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RESUMEN (en español) 

Las enfermedades cardiovasculares no son una causa común de mortalidad infantil; 
sin embargo, constituyen la principal causa de muerte y discapacidad en adultos en países 
desarrollados. Su principal desencadenante es la aterosclerosis, un proceso inflamatorio 
que daña y obstruye las arterias mediante la formación de placas de ateroma a lo largo de 
sus paredes. Este proceso puede iniciarse en la infancia, incluso durante la gestación, y 
generalmente progresa gradualmente hasta la edad adulta. A medida que las placas se 
expanden y se endurecen con el tiempo, pueden llegar a obstruir por completo las arterias, 
resultando en trombosis arterial y, en última instancia, en eventos cardiovasculares como la 
cardiopatía isquémica o accidentes cerebrovasculares, entre otros. 

Intervenir en los principales factores de riesgo cardiovascular puede retrasar el 
desarrollo de la aterosclerosis y reducir el riesgo de enfermedades cardiovasculares futura. 
Los factores de riesgo metabólicos, que incluyen la obesidad central, la resistencia a la 
insulina, la hipertensión y la dislipidemia, son especialmente relevantes tanto en la edad 
adulta como en la juventud. Hasta la fecha, no son muchos los estudios que han podido 
evaluar la asociación entre estos factores metabólicos en edades pediátricas y el riesgo 
posterior de enfermedades cardiovasculares en la edad adulta, por lo que no está 
demostrado que estos factores se puedan considerar de riesgo a estas edades. No 
obstante, dada la naturaleza acumulativa de la aterosclerosis y su inicio temprano en la 
vida, es crucial iniciar la prevención cardiovascular en la infancia.  

En este sentido, los estudios de cohortes longitudinales representan una valiosa 
herramienta para analizar la progresión de dichos factores de riesgo cardiovascular desde 
las primeras etapas de la vida. Estos estudios permiten registrar variables indicadoras de 
riesgo cardiovascular en múltiples momentos a lo largo del período de estudio, lo que 
posibilita una comprensión más completa y detallada de cómo estos factores se desarrollan 
y cambian con el tiempo. 

Teniendo esto en cuenta, el principal objetivo de este estudio ha sido examinar la 
evolución o seguimiento de los factores de riesgo metabólicos mencionados anteriormente 
en edades pediátricas. Se buscó identificar cuáles de estos factores persisten durante la 
infancia y, por lo tanto, pueden requerir de atención preventiva. Para ello, se utilizaron 
datos de niños participantes en la cohorte INMA-Asturias, con edades comprendidas entre 
los 4 y los 8 años.  

Por otro lado, la realización de cualquier estudio epidemiológico requiere una toma 
de decisiones metodológicas y estadísticas fundamentales para abordar adecuadamente 
las preguntas de investigación. Este trabajo se enfrentó a dos desafíos principales: cómo 



                                                                 

 

abordar la presencia de datos ausentes y qué modelos de regresión eran más apropiados 
para analizar el seguimiento de los factores de riesgo cardiovascular en edades tan 
tempranas. Se valoraron las técnicas estadísticas más adecuadas para enfrentar estos 
desafíos, siendo seleccionadas: la imputación múltiple para manejar los datos ausentes y 
los modelos de regresión cuantil para realizar el seguimiento de los factores de riesgo 
metabólicos. 

La presente memoria recoge el trabajo anteriormente descrito y está organizada de 
la siguiente manera. En el Capítulo 1, titulado Introducción, se incluye una breve revisión 
histórica sobre la etiología de las enfermedades cardiovasculares y la identificación de sus 
factores de riesgo. Además, se presenta la cohorte INMA-Asturias, y se introduce 
formalmente el concepto de seguimiento. Finalmente, se abordan las principales 
dificultades metodológicas que surgieron durante el estudio y se explican los enfoques 
estadísticos seleccionados como los más apropiados. En el Capítulo 2 se recogen los 
objetivos específicos propuestos en este trabajo. El Capítulo 3, titulado Métodos y 
resultados, presenta los tres artículos que respaldan este documento y que recogen los 
métodos utilizados y los resultados obtenidos. En el Capítulo 4 se lleva a cabo una 
discusión general de la investigación realizada, presentándola de forma integrada y 
cohesionada. Finalmente, en el Capítulo 5 se presentan de forma ordenada las 
conclusiones derivadas de este trabajo. 

 
 

RESUMEN (en Inglés) 
 

Cardiovascular diseases are not a common cause of mortality in childhood; however, 
in the developed countries, they constitute the leading cause of death and disability in 
adults. Their main trigger is atherosclerosis, an inflammatory process that damages and 
obstructs arteries by forming atheromatous plaques along their walls. This process can 
initiate in childhood, even during gestation, and typically progresses gradually into 
adulthood. As plaques expand and harden over time, they can completely block arteries, 
potentially leading to arterial thrombosis and, ultimately, cardiovascular events such as 
ischemic heart disease or ischemic stroke, among others. 

Intervening in key cardiovascular risk factors can delay the development of 
atherosclerosis and reduce the risk of cardiovascular diseases in the future. Metabolic risk 
factors, including central obesity, insulin resistance, hypertension, and dyslipidemia, are 
particularly relevant both in adulthood and youth. To date, there has been limited research 
assessing the association between these metabolic factors in pediatric ages and the 
subsequent risk of cardiovascular diseases in adulthood, so it is not yet proven whether 
these factors can be considered risks in childhood. Nevertheless, given the cumulative 
nature of atherosclerosis and its early onset in life, it is crucial to initiate cardiovascular 
prevention during childhood. 

In this sense, longitudinal cohort studies constitute a valuable tool for examining the 
development and progression of cardiovascular risk factors from early stages of life. These 
studies enable the collection of cardiovascular-related variables at multiple time points 
throughout the study period, providing a more comprehensive and deeper understanding of 
how these factors progress and change over time.  

Taking this into account, the primary objective of this study has been to investigate 
the persistence of the mentioned metabolic risk factors during pediatric ages, a 
phenomenon known as 'tracking". The aim was to identify which of these factors persist 
during childhood and, therefore, may require preventive attention. Data from children 
participating in the INMA-Asturias cohort, aged 4 to 8 years, were used for this purpose. 

On the other hand, conducting any epidemiological study involves making several 
methodological and statistical decisions to adequately address the research question. This 
work deals with two main challenges: how to address the missing data problem, and which 
regression models are most appropriate for analyzing tracking of cardiovascular risk factors 



                                                                 

 

at these early ages. Suitable statistical techniques were considered to face these 
challenges, leading to the selection of multiple imputation for handling missing data and 
quantile regression models for tracking metabolic risk factors.  

This thesis presents the previously described work and is organized as follows. 
Chapter 1, entitled Introduction, includes a brief historical review of the etiology of 
cardiovascular diseases and the identification of their risk factors. Furthermore, we provide 
an overview of the INMA-Asturias cohort, the population in which this research was 
conducted, and we formalize the notion of tracking. Lastly, we delve into the main 
methodological challenges faced during the study and offer insights into our chosen 
statistical methodologies. Chapter 2 contains the specific objectives proposed in this 
dissertation. In Chapter 3, entitled Methods and results, the three articles supporting this 
PhD memory are provided, including the methods and the results derived from this work. 
Chapter 4 provides a general discussion of the obtained results, presenting them in an 
integrated and cohesive form. Lastly, conclusions derived from this work are presented in 
Chapter 5. 
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Abstract

Cardiovascular diseases are not a common cause of mortality in childhood; however, in
developed countries, they constitute the leading cause of death and disability in adults.
Their main trigger is atherosclerosis, an inflammatory process that damages and obstructs
arteries by forming atheromatous plaques along their walls. This process can initiate in
childhood, even during gestation, and typically progresses gradually into adulthood. As
plaques expand and harden over time, they can completely block arteries, potentially
leading to arterial thrombosis and, ultimately, cardiovascular events such as ischemic
heart disease or ischemic stroke, among others.

Intervening key cardiovascular risk factors can delay the development of atherosclerosis and
reduce the risk of cardiovascular diseases in the future. Metabolic risk factors, including
central obesity, insulin resistance, hypertension, and dyslipidemia, are particularly relevant
in both adulthood and youth. To date, there has been limited research assessing the
association between these metabolic factors at pediatric ages and the subsequent risk
of cardiovascular diseases in adulthood, therefore it is not yet proven whether these
factors can be considered risks in childhood. Nevertheless, given the cumulative nature of
atherosclerosis and its early onset in life, it is crucial to initiate cardiovascular prevention
during childhood.

In this sense, longitudinal cohort studies constitute a valuable tool for examining the
development and progression of cardiovascular risk factors from early stages of life. These
studies enable the collection of cardiovascular-related variables at multiple time points
throughout the study period, providing a more comprehensive and deeper understanding
of how these factors progress and change over time.
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Taking this into account, the primary objective of this study has been to investigate the
persistence of the mentioned metabolic risk factors during pediatric ages, a phenomenon
known as ’tracking". The aim was to identify which of these factors persist during child-
hood and, therefore, may require preventive attention. Data from children participating
in the INMA-Asturias cohort, aged 4 to 8 years, were used for this purpose.

On the other hand, conducting any epidemiological study involves making several method-
ological and statistical decisions to adequately address the research question. This work
deals with two main challenges: how to address the missing data problem, and which
regression models are most appropriate for analyzing tracking of cardiovascular risk
factors at these early ages. Suitable statistical techniques were considered to face these
challenges, leading to the selection of multiple imputation for handling missing data and
quantile regression models for tracking metabolic risk factors.

This thesis presents the previously described work and is organized as follows: in Chapter
1, entitled Introduction, a contextualization of the scientific interest behind studying the
persistence of cardiovascular risk factors in childhood is provided. This chapter includes
a brief historical review of the etiology of cardiovascular diseases and the identification of
their risk factors. Major epidemiological contributions to knowledge in this field that have
focused on childhood serve as a guiding thread. Furthermore, we provide an overview
of the INMA-Asturias cohort, in which this research was conducted, and we formalize
the notion of tracking. Finally, we delve into the main methodological challenges faced
during the study and offer insights into our chosen statistical methodologies.

Chapter 2 contains the specific objectives proposed in this dissertation.

In Chapter 3, entitled Methods and results, the three articles supporting this PhD
memory are provided, including the methods and the results derived from this work.

Chapter 4 provides a general discussion of the obtained results, presenting them in an
integrated and cohesive form. Reflection is made on both their potential implications
for child health, and the potential of the chosen statistical methodologies for addressing
inherent research limitations.
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Lastly, conclusions derived from this work are presented in Chapter 5. In addition,
the supplementary material corresponding to the articles included in this document
is provided in the section designated with the same name.
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Resumen

Las enfermedades cardiovasculares no son una causa común de mortalidad infantil; sin
embargo, constituyen la principal causa de muerte y discapacidad en adultos en países
desarrollados. Su principal desencadenante es la aterosclerosis, un proceso inflamatorio
que daña y obstruye las arterias mediante la formación de placas de ateroma a lo largo
de sus paredes. Este proceso puede iniciarse en la infancia, incluso durante la gestación,
y generalmente progresa gradualmente hasta la edad adulta. A medida que las placas se
expanden y se endurecen con el tiempo, pueden llegar a obstruir por completo las arterias,
resultando en trombosis arterial y, en última instancia, en eventos cardiovasculares como
la cardiopatía isquémica o accidentes cerebrovasculares, entre otros.

Intervenir en los principales factores de riesgo cardiovascular puede retrasar el desarrollo
de la aterosclerosis y reducir el riesgo de enfermedades cardiovasculares futura. Los factores
de riesgo metabólicos, que incluyen la obesidad central, la resistencia a la insulina, la
hipertensión y la dislipidemia, son especialmente relevantes tanto en la edad adulta como
en la juventud. Hasta la fecha, no son muchos los estudios que han podido evaluar la
asociación entre estos factores metabólicos en edades pediátricas y el riesgo posterior
de enfermedades cardiovasculares en la edad adulta, por lo que no está demostrado que
estos factores se puedan considerar como de riesgo ya a estas edades. No obstante, dada
la naturaleza acumulativa de la aterosclerosis y su inicio temprano en la vida, es crucial
iniciar la prevención cardiovascular en la infancia.

En este sentido, los estudios de cohortes longitudinales representan una valiosa herramienta
para analizar la progresión de dichos factores de riesgo cardiovascular desde las primeras
etapas de la vida. Estos estudios permiten registrar variables indicadoras de riesgo
cardiovascular en múltiples momentos a lo largo del período de estudio, lo que posibilita
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una comprensión más completa y detallada de cómo estos factores se desarrollan y
cambian con el tiempo.

Teniendo esto en cuenta, el principal objetivo de este estudio ha sido examinar la evolución
o seguimiento de los factores de riesgo metabólicos mencionados anteriormente en edades
pediátricas. Se buscó identificar cuáles de estos factores persisten durante la infancia y,
por lo tanto, pueden requerir de atención preventiva. Para ello, se utilizaron datos de
niños participantes en la cohorte INMA-Asturias, con edades comprendidas entre los 4 y
los 8 años.

Por otro lado, la realización de cualquier estudio epidemiológico requiere una toma de
decisiones metodológicas y estadísticas fundamentales para abordar adecuadamente las
preguntas de investigación. Este trabajo se enfrentó a dos desafíos principales: cómo
abordar la presencia de datos ausentes y qué modelos de regresión eran más apropiados
para analizar el seguimiento de los factores de riesgo cardiovascular en edades tan
tempranas. Se valoraron las técnicas estadísticas más adecuadas para enfrentar estos
desafíos, siendo seleccionadas: la imputación múltiple para manejar los datos ausentes
y los modelos de regresión cuantil para realizar el seguimiento de los factores de riesgo
metabólicos.

La presente memoria recoge el trabajo anteriormente descrito y está organizada de
la siguiente manera. En el Capítulo 1, titulado Introducción, se proporciona una
contextualización del interés científico detrás del estudio del seguimiento de los factores
de riesgo cardiovascular en la infancia. Este capítulo incluye una breve revisión histórica
sobre la etiología de las enfermedades cardiovasculares y la identificación de sus factores
de riesgo. Se utiliza como hilo conductor los principales estudios epidemiológicos que a lo
largo de la historia han contribuido al conocimiento en este campo y han puesto el foco
en la infancia. Además, se presenta la cohorte INMA-Asturias, en la que se enmarca este
trabajo, y se introduce formalmente el concepto de seguimiento. Finalmente, se abordan
las principales dificultades metodológicas que surgieron durante el estudio y se explican
los enfoques estadísticos seleccionados como los más apropiados.

En el Capítulo 2 se recogen los objetivos específicos propuestos en este trabajo.
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El Capítulo 3, titulado Métodos y resultados, presenta los tres artículos que respaldan
este documento y que recogen los métodos utilizados con el fin de llevar a cabo la
investigación, así como los resultados obtenidos.

En el Capítulo 4 se lleva a cabo una discusión general de la investigación realizada,
presentándola de forma integrada y cohesionada. Se reflexiona tanto sobre sus posibles
implicaciones en términos de salud infantil, como en el potencial de las metodologías
estadísticas escogidas para abordar las limitaciones inherentes a la investigación.

Finalmente, en el Capítulo 5 se presentan de forma ordenada las conclusiones derivadas
de este trabajo. Además, se incluye el material suplementario correspondiente a los
artículos que conforman esta tesis, en la sección designada con el mismo nombre.
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Abbreviations

AC Atherogenic coefficient

BMI Body mass index

CVDs Cardiovascular diseases

FIML Full information maximum likelihood method

GBD Global Burden of Disease

HDL-c High density lipoprotein cholesterol
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MAR Missing at random
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MNAR Missing not at random

QRMs Quantile Regression Models
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CHAPTER 1
Introduction

1.1. Cardiovascular disease

Cardiovascular diseases (CVDs) constitute the major cause of death in both developed
and developing countries. In 2019, an estimated 17.9 million people died from CVDs,
representing 32% of all global deaths. In addition, of the 17 million premature deaths
(under the age of 70) due to noncommunicable diseases, 38% were attributed to CVDs
(WHO, 2023). In Spain, in 2022, CVDs continued to hold the first place in the mortality
statistics, contributing to 26.0% of all deaths, closely followed by tumors at 24.8%
(Instituto Nacional de Estadística, 2022).

The shift in mortality patterns in developed countries began between 1900 and 1930,
when infectious diseases stopped being the main cause of death, giving way to chronic
diseases. This process is commonly referred to as the “epidemiological transition”. During
this phase the incidence and mortality rates of CVDs began to show a marked increase,
shaping the direction of epidemiological research and interventions needed to address
this new scenario (Celentano and Moyses, 2014). Since then, health authorities have
dedicated substantial efforts to manage the burden of these diseases, as evidenced by
the consistent decline in global mortality rates since the 1990s, including Spain (Amini
et al., 2021; Flores-Mateo et al., 2011). However, ischemic heart disease and ischemic
stroke remain the leading causes of death. These two conditions also have the highest
mortality rates among all CVDs, as illustrated in Table 1. Although mortality rates
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1. Introduction

have presented this clearly decreasing trend, the reduction in CVDs incidence has not
been as pronounced. It is essential not to underestimate the relevance of CVD incidence,
as even when a cardiovascular event does not result in death, it frequently leads to
varying degrees of disability. This results in a decrease in overall health and quality
of life of the population, along with a substantial economic burden on the healthcare
system. Although records of CVD incidence and morbidity are not as precise as those of
mortality, in Spain, they constitute the primary cause of hospitalization. In 2021, there
were 582,446 hospital stays due to CVDs, which represents 12.9% of the total annual
admissions (Instituto Nacional de Estadística, 2023). Furthermore, in 2017, CVDs were
the leading contributors to the loss of healthy years due to disability (disability-adjusted
life years), both globally (Feigin et al., 2021) and in Spain (Soriano et al., 2018).

Table 1: Cardiovascular deaths in all ages (high/middle income countries worldwide, and
Spain) - Estimated 2019 data from the Global Burden of Disease (GBD).

High/middle
income countries

Spain

Cardiovascular cause of death n % n %

Ischemic heart disease 2,658,294 51.6 53,633 40.8
Ischemic stroke 1,126,009 21.9 23,256 17.7
Intracerebral hemorrhage 589,148 11.4 11,172 8.5
Hypertensive heart disease 252,277 4.9 8,728 6.6
Cardiomyopathy and myocarditis 150,010 2.9 6,443 4.9
Atrial fibrillation and flutter 83,845 1.6 7,379 5.6
Subarachnoid hemorrhage 79,181 1.5 2,666 2.0
Other cardiovascular/circulatory diseases 58,118 1.1 3,479 2.6
Aortic aneurysm 45,029 0.9 2,402 1.8
Rheumatic heart disease 36,961 0.7 2,493 1.9
Non-rheumatic valvular heart disease 32,893 0.6 6,178 4.7
Peripheral artery disease 26,244 0.5 1,890 1.4
Endocarditis 13,259 0.3 1,782 1.4

Total 5,151,261 100 131,501 100
Source: https://vizhub.healthdata.org/gbd-results/
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1.2. Atheroesclerosis

However, CVDs are rare in pediatric ages, with a very low incidence compared with adult
populations. In developed countries, including Spain, approximately 10% of deaths in
children aged 0 to 14 years are attributed to cardiovascular events. While congenital
heart defects are the most frequent, mortality due to chronic CVDs like ischemic heart
disease or ischemic stroke is extremely rare during childhood, as shown in Table 2.

Table 2: Cardiovascular deaths in children aged 0 -14 (high/middle income countries
worldwide, and Spain) - Estimated 2019 data from the GBD.

High/middle
income countries

Spain

Cardiovascular cause of death n % n %

Congenital heart anomalies 16,278 86.6 125 78.6
Cardiomyopathy and myocarditis 1,000 5.3 11 6.9
Other cardiovascular/circulatory diseases 647 3.4 10 6.3
Intracerebral hemorrhage 300 1.6 5 3.1
Subarachnoid hemorrhage 226 1.2 4 2.5
Rheumatic heart disease 136 0.7 1 0.6
Endocarditis 117 0.6 2 1.3
Ischemic stroke 83 0.4 1 0.6

Total 18,787 100 159 100
Source: https://vizhub.healthdata.org/gbd-results/

1.2. Atheroesclerosis

The anatomopathological basis of the most incident CVDs is arteriosclerosis, a term
originally introduced by Lobstein (1829). Arteriosclerosis is characterized by progressive
hardening and narrowing of arteries, independent of vessel size and organ sites (Strasses,
1972). It is important to distinguish the term "arteriosclerosis" from "atherosclerosis".
Arteriosclerosis encompasses three different morphological features: Mönckeberg’s arte-
riosclerosis, arteriolosclerosis, and atherosclerosis. Among these, atherosclerosis is the
most incident form and a major cause of cardiovascular death.
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Atherosclerosis, term first introduced by Marchand (1904), is an inflammatory chronic
disease characterized by lesions in the arterial intima and media layers, resulting in
narrowing and hardening. These lesions occur because of the accumulation of athero-
matous plaques, consisting of lipids, fibrous tissue, and inflammatory cells (Ross, 1999).
In fact, the word "athere" –prefix of atherosclerosis– means mush, gruel, or porridge in
Greek to indicate lipid deposition in the arterial wall, whereas the suffix "sclerosis" refers
to hardening. Atherosclerosis primarily affects large and medium arteries, including the
coronary arteries supplying the heart; carotid, vertebral, and cerebral arteries supplying
the brain; and iliac and femoral arteries supplying the lower extremities. It is a localized
and progressive condition, as not all arteries are susceptible to atherosclerosis, and lesions
tend to occur at specific sites such as artery branches and orifices. The disease progresses
from early lesions, such as diffuse intimal thickening and fatty streaks, to advanced or
complicated ones in the form of atheromatous plaques. The process begins with the
deposition of small amounts of fat between the thin layers of the arteries (fatty streak)
and slowly progresses with age, and exposure to certain risk factors. This exposure
to specific factors, which we will examine further, triggers highly complex cellular and
biochemical mechanisms and processes that lead to the growth of the fatty streak by
attracting certain types of cells, finally forming the atheromatous plaques. A cascade
of inflammatory reactions, along with other mechanical factors, can lead to clinical
symptoms such as stenosis, calcification, hemorrhage, ulceration, or rupture of the plaque.
If this happens, blood platelets come to the site, aggregate, and result in what is known
as thrombosis, which can partially or completely obstruct the arterial lumen, preventing
the circulation of blood and, consequently, the supply of oxygen required for the tissues.
The consequence is cellular death or tissue necrosis in the areas supplied by the occluded
artery, ultimately resulting in ischemia (Fan and Watanabe, 2022). The histopathological
classification of atherosclerotic lesions, as published by Stary et al. (1995), categorizes
the lesions into six or eight categories based on their progression and clinical relevance.
It may take several decades for advanced lesions to develop. Therefore, it could remain
clinically silent for many years until advanced lesions occur. However, it is also a disease
whose progression can be influenced by medical interventions and lifestyle modifications,
and in some cases may remit. (Libby, 2021).

The clinical manifestations of atherosclerosis depend on the affected arteries, degree
of arterial occlusion, and speed of progression. Ischemic heart disease is the main
manifestation in the coronary arteries, whereas ischemic stroke occurs in the cerebral
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arteries, and peripheral arterial disease occurs in the iliac and femoral arteries (Virmani
et al., 2006).

Due to the increase in the mortality rate in the early decades of the 1900s, as previously
mentioned in the Section 1.1, studies based on autopsies in subjects of different ages
and populations were initiated around 1950. These studies revealed early atherosclerotic
lesions in infant and young populations. One of the most renowned studies in this regard
was conducted by Enos et al. (1955). They analyzed a series of cases involving 300 young
American soldiers who died in the Korean War, with a mean age of 22.1 years. An
unexpectedly high prevalence of atherosclerotic lesions was observed, ranging from initial
to more advanced stages, irrespective of age. However, during the same period, case
series were also analyzed in Japanese populations of all age ranges, where the prevalence
of atherosclerotic lesions was very low, 1.7% compared to the over 65% observed in the
study by Enos et al. (1955). Despite this inconsistency, the study served to draw the
attention of the medical community to atherosclerosis in childhood and youth.

Subsequently, various studies were conducted, such as those led by the International
Atherosclerosis Project, which analyzed autopsies of child populations in New Orleans
(United States of America, USA) and later in other countries, including Japan, Guatemala,
Costa Rica, and different regions in South Africa. These studies observed fatty streaks in
the aorta in children aged 3, and more frequently in the coronary artery in children from
age 10 (Strong and McGill, 1969). The Pathobiological Determinants of Atherosclerosis
in Youth study (Sternby et al., 1999) further investigated subjects aged between 5 and
34 years from 15 developed and developing countries, representing five regions of the
World Health Organization. This study encompassed different economic, sociocultural,
and nutritional patterns. The conclusion drawn was that atherosclerotic lesions begin to
appear in the early stages of life, regardless of sex, geographic origin, or socioeconomic
level. The rate of appearance of fatty streaks was higher between the ages of 15 and 25,
whereas fibrous plaque lesions started to develop during the second decade of life and
progressed at an increasing rate during the third and fourth decades (Figure 1). Autopsy
studies have continued to demonstrate that initial alterations in the arterial intima can
be detected even during prenatal and infant periods (Milei et al., 2008).

Although clinical manifestations of atherosclerosis rarely occur in childhood, its precursor
states clearly begin to develop during this period. It is uncertain whether fatty streaks
or initial lesions necessarily progress into advanced lesions and subsequently lead to
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Figure 1: Natural history of atherosclerosis. Source: McGili et al., Natural history of
human atherosclerotic lesions. In: Saddlerandg and Bourne (Eds.), Atherosclerosis and
its origin, Academic Press, New York, 1963

clinical complications in adulthood, but under certain conditions or in certain anatomical
locations, they could do so (Mcgill et al., 2000). Hence, early interventions could have a
crucial impact on the future course of CVD.
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1.3. Cardiovascular risk factors

The detection and control of cardiovascular risk factors is an essential preventive strategy.
At the same time that initial case series autopsy studies were conducted to begin
investigating atherosclerosis, around 1950, longitudinal observational studies also began
to emerge to understand the determinants of CVD development. In 1948, the landmark
Framingham Study, the largest cardiovascular epidemiology study to date, was initiated.
Men and women aged 28 to 62 years from Framingham, a small semi-urban industrial town
with a relatively stable population of about 28,000 inhabitants located approximately 18
miles west of Boston (Massachusetts, USA), were recruited.

An initial cohort of 5,209 individuals was selected, and a smaller cohort consisting of
the offspring of the first participants was later added. This study is currently (October
2023) ongoing with the third generation of participants and it has contributed to the
establishment of the multifactorial risk profile for CVDs (Mahmood et al., 2014). Other
notable longitudinal studies followed the Framingham Study, further contributing to
the same cause. Noteworthy among these is the Seven Countries Study, the first major
study to investigate diet and lifestyle along with other risk factors, across contrasting
countries and cultures and over an extended period of time (Keys et al., 1984); the
SCORE project in Europe, which introduced a risk score system tailored to the European
population for assessing cardiovascular risk (Conroy et al., 2003), and that has been
adapted specifically for the Spanish population (Sans et al., 2007); or the REGICOR
study conducted in Spain, which deserves special recognition for its extensive work in
conducting population-based research on ischemic heart disease, its risk factors, and
overall cardiovascular prevention efforts (Bardají, 2013). Other relevant studies that focus
on the examination of specific risk factors are the ENRICA study, which investigates
lifestyle-related factors, and the PREDIMED study, which is linked to the preventive
effect of the Mediterranean diet on CVDs. The findings from these observational studies
were justified and histopathologically supported by studies related to the onset and
development of atherosclerotic lesions mentioned in the Section 1.2.

