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Abstract 
The prediction of the temperature in the different tanks of a mixed acid pickling line of wire rod coils is described in this 
paper. The goal is to develop a robust model-based prediction tool that allows prospective development of pickling bath 
states and adjustments in the management of a pickling line. The temperature of the pickling bath is a critical variable for 
the efficiency of the pickling process. Excessive temperatures can have an unfavorable effect on the pickling results and can 
complicate the decontamination of the exhaust gases. Root mean square error values lower than 0.2◦ C were obtained when 
treating martensitic and ferritic steels, which are precisely the most problematic types of steel in the control of pickling 
temperature. The model software was installed on a computer for online operation at the pickling plant. Relevant information 
is predicted and transmitted such as the temperature pickling bath trend with the sequence of the wire coils to be treated. 
Plant personnel are able to change this sequence or modify pickling retention times based on this information. The economic 
benefits come mainly from better use of the production line, reducing coil waiting times.
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Abbreviations
ARMAX  Auto-regressive moving average model with 

eXogenous inputs
HF  Hydrofluoric acid
HNO

3
  Nitric acid

NO
2
  Nitrogen dioxide gas

NOx  Nitric oxide and nitrogen dioxide gases
GUI  Graphical user interface
HMI  Human machine interface
RMSE  Root mean square error
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List of symbols
C  Heat capacity of the acid fluid (J/◦C)
K  Constant of the cooling system dynamics 

K = 1∕(C ⋅ RT )

q
loss

(t)  Cooling heat flux (W)
q
net
(t)  Net entering heat flux (W)

q
steel

(t)  Steel heat flux (W)
RT  Total thermal resistance of the heat exchanger 

( ◦C/W)
T
0
  Temperature of the cooled water ( ◦C)

Ts  Sampling time (s)
T(t)  Temperature in the pickling bath ( ◦C)

1 Introduction

Ferrous alloys dominate the metal production industries as 
they are versatile with many useful properties. The popular-
ity of ferrous alloys also stems from the abundance of iron 
in the earth’s crust and the relatively inexpensive processes 
used to extract and refine ferrous materials [6]. The aim of 
this paper is to develop a powerful model-based forecasting 
tool that enables the prospective development of pickling 
bath conditions and changes in pickling process manage-
ment as required.

Pickling stainless steel is generally carried out with an 
acid solution that mixes nitric acid (HNO

3
 ) with hydrofluo-

ric acid (HF). Nitric acid is a highly corrosive oxidant that 
reacts explosively with many metals, organic compounds 
and common building materials such as mild steel, lime-
stone or mortar. These reactions result in the release of nitric 
acid fumes and nitrogen dioxide fumes. Used incorrectly, 
these chemicals can be dangerous both for people and for 
the environment. In addition, chemical reactions occur 
during pickling that release dangerous vapors. Industries 
that use processes where nitric oxide and nitrogen dioxide 
gases (NOx ) are emitted have strict government regula-
tions regarding emissions. These gases can be formed in 
both annealing furnaces and pickling baths. Therefore, in 
order to reduce the risk of hazardous situations or accidents 
occurring, it is important that the hazards associated with 
pickling products are recognized and that safety regulations 
are followed. A background concentration of 2.5�g/m3 can 
be estimated based on the lowest concentration of NO

2
 in 

populated areas of the EU [19]. The toxic nitric fumes gen-
erated during pickling have several effects: high levels of 
nitric smoke can cause respiratory problems and in the worst 
case, inhalation can cause pulmonary edema. Exposure to 
NO

2
 gas, with a concentration greater than 200�g/m3 , has 

a significant detrimental effect on human and animal health 
[17]. Environmental problems can arise such as acidification 
of groundwater or damage to plants. Excessive amounts of 
NOx also cause eutrophication which disrupts the balance in 

the ecosystem [19]. Therefore, NOx production must be kept 
low by not allowing pickling reactions to occur too quickly. 
Pickling of low corrosion resistance steel, such as marten-
sitic steel, generates strong exothermic reactions that cause 
both an increase in the acid bath temperature and the emis-
sion of NOx gases. The emission of these gases increases if 
the variables of temperature or acid concentration show high 
values. Thus, if the coil processing rate increases, the bath 
temperature will increase and this will imply an increase in 
the NOx emission. An excessive increase in emissions will 
lead to the stoppage of production in the pickling line.

