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� When hydrogen was introduced during the tensile test, a substantial decrease in notched strength was observed.

� Hydrogen embrittlement indexes increased as the steel hardness increases.

� Bainitic and ferrito-pearlitic microstructures were seen to be more susceptible to HE than quenched and tempered ones.
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42CrMo4 steel was submitted to annealing, normalizing, and quench and tempering heat

treatments to produce steel microstructures with different hardness levels. Afterwards,

tensile tests using notched specimens were conducted in air and in two different hydro-

genated conditions by means of in-situ electrochemical hydrogen charging tests. Two

different electrolytes and density currents were employed to produce low and high hy-

drogenated conditions. The influence of microstructure and hardness on hydrogen

embrittlement was determined and scanning electron microscopy (SEM) analysis was used

to identify the respective operative failure micromechanisms. A significant loss in notched

strength was observed when hydrogen was introduced during the tensile tests on all tested

microstructures, giving rise to changes in the predominant operative failure micro-

mechanism. Embrittlement indexes increase as the electrochemical conditions applied

introduce higher hydrogen concentrations and as the steel hardness increases. The

notched tensile strength measured with in-situ hydrogen charging in the normalized and

annealed grades is lower than that of quenched and tempered steels for the same

hardness.

© 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global energy demand is expected to rise by over 45% by 2030

driven by the expansion of the economics of underdeveloped
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nations [1]. This will cause an acceleration of global warming

and air contamination. Therefore, the time has come to pri-

oritize clean and renewable energy sources over fossil fuels.

The demand for hydrogenwill soar in the near future, as it is a

clean, safe, and cost-effective energy vector [2]. Many
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different metallic components must be constructed to

manage hydrogen pressure. These include pressure vessels

and other containers, pipelines and valves, which will be

directly exposed to high-pressure hydrogen gas environ-

ments. Thus, there is a widespread interest in the develop-

ment of economic medium and high-strength steels able to

store and transport hydrogen safely [3].

The impact of hydrogen on the tensile properties of me-

dium and high strength steels in contact with high pressure

hydrogen gas has been widely researched [4,5]. It is now well

known that this class of steels is prone to hydrogen embrit-

tlement (HE), which produces a notorious degradation of their

most important mechanical properties (tensile strength,

elongation, fracture toughness, and fatigue crack propagation

rate) [6e9]. Atomic hydrogen enters and diffuse through the

steel lattice under the influence of stress and concentration

gradients [10e12]. Hydrogen atoms become trapped in

different lattice defects, called hydrogen traps [13,14], where

different damage processes can take place, modifying the

operative failure micromechanisms [15,16]. In the case of

steels, hydrogen-enhanced decohesion (HEDE) along certain

internal interfaces, hydrogen-enhanced localized plasticity

(HELP) and adsorption induced dislocation emission (AIDE) are

the most cited hydrogen-assisted micromechanisms [17]. In

reality, it is nowwidely recognized that the HE phenomenon is

controlled by a combination of a determined amount of

hydrogen that has accumulated in particular areas of the steel

microstructure and critical stress/strain levels [18,19].

Depending on the strength level of steel and on the concen-

tration of internal hydrogen, hydrogen typically induces brit-

tle fractures, with fracture surfaces characterized by cleavage

or intergranular fracture, although ductile microvoids coa-

lescence fractures were also sometimes observed with the

most ductile structural steel grades. Among the many

research works on the detrimental effects of hydrogen on the

tensile properties of structural steels published over recent

decades is the CHMC1-2014 document by the Canadian Stan-

dards Association (CSA). This work assesses the compatibility

of materials with hydrogen [20]. Simple screening slow-strain

rate tensile tests performed with smooth or notched speci-

mens under specific hydrogen pressure were proposed and

hydrogen embrittlement indices (HEI) related to reduction of

area or to the notch tensile strength were recommended. This

standard categorizes materials satisfying the condition HEI

<10% as suitable and HEI >50% as non-suitable for hydrogen

services under the provided pressure. All other materials are

considered hydrogen embrittled and must undergo fracture

toughness and fatigue testing in such gaseous hydrogen

condition for compatibility assessment.

The effect of hydrogen on the tensile behaviour of

medium-high strength steels depends onmany factors. These

include the dimensions and geometry of the specimens, the

stress concentration factor (in the case of notched specimens),

the steel microstructure (chemical composition and heat

treatment) and the strength of the steel. In addition, various

testing variables must be considered, including the applied

displacement or strain rate, the hydrogenation medium

(hydrogen pressure with hydrogen gas or electrolyte and

current density in the case of hydrogen electrochemical
charged from aqueous solutions) and the temperature of the

test [21,22].