Figure 2 presents the ranking of the top 12 risk factors contributing to the burden CVD
according to the GBD, along with their variation between 1990 and 2019 (Roth et al.,
2020). It is noteworthy that the only change observed in the ranking is a decrease in the
position of tobacco consumption, while the others remain stable.
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1990 Rank 2019 Rank

1 High systolic blood pressure High systolic blood pressure ▬

2 Dietary habits Dietary habits ▬

3 High LDL cholesterol High LDL cholesterol ▬

4 Air pollution Air pollution ▬

5 Tobacco High body-mass index ▲

6 High body-mass index Tobacco ▼

7 High fasting plasma glucose High fasting plasma glucose ▬

8 Kidney dysfunction Kidney dysfunction ▬

9 Non-optical temperature Non-optical temperature ▬

10 Other environmental risks Other environmental risks ▬

11 Alcohol use Alcohol use ▬

12 Low physical activity Low physical activity ▬

Metabolic risks

Behavioral risks

Environmental risks

Figure 2: Ranking of cardiovascular risk factors. Adapted from G. A. Roth, G. A.
Mensah, C. O. Johnson, G. Addolorato, E. Ammirati, L. M. Baddour, N. C. Barengo, A.
Beaton, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019:
Update From the GBD 2019 Study. Journal of the American College of Cardiology,
76(25):2982–3021, 2020.

The comprehensive list of recognized risk factors is extensive and includes others that
are not shown in Figure 2 as genetic factors (Ho et al., 2020), or family history of CVDs
(Chacko et al., 2020). In general, these risk factors are considered "traditional", since
their involvement in CVD development has been well-established. However, as early
as 1984, Heller et al. (1984) observed a high percentage of CVD patients who did not
exhibit any of the traditional risk factors. This observation suggested unexplored areas
in the etiopathogenesis of atherosclerosis and the possible existence of other CVD risk
factors. Indeed, our understanding of these emerging risk factors has expanded over
time, including altered values of variables such as homocysteine (Guieu et al., 2022),
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lipoprotein(a) (Duarte Lau and Giugliano, 2022), and C-reactive protein (Denegri and
Boriani, 2021). Many of these interact with each other and are intercorrelated in the
causal pathway of CVDs, potentially acting as risk factors between them. For instance,
behavioral risk factors like dietary habits or physical activity can act as risk factors for
others such as cholesterol or blood pressure. Therefore, elucidating the independent
attributable risk of each factor constitutes an epidemiological challenge.

Metabolic risk factors are of particular relevance. They are considered to play a central
role in the burden of ischemic heart disease (Wang et al., 2021), which as mentioned in
the Section 1.1, has the highest mortality rate among CVDs. Additionally, these primary
metabolic risk factors –including central obesity, insulin resistance, hypertension,
and dyslipidemia– tend to cluster together, further increasing the risk of CVD beyond
the sum of their individual effects. This clustering phenomenon is defined as metabolic
syndrome (Reisinger et al., 2020). In this study, we will focus on these four cardiovascular
risk factors.

1.3.1. Cardiovascular risk factors in children

The aforementioned epidemiological studies helped to establish these as risk factors in
adulthood. However, considering that atherosclerosis begins to develop in childhood
and progresses gradually over subsequent decades, the natural question arose as to
whether these risk factors were also relevant in childhood. In other words, from what age
would preventive measures targeting these factors reduce the future disease development?
Attention was drawn to this issue starting in 1970. Several important longitudinal
observational cohort studies emerged in USA with the primary objective of assessing
the prevalence and progression of these risk factors during childhood and adolescence.
Similar studies were also conducted in Europe or Australia. Table 3 lists some of the
most noteworthy, including a Spanish study that, despite not being longitudinal, stands
out in the investigation of cardiovascular risk factors in childhood.

Moreover, since the 1990s a new developmental model of diseases has gained interest,
because of the findings by Barker (1990). This model suggests that events occurring
during critical developmental periods, such as the prenatal period and early childhood,
can influence the structure and function of the body, setting the stage for future health
issues. Current studies support this theory, also regarding to CVD (Alexander et al.,
2015). This underscores the importance of early-life interventions and preventive measures
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Table 3: Remarkable observational studies about risk factors during childhood and
adolescence.

Study Reference Country

Bogalusa Heart Study Croft et al. (1984) USA
Muscatine Study Lauer et al. (1975) USA
Princeton Lipid Research Clinics Study Morrison et al. (2007) USA
Minneapolis Children’s Blood Pressure
Study

Gillum et al. (1983) USA

National Heart, Lung, and Blood Insti-
tute Growth and Health Study

Stone (1985) USA

Australian Schools Health and Fitness
Survey

Dwyer and Gibbons (1994) Australia

European Youth Heart Study Poortvliet et al. (2003) Several
european
countries

Cardiovascular Risk in Young Finns
Study

Akerblom et al. (1991) Finland

4 Provinces Study Rodríguez-Artalejo et al. (1999) Spain

to mitigate the risk of chronic diseases, particularly atherosclerosis, adding more interest
in the assessment of atherosclerosis risk factors during early childhood.

Despite all this evidences, only recently has it been possible to establish a direct rela-
tionship between the presence of adult risk factors in childhood and adolescence and
cardiovascular events in adulthood. The cohorts mentioned in Table 3 were still relatively
young, needing an extended follow-up period to accumulate a large enough number of
CVD events to address the question. Currently (October 2023), the participants in
these cohorts have reached an age at which cardiovascular events typically begin to
manifest (around 40-50 years old for men and 60-70 for women), although they are still
too young to observe a relevant number of events. Therefore, the four largest cohorts
(the Cardiovascular Risk in Young Finns, the Australian Schools Health and Fitness
Survey, the Bogalusa, and the Muscatine studies) have been consolidated into a consor-
tium known as “The International Childhood Cardiovascular Cohort (i3C) Consortium”
(Dwyer et al., 2013). This collaboration increases statistical power, thus reducing the
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follow-up period required to determine an adequate number of CVD events. A recent
systematic review (Pool et al., 2021), and the results that i3C has begun to produce
(Jacobs et al., 2022), already provide consistent evidence of the relationship between
the presence of cardiovascular risk factors in childhood and adolescence, and the future
development of CVD later in life.

1.4. The INMA-Asturias cohort

Design is a crucial aspect of a research, which determines the final execution of the work,
limits the conclusions which can be derived, and suggests the statistical procedures to be
employed. It must optimize the available resources in order to get the research objectives.
Given its relevance, we will outline the optimal design for investigating the tracking of
cardiovascular risk factors during childhood.

Cohort studies

Although not explicitly highlighted thus far, a pattern can be observed in the type of
epidemiological studies mentioned in the Section 1.3 as the primary contributors to the
study of cardiovascular of risk factors in children and adolescents: they are longitudinal
cohort studies.

Cohort studies involve selecting a group of people and observing them over time to
assess their exposure level and the incidence of a specific outcome of interest (e.g., a
disease), and to investigate the relationship between the exposure and the outcome.
These are observational designs, meaning that the researcher acts as an observer of the
study phenomenon, and does not manipulate any variable of interest. By definition, all
cohort studies are follow-up studies, as the selected group of people is monitored over
time. However, not all cohort studies are longitudinal, although those terms (follow-up
and longitudinal) are often used interchangeably. Longitudinal studies are defined as
those in which exposure and/or outcome variables (or other variables of interest) are
repeatedly measured at different time points to assess the changes occurring in them.

One of the main advantages of cohort studies is their utility in establishing causal relation-
ships, as they ensure that exposure temporally precedes the outcome, and facilitate the
control of other potentially confounding or interacting variables. In addition, particularly
in longitudinal designs, they facilitate the study of the natural history of the disease
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or the evolution of its determinant factors. They also have disadvantages, such as high
cost if follow-up must be carried out over a long period of time, and the validity of their
results may be affected by dropouts of the participating subjects.

In the Section 1.3.1, we showed that prenatal development is one of the most criti-
cal windows during which adverse conditions and exposures may influence the future
development of a disease, as CVD. In this context, birth cohort studies, based on
the prospective recruitment and active follow-up of mothers and their children since
pregnancy, are the most appropriate design to determine the causal relationship between
potential risk factors during the prenatal or postnatal period and the health status of
the newborn up to childhood and potentially adulthood (Canova and Cantarutti, 2020).

Considering all the characteristics of the types of studies mentioned in this section, longi-
tudinal birth cohort studies are well-suited for investigating the tracking of cardiovascular
risk factors, as they systematically measure variables of interest at different time points
during fetal life and early infancy.

The INMA-Asturias cohort

To introduce the INMA-Asturias cohort, we will briefly digress about the topic of
cardiovascular risk factors and CVD in general.

In 2003 the INfancia y Medio Ambiente (INMA) Project [Environment and
Childhood Project] (https://www.proyectoinma.org) was established as a network
of prospective birth cohorts in Spain, with the primary objective of investigating the
influence of environmental pollutants present in air, water, and diet during pregnancy
and early childhood on child growth and development (Guxens et al., 2012).

In particular, the specific objectives of the project were as follows:
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INMA Project objectives

To describe the degree of individual pre-natal exposure to environmental
pollutants and the internal dose of these chemicals during pregnancy, at
birth, and during childhood.

To evaluate the impact of exposure to different contaminants on fetal and
infant growth, health, and development.

To evaluate the interaction between pollutants, nutrients, and genetic variants
on fetal and infant growth, health, and development.

This network comprises diverse research groups with extensive expertise in environmental
pollution and epidemiology. It consists of six cohorts (see Figure 3): three of them,
namely Granada, Menorca, and Ribera d’Ebre, were already in existence at the beginning
of the network, and their accumulated experience served as the foundation for the project
(Granada, Menorca, and Ribera d’Ebre). In addition, four cohorts (Asturias, Sabadell,
Valencia and Gipuzkoa) were subsequently established.

A total of 3,944 pregnant women in their first trimester of pregnancy were recruited
from the general population residing in each of the specific areas, based on the following
inclusion criteria: to be at least 16 years old, to have a singleton pregnancy, not to have
followed any of assisted reproduction, to wish to deliver in the hospital of reference, and
to have no communication handicaps.

Both mothers and children were followed up at several time points, with some variations
among cohorts, but common follow-up periods included during pregnancy, at birth, and
at the ages of 4, 8, and 12 years. Trained personnel collected data from different sources
during each visit, including questionnaires, medical records, biological and environmental
samples, and anthropometric measurements.

This dissertation is set within the framework of the INMA-Asturias cohort, which was
established in 2004. The cohort is located in a 483 km2 area in northern Spain, with the
San Agustín University Hospital (Avilés, Asturias) serving as hospital of reference (see
Figure 4). The economy of this region historically relied on industries characterized by
remarkable environmental pollution (Fernández-Somoano and Tardon, 2014). Originally,
in 2004, the area included a population of 165,201 inhabitants (reduced to 143,810 in
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Asturias

Sabadell

Gipuzkoa

Menorca

Valencia
Granada

Ribera d'Ebre

Figure 3: Network of cohorts from the INMA Project. Self-crafted figure.

2022), and the reference hospital was a public health center with 436 beds, providing
primary care, as well as central, medical, and surgical services to this population.

From May 2004 to June 2007, pregnant women attending their first prenatal visit at
the obstetrics service of San Agustín University Hospital or Las Vegas health center
(Corvera, Avilés) were consecutively selected if they met the aforementioned inclusion
criteria. Follow-up visits occurred during the first and third trimesters of pregnancy, at
birth, and at the ages of 18 months, 4, 8, and 12 years.

To re-approach the topic under consideration here, it is noteworthy that the duration of
cohort studies often extends beyond the initially established timeline due to its capacity
to exploit the extensive data systematically collected. This valuable information not
only supports the initially posited hypotheses, but also facilitates the exploration of new,
future-relevant hypotheses or questions.
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San Agustín University hospital (Avilés)

Las Vegas health center (Corvera)

Figure 4: INMA-Asturias cohort recruitment area. Self-crafted figure.

This scenario is exemplified by the INMA study, particularly, by the INMA-Asturias
cohort. Although the objectives of the project are linked to environmental exposure,
the child population in Asturias currently faces relevant health challenges related to
cardiovascular aspects. Asturias has a very high rate of childhood overweight and obesity,
estimated at 33.2% in children aged 0 to 14 years (Domínguez Aurrecoechea et al., 2015).
These high rates have also been observed in the INMA-Asturias cohort in previous studies,
with a percentage of overweight or obese children at 4 years of age of 23.7% (Riaño-Galán
et al., 2017). It is well known that obesity increases the risk of other metabolic risk
factors (insulin resistance, hypertension, and dyslipidemia), besides increasing the risk of
metabolic syndrome (Drozdz et al., 2021). Given this landscape, it is of interest to harness
the information provided by the INMA-Asturias cohort to address this epidemiological
problem. The availability of blood samples and anthropometric measurements have
provided cardiovascular-related variables that reflect well-established CVD risk factors
in adulthood, such as lipids, glucose, insulin, blood pressure, and waist circumference,
among others. This has expanded the scope of research beyond the initial objectives to
those explored in this memory.

15



1. Introduction

1.5. Tracking of cardiovascular risk factors

Given that atherosclerosis is an accumulative process, which has its anatomical basis in
the accumulation of atheromatous plaques, it is particularly appropriate to consider not
only the presence of cardiovascular risk factors during childhood, but also their stability
or maintenance over time. This is relevant because it can be hypothesized that the
longer these risk factors persist, the greater the risk of progression in the natural history
of CVD.

In epidemiology, the temporal stability of a biological variable (or specifically, of risk
factors for chronic diseases) within a specific population is referred to as tracking. While
this concept is challenging to translate into an exact and precise definition, its initial use
in the late 1970s and subsequent applications have given rise to two definitions:

Definition of tracking

1. The ability to predict subsequent observations from earlier observations
(Rosner et al., 1977). In a cohort of n children, where we measure their
heights k times, resulting in sample values yi,t for 1 ≤ i ≤ n and 1 ≤ t ≤ k,
the concept of tracking refers to the ability to predict yi,t based on the earlier
observations yi,1, . . . , yi,t−1, for any 2 ≤ t ≤ k.

2. The maintenance of a relative position within a distribution of values in the
observed population through time (Berenson et al., 1978; Clarke et al., 1978).
In the context of the height of children, this concept raises the question of
whether children who are at higher percentiles at time t − 1 will also be at
higher percentiles at time t, for any 2 ≤ t ≤ k.

In this work, we are going to use the second definition of tracking. Figure 5 graphically
depicts its underlying meaning. The distribution of height in the children participating
in the INMA-Asturias cohort at 4 and 8 years of age is presented. We would consider
tracking if, for example, those subjects situated at the 95th percentile at 4 years of age
remain within the same percentile at 8 years, despite their absolute values change.

Several studies listed in Table 3, such as the Bogalusa Heart Study, the Muscatine
Study, or the Cardiovascular Risk in Young Finns Study, have published various tracking
analyses primarily focusing on lipids, blood pressure, and obesity. Subsequent studies
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Figure 5: Concept of tracking. Self-crafted figure.

continued to investigate the tracking of these risk factors from childhood/adolescence to
adulthood, although with a less pronounced focus on early childhood tracking. While
numerous studies generally observe tracking, particularly in lipids and obesity, there
is considerable variability in their findings. Variations are evident in participant age
ranges, time intervals between assessments, and methodological approaches, making it
challenging to draw comparisons or to establish conclusions.

1.6. From theory to practice

Statistics plays a crucial role in the field of epidemiology. It provides the tools needed
to address the scientific question at hand. Nonetheless, statistical analysis frequently
has to cope with limitations and complexities derived from the inherent characteristics
of the design or the problem under study. This constitutes additional challenges when
translating theoretical research hypotheses into practice.

This is the case for the study of tracking of cardiovascular risk factors, which suffers two
main challenges, 1) the difficulty in analyzing tracking when there are not clear threshold
definitions for categorizing variables into risk groups, and 2) how to deal with the high
number of missing data commonly presented in longitudinal studies.
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1.6.1. The controversy over thresholds definitions

While the concept of tracking began to solidify in the 1970s, efforts to establish the
methodology and statistical tools required for its measurement and estimation were
primarily driven by three articles published in Volume 27, Issue 3 in the specialized
journal of Biometrics (https://www.jstor.org/stable/i323058) (Ware and Wu,
1981; Foulkes and Davis, 1981; Mcmahan, 1981), and continue during the next decades.
But as the epidemiology notion is complex to define, as we have seen in the Section 1.5,
it is also challenging in statistical terms.

One of the biggest problems in tracking analysis is the question of how to evaluate its
magnitude. This is evident in the number of statistical techniques employed to estimate it.
To review these methods, it is important to recall that metabolic risk factors are defined
using biological variables as indicators, with its values serving as criteria to determine
whether an individual exhibits the given risk factor or not. For instance, it is considered
that an adult has hypertension when their systolic blood pressure equals or exceeds 140
mmHg, or their diastolic blood pressure equals or exceeds 90 mmHg. These thresholds
(140 mmHg and 90 mmHg) have been derived by estimating the values of the variable
(blood pressure in this example) that effectively discriminate or categorize individuals
based on their risk of developing a future disease. In summary, a metabolic risk factor
variable is computed by categorizing a continuous cardiovascular-related variable, using
a clinically meaningful threshold.

Taking this into account, we can classify statistical techniques for estimating tracking
into two types:
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1.6. From theory to practice

Statistical techniques for estimating tracking

1. Those based on the risk factor variable itself, which is a categorical variable
with two or more categories indicating the presence and extent of the risk
factor.
Let Y represent the variable of interest, and let yi,t be a random sample with
1 ≤ i ≤ n, and 1 ≤ t ≤ k. Let λ ∈ R be the threshold used to categorize the
risk factor variable, our objective is to estimate the conditional probability
that an individual presents a value of Y above λ at time t given that he/she
did so at the previous time, t − 1. If this probability is large, the variable Y

is said to tracked. This is usually implemented by calculating the proportion
of subjects remaining in the risk group between different time periods.

2. Those based on the continuous variable that serves as an underlying
indicator of this risk factor.
The most common are correlation coefficients or classical linear regression
models. If the correlation between yi,t−1 and yi,t is found to be positive, the
variable Y is said to tracked.

To employ the methods mentioned in the item 1, appropriate thresholds are necessary
to categorize the variables. In adult populations, these thresholds are well-established,
but in pediatric populations, particularly in healthy cohorts, it copes with unclear or
controversial threshold definitions. As mentioned previously, there are not yet many
studies that have followed a pediatric population long enough to calculate values that
would differentiate the risk of future cardiovascular events. Consequently, thresholds for
children are determined based on specific percentiles of the variable of interest, often
assuming a normal distribution.

While this approach is widely used in epidemiology research, tracking should not be
calculated based on arbitrary or generic percentiles; it should be assessed using clinically
meaningful thresholds. Otherwise, it may result in reduced statistical power, less precise
estimates, difficulties in comparing results across studies when thresholds are sample-
dependent, and challenges in interpreting the obtained results (Bennette and Vickers,
2012). Especially, in the early ages considered in this work, where clear thresholds for
defining hypertension, central obesity, insulin resistance, and dyslipidemia are lacking, it
is advisable to employ a methodology that allows the use of continuous variables.
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However, the continuous approach (item 2) has relevant limitations. It is primarily
focused on evaluating the impact within the central part of the probability distribution
of the variable. Nevertheless, when considering variables indicative of risk factors, a
shift in the mean of the distribution of the variable often lacks clinical or health-related
significance. Instead, the consequences observed at the extreme ends of the distribution
are the most relevant. Using hypertension as an example again, our primary concern is
with high blood pressure values. However, we have little interest in the average blood
pressure values. Consequently, the insights generated by these methods may not yield
substantial valuable knowledge.

To address this challenge, we require a methodology that allows us to: 1) analyze the
tracking of risk factors without relying on thresholds, and 2) maintain our focus on
the extreme parts of the distribution. Our proposal is the utilization of Quantile
Regression Models (QRMs).

QRMs were introduced by Koenker and Bassett (1978). They offer a natural extension
of the classical linear regression models in which, instead of specifying the change in the
conditional mean of the distribution of the dependent variable associated with a change
in the independent variables, the change in any conditional quantile of the distribution is
specified.

This is very useful since the effect of a change in the independent variable on the
distribution of the dependent variable could be the same in all parts of the distribution,
as shown in Figure 6 A), but it could also be different, as shown in Figure 6 B), where the
effect is greater at the upper part of the distribution (higher quantiles) in comparison to
the lower or central part. Thus, by modeling only the conditional mean, as is done in the
classical linear regression, important aspects of the association between the dependent
and independent variables can be missed.
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Figure 6: Example of the possible effect of a change in the independent variable X on
the distribution of the dependent variable Y. Self-crafted figure.

Mathematically, let be Y the univariate dependent random variable, and X the k-
dimensional random vector modeling the predictive components. Let be qτ (Y |X) the
τ -th quantile of the distribution of Y conditioning by X, with τ ∈ (0, 1). Then, the
QRM assumes:

Y = βτ · X + ϵτ ,

where the residuals verify that P(ϵτ ≤ 0|X) = τ . That is, its conditional τ -th quantile,
qτ (ϵτ |X), is zero. Therefore,

qτ (Y |X) = βτ · X

.

Let be {Yn, Xn} = {(y1, x1), . . . , (yn, xn)} a random sample from {Y, X}, and the
quantile regression model:

qτ (yi|xi) = βτ · xi with 1 ≤ i ≤ n,

and the residuals:

ϵτi = yi − qτ (yi|xi)
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.

Then, the estimator β̂τ is obtained by minimizing expression (1), a sum of the weighted
absolute residuals that gives asymmetric penalties depending on whether the values of
the dependent variable are being overestimated or underestimated:

τ ·
∑

ϵτi ≥0
|ϵτi | + (1 − τ) ·

∑
ϵτi <0

|ϵτi |. (1)

This means that the proportion of data points below the τ -th estimating regression line
̂qτ (yi|xi) = β̂τ · xi (1 ≤ i ≤ n) is τ and the proportion lying above is 1 − τ . Expression

(1) can be minimized using different algorithms based on linear programming (Koenker,
2005).

The interpretation of the estimated coefficients is analogous to those in classical linear
regression, except that instead of referring to the expected effect on the conditional mean
of the dependent variable, we refer to the conditional quantile. That is, each β̂τ can
be interpreted as the increment of the τ -th quantile of the dependent variable per unit
of change in the value of the corresponding independent variable, while the rest of the
independent variables are fixed.

Figure 7 shows an example of quantile regression for a discrete independent variable X
which may take values in 1,2,3,4. It is observed the distribution of the dependent variable
Y for each value of the independent variable X. This figure clearly illustrates that as
the variable X increases by 1-unit, not only the mean of the distribution of variable Y

changes, but also its spread and shape. In this example, quantile regression is used to
estimate the quantiles τ ∈ {0.10, 0.5, 0.90}, resulting in three distinct regression lines, one
for each estimated quantile. It is worth noting that neither the slope nor the intercept is
the same in any of the three lines due to the presence of heteroscedasticity.
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Figure 7: Example of quantile regression. Self-crafted figure.

QRMs overcome some limitations of classical linear regression tools, so they could be
more appropriate in some situations (Waldmann, 2018), as the following:
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Situations in which QRMs are useful

1. In presence of outliers. It handles outliers more effectively as it relies on
estimating position measures like quantiles.

2. In case of heteroscedasticity. If the variance depends on the independent
variables, quantile regression can capture this effect.

3. When distributional assumptions are not satisfied. QRMs do not
necessary make assumptions about the distribution of errors, so it can be used
when the conditions for applying other regression models are not satisfied.

4. When the focus is on the extremes of the distribution. Sometimes
the real interest of the research question lies in what is happening in the
tails of the distribution. QRM allows to answer this question by estimating
the extreme quantiles.

5. When there is no known threshold defining the population at risk.
Since the model can be estimated for any quantile, it allows assessing the
impact of independent variables on a specific distribution section without
the need to choose a specific point.

Items 4 and 5 are what justify their usefulness in estimating the tracking of metabolic
risk factors. So to address the issue of tracking without relying on thresholds, we suggest
employing cardiovascular-related variables that serve as underlying indicators of the risk
factors themselves, and examining the extremes of their distributions using quantile
regression models.

While quantile regression is often considered to be a more flexible alternative to classical
linear regression, it may not always be the superior choice. Before concluding this section,
the following are some of the disadvantages that QRMs exhibit in comparison to classical
linear regression models (Koenker, 2005; Kocherginsky et al., 2005):
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Disadvantages of QRMs in comparison to classical linear regression

1. Less efficiency for estimating the mean. When our goal is to estimate
the effect on the center of the distribution of the dependent variable, we
can estimate the mean using a linear regression model or the median (the
0.5 quantile) using a QRM. While QRM makes fewer assumptions, if all
assumptions are satisfied, quantile regression may be less efficient than
classical linear regression – meaning that, for a given sample size, estimates
produced by quantile regression are generally less precise than those produced
by classical linear regression.

2. Larger sample sizes may be required. Quantile regression might require
larger sample sizes to provide accurate estimates, especially when estimating
quantiles at the extreme ends of the distribution.

3. Complex parameter estimation. Estimating parameters in quantile
regression is more complex and it requires more advanced numerical methods.
While contemporary computational advancements mitigate this issue, it can
still be relatively time-consuming.

4. Resampling techniques for standard errors. There are several proce-
dures for computing standard errors in QRMs. Under certain conditions,
the usual coefficient estimators are asymptotically normally distributed, but
asymptotic standard errors are complex, and resampling approaches are
frequently employed. This, once again, can be time-consuming for datasets
of moderate to large size.

5. Interpretational complexity. Quantile regression tends to be less straight-
forward in terms of interpreting results. For instance, with a single inde-
pendent variable, interpreting a single coefficient, as obtained from linear
regression, may seem more intuitive than interpreting multiple quantile re-
gression coefficients. Moreover, quantile regression coefficients can lead to
different conclusions for different quantiles, adding complexity to interpreting
the results. This can make the results less intuitive and more challenging to
communicate.
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1.6.2. Missing data. A common pitfall in longitudinal cohort studies

The second challenge is how to deal with missing data, a recurrent problem in statistics.
When employing multivariate statistical techniques, if a subject is missing one of the
variables required in the analysis, it should be excluded. This can lead to a loss of
statistical power due to reduced sample size and, perhaps more problematic, the potential
introduction of biases.

This problem is particularly pronounced in longitudinal cohort studies, where numerous
variables are collected and repeatedly measured at multiple time points. Consequently,
the likelihood that not all subjects answer all the questionnaires items or attend for all
the samples collections or measurements visits increases. For example, if there are 10
variables involved in the analysis, and each variable independently has a 10% chance
of being missing at the first follow-up, then the expected proportion of complete units
is 0.910 = 0.35. And if a second measurement of the same variables is added to the
analysis in a second follow-up, and each variable independently of the others and of its
first measurement has again a 10% chance of being missing, then the expected proportion
of complete units is 0.920 = 0.12. Although subjects with missing values in one variable
are usually the same than those lacking data in other variables, and those with missing
values in one follow-up are generally connected to missing values in other follow-ups,
discrepancies can still arise. In our study, multiple variables (at least one per metabolic
risk factor) are needed at two time points (the 4- and 8-year follow-ups). Consequently,
excluding every child with a missing value in at least one variable or follow-up substantially
reduces the sample size and can potentially introduce bias.

Until the 1970s, the standard approach to deal with missing data was to delete them, in
the so-called complete-case approach. Rubin (1976) started to develop a framework
of inference from incomplete data that remains in use today, including a missing data
classification based on the underlying loss mechanism.

Let {Y, X} be a (k + 1)-dimensional random vector. For the sake of simplicity, we will
assume univariate missing data, that is, Y is the only variable containing missing values.
Let R be the response indicator matrix, that is R = 1 if Y is observed and R = 0
otherwise. Then:
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Types of missing data

Missing completely at random (MCAR) model satisfies:

P{R|(Y, X)} = P{R},

that is, the probability of being missing does not depend either on Y or X.
This means that there are no systematic differences between the missing
and the observed values. For example, serum lipids measurements may be
missing because some samples have been lost in transit to the laboratory.

