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A B S T R A C T   

Burning fossil fuels is a significant contributor to global warming due to CO2 emissions. To mitigate these 
emissions, alternative bio-based fuels, such as biodiesel, have been developed. The cold flow properties of 
biodiesel, including pour point (PP), cold filter plugging point (CFPP), and cloud point (CP), are crucial. Pre-
dicting these properties can aid in selecting bio-oils for biodiesel production. Machine learning techniques were 
utilized to reveal intricate connections between the content of fatty acid methyl esters (FAME) in biodiesel and its 
cold flow properties. This study created three machine learning models based on a database of over 200 biodiesel 
samples to predict the aforementioned cold flow properties. The models’ performance was assessed using three 
standard regression metrics: mean absolute error, mean squared error, and coefficient of determination. The 
experimental results show that the optimal algorithm for PP, CFPP, and CP has an average error of 4.51 ◦C, 3.56 
◦C, and 4.17 ◦C, respectively. The study also investigated the significance of various biodiesel attributes in 
making precise predictions, revealing that the distribution of FAME and the number of double bonds in the 
biodiesel are crucial factors for accurate predictions.   

1. Introduction 

Fossil fuels currently dominate the energy market, resulting in sig-
nificant CO2 emissions [1]. While more environmentally friendly forms 
of energy generation, such as wind, solar or nuclear have been imple-
mented [2–4], they are not always suitable for certain types of energy 
consumption. For example, road and marine transport heavily rely on 
conventional internal combustion engines (ICEs) as their primary pro-
pulsion systems. These engines are specifically designed and optimized 
to operate on fossil fuels such as gasoline or diesel and are not 
compatible with many alternative energy sources. Despite the ongoing 
development of new models of ships, cars or trucks that can integrate 
alternative energy sources, it is likely to be a long time before these 
innovations become widespread [5]. Therefore, it makes sense to 
explore alternative fuels that can be used in existing engines. Of the 
various biofuels available, ethanol and biodiesel are the most widely 
used [6], and the latter appears to hold the most promise for widespread 
adoption [7]. 

Biodiesel is produced from oil by a variety of methods, including 
pyrolysis and emulsification, but the most important and widely used 
method is the transesterification reaction [8]. During transesterification, 

the fatty acids present in the oil react with alcohol, typically methanol or 
ethanol, to form fatty acid methyl/ethyl esters (FAME/FAEE). The 
resulting biodiesel contains these FAMEs along with potential impu-
rities, the nature of which can vary depending on the production process 
and the source of the oil feedstock. Based on the origin and nature of the 
biodiesel, it can be classified into four distinct generations [9]. “1st 
generation biodiesel” is derived from oils suitable for human con-
sumption [10], “2nd generation biodiesel” is derived from non-edible 
oils but still requires arable land [11] and “3rd generation biodiesel” 
[12] and “4th generation biodiesel” [13] are derived from microalgae. 

Biodiesel must meet the requirements of the EN 14214:2012 +
A2:2019 [14] and ASTM D6751 [15] standards. These standards specify 
the acceptable range for certain properties and how they should be 
measured, as shown in Table 1. While most of the critical properties are 
covered in the standard, there are some important properties that are 
addressed in national legislation as they are highly dependent on the 
country or region. These properties are related to biodiesel behaviour at 
low temperatures and are commonly referred as “cold flow” properties:  

• Pour Point (PP). This refers to the point at which biodiesel ceases to 
flow [16]. It is measured in accordance with ISO 3016:2019 [17]. 
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• Cold Filter Plugging Point (CFPP). This refers to the highest tem-
perature at which a 20 mL sample of fuel fails to pass through a 
specified filter within 60 s under certain test conditions, including a 
specified pressure and cooling temperature [16]. It is measured in 
accordance with EN 116:2015 [18].  

• Cloud Point (CP) refers to the temperature at which the heavier 
components of the biodiesel begin to crystallize and the solution 
becomes cloudy [16]. It is measured accordance with ISO 3015:2019 
[19]. 

These requirements will vary from country to country or region to 
region, as the average temperature varies. Regions with hotter condi-
tions may be more permissive with the limits, while colder regions 
should be more demanding, as these properties are critical to proper 
engine performance [20,21]. 