The aim is to use the prediction of the temperature in the 
pickling tanks to avoid overheating, which would cause the 
emission of toxic gases. In this way, it is necessary to build 
a management software tool composed of several ARMAX 
models established for each steel concerning every pick-
ling program employed. Finally, overheating can be avoided 
by correctly sequencing the different coils in the pickling 
process. The operator can choose the crane hook or make 
use of alternative pickling programs to appropriately vary 
retention times and pickling tank selection. The economic 
benefits come mainly from better use of the production line, 
reducing coil waiting times. In this way, productivity can 
be maximized. The novelty of the work resides in the math-
ematical formulation of a simple, linear and reliable model 
in the specific topic of the steel pickling industry.

2  Plant description

A mixed acid bath is a common pickling method for stainless 
steel coils, in which they are immersed in a solution of usu-
ally nitric and hydrofluoric acids. Mixed acid enters cracks 
caused by a previous treatment. This pretreatment consists 
of one or more combined processes in which the oxide layer 
is stressed to create cracks and openings. This simplifies the 
penetration of the pickling solution and increases efficiency 
[13]. After mechanical pretreatment and conditioning of sur-
face oxides, the coil enters a pickling tank filled with mixed 
acids. HNO

3
 acid begins to swell, dissolving the chromium 

deteriorated layer. HF acid removes metal ions dissolved 
in the solution by forming metal salts in the process. The 
pickling process involves removing from the surface the 
oxide scale layers formed during previous heat treatments 
(annealing, tempering, etc.) and the chromium-depleted 
regions beneath the oxides. When both are removed, the 
bulk material is clean and exposed, free to react with oxygen 
and form a thin passivation layer that protects the stainless 
steel from corrosion.

The coils of wire are guided through the different treat-
ment tanks of the pickling plant in the specified order on the 
input side through a crane hook transport system. The choice 
of each specific process tank and the respective treatment 
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times are largely automated by suitable material-specific 
control programs. This is the batch pickling process, where 
the steel is immersed in an acid solution for a preset time 
until the oxide scale is removed. It is then lifted from the 
bath, allowed to drain, and then rinsed by post-immersion in 
one or more tanks. Steel bars and wire rod coils are typically 
pickled in a batch operation. The residence time required to 
pickle a particular product can best be determined by trial 
and error. The influence of the bath temperature and the 
iron concentration on the pickling time is very important. 
Therefore, automatic control is required to maintain the tem-
perature within specified limits.

Quality inspection of the coils before they leave the pro-
duction line is carried out visually in order to determine that 
the pickling is correct. If the pickling is insufficient, then 
the coil is pickled again, which means that the coil is passed 
through the line again. This underpickling, or conversely, 
the risk of overpickling can make the pickling operation eco-
nomically unviable, so the efficiency of the pickling process 
must be optimized by controlling and monitoring the vari-
ables: overpickling, underpickling and pitting are common 
consequences of control malfunction.

The temperature in the pickling baths is measured with a 
resistance temperature detector, specifically with a PT100. 
The resolution is one decimal digit resolution (1/10 ◦ C) and 
a sampling time equal to 1 s. The sensor is located inside a 
tube covered with contact oil.

3  Plant variables

Control and compliance with defined process conditions, 
e.g., metal concentrations and temperatures, are particularly 
important in the mixed acid immersion pickling baths. The 
concentrations are monitored and readjusted at fixed periods. 
Tank temperatures are increased because of the energy pro-
vided by the pickling process into the pickling acid, and they 
are dissipated through heat exchangers. In order to optimize 
the performance and efficiency of the pickling process, it is 
necessary to analyze the variables that affect its behavior, 
such as pickling pretreatment, acid mixture composition and 
metal salts dissolved in the pickling tank or hydraulic recir-
culations encountered during acid reaction as well as steel 
grade variables (alloy composition, previous heat treatment, 
residence pickling time of the coil and number of consecu-
tive picklings). The coils must not be treated over a long-
term period since overpickling may occur. Flow rate and 
mixing are difficult to directly correlate with pickling results. 
Turbulent flow significantly increases pickling speed. Higher 
acid concentration increases pickling efficiency mainly at 
low temperatures. At high temperatures, the difference is 
smaller. High concentrations may be limited by chemi-
cal use, fumes and acid-contaminated rinsing water. The 