Missing at random (MAR) model satisfies:

P{R|(Y, X)} = P{R|X},

that is, the probability of being missing depends on the observed data. For
example, serum lipids measures may be more likely to be missing in young
people, as they tend to be less concerned and do not attend visits for blood
collection.

Missing not at random (MNAR) model satisfies:

P{R|(Y, X)} = P{R|Y },

that is, the probability of being missing depends on the missing values itself
or on unobserved information. For example, in a study to assess the effect
of an hypertensive treatment, hypertensive subjects may present greater
collaboration that results in a lower number of missingness.

This distinction is important for understanding why some methods will work or not.
Simple methods to deal with missing data are the following, based on single imputations
(Schafer and Graham, 2002; van Buuren, 2012):

Complete-case analysis: involves the exclusion of subjects with any missing
data from the analysis. It results in a reduction in sample size and consequently an
increase in standard errors. It can can lead to biased estimates if the missing data
is not MCAR, because the excluded cases may differ systematically from those
included in the analysis, which can introduce bias into the results.
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Available-case analysis: utilizes all available information for all subjects, using
different sets of sample units for different parameter estimates. Because parameters
are estimated from different sets, it is difficult to compute standard errors or other
measures of uncertainty, and it requires sophisticated optimization techniques and
specialized formulas for variance calculation. While this approach can address the
issue of sample size reduction observed in complete-case analysis, it may still yield
biased estimates when the missing data does not follow a MCAR pattern.

Mean imputation: replaces missing data with the mean of the observed values.
Let Y = {Yobs, Ymiss} a random variable containing missing values with Yobs the
observed values and Ymiss the missing values, then Ŷmiss = Yobs. This approach
is also known as unconditional imputation because it does not depend on other
variables. While this method preserves the average of the distribution of the
variable, its variability is artificially reduced, as it replaces all the missing data by
the same value. Again this approach would result in unbiased estimates only under
MCAR pattern.

Regression imputation: incorporates knowledge of other related variables X =
(X1, . . . , Xk) with the idea of producing better imputations using regression models.
Missing values Ymiss are replaced by its estimates Ŷmiss given X = (X1, ..., Xp), so
this approach is also known as conditional imputation. For example, if we consider
a linear regression model Y = β · X + ϵ, then Ŷmiss = E(Yobs|Xmiss) = β̂ · Xmiss.

Stochastic regression imputation: is a refinement of regression imputation that
adds noise to the predictions. In this case each missing value is replaced not by
a regression estimate, but by a random draw from the conditional distribution of
Y given X. If we consider again the linear regression model Y = β · X + ϵ, then
Ŷmiss = E(Yobs|Xmiss) + ϵ = β̂ · Xmiss + ϵ, where ϵ is randomly generated from a
zero-mean distribution.This method and the regression imputation can provide
unbiased estimates under MAR mechanism, but they still tend to underestimate
the variance because they ignore the fact that the imputed values are predictions.

Table 4 summarizes these simple methods for dealing with missing data, as well as under
which loss mechanism these approaches can yield to unbiased parameter estimates, and
their limitations to estimate parameter standard errors.

28



1.6. From theory to practice

Table 4: Overview of the most used single imputation methods for dealing with missing
data.

Method Loss mechanism Standard Error

Complete-case (listwise deletion) MCAR Too large
Available-case analysis (pairwise deletion) MCAR Complicated
Mean imputation MCAR Too small
Regression imputation MAR Too small
Stochastic regression imputation MAR Too small

One of the goals of statistics is to provide valid quantifications on both the estimations
and the uncertainty associated with those estimations. That allows to produce efficient
extrapolations from the studied sample to the target populations. As we have just seen,
the single imputation methods are not able to reflect the missing data uncertainty, so
more complex methods have been developed to overcome this limitation. The Multiple
Imputation (MI) method, proposed by Rubin (1987), does not focus on imputing
the "closest" possible values to the actual missing values, but rather to make valid and
efficient inferences about the parameters of interest and their associated uncertainty. This
procedure generates multiple reasonable estimates for the missing values, ensuring that
the variation among these estimates accurately represents the true uncertainty around
their actual values. Figure 8 illustrates the process: MI uses the distribution of the
observed data to estimate a set of plausible values for each missing value, through an
imputation model. Random components are incorporated into these estimated values
to reflect their uncertainty, resulting in the different values for each estimate. Multiple
datasets are created – as many as different estimates for each missing value – and then
analyzed individually, generating different parameter estimates and standard errors.
Finally, the individual estimatione are combined using specific rules created by Rubin
(the so-called Rubin rules) to obtain the overall estimates, their associated standard
errors, and appropriate confidence intervals, reflecting the actual uncertainty around the
estimation due to the missing values (van Buuren, 2012).
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Figure 8: Flowchart of the steps of multiple imputation. Self-crafted figure.

More formally, MI procedures consider the MAR model and the relationship

Y = g(X) + ϵ, (2)

where g(·) and ϵ are the link function, and a randomly genereted value from a zero-mean
distribution, respectively. And the steps are the following:
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Steps of multiple imputation method

Let {Yn, Xn} be a random sample drawn from the random vector {Y, X}, and let
β be the target parameter. We assume that the values yi1 , . . . , yim (1 ≤ i1 ≤ · · · ≤
im ≤ n) are missing.

Step 1. From the non-missing values, we compute the function ĝ(·) which
estimates g(·) (expression (2)). For each missing value, yij (1 ≤ i1 ≤ · · · ≤
im ≤ n) we generate a pseudo-value ŷij = ĝ(xij ,n)+ϵij , where ϵij is randomly
generated. With this dataset, we estimate the target parameter, β̂, and its
variance, V̂ 2.

Step 2. We repeat the Step 1 B times (B a large enough number) and
get a vector of estimations {β̂1, . . . , β̂B}, and another with their respective
variabilities {V̂ 2

1 , . . . , V̂ 2
B}. Notice that, in each repetition, the error (ϵ) is

randomly generated. Therefore, each repetition provides a different dataset.

Step 3. We use the Rubin’s rules to combine the vectors obtained in Step
2 in a single estimation with its variability. This estimation reflects both
the uncertainty due to the sample variation, and the uncertainty due to the
missing data. The B parameter estimates and their respective ŜEk standard
errors are combined using Rubin’s rules, to produce an overall estimate and
standard error that reflect both the uncertainty due to the sample variation,
and the uncertainty due to the missing data.

By adopting this approach, we obtain the parameter estimates of interest and their
corresponding confidence intervals that take advantage of all available information while
accounting for the variability and uncertainty introduced by the lack of knowledge
regarding the true values of missing data.

Although we focus here on MI, the field of handling missing data is extensive, with other
widely studied techniques such as weighting procedures and likelihood-based approaches
(see the Expectation-Maximization algorithm or the Full Information Maximum Likelihood
(FIML) approach as an example (van Buuren, 2012)).
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1.7. Justification

The evidence that atherosclerosis has its origins in childhood underscores the importance
of identifying risk factors associated with the development of its clinical manifestations
in later stages of life. By addressing these modifiable conditions, it becomes possible to
prevent the future burden of the disease.

Central obesity, insulin resistance, hypertension, and dyslipidemia are well-established
cardiovascular risk factors among young-adults and adults. The hypothesis that these
factors also play the same role in early childhood carries relevant weight. However, the
limited evidence supporting this hypothesis is mainly due to the challenges associated
with conducting long-term cohort studies in pediatric populations, which require extended
observation periods to capture cardiovascular events.

One plausible mechanism that could explain this hypothesis is the tracking of these risk
factors from childhood to young-adulthood or adulthood. If extreme values of these
factors persist from childhood to the ages where we have conclusive evidence of their
role as risk factors, it would substantiate their relevance as early-life determinants of
risk. This is also relevant due to the critical period that pediatric ages represent, given
the maturation and developmental processes in children during this stage. Furthermore,
considering the cumulative nature of atherosclerosis, there is potential for an increased
risk of CVD when cardiovascular risk factors persist over time.

Therefore, monitoring and studying the tracking of extreme values of variables that rep-
resent adult markers of hypertension, central obesity, insulin resistance, and dyslipidemia
holds great potential for early prevention of CVD. This is especially relevant in the
studied population, the INMA-Asturias cohort, where the elevated rates of overweight
and obesity could position it as particularly susceptible to future development of CVDs.

32



CHAPTER 2
Objectives

Research question

Building upon the identified issues and gaps highlighted in the previous sections, the
following research question arises: Is the tracking of cardiovascular risk factors, including
central obesity, insulin resistance, hypertension, and dyslipidemia, observed during early
childhood?

Objectives

To address this question, the main objective of this dissertation is to evaluate the
presence of tracking, specifically between the ages of 4 and 8 years, in the INMA-Asturias
cohort, with respect to the cardiovascular risk factors of central obesity, insulin resistance,
hypertension, and dyslipidemia.

The following specific objectives have been established to accomplish this:

1. To evaluate the simultaneous presence of the cardiovascular risk factors under study
among the children of the INMA-Asturias cohort, both at 4 and 8 years of age, and
to analyze the tracking of these aggregations between these ages.

2. To examine tracking of each of the cardiovascular risk factors under study, between
4 and 8 years of age in the INMA-Asturias cohort.
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3. To mitigate the negative effects of missing data on research analysis, and also to
explore and compare different methodologies for quantifying tracking, taking into
consideration the absence of standard thresholds for the age range of the study
population.

Objectives 1, 2, and 3 are addressed respectively in the documents: Article I, Article II,
and Article III, included in the Chapter 3 of this memory.
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CHAPTER 3
Methods and results

3.1. Article I: Cardiovascular risk factors and its patterns
of change between 4 and 8 years of age in the
INMA-Asturias cohort
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Abstract

Aim
This study aimed to investigate whether there are subgroups of children with different clus-
ters of cardiovascular disease (CVD) risk factors at 4 and 8 years of age, and their patterns
of change between these two time points.

Methods
The analysis was conducted in 332 children who participated in the INMA-Asturias cohort
(Spain) at 4 and at 8 years of age. The CVD risk factors were central obesity, dyslipidaemia,
hyperglycaemia, and hypertension. Latent transition analysis was used to identify the differ-
ent clusters and their probabilities of change.

Results
At 4 years, three subgroups were identified: no disorders (prevalence of 55.9%); some dis-
orders (21.2%), and central obesity (22.9%). Three distinct subgroups were identified at 8
years: no disorders (59.8%); hypertension (17.9%), and central obesity (22.3%). Central
obesity at 4 years tends to appear simultaneously with dyslipidaemia, while at 8 years it
tends to appear simultaneously with dyslipidaemia and/or hypertension. Children aged 4
years with no disorders had a 93.7% probability of remaining in the same status at 8 years
of age. Children aged 4 who had some disorders had a 67.7% of probability of having only
hypertension and a 32.3% of probability of having central obesity. Children aged 4 in the
central obesity subgroup had a 32.4% of probability of having no disorders at 8 years of age,
while 67.6% still had central obesity.
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Conclusions
These exploratory findings suggest that children who do not present any disorder at 4 years
of age tend to remain in that state at 8 years of age. And also that central obesity may play a
major role in the development of other disorders, as the number of disorders with which it
concomitantly occurs increases between the ages of 4 and 8 years.

Introduction
Cardiovascular disease (CVD) is the leading cause of death and chronic disability throughout
the world, almost duplicating the cancer mortality rate in 2017, and it increased by nearly 50%
from 1990 to 2019 [1, 2]. Disorders, such as hypertension, dyslipidaemia, central obesity, and
hyperglycaemia, are the main risk factors for CVD [2–4], and in the last decade, the prevalence
of CVD has been increasing [5]. Moreover, these factors tend to appear simultaneously more
frequently than would be expected randomly, and this increases the risk of type 2 diabetes,
atherosclerosis, and other CVDs in adults. The clustering of at least three of these CVD risk
factors has been defined as a complex disorder called metabolic syndrome (MetS) [6].

The accumulation of CVD risk factors has also been observed in children [7, 8]. However,
MetS in childhood is controversial for several reasons. One reason is that there is no consensus
on the definition of MetS. Although the same four components (hypertension, dyslipidaemia,
central obesity, and hyperglycaemia) are usually considered, the cut-off points used to discrim-
inate normal from abnormal values of this components vary between definitions. This causes
difficulty in comparing the prevalence of MetS (range: 0.3%–26.4%) among studies worldwide
[8–12]. Additionally, the literature on childhood MetS is scarce and shows inconsistent results
on whether the joint presence of components implies a higher risk of disease in adulthood
than the simple presence of individual components [13–15]. Therefore, more large-scale longi-
tudinal studies are required to validate a causal relationship. Consequently, most studies con-
ducted to date focussed on all the MetS components separately as CVD risk factors and all of
their possible aggregation patterns [10, 16]. Especially at an early age, as the International Dia-
betes Federation suggests that MetS should not be diagnosed younger than 10 years [17].

Furthermore, the temporal stability of these components and their clustering in children
are unclear. The phenomenon of longitudinal stability of a variable is known as tracking [18].
Several studies have examined the tracking of clusters of CVD risk factors, but most focussed
on adolescence and the transition of patterns to young adulthood or adulthood [19–25]. To
date, there have not been many studies that evaluated the short-term tracking of CVD risk
factor clustering in children [26]. One of the main difficulties in assessing the stability of these
factors over time is the large number of different observable patterns.

Latent transition analysis (LTA) is a statistical method that allows to identify groups of sub-
jects who are distinguished from each other according to the response to observed categorical
variables and estimates the probabilities of transition between groups over time [27–29]. This
technique is relatively new in the field of epidemiology [27] but is useful for representing
the variety and complexity of the relations between MetS components and their changes over
time, taking into account within-person variability [26].

There are future implications of the early onset of CVD risk factors and their clustering [8,
9], and there is uncertainty regarding its pathogenic mechanism [10, 16]. Therefore, identify-
ing the different CVD risk factor clusters in children and their patterns of change over time is
important. This study aimed to evaluate the following using LTA: (i) the presence of subgroups
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of children with different clustering patterns of hypertension, dyslipidaemia, central obesity,
and hyperglycaemia at 4 and 8 years of age, (ii) the prevalence of each subgroup, and (iii) the
probability of changing between groups between 4 and 8 years of age.

Materials and methods
Study population
The population considered in this study was the Infancia y Medio Ambiente (INMA [Environ-
ment and Childhood]) Asturias cohort (northern Spain), which has been described in previous
studies [30–32]. In brief, pregnant women in their first trimester of pregnancy were recruited
between May 2004 and June 2007. The inclusion criteria were as follows: age� 16 years, sin-
gleton pregnancy, no assisted conception, delivery scheduled at the San Agustón Hospital
(Avilés, Spain), and no communication handicap. After recruitment, data were collected in
several phases of follow-up as follows: in the first and third trimesters of pregnancy, at birth,
and when children were 18 months, 4 years, 8 years, and 11 years of age. This study analysed
data from follow-ups at 4 (T0) and 8 years (T1) of age.

The initial sample was composed of 494 eligible women who agreed to participate. A total
of 453 children were followed up at 4 years and 416 children were followed up at 8 years of
age. Finally, all 332 children who had available data for each variable used to determine the
CVD risk factors (waist circumference [WC], systolic blood pressure [SBP], diastolic blood
pressure [DBP], blood glucose, triglycerides [TGs], and high-density lipoprotein cholesterol
[HDL-C]) at 4 or at 8 years of age were included in the study (Fig 1).

The study protocol was approved by the Asturias Regional Ethics Committee, and written
informed consent was obtained from every participating woman and, in such case, her partner.
The research conformed to the principles of the Declaration of Helsinki.

Cardiovascular disease risk factor definitions
CVD risk factors considered in this study were central obesity, hyperglycaemia, dyslipidaemia,
and hypertension. To determine whether a child had these disorders, we considered the fol-
lowing variables. WC was a marker for central obesity, blood glucose concentrations were a
marker for hyperglycaemia, TG and HDL-C concentrations were markers for dyslipidaemia,
and SBP and DBP were markers for hypertension [33, 34]. Predefined cut-off points were used
to distinguish between normal or abnormal levels of these variables.

In this study, reference cut-off points provided by the IDEFICS study were applied. These
reference values were derived from a large population-based sample of healthy children from a
heterogeneous European population (16,228 children from Sweden, Germany, Hungary, Italy,
Cyprus, Spain, Belgium and Estonia). This previous study provided age- and sex-specific cut-
off points for each variable (also a height-specific cut-off for blood pressure) using two differ-
ent levels. One cut-off indicated children who required close observation, called the monitor-
ing level (values exceeding the 90th percentile in their sample). The other cut-off indicated
children who required an intervention to ameliorate their risk profile, called the action level
(values exceeding the 95th percentile in their sample).

In the present analysis, the cut-off points of the monitoring levels were considered as fol-
lows. Children were classified as having central obesity if they had a WC above the age- and
sex-specific monitoring IDEFICS cut-off point [35]. Children were classified as having hyper-
glycaemia if they had blood glucose concentrations above the age- and sex-specific monitoring
IDEFICS cut-off point [36]. Children were classified as having dyslipidaemia if they had TG
concentrations above the age- and sex-specific monitoring IDEFICS cut-off point or HDL-C
concentrations below the age- and sex-specific monitoring IDEFICS cut-off point [37].
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Fig 1. Flowchart of the study population.WC, waist circumference.

https://doi.org/10.1371/journal.pone.0283799.g001
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Children were classified as having hypertension if they had SBP or DBP above the age-, sex-,
and height-specific monitoring IDEFICS cut-off point [38].

Cardiovascular disease risk factor measurement
WCwas measured using a non-stretch nylon tape measure, with the subject in a standing
position, at the midpoint between the caudal edge of the last rib and the iliac crest at the level
of the umbilicus and with the tape in a horizontal plane. SBP and DBP were obtained, after 5
min rest, with an automated oscillometric system (OMRON1) with the patient in a seated
position and the right arm at rest at the level of the heart, measured at the level of the right
wrist. Between 2 and 3 measurements were taken and the mean was calculated. All somato-
metric and blood pressure determinations were performed by experienced and trained health-
care staff. Nonfasting blood samples were collected by laboratory nurses at the Hospital San
Agustı́n de Avilés and determined by laboratory staff using a Roche analyser (Modular Analyt-
ics SerumWork Area, Mannheim, Germany).

Statistical analysis
The characteristics of the study population are shown using descriptive statistics. Continuous
variables are shown by median and interquartile range, while categorical variables are shown
by absolute and relative frequencies.

As the result of the definitions indicated in the ‘Cardiovascular disease risk factor defini-
tions’ section, four binary categorical variables were obtained that allowed us to distinguish
children who had normal or abnormal (monitoring) levels in relation to the four disorders.
LTA was used to identify groups of children with different aggregation patterns of CVD risk
factors. Each identified group is interpreted as a ‘latent status’, that represents the different
response patterns in the data to the observed variables [29], which are in this case the four
CVD risk factor markers considered. LTA was also used to estimate the prevalence of each
latent status and the probabilities of change from one latent status to anotherbetween these
two time points (S1 Figure in S1 File). In this process, three types of parameters were estimated
as follows. Class membership probabilities, which indicate the proportion of the population
expected to be classified in a particular latent status. Item-response probabilities, which indi-
cate the probability of being in a particular category of an observed variable (i.e., in the normal
or monitoring level category of any of the disorders), conditional to the latent class member-
ship. They also provide the basis for interpretation and labelling the latent status. And finally,
transition probabilities, which indicate the probability of membership in one latent status at
T1 given the membership at T0. The name given or assigned to the latent status is based on the
researchers interpretation of the item-response probabilities. LTA model specification, model
estimation, and finally, model selection and interpretation were conducted as reported by Col-
lins and Lanza [29], with an adaptation of the procedure proposed by Ryoo et al. [39]. Further
details of the steps followed during this procedure are given in S1 File.

LTA models allow for missing data on the measured outcomes using the full-information
maximum likelihood method. In this method, the data for children who have information at
only one time point do not contribute to the estimation of the transition parameters. However,
the data do contribute to estimating the time-specific parameters, and thus help to produce
better results, allowing an increase in the sample size and thus the statistical power [29, 40].
Therefore, only children without any of the measurement components at any time point were
eliminated from the study. Consequently, children were included in the study if they met the
following criteria: they had a measurement of each of the CVD risk factors considered in at
least one of the time points (i.e., those who have measure of WC at T0 or T1, and measure of
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blood glucose at T0 or T1, and measure of TG at T0 or T1, and measure of HDL-C at T0 or
T1, and measure of SBP at T0 or T1, and measure of DBP measurement at T0 or T1). This
resulted in a final study sample of 332 children, which allowed us to reach a sample size
of> 300 (for lower sample sizes, the use of LTAmodels is not recommended [41]). To esti-
mate transition probabilities, we used children who had measurements of all variables at the
two time points (n = 154).

Statistical analyses were performed using the R software (version 4.0.5) [42] and the statisti-
cal modelling programme Mplus (version 7) [43], which is specially designed for latent vari-
able models. LTA was carried out using Mplus and the R package MplusAutomation [44].

Results
Descriptive statistics of sex, age, cardiometabolic variables, and risk factors of the study popu-
lation are shown in Table 1. The risk factors with the highest prevalence at T0 at the monitor-
ing level were blood lipids and WC, with a prevalence of 33.7% and 27.1%, respectively. The
risk factors with the highest prevalence at T1 were blood pressure and lipids, with a prevalence
of 35.8% and 25.0%, respectively.

The distribution of the number of risk factors at the monitoring level that a child presented
at the same time (Fig 2) at T0 was as follows. A total of 29.0% of the children had no disorder
at this level, 41.6% had one, 21.2% had two, 8.0% had three, and 0.4% had all four. At T1, a
higher percentage of children presented with none or one disorder at that level (36.9% and
42.1% respectively), while a lower percentage of children had two or three disorders at that

Table 1. Descriptive statistics of sex, age and cardiometabolic parameters at 4 and 8 years of age.

N = 327 T0 (4 years) N = 300 T1 (8 years)
Sex, %
Male 176 (53.8) 162 (54.0)
Female 151 (46.2) 138 (46.0)

Age, median (IQRa) 327 4.4 (4.3; 4.5) 300 8.3 (8.1; 8.4)
Waist circunference (cm), median (IQR) 325 53.5 (50.5; 56.0) 300 63.2 (58.5; 69.0)
Glucose (mg/dL), median (IQR) 266 86.0 (81.2; 91.0) 253 86.0 (82.0; 90.0)
Sistolic blood pressure (mmHg), median (IQR) 324 99.0 (90.0; 105.0) 296 107.0 (100.0; 114.0)
Diastolic blood pressure (mmHg), median (IQR) 324 60.0 (54.0; 66.0) 296 67.0 (60.8; 72.0)
Triglycerides (mg/dL), median (IQR) 265 71.0 (55.0; 94.0) 253 64.0 (47.0; 87.0)
HDL-C (mg/dL), median (IQR) 265 57.0 (48.0; 63.0) 251 68.0 (60.0; 80.0)
Waist circunference level, %
Normal 237 (72.9) 230 (76.7)
Monitorization 88 (27.1) 70 (23.3)

Glucose level, %
Normal 210 (79.2) 237 (93.7)
Monitorization 55 (20.8) 16 (6.3)

Blood pressure level, %
Normal 238 (73.5) 190 (64.2)
Monitorization 86 (26.5) 106 (35.8)

Lipids level, %
Normal 175 (66.3) 189 (75.0)
Monitorization 89 (33.7) 63 (25.0)

aIQR, interquartile range.

https://doi.org/10.1371/journal.pone.0283799.t001
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level (16.4% and 4.0% respectively). The percentage of children with the four risk factors at
that level was the same at both time points. Consequently, 71.2% of children had at least one
disorder at the monitoring level at 4 years and 62.9% of children did so at 8 years.

S1 Table in S1 File also contains the distribution of the number of risk factors at the moni-
toring level at the same time, disaggregated by each risk factor. It shows that at 4 years WC
and blood lipids are the variable that appeared at the monitoring level most frequently in com-
bination with others. And that at 8 years WC continued to be the variable that appeared at the
monitoring level most frequently in combination with others, followed by blood pressure.

The results of the LTA are described below. On the basis of the criteria indicated in the S1
File, the three latent status model was selected. Details about the information on the relative
model fit for selecting the number of latent statuses is shown in Supplementary Table S2 in
S1 File.

Table 2 shows the item-response probabilities of being at a normal level for each disorder,
in the three latent statuses detected at each time point. It also shows the estimated prevalence
of each latent status. On the basis of these item-response probabilities, the latent status detected
by LTA was labelled as follows at T0. Children in latent status one were characterised as having
a high probability of being in the normal range for all of the disorders (70.9%–100%), so it was
labelled as ‘no disorders’. Children in latent status two had the probability of being at normal
levels for all of the disorders (48.9 and 79.5%). But all confidence intervals contained the prob-
ability of 50%, and therefore, individuals in this group could present with one or more disor-
ders, but were not characterised by any specific one. Consequently, this status was labelled as
‘some disorders’. In latent status three, which was labelled as ‘central obesity’, children had a
zero probability of having a normal WC, a high probability of having a normal blood pressure
(81.3%), and a high probability of having normal glucose concentrations (76.9%), while they
were half as likely to have normal lipid concentrations. The second latent status (some disor-
ders) had a poor homogeneity because all of the confidence intervals contained a 50% proba-
bility. That means that no clearly characteristic pattern can be identified in this latent status
and that is difficult to interpret it in a meaningful way. The latent status with the highest preva-
lence at T0 was no disorders (55.9%), followed by central obesity (22.9%) and some disorders
(21.2%).

Fig 2. Distribution of the number CVD of risk factors at the monitoring level in the study population.

https://doi.org/10.1371/journal.pone.0283799.g002
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At T1, latent status one was characterised by the equivalent of the first latent status at T0
and was also labelled as no disorders. Latent status two at T1 was characterised by a zero prob-
ability of having normal blood pressure and a high probability of having normal levels in the
rest of disorders, so it was labelled as ‘hypertension’. Children in latent status three were char-
acterised as having a low probability of having a normal WC (24.0%), and therefore, this latent
status was labelled as “central obesity”. The difference between this status and the identically
named status at T0 is that, in this case, only glucose concentrations had a high probability of
being in the normal range. Therefore, subjects in the status of central obesity at T0 could pres-
ent central obesity alone or accompanied by dyslipidaemia, while at T1, they could suffer from
central obesity alone or accompanied by hypertension and/or dyslipidaemia. The latent status
with the highest prevalence at T1 was the no disorders status (59.8%), followed by the central
obesity status (22.3%) and the hypertension status (17.9%). WC and blood pressure at T1 were
strongly related to the children’s latent status because these variables clearly differentiated in
which latent status a child would be classified.

Transition probabilities of change from one latent status to another between T0 and T1 are
shown in Fig 3. The no disorders status (latent status one) showed high stability, with a 93.7%
probability that a child without disorders at T0 would remain with no disorders (latent status
one) at T1. Among children with an altered latent status, the subgroup with some disorders at
T0 (latent status two) had a 67.7% probability of being in the hypertension status (latent status
two) at T1 and a 32.3% of probability of being in the central obesity status (latent status three)
at T1. The subgroup of central obesity (latent status three) at T0 had a probability of 67.6% of
being in the central obesity status (latent status three) at T1 and a probability of 32.4% of being
in the no disorders status (latent status one) at T1.

Discussion
In the present study, three latent statuses were identified at 4 and at 8 years of age, and they
were different between these two periods. At both years of age, there was a predominant pat-
tern defined by the presence of no disorders, which was highly stable. At 4 years of age, we also

Table 2. Item-response probabilities and confidence intervals of the three latent status model selected, and the prevalence of the latent statuses at each time point.