The biodiesel characterization process, including the extraction of 
biodiesel from the feedstock itself and the measurement of cold flow 
properties, is a time-consuming and costly process. Therefore, it would 

be desirable to have tools to predict these properties. According to EN 
14214, the product must have a FAME content of at least 96.5 % to 
qualify as biodiesel. Taking this into account, it seems that the predic-
tion of properties should be made by studying the content and distri-
bution of FAME, as these affect the rest of the biodiesel properties, and 
the FAME determination test is easy to perform. To date, empirical 
equations based on a limited number of parameters have been the pre-
dominant methods used to predict cold flow properties [22–27]. These 
parameters are typically a combination of the FAME distribution and 
other parameters such as degree of unsaturation or average chain length. 
These empirical equations provide a linear approach to the problem, but 
this approach limits their ability to model more complex cases. While 
they are simple and easy to use, they do not yield accurate results when 
tested on a diverse set of biodiesels, due to their inability to model the 
interactions between FAMEs. Therefore, to show the improvement that 
this study represents, the results will be compared to those of Bolonio 
et al., Sarin et al., Dunn et al., Alviso et al. and Serrano et al. [28–32]. 
However, with the advent of artificial intelligence, we are no longer 
limited to using only a few parameters, but can use the entire FAME 
distribution along with other data to make the prediction. 

This study aims to develop three different models for predicting the 
pour point (PP), the cold filter plugging point (CFPP) and the cloud point 
(CP) of biodiesel from its FAME distribution using an extensive database 
of more than 200 biodiesels. Improved performance evaluation and 
metrics to ensure generalization will be presented and an analysis of the 
relevance of each attribute will be conducted. Once developed, these 
models can help in the early stages of the production process, in which 
having a tool for screening the prospective bio-oils will be helpful. 
Currently, these predictive models cannot replace physical testing, as 
they are not covered by existing legislation. However, as these models 
improve, they could be used in place of physical characterization. In this 
paper several machine learning algorithms and performance methods 
are applied to build models for predicting biodiesel properties useful to 
the industry. 

2. Material and methods 

This section describes the database compiled from the existing 
literature, as well as several machine learning algorithms suitable for 
prediction. Since each of the cold flow properties is a continuous vari-
able, the selection should focus on regression algorithms capable of 
predicting numerical values. 

2.1. Databases description 

A different database is presented for each cold flow property studied. 
The PP database contains 238 biodiesel examples, the CFPP database 
contains 248 biodiesel examples, and the CP database contains 282 
biodiesel examples collected from the literature. Some examples are 
present in more than one database because the corresponding authors 
measured more than one property in the referenced work, resulting in a 
total of 372 different biodiesel examples across the 3 databases. These 
372 different biodiesels come from more than 140 different feedstocks, 
making the biodiesel database as representative of current biodiesel 
trends as possible. On average, 68 % of the samples belonged to the 1st 
generation, 27 % to the 2nd generation and 5 % to the 3rd generation. 
Other studies addressing the same prediction problem, such as those 
presented by Alviso et.al [31] (48 biodiesel examples) and Razavi et.al 
[33] have used smaller datasets (48 and 44 biodiesel examples, 
respectively), which can lead to a generalization problem [34], devel-
oping models that would struggle to make accurate predictions for 
samples other than those used in the training set. 

The datasets presented in this paper consist of 38 identified FAMEs. 
In addition, the group “others” includes the FAMEs that could not be 
identified. As shown in Fig. 1, the predominant FAMEs in the database 
are: methyl palmitate (C16:0), methyl stearate (C18:0), methyl oleate 

Table 1 
Range of biodiesel properties extracted from the EN 14214:2012 + A2:2019 [14] 
and ASTM D6751 [15] standards.  

Property Units EN 14,214 Test 
method 

ASTM 
D6751 

Test 
method 

FAME content %(m/ 
m) 

≥96.5 EN 
14,103 

–  

Density at 15 ◦C kg/m3 860–––900 ISO 
12,185 

–  

Viscosity at 40 ◦C mm2/s 3.50–––5.00 EN 
16,896 

1.9–––6 D445 

Flash Point ◦C ≥101 ISO 
3679 

≥130 D93 

Cetane Number 
(CN) 

– ≥51.0 EN 
16,175 

≥47 D613 

Copper corrosion Class ≥1a ISO 
2160 

≤3 D130 

Oxidative stability 
(110 ◦C) 

h ≥ 8 EN 
14,112 

≥3 EN 
14,112 

Acid value mg 
KOH/g 

≤0.50 EN 
14,104 

≤0.5 D664 

Iodine Value (IV) g I2/ 
100 g 

≤120 EN 
14,111 

–  

Methyl ester 
linoleic acid 

%(m/ 
m) 

≤12 EN 
14,103 

–  

Methyl ester + 4 
double bonds 

%(m/ 
m) 

≤1 EN 
15,779 

–  

Methanol content %(m/ 
m) 

