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Abstract

The recently defined concept of statistical depth function for fuzzy sets provides a theoretical framework for ordering fuzzy 
sets with respect to the distribution of a fuzzy random variable. One of the most used and studied statistical depth functions for 
multivariate data is simplicial depth, based on multivariate simplices. We introduce a notion of pseudosimplices generated by fuzzy 
sets and propose three generalizations of simplicial depth to fuzzy sets. Their theoretical properties are analyzed and the behavior 
of the proposals is illustrated through a study of both synthetic and real data.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

In the general framework of fuzzy data, data are classes of objects with continuous membership [35]. They are 
generally represented as functions from Rp to [0, 1], whereas multivariate data are points in Rp. Statistical depth 
functions are a quantification of the intuitive notion that the median is the point that is most ‘in the middle’, providing 
a center-outward ordering of the points in a space with respect to a probability distribution or dataset. Thus, statistical 
depth opens an avenue for extending rank-based and quantile-based statistical procedures from the real line to more 
complex spaces. While ordering data is trivial in the real line, in the sense that moving outward is just going towards 
−∞ or ∞, it becomes harder for multivariate data (and even harder for more complex types of data) as no natural total 
order is present. To understand some of the challenges involved in ordering elements of a space with dimension higher 
than one, let us consider the first idea one might have to generalize the univariate median: applying the coordinate-
wise median to obtain a multivariate median in Rp. The coordinate-wise median may lie outside the convex hull of 
the data, which is against the idea that the median should be as much ‘in the middle’ of the data as possible. Moreover, 
by changing the coordinate system (which does not affect the data themselves, only how we represent them) the 
coordinate-wise median of the dataset can be modified. Even in simple cases, like the vertices of an equilateral triangle 
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and its center of mass, the coordinate-wise median fails to provide the intuitive solution that the innermost point is the 
center of mass [6].

Tukey [33] first introduced depth for multivariate data, computing the depth of a point x as the least fraction of data 
in some halfspace containing x. Some pre-existent notions in multivariate analysis can be expressed in the language 
of depth. For instance, Mahalanobis distance gives rise to Mahalanobis depth and the notion of convex hull of a set 
of points to convex hull peeling depth [2]. Liu [13] introduced simplicial depth, which is one of the best known and 
most popular depth functions, based on the notion of a simplex generated by a set of points. She proved a number of 
nice properties which then inspired Zuo and Serfling’s abstract definition of statistical depth function, constituted by 
a list of desirable properties [37]. In intuitive terms, these are as follows:

(M1) Affine invariance. A change of coordinates should not affect the depth values.
(M2) Maximality at the center of symmetry. If a distribution is symmetric, the deepest point should be the center of 

symmetry.
(M3) Monotonicity from the deepest point. Depth values should decrease along any ray that departs from a deepest 

point.
(M4) Vanishing at infinity. The depth value of x should go to 0 as its norm goes to infinity.

It should be underlined that these are not clear-cut axioms. Failing to satisfy some property, or doing so only under 
some conditions, is not considered enough for a function to be excluded from being a depth function.

Today, the number of depth functions runs in the dozens and this is a broad and active topic in non-parametric 
statistics. With the rise of functional data analysis and the apparition of several adaptations of multivariate depth 
notions to the functional setting, Nieto-Reyes and Battey proposed a list of desirable properties for depth functions in 
functional (metric) spaces [21]. They also proposed an instance of depth satisfying all those properties in [22] which 
was later applied to a real data analysis in [23]. The connections between depth functions and fuzzy sets were noted 
by Terán [30,31], who showed that some depth functions can be rigorously interpreted as fuzzy sets and vice versa. In 
[8] we proposed two definitions of statistical depth for fuzzy data; although fuzzy sets are functions, these definitions 
list desirable properties tailored to fuzzy sets. We also generalized Tukey depth as a first example of depth for fuzzy 
data satisfying the proposed properties. Sinova [28] also considered depth for fuzzy data and defined depth-trimmed 
means. She applied depth functions for functional data to fuzzy sets via their support functions, functions that we also 
use. However, she did not propose a general definition of depth in the fuzzy setting. Thus, she did not check whether 
the properties constituting the definition were satisfied, which is a major objective of this paper.

It is important to show that most of the relevant examples of depth can be adapted to the fuzzy setting. Firstly, 
to justify the viability of the notions of depth for fuzzy data. Secondly, to create a library of depth functions with 
guaranteed good theoretical properties in order to apply them in practice. And thirdly, to test the abstract definitions 
proposed in [8] and understand whether they are fine as they stand or might need to be adjusted. In this paper, we 
study the problem of adapting Liu’s simplicial depth to the fuzzy setting. As mentioned above, it is one of the best 
known and most used depth functions for multivariate data. For instance, Liu et al. [14] developed techniques to study 
multivariate distributional characteristics using simplicial depth, and other depth functions. The multivariate definition 
of simplicial depth assigns to each point x ∈ Rp the probability that x lies in the convex hull of p + 1 independent 
observations. Provided the distribution is continuous, with probability 1, those observations define a p-dimensional 
simplex (a triangle when p = 2, a tetrahedron when p = 3, and so on). That p-dimensional simplex has a non-empty 
interior, which may contain x or not. If x is very outlying in the distribution, the probability that the simplex contains 
x is very small. Thus x is deeper insofar as, loosely speaking, it is more likely that the data points in a small sample 
‘capture’ x among them.

When extending this notion to functional data, López-Pintado and Romo [16] already realized that using the convex 
hull to determine which functions are ‘among’ other functions is naive. We face similar problems in the fuzzy case. 
In the end, the convex hull of finitely many points is a finite-dimensional set, so in any infinite-dimensional space 
the vast majority of the elements in the space will be excluded from it. This creates a propensity to assign zero depth 
which will require an adaptation in line with that in [16]. Another obstacle is that some multivariate definitions do not 
transfer immediately to the fuzzy setting. For instance, Tukey depth is based on the notion of a halfspace but spaces 
of fuzzy sets, not being linear spaces, cannot be ‘halved’ by hyperplanes and a workaround is needed [8]. In this case, 
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simplicial depth rests on the notion of simplex in Rp, which, as will be discussed, also needs a workaround. That 
results in a plurality of ways to extend simplicial depth.

The paper is organized as follows. Section 2 contains the required notation and background on fuzzy sets and 
statistical depth for a comprehensive understanding of the next sections. An operative adaptation of simplices to 
spaces of sets and fuzzy sets is presented in Section 3. The definitions of the proposed variants of simplicial depth 
are in Section 4. Their status with respect to the desirable properties in the definitions of depth for fuzzy data [8] is 
studied in Section 5, assuming that the distribution is ‘continuous’ in certain sense. Examples with real and simulated 
data are worked out in Section 6, while a discussion is presented in Section 7. All proofs are deferred to Appendix A.

2. Notation and preliminaries

The following notation is used throughout. The symbol =L denotes equality in distribution of random variables, 
and Mp×p(R) is the set of all p × p real matrices.

Let Kc(Rp) be the class of non-empty compact and convex subsets of Rp. Any set K ∈ Kc(Rp) can be identified 
with a fuzzy set, its indicator function IK : Rp →R where IK(x) = 1 if x ∈ K and IK(x) = 0 otherwise. The support 
function of a set K ∈Kc(Rp) is the mapping sK : Sp−1 →R defined as

sK(u) := sup{〈u, k〉 : k ∈ K}
for every u ∈ Sp−1. Sp−1 := {x ∈ Rp : ‖x‖ ≤ 1} is the unit sphere of Rp , with ‖.‖ denoting the Euclidean norm and 
〈·, ·〉 denotes the usual inner product in Rp.

A function A :Rp → [0, 1] is a fuzzy set on Rp (or a fuzzy subset of Rp). Let Fc(Rp) denote the class of all fuzzy 
sets A on Rp such that the α-level of A, given by

Aα := {x ∈Rp : A(x) ≥ α}
if α ∈ (0, 1] and the closed support of A if α = 0, is non-empty, compact and convex for every α ∈ [0, 1]. To simplify 
our notation, we will refer to an element of Fc(Rp) as a “fuzzy set” in the following discussion. The support function
of A ∈ Fc(Rp) is the mapping sA : Sp−1 × [0, 1] → R such that sA(u, α) := supv∈Aα

〈u, v〉 for every u ∈ Sp−1

and α ∈ [0, 1]. In Fc(R), the subclass of trapezoidal fuzzy sets [10, Section 10.7] is used very often. Four values 
a, b, c, d ∈ R with a ≤ b ≤ c ≤ d determine the trapezoidal fuzzy set

Tra(a, b, c, d)(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − a

b − a
, if a < x < b,

1, if b ≤ x ≤ c,

d − x

d − c
, if c < x < d,

0, otherwise.

2.1. Arithmetics and Zadeh’s extension principle

Let A, B ∈ Fc(Rp) and γ ∈ R. The formulae

(A + B)(t) := sup
x,y∈Rp :x+y=t

min{A(x),B(y)}, and

(γ · A)(t) := sup
x∈Rp :t=γ ·x

A(y) =

⎧⎪⎪⎨
⎪⎪⎩

A
(

t
γ

)
, if γ �= 0

I{0}(t), if γ = 0

valid for arbitrary t ∈Rp , define an addition and a product by scalars in Fc(Rp).
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Given A, B ∈Fc(Rp), γ ∈ [0, ∞), u ∈ Sp−1 and α ∈ [0, 1], a useful identity that makes use of these operations is

sA+γ ·B(u,α) = sA(u,α) + γ · sB(u,α). (2.1)

A consequence of this is

sK+γ ·L(u) = sK(u) + γ · sL(u) (2.2)

for any K, L ∈Kc(Rp), γ ∈ [0, ∞) and u ∈ Sp−1.
Zadeh’s extension principle [36] enables the application of a crisp (non-fuzzy) function to fuzzy sets in the follow-

ing way. Given a (crisp) function f : Rp → Rp and a fuzzy set A ∈ Fc(Rp), the image f (A) ∈ Fc(Rp) is the fuzzy 
set defined by

f (A)(t) := sup{A(y) : y ∈Rp,f (y) = t},
for all t ∈ Rp .