The influence of microstructure on hydrogen embrittle-

ment susceptibility was examined by Naninga et al. [23]

comparing notched tensile specimens of steel cathodically

chargedwith hydrogen at a fixed potential.While the values of

notch failure stress of the specimens tested in air increase

approximately linearly with the increase in hardness, when

the specimens were tested with hydrogen, the resultant notch

failure stress decreased with hardness. The strength of the

steel is the dominant factor in hydrogen embrittlement with

microstructure playing a secondary role. The susceptibility of

different microstructures of structural steels (ferrite, pearlite,

ferrite þ pearlite, bainite and martensite) was studied by

Michler et al. [24] through reduction of area measurements in

tensile tests performed in air and in 10 MPa hydrogen gas. A

clear correlation was obtained between hydrogen embrittle-

ment index and the steel microstructure. However, grain size

was not found to have a significant influence. Ogawa et al. [25]

used slow strain-rate tensile tests in 95 MPa hydrogen gas on

ferrite-pearlite steels with varying carbon contents to show

that hydrogen has only a minor impact on yield and ultimate

tensile strength. However, it led to severe decreases in elon-

gation and in reduction of area, the magnitude of this degra-

dation being more pronounced with increased carbon content

(higher steel strength).

The effect of hydrogen on notched tensile properties can be

important. For example, both ductility and strength can be

reduced significantly [26]. Wang et al. [27] demonstrated

hydrogen embrittlement increases with the stress concen-

trator factor, kt (higher notch length or lower notch tip radius)

in notched tensile tests performed with the same initial

hydrogen concentration. In these tests, hydrogen accumu-

lates just ahead of the notch tip, where local hydrostatic stress

attains maximum values, giving rise to high local hydrogen

concentrations. Lower stress is then required to break the

specimen. Since the level of hydrostatic stress that develops

in the notch tip region is proportional to the yield strength of

the steel, hydrogen embrittlement always increaseswith yield

strength [23,25]. Tests performed under very low displace-

ment rates exacerbate the adverse impact of hydrogen, as

hydrogen atoms have more time to diffuse through the steel

microstructure, eventually leading to higher hydrogen con-

centrations in the process zone [28e30]. On the other hand,

Barthelemy et al. [31] reported a 50% reduction in the fracture

toughness of a plain carbon steel tested in gaseous hydrogen

at 6.9 MPa and, similarly, Ogawa et al. [32] performed fracture

toughness tests in a low carbon non-alloyed steel in air and in

hydrogen gas under pressures of 0.7 and 115 MPa, noticing a

significant degradation on the fracture toughness manifested

in the load-displacement curves and also in the J-toughness

crack growth curves.

The purpose of this research is to examine the mechanical

behaviour of notched tensile specimens of 42CrMo4 steel

subjected to different heat treatments, carefully designed to

provide different microstructures. Electrochemical hydrogen

chargingwas applied during the tensile tests (in-situ hydrogen

charging or external hydrogen condition) and two different

hydrogenation conditions were also applied. The operative
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failure micromechanisms were identified and correlated with

steel microstructures and hardness or strength.
2. Materials and experimental procedure

2.1. Material and heat treatment

A commercial 42CrMo4 steel (AISI 4140) was employed in

this work. Table 1 displays its chemical composition. The

steel was delivered as a hot rolled plate with a thickness

of 12 mm. It is a medium carbon steel mainly alloyed with

chromium and molybdenum, which is considered to be an

excellent choice to be used in services under high-pressure

hydrogen [33]. The steel was submitted to normalizing,

annealing and quenching and tempering treatments. Table
Table 1 e Chemical composition of 42CrMo4 steel
(weight %).

Steel %C %Cr %Mo %Mn %P %S

42CrMo4 0.42 0.98 0.22 0.62 0.008 0.002

Table 2 e Heat treatments: FC¼ Furnace cooled, AC¼ Air
cooled, QT ¼ Quenched and tempered.

Steel grade Heat treatment

845-FC Annealed 845 �C/40min þ FC

1050-FC 1050 �C/40min þ FC

845-AC Normalized 845 �C/40min þ AC

1050-AC 1050 �C/40min þ AC

QT-600 Quench and tempered 845 �C/40min þ 600 �C/2h
QT-725 845 �C/40min þ 725 �C/4h

Fig. 1 e (a) Geometry and dimensions (mm) of notched tensile s

tensile test performed on notched specimens.
2 shows the different heat treatments applied. An auste-

nitization temperature of 845 �C was employed but, in the

case of normalized (air cooled) and annealed (furnace

cooled) grades, a temperature of 1050 �C was also used to

study the effect of prior austenite grain size in hydrogen

embrittlement. After quenching in water from 845 �C, two

different tempering conditions were also employed for the

quenched and tempered grades (600 �C for 2 h and 725 �C
for 4 h) to obtain hardness values similar to those of the

normalized and annealed grades. Vickers hardness (HV30)

was determined under a load of 30 kg. Tensile tests were

also performed in air on standard cylindrical specimens

with a diameter of 5 mm and a calibrated length of

28 mm.