alloying elements and their amounts affect the properties 
of the steel and therefore the pickling ability: in general, the 
greater the alloy, the more difficult the pickling. The type of 
thermal oxide formed by the previous heat treatment deter-
mines the pickling performance. This heat treatment can be 
attributed to any steel code (austenitizing of austenitic and 
duplex steels, tempering of martensitic steels, etc.).

Dissolved metal content affects pickling efficiency, par-
ticularly iron. Some dissolved iron catalyzes pickling reac-
tions. However, as the metal content increases, the pick-
ling rate decreases [9]. If the acid concentration is much 
lower than the dissolved iron, it will result in insufficient 
pickling (underpickling) and production rejection. This can 
be explained by the precipitation of metal fluorides con-
suming the fluoride in the pickling bath. The pickling rate 
can be maintained by continuously adding fresh acid. Not-
withstanding, the metal concentration must not be high to 
keep the process economically viable. There is an optimal 
concentration of iron [18]. Otherwise, if the acid concentra-
tion in the pickling solution is much greater than the dis-
solved iron concentration, the surface of the treated mate-
rial is prone to overpickling, which wastes materials and 
consumes too many chemical resources. Therefore, the acid 
concentration and dissolved iron must be within acceptable 
limits to produce a good consistent surface quality while 
optimizing the chemicals involved in the pickling process. 
Acid and dissolved iron concentrations also affect the pick-
ling time required to obtain successful production, but steel 
grade remains the most important parameter for determining 
pickling residence time. The solubility of metals increases 
with increasing temperature [9]. The acid solution is con-
sidered depleted when the metal concentration becomes too 
high. In that case, it is sent to neutralization where lime is 
added to precipitate the ions and filter them from the liquid. 
In this way, the precipitation of iron fluorides in the pickling 
bath is avoided.

However, among all the parameters, the temperature of 
the pickling bath is a key variable for the efficiency of the 
pickling process and the pickling result, since the pickling 
rate increases as the temperature increases [11]:

• According to the combination of exothermic chemical 
reactions and the cooling system performance, the tem-
perature in the pickling tanks during the pickling process 
will be increased.

• The monitoring and control of the mixed acid tempera-
ture is essential for the development of the pickling pro-
cess.

• Too low temperatures decrease the efficacy of the reac-
tions that take place. In this way, temperatures above 
25◦ C are recommended.

• Too high temperatures can adversely affect the pickling 
process results, there is a greater risk of overpickling 
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and they complicate the catalytic cleaning of the exhaust 
gases. To avoid these problems, an upper limit of tem-
perature in the range of 40–45◦ C is advised.

4  Types of stainless steel

Due to the great diversity of final applications that use stain-
less steel as a material, there are many types that depend 
on the treatments carried out during its production and the 
different alloys considered in this process. Stainless steel is 
basically an alloy of iron, chromium in a weight percentage 
greater than 11% and a low carbon content of no more than 
1.2% [6]. Stainless steel can be classified by its crystalline 
structure into four main types: austenitic, ferritic, martensi-
tic, and duplex [23].

The structure of ferritic stainless steel is body-centered 
cubic and the crystallization phase is known as ferrite 
or �-iron [22]. It is essentially a chromium alloy. Ferri-
tic steel usually contains between 12 and 17% chromium 
[23], although in some grades it can reach up to 30%. As 
in austenitic steel, the carbon content is very low, usually 
between 0.03 and 0.08%. In general, it has a lower corrosion 
resistance than austenitic steel. The pitting corrosion resist-
ance can be improved by means of adding small amounts 
of molybdenum and nitrogen. In some cases, titanium or 
niobium is added in order to avoid intergranular corrosion.