Let us consider M ∈ Mp×p(R) be a non-singular matrix and consider the mapping f : Rp → Rp defined by 
f (x) = M · x. Then, if we apply the function f to a fuzzy set A ∈Fc(Rp) we obtain a new fuzzy set M ·A defined as

(M · A)(t) = sup{A(y) : y ∈ Rp,M · y = t}.
By [8, Proposition 8.2],

sM·A(u,α) = ‖MT · u‖ · sA
(

1

‖MT · u‖ · MT · u,α

)
(2.3)

for any A ∈Fc(Rp), non-singular M ∈Mp×p(R), u ∈ Sp−1 and α ∈ [0, 1].

2.2. Metrics

We will use several metrics in Fc(Rp). For any fuzzy sets A, B ∈Fc(Rp),

dr(A,B) :=

⎧⎪⎪⎨
⎪⎪⎩
(∫

[0,1]
(
dH(Aα,Bα)

)r dν(α)
)1/r

if r ∈ [1,∞),

supα∈[0,1] dH(Aα,Bα) if r = ∞,

where

dH(S,T ) := max

{
sup
s∈S

inf
t∈T

‖ s − t ‖, sup
t∈T

inf
s∈S

‖ s − t ‖
}

denotes the Hausdorff metric and ν the Lebesgue measure in [0, 1]. The metric space (Fc(Rp), dr) is non-complete 
and separable for any r ∈ [1, ∞), while the metric space (Fc(Rp), d∞) is non-separable and complete [5]. It is 
possible to consider Lr -type metrics [5], for instance, given any A, B ∈Fc(Rp),

ρr(A,B) :=
⎛
⎜⎝ ∫
Sp−1

∫
[0,1]

|sA(u,α) − sB(u,α)|r dν(α)dVp(u)

⎞
⎟⎠

1/r

where Vp denotes the normalized Haar measure (uniform probability distribution) in Sp−1. The metrics dr and ρr

(for the same value of r) are equivalent.
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2.3. Fuzzy random variables

There exist different definitions of fuzzy random variables in the literature. Here we consider the Puri’s and 
Ralescu’s approach (see [24]). Let (�, A, P ) be a probability space. A random compact set [20] is a function 
� : � → Kc(Rp) such that {ω ∈ � : �(ω) ∩ K �= ∅} ∈ A for each K ∈ Kc(Rp). A fuzzy random variable [24] is 
a function X : � → Fc(Rp) such that Xα(ω) is a random compact set for all α ∈ [0, 1], where the α-level mapping 
Xα : � → Kc(Rp) is defined by Xα(ω) := {x ∈Rp :X (ω)(x) ≥ α} for any ω ∈ �. Note that given a random variable 
X : � → Rp , composing it with the indicator function gives a fuzzy random variable IX : � → Fc(Rp).

It is not straightforward from this definition that a fuzzy random variable is a measurable function. If we consider in 
Fc(Rp) the σ -algebra generated by the mappings Lα : Fc(Rp) → Kc(Rp), defined by Lα(A) = Aα for any α ∈ [0, 1], 
we have that X is a fuzzy random variable if and only if it is measurable with respect to that measurable space. The 
σ -algebra considered above is the smallest σ -algebra which makes each Lα measurable. Krätschmer [11] proved that 
this σ -algebra is the Borel σ -algebra generated by the metrics dr or ρr for any r ∈ [1, ∞). Let X : � →Fc(Rp) be a 
fuzzy random variable, the support function of X is the function sX : Sp−1 × [0, 1] × � → R where sX (u, α, ω) :=
sX (ω)(u, α), for all u ∈ Sp−1, α ∈ [0, 1] and ω ∈ �. Throughout the paper, (�, A, P ) denotes the probabilistic space 
associated with a general fuzzy random variable X . Let L0[Fc(Rp)] denote the class of all fuzzy random variables 
on the measurable space (�, A) and C0[Fc(Rp)] ⊆ L0[Fc(Rp)] the class of all fuzzy random variables X such that 
sX (u, α) is a continuous real random variable for each (u, α) ∈ Sp−1 × [0, 1].

2.4. Fuzzy symmetry and depth: semilinear and geometric depth

Let X : � →Fc(Rp) be a fuzzy random variable and A ∈Fc(Rp) a fuzzy set. In [8], we proposed the F-symmetry
notion for fuzzy random variables: X is F -symmetric with respect to A if, for all (u, α) ∈ Sp−1 × [0, 1],

sA(u,α) − sX (u,α) =L sX (u,α) − sA(u,α).

It can be checked that the indicator function I{X} of a p-dimensional random vector X is F-symmetric if and only if 
X is a symmetrically distributed random vector.

Let Med be the (possibly multivalued) median operator on real random variables. It is also proved in [8] that, for 
all u ∈ Sp−1 and α ∈ [0, 1],

sA(u,α) ∈ Med(sX (u,α)), if X is F -symmetric with respect to A. (2.4)

In the sequel, given a real sample x1, . . . , xn, Med(x1, . . . , xn) denotes its median.
Let H ⊆ L0[Fc(Rp)], J ⊆ Fc(Rp), and let d : Fc(Rp) ×Fc(Rp) → [0, ∞) be a metric. The following properties 

are considered in [8]. In them, A denotes any element of J such that D(A; X ) = sup{D(B; X ) : B ∈ J }, i.e., a fuzzy 
set of maximal depth with respect to the distribution of X .

P1. D(M · C + B; M · X + B) = D(C; X ) for any non-singular matrix M ∈ Mp×p(R), any B, C ∈ J and any 
X ∈ H.

P2. For (some notion of symmetry and) any symmetric fuzzy random variable X ∈ H, D(U ; X ) = supB∈Fc(Rp) D(B;
X ), where U ∈ J is a center of symmetry of X .

P3a. D(A; X ) ≥ D((1 − λ) · A + λ · B; X ) ≥ D(B; X ) for all λ ∈ [0, 1] and all B ∈ Fc(Rp).
P3b. D(A; X ) ≥ D(B; X ) ≥ D(C; X ) for all B, C ∈ J satisfying d(A, C) = d(A, B) + d(B, C).
P4a. limλ→∞ D(A + λ · B; X ) = 0 for all B ∈ J \ {I{0}}.
P4b. limn→∞ D(An; X ) = 0 for every sequence of fuzzy sets {An}n such that the limn→∞ d(An, A) = ∞.

In Property P2, F-symmetry is considered in this work. Another notion of symmetry is also proposed in [8]. According 
to [8], a mapping D(·; ·) : J ×H → [0, ∞) is a semilinear depth function if it satisfies P1, P2, P3a and P4a for each 
fuzzy random variable X ∈ H. It is a geometric depth function with respect to d if it satisfies P1, P2, P3b and P4b for 
each fuzzy random variable X ∈ H. Notice that semilinear depth only depends on the arithmetics of Fc(Rp) while 
geometric depth depends on the choice of a specific metric.
5
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3. Pseudosimplices in Fc(R
p)

One of the most well-known statistical depth functions for multivariate data is simplicial depth [13]. Simplicial 
depth is an instance of what Zuo and Serfling [37] called ‘Type A depth’, i.e., the depth of a point is the probability 
that it lies in a certain random set constructed from independent and identically distributed copies of the random 
vector. As such, it is the coverage function of a random set, and a connection to fuzzy sets is immediate [9]. Further 
examples of Type A depth functions are majority depth [27,14], convex hull peeling depth [2], spherical depth [7], 
and lens depth [15].

Let (�, A, P ) be the underlying probability space. The simplicial depth of x ∈ Rp with respect to a probability 
distribution P on Rp is defined to be

SD(x;P) := P
(
ω ∈ � : x ∈ S[X1(ω), . . . ,Xp+1(ω)]) , (3.1)

where X1, . . . , Xp+1 are independent and identically distributed random variables with distribution P and, for any 
x1, . . . , xp+1 ∈ Rp , S[x1, . . . , xp+1] is the set

S[x1, . . . , xp+1] :=
⎧⎨
⎩λ1x1 + . . . + λp+1xp+1 :

p+1∑
i=1

λi = 1, λi ≥ 0

⎫⎬
⎭ (3.2)

i.e., S[x1, . . . , xp+1] is the convex hull of the points x1, . . . , xp+1. A characterization of simplices in Rp is provided 
in the next result.

Proposition 3.1. For any x1, . . . , xp+1 ∈Rp ,

S[x1, . . . , xp+1] =
{
x ∈ Rp : 〈u,x〉 ∈ [m(u),M(u)] for all u ∈ Sp−1

}
,

with m(u) := min{〈u, x1〉, . . . , 〈u, xp+1〉} and M(u) := max{〈u, x1〉, . . . , 〈u, xp+1〉}.

If the Xi ’s are affinely independent, S[X1, . . . , Xp+1] is by definition a (random) p-dimensional simplex, which 
explains the name ‘simplicial depth’. Indeed, the Xi’s are affinely independent, almost surely, provided that P assigns 
zero probability to any lower-dimensional subspace of Rp; which is the case for continuous distributions. In the 
statistical depth literature, the name ‘simplex’ reflects the fact that exactly p + 1 points are taken for the convex 
hull, although it can fail to be p-dimensional for an arbitrary distribution P . With this in mind, we will freely call 
S[X1, . . . , Xp+1] a simplex in the sequel.