T0 (4 years)
Latent status 1: No disorders Latent status 2: Some disorders Latent status 3: Central obesity

N = 186 (55.9%) N = 70 (21.2%) N = 76 (22.9%)
Waist circunference normal level (%) 100.0 (100.0; 100.0) 79.5 (47.9; 100.0) 0.0 (0.0; 0.0)

Glucose normal level (%) 87.2 (79.8; 94.6) 60.5 (37.1; 83.9) 76.9 (65.2; 88.6)
Blood pressure normal level (%) 79.4 (72.2; 85.5) 48.9 (10.5; 87.4) 81.3 (66.7; 93.5)

Lipids normal level (%) 70.9 (60.0; 81.9) 69.6 (39.9; 99.2) 53.0 (38.5; 67.5)
T1 (8 years)

Latent status 1: No disorders Latent status 2: Hypertension Latent status 3: Central obesity
N = 199 (59.8%) N = 59 (17.9%) N = 74 (22.3%)

Waist circunference normal level (%) 92.5 (85.7; 99.2) 88.0 (70.6; 100.0) 24.0 (0.0; 51.7)
Glucose normal level (%) 93.7 (89.1; 98.2) 92.7 (83.0; 100.0) 94.5 (86.5; 100.0)

Blood pressure normal level (%) 87.3 (71.2; 100.0) 0.0 (0.0; 0.0) 53.5 (34.2; 72.7)
Lipids normal level (%) 75.5 (67.6; 83.5) 99.1 (85.6; 100.0) 54.2 (36.6; 71.8)

The item-response probabilities shown correspond to the ‘normal’ category of each disorder. Item-response probabilities corresponding to the ‘monitoring’ category are
the complements of those corresponding to the ‘normal’ category; therefore, they are not reported here. Statistically significant estimates are shown in bold. Data are
expressed as a percentage.

https://doi.org/10.1371/journal.pone.0283799.t002
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identified a subgroup characterised by children who had some disorders and by a subgroup
that presented with central obesity and could be accompanied by dyslipidaemia. Over time,
children transitioned to one subgroup defined by only hypertension and to another subgroup
defined by central obesity, which could be accompanied by dyslipidaemia and/or hypertension
(in addition to the no disorder subgroup already mentioned). These results support the recom-
mendation of not defining MetS at paediatric ages [17] because no patterns with aggregations
of three or more of the disorders of hypertension, central obesity, hyperglycaemia, and dyslipi-
daemia were clearly identified.

The lack of a standard criterion at paediatric ages to define cut-off points that discriminate
between normal or abnormal levels of the variables used in the present study (WC, glucose
concentrations, lipid concentrations, and blood pressure), which enable definition of the
above-mentioned disorders, causes difficulty in comparing the prevalence between studies
[12]. The reason for this difficulty is the high variability depending on the definition used [7, 9,
45]. In this study, the definition provided by the IDEFICS study was used because, although it
is not the most widely used, it is applicable to children aged 2–10.9 years. In the IDEFICS
study, cut-off points were calculated from a large and healthy European population that cov-
ered southern European countries, such as Spain, in which the sample of this study was based.

Taking into account that the cut-off values used to discriminate between normal and abnor-
mal (monitoring levels) for each of the CVD risk factors derived from IDEFICS study were
based on the 90th percentile, we expected that 10% of children would have abnormal levels of
these disorders. However, in our sample, we observed that the prevalence ranged from 20.8%
to 33.7% at 4 years of age, and from 6.3% to 35.8% at 8 years of age. These prevalences are
higher than those observed in the reference population [8] and in other European populations
in which the same definitions were applied [26]. An exception was glucose concentrations at 8
years of age in our study, which had a lower prevalence (6.3%). In the reference population on
which the cut-off points were calculated those who were overweight or obese were excluded,
and it has been observed that the prevalence of some of these disorders is positively associated

Fig 3. Probability of transitioning to each latent status at T1 (8 years), conditioned by the latent status at T0 (4
years). There were 154 subjects who had measurement of all variables performed at the two time points. Data are
expressed as a percentage.

https://doi.org/10.1371/journal.pone.0283799.g003
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with overweight and obesity [7, 8, 14, 45–48]. The fact that the INMA-Asturias cohort is char-
acterised by a high prevalence of overweight and obesity [32] could explain the high prevalence
of these CVD risk factors in monitoring levels compared with the reference population.

Regarding the number of disorders at the monitoring level, 62.9% of the children at 4 years
and 71.2% at 8 years of age presented with at least one component at abnormal levels. These
data are consistent with those reported in other studies, in which approximately two thirds of
the study population had at least one altered disorder [48, 49]. However, because the defini-
tions and cut-off points used are not the same, comparisons should be considered with cau-
tion. Importantly, an improvement in the number of disorders present in the same child was
observed between 4 and 8 years of age because the percentage of children who did not present
with any CVD increased, that of children who presented with only one CVD risk factor
remained the same, and that of children who presented with more than one CVD risk factor
simultaneously decreased.

Three latent statuses were identified at 4 years, namely no disorders, some disorders, and
central obesity. The no disorders status had a prevalence of 55.9%, and the other two latent sta-
tuses had a prevalence of approximately 20%. The central obesity latent status was clearly
defined by the presence of central obesity, but the probability of having normal lipid concen-
trations was approximately 50%. This finding indicated that central obesity could appear alone
or be accompanied mainly by dyslipidaemia. The latent status labelled as some disorders has a
difficult interpretation due to its poor homogeneity. As all the variables have around 50% of
probability of being in the normal category, there is a high degree of uncertainty about what
is being captured in that group and no specific pattern can be identify. But that also give us
some information. As no other latent status (apart from the central obesity) characterised by a
single disorder was found at 4 years, despite the fact that 41.6% of the children had only one
disorder, the existence of this some disorders status suggests there is no one disorder that pres-
ents a higher prevalence than the others in isolation.

Three latent statuses were identified at 8 years, namely no disorders, hypertension, and
central obesity. The no disorders status was the most prevalent, with almost two thirds (59.1%)
of the children in that group. At this age, two latent statuses were characterised by the single
disorder of hypertension, with a prevalence of 17.9%, and central obesity, with a prevalence
of 22.3%. In the case of central obesity, the confidence intervals of the item-response probabili-
ties of normal blood pressure and normal lipid concentrations (confidence interval: 34.2%,
72.7%; and confidence interval: 36.6%, 71.8%, respectively) indicated that central obesity could
be partially accompanied by hypertension and dyslipidaemia.

The latent statuses identified at 4 and 8 years of age were distinct (except in the no disorders
status), suggested a lack of stability of these disorders between these ages, either in isolation or
in clusters. The stability of CVD risk factors associated with MetS at older ages has been dis-
cussed in several articles, although mostly from childhood and adolescence to young adult-
hood and adulthood, instead of between different ages within childhood [13, 19–26]. While
the results of these studies are not consistent, most of them are consistent with the lack of sta-
bility that we observed [13, 19–23, 26]. The main difference between the time points is that, at
4 years of age, there was no pattern characterised by an isolated disorder, and central obesity
could be accompanied by dyslipidaemia. However, at 8 years of age, the detected patterns
changed, a latent status composed only of hypertension appeared to be relevant and the latent
status of central obesity could be accompanied by dyslipidaemia and/or hypertension. There-
fore, the number of disorders that appear at the same time as central obesity increases between
4 and 8 years of age. These findings support the hypothesis that central obesity is a CVD risk
factor that triggers other disorders, which usually emerge as comorbidities of central obesity
[11, 14, 17, 33]. Regarding to hypertension, the increasing trend of elevated blood pressure
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levels in childhood and adolescence in terms of primary hypertension has been mainly related
to the also increasing trend of childhood obesity, but also to other factors such as prenatal
and postnatal exposures, genetic factors, birth characteristics, dietary habits, or lifestyle factors
[50]. Some of them have been shown to be related to primary hypertension independently
of obesity, as evidenced for example by Rosner et al. [51] in the case of high sodium intake.
Specifically, it has also been found that the Spanish pediatric population exceeds the recom-
mended sodium intake at ages 9 to 12 years regardless of their nutritional status [52], and that
it is positive associated with an elevated diastolic blood pressure between 5 and 16 years old,
also regardless of their nutritional status [53]. So the latent status characterized only by hyper-
tension is evidenced the group of children with high blood pressure values related to causes
independent of obesity, since those who present elevated blood pressure values accompanied
by obesity would be classified in the latent status of central obesity.

There are two major similarities between the latent status at 4 and 8 years of age. The no
disorders status was observed in slightly more than half of the sample, and the other status,
which was defined by central obesity accompanied by other disorders, represented approxi-
mately one quarter of the sample at the two time points.

Transition probabilities showed that the no disorders status in children at 4 years of age
remained mostly in the same status at 8 years of age, because only a small proportion of chil-
dren transitioned to other statuses at 8 years (6.3% change to the hypertension status). This
observation is in line with other studies, which reported that the group of children who were
in a healthy or lower metabolic risk status at the start of the follow-up were more likely to
remain in that group [25, 26].

Among the children who suffered from some disorders at 4 years, 67.7% transitioned to
have only hypertension at 8 years, while 32.3% transitioned to have central obesity, which
could be accompanied by hypertension and/or by dyslipidaemia. The finding that hyperglycae-
mia disappeared at 8 years of age, because all of the latent statuses at 8 years had a high proba-
bility of normal glucose concentrations, could be due to the fact that, at 4 years, the stress
caused in such young children by blood collection may produce an unrealistic elevation in
glucose concentrations. Additionally, this disappearance could also have been affected by the
importance that parents gave to this warning sign, taking measures to reverse it.

Children with central obesity at 4 years of age maintained central obesity at 8 years of age,
with a 67.6% probability. However, 32.4% of these children reversed their status by moving to
the no disorders status.

Comparing the results of this study with those in other studies with the same or similar
objectives is difficult because of the wide variety of variables considered, cut-off points used,
diversity in methodology applied, and follow-up periods of the populations studied. We only
found one related study in childhood with the use LTA by Bornhorst et al. [26] who analysed
the latent status and its transition at 6, 8, and 12 years of age. When we focussed on the results
of this previous study between 6 and 8 years of age, because they are the most comparable with
our sample, the latent statuses detected were different regarding their pattern and number.
However, this previous study also observed a similar prevalence and a higher stability of the
no disorders status. Furthermore, central obesity appeared to be the most likely to be accompa-
nied by other disorders, as in our study. The differences detected between the other latent sta-
tuses in the Bornhorst et al.’s study and ours may be due to the fact that, in our study, no latent
statuses were identified with a prevalence of< 10%. Additionally, the smaller sample size of
our study may not have allowed us to distinguish underlying patterns. Moreover, in Bornhorst
et al.’s study [26], item-response probabilities were restricted to be equal across time, which
meant that the identified latent statuses were forced to be equal at the different time points,
unlike in our study.
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The present study has several limitations. A larger sample size for this study would have been
preferable because LTA is a methodology that uses multiple combinations of categorical vari-
ables. There may have been different patterns or combinations of responses with a low or even
null frequency, which could have affected the results of the estimates and the width of the confi-
dence intervals. The sample size did not allow us to carry out a stratified analysis by sex, which
would have been desirable, because sensitivity analysis due to sex-based differences has been
observed in some studies [8, 9, 20]. Additionally, the sample size did not enable the introduction
of explanatory variables to estimate their effect on the transition probabilities. With regard to the
method of defining the disorders at normal levels, in this study, the variables were dichotomised.
This could have resulted in a loss of information. Several authors have suggested that CVD risk
factors should be treated as continuous [8, 9, 54, 55]. Another limitation is that, because of the
lack of longitudinal studies from childhood to adulthood, there are no cut-off points defined on
the basis of a relevant and quantifiable increase in the CVD risk in the future or on the basis of
biological evidence [8]. Moreover, in this study, the application of cut-off values from a pre-
existing reference population, which was different to the population from which the study sam-
ple was drawn, could have overestimated or underestimated the prevalence of the disorders.
This possibility suggests the necessity of cut-off points that are ethnicity-specific in each country
[56]. Finally, blood samples were not collected after 12 hours of fasting. Recent studies have
shown that lipid profiles only minimally change in response to normal food intake in individuals
in the general population [57], but they could have a greater effect on glucose measurements.
Therefore, the results concerning hyperglycaemia should be treated with caution [58].

There are some strengths of this study. Despite using a different reference population, the
chosen population included subjects from Spain and other southern European countries, as
well as sex- and age- and even height-specific cut-off points. Therefore, this takes into account
the physiological changes in childhood, which is a period in which several modifications that
affect cardiometabolic parameters occur [34]. Moreover, this study provides knowledge on the
evolution and stability of aggregations of CVD risk factors at the paediatric age through a lon-
gitudinal study. There have not been many studies that have conducted this analysis during
childhood [19, 25, 26, 59, 60], with most studies from childhood or adolescence to young
adulthood or adulthood. Therefore, taking into account the existing gaps in knowledge regard-
ing the interrelations between CVD risk factors and their joint appearance, the information
provided by the current study could help to provide further understanding on this topic.

Conclusions
The cluster patterns of different CVDs risk factors are not maintained between the ages of 4
and 8 years, except for those in children who have no disorders. At 8 years of age, the preva-
lence of hypertension is high and occurs in isolation. Central obesity is found at these two
ages. Therefore, the early detection of central obesity has importance for the correct control
of its evolution. In addition, central obesity should play a major role in the prevention of the
development of other CVD disorders because it is accompanied by other disorders, and the
number of disorders that may accompany it increases from the age of 4 to 8 years. The next
steps regarding this issue should be focussed on attempting to understand what underlying
factors could explain the changes in the latent status throughout childhood.
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3. Methods and results
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Abstract
Identifying cardiovascular-related measures that track from early childhood into later ages may help inform early prevention 
targets for cardiovascular disease. In this study, the tracking of triglycerides (TG), high-density cholesterol (HDL-c), ath-
erogenic coefficient (AC), waist circumference to height ratio (WC/Height), mean arterial pressure (MAP), and homeostatic 
model assessment of insulin resistance (HOMA-IR) was examined in the INMA-Asturias cohort between 4 and 8 years of 
age. The analysis was conducted in 307 children who participated in the INMA-Asturias cohort (Spain) at 4 and at 8 years 
of age. Quantile regression models were used to evaluate tracking between measures at both ages, with each measure at 
8 years as the dependent variable and the rank transformation of the same measure at 4 years as the independent variable. 
We found a positive association between HDL-c rank at 4 years and higher quantiles of the HDL-c distribution at 8 years, 
with an increase of 2.93 mg/dL (95% CI: 1.98, 3.87) per decile in the 0.9 quantile. A positive association was also found for 
WC/Height, with an increase of 0.008 (95% CI: 0.004, 0.012) per decile in the 0.9 quantile. We observed that tracking for 
AC increased in the higher quantiles of the distribution at 8 years, with an increase of 0.11 (95% CI: 0.09, 0.14) in the 0.6 
quantile compared to an effect of 0.15 (95% CI: 0.09, 0.21) in the 0.9 quantile.
  Conclusions: Adult markers of dyslipidemia and central obesity tracked between ages 4 and 8 years. For AC, tracking 
increased in the higher quantiles of the distribution.

What is Known:
• Atherosclerosis begins in early life, so preventive efforts that start in childhood may delay progression to clinical disease. Determine what 

cardiovascular risk factors track into time since childhood bring the opportunity to identified those subjects at risk for later cardiovascular 
disease.

• The study of risk factors in health populations and, particularly in children, copes with not clear and/or controversial thresholds definition. 
This makes it challenging to study tracking in pediatric ages.

What is New:
• Quantile regression is a useful tool for assessing the tracking of risk factors for which there are no clinically meaningful thresholds. The 

increasing trend observed in the tracking of dyslipidemia suggests the possible difficulty that children with abnormal values at 4 years of age 
might have in normalizing them in future years.

• The findings of this article may help to determine which cardiovascular-related measures could be screened and followed-up in children.

Keywords Cardiovascular risk · Childhood · Dyslipidemia · Hyperglycemia · Hypertension · Obesity · Quantile regression · 
Tracking

Background

Abnormal values of cardiovascular-related measures are fre-
quently detected in adulthood [1] but may also be present in 
childhood [2]. This does not increase the risk of cardiovas-
cular diseases (CVDs) in childhood itself; children rarely 
experience cardiovascular diseases and these occurrences 
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are mainly caused by congenital heart problems or genetic 
syndromes [3]. Atherosclerosis, one of the main CVD trig-
gers [4] in adults, is an accumulative process that can begin 
in childhood and youth [5–7]. Therefore, researchers have 
been trying to answer whether those subjects exposed to spe-
cific metabolic alterations in childhood will have higher risk 
of developing CVDs — or early CVDs — in adulthood [8].

The study of the association between underlying car-
diovascular disease indicators in childhood and CVDs in 
adulthood has been challenging due to the difficulty of fol-
lowing a young sample the time required to observe in this 
population CVD events. Several studies have shown evi-
dence that CVDs are associated with childhood metabolic 
alterations [9]. For instance, a study of 38,589 participants 
aged 3 to 19 years from the USA, Finland, and Australia 
found an association between body mass index (BMI), sys-
tolic blood pressure, triglycerides, and cholesterol with 
cardiovascular events in midlife [10], and strongest asso-
ciations with these factors in aggregate. These findings 
can be explained by a risk accumulation model, in which 
risk factors present at each life stage further increase risk 
in adulthood; a risk chain model, in which risk in child-
hood is mediated by risk in adulthood; or a sensitivity 
period model, in which exposure at a particular time in life 
course confers more risk compared with other stages [9, 
11]. Under either scenario, identifying metabolic altera-
tions that are more likely to track from childhood into 
future years will help inform targets of early prevention.

One of the main difficulties in tracking metabolic dis-
orders in children is the disorder definition itself. The lack 
of adequate studies linking cardiovascular risk factors in 
childhood to disease in adulthood leaves pediatric defini-
tions of metabolic disorders based on the distribution of 
cardiovascular measures in generally healthy children [12]. 
Therefore, thresholds are controversial. One approach is 
to model measures continuously, and rely on categoriza-
tion only for clinical diagnosis [13, 14]. Tracking stud-
ies — defined as the maintenance over time of a relative 
position in the distribution of a variable [15] — have been 
analyzed mainly using thresholds to categorize the vari-
ables of interest, and stratify subjects into risk groups [16]. 
To avoid that, we propose to study the tracking of the rank 
values instead of the values themselves. That is, we aim to 
study whether the subjects with higher values at 4 years 
still have higher values at 8 years in terms of the variable 
distribution. With this goal, we consider data from the 
Infancia y Medio Ambiente (INMA)-Asturias cohort [17] 
and use quantile regression models [18]. This methodol-
ogy allows to estimate the effect of an explanatory variable 
on any quantile of the outcome distribution, permitting the 
analysis of extreme values of the outcome without setting 
arbitrary thresholds [19].

For this reason, we aimed to apply this approach to assess 
whether having extreme values in the cardiovascular-related 
measures at 4 years is associated with having extreme values 
in the same cardiovascular-related measures at 8 years. We 
consider the following measures: triglycerides (TG), high-
density cholesterol (HDL-c), atherogenic coefficient (AC), 
waist circumference to height ratio (WC/Height ratio), mean 
arterial pressure (MAP), and the homeostatic model assess-
ment of insulin resistance (HOMA-IR).

Materials and methods

Study design

Study subjects were children participating in the INMA 
(Infancia y Medio Ambiente [Environment and Childhood]) 
Asturias cohort (north of Spain). Details can be found in 
previous studies [20, 21]. Briefly, between May 2004 and 
June 2007, pregnant women in their first trimester of preg-
nancy were recruited at the San Agustín University Hospital 
(Avilés) following a common protocol [17]. This hospital 
is a public health center with 436 beds which provides pri-
mary care and central, medical, and surgical services to a 
population of 144,875 inhabitants according to 2021 census 
[22]. The inclusion criteria were maternal age ≥ 16 years, 
singleton pregnancy, delivery scheduled at the referenced 
hospital, no assisted conception, and no communication 
handicap. Data were collected by trained professionals in 
several phases of follow-up: at first and third trimester of 
pregnancy, at birth, and at children’s ages 18 months, 4, and 
8 years. Information was collected by medical registries, 
interview-based questionnaires with mothers, blood sample 
collection, and physical examinations of the children con-
ducted by trained staff.

Cardiovascular‑related measurements

For this study we focused on cardiovascular-related meas-
ures that reflect well-established CVD risk factors in adult-
hood: central obesity, insulin resistance, dyslipidemia, and 
hypertension. These included WC/Height ratio for central 
obesity [23]; MAP for hypertension [24]; TG, HDL-c, and 
AC for dyslipidemia [25]; and HOMA-IR for insulin resist-
ance [26].

Lipids

Lipids were measured at 4 and 8 years collecting non-fasting  
blood samples, obtained by antecubital venipuncture. Serum 
total cholesterol (T-c), TG, HDL-c, and low-density cho-
lesterol (LDL-c) levels were determined using a Roche 
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analyzer (Modular Analytics Serum Work Area, Mannheim, 
Germany). AC was calculated as the difference between T-c 
and HDL-c, divided by HDL-c. Lipids values are presented 
in milligrams per deciliter (mg/dL).

Anthropometry

At 4 and 8 years, trained staff measured children height and 
WC. Height was measured twice to the nearest 0.1 cm using 
a wall-mounted stadiometer after the participant removed 
their shoes. Waist circumference was measured to the near-
est 0.1 cm at the children midpoint between the right lower 
rib and the iliac crest at the level of the umbilicus, using an 
inelastic nylon tape in a horizontal plane, and with children 
in a standing position. WC/Height ratio was calculated as 
waist circumference in cm divided by height in cm.

Blood pressure

Systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) were measured using an automated oscillometric 
system  (OMRON®) at children 4 and 8 years. After a 5-min 
rest period, between two and three consecutive measure-
ments were taken, with children in a seated position and 
their right arm at rest at the heart level. The SBP and DBP 
averaged paired values were used and MAP was calculated 
as DBP + 1/3(SBP − DBP) [27]. Values are presented in mil-
limeter of mercury (mmHg).

Blood glucose and insulin

Blood glucose and insulin levels were determined using the 
same Roche analyzer at children 4 and 8 years through col-
lecting non-fasting blood samples, obtained by antecubital 
venipuncture. Glucose values are presented in milligrams 
per deciliter (mg/dL) and insulin values in microunits per 
milliliter (µU/mL). HOMA-IR was calculated as glucose 
multiplied by insulin and divided by 405.

Potential confounding factors

The following parental characteristics were selected as 
potential confounders: maternal age at enrollment, maternal 
pre-pregnancy (BMI), paternal BMI, maternal educational 
level, maternal social class, maternal smoking during preg-
nancy, and parental CVD antecedents (neither parent has 
antecedents/one parent has at least one antecedent/both par-
ents have at least one antecedent). Regarding pre-pregnancy 
BMI, the maternal height and pre-pregnancy weight were 
self-reported, both at the first-trimester visit. These values 
were used to calculate the pre-pregnancy BMI (in kg/m2). 
Paternal weight and height were reported by the mother at 
the first-trimester visit and were used to calculate paternal 

BMI. Questionnaires administered during the first and third 
trimester of pregnancy obtained information on maternal 
and paternal age and education, maternal country of birth, 
maternal and paternal occupation, and maternal smoking 
during pregnancy. Social class was defined according to the 
occupation during pregnancy of the mother or father, using a 
widely used Spanish adaptation of the International Standard 
Classification of Occupations coding system [28]. Paren-
tal CVD antecedent’s variable was reported by the mother 
in the first trimester of pregnancy. She was asked whether 
she or the father had been diagnosed with diabetes, heart 
disease, coagulation disorders, hypertension, or hypercho-
lesterolemia and the responses were combined to create a 
categorical variable according to whether neither parent had 
any of them, whether one parent had at least one of them, 
or whether both parents had at least one of them. Children 
characteristics selected as potential confounders were age, 
height, weekly out-of-school physical activity time, and the 
mean of the daily energy intake. All of them were collected 
at the 4- and 8-year follow-ups. Week of gestation at deliv-
ery, birth weight, predominant breastfeeding duration, and 
sex were also considered. These information were collected 
from medical records, except for data on predominant breast-
feeding duration, which were collected when the children 
were approximately 6 and 14 months old through question-
naires. Weekly out-of-school physical activity time was self-
reported by mothers. The mean of the children daily energy 
intake was calculated based on validated food frequency 
questionnaires (FFQs) about children’s diet that were admin-
istered twice to the parents or care-givers of children over a 
9-month period at 4 years, and over a 9–12-month period at 
8 years. The FFQs were composed by 105 items at 4 years 
and by 46 items at 8 years. To explore the reproducibility of 
the FFQs, the nutrient and food group intake collected from 
the both FFQs at each age were compared, while validity 
was examined by contrasting the nutrient values from the 
FFQs and the average of three 24-h dietary recalls taken in 
this period, and also with the concentration of several vita-
mins in the blood (carotenoids, vitamin D, and α-tocopherol) 
[29, 30]. Nutrient values and total energy intake were cal-
culated based on the US Department of Agriculture’s food 
composition tables and other published national sources. 
All questionnaires were conducted face-to-face by trained 
interviewers. The selection of these variables as potential 
confoundings was based on previous studies.

Study population

Initially, 494 eligible women agreed to participate and, at 
birth time, 485 children were part of the study. At 4 years, 
453 children continued in the follow-up and 91.4% of them 
attended to this follow-up visit. At 8 years, 416 children 
continued in the follow-up and 87.0% of them assisted to the 
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Fig. 1  Flowchart of the study sample
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follow-up visit. We limited the study to those 416 children 
who continued in the study at the 8-year follow-up. Of these 
416 children, there were 392 with some measure of anthro-
pometry, blood pressure, lipids, or glucose/insulin at 4 years 
and 362 at 8 years. Only 154 children had measurements of 
all variables involved in the study at 4 and 8 years. To opti-
mize the use of the available information, we only excluded 
from the final sample those children who, for at least one of 
the cardiovascular-related measures involved in the study, 
had no data at neither 4 nor 8 years. The final sample was 
composed by 307 children. Figure 1 shows the flowchart of 
the study sample and the resulting sample size.

Statistical analysis

Continuous variables were summarized by medians and 
interquartile ranges, and categorical variables by absolute 
and relative frequencies.

Crude and adjusted quantile regression models were 
performed to evaluate the association between the distri-
bution of each cardiovascular-related measure at 8 years 
as the dependent variable, and the rank transformation — 
replacing the data by their corresponding ranks — of the 
same cardiovascular-related measure at 4 years as the inde-
pendent variable. Quantile regression is a method used to 
evaluate the effects of exposures on the distribution of a 
continuous outcome [31]. It allows to assess whether the 
association between them differs for high-risk subjects (i.e., 
those at highest quantiles of the outcome) than for average 
subjects in the outcome distribution. To describe the effect 
of the independent variable on the cardiovascular-related 
measure distribution at 8 years, quantile sequence was esti-
mated from 0.1 to 0.9. The models were fully adjusted with 
potentially confounding variables described in the “Potential 
confounding factors” section. Models were computed using 
the quantreg R package (version 5.94) [32] and standard 
errors were estimated using the “xy-pair” bootstrap method. 
To facilitate the interpretation of the regression parameters, 
the variables resulting from the rank transformation were 
expressed as percentiles. The reported parameters repre-
sent the effect on each quantile of the dependent variable 
of a 10-unit increase (1-decile) in the independent variable. 
The analysis was repeated with each cardiovascular-related 
measure at 8 years as the dependent variable, and the rank 
transformation of the same cardiovascular as the independ-
ent variable, but also including as independent variables the 
rank variables of other five remaining cardiovascular-related 
measures, adjusted by covariates (referred as the complete 
model in following sections).

All the analyses were performed after missing value 
multiple imputation in all the cardiovascular-related meas-
ures and the adjustment variables [33]. Under the missing 

at random (MAR) assumption, that our data suggest that 
this may be plausible, we applied multivariate imputation 
by chained equation (MICE) method with fully conditional 
specification using the mice R package (version 3.14.0) [34]. 
The results were pooled using Rubin’s combination rules 
[35].

The criteria used to select the final sample resulted in 
groups of children at 4 and 8 years with a complex struc-
ture between them, combining both independent and related 
measures. To test hypotheses about difference in means or 
proportions between these groups maintaining the original 
structure of the data and their relations, we use the general 
bootstrap algorithm (gBA) for hypothesis testing [36].