Austenitic stainless steel is the type most used in final 
applications [15]. Austenite or �-iron is its crystal structure 
with a face-centered cubic arrangement. It contains 16–26% 
chromium and 6–12% nickel [23], although alloys with the 
highest amount of chromium reach nickel contents close 
to 20%. There are austenitic grades where molybdenum is 
added to obtain very high resistant corrosion. Austenitic 
stainless steels have better corrosion resistance than mar-
tensitic and ferritic steels.

The martensite is a body-centered tetragonal structure 
which results from the fast cooling of the austenite. Mar-
tensitic stainless steel is basically an alloy of chromium and 
carbon. The chromium content ranges between 10.5 and 18% 
and the amount of carbon is high, reaching values of up to 
1.2% [23]. Although this fact makes martensitic steel have 
a high mechanical resistance [10], it negatively affects its 
resistance to corrosion in such a way that this type of steel 
presents a lower corrosion resistance than austenitic and fer-
ritic steels. Small amounts of molybdenum and nitrogen may 
be added to achieve better corrosion resistance.

Duplex steel is formed by a combination of ferrite and aus-
tenite structures ( � + � ). The weighting of both structures is 
achieved by adding chromium and molybdenum to enhance 
the alpha structure and, on the other hand, by inserting gam-
magen elements such as nickel and nitrogen. Typical chro-
mium content is between 18 and 26%, while nickel is between 

4.5 and 6.5%. It has a very good behavior against corrosion, 
even surpassing austenitic steel in some cases.

5  Methods

The strategy employed to elaborate the model consisted in 
obtaining the net heat flux q

net
(t) corresponding to such tem-

perature evolution during the pickling process time and during 
the moments when there are no coils in the bath. Here, q

net
(t) is 

the net entering heat flux in the pickling bath. Considering that 
the cooling system is continuously working during the pickling 
dwell time in the same way as during the wait time between the 
pickling operations, it can be stated that the net heat flux has a 
fixed component, q

loss
(t) , due to such cooling. Then, when the 

pickling process is taking place, the net heat flux is composed 
of the sum of the steel heat flux q

steel
(t) due to the exothermic 

reaction of the coils being pickled in the acid bath (considered 
positive) plus the heat flux component q

loss
(t) due to the cool-

ing system (considered negative) according to equation (1).

The procedure to obtain these heat flux components is based 
on the following strategy:

5.1  Obtaining the cooling dynamics due to the heat 
exchanger

Considering the cooling system as an indirect-surface heat 
exchanger composed of parallel tubes, in which the exchange 
of heat between the mixed acid and the cooled water takes 
place mainly by conduction, the cooling heat flux q

loss
(t) can 

be approximately modeled as (2), where T
0
 is the temperature 

of the cooled water, RT is the total thermal resistance of the 
heat exchanger and T(t) is the temperature in the pickling bath.

On the other hand, the definition of net entering heat flux as 
a function of the heat capacity of the acid fluid states that

When the exothermic reaction due to the pickling treatment 
of the coils is completely over, having considered the end 
of the heating inertia after the coils are removed from the 
pickling bath, the net heat flux has only the cooling compo-
nent due to the heat exchanger, i.e., q

net
(t) = −qloss(t) since 

q
steel

(t) = 0 . Taking into account this fact and Eqs. (2) and 
(3), expression (4) can be established, where K = 1∕(C ⋅ RT ) 
represents the dynamics of the cooling system due to the 
heat exchanger:

(1)q
net
(t) = q

steel
(t) − q

loss
(t)

(2)q
loss

(t) =
T(t) − T

0

RT

(3)q
net
(t) = C

dT(t)

dt
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Applying the Euler numerical integration method in (4), 
expression (5) for the temperature of the pickling bath at 
each instant k can be set, where Ts is the sample time. Since 
the pickling bath temperature is available in the dataset, it is 
possible to obtain an estimated value of K for each instant 
k. Theoretically, this K parameter should be a constant, so 
that a medium value is obtained to model the whole cooling 
temperature evolution. Parameter K allows to obtain the heat 
flux due to the cooling system, q

loss
 , for each time instant, 

the dynamics of which are the same for the whole process 
except when the cooling system is switched off.