2.2. Tensile tests

Tensile tests were carried out according to ISO 6892e1:2017

standard [34], at room temperature on an Instron 5582 tensile

testing machine using circumferentially notched round-bar

specimens, whose dimensions and geometry are illustrated

in Fig. 1(a).

Tensile tests were conducted in three different testing

conditions. The first test was always conducted in a hydrogen-

free environment (in air) at a standard displacement rate of

0.4 mm/min. The other two tests were carried out with in-situ

electrochemical hydrogen charging using two different con-

ditions: the first in an acidic aqueous solution 1 M H2SO4 with

a current density of 1 mA/cm2 (low hydrogen); the second in

the same acidic solution with an addition of 0.25 g/l of As2O3

with a current density of 0.5 mA/cm2 (high hydrogen). As2O3

addition prevents hydrogen atoms from recombining (H þ H

/ H2), more hydrogen accumulates on the surface of the

metal, and a larger hydrogen concentration enters the sample
pecimens and (b) scheme of the in-situ hydrogen charging

https://doi.org/10.1016/j.ijhydene.2023.10.082
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[35e37]. In these low and high hydrogen charging conditions,

hydrogen contents of 0.5 and 0.95 wppm, respectively, were

measured in the same steel (quenched and tempered at 700 �C
for 2 h, 223 HV) [38]. The former corresponds to a typical ser-

vice under high pressure hydrogen (Yamabe et al. [39]

measured hydrogen contents around 0.5 ppm using gaseous

charging under an hydrogen pressure of 100 MPa) and the

latter introduces approximately twice this hydrogen content

into the steel.

In all these in-situ hydrogen-charged tests, a low

displacement rate, 0.01 mm/min, was used to allow sufficient

time for hydrogen diffusion and accumulation, thus facili-

tating hydrogen embrittlement. Fig. 1(b) shows a scheme of
Fig. 2 e Steel microstructures, a) annealed at 845 �C, b) annealed
e) quenched and tempered at 600 �C, f) quenched and tempered
the in-situ electrochemical hydrogen charged test employed

in this work. The stress applied was continuously monitored

against the elongation of the specimens, and the ultimate

notched strength at failure, suN, was determined by dividing

the highest recorded tensile load by the initial cross-sectional

area measured in the notch region. The degree of hydrogen

embrittlement was quantified using the hydrogen embrittle-

ment index (HEI), provided by Equation (1): HEI goes from 0%

(no embrittlement, X¼ XH) to 100% (highest possible hydrogen

embrittlement, when XH ¼ 0).

HEI%¼X� XH

X
: 100 (1)
at 1050 �C, c) normalized at 845 �C, d) normalized at 1050 �C,
at 725 �C.
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Table 3 e Hardness, tensile properties and microstructures of 42CrMo4 grades.

Steel grades Microstructures Hardness
(HV30)

Yield strength
(MPa)

Ultimate tensile
strength (MPa)

Elongation
(e) %

845-FC Ferrite-pearlite (banded) 183 ± 6 336 664 20.1

1050-FC Ferrite-pearlite 210 ± 3 344 740 13.3

845-AC Mainly bainite 301 ± 3 677 1008 13.0

1050-AC Mainly bainite 285 ± 8 708 961 13.1

QT-600 Tempered martensite 307 ± 4 910 1002 15.0

QT-725 Tempered martensite 206 ± 3 526 607 22.0
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Fig. 3 e Stress-strain curves of notched tensile tests performed on a) 845-FC, b) 1050-FC, (c) 845-AC, (d) 1050-AC, (e) QT-600,