≤0.2 EN 
14,110 

≤0.2 EN 
14,110 

Monoglycerides 
content 

%(m/ 
m) 

≤0.7 EN 
14,105 

–  

Diglycerides 
content 

%(m/ 
m) 

≤0.2 EN 
14,105 

–  

Triglycerides 
content 

%(m/ 
m) 

≤0.2 EN 
14,105 

–  

Free Glycerine %(m/ 
m) 

≤0.02 EN 
14,105 

≤0.02 D6584 

Total Glycerine %(m/ 
m) 

≤0.25 EN 
14,105 

≤0.24 D6584 

Water content %(m/ 
m) 

≤0.050 ISO 
12,937 

≤0.05 D2709 

Total 
contamination 

mg/kg ≤24 EN 
12,662 

–  

Sulphated ash 
content 

%(m/ 
m) 

≤0.02 ISO 
3987 

≤0.02 D874 

Sulphur content mg/kg- 
%(m/ 
m) 

≤10 ISO 
20,846 

≤15 D5453 

Group I metals (Na 
+ K) 

mg/kg ≤5 EN 
14,108 

≤5 EN 
14,538 

Group II metals 
(Ca + Mg) 

mg/kg ≤5 EN 
14,538 

≤5 EN 
14,538 

Phosphorus 
content 

mg/kg- 
%(m/ 
m) 

≤4 EN 
14,107 

≤10 D4951  
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(C18:1) and methyl linoleate (C18:2), which are present in over 95 % of 
the samples. Other FAMEs with a high abundance rate are: methyl 
myristate (C14:0), methyl palmitoleate (C16:1), methyl linolenate 
(C18:3), methyl arachidate (C20:0), methyl eicosenoate (C20:1) and 
methyl behenate (C22:0), whose presence ranged from 34 % to 76 %. 
This is consistent with the findings of Hoekman et al. [35] and Singh 
et al. [36], who showed that the majority of biodiesel is composed of 
C16 and C18 compounds. 

2.2. Prediction methods 

When approaching a prediction problem there are many algorithms 
capable of performing the task. This section presents a selection of the 
most representative regression algorithms. All of these methods are 
available in the Python library Scikit-Learn [37]. 

The Mean Predictor is used as a baseline for comparison. This algo-
rithm predicts the mean value of the data and is the simplest algorithm 
that can be implemented. Another simple algorithm is the Linear 
Regression, which gives good (and interpretable) results when the 
problem can be solved linearly, but whose performance is poor when a 
nonlinear solution is required. In the latter case, algorithms that can 
adapt to nonlinear problems, such as Decision Trees, are desirable. This 
algorithm uses successive splits to group the data into clusters that have 
the same prediction and stores the learned model in a tree that can be 
easily interpreted [38]. 

Even if simplicity is preferred, it is likely that complex problems 
cannot be modelled by simpler algorithms. There are more sophisticated 
algorithms that can be useful for these complex problems, but they must 
be used carefully because they tend to overfit (the learned model can 
make accurate predictions using the training data, but cannot generalize 
sufficiently). Ensemble methods such as Random Forest [39] and XGBoost 
[40] have shown good performance on difficult problems. These algo-
rithms train multiple decision trees using different methods and build a 
model by assembling the trained decision trees [41,42]. Other complex 

algorithms are the Support Vector Machines (SVM), which have the 
ability to model complex problems using different kernels [43] or Arti-
ficial Neural Networks (ANN), which can model any type of problem 
through a layered architecture [44]. 

2.2.1. Normalization of the data 
Some algorithms have difficulty during the training phase when the 

data is in different scales. To overcome this, it is usually necessary to 
standardize the data. The chosen standardization in this research is 
shown in Eq. (1), where zi is the value after the standardization, x̄ is the 
mean of the attribute,xi are the values observed in the attribute, and σi is 
the standard deviation of these values. 

zi =
xi − x̄

σi
(1)  

2.2.2. Performance of the model 
A leave-one-out approach was chosen to evaluate the performance of 

the different models. The performance obtained from a leave-one-out 
experiment is the most accurate estimate of the modelś performance. 
The model is trained on all the available data except one example and 
then is asked to predict the value of that example. This process is 
repeated as many times as there are examples, omitting a different 
example each time. Also, some algorithms tend to be influenced by the 
hyperparameters chosen to train the model. To find the best hyper-
parameters for each algorithm, a grid search using a 5-fold cross- 
validation [45] was performed [46]. 