Before proposing examples of depth functions inspired by simplicial depth, we study how to adapt simplices to 
our context. To the best of our knowledge, the literature contains no notion of a simplex in Fc(Rp). In [3], however, 
a band generated by compact and convex sets is defined, which coincides with our definition of a pseudosimplex in 
Kc(Rp) (Definition 3.2 below). We analyze it first in order to use it in our proposed definition of a pseudosimplex in 
Fc(Rp).

Definition 3.2. The pseudosimplex generated by A1, . . . , Ap+1 ∈Kc(Rp) is

Sc[A1, . . . ,Ap+1] :=
{
A ∈Kc(R

p) : sA(u) ∈ [m(u),M(u)] for all u ∈ Sp−1
}

,

where m(u) := min{sA1(u), . . . , sAp+1(u)} and M(u) := max{sA1(u), . . . , sAp+1(u)}.

Our justification for Definition 3.2 is that, according to Proposition 3.1, the simplex generated by p + 1 points, 
x1, . . . , xp+1, coincides with the set of points whose projections in every direction u ∈ Sp−1 are in the closed interval 
generated by the minimum and the maximum of {〈u, x1〉, . . . , 〈u, xp+1〉}. Thus, replacing in this characterization the 
inner products by the support function of the elements in Kc(Rp) yields Definition 3.2.

As simplices are defined to be subsets of linear spaces, and Kc(Rp) and Fc(Rp) are not linear but they embed 
into appropriate linear spaces (e.g., by identifying their elements with support functions), there arises the question 
whether, after such an embedding, Sc[A1, . . . , Ap+1] becomes an infinite-dimensional simplex [34, Section 1.5, pp. 
46–53]. The name ‘pseudosimplex’ avoids prejudicing the question.
6
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Since the operations of sum and product by a scalar are available in Kc(Rp) (Section 2.1), an alternative would 
be to define the simplex generated by A1, . . . , Ap+1 ∈ Kc(Rp) to be the set of all convex combinations of these 
generating elements, that is⎧⎨

⎩A ∈ Kc(R
p) : A =

p+1∑
i=1

λi · Ai, with
p+1∑
i=1

λi = 1 and λi ≥ 0

⎫⎬
⎭ . (3.3)

That corresponds to the convex hull of the set {A1, . . . , Ap+1} when Kc(Rp) is regarded as a convex combination 
space [32]. The next result proves that the convex hull is contained in the corresponding pseudosimplex. Example 3.4
shows that both sets are not necessarily equal.

Proposition 3.3. For any A1, . . . , Ap+1 ∈ Kc(Rp),⎧⎨
⎩A ∈ Kc(R

p) : A =
p+1∑
i=1

λi · Ai,

p+1∑
i=1

λi = 1, λi ≥ 0

⎫⎬
⎭⊆ Sc[A1, . . . ,Ap+1].

Example 3.4. Let p = 1, A = [0, 1] and B = [3, 4]. Then

Sc[A,B] = {[x, y] : x ∈ [0,3], y ∈ [1,4]}
while the simplex in the sense of Equation (3.3) is

S := {[3λ,1 + 3λ] : λ ∈ [0,1]} .

For instance, {2} ∈ Sc[A, B] but {2} /∈ S.

Our choice of the pseudosimplex, instead of the convex hull simplex in (3.3), is based on cases like the last ex-
ample. Intuitively, it is hard to deny that {2} is between A and B in a definite sense, but it cannot be written as a 
convex combination of them. In this connection, see Proposition 3.8 below concerning the role of ‘betweenness’ in 
the definition of pseudosimplices in the fuzzy case.

We will extend now the notion of a pseudosimplex to the fuzzy case by working α-level by α-level.

Definition 3.5. The pseudosimplex generated by A1, . . . , Ap+1 ∈Fc(Rp) is

SF [A1, . . . ,Ap+1] := {
A ∈Fc(R

p) : Aα ∈ Sc[(A1)α, . . . , (Ap+1)α] for all α ∈ [0,1]} ,

where (Ai)α denotes the α-level of Ai .

As fuzzy sets are a generalization of ordinary sets in Rp , it is interesting to underline that the notion of a pseu-
dosimplex generated by crisp sets relates to that of a simplex in the multivariate case. For that, we consider the class 
of fuzzy sets

Rp := {
I{x} ∈Fc(R

p) : x ∈ Rp
}
,

which can be identified with Rp.

Proposition 3.6. For any x1, . . . , xp+1 ∈Rp ,

SF

[
I{x1}, . . . , I{xp+1}

]
∩Rp = {

I{x} : x ∈ S[x1, . . . , xp+1]
}
.

The proof is trivial. A direct implication of the proposition is{
I{x} : x ∈ S[x1, . . . , xp+1]

}
� SF

[
I{x1}, . . . , I{xp+1}

]
(3.4)

provided there exist i, j ∈ {1, . . . , p + 1} such that xi �= xj . Denoting the segment joining xi and xj by xixj , by 
Definition 3.5, we have
7
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Ixixj
∈ SF

[
I{x1}, . . . , I{xp+1}

]
.

However,

Ixixj
/∈ {I{x} : x ∈ S[x1, . . . , xp+1]

}
because xixj is not a single point.

Another implication is that the result in Proposition 3.6 is true for Kc(Rp). Let us denote the set of all singletons 
by Rp

c := {{x} ∈Kc(Rp) : x ∈ Rp}.

Corollary 3.7. For any x1, . . . , xp+1 ∈Rp ,

Sc[{x1}, . . . , {xp+1}] ∩Rp
c = {{x} : x ∈ S[x1, . . . , xp+1]}.

One also has for this case the inclusion in (3.4). An example is that of the pseudosimplex generated by {0} and {3}, 
which contains not only singletons but also sets like the interval [1, 2] which lies entirely in the gap between 0 and 3.

The Ramík–Římanék partial order in Fc(R) [25, Definition 3] is given by

A1 � A2 ⇔ inf(A1)α ≤ inf(A2)α, sup(A1)α ≤ sup(A2)α ∀α ∈ (0,1].
This provides a natural (partial) ordering in Fc(R), which ranking methods for fuzzy numbers should be consistent 
with.

Proposition 3.8. Let A1, A2 ∈Fc(R). If A1 � A2 then SF [A1, A2] is the set of all A ∈Fc(R) such that A1 � A � A2.

Propositions 3.6 and 3.8 confirm that pseudosimplices are consistent with a natural notion of ‘being between’ for 
fuzzy numbers; as opposed to what would have happened with convex hull simplices.

4. Simplicial depth functions for fuzzy sets

Our analogs to simplicial depth are not the direct result of plugging the fuzzy pseudosimplex into the simplicial 
depth formula. To understand why, we first propose and discuss a straightforward adaptation.

The naive simplicial depth, based on J ⊆ Fc(Rp) and H ⊆ L0[Fc(Rp)], of a fuzzy set A ∈ J with respect to a 
fuzzy random variable X ∈H is

DnS(A;X ) := P
(
A ∈ SF [X1, . . . ,Xp+1]

)
, (4.1)

where X1, . . . , Xp+1 are p + 1 independent and identically distributed random variables with distribution PX . Setting

mX (u,α) := min{sX1(u,α), . . . , sXp+1(u,α)}, (4.2)

MX (u,α) := max{sX1(u,α), . . . , sXp+1(u,α)} (4.3)

for any (u, α) ∈ Sp−1 × [0, 1], one can also express this function as

DnS(A;X ) = P
(
sA(u,α) ∈ [mX (u,α),MX (u,α)] for all (u,α) ∈ Sp−1 × [0,1]

)
. (4.4)

It is not self-evident that DnS is well defined:

(i) In (4.1), it is not clear whether SF [X1, . . . , Xp+1] is a random set in Fc(Rp), which would ensure that the proba-
bility makes sense.

(ii) In (4.4), the event depends on uncountably many (u, α), making it an uncountable intersection which might fail 
to be measurable.

Thus it becomes necessary to establish the measurability of those events.

Proposition 4.1. The function DnS is well defined.
8
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The proposed naive simplicial depth generalizes the multivariate, simplicial depth, as observed below by taking 
J = Rp .

Proposition 4.2. For any random variable X on Rp and x ∈Rp ,

DnS

(
I{x}; IX

)= SD(x;PX).

The proof follows directly. Although we replaced convex hull simplices by pseudosimplices, which are generally 
larger, this naive depth function may still result in a high number of ties at zero, which is inappropriate for certain 
applications such as classification. That is a consequence of the fuzzy set having to be completely contained in the 
pseudosimplex. An analogous problem was observed by López-Pintado and Romo when adapting simplicial depth to 
functional data in [16]. Their definition of band depth aims at ordering functional data and stems from simplicial depth 
in the same way as our naive simplicial fuzzy depth. To overcome this shortcoming, in [16] a modified band depth
is introduced which inspires our next definition. A similar reasoning is also found in [17,18], both in the functional 
setting.

Definition 4.3. The modified simplicial depth, based on J ⊆ Fc(Rp) and H ⊆ L0[Fc(Rp)], of a fuzzy set A ∈ J
with respect to a random variable X ∈H is

DmS(A;X ) := E
(
Vp ⊗ ν{(u,α) ∈ Sp−1 × [0,1] : sA(u,α) ∈ [mX (u,α),MX (u,α)]}

)
,

where mX (u, α) and MX (u, α) are defined in (4.2) and (4.3) and X1, . . . , Xp+1 are independent and identically 
distributed random variables with distribution PX .

By Fubini’s theorem,

DmS(A;X ) =
∫

Sp−1

∫
[0,1]

P
(
sA(u,α) ∈ [mX (u,α),MX (u,α)])dν(α)dVp(u), (4.5)

as justified by the next proposition.