All the analyses were conducted using the R statistical 
software, version 4.2.1 (R Project for Statistical Computing). 
Statistical significance was considered at p-value < 0.05.

Results

Following the inclusion criteria mentioned in the “Study 
population” section, a total of 303 children with data on at 
least one of the cardiovascular-related measures at 4 years 
were included in the analysis, and a total of 292 children 
who meet the same criterion were included at 8 years. The 
merging of these two subsamples results in total sample of 
307 children (Table 1). There were 288 children present in 
both subsamples at the same time, 15 children had only in 
the 4-year but not in the 8-year subsample, and 4 children 
had only 8-year data but not 4 years. Due to the small dif-
ference between the subjects in each sample, there are no 
relevant differences in not age-related characteristics. Mater-
nal median age at delivery was 32.9 and 33.1 years at each 
subsample, respectively, and more than 96% of the mothers 
were from Spain. Overall, 33.0% of mothers and 66.8% of 
fathers in the 4-year subsamples, and 32.9% of mothers and 
66.2% of fathers in the 8-year subsamples, were overweight 
or obese (BMI ≥ 25 kg/m2). The average daily energy con-
sumed increased from age 4 to age 8 (a median of 1618 
and 1753 cal, respectively; p-value = 0.001), and the num-
ber of weekly hours of physical activity outside school was 
considerably reduced from 4 to 8 years (a median of 11.5 
and 3.00 h, respectively; p-value < 0.001). This decrement 
is explained because at age 4, parents reported an average 
of 8.3 h per week of playing at home or in playground, and 
this activity is no longer reported at 8 years. Table 2 contains 
the summary of anthropometric, serum lipids, blood pres-
sure, and glucose and insulin variables in the 4- and 8-year 
subsamples.

Additional file 1 shows the percentage of imputed data for 
each variable over the overall sample. Lipids, glucose, and 
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Table 1  Characteristics of the 
study sample, before multiple 
imputation

Characteristics of the 303 children who have data on at least one of the cardiovascular measures involved in 
the analysis at 4 years of age and of the 292 children who meet the same criteria at 8 years of age. Continu-
ous variables are summarized by medians and interquartile ranges, and categorical variables are summa-
rized by absolute and relative frequencies
a The p-values were calculated using the general bootstrap algorithm for hypothesis testing (gBA) men-
tioned in the “Statistical analysis” section
b BMI was categorized according to WHO criteria: normal, BMI < 25  kg/m2; overweight, 25  kg/
m2 ≤ BMI < 30 kg/m2; obese, BMI ≥ 30 kg/m2

4 years (n = 303) 8 years (n = 292) p-Valuea

Parental characteristics
  Maternal age at delivery (years) 32.9 [30.4, 36.0] 33.1 [30.5, 36.0] 0.815
  Maternal origin country 0.999
    Spain 292 (96.4%) 282 (96.6%)
    Latin-American 6 (2.0%) 5 (1.7%)
    Europe 4 (1.3%) 4 (1.4%)
    Other 1 (0.3%) 1 (0.3%)
  Maternal level of education 0.996
    Primary 47 (15.5%) 44 (15.1%)
    Secondary 140 (46.2%) 134 (45.9%)
    University 116 (38.3%) 114 (39.0%)
  Maternal social class 0.984
    Upper I + II 72 (23.8%) 70 (24.0%)
    Middle III 63 (20.9%) 64 (22.0%)
    Low IV + V 167 (55.3%) 157 (54.0%)
  Maternal smoking during pregnancy 0.951
    No 244 (84.4%) 233 (84.1%)
    Yes 45 (15.6%) 44 (15.9%)
  Maternal pre-pregnancy BMI (kg/m2) 23.9 [21.7, 28.1] 23.9 [21.6, 28.1] 0.803
  Categorical maternal pre-pregnancy  BMIb 0.946
    Normal 203 (67.0%) 196 (67.1%)
    Overweight 72 (23.8%) 70 (24.0%)
    Obese 28 (9.2%) 26 (8.9%)
  Paternal BMI (kg/m2) 27.0 [24.6, 30.2] 27.0 [24.6, 30.2] 0.733
  Categorical paternal  BMIb 0.968
    Normal 97 (33.2%) 95 (33.8%)
    Overweight 146 (50.0%) 142 (50.5%)
    Obese 46 (16.8%) 44 (15.7%)
  Parental cardiovascular antecedents
    Neither parent has antecedents 264 (87.1%) 253 (86.6%) 0.945
    One parent has at least one antecedent 39 (12.9%) 39 (13.4%)
    Both parents have at least one antecedent 0 (0%) 0 (0%)

Child characteristics
  Sex 0.979
   Female 138 (45.5%) 134 (45.9%)
    Male 165 (54.5%) 158 (54.1%)
  Age (years) 4.40 [4.33, 4.53] 8.26 [8.08, 8.38]  < 0.001
  Mean daily energy intake (calories) 1618 [1429, 1876] 1753 [1441, 2104] 0.001
  Weekly out-of-school physical activity time (h) 11.5 [8.00, 16.0] 3.00 [2.00, 4.75]  < 0.001
  Week of gestation at delivery 39.6 [38.6, 40.6] 39.6 [38.5, 40.6] 0.821
  Predominant breastfeeding duration (weeks) 10.8 [0.00, 21.6] 10.7 [0.00, 21.6] 0.734
  Birth weight (g) 3300 [3010, 3600] 3290 [3000, 3570] 0.879
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insulin measurements had the highest percentage of missing 
data (ranging from 19.2 to 25.1% at 4 years and from 19.9 to 
23.1% at 8 years). Missing data in anthropometric and blood 
pressure measurements ranged from 2.0 to 6.2%.

Triglycerides

Figure 2 shows the estimated quantile regression parameters 
for each rank cardiovascular-related measure at 4 years, on 
the distribution of the same cardiovascular-related measure 
at 8 years, for all quantiles. We observe a positive associ-
ation between TG rank at 4 years and TG distribution at 
8 years above 0.5 quantile. The magnitude of the association 
was stronger in the upper part of the distribution: 1-decile 
increase in child’s rank at 4 years related to an increase of 
2.28 mg/dL (95% CI: 0.13, 4.43) in the 0.6-TG quantile at 
8 years compared to an increase of 5.82 mg/dL (95% CI: 
1.00, 10.65) in the 0.9-TG quantile at 8 years (Additional 

file 2). In the complete model (Fig. 3), 1-decile increase at 
4 years has an increase effect of 1.77 mg/dL (95% CI: − 0.68, 
4.23) in the 0.6 quantile compared to a 2.47-mg/dL (95% 
CI: − 0.88, 5.83) increase effect in the 0.75 quantile (Addi-
tional file 3).

High‑density lipoprotein cholesterol

The association between HDL-c rank at 4 years and HDL-c 
distribution at 8 years was positive across all quantiles 
(Fig. 2). A gradual increase was observed in the upper part 
of the distribution with an increase of 2.68 mg/dL (95% CI: 
1.75, 3.62) for the 0.6 HDL-c quantile at 8 years and of 
2.93 mg/dL (95% CI: 1.98, 3.87) for the 0.9 HDL-c quantile 
at 8 years (Additional file 2). Associations in the complete 
model (Fig. 3) were lower than in the individual model but 
the overall trends were similar.

Table 2  Cardiovascular-
related measures of the study 
population, before multiple 
imputation

a BMI was categorized according to IOTF criteria
b Categorical blood pressure was categorized using age-, sex-, and height-specific thresholds provided by 
the IDEFICS study. Children were classified in the monitoring or the intervention level if they had SBP or 
DBP above the age-, sex-, and height-specific corresponding threshold

Measures 4 years (n = 303) 8 years (n = 292)

Weight (kg) 18.0 [16.7, 20.0] 29.6 [26.2, 34.3]
Height (cm) 106.0 [103.0, 109.0] 131.0 [127.0, 135.0]
BMI (kg/m2) 16.0 [15.3, 17.2] 17.3 [15.8, 19.4]
Categorical  BMIa

  Normal 236 (77.9%) 196 (67.1%)
  Overweight 41 (13.5%) 68 (23.3%)
  Obese 26 (8.58%) 28 (9.59%)

Waist circumference (cm) 53.5 [50.5, 56.0] 63.5 [58.9, 69.0]
Waist circumference/Height ratio 0.50 [0.48, 0.53] 0.48 [0.46, 0.52]
Triponderal index (kg/m3) 15.2 [14.4, 16.3] 13.3 [12.1, 14.5]
Systolic blood pressure (mmHg) 99.0 [90.0, 105.0] 107.0 [100.0, 114.0]
Diastolic blood pressure (mmHg) 60.0 [54.0, 66.0] 67.0 [60.8, 72.0]
Categorical blood  pressureb

  Normal level 218 (72.7%) 104 (63.9%)
  Monitoring level 35 (11.7%) 64 (22.2%)
  Intervention level 47 (15.7%) 40 (13.9%)

Mean arterial pressure (mmHg) 73.0 [66.7, 77.7] 80.0 [74.2, 84.7]
Total cholesterol (mg/dL) 164.0 [147.0, 178.0] 165.0 [150.0, 183.0]
High-density lipoprotein cholesterol (mg/dL) 57.0 [47.5, 63.0] 68.0 [59.8, 80.0]
Low-density lipoprotein cholesterol (mg/dL) 92.0 [74.0, 106.0] 81.5 [65.0, 98.0]
Triglycerides (mg/dL) 71.0 [55.0, 94.0] 64.0 [47.2, 87.8]
Atherogenic coefficient 1.92 [1.50, 2.46] 1.39 [1.02, 1.78]
Glucose (mg/dL) 86.0 [81.8, 91.0] 86.0 [82.0, 90.0]
Insulin (µU/mL) 5.80 [3.10, 10.60] 7.75 [5.10, 13.6]
HOMA-IR 1.17 [0.64, 2.37] 1.69 [1.05, 2.88]
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Atherogenic coefficient

The association between the AC rank at 4 years and AC dis-
tribution at 8 years also was positive (Fig. 2). The size of 
increase was greater at the highest part of the AC distribution 
(an increase of 0.11; 95% CI: 0.09, 0.14) in the 0.6 quantile 
vs. an effect of 0.15 (95% CI: 0.09, 0.21) in the 0.9 quantile 
(Additional file 2). Results were similar in the complete model 
(Fig. 3; Additional file 3).

Waist circumference to height ratio

A positive association was observed between WC/Height 
rank at 4 years and WC/Height distribution at 8 years 
(Fig. 2). The crude model shows a positive trend in the 
effect size as the quantile increases, evidenced by the posi-
tive slope of the plot in Fig. 2 (effect of 0.010 (95% CI: 
0.006, 0.013) on the 0.6 WC/Height quantile at 8 years 
vs. an effect of 0.014 (95% CI: 0.010, 0.018) on the 0.9 

WC/Height quantile at 8 years; Additional file 2). In the 
adjusted model, the effect sizes were smaller and generally 
constant in all quantiles (increase of 0.007 (95% CI: 0.005, 
0.010) in the 0.6 WC/Height quantile vs. an increase of 
0.008 (95% CI: 0.004, 0.012) in the 0.9 WC/Height quan-
tile at 8 years; Additional file 2). This difference in the 
trend of the crude and adjusted model is mainly due to the 
adjustment for maternal BMI and educational level. The 
complete model (Fig. 3) produced similar results.

HOMA‑IR

No clear association was found between HOMA-IR rank 
at 4 years and HOMA-IR distribution at 8 years (Fig. 2) 
(effect size of 0.037 (95% CI: − 0.058, 0.131) in the 0.6 
HOMA-IR quantile vs. 0.067 (95% CI: − 0.312, 0.445) in 
the 0.9 HOMA-IR quantile at 8 years; Additional file 2). 
This also was seen in the complete model (Fig. 3).

Fig. 2  Quantile regression mod-
els with cardiovascular-related 
measure at 8 years as dependent 
variable and the rank variable 
of the corresponding cardio-
vascular-related measure at 4 
years as the independent vari-
able, for the quantiles between 
0.1 to 0.9, with increments of 
0.05, adjusted for maternal age 
at delivery, maternal level of 
education, maternal social class, 
maternal smoking during preg-
nancy, maternal pre-pregnancy 
body mass index, paternal body 
mass index, parental cardio-
vascular antecedents, child sex, 
child mean daily energy intake 
at 4 and 8 years, child weekly 
out-of-school physical activity 
time at 4 and 8 years, week of 
gestation at delivery, weeks 
of predominant breastfeeding, 
and child height at 4 and 8 
years. Coefficient estimated are 
calculated with the independent 
variables in terms of percentiles 
and they represent the effect 
on the dependent variable for 
each 1-decile increase in the 
independent variable. They are 
expressed in terms of number 
of standard deviations of the 
dependent variable to homog-
enize the Y-axis scales
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Mean arterial pressure

The association of MAP rank at 4 years on MAP distribu-
tion at 8 years was positive, but only statistically significant 
between 0.3 and 0.6 quantiles (Fig. 2). Similar results were 
observed in the complete model (Fig. 3).

Discussion

This study found a positive association between the relative 
position of children at 4 years in the HDL-c, AC, and WC/
Height distributions and all the quantiles of the same vari-
able at 8 years. For TG distribution, it was found a positive 
association between the relative position at 4 years and the 
quantiles above 0.5 at 8 years, but which is not observed in 
the model adjusted for the rest of the cardiovascular-related 
measures. The stronger associations in the upper parts of 

the distribution in terms of standard deviations of each vari-
able were found for HDL-c and AC outcomes. For AC, the 
more extreme the children’s values at 8 years, the greater 
the effect of the association. This trend is also observed for 
TG, although the effect is not statistically significant. No 
conclusive association was found for either HOMA-IR or 
MAP outcomes.

Our findings for HDL-c and AC suggest serum lipid track 
among children between the ages of 4 and 8 years. These 
results are in line with those found in children from two dif-
ferent Japan rural areas: one area reported tracking of serum 
lipids (specifically in T-c, HDL-c, and AC) between 8 and 
12 years [37] and the other reported strong T-c tracking in 
children aged 6–7 after 9 years of follow-up [38]. Previ-
ously, The Muscatine Study observed T-c and TG tracking 
in children between 5 and 12 years after follow-ups of 2, 4, 
and 6 years [39]. The Bogalusa Heart Study showed track-
ing of serum lipids in 5-year-old children after a follow-
up of 9 years [40]. These studies categorized serum lipids 

Fig. 3  Quantile regression models with each cardiovascular-related 
measure at 8 years as dependent variable and the rank of all the car-
diovascular-related measures at 4 years as the independent variables, 
for the quantiles 0.60 and 0.75, adjusted for maternal age at delivery, 
maternal level of education, maternal social class, maternal smoking 
during pregnancy, maternal prepregnancy body mass index, pater-
nal body mass index, parental cardiovascular antecedents, child sex, 
child mean daily energy intake at 4 and 8 years, child weekly out-of-

school physical activity time at 4 and 8 years, week of gestation at 
delivery, weeks of predominant breastfeeding, and child height at 4 
and 8 years. Coefficient estimated are calculated with the independent 
variables in terms of percentiles and they represent the effect on the 
dependent variable for each 1-decile increase in the independent vari-
able. They are expressed in terms of number of standard deviations of 
the dependent variable to homogenize the X-axis scales
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and evaluated which percentage of children remained in the 
highest category after the follow-up, which does not allow 
to observe differences in tracking within the highest-risk 
category itself. Using our quantile regression approach, we 
were able to observe that for AC the magnitude of track-
ing was stronger as the relative position at 8 years of age 
increases, showing the possible difficulty that children with 
abnormal values at 4 might have in normalizing them in 
future years. This is remarkable because AC (the ratio of 
non-HDL-c to HDL [25]) is clearly related to higher risk of 
CVDs in adulthood [41, 42]. Whereas higher HDL-c had 
similar tracking levels in all quantiles and higher HDL-c has 
unclear association with CVD risk [43].

Tracking of measures related to obesity have been widely 
studied in childhood and adolescence. The majority of stud-
ies use BMI as a marker of obesity [37, 44–48]. Increasingly 
studies are focusing on other anthropometric measures such 
as WC, WC/Height ratio, or skinfolds [49–51] and report 
the presence of tracking, consistent with our findings, in 
a variety range of ages but mostly between childhood and 
adolescence. Some of these studies find tracking among 
the same age ranges that were considered in this study [46, 
48, 51], although the evaluation approach makes difficult 
to compare effect magnitudes. Hayes et al. [46] evaluated 
tracking of BMI in seven follow-up visits between 2–3 and 
16–17 years and reported that the tracking magnitude was 
lower between 2 and 7 years than at later ages. A meta-
regression analysis reported stronger BMI tracking after the 
age of 7 [52]. This suggests steeper tracking of central obe-
sity than observed in our study for children of older ages. 
In the crude model, we observed higher tracking in children 
with a high-risk position in the distribution at 8 years. But 
when we adjusted for maternal pre-pregnancy BMI, and 
maternal educational level, the association became very sim-
ilar across all the quantiles of the distribution: higher mater-
nal BMI is associated with a tracking increasing effect in the 
highest quantiles, and higher maternal educational level is 
associated with a decreasing effect in the highest quantiles. 
Other studies reported similar findings with maternal pre-
pregnancy BMI and measures related with obesity, and with 
blood pressure as well [53]. We only have observed this 
effect in measures related with obesity. Several studies have 
reported the influence of socioeconomical inequalities in 
BMI tracking, using parental educational level [54], parental 
socioeconomic position [46], or a combination of parental 
educational level, household income, and occupation [48]. 
We have observed this effect with maternal educational level 
but not with socioeconomic status.

Neither the MAP nor HOMA-IR showed a relevant 
association between the relative position of children at 
age 4 years and the relative position at age 8 years in the 
upper part of the distribution. As with serum lipids, there 
are few studies that analyzed the tracking of these measures 

in childhood and adolescence, rather than in adulthood. In 
our study, MAP is used as a blood pressure index to try to 
capture the effect of systolic and diastolic pressure using a 
single measurement. However, we also examined SBP and 
DBP separately (data not shown), yielding identical findings 
and conclusions as those obtained using MAP. Existing stud-
ies predominantly employ SBP and DBP and most of them 
report weak or poor blood pressure tracking [37, 39, 55], in 
line with the results we obtained here. One exception is the 
study by Sánchez-Bayle et al. [56] that reported consider-
ably higher level of blood pressure tracking in a school-aged 
population. For measures related to insulin resistance, two 
studies examined tracking between 8 and 21 years [57], and 
between 10 and 17 years [58], with disparate results. Joshi 
et al. [57] reported moderate tracking of the HOMA-IR but 
no tracking of fasting insulin or glucose measures, while 
Wang et al. [58] reported no tracking in the HOMA-IR but 
tracking of fasting glucose. It should be pointed that in lon-
gitudinal studies a change in the behavior of the subjects can 
arise based on the knowledge of the results and the recom-
mendations given in this regard, influenciating the tracking 
effect. Despite the limitation this may imply, these recom-
mendations make it possible to reverse trends that would be 
more difficult in adulthood.

Numerous studies have reported interrelations between 
cardiovascular risk measures including markers of obesity, 
blood pressure, insulin resistance, and lipids, although these 
relations and the pathways explaining them are not clear yet 
[59, 60]. Therefore, in our study, the analyses were repeated 
including the cardiovascular-related measures as independ-
ent variables altogether in our models to observe whether 
any were acting as confounding factors for each other. The 
results of the individual analysis were remained, although 
with a general attenuation of the magnitude of the effects.

To our knowledge, this is among the first studies to 
address the analysis of cardiovascular measure tracking in 
children using quantile regression. Only one prior study 
conducted the analysis of BMI tracking between childhood 
and adulthood using this statistical technique [54]. This 
approach allows the introduction of several adjustment vari-
ables and exploration of the effects of different variables at 
the same time, as well as avoids using thresholds, always 
controversial in pediatric ages. Among other strengths of 
this study is that by using quantile regression and the inde-
pendent variables in terms of their ranges allows to con-
trol for age-dependent variation in the effects observed for 
measures as HDL-c or TG.

This study has also some limitations. The sample size 
is moderate/small, with the consequent loss of power in 
the analysis. This is an exploratory study, in which numer-
ous hypotheses are tested (different quantiles and different 
results), so that multi-testing problems arise, making prob-
lematic to calculate the statistical power of the study. Some 
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of the variables were self-reported by the children’s parents. 
Other variables that have shown to influence the associa-
tions evaluated here have not been included such as children 
diet quality [61], maternal diet quality during pregnancy and 
breastfeeding [62], or pre-eclampsia [63]. It should also be 
noted that blood samples were collected under non-fasting 
conditions. It is unclear to what extent glucose and insulin 
levels might be biased due to prior caloric intake [64]. How-
ever, in non-diabetic subjects, the HOMA-IR would not be 
expected to show large variations. If blood glucose is higher 
due to previous intake, insulin also raises its levels, and 
therefore, the ratio between them will be similar. No blood 
glucose levels suggestive of diabetes have been detected in 
our sample, so we expect the HOMA-IR to be similar to that 
under fasting conditions. Regarding to lipids, the use of non-
fasting samples is already recommended, except in unusual 
cases that do not apply to our sample [65–67]. On the other 
hand, most studies evaluate tracking between longer periods, 
and extreme values of cardiovascular-related measurements 
in childhood have shown to have an age-dependent impact 
on adult cardiovascular health, being predictive of subclini-
cal atherosclerosis from the age of 9 [68]. Yet, it is still 
relevant to know the tracking of these measures throughout 
early childhood and adolescence more as a continuum, as 
long-term effect of childhood exposures on adult health is 
likely cumulative [11].

Conclusions

Our study found tracking between 4 and 8 years of age at the 
highest quantiles of the distribution of cardiovascular-related 
measures established as adult markers of dyslipidemia and 
central obesity (specifically for HDL-c and AC for dyslipi-
demia and WC/Height ratio for central obesity). The results 
indicated that for AC distribution tracking appears to be 
stronger at higher quantiles, suggesting the difficulty of 
normalizing their extreme values. These findings can help 
determine what cardiovascular-related measures could be the 
targets of screening and monitoring in children.

Abbreviations AC: Atherogenic coefficient; BMI: Body mass index; 
CVDs:  Cardiovascular diseases; DBP:  Diastolic blood pressure; 
gBA: General bootstrap algorithm; HDL-c: High-density choles-
terol; HOMA-IR: Homeostatic model assessment of insulin resist-
ance; LDL-c: Low-density cholesterol; MAP: Mean arterial pres-
sure; MAR: Missing at random; MICE: Multivariate imputation by 
chained equations; SBP: Systolic blood pressure; T-c: Total choles-
terol; TG: Triglycerides; WC: Waist circumference; WC/Height: Waist 
circumference to height ratio
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Abstract: Modern science is frequently based on the exploitation of large volumes of information
storage in datasets and involving complex computational architectures. The statistical analyses of
these datasets have to cope with specific challenges and frequently involve making informed but
arbitrary decisions. Epidemiological papers have to be concise and focused on the underlying clinical
or epidemiological results, not reporting the details behind relevant methodological decisions. In this
work, we used an analysis of the cardiovascular-related measures tracked in 4–8-year-old children,
using data from the INMA-Asturias cohort for illustrating how the decision-making process was
performed and its potential impact on the obtained results. We focused on two particular aspects of
the problem: how to deal with missing data and which regression model to use to evaluate tracking
when there are no defined thresholds to categorize variables into risk groups. As a spoiler, we
analyzed the impact on our results of using multiple imputation and the advantage of using quantile
regression models in this context.

Keywords: missing data; quantile regression; tracking; cohort studies; children’s health; cardiovascular risk

MSC: 62P10; 92B15; 92D30

1. Introduction

Modern science is frequently based on the exploitation of large volumes of information
stored in datasets and involving complex computational architectures [1]. Sometimes,
these datasets compromise a huge number of participants. That is the case for those
studies based on large registries, which frequently include hundreds of thousands or even
millions of patients [2]. In this situation, despite some aspects of the statistical analyses
becoming unuseful (i.e., p values), the main challenge is the computational capacity for
handling the number of subjects. The so-called “omic sciences”, including genomics,
transcriptomics, proteomics, and metabolomics, among other technologies, represent a
clear example of research requiring a high computational capacity but usually involving
few subjects. In these studies, the researchers collected a number of variables and had to
cope with several specific methodological challenges. Among those, we have examples
such as preserving the security of the data, the difficulty of cleaning and checking their
consistency, or the presence of missing values. The loss of subjects between follow-ups in
the case of longitudinal studies, the data harmonization when the information comes from
different records or systems, and apparently trivial aspects such as sometimes being able

Mathematics 2023, 11, 4070. https://doi.org/10.3390/math11194070 https://www.mdpi.com/journal/mathematics
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to know the information contained in each variable are just a few examples of the issues
that researchers have to deal with. Schmitt et al. [3] presented an interesting document in
which the authors described the cohort, quality assurance procedures, and results of the
Successful Aging after Elective Surgery (SAGES) study, highlighting the relevance of the
processes related to data collection for having a successful project.

We consider here studies in which a relevant amount of information is systematically
collected with the goal of studying the evolution of the enrolled participants in an undefined
future, trying to delineate the associations between exposure to potential risk factors and
posterior health status. Cohort designs, such as the landmark Framingham study [4],
which was originally aimed to identify the determinants of cardiovascular disease (CVD)
and whose collected data have been used with different goals; the European Prospective
Intake and Cancer (EPIC) study [5], designed to investigate the relationships between
nutritional, lifestyle, and environmental factors and the incidence of different types of
cancer and other chronic diseases; or the Environmental Influences On Child Health
Outcomes (ECHO) program [6], a network of pediatric cohorts that aims to understand the
effects of a broad range of early environmental influences on child health and development,
are just few examples. Particularly, there are a number of them that enrolled pregnant
women and had active follow-ups with themselves and their children to determine whether
pre-, peri-, or post-natal exposures may influence childhood or even adulthood health
outcomes. Examples of these so-called birth cohorts are the Infancia y Medio Ambiente
(INMA) (Environment and Childhood) project [7], a network concerned with the relation
of environmental exposures with growth, health, and development from early fetal life
until puberty, or the New Hampshire Birth Cohort (NHBC) study [8], which investigated
the effect of several factors such as environment contaminants on the health outcomes of
pregnant women and their children.

Usually, related subprojects involve part of the subjects and a limited number of
variables. They suffer from the same problems. The use of multivariate statistical techniques
implies that even if a subject is only missing one of the required variables, then it should
be completely excluded from the analysis. Additionally, in longitudinal studies in which
large numbers of variables are collected at different follow-ups, subjects having missing
information at one follow-up can differ from those having missing information in another.
This can result in a drastic reduction in the available sample size and, perhaps worse,
the potential introduction of systematic biases. Aside from that, the study of risk factors
in health populations, and particularly in children, copes with unclear or controversial
threshold definitions. As a result, children thresholds are chosen as a specific percentile of
the variable of interest [9], usually assuming that it is normally distributed with parameters
estimated in healthy children; that is, there is not enough knowledge about the targets and
clinically meaningful thresholds.

In this work, we aim to provide some statistical insight for longitudinal cohort studies
involving controversial threshold definitions. Despite some of the considered techniques
being new, we put the focus on their utilization in this particular setting. Dealing with
missing data or selecting the adequate regression methodology implies making a number
of decisions which could impact the final conclusions. Published documents are over-
whelmingly focused on describing the obtained results and, in general, do not present in
detail each decision made. Here, we pay more attention to those methodological details, an-
alyzing the impact of the made decisions on the final results and discussing their suitability
in relation to the possible alternatives.