2.3. Performance metrics 

In order to measure the performance of the different algorithms 
presented in this study, along with other models available in the liter-
ature, three common metrics have been used. These metrics are the 
Mean Absolute Error (MAE), the Mean Squared Error (MSE) and the 

Fig. 1. Frequency distribution of the FAMEs presented in the current set.  
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Coefficient of Determination (R2), represented by the equations (2), (3) 
and (4) respectively: 

MAE =
1
n
∑n

i=1
|yi − ŷi| (2)  

MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (3)  

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2 (4)  

where n is the number of examples, yi is the actual value of the target 
variable, ŷi is the predicted value, and ȳ is the mean of the observed 
data. 

In summary, we use the Python Scikit-Learn library [37] for the 
experiments, where the algorithms selected for the comparison are 
available under the following names: DummyRegressor (Mean Predictor), 
LinearRegressor, DecisionTreeRegressor, RandomForestRegressor, XGBRe-
gressor, SVR (Support Vector Machines) and MLPRegressor (Artificial 
Neural Networks). The performance of these algorithms is calculated 
using a leave-one-out experiment and the hyperparameter optimization 
using a grid search with 5-fold cross-validation. 

3. Attribute determination and data filtering 

3.1. Attribute determination 

Building a model that could predict the various cold flow properties 
using only the FAME distributions would be ideal. However, as other 
authors have pointed out, there are some attributes that can be calcu-
lated from the FAME distribution that can help to build the model. These 
attributes found in the literature are:  

• The attributes related to the degree of saturation of the FAME. These 
are the saturated fatty acids (SFA), the monounsaturated fatty acids 
(MUFA), and the polyunsaturated fatty acids (PUFA) [47,48].  

• The molecular weight (Mw) of the biodiesel [49].  
• The length of the biodiesel, expressed as the average number of 

carbons (Cn) [22].  
• The average number of double bonds in the biodiesel (DB) [24].  
• The non-polarity index of the biodiesel (NPI), calculated according to 

Eq. (5) [50]. 

NPI =
Cn • Mw
∑

FAME
(5)  

3.2. Filtering the data 

As mentioned in the first section, according to standard EN 
14214:2012 + A2:2019 [14], biodiesel must have a minimum FAME 
content of 96.5 % to be available for commercialization. However, many 
of the research papers in this area do not aim to report a final marketable 
biodiesel, but to characterize possible feedstocks worthy of further 
research. This objective has resulted in many papers reporting FAME 
levels slightly below 96.5 %. It is necessary to strike a balance between 
working with the largest amount of data and working with data where 
the majority of the composition is FAME. As 96.5 % of the FAME content 
can be easily achieved after distillation [51], a filter of 90 % is set for the 
FAME content, as it is a high enough percentage to account for most of 
the composition. After applying this filter, the examples in each data-
base change as follows: the 238 examples for PP become 223, the 248 
examples for CFPP become 228, and the 282 examples for CP are 
reduced to 262. 

4. Results and discussion 

This section shows the best combination of attributes and their 
importance, together with the best algorithm to build the best model for 
each of the cold flow properties. In addition, a comparison between the 
models developed in this study and other models reported by other 
authors is made. 

4.1. Best combination of attributes and algorithms 

As mentioned in sections 2.2 and 3.1, different algorithms and at-
tributes were tested to build the best possible model. Several experi-
ments were performed combining different attributes, as shown in 
Table 2. Combination 1 uses only the FAME distribution of biodiesel and 
can be considered as the starting point. Combinations 2 through 7 use 
the FAME distribution along with other attributes calculated from the 
FAME distribution, and combination 7 includes all the possible attri-
butes. Combination 8, which is included in this study because it is rec-
ommended by Mostafaei [52] to predict the PP and CP, uses the 
attributes SFA, MUFA, PUFA Mw and Cn. In order to select the attributes 
that contribute positively to the prediction and discard those that do not, 
all these combinations were tested for all the proposed algorithms and 
for the three cold flow properties. 

The results of the experiments are collected in Table A.1, Table A.2 
and Table A.3 in the Appendix. In these tables the Linear Regression, 
SVM-Linear and SVM-Polynomic perform poorly. This is due to the fact 
that these algorithms learn coefficients that are multiplied by the attri-
bute to obtain the prediction and, as can be seen in Fig. 1, some FAMEs 
have a very low presence in the biodiesel of the database. These 
particular algorithms will perform better if there are more biodiesels 
containing these unusual FAMEs. As expected, the Mean Predictor does 
not perform well. However, this algorithm allows us to distinguish be-
tween those algorithms that are able to learn from the data and those 
that are not (any algorithm that performs worse than the Mean Predic-
tor). With this in mind, Fig. 2 shows the MAE of the algorithms that 
outperformed the Mean Predictor for each attribute combination in 
Table 2. For the MSE and R2 metrics, graphs with similar tendencies are 
obtained, which can be checked in the Appendix (Fig A.1 and Fig A.2). 