Proposition 4.4. The function DmS is well defined.

The formulation in (4.5) has inspired us to introduce the following definition of simplicial, fuzzy, depth, which is 
also motivated by the Tukey depth in [33], defined as an infimum over Sp−1.

Definition 4.5. The simplicial depth based on J ⊆ Fc(Rp) and H ⊆ L0[Fc(Rp)] of a fuzzy set A ∈ J with respect 
to a random variable X ∈ H is

DFS(A;X ) := inf
u∈Sp−1

E
(
ν{α ∈ [0,1] : sA(u,α) ∈ [mX (u,α),MX (u,α)]}) ,

where mX (u, α) and MX (u, α) are defined in (4.2) and (4.3) and X1, . . . , Xp+1 are independent and identically 
distributed random variables with distribution PX .

Again by Fubini’s theorem,

DFS(A;X ) = inf
u∈Sp−1

∫
[0,1]

P (sA(u,α) ∈ [mX (u,α),MX (u,α)])dν(α). (4.6)

Proposition 4.6. The function DFS is well defined.

The difference between Definitions 4.3 and 4.5 can be understood as follows. In (4.5), we take the average over 
Sp−1 of the integral over [0, 1], while in (4.6) we take the infimum over Sp−1 of the integral over [0, 1], that is, we 
consider the direction u ∈ Sp−1 for which the integral is smallest. The next example examines the difference between 
9
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DmS and DFS , and their suitability under different scenarios. The example is in Fc(R), for which Definitions 4.3 and 
4.5 reduce to

DmS(A;X ) = 1

2

∑
u∈{−1,1}

E
(
ν{α ∈ [0,1] : sA(u) ∈ [mX (u,α),MX (u,α)]}) (4.7)

and

DFS(A;X ) = min
u∈{−1,1} E

(
ν{α ∈ [0,1] : sA(u) ∈ [mX (u,α),MX (u,α)]}) , (4.8)

respectively.

Example 4.7. Let us consider the fuzzy random variable X : � → Fc(R) such that

P (ω ∈ � : X (ω) = I[1,2]) = P (ω ∈ � :X (ω) = I[4,5]) = 1/2.

Let X1 = I[1,2] and X2 = I[4,5] be two independent observations of X . With this, for each α ∈ [0, 1],
sX1(−1, α) = −1, sX1(1, α) = 2, sX2(−1, α) = −4 and sX2(1, α) = 5.

Then (4.7) and (4.8) for a general A ∈Fc(R) yield

DmS(A;X ) = 1

2

[
ν
{
α ∈ [0,1] : sA(1, α) ∈ [2,5]}+

ν
{
α ∈ [0,1] : sA(−1, α) ∈ [−4,−1]}] (4.9)

and

DFS(A;X ) = min
{
ν{α ∈ [0,1] : sA(1, α) ∈ [2,5]},
ν{α ∈ [0,1] : sA(−1, α) ∈ [−4,−1]}

}
.

(4.10)

Let us present two cases:

(i) R, G ∈Fc(Rp) such that DmS(R; X ) = DmS(G; X ) and DFS(R; X ) �= DFS(G; X ),
(ii) R, G ∈Fc(Rp) such that DmS(R; X ) �= DmS(G; X ) and DFS(R; X ) = DFS(G; X ),

illustrated in Fig. 1.

(i) Let R, G ∈Fc(Rp) be defined, for every t ∈R, by

R(t) := (t − 1/2)I[1/2,3/2](t) + (−t/2 + 7/4)I[3/2,7/2](t),
G(t) := (3t/2 − 23/4)I[23/6,9/2](t).

Consequently, Rα = [α + 1/2, 7/2 − 2 · α] and Gα = [(2/3) · α + 23/6, 9/2] for each α ∈ [0, 1]. Additionally, 
also for each α ∈ [0, 1],

sR(−1, α) = −α − 1/2, sR(1, α) = 7/2 − 2 · α,

sG(−1, α) = −(2/3) · α − 23/6 and sG(1, α) = 9/2

are their support functions.
To obtain the depth values, we first compute the Lebesgue measure of the α’s for which these support functions 
are in the intervals established in (4.9) and (4.10). We illustrate the computation making use of the top row of 
Fig. 1. In the left plot, the thick red line is the part of the fuzzy set R for which sR(−1, α) ∈ [−4, −1]. This 
corresponds to α ∈ [.5, 1] which has Lebesgue measure .5. In the right plot, the thick red line is the part of R such 
that sR(1, α) ∈ [2, 5], which corresponds to α ∈ [0, .75], with Lebesgue measure .75. These measures add up to 
5/4 and their minimum is 1/2.
10
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Fig. 1. Representation of Example 4.7, with part (i) in the top row and part (ii) in the bottom row. In each plot, the fuzzy sets Xi (i = 1, 2) are 
represented in black, R in red and G in green. Thick lines indicate the parts of R and G for which the corresponding support function is in the 
interval [mX (u, α), MX (u, α)], with u = −1 in the left column and u = 1 in the right column.

Analogously, the thick green line in the left plot is the part of set G for which sG(−1, α) ∈ [−4, −1]. This 
corresponds to α ∈ [0, .25] which results in a Lebesgue measure of .25. In the right plot, the thick green line is the 
part of G such that sG(1, α) ∈ [2, 5]. It corresponds to α ∈ [0, 1], whose Lebesgue measure is 1. These measures 
add again up to 5/4 but now their minimum is 1/4. Thus, making use of (4.9) and (4.10),

DmS(R;X ) = DmS(G;X ) = 5/8 and DFS(R;X ) = 1/2 �= 1/4 = DFS(G;X ).

(ii) Let R, G ∈Fc(Rp) be defined, for any t ∈R, by

R(t) := (−t/2 + 5/4)I[1/2,5/2](t),
G(t) := (t/4 − 1/2)I[2,6](t).

The corresponding α-levels are Rα = [1/2, 5/2 − 2 · α] and Gα = [4 · α + 2, 6]. Thus, for each α ∈ [0, 1],
sR(−1, α) = −1/2, sR(1, α) = 5/2 − 2 · α, sG(−1, α) = −4 · α − 2 and sG(1, α) = 6.

As in the previous case, we compute the Lebesgue measures of the α’s for which these support functions are in 
the intervals established in (4.9) and (4.10). We illustrate it making use of the bottom row of Fig. 1. In the left plot, 
sR(−1, α) /∈ [−4, −1] for any α ∈ [0, 1]; consequently, the Lebesgue measure is 0. There is, however, a thick red 
line in the right plot, representing the part of R such that sR(1, α) ∈ [2, 5]. This corresponds to α ∈ [0, .25], with a 
Lebesgue measure of .25. For G, one has sG(1, α) /∈ [2, 5], which results in zero Lebesgue measure, and no thick 
green line in the bottom right plot of Fig. 1. This time, for each α ∈ [0, .5], it is satisfied that sG(−1, α) ∈ [−4, −1], 
resulting in a Lebesgue measure of .5. Thus, for both R and G the minimum Lebesgue measure is 0. Taking into 
account (4.5) and (4.6),

DmS(R;X ) = 1/8 �= 1/4 = DmS(G;X ) and DFS(R;X ) = 0 = DFS(G;X ).

This example shows the relevant differences and similarities between DmS and DFS . Let us comment them further, 
making use of the plots in Fig. 1. Focusing on case (i), top row plots, we have that R and G take the same DmS depth 
value because the average of the amount of α’s corresponding to the thick red lines between the two plots is the same 
as the average corresponding to the thick green lines. However, none of those amounts is the same, which is depicted 
11
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by DFS , providing different depth values. It gives smaller depth value to G because the amount of α’s corresponding 
to one of the thick green lines is the smallest among the four. In case (ii), bottom row plots, we have that R and G
take the same DFS value because R and G result both in only one thick line each. DmS depicts a difference between 
R and G. This difference is appreciated in the bottom row plots: the thick green line, associated to G, is larger than 
the thick red line, associated to R. Thus, DmS gives a higher depth value to G than to R. As commented before, the 
difference is due to the distinct way in which they summarize the information. One can argue that DmS is potentially 
better because it uses more information by computing the average. On the other hand, it can also be argued that DFS

will extract the relevant information in certain problems.

5. Properties of DmS , DFS , and DnS

In this section, we will study whether the adaptations of simplicial depth to the fuzzy setting are semilinear and 
geometric depth functions [8].

Theorem 5.2 collects properties of the simplicial depth functions DmS and DFS . Its proof is based on Proposi-
tion 5.1 and proofs for the simplicial band depth [18, Theorems 1 and 2]. The result is valid for H ⊂ C0[Fc(Rp)], 
namely fuzzy random variables all whose support functionals are continuous random variables. Note that, in order to 
define directly a notion of continuous fuzzy random variables, one would need first a reference measure with respect 
to which those variables would have a density function. In absence of such a measure (which would play the role of 
the Lebesgue measure in Rp), the reduction to real random variables via the support function is more operative.

Proposition 5.1. Let X ∈ L0[Fc(Rp)], U ∈ Fc(Rp) and Fu,α be the cumulative distribution function of the real 
random variable sX (u, α) for any (u, α) ∈ Sp−1 × [0, 1]. Then,

P
(
sU (u,α) ∈ [mX (u,α),MX (u,α)]

)
= 1 −

[
1 − Fu,α(sU (u,α))

]p+1

−
[
Fu,α(sU (u,α)) − P (sX (u,α) = sU (u,α))

]p+1

for any (u, α) ∈ Sp−1 × [0, 1]. If X ∈ C0[Fc(Rp)], the above expression reduces to

P
(
sU (u,α) ∈ [mX (u,α),MX (u,α)]

)
= 1 −

[
1 − Fu,α(sU (u,α))

]p+1 −
[
Fu,α(sU (u,α))

]p+1

for any (u, α) ∈ Sp−1 × [0, 1].