2. Materials and Methods
2.1. The INMA-Asturias Cohort

In 2004, the INMA-Asturias cohort [10] was established as a prospective, population-
based cohort study. As part of the INMA project [7], its aim is to examine the potential
impact of environmental exposures on maternal and child health outcomes, with special
emphasis on exposure to environmental pollutants and genetic and nutritional factors.
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The cohort is located in a 483 km2 area in northern Spain, with San Agustín University
Hospital (Avilés, Asturias) serving as the reference hospital. The economy of this region
historically relied on industries characterized by important environmental pollution. Origi-
nally, the area included a population of 165,201 inhabitants (reduced to 144,875 in 2021),
and the reference hospital is a public health center with 436 beds, providing primary care
as well as central, medical, and surgical services to this population.

From May 2004 to June 2007, pregnant women attending their first prenatal visits at
the obstetrics service of San Agustín University Hospital or the Las Vegas health center
(Corvera, Avilés) were consecutively selected if they met the following criteria: mother’s
age≥ 16 years, singleton pregnancy, scheduled delivery at San Agustín University Hospital,
no assisted conception, and no communication handicap. Extensive data were collected
by trained staff through questionnaires, medical records, biological and environmental
samples, and anthropometric measures. Follow-up visits took place at the first and third
trimesters of pregnancy, at birth, and when the children’s ages were 18 months and 4, 8,
and 12 years.

The availability of blood samples enabled the measurement of markers of adult
cardiovascular risk factors, including serum lipid, glucose, insulin, blood pressure, and an-
thropometric measures. These markers have expanded the scope of research beyond the
initial objectives, allowing study of the tracking of cardiovascular-related measures. Here,
we use the work by Fernández-Iglesias et al. [11] to illustrate the motivation behind specific
methodological decisions and their potential impact on the results obtained.

2.2. Tracking of Cardiovascular-Related Measures

In epidemiology, predictability or maintenance of the range of a biological variable (or
specifically of risk factors for chronic diseases) within a specific population is referred to as
tracking. Particularly in children, early studies of growth established that some measures
are relatively stable over time periods [12]. This phenomenon has interested both biologists
and statisticians since the early 1980s, although there is no widely accepted definition of
the term. Attempts to put the underlying concept into practice have resulted in the two
main conceptions shown in Box 1.

Box 1. Tracking definitions.

• The ability to predict subsequent observations (t + 1) from earlier observations (1, . . . , t) [13].
If, in a cohort of n children, we measured their heights yi,t, with 1 ≤ i ≤ n and 1 ≤ t ≤ k, then
tracking is the ability to predict yi,t+1 from yi,1, · · · , yi,t.

• The maintenance of a relative position within a distribution of values in the observed popula-
tion through time [14,15]. Therefore, in the children’s height example, the question is whether
children at higher percentiles at time t will also be at higher percentiles at time t + 1.

Here, we focus on this second conception in an attempt to explore the relationship
between longitudinal measurements.

Considering that atherosclerosis is a progressive accumulation process that can begin
in childhood and youth [16,17], in Fernández-Iglesias et al. [11], we studied the track-
ing between 4 and 8 years of the following cardiovascular-related variables that reflect
well-established CVD risk factors in adulthood: waist-to-height ratio (WC/Height ratio)
for central obesity, mean arterial pressure (MAP) for hypertension, triglycerides (TG),
high-density lipoprotein cholesterol (HDL-c), and the atherogenic coefficient (AC) for dys-
lipidemia, and the homeostatic model assessment of insulin resistance (HOMA-IR) for
insulin resistance.

Operationally, tracking is challenging [18], particularly when examining risk factors.
The most commonly used statistical techniques in the literature include logistic regression,
correlation coefficients, or linear regression models. Logistic regression models require
the use of thresholds to categorize risk factors that are inherently continuous, typically
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using specific quantiles. This is an extremely common approach in epidemiology research,
but it has major limitations. It may lead to a loss of statistical power, to less precise es-
timates, or to difficulty in comparing results between studies when the thresholds are
sample-dependent [19–21]. Choosing them arbitrarily can be a pitfall, especially when
studying adult risk factors in generally healthy children. In such cases, it is advisable
to use a methodology that allows for the use of continuous measures. However, com-
monly used continuous approaches, such as correlation coefficients or linear regression
models [22–24], also have important limitations. These methods primarily concentrate
on assessing the impact within the central part of the variable’s distribution. However,
in the context of variables denoting risk factors, a shift in the variable’s mean often does
not imply a meaningful clinical or health-related impact. Instead, it is the consequences
observed at the extreme part of the distribution that hold a relevant significance. Conse-
quently, the insights yielded by these techniques may not contribute substantial valuable
knowledge. To overcome this challenge, in Section 2.4, we propose the use of quantile
regression models to overcome two challenges: (1) to analyze the tracking of risk factors
while avoiding the use of thresholds and (2) to maintain the focus on the extreme parts of
the distribution.

2.3. Missing Data: Multivariate Imputation

Missing data is a recurrent problem in statistics which is especially impactful on
longitudinal studies. Little and Rubin [25] proposed a missing data classification based on
the underlying loss mechanism (Box 2).

Box 2. Types of missing data according to missingness mechanisms.

Let {X, Y} be a k-dimensional random matrix. For the sake of simplicity, we will assume univariate
missing data; that is, Y is the only variable containing missing values. Let R be the response indicator
vector; that is, R = 1 if Y is observed, and we have R = 0 otherwise. Then, the following apply:

• The missing completely at random (MCAR) model satisfies

P{R|(Y, X)} = P{R},

That is, the probability of being missing does not depend either on Y or X. This means that
there are no systematic differences between the missing and observed values. For example,
serum lipid measurements may be missing because some samples have been lost in transit to
the laboratory.

• The missing at random (MAR) model satisfies

P{R|(Y, X)} = P{R|X},

That is, the probability of being missing depends on the observed data.
For example, serum lipid measures may be more likely to be missing in
young people, as they tend to be less concerned and do not attend visits for
blood collection.

• The missing not at random (MNAR) model satisfies

P{R|(Y, X)} = P{R|Y},

That is, the probability of being missing depends on the missing values themselves or on
unobserved information. For example, in a study to assess the effect of a hypertensive
treatment, hypertensive subjects may present greater collaboration that results in a lower
number of missingness.

The statistical analysis approach depends on each of these situations. Under the MCAR
model, the observed data can be considered a random sample from the original target
sample. In such cases, a complete-case analysis does not introduce bias in the estimated
parameters but implies a sample size reduction with the associated loss of power. When
missing data are not MCAR, as observed, the data do not represent the full population, and
the complete-case approach may provide biased results. Multiple imputation (MI) methods
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can produce unbiased estimations and preserve the original sample size under the MAR
situation [26]. However, under the MNAR model, as long as the missingness depends on
unobserved information, MI could fail [27]. Strategies to handle the MNAR model include
collecting more information about the causes for the missingness or performing sensitivity
analyses to evaluate the results under various scenarios [26].

The MI method, proposed in Rubin [28], does not focus on imputing the “closest”
possible values to the actual missing values but rather making valid and efficient inferences
about the parameters of interest. The key concept of MI is to use the distribution of the ob-
served data to estimate a set of plausible values for the missing ones. Random components
are incorporated into these estimated values to reflect their uncertainty. Multiple datasets
are created and then analyzed individually. Finally, the individual estimations are combined
to obtain the overall estimates, their standard errors, and adequate confidence intervals.

MI procedures consider the MAR model and the relationship

Y = g(X) + ε, (1)

where g(·) and ε are the link function and random white noise, respectively. Box 3 summa-
rizes the MI algorithm.

Box 3. Steps of the MI method.

Let {Xn, Yn} be a random sample drawn from {X, Y}, and let β be the target parameter. We assume
that the values yi1 , · · · , yim (1 ≤ i ≤ n, m < n) are missing.

• Step 1. From the non-missing values, we compute the function ĝ(·) which estimates g(·)
(Equation (1)). For each missing value, yij (1 ≤ i ≤ n, 1 ≤ j ≤ m) generates a pseudo-value
ŷij = ĝ(X ij ,n) + εij , where εij is randomly generated. With this dataset, we estimate the target
parameter β̂ and its variance, V̂2.

• Step 2. We repeat Step 1 B times (where B is a large enough number) and obtain a vector of
estimations {β̂1, · · · , β̂B} and another with their respective variabilities {V̂2

1 , · · · , V̂2
B}. Notice

that in each repetition, the error (ε) is randomly generated. Therefore, each repetition provides
a different dataset.

• Step 3. We use Rubin’s rules to combine the vectors obtained in Step 2 into a single estimation
with its variability. This estimation reflects both the uncertainty due to the sample variation

and the uncertainty due to the missing data. The m β̂k estimates and ŜEk standard errors are
combined using Rubin’s rules to produce an overall estimate and standard error that reflect
both the uncertainty due to the sample variation and the uncertainty due to the missing data.

Different algorithms have been proposed for estimating Equation (1) [29]. For instance,
if we consider the linear model

Y = β · X + ε, (2)

then we have the imputation process

ŷij = β̂ · Xij + εij , (1 ≤ i ≤ n, 1 ≤ j ≤ m)

where εij is randomly generated.
In many MI algorithms, a Bayesian perspective is often adopted, treating the parame-

ters associated with the link function g(·) as random variables rather than fixed constants.
This approach introduces uncertainty about missing values not only by incorporating
random noise through the error term εij , as noted in Step 1 of Box 3, but also by introducing
uncertainty into the link function parameters, whose state of knowledge is represented
through a posterior distribution [26]. For instance, if we consider the same linear model
(Equation (2)), then we have the imputation process

ŷij = β̂ · Xij + εij , (1 ≤ i ≤ n, 1 ≤ j ≤ m)
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where εij is randomly generated and β̂ is sampled from its posterior distribution based on
the available data.

Rubin’s rules [28] combine the results of the B analysis performed to obtain

¯̂β =
1
B

B

∑
k=1

β̂k.

The variance of ¯̂β, denoted as V2
T , is calculated by

V2
T = V2

W + V2
B ·
(

1 +
1
B

)
, (3)

where V2
W is the within-imputation variance and represents the sample variation and V2

B is
the between-imputations variance and represents the extra variance due to the uncertainty
around the imputed data; that is, we have

V2
W =

1
B

B

∑
k=1

V̂2
k , and

V2
B =

1
B− 1

B

∑
k=1

(β̂k − ¯̂β)2

Inflating the between-imputation variance in Equation (3) by the factor 1/B reflects
the extra variability as a consequence of imputing the missing data using a finite number
of imputations instead of an infinite number. For constructing 100× (1− α)% confidence
intervals, we assume ¯̂β is normally distributed and use the general formula

¯̂β± zα/2

√
V2

T ,

where zα/2 is the critical value of the standard normal distribution.
Different indexes have been proposed for measuring the severity of the missing data

problem. We consider here the so-called fraction of missing information (FMI), which
estimates the proportion of the total variance due to the imputations and is defined by

FMI =
V2

B(1 + 1/B)
V2

T
.

The FMI ranges between 0 and 1. It is equal to zero only if the missing data do
not add extra variation to the sample variance, an exceptional situation which implies
perfect imputation models. And it is equal to one when the whole variation is caused
by the missing data. In practice, this is equally unlikely since it means that there is no
variation in the observed information [30]. The higher the value of this indicator, the greater
the influence of the imputation model on the final results. Another index is the relative
efficiency (RE), which represents the relative efficiency of using B rather than an infinite
number of imputations:

RE =
1

1 + FMI/B
. (4)

It ranges from 0.5 to 1, where the higher the value, the less efficiency would be gained
by increasing the number of imputed datasets.

The INMA-Asturias Cohort Example

In our study, we had a total of 416 children, but just 154 (37.02%) had all the required
information. The missing percentage for cardiovascular-related variables oscillated between
6.97% and 44.47%. In the models, measures at age 4 play the role of the independent
variable, and the same measures at age 8 play the role of the dependent variable. We
excluded children who lacked data at the 4 and 8 year time points simultaneously. The final
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considered sample (307 children) showed missing percentages which ranged from 2.3% to
25.1% (see Table S1).

The first decision related to missing data is the plausibility of the MAR assumption.
We can reject data to be MCAR using the Little [31] test or by exploring if there are variables
associated with missingness. But there is no way to distinguish whether the data are MAR
or MNAR without additional information. In general, the MAR assumption will be more
reasonable the more variables are included in the imputation model that are related to the
missingness of the data on the variable of interest or to the variable of interest itself. In our
case example, assuming the data were MAR, we had extra related auxiliary variables that
could be incorporated into the imputation model, suggesting that the imputation methods
could perform considerably well.

The second point is to specify the imputation model. To avoid unnecessary complexity,
we have represented in this section the multiple imputation theory for univariate missing
data. In our case, missing data occurred in more than one variable, and thus we applied a
multiple imputation strategy for imputing multivariate missing data. In particular, we ap-
plied the multivariate imputation by chained equations (MICE) method [32] using the predictive
mean matching algorithm. A detailed description and definition of this algorithm, which is
based on Bayesian imputations in the MICE package, can be found in the work of Stef van
Buuren [33]. Initially, we specified the imputation model with five (=B) imputed datasets
[32,34–36]. Regarding to imputation model diagnosis, we assessed the maintenance of the
observed relationship between the dependent and independent variables in the complete
datasets. Figure 1, for example, shows that the distributions of observed and imputed data
for TG were quite similar, as expected under the MAR approach.

The next decision was to determine the final B value. As the rate of missing information
was below 0.5, we applied the criteria suggested by White et al. [36], Graham et al. [37],
and Bodner [38]. We started with B equal to the maximum percentage of missing data
observed (B = 26). Then, we applied the corresponding analysis to each generated dataset
and combined the results. The FMI was calculated and verified whether 100 · FMI ≤ B. B
should be adjusted to the minimum number that satisfies this criterion otherwise. Of the 81
quantile regression models performed, the FMI median was 0.25 (interquartile range (IR):
0.12; 0.29), but the maximum was 0.46. As the computation time and storage capacity were
not a concern, we finally selected B = 50.

After that, MI was repeated with the new number of imputations (B = 50), the models
were estimated for each of the 50 datasets created, and the overall estimates and variances
were calculated using Rubin’s rules. The influence that the imputation had on these
estimates was checked. Table 1 summarizes the corresponding indicators for each of the
cardiovascular-related measures. The proportion of the total variance due to the imputation
procedure was around 28% in the models involving measures with higher percentages of
missing data and around 10% in those measures with low percentages. Note that by using
a number of imputations B satisfying 100 · FMI ≤ B and taking into account Equation (4),
it is expected to obtain REs higher than 99%, as we observed in Table 1. Therefore, minimal
variation would occur just by increasing the number of imputations.
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Figure 1. Scatter plots for each of the initial five imputed datasets of TG measure at 4 vs. TG measure
at 8 years. TG = triglycerides; Imp = imputation.

Table 1. Median, first, and third quartiles for the indicators of the impact of the missing data,
expressed as percentages.

Measure FMI RE

TG 30.2 (28.7; 32.6) 99.4 (99.4; 99.4)

HDL-c 25.9 (23.1; 28.9) 99.5 (99.4; 99.5)

AC 28.6 (24.3; 29.7) 99.4 (99.4; 99.5)

WC/Height ratio 11.6 (9.6; 14.6) 99.8 (99.7; 99.8)

MAP 8.9 (7.4; 10.9) 99.8 (99.8; 99.9)

HOMA-IR 29.2 (27.6; 32.5) 99.4 (99.4; 99.5)
FMI = fraction of missing information; RE = relative efficiency; TG = triglycerides; HDL-c = high-density
lipoprotein cholesterol; AC = atherogenic coefficient; WC/Height ratio = waist-to-height ratio; MAP = mean
arterial pressure; HOMA-IR = homeostatic model assesment of insulin resistance.

2.4. Quantile Regression

Quantile regression models (QRMs) were introduced in 1978 by Koenker and Bas-
sett [39]. They offer a natural extension of the classical linear regression models in which,
instead of specifying the change in the conditional mean of the dependent variable’s distri-
bution associated with a change in the independent variables, the change in any conditional
quantile of the distribution is specified. In longitudinal studies, QRMs have been applied in
a wide variety of problems. For instance, Lipsitz et al. [40] used this technique for analyzing
the changes in the distribution of CD4 cell counts in patients with human immunodeficiency
virus. They are also commonly used for identifying risk factors in particular populations.
Fenske et al. [41] applied a QRM for detecting obesity risk factors in childhood.
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Mathematically, given the dependent variable Y, the k-dimensional independent
variable X, and the τth quantile with τ ∈ (0, 1), the QRM can be specified as follows:

Y = βτ · X + ετ ,

where the residuals verify that P(ετ ≤ 0|X) = τ; that is, its conditional τth quantile, qτ(·|·)
is zero. Therefore, we have

qτ(Y|X) = βτ · X + qτ(ετ |X) = βτ · X.

Let {Xn, Yn} be a random sample from {X, Y} (sample size n). The estimator β̂τ is
obtained by minimizing a sum of weighted absolute residuals that gives asymmetric penal-
ties depending on whether the values of the dependent variable are being overestimated
or underestimated:

τ · ∑
ετi≥0

|ετi |+ (1− τ) · ∑
ετi<0

|ετi | (1 ≤ i ≤ n). (5)

This means that the proportion of data points below the τth estimating regression line
ŷi = β̂τ · Xi (1 ≤ i ≤ n) is τ and the proportion lying above it is 1− τ. Equation (5) can be
minimized using different algorithms based on linear programming [42].

The interpretation of the coefficient estimates is analogous to those in classical linear
regression, except that instead of referring to the effect on the conditional mean of the
dependent variable, we refer to the conditional quantile. Each β̂τ can be interpreted as the
increment of the τth quantile of the dependent variable per unit of change in the value
of the corresponding independent variable, while the rest of the independent variables
are fixed.

There are several procedures for computing both the standard errors and confidence
intervals for the quantile regression coefficients. Under certain conditions, the usual
coefficient estimators are asymptotically normally distributed [42]. However, asymptotic
standard errors are complex, and resampling approaches are frequently employed [43].

QRMs overcome some limitations of classical linear regression tools, even if the
researcher is only interested in a central position and its behavior. Box 4 provides some
guidance on the situations for which a QRM may be appropriate. The last two points are
the keys to its usefulness in evaluating tracking. But it is worth noting that the last point
also makes these models highly suitable for assessing whether the effects of an exposure
are the same in all quantiles. And the third point also solves the incredibly common cases
where exposures follow skewed distributions.

Box 4. Situations in which quantile regression is useful.

1. In the presence of outliers. It is able to cope better with outliers, since it is based on the
estimation of a position measure such as the quantile. Outliers only have an influence on the
estimation of the quantile close to them.

2. In case of heteroscedasticity. If the variance depends on the independent variables, quantile
regression can capture this effect.

3. When distributional assumptions are not satisfied. QRMs do not make assumptions about
the distribution of errors, and thus they can be used when the conditions for applying other
regression models are not satisfied.

4. When the interest is at the extremes of the distribution. Sometimes the real interest of the
research question lies in what happens in the tails of the distribution. The QRM allows one to
answer this question by estimating the extreme quantiles.

5. When there is no known threshold defining the at-risk population. As the model can be
estimated for any quantile, it becomes possible to evaluate the impact of the independent
variables on a specific section of the distribution without having to select a particular point.
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The INMA-Asturias Cohort Example

Taking the TG measure as an example, we estimated the following QRMs for τ values
ranging from 0.1 to 0.9 in 0.05 intervals:

qτ(TG8|rank(TG4)) = β̂τ0 + β̂τ1 · rank(TG4),

where TG8 represents the TG measure at 8 years and rank(TG4) is the rank transformation
of the TG measure at 4 years. As previously mentioned, the tracking conception is based on
the relative positions of subjects within the distribution of the variable of interest. In order
to incorporate this relative position within the independent variable, a rank transformation
was applied. Here, we use the crude analysis as an example for simplicity, but as in any
regression model, adjustment variables can be included.

Our aim is studying the impact on the upper tail of the TG at the 8 year distribution,
(i.e., to estimate β̂τ1 for high τ values). However, estimating the effect for quantiles across
the whole distribution and plotting β̂τ1 estimates against τ serves as a useful exploratory
tool to assess whether the size and nature of the effect remains constant. Figure 2 shows
that the association differed for high-risk subjects (those at the highest quantiles of TG at
the 8 year distribution) compared with average subjects (those around the 0.5 quantile),
reflecting an increasing trend in the the association’s effect. This observation would not
have been possible using classical linear regression models.

−0
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Figure 2. Quantile regression parameters (β̂τ) per quantile (τ) for the effect of the rank transformation
of TG at 4 on TG at 8. The red dots and lines represent point estimate of the parameters, while the
grey bounds represent the confidence interval estimate. TG = triglycerides.

3. Results

The final results of the analysis may depend on the methodological decisions made.
Regarding the missing data, the possible alternative here would be to conduct a complete
case analysis. We compared the results between these two approaches and did not ob-
serve any systematic differences. However, contrary to what might be expected, not all
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confidence intervals were narrower when applying MI in contrast to the complete case
analysis. Figure 3 shows an example of the variances in the parameter estimates for several
TG at 8 years quantiles by analysis type, and we can observe that the estimates were not
more accurate for all parameters when using MI (τ = 0.3 and τ = 0.5). We observed this
phenomenon in all the models involving measures with a high percentage of missing data
(TG, HDL-c, AC, and HOMA-IR) but not in models involving the WC/Height ratio and
MAP, which had less than 10% missing data.

Regarding the statistical model, a binary response model such as logistic regression
could have been considered as an alternative to quantile regression. With this approach, we
would still focus on the upper tail of the distribution and explore the probability of being in
a high-risk TG category at 8 years, depending on the TG values at 4 years. For that purpose,
we considered the 0.9 quantile, which is both age- and sex-specific, to calculate the binary
variable that divided TG into the normal category (TG < 0.9 quantile) and the risk category
(TG ≥ 0.9 quantile). In our sample, without imputation, 72.3% of the 4-year-old children
had normal TG levels, 8.2% had risk levels, and 19.5% had missing data. At 8 years, 71.6%
of the children had normal levels, 8.5% had risk levels, and 19.9% had missing data.

0
0.

01
15

0.
02

3 τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7

Complete−case variance MI between variance MI within variance

Figure 3. Variance of parameter estimates in quantile regression models for TG at 8 years and TG
at 4 years by type of analysis: complete case or MI analysis. TG = triglycerides; MI = multiple
imputation; τ = quantile.

Using a QRM, we observed a positive association between the rank of TG at 4 years
and the 0.9 quantile of TG at 8 years (β̂0.9: 0.629, 95%CI: 0.129–1.129). The logistic regression
model showed a positive association between the rank of TG at 4 years and the odds of being
in the risk category of TG at 8 years (odds ratio (OR): 1.009, 95%CI: 0.995–1.023). While the
observed association and overall conclusion were the same, the estimated parameters were
not directly comparable. In the QRM, β̂0.9 represents an additive effect on the dependent
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variable, whereas the OR in the logistic regression model represents a multiplicative effect.
More specifically, for the same one-unit increase in the rank of TG at 4 years, in the first case,
we estimated a 0.629 mg/dL increase in the 0.9 TG quantile at 8 years, while in the second
case, we estimated there to be 1.009 times the risk of being in the TG risk category at 8 years.
Moreover, the outcome did not represent the same construct. In the QRM, the outcome was
a specific point of the TG distribution at 8 years, while in logistic regression, it was a section
of the distribution, assuming no variation in the effect within that section. Another option
would be to use the binary TG variable for both 4 and 8 years in the logistic regression.
In this case, we found that children who were in the risk category at 4 years were 3.287 times
(95%CI: 1.173–9.212) more likely to be in the risk category at age 8 than those who were not.
Again, the evidence on the nature of the association between variables was the same, as
high TG values at 4 years were positively associated with high TG values at 8 years, but the
estimated effects were not comparable.

4. Discussion

The epidemiology literature has plenty of statistical analysis. Despite these usually
being briefly explained, it is never clear what the impact on the observed results would be if
a different decision was made. Lack of space is a common problem in specialized journals,
and deep explanations are relegated to Supplementary Materials or directly omitted. Here,
we explored the impact of the decisions taken, particularly with regard to missing data and
the selection of the most appropriate statistical model for the study of variables involving
controversial thresholds.

In recent years, MI has become a quite popular method for dealing with missing data.
As we saw in Section 2.3, the most appropriate approach depends on the data missingness
mechanism and on the amount of missing data or the role played by the involved variables
(dependent or independent variables, adjustment variables, etc.) [44]. Several authors
recommend the use of MI procedures regardless of the mechanism of missingness [45].
They argue that, under the MCAR condition, it is preferred against a complete case analysis
because it results in more power. Under the MAR condition, it is preferred because, aside
from more power, it will give unbiased results, whereas complete case analysis may not.
And under the MNAR model, some authors suggest that it will provide less biased results
than complete case analysis [46]. However, the decision is not always straightforward,
and using MI only to maximize the sample size is a kind of artificial approach, which may
not always be successful when it is correctly performed. Here, we presented an example
where utilizing MI resulted in a higher sum of within-imputation variance and between-
imputation variance and, consequently, total variance for certain quantiles compared with
the variance obtained through complete case analysis. This may occur in cases where
the proportion of imputed data is large and there are no variables closely related to the
missing data or to the variables containing the missing data themselves. The MI model
would reflect the high uncertainty around the missing data, and the target parameter
estimation would be highly dependent on the generated datasets. This adds extra noise
and increases uncertainty when combining the results, and it potentially leads to higher
between-imputation variance values that offset the gain in the within-imputation variance
resulting from the increase in sample size. Another example in which MI might yield to
less precise confidence intervals, despite an increased sample size, is when there is a large
proportion of missing data in the explanatory variables, and these are highly correlated
with the response variable. In this case, MI can affect the precision of the estimates.

We considered tracking analysis of the cardiovascular-related measures—particularly
TG—in healthy children as an example of analysis that requires avoiding the use of arbitrary
thresholds while focusing on the extreme parts of the outcome distribution. Correlation
coefficients and linear regression models are frequently used to explore tracking while
preserving the continuous nature of the variables. These methods would focus on esti-
mating the effect of TG at 4 years on the average TG at 8 years. Nevertheless, this does
not provide us with any information on the magnitude or direction of the association
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in the upper part of the TG distribution. In contrast, quantile regression addresses this
constraint and allows us to assess the impact within the region of interest without rely-
ing on quantile-based categorization. We compared our approach with two variations
of the classical logistic regression analysis using thresholds. The overall finding was the
same: There was a positive association between the high TG values at 4 and 8 years of
age. However, quantile regression provided much richer information. If there were a clear
threshold enabling the categorization of a cardiovascular-related variable into normal and
risk values, then logistic regression would allow us to estimate the effect on the probability
of being in the risk category at 8 years associated with an increase in TG values at 4 years,
thus providing an estimation of the tracking of the variable between these ages. However,
in the specific case of cardiovascular-related variables in children, where consensus on the
threshold values is lacking, we are truly estimating the effect on the probability of being in
a category that holds no clinical significance. And we are also assuming homogeneity of
risk within categories. In other words, the risk is the same for all individuals within the
normal category and the same for all individuals within the risk category. On the contrary,
quantile regression allows us to estimate this effect across all quantiles, thus covering the
entire part of the distribution that may imply potential risk. In our example, using quantile
regression, we were able to observe that the effect was not constant across all quantiles
of the distribution at age 8. Instead, it increased as the quantile increased. Using logistic
regression, we would not be able to see this behavior.

This suggests that the magnitude of tracking increases the more extreme the values
are, providing relevant insights. While there is no established risk threshold for TG in
pediatric ages, our findings indicate that increasing TG levels at 4 years may lead not only
to a higher average at 8 years but also to a longer upper tail of the TG distribution at 8 years.
Although it is not the purpose of this article, it should be mentioned that this could imply
difficulty in normalizing TG values in the future for those children who present extreme
values at 4 years of age and a progressive increase in TG values at 8 years of age. These
results have potential implications for children’s health, as the consequences associated
with such changes in TG levels are not yet known. These findings can also inform the
identification of cardiovascular-related measures that should be considered as targets for
screening and monitoring in clinical practice, as well as in the development of public health
guidelines and recommendations for children [11].