(f) QT-725.
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where X and XH are the measured steel property evaluated

without andwith hydrogen respectively (in this case the notch

tensile strength, suN).
3. Results and discussion

3.1. Microstructures and hardness

Ferrite-pearlite microstructures were produced after the

annealing treatments (Fig. 2 a, b). A banded ferrite-pearlite

microstructure was present in the grade that was annealed

at the lowest temperature (845 �C), but banding disappeared

when annealing at 1050 �C. The slightly lower hardness

measured in the steel austenitized at 845 �C (845-FC) is justi-

fied by the presence of a higher fraction of ferrite (see hard-

ness values in Table 3). Fig. 2 c) and d) presents the

microstructures produced after the two normalizing treat-

ments. They aremostly bainite, slightlymore refined andwith

a greater hardnesswhen the lowest austenitizing temperature

was applied (845-AC). Finally, the quenched and tempered

grades consist of tempered martensite microstructures (Fig. 2

e, f) with hardness similar to the other grades: QT-600 and

normalized samples have comparable hardness (around 300

HV) and the same occurswithQT-725 and the annealed grades

(around 200 HV). After tempering at 600 �C, elongated carbides

precipitated along block, packet and lath martensite bound-

aries, although structural acicularity is still present.

Tempering at 725 �C produced a fully tempered, relaxed, and

recrystallized microstructure with well distributed globular

carbides. The hardness, yield strength and tensile strength of

all these 42CrMo4 grades are shown in Table 3.

3.2. Notched tensile tests

Fig. 3 shows the stress-strain curves obtained with notched

tensile specimens in the different conditions tested with all

the grades studied. In all cases, the entrance of hydrogen

clearly decreases the notched tensile strength and greatly
Table 4 e Tensile tests results of notched specimens of 42CrM

Steel grade Test conditions Disp. rate (mm

845-FC (183 HV) Air 0.4

Low H. 0.01

High H. 0.01

1050-FC (210 HV) Air 0.4

Low H. 0.01

High H. 0.01

845-AC (301 HV) Air 0.4

Low H. 0.01

High H. 0.01

1050-AC (285 HV) Air 0.4

Low H. 0.01

High H. 0.01

QT-600 (307 HV) Air 0.4

Low H 0.01

High H 0.01

QT-725 (206 HV) Air 0.4

Low H 0.01

High H 0.01
decreases the elongation at failure. These effects are greater

with the higher hydrogen condition (solution with arsenic

oxide). It is also worth noting that failure in presence of

hydrogen took place after minimum plastic deformation in

the three grades with the greatest hardness (both normalized

grades and QT-600).

Table 4 includes the tensile test results obtained in all

notched tensile tests, including the applied displacement rate,

duration of each test, and the corresponding embrittlement

index related to the notch strength. In general, in both hy-

drogenated conditions, as hardness and strength increase so

do the corresponding embrittlement index. It is important to

note that HEI was consistently higher in the solution con-

taining arsenic oxide (high hydrogen), as more hydrogen en-

ters the steel microstructure in this situation.

All tests performed in air, showed an initiation failure re-

gion next to the tip of the notch where the main failure

micromechanism is ductile: dimples, coalescence of micro-

cavities, MVC. However, this changed when samples were

tested with simultaneous entrance of hydrogen. In all the

tests conducted in presence of hydrogen (in both hydroge-

nated conditions), quasi-cleavage (QC) was the only failure

initiation micromechanism. Some examples of such failures

are presented in Fig. 4. Quasi-cleavage operative failure

micromechanism with always low plasticity was predomi-

nant in the furnace cooled steel grade austenitized at higher

temperature. While in the case of the air-cooled samples, the

one austenitized at the highest temperature has much larger

cleavage facets due to its larger prior austenite grain size.

Cleavage facets have a smaller size and many more plasticity

features in the two quenched and tempered grades. No vestige

of MCV or intergranular fracture was observed in any of these

samples.

4. Discussion

In this paper hydrogen embrittlement has been studied using

notched tensile specimens with in-situ hydrogen charging.
o4 grades.

/min) Time (min) suN (MPa) HEI (%)

9 940 e

223 758 19

166 610 35

7 1021 e

221 763 25

157 656 35

9 1585 e

154 1077 32

114 605 62

7 1348 e

271 953 29

174 694 48

7 1701 e

331 1299 23

326 891 48

8 1053 e

278 961 9

212 851 19
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Fig. 4 e Failed surfaces of specimens tested in the solution with arsenic oxide (high hydrogen), (a) 845-FC, (b) 1050-FC, (c)

845- AC, (d) 1050-AC, (e) QT-600, (f) QT-725.
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This condition is interesting because the effects of hydrogen

are always more evident in presence of stress concentrators,

as hydrogen enters from the hydrogenated medium into a

plastically strained zone, diffuses and accumulates in the re-

gion ahead of the notch submitted to high hydrostatic

stresses, where different decohesion phenomena such as

intergranular cracking (HEDE mechanism) could take place

[40].