Overall, the best algorithms in the three problems considered are the 
XGBoost and the Random Forest, followed by the SVM-RBF. The ANN did 
not perform as well, especially for the combination of attributes pro-
posed by Mostafaei [52], characterized by not including the FAME 
distribution. The Decision Trees show the worst performance for the 
prediction of the three properties. 

Looking at the performance of the best algorithms (Random Forest 
and XGBoost), we can see that some combinations of attributes perform 

Table 2 
Different attribute combinations tested for each algorithm.   

FAME 
Distribution 

Others SFA/ 
MUFA/ 
PUFA 

Mw Cn DB NPI 

Combination 
1 

✔ ✖ ✖ ✖ ✖ ✖ ✖ 

Combination 
2 

✔ ✔ ✖ ✖ ✖ ✖ ✖ 

Combination 
3 

✔ ✔ ✔ ✖ ✖ ✖ ✖ 

Combination 
4 

✔ ✖ ✔ ✖ ✖ ✖ ✖ 

Combination 
5 

✔ ✖ ✔ ✖ ✖ ✔ ✔ 

Combination 
6 

✔ ✖ ✖ ✖ ✖ ✔ ✖ 

Combination 
7 

✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Combination 
8 

✖ ✖ ✔ ✔ ✔ ✖ ✖  
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better than others. When trying to predict the CFPP, good performance 
can be achieved with combination 6 (FAME and DB), which is the only 
combination that was able to improve on the base combination (FAME). 
It seems that the number of double bonds is important for predicting the 
CFPP and for this particular problem it is the only attribute that provides 
relevant information. For predicting the CP there are several combina-
tions of attributes that are better than just using the FAME distributions. 
However, the best one seems to be combination 5 (FAME, SFA/MUFA/ 
PUFA, DB and NPI). To predict the CP not only the DB is important but 
also the rest of the added attributes as they improve the performance of 
the algorithm. Although Mostafaei [52] proposed attribute combination 
8 (SFA/MUFA/PUFA, Mw and Cn) as the best for predicting CP and PP, 
in our experiments this does not seem to be the case since the perfor-
mance obtained with the Mostafaei attributes is worse than that ob-
tained with the FAME distribution alone. For the PP prediction there are 
several attribute combinations that improve the performance, although 
this improvement is not so marked. Combinations 4, 5, 6 and 7 present 
the best results, which reinforces the importance of the number of 
double bonds and the SFA/MUFA/PUFA. 

In general, using the FAME distribution (combination 1) for the 
prediction shows a better performance than not using the FAME distri-
bution (combination 8). The performance increases when the number of 
double bonds (combination 6) is included, and for the PP and CP in 
particular, the performance also increases when the SFA/MUFA/PUFA 
and NPI (combination 5) are included. The Mw and CN do not seem to be 
important in predicting of these properties. 

After considering the results for the three different metrics, the best 
model is chosen for each property. The best algorithms are the XGBoost 
for the PP and the CFPP, while for the CP it is the Random Forest. For the 
PP the best combination of attributes is 5 (MAE: 4.51, MSE: 44.31, R2: 
0.48), for the CFPP the best combination is 6 (MAE: 3.56, MSE: 25.76, 
R2: 0.60) and for CP the best combination is 5 again (MAE: 4.17, MSE: 
37.76, R2: 0.43). 

4.2. Comparison of built models with previously reported models 

The performance of the best model for each property was compared 
with six different models found in the literature, whose performance was 
measured using the datasets, metrics and methodology presented in this 
work.  

• Model 1. This model proposed by Bolonio et al. [28] presents three 
equations, each of which could predict one of the properties: PP [Eq. 
(6)], CFPP [Eq. (7)], and CP [Eq. (8)] (referred to in the figures as 
Model1PP, Model1CFPP, and Model1CP, respectively). In these equa-
tions, UFAME is the sum of unsaturated FAMEs, expressed as a per-
centage and NC is the weighted average number of carbons 
(equivalent to the Cn attribute in this article). 