Theorem 5.2. When computed with respect to a F -symmetric random variable X ∈ C0[Fc(Rp)], the functions 
DmS(·; X ) and DFS(·; X ) satisfy P1, P2, P3a and P3b for the ρr metric for any r ∈ (1, ∞).

In general, DmS and DFS violate P4a, as shown by the following example. They also violate P4b, since P4b implies 
P4a [8, Proposition 5.8].

Example 5.3. Let us consider the fuzzy random variable X : � → Fc(R) such that

P (ω ∈ � : X (ω) = I{1}) = P (ω ∈ � : X (ω) = I{−1}) = 1/2.

Let X1 = I{1} and X2 = I{−1} be two independent observations of X .
Clearly, X is F -symmetric with respect to A = I{0}. Let B ∈ Fc(R) be defined by

B(t) := (−t/2 + 1/2)I(0,1](t) + I{0}(t), t ∈R.

Thus

Bα = [0,1 − 2α] for α ∈ [0,1/2] and Bα = {0} for α ∈ [1/2,1].
Additionally,

sB(−1, α) = 0 for all α ∈ [0,1] and sB(1, α) = 0 for all α ∈ [1/2,1].
12
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Taking into account the definition of DFS , for all n ∈N

DFS(A + n · B;X ) ≥ 1/2; consequently, lim
n→∞DFS(A + n · B;X ) > 0.

Analogously, DmS(A + n · B; X ) ≥ 1/2 for all n ∈N , whence

lim
n→∞DmS(A + n · B;X ) > 0.

Property P4a considers sequences of fuzzy sets of the form {A + n · B}n. By restricting the selection of the fuzzy 
set B to the family

B :=
{
B ∈Fc(R

p) : ∀u ∈ Sp−1, ∃Cu ⊆ [0,1] with ν(Cu) = 1

such that sB(u,α) �= 0 ∀α ∈ Cu

}
,

the following result holds for DFS and DmS , which is in line with property P4a. Property P4b, however, considers a 
general sequence of fuzzy sets {An}n, not allowing for this adaptation.

Proposition 5.4. For any X ∈ L0[Fc(Rp)] and B ∈ B, we have that

• limn DFS(A + n · B; X ) = 0, for any A ∈Fc(Rp) maximizing DFS(·; X ).
• limn DmS(A + n · B; X ) = 0, for any A ∈Fc(Rp) maximizing DmS(·; X ).

The following result is for DnS .

Theorem 5.5. For any X ∈ L0[Fc(Rp)], DnS(·; X ) satisfies P1, P4a and P4b for the dr distances for any r ∈ [1, ∞]
and for the ρr distances for any r ∈ [1, ∞).

For property P2, intuitively, the notion of symmetry to be considered would make use of the central symmetry of the 
support function of a fuzzy set in every u ∈ Sp−1 and α ∈ [0, 1]. We do not consider properties P3a and P3b because 
the multivariate simplicial depth does not generally satisfy the analog property, (M3). Because of these reasons and 
that naive simplicial fuzzy depth is not one of our recommended fuzzy depth, we do not pursue these properties 
further.

6. Empirical simplicial depths

Given H ⊆ L0[Fc(Rp)], let X ∈ H be a fuzzy random variable and X1, . . . , Xn be independent and identically 
distributed random variables with distribution PX . Let X be a fuzzy random variable corresponding to the empirical 
distribution associated to X1, . . . , Xn. That is, X takes on as values the observed values X1(ω), . . . , Xn(ω) (possibly 
repeated) with probability n−1. The simplicial depths associated with this empirical distribution are the empirical or 
sample simplicial depths.

In Section 6.1, we provide the explicit definitions in Fc(R), in order to illustrate the behavior of our three proposals. 
For ease of comparison with Tukey depth, we use in Section 6.3 the same dataset as in [8]. It is interesting to point 
out that the behavior is similar, in spite of the distribution not being from C0[Fc(Rp)], as assumed in some of our 
theoretical results (Theorem 5.2). In order to illustrate the case of fuzzy random variables with continuously distributed 
support functionals, we use in Section 6.2 a synthetic sample from a fuzzy random variable in C0[Fc(Rp)].

6.1. Empirical definitions for Fc(R)

From (4.5) and (4.6), DmS and DFS have in common that their computation involves the function

FA(u) :=
∫

P
(
sA(u,α) ∈ [mX (u,α),MX (u,α)]

)
dν(α),
[0,1]

13
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with u ∈ S0 = {−1, 1}. To establish the empirical simplicial and modified simplicial fuzzy depth, making use of 
X1, . . . , Xn, we calculate FA(u) for the fuzzy random variable X as 

(
n
2

)−1
LA

n (u) with

LA
n (u) :=

n∑
i=1

n∑
j≥i

LA
i,j,u, (6.1)

LA
i,j,u = ν({α ∈ [0,1] : sA(u,α) ∈ Si,j (u,α)}), (6.2)

and Si,j (u, α) := [min{sXi
(u, α), sXj

(u, α)}, max{sXi
(u, α), sXj

(u, α)}].
The modified simplicial fuzzy depth based on J ⊆ Fc(R) of a fuzzy set A ∈J with respect to X is then

DmS(A;X) =
∫
S0

(
n

2

)−1

LA
n (u)dV1(u) = 2−1

(
n

2

)−1 [
LA

n (1) + LA
n (−1)

]
(6.3)

and the simplicial fuzzy depth based on J ⊆ Fc(R) of a fuzzy set A ∈ J with respect to X is

DFS(A;X) = inf
u∈S0

(
n

2

)−1

LA
n (u) =

(
n

2

)−1

min
{
LA

n (1),LA
n (−1)

}
. (6.4)

Similarly, the naive simplicial fuzzy depth based on J ⊆ Fc(R) of a fuzzy set A ∈ J with respect to X is

DnS(A;X) =
(

n

2

)−1 n∑
i=1

n∑
j≥i

IA
i,j , (6.5)

where IA
i,j equals 1 if sA(u, α) ∈

[
min{sXi

(u,α), sXj
(u,α)},max{sXi

(u,α), sXj
(u,α}

]
for every (u, α) ∈ S0 ×[0, 1], 

and 0 otherwise.

6.2. Simulated data

We draw a sample (n = 100) from a trapezoidal fuzzy random variable in C0[Fc(Rp)]. To construct it, we follow 
the procedure in [29]. Let X1, X2, X3, X4 be independent and continuous real-valued random variables. In particular, 
let X1 be normally distributed with zero mean and standard deviation 10 and X2, X3 and X4 be each chi-squared 
distributed with 1 degree of freedom. Set

X = Tra(X1 − X2 − X3,X1 − X2,X1 + X2,X1 + X2 + X4) (6.6)

which is well-defined since the random variables X2, X3 and X4 take non-negative values. By construction,

sX (−1, α) = −(X1 − X2 − (1 − α)X3)

and

sX (1, α) = X1 + X2 + (1 − α)X4,

which are continuous variables for each α ∈ [0, 1]. Accordingly, X ∈ C0[Fc(R)] as required by Theorem 5.2.
The choice of the χ2

1 distribution for X3, X4 is because it is very skewed (Pearson coefficient: 2
√

2). That allows 
us to realize how the depth is affected not just by the location of the core of the trapezoidal fuzzy set but also by the 
slopes of its sides.

To illustrate the performance of the different depth functions, let X1, . . . , X100 be independent copies distributed as 
X . With some abuse of notation, each Xi will also denote the observed trapezoidal fuzzy set, represented in each of 
the plots of Fig. 2. Thus, we illustrate the performance of each of our three proposals by computing the depths of each 
Xi with respect to the corresponding empirical fuzzy random variable X. Naive simplicial depth, DnS , is illustrated 
in the top row of Fig. 2, modified simplicial depth, DmS , in the middle row and simplicial fuzzy depth, DFS , in the 
bottom row. The plots in the first column represent the five trapezoidal fuzzy values having the largest depth values. 
These are colored from red (highest depth) to yellow (high depth). The middle column of Fig. 2 presents a zoom to 
14
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Fig. 2. Illustration of the empirical naive simplicial fuzzy depth, DnS , (top row), the empirical modified simplicial fuzzy depth, DmS , (middle row) 
and the empirical simplicial fuzzy depth, DFS, (bottom row) over a sample of trapezoidal fuzzy sets of size 100 drawn from X in (6.6). The sample 
is plotted in gray. The color in the first and second column plots represents the trapezoidal fuzzy sets in the sample corresponding to the 5 larger 
depth values, with the second column being a zoom of the first in the interval [−8, 8]; in order to better observe the different depth values. Colors 
range from red (highest depth) to yellow (high depth) in the first column. In addition, in the second column the median fuzzy set [29] is highlighted 
in black. The third column represents the trapezoidal fuzzy sets with the 5 minimal depth values for the same depth functions. Depth values are 
shown through the colors, which range from aqua marine blue (lowest depth) to violet (low depth).

the central part of each plot. A zoom of each of these plots highlighting the deepest sets is in the central column of the 
figure.

We also represent, plotted in black in the middle column of Fig. 2, the median fuzzy set estimator, M , with respect 
to the sample X1, . . . , X100, as defined in [29]. The median M is not necessarily one of the sample fuzzy sets; and in 
the particular case of Fig. 2, it is not. The maximizers of the depth functions DnS , DmS and DFS provide alternative 
definitions of a median fuzzy set. They are in the vicinity of M .