Quantile regression has gained widespread popularity in social science, economics,
environmental modeling, public health research [47–50], and in recent years, in the field
of environmental pollutant exposure [51–55]. In longitudinal data analysis, which suffers
from a high level of complexity due to the intercorrelation among repeatedly measured
observations, QRMs have also gained increasing popularity. Most longitudinal modeling
methods primarily focus on mean regression, concentrating solely on the average effects
of covariates and the mean trajectory of longitudinal outcomes. Consequently, similar to
independent data, quantile regression has also been extended and applied to longitudinal
data. Quantile regression for longitudinal data possesses the capacity, at both the population
and individual levels, to identify heterogeneous covariate effects, elucidate variations in
longitudinal changes across different quantiles of the outcome, and offer more robust
estimates when heavy-tailed distributions and outliers are present [56]. Despite this, its
application in longitudinal cohort studies for tracking purposes has been limited [57]. This
work serves as an example of its potential for investigating risk variables without known
thresholds or when research interests lie in non-central areas of the distribution, as occurs
in tracking studies or also when evaluating the possible effects of exposures. Even in other
cases, it can complement traditional analysis methods by estimating a family of conditional
quantile functions, providing a more nuanced understanding of variable effects.

5. Conclusions

Details are important in statistical analysis, as they can impact the final results. In our
data, the findings seemed to be robust with respect the to main decisions taken but led
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to differences in terms of accuracy and richness of information obtained. Here we point
out that although multiple imputation methods are generally useful for mitigating biases
in estimates, they may not necessarily improve the precision of standard error estimates.
Moreover, we illustrate that quantile regression can be a powerful tool in addressing
challenges associated with controversial threshold definitions and tracking analyses in
cohort studies, providing valuable additional information. Given the strengths of these
models, they should be considered in analyses of continuous outcomes, at least as a first
step for making future modeling decisions. Finally, it is always unclear what impact
different decisions would have on the obtained results, and there are always numerous
alternatives to choose from. Therefore, it is essential to describe and report precisely how
the analysis was conducted, including its limitations and strengths, even if it has to be
included in Supplementary Materials.

6. Computational Considerations

Nowadays, there are many resources that allow a wide range of statistical analyses
to be performed, including those that may require a high computational capacity, such
as the ones presented here. In this work, we used R statistical software (version 4.2.1; R
Foundation for Statistical Computing, Vienna, Austria, www.r-project.org). In particular,
we used the package MICE [32] developed by van Buuren and Groothuis-Outshoorn, which
includes several different imputation model options to perform multivariate imputation
with chained equations. The package quantreg [58] was used for QRM estimation and
inference, which provides several alternative methods to estimate model parameters and
to compute standard errors.

Supplementary Materials: The following supporting information can be downloaded at www.mdpi.
com/article/10.3390/math11194070/s1. Table S1: Number of participants with missing data for
each variable, expressed in absolute and relative frequencies, for the final sample composed by 307
children.
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Abbreviations
The following abbreviations are used in this manuscript:

SAGES Successful Aging after Elective Surgery
CVD Cardiovascular disease
EPIC European Prospective Intake and Cancer
ECHO Environmental Influences On Child Health Outcomes
INMA INfancia y Medio Ambiente (Environment and Childhood)
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NHBC New Hampshire Birth Cohort
WC/Height ratio Waist-to-height ratio
MAP Mean arterial pressure
TG Triglycerides
HDL-c High-density lipoprotein cholesterol
AC Atherogenic coefficient
HOMA-IR Homeostatic model assessment of insulin resistance
MCAR Missing completely at random
MAR Missing at random
MNAR Missing not at random
MI Multiple imputation
FMI Fraction of missing information
RE Relative efficiency
MICE Multivariate imputation by chained equations
QRMs Quantile regression models
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CHAPTER 4
Discussion

The methodology and results reported in each of the previously presented articles have
already been extensively discussed within their respective contexts. In this section, our
aim is to provide a comprehensive and integrated overview of the research, highlighting
key points, rather than approaching each article in isolation.

4.1. Tracking of cardiovascular risk factors

This dissertation focuses on the study of tracking of metabolic risk factors, and as
discussed in the Section 1.3, in recent decades the phenomenon of metabolic syndrome
has gained particular relevance. In a very general sense, metabolic syndrome involves the
simultaneous presence of three or more metabolic risk factors in the same subject: central
obesity, insulin resistance, hypertension, and dyslipidemia. Various definitions exist, with
slight variations, but as it is not a specific part of this work, we will not go into it further.
The dangers associated with this clustering of metabolic syndrome components have
been demonstrated in adults, where the presence of three or more components notably
increases the risk of coronary heart disease, including death or non-fatal myocardial
infarction, as well as the onset of diabetes (Sattar et al., 2003).

In the case of children, defining metabolic syndrome faces some challenges (see Section
1.6.1) regarding controversial thresholds, as it relies on risk factor definitions in children,
with not recognised clinically meaningful thresholds. Instead, values above the 90th, 95th,
or 97th percentiles for sex and age are used to define metabolic syndrome components.
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There is not a universal agreement on which threshold use for the metabolic syndrome
criteria. Also, the International Diabetes Federation does not even recommend considering
metabolic syndrome in children under 6 years of age (Zimmet et al., 2007). Our study
focused on children aged 4 and 8 years, so metabolic syndrome was not one of the
objectives. Nonetheless, considering its relevance, as a first step in the study of tracking
of metabolic risk factors, we examined whether there were patterns of aggregation beyond
what might be expected by chance alone, and if such patterns persisted between ages 4
and 8. This is the Objective 1 of this dissertation, which is reported in Article I (Section
3.1).

Conducting this initial exploration of metabolic risk factors in children, we encountered the
challenge of determining appropriate thresholds for classifying whether a child exhibited
these risk factors. While recommendations and guidelines have been developed by
authoritative societies such as the European Society of Hypertension for blood pressure
(Lurbe et al., 2016), these mostly rely on adult values adapted for childhood, or on
percentiles. In our work, we chose to employ thresholds established within the framework
of the IDEFICS study for each of the cardiovascular-related variables under study (Ahrens
et al., 2014). The primary reasons for this choice were twofold: firstly, by not calculating
thresholds using percentiles derived from our own sample, we aimed to ensure that the
same reference values could be applied in potential replications of the study in other
populations, thereby avoiding sample-dependence. Secondly, the selected thresholds
were applicable to children aged 2 to 10.9 years, making them suitable for 4-8–year-olds,
and they were derived from a large, healthy European population, including southern
European countries like Spain.

However, when applying the threshold values derived from the IDEFICS study, which
were based on the 90th percentile, we expected that approximately 10% of children in the
INMA-Asturias cohort sample would exhibit these risk factors. Surprisingly, our sample
showed a prevalence ranging from 20.8% to 33.7% at 4 years of age and from 6.3% to
35.8% at 8. Furthermore, we faced notable challenges when comparing our results with
those from other studies due to variations in the thresholds used, and there were limited
investigations into this topic at such early ages as 4 years. We also found a number of
references suggesting that CVD risk factors should be treated as continuous variables
in research, and only be relegated to categorical variables in clinical diagnosis. Some
overall continuous CVD risk scores have been developed (Eisenmann, 2008; Wijndaele
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4.1. Tracking of cardiovascular risk factors

et al., 2006), potentially offering a solution to the thresholds issue. However, our research
aimed to investigate the tracking of each individual risk factor, and collapsing them into
a single score would result in a loss of information.

In the study presented in the Article I, our conclusions indicated that clear aggregation
patterns were not readily identifiable. However, it was noteworthy that nearly all children
without risk factors at 4 years did not exhibit them at 8 years, and central obesity was the
one suggesting tracking from 4 to 8 years, as well as the most frequent co-occurring risk
factor. The absence of clearly differentiated patterns with concurrent presence of multiple
risk factors constitutes a finding itself, which supports the criterion of the International
Diabetes Federation that it is not necessary to define the metabolic syndrome at such
early ages in healthy populations without specific related pathologies. On the other
hand, the pathogenic mechanism of metabolic syndrome remains highly complex. It is
believed that central obesity and/or insulin resistance initiate many different pathogenic
pathways that increase metabolic risk and end up in the full expression of the metabolic
syndrome (Reisinger et al., 2020). In this regard, the fact that central obesity frequently
appears alongside other factors in our study lends support to the hypothesis that central
obesity could play a central role in the development of other metabolic factors. In our
study, a high prevalence of elevated blood pressure values was also identified at the age
of 8, occurring independently of the presence of other risk factors. One of the primary
contributing factors to hypertension in pediatric populations is obesity. However, our
study revealed a group of children with elevated blood pressure values not associated
with obesity, suggesting a potential link to other independent causes such as prenatal
and postnatal exposures, genetic factors, birth characteristics, dietary habits, or lifestyle
factors (S. Machado et al., 2021). Some of these factors have been shown to be related to
primary hypertension, independent of obesity, as demonstrated, for example, by Rosner
et al. (2013) in the case of high sodium intake. Specifically, it has also been observed that
the Spanish pediatric population exceeds the recommended sodium intake between the
ages of 9 and 12, irrespective of their nutritional status (Partearroyo et al., 2019). This
excess sodium intake is positively associated with elevated diastolic blood pressure levels
between 5 and 16 years of age, again irrespective of their nutritional status (Pérez-Gimeno
et al., 2020). It is important to note that blood pressure measurements in our study
were taken according to a protocol where the mean of three different measurements was
recorded, but all measurements were taken at the same moment and not on different
days, as ideally recommended (Lurbe et al., 2016).
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Since clear patterns of aggregation among various metabolic risk factors at age 4 and 8
were not identified, we decided to investigate individual tracking of these factors. This
corresponds to the Objective 2 of this dissertation, which results and conclusions are
detailed in the Article II (Section 3.2).

Using quantile regression, we found a positive association between the relative position
of children at 4 years in the high density lipoprotein cholesterol distribution (HDL-c)
and all the quantiles of the same variable at 8 years. Similar results were found for the
atherogenic coefficient (AC), which is defined as the ratio between non-HDL-c to HDL-c,
suggesting that serum lipids track among children between the ages of 4 and 8 years. But
quantile regression lets us to appreciate that, in the case of the AC, the more extreme the
values at 8 years, the greater the effect of the association. While there is no established
risk threshold for AC in pediatric ages, our findings indicate that increasing AC levels at
4 years may lead not only to a higher average at 8, but also to a longer upper tail of the
AC distribution at 8 years. This could imply difficulty in normalizing AC values in the
future for those children who present extreme values at 4 years of age and a progressive
increase in AC values at 8. These results have potential implications for the health of
children, as the consequences associated with such changes in the distribution of AC
levels are not yet known. This is also remarkable because AC is related to higher risk of
CVDs in adulthood (Brunner et al., 2019; McBride, 2008). Whereas higher HDL-c had
similar tracking levels in all quantiles and higher HDL-c has unclear association with
CVD risk (Casula et al., 2021). For triglycerides distribution, it was found a positive
association between the relative position at 4 years and the quantiles above 0.5 at 8. This
means that higher triglyceride levels at 4 years increase values above the median at 8,
but do not affect values below it. Therefore, the effect of an increase in triglycerides at 4
years would be linked to an increase at 8 in those values that are potentially of risk.

This study found a positive association between the relative position of children at 4 years
in waist circunference to height (WC/Height) ratio distribution and all the quantiles
of the same variable at 8 years. Here, this association has special relevance because
in the crude analysis, without covariates, we observed higher tracking in children with
a high-risk position in the distribution at 8 years, but when we adjusted for maternal
pre-pregnancy body mass index (BMI), and maternal educational level, the association
became similar across all the quantiles of the distribution. In other words, higher maternal
BMI values are linked to a more pronounced increase in the highest quantiles, while a
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higher maternal educational level is associated with a reduction in the highest quantiles.
Thus, both maternal BMI and maternal education amplify the tracking of central obesity
between ages 4 and 8.

All this yield to the conclusion of a suggesting tracking between 4 and 8 years of those
variables that are indicators of dyslipidemia and central obesity, with the greatest effect
in the highest parts of the distribution of the dyslipidemia indicator variable.

We would like to highlight that in both the analysis carried out in Article I and in
Article II (Section 3.2) the sample sizes were different. In the study of aggregation
patterns of cardiovascular risk factors, the sample size for the analysis, after imputing
missing data using the FIML method, was 332 children. However, in the tracking study,
after performing MI, it was 307 children. The difference arises because, in the first
case, we began with the initial pool of 453 children who continued participating in the
INMA-Asturias study at 4 years. From this group, we selected all those who had data for
at least one of the cardiovascular-related variables at one of the two time points (either
the 4-year or 8-year follow-up), as described in the article. However, in the tracking
study, we conducted a more detailed analysis of how to handle missing data. Those
children who did not continue in the study at 8 years were not considered as missing
data; instead, they were regarded as dropouts. And dropouts are usually due to different
reasons compared to the children who continue to participate but do not attend some
of the visits. Therefore, the decision was made to use the sample size of 416 children
who were still participating in the study at 8 years as the starting point for the analysis,
and then proceed as described in Article II. This difference in criteria is what led to the
different sample sizes used in both analyses.

There is also a difference in the cardiovascular-related variables presented in each article as
indicators of cardiovascular risk factors. In Article I, waist circumference was considered
as a marker of obesity, while in Article II we decided to include the WC/Height ratio
as it is considered a more robust measure. The second article examined various central
obesity indicators, including those previously mentioned, as well as BMI and triponderal
index. All these indicators were analyzed, leading to consistent results and conclusions.
Regarding dyslipidemia, Article II introduced the atherogenic coefficient as an additional
indicator, to reflect the relationship between the non-HDL-c and the HDL-c values. With
regard to blood pressure, in Article II we added to systolic and diastolic blood pressure
variables the mean arterial pressure, and analized all of them. We obtained the same
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association and the same tendency regardless of the measure used. As the study carried
out in Article II includes a considerable number of cardiovascular-related measures, we
decided to present only the mean arterial pressure, which intrinsically includes both
systolic and diastolic arterial pressure. Results for systolic and diastolic blood pressure
not included in Article II are provided in the appendix 5. In this way, the second study
aimed to improve the measurement of metabolic risk factors using underlying indicators
compared to the first study.

4.2. Methodological aspects

Beyond the specific findings related to the study’s focus – Objectives 1 and 2 –, we also
derived important methodological insights. After developing the research reported in
Article I, we concluded that, for continuing the research, it would be benefit to study
the variables continuously, as indicated by the aforementioned challenges in defining
thresholds. Secondly, we recognised the substantial loss of sample size and potential bias
associated with complete-case analysis. In the Article I we had already addressed this
employing the FIML method (Enders, 2010), as a more sophisticated imputation method
than the simple methods discussed in the Section 1.6.2. However, we considered necessary
to explore additional imputation approaches that would allow for a better inspection
and analysis of the imputed data, improving our ability to evaluate their impact on the
obtained results (van Buuren, 2012).

When considering possible options for approaching the study of tracking using continuous
variables, we explored alternatives to the more common mean-based analyses, leading
us to quantile regression (Wei et al., 2019). Quantile regression has gained widespread
popularity not only in social science, economics, environmental modeling, and public
health research but also, in recent years, in the field of environmental pollutant exposure
(Yu et al., 2003).

Correlation coefficients and linear regression models are commonly employed to examine
tracking while maintaining the continuous nature of the variables. However, these
approaches do not provide insights into the magnitude or direction of the association
within specific segments of the variable’s distribution. In contrast, quantile regression
addresses this limitation and allows us to assess the impact within a region of interest
without the need for quantile-based categorization, making it well-suited for our purposes.
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It is noteworthy that even when accepted and clinically meaningful thresholds existed,
quantile regression could still be a more suitable alternative to logistic regression, which
is one of the most commonly used methods, as it offers much richer information. If
a clear threshold existed for categorizing a cardiovascular-related variable into normal
and risk values, logistic regression could estimate the effect on the probability of falling
into the risk category at 8 years associated with an increase in the same variable at 4
years, providing an estimation of tracking between these ages. However, this approach
assumes homogeneity of risk within categories, implying that the risk is the same for all
individuals within the normal or risk category. In contrast, quantile regression enables us
to estimate this effect across all quantiles, covering the entire distribution range that may
imply potential risk. For example, in our study, using quantile regression, we observed
that the effect was not constant across all quantiles of the distribution at age 8 for some
cardiovascular-related variables. Instead, it increased as the quantile increased. Logistic
regression would not capture this behavior. The work presented in the Article II (Section
3.2) serves as an example not only of quantile regression’s potential for investigating
variables without known thresholds, but also in cases where research interests extend
to non-central areas of the distribution, such as when evaluating the potential effects of
exposures (Kapwata et al., 2023; Peralta et al., 2022). Moreover, in various scenarios,
quantile regression can complement traditional analysis methods by estimating a family of
conditional quantile functions, providing a more nuanced understanding of variable effects,
and also examining whether the effects of the independent variable on the dependent
variable result in other changes, such as changes in the shape or dispersion of the
dependent variable.

Regarding the chosen option for handling missing data, the primary reasons for selecting
MI were, as mentioned in the Section 1.6.2: Under the MAR mechanism, it can produce
unbiased estimations and preserve the original sample size. The difficult here is that the
complete true distribution of the variables with missing data is unknown, and we cannot
test if missing data depends on the missing data itself (MNAR mechanism), so MAR
is only an assumption that cannot being really checked (Schafer and Graham, 2002).
Collins et al. (2001) demonstrated that in many realistic cases, an erroneous assumption
of MAR may often have only a minor impact on estimates and standard errors. Moreover,
MAR assumption will be more reasonable the more observed variables are included in
the imputation model (Schafer, 1997). In our case, we have extra auxiliary variables that
are related to the missingness of the data on the variable of interest or to the variable of
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interest itself and can be incorporated into the imputation model. We also apply Little
test (Little, 1988) to reject data to be MCAR and find there are variables associated
with missingness. In summary, although any of that provides a proof that the missing
data are MAR, suggest that the imputation methods could perform well. MI has become
a widely popular method for dealing with missing data, and some authors argue that
even under the MCAR condition, it is preferred over complete case analysis because it
can result in higher statistical power (van Ginkel et al., 2020). In the work presented in
the Article III, we explored the differences between the results obtained using MI and
what we would have obtained through complete-case analysis. It was revealing to observe
that MI did not always lead to narrower confidence intervals and, therefore, more precise
estimations. What we noticed was that in cases where the proportion of imputed data
is large, and there are no variables closely related to the missing data or the variables
containing the missing data themselves, the MI model introduce additional noise to the
imputed data, reflecting appropriately the uncertainty that actually exists around them.
Hence, using it as a technique to artificially increase the available sample size, when we
lack suitable additional information for imputation, may not be effective.

4.3. Strengths and limitations

Each one of the three academic papers provided in the Chapter 3 already discuss specific
strengths and limitations of each work. The most notable ones are highlighted below.

In terms of the applied methodology, it is always unclear the impact different decisions
would have on the obtained results, and there are always numerous alternatives to choose
from. We have presented and discussed the reasons for choosing the selected options, but
other choices were possible, and we have not conducted an exhaustive analysis of all the
different possibilities. Additionally, the available sample size, even after imputing missing
data, remains moderately small, resulting in reduced statistical power for the analysis.
It should also be acknowledged that this study is exploratory in nature, involving the
testing of numerous hypotheses, which introduces the issue of multiple testing, thereby
complicating the calculation of the statistical power of the study. Moreover, comparing
the results obtained in both Article I and II with those from other studies is challenging
due to the wide range of thresholds and techniques employed.

In terms of interpreting the results and their potential implications for child health,
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there are also some limitations to highlight. One of them is that blood samples were not
collected under fasting conditions. However, as argued in the articles, we now know that
this is not a problem in the case of lipids. Regarding glucose and insulin, the HOMA-IR
index used to measure insulin resistance should also not imply a distortion issue in healthy
individuals without diabetes. Article I is affected by the use of thresholds to define risk
factors, which can potentially impact the results. It is also essential to be aware that
in this study, we are examining the stability of extreme values of variables related to
cardiovascular risk in a population of healthy children. Therefore, while these values may
be extreme in this population, we cannot conclude that they are indicative of a pathology
or even a future increased risk. Furthermore, it is important to consider the fact that
maintaining a relatively high value of a risk factor over time may not be as crucial in
predicting the development of a disease as a substantial increase in the value of these
risk factors (for example a stable high body weight vs. a rapid increase in body weight).

Regarding strengths, the study is being among the first to address the analysis of
cardiovascular-related variable tracking in children using quantile regression. This opens
the door to the versatile use of this tool in this field, and allows for much more accuracy
and richness tracking information. Furthermore, the use of multivariate models, in
conjunction with the extensive data collection capabilities of the INMA project, allows
for the incorporation of a wide range of information related to potential confounding
factors of the relationships under study. This facilitates the control of the effects of
numerous potential confounding variables to estimate the effects of primary interest.
While it is impossible to isolate all potential confounding effects, cohort studies, combined
with multivariate techniques, lend robustness to this aspect of the research. The age of
children involved is also a key point, as not many studies addressing cardiovascular risk
factors examine children as young as 4 years of age. Moreover, the details and discussion
provided in Article III regarding the use of quantile regression and multiple imputation
can be useful to other researchers interested in both topics.

4.4. Public health implications

In order to translate the conclusions here presented to real public health considerations
we have to consider the following points. It is crucial to emphasize the importance of early
identification of cardiovascular risk factors in children. Prevention starting early in life is
likely to have a substantial impact on reducing disease incidence and its associated effects
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at the personal, economic, and social levels. Our study highlights the fact that children
who were free from risk factors at age 4, remained so at age 8. That emphasizes the
importance of maintaining a healthy state from early childhood, could been preventive of
altered values in variables indicative of cardiovascular risk factors since such an early
ages as 4 years old.

The concept of "tracking" of risk factors at an early age suggests that some children may
be at higher risk of developing cardiovascular issues as they grow. This underscores the
need for continuous monitoring and intervention strategies for these high-risk groups. As a
result, the findings presented in this dissertation can help to identify which cardiovascular-
related measures should be the focus of screening and monitoring in children. According
to our results, central obesity and dyslipidemia emerge as potential areas of concern
at early ages. Children with extreme values in these factors at a young age may face
greater challenges in normalizing these values. Additionally, concerning dyslipidemia,
if values of related variables in early ages, such as 4 years old, continue to increase in
future generations, this could lead to even higher values at age 8. With the potential
consequences that a substantial increase in extremely high values of dyslipidemia-related
variables in childhood could have on the development of future disease in adulthood.
The results related to central obesity are of particular relevance due to its association
with chronic inflammation, as well as metabolic and vascular alterations that predispose
individuals to the development of metabolic syndrome (Lurbe and Ingelfinger, 2021).
Moreover, considering the previously mentioned high prevalence of obesity and overweight,
which affects both children in Asturias and, in particular, the INMA-Asturias cohort.

This comprehensive analysis provides essential insights into the early identification and
monitoring of cardiovascular risk factors in children, offering a foundation for more
effective prevention and intervention strategies.

4.5. Future research

This dissertation assesses tracking within the INMA-Asturias cohort between the ages
of 4 and 8. Our findings suggest tracking of cardiovascular-related variables that act as
indicators for dyslipidemia and central obesity. Furthermore, cardiovascular risk factors
in childhood have been shown to have an age-dependent impact on adult cardiovascular
health, with predictability for subclinical atherosclerosis as early as age 9 (Juonala et al.,
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2010). That suggests compelling reasons to expand our investigations into subsequent
age groups, so future research should consider examining tracking in age groups from 8
years old to adolescence and early adulthood. It would also be pertinent to study which
modifiable factors are influencing or altering the tracking of cardiovascular risk factors.
These studies will offer valuable insights for prevention strategies and public health, and
been a focal point for future research and public health policies.
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CHAPTER 5
Conclusions

1) No clearly discernible patterns of aggregation in cardiovascular risk factors were
identified at 4 and 8 years of age. Despite this, nearly all the children who did not
exhibit any risk factors at age 4 did not exhibit them at age 8 either.

2) Tracking was observed between the ages of 4 and 8 years in children from the
INMA-Asturias cohort. Particularly in the highest quantiles of the distribution
of cardiovascular-related measures that serve as adult markers for dyslipidemia
and central obesity. Remarkable, this was evident for the hight density lipoprotein
cholesterol and the atherogenic coefficient in the context of dyslipidemia, and for
the waist circunference/height ratio for central obesity.

3) The phenomenon of tracking appears to exhibit greater effect at higher quan-
tiles of the atherogenic coefficient distribution, indicating possibles challenges in
normalizing extreme values of that cardiovascular-related variable.

4) The complexity of the statistical analysis decisions, and the multitude of available
alternatives often obscure the potential impact of the decision-making process.
Therefore, it is imperative to precisely document and report the methodology
employed, including both its limitations and strengths.

5) In the presence of missing data, multiple imputation methods are generally useful
for mitigating biases in estimates. However, it is important to note that they may
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5. Conclusions

not necessarily enhance the precision of standard error estimates. So using MI only
to maximize the sample size is not always successful when it is correctly performed.

6) Quantile regression emerges as a potent tool for addressing challenges related to
controversial threshold definitions, and tracking analyses in cohort studies. It
provides valuable additional insights. Given its robust capabilities, it should be
considered in the analysis of continuous outcomes, serving as an initial step for
informing future modelling decisions.
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Conclusiones

1) No se identificaron patrones claramente discernibles de agregación en los factores
de riesgo cardiovascular a las edades de 4 y 8 años. A pesar de esto, prácticamente
todos los niños que no presentaban factores de riesgo a los 4 años tampoco los
presentaban a los 8 años.

2) Se observó seguimiento entre los 4 y 8 años en niños de la cohorte INMA-Asturias
en los cuantiles más altos de la distribución de las medidas que sirven de marcadores
de dislipidemia y de obesidad central. En concreto se observó en la distribución del
colesterol de lipoproteínas de alta densidad y del coeficiente aterogénico, y de la
relación circunferencia de la cintura/estatura.

3) El fenómeno de seguimiento parece mostrar un mayor efecto en los cuantiles
más altos de la distribución del coeficiente aterogénico, lo que indica una posible
dificultad en la normalización de valores extremos de esa variable.

4) La complejidad de las decisiones llevadas a cabo a la hora de realizar un análisis
estadístico, así como la multitud de alternativas disponibles, a menudo dificultan
discernir su potencial impacto. Por lo tanto, es de gran relevancia y pertinencia
documentar y reportar con precisión la metodología empleada, incluyendo tanto
sus limitaciones como sus fortalezas.

5) Los métodos de de imputación mútiple son generalmente útiles para mitigar posibles
sesgos en las estimaciones en presencia de datos ausentes. Sin embargo, es impor-
tante destacar que no necesariamente mejoran la precisión de las estimaciones de los
errores estándar. Por lo que sí su uso se centra en maximizar el tamaño muestral,
no siempre resultará exitoso, cuando la imputación se ha realizado correctamente.

6) La regresión cuantil constituye una herramienta de gran valor en la realización de
análisis donde se deben definir grupos de riesgo, pero no existen puntos de corte
claramente definidos que permitan discriminar dichos grupos. También aporta gran
valor en la realización de análisis de seguimiento en estudios de cohortes. Además,
teniendo en cuenta sus ventajas sobre otros modelos de regresión tradicionales,
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5. Conclusions

debería considerarse un paso inicial en el análisis de variables continuas, sirviendo
para tomar futuras decisiones con respecto al análisis estadístico.
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Supplementary material 

 

 

 
Supplementary material S1: Description of the process for specifying, estimating, and selecting the 

final LTA model. 
In the first step, models from two to five latent statuses were estimated. To be able to interpret the latent 

status in a meaningful way, good homogeneity and latent class separation were considered to select the 

number of latent statuses in the model. Entropy was also used to select the best model as a measure of 

classification uncertainty (this measure can range from 0 to 1, with higher values representing a better fit, 

and > 0.7 is considered acceptable) (28). Akaike information criterion and Bayesian information criterion 

values were considered. The prevalence of the different latent statuses was not much lower than 10%, to 

avoid detecting excessively minority patterns.  