PP( ◦ C) = − 125.04 − 0.62 • UFAME + 8.61 • NC (6)  

CFPP(
◦ C) = − 103.47 − 0.59 • UFAME + 7.3 • NC (7)  

CP( ◦ C) = − 81.62 − 0.45 • UFAME + 5.87 • NC (8)    

• Model 2. This model presented by Sarin et al. [29] proposes two 
different equations that have been able to predict PP [Eq. (9)] and 
CP [Eq. (10)] (named as Model2PP and Model2CP, respectively). This 
model uses only the variable of palmitic acid methyl ester (PAME 
C16:0) concentration in percent and it is limited to 45 %. 

PP( ◦ C) = 0.571 • (PAME) − 12.240 (9)  

CP(
◦ C) = 0.526 • (PAME) − 4.992 (10)    

• Model 3. This model presents an equation for each property: PP [Eq. 
(11)], CFPP [Eq. (12)], and CP [Eq. (13)], named as Model3PP, 
Model3CFPP, and Model3CP, respectively. It was proposed by Dunn 

Fig. 2. MAE performance of the algorithms that exceed the Mean Predictor for every attribute combination and property.  
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[30] and it includes in the total saturated fatty acid methyl esters 
SFAME (equivalent to the SFA attribute). 

PP( ◦C) = 1.41 • SFAME − 29.4 (11)  

CFPP(
◦ C) = 1.44 • SFAME − 29.3 (12)  

CP( ◦ C) = 1.44 • SFAME − 24.8 (13)    

• Model 4. This model proposed by Alviso et al. [31] presents an 
equation, designed using genetic programming, for each of the cold 
flow properties. All of them depend on some specific FAME and the 
equations are (14), (15) and (16) for PP, CFPP and CP, named as 
Model4PP, Model4CFPP, and Model4CP, respectively. In these equa-
tions xPA is the percentage of palmitic acid ester (C16:0), xST is the 
percentage of stearic acid ester (C18:0), xLI is the percentage of 
lignoceric acid ester (C24:0), xLN is the percentage of linoleic acid 
ester (C18:2), and xBE is the percentage of behenic acid ester (C22:0). 

PP(K) = 267.303+ 0.3xPA + 0.505xST − 0.1xLI − 0.1xLN (14)  

CFPP(K) = 259.051+ 0.72834xPA + 0.5xST + 7.71255xBE (15)  

CP(K) = 268.444+ 0.2xPA + 0.666xST (16)    

• Model 5. The model proposed by Serrano et al. [32] states that the 
CFPP can be predicted using three parameters according to Eq. (17), 
named as Model5CFPP. The three parameters chosen by the authors 
are the FAME content of the saturated compounds from C4:0 to 
C14:0 (SATC4− C14), the FAME content of the saturated compounds 
from C16:0 to C24:0 (SATC16− C24), and the FAME content of the 
unsaturated compounds (UNSAT), all expressed in percent. The au-
thors also proposed some applicability conditions for the correlation, 
which are given below the equation. 

CFPP( ◦ C) = 0 − 0.12 • SATC4− C14 + 0.47 • SATC16− C24 − 0.14 • UNSAT
(17)  

0 < SATC4− C14 ≤ 81.1  

7.4 ≤ SATC16− C24 ≤ 44.4  

7.1 ≤ UNSAT ≤ 92.2    

• Model 6. This model is an ANN that uses the FAME distribution to 
make the prediction and it was proposed by Al-Shanableh et al. [53] 
(referred to as “ANN Al-Shanableh” in the figures). The architecture 
of the ANN has 9 neurons in the input layer (corresponding to the 
number of most common FAME compounds in their database), 6 
neurons in the hidden layer using a sigmoid activation function, and 
one neuron in the output layer. 

Fig. 3 shows a comparison between the models proposed in the 
literature and the prediction model for PP. The first model proposed by 
Bolonio et al. (Model1PP) used only 16 biodiesel distributions to build 
their equations, 6 of which are blends of at least 2 of the 10 base bio-
diesels. Therefore, their correlation may adequately predict the cold 
flow properties for biodiesels similar to those used in the study but has 
problems generalizing to other biodiesels with different composition. 

In a similar manner, Dunn proposed a correlation (Model3PP) that 
depends only on the saturated fatty acids and used only 9 examples of 
biodiesel to build the model. With such a small database, this model has 
problems predicting PP for biodiesels from the database used in this 
study that have a different saturated fatty acid content from those used 
in Dunńs study. In contrast to Model1PP and Model3PP, the model pro-
posed by Sarin et al. [29] (Model2PP) is also based on one attribute but 
shows better results. The reason for this is that the attribute selected for 
prediction (palmitic acid ester C16:0) appears in almost every biodiesel 
example. Insisting on the approach of using the most representative 
FAMEs to predict PP, the model proposed by Alviso et al. [31] (Mod-
el4PP) considers a selection of the most representative FAMEs, leading to 
better results. 