The right column of Fig. 2 shows the trapezoidal fuzzy sets with the minimal 5 depth values for the three different 
proposals of simplicial depth. The trapezoidal fuzzy sets with minimal depth are the ones furthest to the left and right, 
as expected. It is observable from the plots that the three definitions order the sets with minimal depth in a similar 
way. The main difference lies in that DnS gives a high number of ties (observe the many sets in aquamarine blue in 
the last column of the first row). The reason for this is that DnS is a sum of indicator functions (6.5) while the other 
two proposals make use the Lebesgue measure [(6.2), (6.3) and (6.4)]. Thus, it is generally more convenient to use 
the proposals DmS and DFS instead of DnS , the latter being inappropriate for some applications like classification. 
The use of a sum of indicator functions versus the Lebesgue measure also explains that DnS results in smaller depth 
values than DmS or DFS .

The main difference between the DmS and DFS depths of a fuzzy set A is that the former takes the average of 
LA

n (u) in (6.1) and the latter its minimum. Thus, a fuzzy number A with, for instance,

LA
n (1) close to LM

n (1) and LA
n (−1) far from LM

n (−1)

does not take a maximal depth value with DFS but can take it with DmS . This is observed in the central column of 
Fig. 2.

A similar phenomenon is observed with the fuzzy numbers taking minimal depth values. The bottom row right 
column plot in Fig. 2 shows that there exist fuzzy numbers in the sample with minimal depth for DFS , some are on 
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Table 1
Absolute frequency in the sample of each trapezoidal fuzzy set Ti , i = 1, . . . , 9, represented in Fig. 3.

T1 T2 T3 T4 T5 T6 T7 T8 T9

22 16 39 36 85 22 35 12 12

the left side of the plot and the others on the right side. Among the ones on the left there are those that have, for 
instance,

LA
n (−1) far from LM

n (−1) while LA
n (1) is not as far from LM

n (1).

Analogously, among the ones on the right there those that have, for instance,

LA
n (1) far from LM

n (1) while LA
n (−1) is not as far from LM

n (−1).

As observable in the central row right column plot in Fig. 2, these fuzzy numbers does not necessarily take minimal 
depth value with DmS , as this depth function takes the average between LA

n (1) and LA
n (−1).

6.3. Real data

We use the Trees dataset (from the SAFD R package for Statistical Analysis of Fuzzy Data), which was first used 
in [4]. It is from a reforestation project in the region of Asturias (Northern Spain) by the INDUROT forest institute at 
the University of Oviedo. The project takes into account three species of trees: birch (Betula celtiberica), sessile oak 
(Quercus petraea) and rowan (Sorbus aucuparia).

The most relevant variable is quality, whose observations are trapezoidal fuzzy sets coming from an expert sub-
jective assessment of height, diameter, leaf structure and other features. In Fig. 3, quality is in the x-axis in the range 
1–5, from low to perfect quality. Membership is represented in the y-axis.

The dataset contains 9 different trapezoidal fuzzy values. Therefore the assumption in Theorem 5.2 that each 
support function has a continuous distribution is violated. From left to right, we denote them by T1, . . . , T9. These sets 
appear in the sample with a certain multiplicity, resulting in a sample X1, . . . , Xn of size n = 279. Table 1 shows the 
absolute frequency of the fuzzy sets in the sample. We denote by X the fuzzy random variable corresponding to the 
empirical distribution associated to X1, . . . , Xn.

One can observe from Fig. 3 that

sTi
(1, α) ≥ sTj

(1, α) and sTi
(−1, α) ≤ sTj

(−1, α) (6.7)

for each α ∈ [0, 1] and i, j ∈ {1, . . .9} with i ≤ j . In fact, the inequalities are strict except for the cases of T4, T5 and 
T6, where

sT4(−1,0) = sT5(−1,0) and sT5(1,0) = sT6(1,0). (6.8)

Taking into account the sample version of DnS in (6.5) and the fact that IA
i,j takes value 1 if

sA(u,α) ∈ [min{sXi
(u,α), sXj

(u,α)},max{sXi
(u,α), sXj

(u,α)}]
for every (u, α) ∈ S0 × [0, 1] and 0 otherwise, the computation of DnS(Ti; X) reduces to computing the simplicial 
depth in R of sTi

(u, α) with respect to sX(u, α) for some (u, α) where the inequalities in (6.7) are strict. By (6.8), this 
is the case of (u, α) = (1, 1), for instance. Thus

DnS(Ti;X) = SD(sTi
(1,1); sX(1,1))

for each i ∈ {1, . . . , 9}.
Making use of the ordering in (6.7), the identity LTk

i,j,u = 1 holds for each k ∈ [i, j ] and LTk

i,j,u = 0 otherwise. 
Considering the sample versions of DmS and DFS in (6.3) and (6.4), in this case

DnS(Ti;X) = DmS(Ti;X) = DFS(Ti;X)

for each i ∈ {1, . . . , 9}. Thus, in computing the depth of an element in the dataset with respect to the empirical fuzzy 
random variable, we obtain the same depth value independently of which of the three simplicial based fuzzy depths 
16
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Fig. 3. Display of the Trees dataset. In the first column, colors are assigned based on the simplicial depth, ranging from brown (high depth) to 
yellow (low depth). The second column applies the same procedure to Tukey depth.

is used. The left plot of Fig. 3 represents in the color the depth values of each of the 9 distinct trapezoidal elements in 
the dataset.

From Fig. 3, the order induced in the dataset by the simplicial and Tukey fuzzy depth functions is similar. In fact, 
the only difference is T3 and T6. With simplicial fuzzy depths, T3 is the third deepest set and T6 is the fourth, with the 
opposite ranking for Tukey depth. Value T3 has 39 repetitions in the sample while T6 has only 22. Also, the 0-level 
and 1-level diameters for T3 are greater than those of T6. As a minimum is involved in the Tukey depth definition, an 
explanation for DFT (T6; X ) > DFT (T3; X ) is that the weight of T3 in the sample is greater than the weight of T6.

7. Discussion

Simplicial depth is one of the most widely used depth functions in multivariate statistics. It is built over the notion 
of simplex in Rp . In the space of fuzzy sets, the notion of simplex is not an obvious one. With the characterization 
introduced in Proposition 3.1 of simplices in the multivariate space, we justify the notion of simplex in Kc(Rp) and 
extend it to the fuzzy setting, working α-level by α-level (Definition 3.5). Making use of this notion, we propose a 
straightforward adaptation of simplicial depth to the fuzzy setting and two more elaborate definitions:

• Naive simplicial depth, DnS in (4.1), generalizes multivariate simplicial depth. We proved some properties in 
Theorem 5.5 and showed that it may result in a high number of ties at zero, which is not desirable in some 
applications.

• Modified simplicial fuzzy depth, DmS (Definition 4.3), improves the naive simplicial fuzzy depth analogously to 
the way modified band depth improves the band depth. Thus, the amount of elements in a space that take zero 
depth value is less with the modified simplicial fuzzy depth than with the naive simplicial depth.

• Simplicial depth, DFS (Definition 4.5), transforms the modified simplicial fuzzy depth in the direction of the 
Tukey depth. This is done by applying the infimum over Sp−1 instead of the expected value in the depth function 
formulation.

Although it is clear throughout the paper the authoritativeness of DmS and DFS over DnS , there is not a clear 
winner between DmS and DFS . The practical similarities and differences between them are discussed in Example 4.7
and Subsection 6.2. Their properties are collected in Theorem 5.2 and Proposition 5.4. For some of these properties it 
is required of the fuzzy random variables to satisfy certain type of continuity. This is inherited from the fact that the 
multivariate simplicial depth requires of continuous distributions to satisfy the notion of multivariate depth. Thus, our 
three proposals do not satisfy the entirety of the desirable properties of semilinear and geometric depth function in 
[8] (Section 5). However, as we can see in the illustrations in Section 6, the behavior of the three proposals is similar 
in practice. As shown there, it is also similar to that of the Tukey fuzzy depth, despite Tukey fulfills both notions 
and the comparison is done with respect to a fuzzy random variable that does not satisfy the continuity required in 
Theorem 5.2.

For future work, it is interesting to study more instances in order to create a library of statistical depth functions 
for the fuzzy setting. Also, it would be interesting to study further properties of Tukey and simplicial depths, such 
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as convergence of the sample depth to the population depth (consistency) and their continuity or semicontinuity 
properties.
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Appendix A. Proofs

Proof of Proposition 3.1. Define

C :=
{
x ∈ Rp : 〈u,x〉 ∈ [m(u),M(u)] for all u ∈ Sp−1

}
.

We prove first S[x1, . . . , xp+1] ⊆ C. Let x ∈ S[x1, . . . , xp+1]. By (3.2), there exist λ1, . . . , λp+1 ≥ 0 with ∑p+1
i=1 λi = 1 such that x = ∑p+1

i=1 λixi . For any fixed direction u ∈ Sp−1, we have 〈u, x〉 = ∑p+1
i=1 λi〈u, xi〉. As 

λi ∈ [0, 1] for all i = 1, . . . , p + 1, we have that 〈u, x〉 ∈ [m(u), M(u)]; consequently, x ∈ C.
Now let x ∈ C and assume by contradiction that x /∈ S[x1, . . . , xp+1]. The simplex S[x1, . . . , xp+1] and the set {x}

are closed, convex and bounded subsets of Rp. By the Hyperplane Separation Theorem (see, e.g., [26]), there exist 
u ∈ Rp\{0} and b ∈ R such that 〈u, x〉 > b and 〈u, s〉 < b for all s ∈ S[x1, . . . , xp+1]. This implies that 〈u, x〉 > 〈u, s〉
for all s ∈ S[x1, . . . , xp+1]. Therefore 〈u, x〉 > M(u) for the vector u := ‖u‖−1u ∈ Sp−1, then x ∈ C, which leads to a 
contradiction. Thus x ∈ S[x1, . . . , xp+1]. �
Proof of Proposition 3.3. Let A1, . . . , Ap+1 ∈ Kc(Rp) and A ∈ Kc(Rp) be such that there exist λ1, . . . , λp+1 ≥ 0

with 
∑p+1

i=1 λi = 1 and A =∑p+1
i=1 λi · Ai . By (2.2), sA(u) =∑p+1

i=1 λi · sAi
(u) for every u ∈ Sp−1. Thus

m(u) =
⎛
⎝p+1∑

i=1

λi

⎞
⎠m(u) ≤ sA(u) ≤

⎛
⎝p+1∑

i=1

λi

⎞
⎠M(u) = M(u).