A preprocessing adaptation of the temperature data must 
be carried out in order to obtain the temperature dynamics 
during the pickling operation. The dataset has a sample time 
equal to 1 s and the temperature is recorded with a resolu-
tion of 0.1◦C.

5.2  Obtaining the net heat flux during the whole 
process

Considering equation (3), the net entering heat flux dur-
ing both the pickling process dwell time and the wait time 
between processes ( q

net
(t)∕C ) can be obtained differentiat-

ing temperature T with regards to time instant k, since the 
temperature samples are available in the dataset.

5.3  Obtaining heat flux qsteel(t) due 
to the exothermic reaction of the pickling 
process

Finally, applying the balance of the heat fluxes (1), at any 
moment in time, the heat flux qsteel(t)/C can be obtained. 
It should be equal to 0 when there is no reaction induced 
by the immersion of the coils in the pickling bath. The 
whole mathematical model can be expressed as a block 
diagram in Fig. 1.

At this point, it is possible to carry out supervised train-
ing in order to establish the mathematical relationship 
between the presence of coils being pickled, represented 
by variable u(t) in the block diagram, and the heat flux 
q
steel

(t)∕C produced during the process. This mathematical 
relationship will be expressed as an ARMAX model and 
is explained in the next section.

(4)
dT(t)

dt
= K(T

0
− T(t))

(5)
Tk − Tk−1

Ts
= K(T

0
− Tk−1)

6  ARMAX

Training datasets must be collected with the q
steel

(t)∕C heat 
flux triggered by the exothermic reaction of each steel grade 
in each bath concerning the number of coils introduced for a 
single pickling operation. Each training dataset will provide 
the identification basis to obtain the most accurate ARMAX 
model and, in this way, the heat flux due to the pickling 
reaction qsteel (t)/C during the pickling dwell time can be 
obtained.

ARMAX (Auto-Regressive Moving Average model with 
eXogenous inputs) models [5] represent the mathematical 
relationship between the system output and the system 
input in the presence of noise considering linear dynami-
cal system. The model identification based on the ARMAX 
algorithm can easily avoid the over-parameterization of the 
mathematical model which is an advantage over other tech-
niques [21].

The ARMAX model has been widely used for different 
applications in order to obtain not only a prediction of some 
key variable, but also to model the dynamics of physical 
systems and subsequently be able to control them. In thesis 
[12], an ARMAX model is used to control a reheating fur-
nace by means of model predictive control. Quantification 
of damage in reinforced wall constructions is implemented 
in Mei et al. [16] and Ay and Wang [2] carried out damage 
monitoring in mechanical structures using vibration signals 
as input data. In R. et al. [20], the steam pressure variation 
process inside fire-tube boilers was identified with a sec-
ond order linear ARMAX model. In work [26], a reduced 
subset of variables is obtained using a preprocessing algo-
rithm applied to acoustic sensor data and then an ARMAX 
model is fitted to predict the lifetime of cutting machines. 
The prediction of the pasteurization temperature in the milk 
industry is accomplished in Del Carpio Ramirez et al. [7]. 
A battery thermal management system [1] analyzes the tem-
perature distribution with the objective of minimizing the 

Fig. 1  Block diagram
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temperature of the batteries using different refrigerants and 
obtaining models using statistical techniques.

Several works combine prior physical knowledge of the 
system with ARMAX models to carry out the control or 
prediction of a certain variable. In Wu and Sun [24], room 
temperature is predicted including architectural parameters. 
The order of an ARMAX model is determined using the 
thermodynamic equations of a building room in order to be 
used for real-time fault detection in [25]. Paper [8] highlights 
the importance of combining thermodynamic fundamentals 
with models based on experimental data to address control 
in ferrous alloy furnaces. Also, in Azadi et al. [3], a hybrid 
approach is used to improve control in blast furnaces.