The model proposed by Al-Shanableh et al. (ANN Al-Shanableh) has 
a good performance, but not as good as that reported in their paper. This 
may be due to overfitting, as the ANN structure they proposed seems to 
predict more accurately biodiesels similar to those selected in their study 
and predicts many of the rest poorly. 

Fig. 4 shows the comparison between the best CFPP model trained in 
the present investigation and the models proposed in the literature. The 
performance obtained by the models 1, 3, 4, and 6 (Model1CFPP, Mod-
el3CFPP, Model4CFPP, ANN [53]) is similar to that obtained for the same 
models to predict the PP, and the reasons for these performances are the 

Fig. 3. Comparison between the best PP model and 5 different models proposed in the literature.  

G. Díez-Valbuena et al.                                                                                                                                                                                                                        



Journal of Molecular Liquids 400 (2024) 124555

7

same. 
Model 5, proposed by Serrano et al. (2014), is included in the com-

parison (Model5CFPP). This model uses a selection of attributes that 
discriminate between the short chain length FAMEs and the long chain 
length FAMEs. This gave better results than Model1CFPP and Model3CFPP, 
but the restrictions applied to the possible values of the attributes could 
make it impossible to use this correlation. In the case of the database 
presented in this work, the correlation could not be applied to 20.6 % of 
the biodiesel examples. For all the other models and the algorithms 
proposed in this work, all the biodiesels were included in the perfor-
mance evaluation. This distinction gave an advantage to Model5CFPP, 
since some biodiesels that are considered to give bad results are 
excluded. 

A similar analysis for CP is shown in Fig. 5. The selected models are 
the same as those selected for the PP property and have the same defi-
ciency as those mentioned above, and the figure shows that the model 

proposed in this study outperforms all the other models. 
Figs. 3, 4 and 5 show that the performance results for the R2 metric 

are not very good for any of the models. However, this does not mean 
that the models presented in this paper are not useful, as a closer look at 
the MAE metric leads to several conclusions. The MAE for PP, CFPP, and 
CP are 4.73 ◦C, 3.68 ◦C, and 4.16 ◦C, respectively, and these results 
provide a confidence interval where the prediction should lie. Using the 
prediction in conjunction with the confidence interval, the model can be 
used to estimate whether or not it meets the requirements of the regu-
lation. Since the standards specify an upper limit value for each prop-
erty, it is sufficient that the predicted value and its confidence interval is 
below this limit to ensure the corresponding standard compliance. 

4.3. Attribute relevance in the prediction 

The XGBoost and Random Forest algorithms are not only able to build 

Fig. 4. Comparison between the best CFPP model and 5 different models proposed in the literature.  

Fig. 5. Comparison between the best CP model and 5 different models proposed in the literature.  
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a predictive model, but also to determine the significance of each 
attribute in making the prediction. Fig. 6 shows the importance of each 
attribute, expressed in percentage, for the properties analysed in this 
work, and it can be seen that the FAME distribution and the number of 
double bonds play an important role in all three models. 

For the PP prediction, the attribute combination 5 (FAME, SFA/ 
MUFA/PUFA, DB and NPI) was selected and the relative importance of 
these attributes is shown in Fig. 6 (a), where the monounsaturated fatty 
acids (MUFA) gain some importance. For the CFPP prediction, the 
attribute combination 6 (FAME and DB) was selected and among the 
FAMEs the C20:1 seems to be of particular relevance. Finally, for CP, 
where the attribute combination 5 was also used, the saturated fatty 
acids (SFA) become important. 

This relationship was expected, as previous studies have shown a 
correlation between the degree of saturation of biodiesel and its prop-
erties at low temperatures. It is well known that higher degrees of 
saturation result in higher PP, CFPP, and CP points [54]. Additionally, 
longer chain lengths also lead to higher PP, CFPP, and CP [55]. How-
ever, the interactions between the different FAMEs are not fully un-
derstood. Therefore, IA-based models that can capture the complexity of 
the problem are needed. 

Regarding the FAME distribution, it is necessary to mention that the 
algorithms generally assign more relevance to those FAMEs with greater 
presence in the database (see Fig. 1). If a larger database with more 
homogeneous distribution is used, the relevance of these FAMEs is likely 

to vary. 

5. Conclusions 

In the present study, a selection of frequently used machine learning 
algorithms as well as 3 databases with more than 200 examples of bio-
diesel for each property (pour point, cold filter plugging point, and cloud 
point) were presented and made publicly available. Different models 
were built with different combinations of attributes and several con-
clusions were reached. 