Then A ∈ Sc[A1, . . . , Ap+1]. �
Proof of Proposition 3.8. For any A ∈Fc(R), since S0 = {−1, 1} we have

sA(1, α) = supAα, sA(−1, α) = sup{−x | x ∈ Aα} = − infAα.

For any fixed α, inequality m(uα) ≤ sA(u, α) ≤ M(uα) will hold for u = 1 if and only if

min{sup(A1)α, sup(A2)α} ≤ supAα ≤ max{sup(A1)α, sup(A2)α}
which, taking into account the assumption A1 � A2, is equivalent to
18
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sup(A1)α ≤ supAα ≤ sup(A2)α.

In its turn, the inequality will hold for u = −1 if and only if

min{− inf(A1)α,− inf(A2)α} ≤ − infAα ≤ max{− inf(A1)α,− inf(A2)α}
or, multiplying all terms by −1,

max{inf(A1)α, inf(A2)α} ≥ infAα ≥ min{inf(A1)α, inf(A2)α}.
This, again by the assumption A1 � A2, is the same thing as

inf(A2)α ≥ infAα ≥ inf(A1)α.

The conjunction of those two conditions is just A1 � A � A2. Hence

SF [A1,A2] = {A ∈Fc(R) : A1 � A � A2}. �
Proof of Proposition 4.1. We need to show that the event{

sA(u,α) ∈ [mX (u,α),MX (u,α)] for all (u,α) ∈ Sp−1 × [0,1]
}

=
⋂

u∈Sp−1

⋂
α∈[0,1]

{
sA(u,α) ∈ [mX (u,α),MX (u,α)]}

is measurable.
First, for each fixed u, α and i = 1, . . . , p + 1, the mapping sXi

(u, α) is a random variable [12, Lemma 4]. Subse-
quently,

�u,α := {
sA(u,α) ∈ [mX (u,α),MX (u,α)]}

=
⎛
⎝p+1⋃

i=1

{sXi
(u,α) ≤ sA(u,α)}

⎞
⎠∩

⎛
⎝p+1⋃

i=1

{sXi
(u,α) ≥ sA(u,α)}

⎞
⎠

is measurable.
Taking a countable dense subset D ⊂ [0, 1] such that 0 ∈ D, let us prove⋂

α∈[0,1]
�u,α =

⋂
α∈D

�u,α for each fixed u ∈ Sp−1. (A.1)

Inclusion ‘⊃’ is trivial. For the converse inclusion, assume for now α ∈ (0, 1]. We construct a sequence of elements 
of D converging to α from the left (which is why α > 0 is needed). Indeed, for each n ∈ N with n > α−1 the open 

interval 
(
α − n−1, α

)
contains some αn ∈ D because D is dense. Since α − n−1 < αn < α, we have αn → α−.

Notice the mapping sA(u, ·) is left continuous [19]. Similarly, for any arbitrary ω ∈ �, the sXi (ω)(u, ·) are left 
continuous, whence mX (u, ·) and MX (u, ·) are too. For any ω ∈⋂α∈D �u,α we have

mX (u,αn) ≤ sA(u,αn) ≤ MX (u,αn)

(please note the unspecified dependence of m and M on ω via the sXi
). By the left continuity, also

mX (u,α) ≤ sA(u,α) ≤ MX (u,α).

That means ω is in �u,α for each α ∈ (0, 1]. The case α = 0 holds as well since we chose D with 0 ∈ D. Accordingly, 
(A.1) holds. That proves that each 

⋂
α∈[0,1] �u,α , being a countable intersection of measurable events, is measurable.

The space Sp−1 ⊂ Rp is separable. Let us take a countable dense subset D′ ⊆ Sp−1. The proof will be complete if 
we show⋂

p−1

⋂
�u,α =

⋂
′

⋂
�u,α,
u∈S α∈[0,1] u∈D α∈[0,1]
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since the left-hand side is the event we wish to prove measurable and the right-hand side is a countable intersection of 
measurable events. As before, only inclusion ‘⊂’ needs to be proved. Let us fix an arbitrary u∗ ∈ Sp−1. Due to the den-
sity of D′, there exists a sequence {un}n ⊂ D′ such that un → u∗ with un ∈ D′. Whenever ω ∈⋂u∈D′

⋂
α∈[0,1] �u,α ,

mX (un,α) ≤ sA(un,α) ≤ MX (un,α) for all α ∈ [0,1].
By the continuity of the support functions for fixed α [19], un → u∗ implies

mX (u∗, α) ≤ sA(u∗, α) ≤ MX (u∗, α) for all α ∈ [0,1].
That establishes⋂

u∈D′

⋂
α∈[0,1]

�u,α ⊆
⋂

α∈[0,1]
�u∗,α.

By the arbitrariness of u∗,⋂
u∈D′

⋂
α∈[0,1]

�u,α ⊆
⋂

u∈Sp−1

⋂
α∈[0,1]

�u,α,

as wished. The proof is complete. �
Proof of Proposition 4.4. In order to show that both expressions defining DmS make sense and are equal, and justify 
the claim that Fubini’s theorem applies, we start by considering the following subset of the product measurable space 
� × Sp−1 × [0, 1]:

Z :=
{

(ω,u,α) ∈ � × Sp−1 × [0,1] : min
1≤i≤p+1

sXi (ω)(u,α) ≤ sA(u,α) ≤ max
1≤i≤p+1

sXi (ω)(u,α)

}
.

Let us prove that Z is measurable, i.e., it is in the product σ -algebra of � ×Sp−1 × [0, 1]. Bear in mind that Z is not
the event 

⋂
u

⋂
α �u,α ⊆ � from the previous proof.

Given any fuzzy random variable X , the support mapping

s̃ : (ω,u,α) ∈ � × Sp−1 × [0,1] �→ sX (ω)(u,α) ∈ R

is a random variable, by [12, Lemma 4] or [1, Proposition 4.6]. Denote by s̃Xi
the support mapping of each Xi . Also 

consider the support mapping s̃A of A seen as a degenerate fuzzy random variable, namely s̃A(ω, u, α) = sA(u, α). 
Then

Z =
⎛
⎝p+1⋃

i=1

{s̃Xi
≤ s̃A}

⎞
⎠∩

⎛
⎝p+1⋃

i=1

{s̃Xi
≥ s̃A}

⎞
⎠ ,

which is a measurable event since the s̃Xi
and s̃A are all random variables. And, accordingly, its indicator function 

IZ : � × Sp−1 × [0, 1] → {0, 1} is measurable (and integrable against probability measures, since it is bounded).
By Fubini’s theorem,∫

�×Sp−1×[0,1]
IZ d(P ⊗ Vp ⊗ ν) =

∫
�

∫
Sp−1×[0,1]

IZ(ω,u,α)d(Vp ⊗ ν)(u,α)dP (ω)

=
∫

Sp−1×[0,1]

∫
�

IZ(ω,u,α)dP (ω)d(Vp ⊗ ν)(u,α).

Now, for each ω ∈ �,∫
Sp−1×[0,1] IZ(ω,u,α)d(Vp ⊗ ν) (u,α) = (Vp ⊗ ν)

({(u,α) | IZ(ω,u,α) = 1})
= (Vp ⊗ ν)

({(u,α) | (ω,u,α) ∈ Z})
= (V ⊗ ν)

({(u,α) | m (u,α) ≤ s (u,α) ≤ M (u,α)})
p X A X
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whence the second term in the chain of identities is∫
�

∫
Sp−1×[0,1]

IZ(ω,u,α)d(Vp ⊗ ν)(u,α)dP (ω)

= E
[
(Vp ⊗ ν)

({(u,α) | mX (u,α) ≤ sA(u,α) ≤ MX (u,α)})] .

Moreover, for each (u, α),∫
�

IZ(ω,u,α)dP (ω) = P
({ω ∈ � | mX (u,α) ≤ sA(u,α) ≤ MX (u,α)})

whence the third term in the chain of identities is, applying again Fubini’s theorem,∫
Sp−1×[0,1]

∫
�

IZ(ω,u,α)dP (ω)d(Vp ⊗ ν)(u,α)

=
∫

Sp−1

∫
[0,1]

P ({ω ∈ � | mX (u,α) ≤ sA(u,α) ≤ MX (u,α)})dν(α)dVp(u).

(A.2)

Those are the expressions for DmS(A; X ) in Definition 4.3 and (4.5), which are therefore well defined and equivalent 
since both equal 

∫
�×Sp−1×[0,1] IZ d(P ⊗ Vp ⊗ ν). �

Proof of Proposition 4.6. It is similar to the proof for the modified simplicial fuzzy depth, but fixing each individual 
u ∈ Sp−1 and considering the measurable mapping IZ(·, u, ·). �
Proof of Proposition 5.1. Define the events Q := {mX (u, α) ≤ sU (u, α)} and R := {MX (u, α) ≥ sU (u, α)}. Taking 
into account

P (Qc ∩ Rc) ≤ P (mX (u,α) > MX (u,α)) = 0,

we obtain

P (Q ∩ R) = 1 − P (Qc ∪ Rc) = 1 − P (Qc) − P (Rc).