ARMAX model identification is a suitable procedure for 
dynamic systems which are under the influence of noise by 
means of adjusting the appropriate polynomial degrees in 
Eq. (6), considering that there is no dead time in the system. 
The ARMAX model consists of an autoregressive part that 
contains the output measurements, a moving average part 
corresponding to the white noise error terms and an exog-
enous part which is composed of the input variables [4].

where k is the discrete time, y is the model output, u is the 
model input, e is the model prediction error and ai , bi and ci 
are the coefficients to be estimated.

The identification of this kind of system can be carried 
out through the application of mathematical methods that 
obtain the system dynamics and the model parameters based 
on input and output information of the system. The model 
parameters can be obtained using several identification algo-
rithms such as recursive extended least squares, recursive 
maximum likelihood and prediction error method, Ljung 
[14]. In this paper, the prediction error method is applied 
to the ARMAX model (6) to estimate the parameters ai , bi 
and ci.

The definition of the ARMAX model can be written as a 
discrete-time transfer function. This transfer function repre-
sents the input–output relationship of the ARMAX model. 
In this way, the Z transform can be taken in (6) to obtain (7).

Therefore, na is the number of poles (model order), nb 
is the number of zeros plus 1 and nc is the number of C 
coefficients.

The estimated q
net
(t)∕C acquired with both simulations 

of q
steel

(t)∕C and q
loss

(t)∕C allows to obtain an estimated 

(6)

yk + a
1
⋅ yk−1 + a

2
⋅ yk−2 + ... + ana ⋅ yk−na

= b
1
⋅ uk + b

2
⋅ uk−1 + ... + bnb ⋅ uk−nb+1

ek + c
1
⋅ ek−1 + c

2
⋅ ek−2 + ... + cnc ⋅ ek−nc

(7)

A(z) =1 + a
1
⋅ z−1 + a

2
⋅ z−2 + ... + ana ⋅ z

−na

B(z) =b
1
+ b

2
⋅ z−1 + ... + bnb ⋅ z

−nb+1

C(z) =1 + c
1
⋅ z−1 + c

2
⋅ z−2 + ... + cnc ⋅ z

−nc

temperature evolution T(t), calculated by sequential numeri-
cal integration based on previous predicted temperature val-
ues, starting from an initial temperature condition which is 
set as the first value of the real temperature data. The aim 
is to develop a pickling program management model which 
would predict the temperature evolution in any acid bath due 
to the sequence of pickling operations. Firstly, the ARMAX 
model obtains the q

steel
(t)∕C flux versus the specific type of 

wire rod material, considering also as input variables the 
number and the specific type of coils treated in the same 
operation and the pickling dwell time. Then, by adding the 
previously calculated q

loss
(t)∕C flux, the temperature evolu-

tion can be obtained integrating the resulting q
net
(t)∕C . This 

management model tool will allow the selection of the opti-
mal dip tank based on the current process data for optimal 
pickling results.

6.1  Discussion of the training variables

A particularly compelling aspect to consider when studying 
the dynamics of the acid bath temperatures is the number 
of pickling operations performed on the coils in previous 
pickling tanks. The number of pickling stages affects the 
temperature dynamics and the steel heat flux produced. The 
first pickling stage produces the highest temperature and 
heat flux values, as the number of previous pickling treat-
ments affects subsequent pickling operations, reducing tem-
perature peaks since most of the scale has previously been 
removed (see Fig. 2). The longer the pickling dwell time, 
the more pronounced this effect is. The number of previous 
picklings does not need to be included as an input variable 
in the model as it consists of a different ARMAX model 
obtained for each steel type in a specific bath.

The effect of percentages such as acid or dissolved iron 
is difficult to assess because their concentrations vary very 
slowly and are always within suitable ranges for a good 
pickling process. However, the ratio between the concentra-
tions of HF and HNO

3
 is important for the efficiency of the 

pickling process. There are several recommended levels to 
accommodate the more corrosive and demanding HF pick-
ling of high alloy stainless steels (dual-phase, etc.), and they 
can be adjusted for milder acid requirements for common 
steel operations, e.g., austenitic or ferritic steels. Nitric acid 
is strongly oxidizing, attacking and dissolving metal oxides, 
while HF forms iron complexes and precipitates. Higher lev-
els of dissolved iron indicate lower levels of HF (and lower 
levels of HNO

3
 ) in the acid bath. Therefore, these concen-

trations were not considered in the pickling identification 
model because the relationship between HNO

3
 , HF and iron 

concentrations remained stable due to regeneration of the 
pickling bath.