The use of machine learning applications improves previous models 
that relied on empirical equations, resulting in better generalization. 
Similarly, to achieve optimal generalization, it is crucial to use databases 
that accurately represent the biodiesel set. Therefore, creating examples 
through artificial mixtures and using a limited number of examples is 
discouraged. The FAME distribution and the number of double bonds are 
revealed as the primary factors that affect the low temperature prop-
erties of biodiesels. Other potentially useful attributes for prediction 
include SFA, MUFA, PUFA, and NPI. 

Although the R2 correlation coefficients of the models are not high, 
they are still useful for the industry. These correlations may have a low 
R2 for several reasons, such as the limited amount of data, inaccuracies 
in the data, the use of different equipment or test configuration, or other 
factors that have not been taken into consideration but that could have 
provided relevant information. They can be used in conjunction with the 

Fig. 6. Attribute relevance in the prediction of: (a) PP, (b) CFPP, and (c) CP.  
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obtained MAE values to establish predictions and confidence intervals. 
This way, if the predicted value plus the interval are within the speci-
fication, the biodiesel can be assumed to meet the cut-off. 

To enhance these models, additional diverse examples should be 
added to the database. In addition, it is crucial to explore methods to 
improve their interpretability. One approach could be to transform the 
models into hybrid systems [56], which would identify not only the most 
important features, but also their interactions. Finally, a combined 
model should be developed by integrating these and other models for 
different properties to identify all biodiesel characteristics. 
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[53] F. Al-Shanableh, A. Evcil, M.A. Savaş, Prediction of cold flow properties of 
biodiesel fuel using artificial neural network, Procedia Comput. Sci. 102 (2016) 
273–280, https://doi.org/10.1016/j.procs.2016.09.401. 

[54] R.D. Lanjekar, D. Deshmukh, A review of the effect of the composition of biodiesel 
on NO x emission, oxidative stability and cold flow properties, Renew. Sustain. 
Energy Rev. 54 (2016) 1401–1411, https://doi.org/10.1016/j.rser.2015.10.034. 

[55] J.F. Sierra-Cantor, C.A. Guerrero-Fajardo, Methods for improving the cold flow 
properties of biodiesel with high saturated fatty acids content: a review, Renew. 
Sustain. Energy Rev. 72 (2017) 774–790, https://doi.org/10.1016/j. 
rser.2017.01.077. 

[56] S. Zendehboudi, N. Rezaei, A. Lohi, Applications of hybrid models in chemical, 
petroleum, and energy systems: a systematic review, Appl. Energy 228 (2018) 
2539–2566, https://doi.org/10.1016/j.apenergy.2018.06.051. 

G. Díez-Valbuena et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.rser.2011.07.143
https://doi.org/10.1016/j.fuel.2019.04.174
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0185
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0185
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0185
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0185
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0210
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0210
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0210
https://doi.org/10.1007/BF00994018
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0220
http://refhub.elsevier.com/S0167-7322(24)00611-1/h0220
https://doi.org/10.1016/j.energy.2024.130638
https://doi.org/10.1016/j.biortech.2007.02.017
https://doi.org/10.1016/S0016-2361(01)00117-X
https://doi.org/10.1007/s11746-002-0569-4
https://doi.org/10.1007/s11746-002-0569-4
https://doi.org/10.1016/j.biortech.2019.122299
https://doi.org/10.1016/j.biortech.2019.122299
https://doi.org/10.1021/ef901295s
https://doi.org/10.1016/j.fuel.2018.04.148
https://doi.org/10.1016/j.fuel.2018.04.148
https://doi.org/10.1016/j.procs.2016.09.401
https://doi.org/10.1016/j.rser.2015.10.034
https://doi.org/10.1016/j.rser.2017.01.077
https://doi.org/10.1016/j.rser.2017.01.077
https://doi.org/10.1016/j.apenergy.2018.06.051

	Prediction of the cold flow properties of biodiesel using the FAME distribution and Machine learning techniques
	1 Introduction
	2 Material and methods
	2.1 Databases description
	2.2 Prediction methods
	2.2.1 Normalization of the data
	2.2.2 Performance of the model

	2.3 Performance metrics

	3 Attribute determination and data filtering
	3.1 Attribute determination
	3.2 Filtering the data

	4 Results and discussion
	4.1 Best combination of attributes and algorithms
	4.2 Comparison of built models with previously reported models
	4.3 Attribute relevance in the prediction

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