The second and third steps involved testing the hypothesis of longitudinal measurement invariance and 

the hypothesis of change between time points invariance, respectively, using the likelihood ratio test. In the 

longitudinal measurement invariance hypothesis, the identified latent status is the same at 4 and 8 years of 

age. If this hypothesis is accepted, the latent status at 4 and 8 years is forced to be the same, which constrains 

the item-response probabilities to be the same at both time points. In contrast, if this hypothesis is rejected, 

the latent status can be assumed to be different at 4 and 8 years, and item-response probabilities can be 

freely estimated. The longitudinal measurement invariance hypothesis should usually be assumed to make 

S1 Figure.  Graphical representation of LTA model. 



the model easier to interpret because fewer parameters need to be estimated under this assumption. 

However, this study was exploratory in nature, and we did not assume an a priori hypothesis on the behavior 

of the latent status in children. Therefore, this hypothesis was tested. In the change between time points 

invariance hypothesis, children who are in a latent status at 4 years of age will be in the same latent status 

at 8 years of age, without the possibility of change. If this hypothesis is accepted, the transition probabilities 

are constrained to be equal to 0, and if it is rejected, the transition probabilities are freely estimated.   

After this process, the three latent status model was selected. Although this model did not have the best 

information criterion values (Akaike information criterion and Bayesian information criterion) and the 

highest entropy, it had good homogeneity, latent class separation, and interpretability. A summary of 

information on the relative model fit for selecting the number of latent statuses is shown in Supplementary 

Table S2. 

The hypothesis of longitudinal measurement invariance was rejected (p = 0.009, see S2 Table). 

Therefore, although constraining the item-response probabilities to be equal across times would make 

interpreting the model easier, it would not be a reasonable assumption and would not capture the underlying 

structure of the data. On the basis that the latent status was different at the two time points, the hypothesis 

of change between time points invariance was also rejected because children who were in a latent status at 

T0 inevitably changed to another latent status at T1. Therefore, transition probabilities between T0 and T1 

were different from zero.



S1 Table. Number and percentage of children with zero, one, two, three or four risk factors at the monitoring 
level. 

Nº of risk factors at the 
monitoring level Disorders T0 T1 

N % N % 
0 WC- G- BP- LIP- 76 29.0% 92 36.9% 
1 WC+ G- BP- LIP- 25 9.5% 18 7.2% 
1 WC- G+ BP- LIP- 17 6.5% 5 2.0% 
1 WC- G- BP+ LIP- 32 12.2% 51 20.5% 
1 WC- G- BP- LIP+ 35 13.4% 31 12.4% 
2 WC+ G+ BP- LIP- 6 2.3% 2 0.8% 
2 WC+ G- BP+ LIP- 8 3.1% 16 6.4% 
2 WC+ G- BP- LIP+ 18 6.9% 10 4.0% 
2 WC- G+ BP+ LIP- 7 2.7% 4 1.6% 
2 WC- G+ BP- LIP+ 8 3.1% 2 0.8% 
2 WC- G- BP+ LIP+ 8 3.1% 7 2.8% 
3 WC+ G+ BP+ LIP- 3 1.1% 0 0.0% 
3 WC- G+ BP+ LIP+ 3 1.1% 1 0.4% 
3 WC+ G- BP+ LIP+ 7 2.7% 8 3.2% 
3 WC+ G+ BP- LIP+ 8 3.1% 1 0.4% 
4 WC+ G+ BP+ LIP+ 1 0.4% 1 0.4% 

WC+: Waist circumference at the monitoring level. WC-: Waist circumference at the normal level. 

G+: Blood glucose at the monitoring level. G-: Blood glucose at the normal level. 

BP+: Blood pressure at the monitoring level. BP-: Blood pressure at the normal level. 

Lip+: Lipid levels at the monitoring level. Lip-: Lipid levels at the normal level. 

 

S2 Table. Summary of information for selecting the number of latent status and fit statistics for test the 
hypothesis of measurement invariance. 

Measurement 
invariance 

Number of 
latent status 

Number of 
paremeters 
estimated 

G2 df AIC BIC LL Entropy p-value* 

Yes 2 11 201.7 241 2477.9 2519.7 -1227.9 0.791   

No 2 19 168.1 234 2457.6 2529.9 -1209.8 0.800 <0.001 

Yes 3 20 174.3 233 2466.2 2542.3 -1213.1 0.688   

No 3 32 145.9 221 2460.7 2582.5 -1198.4 0.767 <0.001 

Yes 4 31 150.9 222 2465.1 2583.0 -1201.5 0.842   

No 4 47 127.9 206 2470.9 2649.8 -1188.5 0.855 0.009 

Yes 5 44 130.6 209 2470.9 2638.3 -1191.5 0.819  

No 5 64 108.5 189 2485.4 2728.9 -1178.7 0.840 0.19 

*p-value obtained from the chi-square difference test based on loglikelihood values for testing the hypothesis of 
measurement invariance across times. G2, likelihood-ratio statistic. df, degrees of freedom. AIC, Akaike information 
criterion. BIC, Bayesian information criterion. LL, loglikelohood value. 
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Table S1. Number of children with missing data for each variable, expressed in absolute and relative frequencies, 
for the final analysis sample composed by 307 children. 

  n = 307 

Parental characteristics   

Mother age at delivery (years) 0 (0.0%) 

Mother origin country 0 (0.0%) 

Mother level of education 0 (0.0%) 

Mother social class 1 (0.3%) 

Mother smoking during pregnancy 15 (4.9%) 

Mother BMI (kg/m2) 0 (0.0%) 

Father BMI (kg/m2) 11 (3.6%) 

Parental cardiovascular antecedents 0 (0.0%) 

Child characteristics   

Sex 0 (0.0%) 

Age (years) 5 (1.6%) 

Week of gestation at delivery 6 (2.0%) 

Predominant breastfeeding duration (weeks) 37 (12.1%) 

Birth weight (gr) 6 (2.0%) 

At 4 years  
Mean daily energy intake (calories) 8 (2.6%) 

Weekly out-of-school physical activity time (hours) 12 (3.9%) 

Weight (kg) 6 (2.0%) 

Height (cm) 6 (2.0%) 

BMI (kg/m2) 6 (2.0%) 

Waist circunference (cm) 7 (2.3%) 

Waist circunference/Height ratio 7 (2.3%) 

Triponderal index (kg/m3) 6 (2.0%) 

Sistolic blood pressure (mmHg) 7 (2.3%) 

Diastolic blood pressure (mmHg) 7 (2.3%) 

Mean arterial pressure (mmHg) 7 (2.3%) 

Total cholesterol (mg/dL) 60 (19.5%) 

High density lipoprotein cholesterol (mg/dL) 60 (19.5%) 

Low density lipoprotein cholesterol (mg/dL) 60 (19.5%) 

Triglycerides (mg/dL) 60 (19.5%) 

Atherogenic index  60 (19.5%) 

Glucose (mg/dL) 59 (19.2%) 

Insulin (µU/mL) 77 (25.1%) 

HOMA index 77 (25.1%) 

At 8 years  
Mean daily energy intake (calories) 21 (6.8%) 

Weekly out-of-school physical activity time (hours) 19 (6.2%) 

Weight (kg) 15 (4.9%) 



Height (cm) 15 (4.9%) 

BMI (kg/m2) 15 (4.9%) 

Waist circunference (cm) 15 (4.9%) 

Waist circunference/Height ratio 15 (4.9%) 

Tri-ponderal index (kg/m3) 15 (4.9%) 

Sistolic blood pressure (mmHg) 19 (6.2%) 

Diastolic blood pressure (mmHg) 19 (6.2%) 

Mean arterial pressure (mmHg) 19 (6.2%) 

Total cholesterol (mg/dL) 61 (19.9%) 

High density lipoprotein cholesterol (mg/dL) 63 (20.5%) 

Low density lipoprotein cholesterol (mg/dL) 63 (20.5%) 

Triglycerides (mg/dL) 61 (19.9%) 

Atherogenic index  63 (20.5%) 

Glucose (mg/dL) 61 (19.9%) 

Insulin (µU/mL) 71 (23.1%) 

HOMA-IR 72 (23.5%) 

BMI, body mass index; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance 

 



Table S2. Association between the distribution of the cardiovascular-related measures at 8 years and the same 
cardiovascular-related measures rank at 4 years, using the imputed data. 

   Crude Adjusted 
Dependent variable Independent variable Quantile  𝛽𝛽* 95% CI  𝛽𝛽* 95% CI 

TG at 8 years Rank TG at 4 years 

0.1 0.37 (-0.41, 1.15) 0.53 (-0.71, 1.76) 

0.2 0.99 (-0.09, 2.07) 0.78 (-0.71, 2.26) 

0.3 1.55 (0.02, 3.08) 1.13 (-0.61, 2.87) 

0.4 1.67 (-0.21, 3.55) 1.60 (-0.27, 3.47) 

0.5 1.76 (0.37, 3.16) 2.02 (0.18, 3.87) 

0.6 2.34 (0.23, 4.44) 2.28 (0.13, 4.43) 

0.7 3.89 (0.92, 6.86) 3.16 (0.40, 5.93) 

0.8 4.63 (1.24, 8.02) 4.21 (1.01, 7.41) 

0.9 6.29 (1.29, 11.29) 5.82 (1.00, 10.65) 

HDL-c at 8 years Rank HDL-c at 4 
years 

0.1 1.85 (1.02, 2.68) 1.93 (1.03, 2.84) 

0.2 2.20 (1.38, 3.01) 2.11 (1.27, 2.95) 

0.3 2.24 (1.35, 3.13) 2.34 (1.47, 3.20) 

0.4 2.41 (1.56, 3.25) 2.44 (1.53, 3.35) 

0.5 2.64 (1.69, 3.59) 2.61 (1.66, 3.56) 

0.6 3.02 (2.21, 3.82) 2.68 (1.75, 3.62) 

0.7 2.88 (2.23, 3.54) 2.72 (1.89, 3.54) 

0.8 2.87 (2.16, 3.59) 2.71 (1.91, 3.51) 

0.9 2.84 (1.73, 3.94) 2.93 (1.98, 3.87) 

AC at 8 years Rank AC at 4 years 

0.1 0.07 (0.04, 0.10) 0.08 (0.05, 0.11) 

0.2 0.09 (0.07, 0.12) 0.09 (0.06, 0.12) 

0.3 0.11 (0.09, 0.13) 0.10 (0.07, 0.12) 

0.4 0.11 (0.09, 0.13) 0.11 (0.08, 0.13) 

0.5 0.11 (0.09, 0.14) 0.11 (0.09, 0.14) 

0.6 0.12 (0.09, 0.15) 0.11 (0.09, 0.14) 

0.7 0.12 (0.09, 0.16) 0.12 (0.08, 0.15) 

0.8 0.14 (0.09, 0.19) 0.13 (0.09, 0.17) 

0.9 0.18 (0.12, 0.24) 0.15 (0.09, 0.21) 

WC/Height at 8 years Rank WC/Height at 4 
years 

0.1 0.006 (0.003, 0.009) 0.005 (0.002, 0.008) 

0.2 0.006 (0.003, 0.009) 0.007 (0.004, 0.010) 

0.3 0.008 (0.006, 0.009) 0.007 (0.005, 0.010) 

0.4 0.008 (0.006, 0.010) 0.007 (0.005, 0.010) 

0.5 0.010 (0.006, 0.013) 0.008 (0.005, 0.010) 

0.6 0.010 (0.008, 0.013) 0.007 (0.005, 0.010) 

0.7 0.011 (0.009, 0.014) 0.008 (0.005, 0.010) 

0.8 0.012 (0.009, 0.016) 0.008 (0.005, 0.012) 



0.9 0.014 (0.010, 0.018) 0.008 (0.004, 0.012) 

HOMA-IR at 8 years Rank HOMA-IR at 4 
years 

0.1 0.004 (-0.038, 0.047) 0.016 (-0.037, 0.068) 

0.2 0.024 (-0.027, 0.074) 0.041 (-0.014, 0.097) 

0.3 0.037 (-0.012, 0.086) 0.050 (-0.008, 0.108) 

0.4 0.042 (-0.016, 0.101) 0.045 (-0.017, 0.107) 

0.5 0.033 (-0.009, 0.076) 0.043 (-0.032, 0.119) 

0.6 0.038 (-0.059, 0.136) 0.037 (-0.058, 0.131) 

0.7 0.034 (-0.118, 0.185) 0.036 (-0.100, 0.172) 

0.8 0.026 (-0.254, 0.306) 0.040 (-0.166, 0.246) 

0.9 0.010 (-0.444, 0.465) 0.067 (-0.312, 0.445) 

MAP at 8 years Rank MAP at 4 years 

0.1 0.29 (-0.38, 0.96) 0.21 (-0.62, 1.05) 

0.2 0.65 (0.11, 1.20) 0.50 (-0.05, 1.04) 

0.3 0.69 (0.21, 1.18) 0.60 (0.15, 1.05) 

0.4 0.73 (0.37, 1.10) 0.66 (0.25, 1.07) 

0.5 0.71 (0.38, 1.03) 0.60 (0.23, 0.97) 

0.6 0.67 (0.34, 1.00) 0.55 (0.15, 0.96) 

0.7 0.61 (0.14, 1.09) 0.48 (-0.02, 0.99) 

0.8 0.52 (0.03, 1.02) 0.37 (-0.10, 0.84) 

0.9 0.51 (0.02, 1.00) 0.30 (-0.22, 0.81) 

Quantile regression models with cardiovascular-related measure at 8 years as dependent variable and the rank variable of the corresponding 

cardiovascular-related measure at 4 years as the independent variable, for the quantiles between 0.1 to 0.9, with increments of 0.1, adjusted for 

mother age at delivery, mother level of education, mother social class, mother smoking during pregnancy, mother pre-pregnancy body mass index, 

father body mass index, parental cardiovascular antecedents, child sex, child mean daily energy intake at 4 and 8 years, child weekly out-of-school 

physical activity time at 4 and 8 years, week of gestation at delivery, weeks of predominant breastfeeding, and child height at 4 and 8 years. 
*Coefficient estimated are calculated with the independent variables in terms of percentiles (not quantiles) and they represent the effect on the 

dependent variable for each 1-decile increase in the independent variable.  



Table S3. Association between the distribution of the cardiovascular-related measures at 8 years and all the 
cardiovascular-related measures rank at 4 years, using the imputed data. 

   Crude Adjusted 

Dependent variable Independent 
variable Quantile  𝛽𝛽 95% CI  𝛽𝛽 95% CI 

TG at 8 years 

Rank TG at 4 years 
0.60 1.76 (-0.55, 4.06) 1.77 (-0.68, 4.23) 

0.75 3.48 (0.30, 6.67) 2.47 (-0.88, 5.83) 

Rank HDL-c at 4 
years 

0.60 0.07 (-3.05, 3.19) 0.81 (-2.34, 3.96) 

0.75 0.79 (-3.20, 4.78) 1.74 (-2.88, 6.35) 

Rank AC at 4 years 
0.60 1.52 (-1.81, 4.86) 2.31 (-1.07, 5.69) 

0.75 2.38 (-1.43, 6.19) 3.35 (-1.31, 8.01) 

Rank WC/Height 
at 4 years 

0.60 0.94 (-0.84, 2.72) 0.27 (-1.79, 2.34) 

0.75 2.21 (-0.55, 4.97) 0.77 (-2.18, 3.71) 

Rank HOMA-IR at 
4 years 

0.60 -0.32 (-2.24, 1.61) 0.15 (-2.07, 2.37) 

0.75 -0.22 (-3.04, 2.59) 0.25 (-2.78, 3.28) 

Rank MAP at 4 
years 

0.60 0.16 (-1.46, 1.77) 0.07 (-1.77, 1.91) 

0.75 -0.11 (-2.52, 2.29) 0.24 (-2.20, 2.68) 

HDL-c at 8 years 

Rank TG at 4 years 
0.60 0.14 (-0.86, 1.14) 0.14 (-0.76, 1.03) 

0.75 0.21 (-0.64, 1.07) 0.07 (-0.82, 0.97) 

Rank HDL-c at 4 
years 

0.60 2.02 (0.37, 3.67) 1.76 (0.36, 3.17) 

0.75 2.35 (0.98, 3.71) 2.04 (0.79, 3.30) 

Rank AC at 4 years 
0.60 -0.93 (-2.53, 0.67) -1.00 (-2.27, 0.27) 

0.75 -0.64 (-2.13, 0.86) -0.71 (-1.94, 0.52) 

Rank WC/Height 
at 4 years 

0.60 -1.09 (-1.96, -0.22) -0.87 (-1.79, 0.05) 

0.75 -0.93 (-1.81, -0.04) -0.62 (-1.65, 0.41) 

Rank HOMA-IR at 
4 years 

0.60 0.09 (-0.87, 1.04) -0.06 (-0.94, 0.82) 

0.75 -0.06 (-0.98, 0.86) -0.05 (-0.94, 0.83) 

Rank MAP at 4 
years 

0.60 0.13 (-0.69, 0.94) 0.27 (-0.60, 1.15) 

0.75 0.24 (-0.58, 1.06) 0.49 (-0.39, 1.36) 

AC at 8 years 

Rank TG at 4 years 
0.60 -0.01 (-0.04, 0.02) -0.01 (-0.05, 0.02) 

0.75 -0.01 (-0.05, 0.03) -0.01 (-0.05, 0.97) 

Rank HDL-c at 4 
years 

0.60 0.02 (-0.03, 0.06) 0.01 (-0.04, 0.06) 

0.75 0.00 (-0.06, 0.06) 0.00 (-0.06, 3.30) 

Rank AC at 4 years 
0.60 0.13 (0.09, 0.16) 0.12 (0.07, 0.17) 

0.75 0.13 (0.06, 0.19) 0.13 (0.06, 0.52) 

Rank WC/Height 
at 4 years 

0.60 0.03 (0.00, 0.06) 0.02 (-0.01, 0.05) 

0.75 0.04 (0.00, 0.07) 0.02 (-0.02, 0.41) 

Rank HOMA-IR at 
4 years 

0.60 0.01 (-0.02, 0.04) 0.00 (-0.03, 0.04) 

0.75 0.01 (-0.02, 0.04) 0.01 (-0.03, 0.83) 



Rank MAP at 4 
years 

0.60 0.01 (-0.02, 0.03) 0.00 (-0.03, 0.03) 

0.75 0.01 (-0.03, 0.04) 0.00 (-0.04, 1.36) 

WC/Height at 8 years 

Rank TG at 4 years 
0.60 -0.001 (-0.004, 0.001) -0.001 (-0.004, 0.001) 

0.75 -0.002 (-0.005, 0.001) -0.002 (-0.005, 0.001) 

Rank HDL-c at 4 
years 

0.60 0.000 (-0.005, 0.004) -0.001 (-0.005, 0.004) 

0.75 0.000 (-0.006, 0.005) -0.001 (-0.006, 0.003) 

Rank AC at 4 years 
0.60 0.002 (-0.002, 0.007) -0.001 (-0.005, 0.004) 

0.75 0.002 (-0.002, 0.007) 0.000 (-0.006, 0.005) 

Rank WC/Height 
at 4 years 

0.60 0.010 (0.007, 0.013) 0.008 (0.005, 0.011) 

0.75 0.012 (0.009, 0.015) 0.008 (0.005, 0.011) 

Rank HOMA-IR at 
4 years 

0.60 0.002 (-0.002, 0.005) 0.001 (-0.002, 0.005) 

0.75 0.000 (-0.004, 0.005) 0.001 (-0.002, 0.005) 

Rank MAP at 4 
years 

0.60 0.000 (-0.002, 0.002) -0.001 (-0.003, 0.001) 

0.75 0.000 (-0.003, 0.003) -0.001 (-0.004, 0.002) 

HOMA-IR at 8 years 

Rank TG at 4 years 
0.60 -0.005 (-0.100, 0.090) -0.012 (-0.114, 0.089) 

0.75 0.029 (-0.145, 0.203) -0.021 (-0.185, 0.142) 

Rank HDL-c at 4 
years 

0.60 0.086 (-0.042, 0.215) 0.077 (-0.082, 0.237) 

0.75 0.111 (-0.162, 0.385) 0.125 (-0.125, 0.374) 

Rank AC at 4 years 
0.60 0.100 (-0.021, 0.221) 0.103 (-0.061, 0.266) 

0.75 0.140 (-0.132, 0.411) 0.151 (-0.110, 0.413) 

Rank WC/Height 
at 4 years 

0.60 0.070 (-0.011, 0.151) 0.065 (-0.041, 0.171) 

0.75 0.063 (-0.119, 0.245) 0.062 (-0.115, 0.238) 

Rank HOMA-IR at 
4 years 

0.60 0.027 (-0.062, 0.117) 0.036 (-0.065, 0.136) 

0.75 0.007 (-0.185, 0.200) 0.034 (-0.150, 0.219) 

Rank MAP at 4 
years 

0.60 -0.025 (-0.111, 0.062) -0.014 (-0.11, 0.081) 

0.75 -0.072 (-0.272, 0.129) -0.024 (-0.199, 0.151) 

MAP at 8 years 

Rank TG at 4 years 
0.60 -0.06 (-0.41, 0.30) -0.07 (-0.52, 0.38) 

0.75 0.06 (-0.41, 0.54) -0.04 (-0.56, 0.49) 

Rank HDL-c at 4 
years 

0.60 -0.56 (-1.32, 0.21) -0.44 (-1.23, 0.34) 

0.75 -0.42 (-1.09, 0.26) -0.35 (-1.15, 0.44) 

Rank AC at 4 years 
0.60 -0.36 (-1.08, 0.36) -0.31 (-1.08, 0.47) 

0.75 -0.07 (-0.71, 0.57) -0.07 (-0.87, 0.74) 

Rank WC/Height 
at 4 years 

0.60 0.14 (-0.26, 0.53) 0.07 (-0.39, 0.52) 

0.75 0.10 (-0.35, 0.55) 0.08 (-0.44, 0.60) 

Rank HOMA-IR at 
4 years 

0.60 0.24 (-0.15, 0.63) 0.23 (-0.20, 0.66) 

0.75 0.25 (-0.20, 0.70) 0.33 (-0.15, 0.81) 

Rank MAP at 4 
years 

0.60 0.62 (0.28, 0.97) 0.63 (0.22, 1.05) 

0.75 0.64 (0.25, 1.02) 0.59 (0.08, 1.09) 



Quantile regression models with cardiovascular-related measure at 8 years as dependent variable and all the cardiovascular-related measure rank at 

4 years as the independent variables, for the quantiles 0.60 and 0.75, adjusted for mother age at delivery, mother level of education, mother social 

class, mother smoking during pregnancy, mother pre-pregnancy body mass index, father body mass index, parental cardiovascular antecedents, 

child sex, child mean daily energy intake at 4 and 8 years, child weekly out-of-school physical activity time at 4 and 8 years, week of gestation at 

delivery, weeks of predominant breastfeeding, and child height at 4 and 8 years. *Coefficient estimated are calculated with the independent variables 

in terms of percentiles (not quantiles) and they represent the effect on the dependent variable for each 1-decile increase in the independent variable.  
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Table S1: Number of participants with missing data for each variable, expressed in absolute and relative 
frequencies, for the final sample composed by 307 children. 
  n = 307 
Parental characteristics  
Mother age at delivery (years) 0 (0.0%) 
Mother origin country 0 (0.0%) 
Mother level of education 0 (0.0%) 
Mother social class 1 (0.3%) 
Mother smoking during pregnancy 15 (4.9%) 
Mother BMI (kg/m2) 0 (0.0%) 
Father BMI (kg/m2) 11 (3.6%) 
Parental cardiovascular antecedents 0 (0.0%) 
Child characteristics  
Sex 0 (0.0%) 
Age (years) 5 (1.6%) 
Week of gestation at delivery 6 (2.0%) 
Predominant breastfeeding duration (weeks) 37 (12.1%) 
Birth weight (gr) 6 (2.0%) 
At 4 years  
Mean daily energy intake (cals) 8 (2.6%) 
Weekly out-of-school physical activity time (hours) 12 (3.9%) 
Weight (kg) 6 (2.0%) 
Height (cm) 6 (2.0%) 
BMI (kg/m2) 4 (1.3%) 
Waist circunference (cm) 7 (2.3%) 
Waist circunference/Height ratio 7 (2.3%) 
Triponderal index (kg/m3) 6 (2.0%) 
Sistolic blood pressure 7 (2.3%) 
Diastolic blood pressure 7 (2.3%) 
Mean arterial pressure 7 (2.3%) 
Total cholesterol (mg/dL) 60 (19.5%) 
cHDL (mg/dL) 60 (19.5%) 
cLDL (mg/dL) 60 (19.5%) 
Triglycerides (mg/dL) 60 (19.5%) 
Atherogenic index  60 (19.5%) 
Glucose (mg/dL) 59 (19.2%) 
Insulin (µU/mL) 77 (25.1%) 
HOMA index 77 (25.1%) 
At 8 years  
Mean daily energy intake (cals) 21 (6.8%) 
Weekly out-of-school physical activity time (hours) 19 (6.2%) 
Weight (kg) 15 (4.9%) 
Height (cm) 15 (4.9%) 
BMI (kg/m2) 15 (4.9%) 
Waist circunference (cm) 15 (4.9%) 
Waist circunference/Height ratio 15 (4.9%) 
Triponderal index (kg/m3) 15 (4.9%) 
Sistolic blood pressure 19 (6.2%) 
Diastolic blood pressure 19 (6.2%) 



Mean arterial pressure 19 (6.2%) 
Total cholesterol (mg/dL) 61 (19.9%) 
cHDL (mg/dL) 63 (20.5%) 
cLDL (mg/dL) 63 (20.5%) 
Triglycerides (mg/dL) 61 (19.9%) 
Atherogenic index  63 (20.5%) 
Glucose (mg/dL) 61 (19.9%) 
Insulin (µU/mL) 71 (23.1%) 
HOMA index 72 (23.5%) 
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Appendix

Report on the impact factor of the publications

Article Bibliometric
indicators

Cardiovascular risk factors and its patterns of change between 4
and 8 years of age in the INMA-Asturias cohort. PLoS ONE, 18(4),
2023

IF: 3.7

Q2 (26/73)a

Tracking between cardiovascular-related measures at 4 and 8 years
of age in the INMA- Asturias cohort. European Journal of Pedi-
atrics, 2023

IF: 3.6

Q1 (23/130)b

Statistical considerations for analyzing data derived from long
longitudinal cohort studies. Mathematics, 11(19), 2023

IF: 2.4

Q1 (23/330)c

Bibliometric indicators according to Journal Citation Reports 2022: Impact factor (IF), quartile, and
rank. Categories for quartile and rank indicators: aMultidisciplinary sciences, bPediatrics, cMathematics.

Results for tracking of cardiovascular-related variables not
included in Article II

Figure 1 shows quantile regression models for systolic blood pressure at 8 years as
dependent variable and the rank of systolic blood pressure at 4 years as the independent
variables, for the quantiles between 0.1 to 0.9, with increments of 0.05, adjusted for
maternal age at delivery, maternal level of education, maternal social class, maternal
smoking during pregnancy, maternal pre-pregnancy body mass index, paternal body
mass index, parental cardiovascular antecedents, child sex, child mean daily energy intake
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at 4 and 8 years, child weekly out-of-school physical activity time at 4 and 8 years, week
of gestation at delivery, weeks of predominant breastfeeding, and child height at 4 and 8
years. It also shows the same information but using diastolic blood pressure at 8 years as
the dependent variable and the rank variable of diastolic blood pressure at 4 years as the
independent variable. Coefficient estimated are calculated with the independent variables
in terms of percentiles and they represent the effect on the dependent variable for each
1-decile increase in the independent variable. They are expressed in terms of number of
standard deviations of the dependent variable to homogenize the Y-axis scales.

Figure 1: Quantile regression models for systolic and diastolic blood pressure
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