The bath temperature at the beginning of the pick-
ling process affects the bath heating rate and satisfies the 
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Arrhenius behavior of chemical reactions (exponential 
dependence between reaction rate and reaction tempera-
ture). Since a fixed residence time is set for each steel code 
in each pickling program, the rate of chemical reaction 
affects the temperature dynamics and heat flux produced 
by the exothermic reaction of each pickling operation. The 
average heating rate is derived from the maximum of the 
residence time heat flux q

steel
(t)∕C , which is used as an 

equivalent of the reaction rate to emphasize the bath tem-
perature at the beginning of the pickling process and the 
rate of the heating reaction.

The reliance is higher on martensitic steels as they use a 
shorter residence time in the pickling, so their heating reac-
tion is incomplete when the coil is taken out of the bath. 
Additionally, they experience maximum temperature and 
heat flux. Austenitic steels are less relevant because they 
use longer pickling residence times, so their heating reac-
tion is nearly complete when the coil is taken out of the 

bath. Furthermore, their temperature and heat flux release 
are the lowest.

The weight and thickness of the coil were defined as 
factors affecting the contact area of the pickling reaction. 
Therefore, the steel heat flux used to obtain the ARMAX 
model is normalized per unit of weight and thickness. For 
each grade of steel, the density is similar and the volume of 
the coil of the same weight is the same, so the contact area 
is inversely proportional to the thickness of the coil. On the 
other hand, the greater the weight, the greater the volume 
and the greater the contact area.

The training variables of the ARMAX model are the steel 
grade, the pickling stage, the number of coils treated in the 
same operation, its weight and thickness. The bath tempera-
ture at the beginning of a specific pickling operation must 
be taken into account considering different linear regions 
regarding the temperature ranges of the pickling bath. Fig-
ure 3 shows the training data and the estimated steel heat 

Fig. 2  Comparison between 
stages 1 and 2 of the steel heat 
flux obtained in the pickling 
reaction of one coil of ferritic 
steel

Fig. 3  Training data and 
estimated steel heat flux for a 
specific martensitic steel



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2024) 46:129129 Page 8 of 11

flux for a specific type of martensitic steel. Employing this 
model, the estimation of the temperature can be obtained 
using the test data in Fig. 4.

The practical implementation of the model can be sum-
marized in the following steps: 

1. The temperature T(t) must be derived to obtain q
net
(t)∕C 

taking into account equation (3).
2. The constant K must be obtained by (5) using a dataset 

in which only the cooling of the bath occurs without any 
type of steel being treated.

3. The q
loss

(t)∕C heat flux can be obtained in this step to 
calculate q

steel
(t)∕C using balance (1).

4. The q
steel

(t)∕C heat flux is normalized by unit of weight 
and thickness of the coil, this variable being the one 
considered as the output of the ARMAX model to be 
obtained. The input of the ARMAX model is u(t), that 
is, the number of coils to be treated. Different model 
orders ( na , nb , nc ) are tested in order to obtain the best 
ARMAX model.

7  Results

Figures 5, 7 and 6 show different offline tests carried out on 
real pickling sequences for some steel codes. Each graphic 
shows the estimation of the temperature versus the real 
temperature. Important differences in terms of temperature 
dynamics and heat flux distribution can be outlined between 
each type of steel. The prediction errors using RMSE are 
shown in Table 1.

Martensitic steels require special care, as the q
steel

(t) flux 
is higher and the temperature rises rapidly due to exothermic 
reactions. Care must be taken in order to avoid long-lasting 
residence times, because if the temperature exceeds 45◦ C, 
the HF will volatilize and produce harmful and corrosive 
vapors. Figure 5 shows the temperature evolution of the 
pickling treatment of a specific martensitic type of steel.

Austenitic and duplex steels are the most difficult to 
pickle because they require longer and more severe pick-
ling treatments. In addition, these types of steel have a 
higher underpickling defect rate (especially duplex steels). 