The notched tensile strength of all the microstructures

measured in air and in both hydrogenated conditions is

plotted against the hardness of the steel in Fig. 5. The blue line

shows the linear trend between the steel hardness and the
notched tensile strength in tests performed in air. The slope of

the line obtained with the annealed and normalized grades

with in-situ hydrogen charging decreases as hydrogen con-

tent in the samples increases. Fig. 5 also shows that in these

hydrogenated conditions, quenched and tempered grades

(represented with green and orange triangles) always display

a better behaviour than annealed and normalized grades.

The effect of the steel microstructure on the notched

tensile strength measured in air and in tests performed with

hydrogen charging is better understood by directly

comparing the results obtained with different microstruc-

tures with similar hardness. Tempered martensite and

https://doi.org/10.1016/j.ijhydene.2023.10.082
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bainitic microstructures were compared using the results

obtained with QT-600, 845-AC and 1050-AC grades, as these

grades have similar hardnesses, 307, 301 and 285 HV

respectively. Fig. 6 shows the results of the notched tensile

strength obtained in these tests. Bainitic microstructures

have significantly lower notched tensile strength in all tested

conditions (air, low and high hydrogenated media) than

tempered martensite microstructures.
Tempered martensite and ferrito-pearlitic microstructures

were compared using the results obtained with QT-725, 845-

FC and 1050-FC grades, as these grades had similar hard-

nesses, 206, 183 and 210 HV respectively.

Fig. 7 shows the results of the notched tensile strength

obtained in these tests. Ferrito-pearlitic microstructures also

have significantly lower notched tensile strength on all the
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Fig. 7 e Notched tensile strength of tempered martensite (QT 725-4h) and ferrito-pearlitic microstructures (845FC and

1050FC). Tests in air (blue), in low hydrogen (orange) and high hydrogen (green) conditions. (For interpretation of the

references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8 e HEI related to notched tensile strength versus yield strength (sys) for the AC, FC and Q þ T grades tested in low

(green symbols) and high (orange symbols) hydrogenated conditions. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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conditions tested (air, low and high hydrogenatedmedia) than

quenched and tempered ones.

Since yield strength is the property typically used in the

design of structural components and to assess hydrogen

embrittlement, Fig. 8 represents the hydrogen embrittlement

indexes related to the notch tensile strength obtained in low
and high hydrogenated conditions with all the steel grades

studied against the steel yield strength. Hydrogen embrittle-

ment indexes increase linearly with the yield strength of the

steels in low and high hydrogenated media. Embrittlement

indexes near or above 50% (steels non suitable for hydrogen

service) were measured in both normalized grades and the

https://doi.org/10.1016/j.ijhydene.2023.10.082
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QT-600 steel, all with hardness of approximately 300 HV,

when tested in the high hydrogenated condition. Only the

quenched and tempered steel with the lowest yield strength

and hardness, with a hydrogen embrittlement index below

10% when tested in the low hydrogenated condition is fully

compatible with hydrogen. Finally, in general, lower hydrogen

embrittlement indexes were obtained when the low austeni-

tization temperature (845 �C) was used in the annealed and

normalized grades. This effect is particularly clear in the case

of the air-cooled samples. The sample austenitized at the

highest temperature, with a larger prior austenite grain size,

has lower hardness but a significantly larger HEI in both hy-

drogenated media. Much larger cleavage facets were also

found on its failure surface (Fig. 4a and b).
5. Conclusions

A significant loss in notched strength was observed when

hydrogen was introduced in the course of the in-situ electro-

chemically hydrogen charged notched tensile tests performed

on all tested 42CrMo4 steel microstructures. Hydrogen

embrittlement indexes increase as the applied electro-

chemical conditions introduce higher hydrogen levels and as

the steel hardness increases.

Steels with hardness near or above 300 HV, with bainitic or

tempered martensite microstructures proved to be not suit-

able for hydrogen service when tested in the high hydroge-

nated condition and only the Q þ T grade with the lowest

hardness, tempered at 725 �C for 4 h, can be considered fully

compatiblewith hydrogen (HEI<10%) in the lowhydrogenated

condition.

The main failure micromechanism in all the notched ten-

sile tests performed in air was ductile (coalescence of micro-

cavities, MVC), but changed to quasi-cleavage (QC) when

sampleswere testedwith simultaneous entrance of hydrogen.

Lower notched tensile strength with in-situ hydrogen

charging was measured in the normalized and annealed

grades than with the quenched and tempered grades with the

same hardness.

Bainitic and ferrito-pearlitic microstructures are more

susceptible to hydrogen embrittlement than quenched and

tempered ones.

Finally, in general, lower hydrogen embrittlement indexes

were obtained when the low austenitization temperature

(845 �C) was used in the annealed and normalized grades.
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