52:172–3. 

[60] Kononenko I, Hong SJ. Attribute selection for modelling. Future Generat Comput 
Syst 1997;13:181–95. https://doi.org/10.1016/S0167-739X(97)81974-7. 

[61] Knothe G. Structure indices in FA chemistry. How relevant is the iodine value? 
J Americ Oil Chem Soc 2002;79:847–54. https://doi.org/10.1007/s11746-002- 
0569-4. 

[62] Zendehboudi S, Rezaei N, Lohi A. Applications of hybrid models in chemical, 
petroleum, and energy systems: a systematic review. Appl Energy 2018;228: 
2539–66. https://doi.org/10.1016/j.apenergy.2018.06.051. 

G. Díez Valbuena et al.                                                                                                                                                                                                                        

https://doi.org/10.1145/307400.307439
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref54
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref54
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref55
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref55
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref58
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref58
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref59
http://refhub.elsevier.com/S0360-5442(24)00410-9/sref59
https://doi.org/10.1016/S0167-739X(97)81974-7
https://doi.org/10.1007/s11746-002-0569-4
https://doi.org/10.1007/s11746-002-0569-4
https://doi.org/10.1016/j.apenergy.2018.06.051

	Application of machine learning techniques to predict biodiesel iodine value
	1 Introduction
	2 Material and methods
	2.1 Database description
	2.2 Data preparation
	2.2.1 Data filtering
	2.2.2 Attribute selection

	2.3 Regression algorithms in machine learning
	2.3.1 Dummy regressor
	2.3.2 Linear regression
	2.3.3 Decision tree
	2.3.4 Ensemble methods
	2.3.4.1 Bagging
	2.3.4.2 Boosting

	2.3.5 Support vector machine (SVM)
	2.3.6 Artificial neural network (ANN)

	2.4 Performance of a model
	2.4.1 Cross validation
	2.4.2 Leave-one-out

	2.5 Hyperparameter optimization
	2.6 Normalization of the data
	2.7 Performance metrics
	2.8 Procedure to train a machine learning model

	3 Results and discussion
	3.1 Attributes and algorithm performance
	3.2 Comparison of the proposed methodology with previous reported ones
	3.3 Attributes relevance

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Abbrevations
	References