Fig. 4  Test for the martensitic 
steel obtained in Fig. 3

Fig. 5  martensitic 1.40050-52 
coils (13 mm, 1000–1100 kg), 
stage 1 (B6 tank, BP 88). TF 
model established for bath 
temperatures between 35◦ C and 
40 ◦C
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However, they are not critical for temperature troubleshoot-
ing, as they hardly raise the temperature of the acid bath, the 
q
steel

(t) flux is very small due to the exothermic reaction, and 
many operations can be sequentially performed with small 
gaps in time, as can be seen in Fig. 6.

Ferritic steels are the easiest to pickle and require moder-
ate residence times in the pickling bath. They raise the tem-
perature of the bath in a controlled manner. Figure 7 shows 
the real simulation obtained by the model for ferritic steel.

In addition to the differences between steel grades, it must 
be noted that there are also distinct differences between each 
type of steel, i.e., there is a subset of classification within 
each category giving rise, in this way, to different subtypes 
of steel.

Austenitic and duplex steels are the most difficult to 
model because they are treated in sequences with barely 
any wait time between single pickling operations. Also, the 
temperature increase is very low as they produce small heat 
flux. For that reason, a more random behavior is obtained in 
comparison to ferritic and martensitic steels.

8  Conclusions

In addition to mixed acid steel strip pickling lines, stain-
less steel wire pickling in dip tank pickling systems poses 
particular challenges for production planning and pickling 
process management.

Offline simulation testing and optimization studies were 
performed by running the online model in the pickling line 
environment before setting up the platform. Such a platform 
consists of a graphical user interface (GUI) application that 
contains several options for simulating and evaluating the 
temperature trend due to a predetermined pickling sequence, 

Fig. 6  austenitic 1.44010-59 
coils (5.5−6.5 mm, 1000–
1100 kg), stage 1 (B6 tank, BP 
23)

Fig. 7  ferritic 1.41130-51 coils 
(6 mm, 900–1000 kg), stage 
1 (B6 tank, BP 40). TF model 
established for bath tempera-
tures between 20◦ C and 30◦C

Table 1  Prediction results using 
root mean square error

Steel grade RMSE

martensitic 1.40050-52 0.1462
austenitic 1.44010-59 0.3389
ferritic 1.41130-51 0.1005
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starting with the initial temperature entered into the applica-
tion, which is the value of each pickling tank.

Based on the work described in this paper, a model-based 
management software tool has been developed which allows 
to describe the temperature dynamics in the five mixed 
acid pickling tanks. Forecasting is possible several hours 
in advance. For the development, training and validation 
of the model, information from the production and process 
databases was used, based on the steel material properties, 
the surface area to be pickled and the dynamics of the pro-
cess bath. Excellent results have been obtained in tempera-
ture prediction when treating martensitic and ferritic steels, 
which are precisely the most problematic types of steel in 
the control of pickling temperature. RMSE values lower than 
0.2◦ C were obtained (see Table 1).

The introduction of online analysis measurement technol-
ogy developed in the MACO-PILOT project ensures that 
preset value ranges for bath concentrations are maintained. 
In this way, the influence of the bath concentrations has little 
relevance to the temperature prediction model. The online 
version of the model software was installed on a computer 
system located at the pickling plant. Forecasting relevant 
information can be transmitted such as the sequence of the 
wire coils to be treated, their material identifiers, the specific 
pickling programs provided, as well as the data of the pick-
ling process. A human–machine interface (HMI) module 
displays the current and the predicted values of the tempera-
tures and the heat flux densities of the five pickling tanks 
as a function of the planned coil sequence showing them 
graphically in separate diagrams (see Fig. 8). The model-
based management software tool to predict the temperatures 

in the pickling baths allows plant personnel to better monitor 
the pickling process and, if necessary, to make proactive 
changes to the pickling process sequence. The operator can 
change the sequence of coils at the pickling plant entrance 
or make use of alternative pickling programs to appropri-
ately vary retention times and pickling tank selection. The 
development and operational use of this model-based man-
agement tool is an important step in process optimization in 
mixed acid wire pickling plants.
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