Besides, since X1, . . . , Xp+1 are independent and identically distributed random variables with distribution PX ,

sX1(u,α), . . . , sXp+1(u,α)

are independent random variables. Then

P (Qc) = P (sX1(u,α) > sU (u,α))p+1 and P (Rc) = P (sX1(u,α) < sU (u,α))p+1.

The result follows. In the particular case that X ∈ C0[Fc(Rp)], the random variable sX (u, α) is continuous, whence 
P (sX1(u, α) = sU (u, α)) = 0. �
Proof of Theorem 5.2.

Property P1 for DmS and DFS . Let M ∈Mp×p(R) be a non-singular matrix and A, B ∈Fc(Rp). Let us consider 
independent and identically distributed random variables X1, . . . , Xp+1 with distribution PX and denote, for any 
u ∈ Sp−1 and α ∈ [0, 1],

m̄X (u,α) := min{sM·X1+B(u,α), . . . , sM·Xp+1+B(u,α)}
M̄X (u,α) := max{sM·X1+B(u,α), . . . , sM·Xp+1+B(u,α)}.

From the properties of the minimum and maximum, and (2.1),

m̄X (u,α) = min{sM·X1(u,α), . . . , sM·Xp+1(u,α)} + sB(u,α),

M̄X (u,α) = max{sM·X1(u,α), . . . , sM·Xp+1(u,α)} + sB(u,α).
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Defining the function

g : Sp−1 → Sp−1 with g(u) =
(

1/

∥∥∥MT · u
∥∥∥)MT · u

and making use of (2.3), we obtain

m̄X (u,α) =
∥∥∥MT · u

∥∥∥ · min
{
sX1(g(u),α), . . . , sXp+1(g(u),α)

}
+ sB(u,α),

M̄X (u,α) =
∥∥∥MT · u

∥∥∥ · max
{
sX1(g(u),α), . . . , sXp+1(g(u),α)

}
+ sB(u,α).

Similarly, sM·A+B(u, α) =
∥∥∥MT · u

∥∥∥ · sA(g(u), α). Consequently, as g is a bijective map,{
(u,α) ∈ Sp−1 × [0,1] : sA(u,α) ∈ [mX (u,α),MX (u,α)]

}
={

(u,α) ∈ Sp−1 × [0,1] : sM·A+B(u,α) ∈ [m̄X (u,α), M̄X (u,α)]
}

.

Thus DmS(A; X ) = DmS(M · A + B; M ·X + B).
The proof for DFS is analogous.

Property P2 for DmS and DFS . Let X ∈ C0[Fc(Rp)] be F -symmetric with respect to some fuzzy set A ∈Fc(Rp). 
We begin by maximizing the integrand in (4.5), which, by Proposition 5.1 is 1 − [1 − Fu,α(sU (u, α))]p+1 −
[Fu,α(sU (u, α))]p+1. That is equivalent to minimizing

[1 − Fu,α(sU (u,α))]p+1 + [Fu,α(sU (u,α)]p+1. (A.3)

Considering the function

f : [0,1] →R with f (x) = (1 − x)p+1 + xp+1, (A.4)

the expression in (A.3) is the composition of Fu,α and f . The function Fu,α is non-decreasing and f is strictly 
decreasing in [0, 1/2] and strictly increasing in [1/2, 1], with a minimum at 1/2. Thus (A.3) is minimized at any 
t ∈ R such that Fu,α(t) = 1/2 for all u ∈ Sp−1 and α ∈ [0, 1]. By (2.4) and the assumption that X ∈ C0[Fc(Rp)], the 
point sA(u, α) satisfies that condition for each u ∈ Sp−1 and α ∈ [0, 1].

Since A maximizes the integrand in (4.5) and (4.6) for each (u, α), clearly it maximizes both DmS(·, X ) and 
DFS(·, X ).

Property P3a for DmS . It suffices to prove DmS

(
(1 − λ)A + λB;X ) − DmS(B; X ) ≥ 0 with B ∈ Fc(Rp) and 

λ ∈ [0, 1]. Recall that X ∈ C0[Fc(Rp)] is F -symmetric with respect to A. Thus, each sX (u, α) is a continuous 
random variable which is centrally symmetric with respect to sA(u, α) and Fu,α(sA(u, α)) = 1/2.

Set

xλ
u,α := (1 − λ)sA(u,α) + λsB(u,α). (A.5)

By (4.5), Proposition 5.1 and the linearity of the support function,

DmS

(
(1 − λ) · A + λ · B;X )− DmS(B;X ) =∫

Sp−1

∫
[0,1]

{[
1 − Fu,α(sB(u,α))

]p+1 + [
Fu,α(sB(u,α))

]p+1

−
[
1 − Fu,α

(
xλ
u,α

)]p+1 −
[
Fu,α

(
xλ
u,α

)]p+1
}

dν(α)dVp(u).

(A.6)

Consider again the function f : [0, 1] → R with f (x) = (1 − x)p+1 + xp+1. Now if sB(u, α) ≤ sA(u, α), we have 
sB(u, α) ≤ xλ

u,α and

Fu,α(sB(u,α)) ≤ Fu,α

(
xλ
u,α

)
≤ 1/2.
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Since f is decreasing in [0, 1/2],

f (Fu,α(sB(u,α))) ≥ f

(
Fu,α

(
xλ
u,α

))
.

That implies that the integrand in (A.6) is non-negative. The same conclusion is reached in the case sB(u, α) ≥
sA(u, α), using the fact that f is increasing in [1/2, 1]. Thus

DmS

(
(1 − λ)A + λB;X )− DmS(B;X ) ≥ 0.

Property P3a for DFS . Let B ∈ Fc(Rp) and λ ∈ [0, 1]. Recall X ∈ C0[Fc(Rp)] is F -symmetric with respect to A. 
Using (4.6) and xλ

u,α as in (A.5),

DFS

(
(1 − λ) · A + λ · B)− DFS(B;X ) =

inf
u∈Sp−1

∫
[0,1]

(
1 −

(
1 − Fu,α

(
xλ
u,α

))p+1

− Fu,α

(
xλ
u,α

)p+1
)

dν(α)−

inf
u∈Sp−1

∫
[0,1]

(
1 − (1 − Fu,α(sB(u,α)))p+1 − Fu,α(sB(u,α))p+1

)
dν(α).

Following the arguments in the proof of Property P3a for DmS ,∫
[0,1]

(
1 −

(
1 − Fu,α

(
xλ
u,α

))p+1

− Fu,α

(
xλ
u,α

)p+1
)

dν(α) ≥
∫

[0,1]

(
1 − (1 − Fu,α(sB(u,α)))p+1 − Fu,α(sB(u,α))p+1

)
dν(α)

for each u ∈ Sp−1. The inequality is preserved if we take the infimum on both sides. Thus DFS

(
(1 − λ) · A + λ · B;

X
)≥ DFS(B; X ).

Property P3b for DmS and DFS . From [8, Theorem 5.4], P3b is equivalent to P3a for any ρr metric with r ∈
(1, ∞). �
Proof of Proposition 5.4. Let A, B ∈ Fc(Rp) be fuzzy sets such that A maximizes DFS(·; X ). Any Cu defined as 
appears in the definition of B satisfies Cu ⊆ [0, 1] and ν(Cu) = 1. Thus,

DFS(A + n · B;X ) = inf
u∈Sp−1

∫
Cu

P
(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])dν(α)

and, fixing an arbitrary u ∈ Sp−1,

DFS(A + n · B;X ) ≤
∫
Cu

P
(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])dν(α).

Using the Fatou’s Lemma,

lim sup
n→∞

DFS(A + n · B;X ) ≤

lim sup
n→∞

∫
Cu

P
(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])dν(α) ≤

∫
lim sup
n→∞

P
(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])dν(α).

(A.7)
Cu
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By Proposition 5.1 and (2.1),

P
(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])=

1 − [1 − Fu,α(sA(u,α) + n · sB(u,α))]p+1 − [Fu,α(sA(u,α) + n · sB(u,α))]p+1.
(A.8)

As Fu,α is the distribution function of the real random variable sX (u, α), for each α ∈ Cu, the limit of Fu,α(sA(u, α) +
n · sB(u, α)) is 1 if sB(u, α) > 0 and 0 if sB(u, α) < 0. Since B ∈ B, we have sB(u, α) �= 0 for all α ∈ Cu. Using (A.8), 
whether sB(u, α) is larger or smaller than 0 one obtains

lim
n→∞P

(
sA+n·B(u,α) ∈ [mX (u,α),MX (u,α)])= 0,

for every α ∈ Cu, which implies, by (A.7), that limn DFS(A + n · B; X ) = 0.
The proof for DmS is analogous. �

Proof of Theorem 5.5.
Property P1. The proof is analogous to that of P1 in Theorem 5.2.

Property P4b. Let d := {dr : r ∈ [1, ∞]} ∪ {ρr : r ∈ [1, ∞)} be the set of metrics of type dr and ρr . Let us fix d ∈ d. 
Denoting by A a fuzzy set that maximizes DnS(·; X ), let {An}n be a sequence of fuzzy sets such that limn d(A, An) =
∞. That implies, see [8, Proposition 8.3], that there exists u0 ∈ Sp−1 and α0 ∈ [0, 1] such that

lim
n

|sAn(u0, α0)| = ∞. (A.9)

By (4.4),

DnS(An;X ) ≤ P
(
sAn(u0, α0) ∈ [mX (u0, α0),MX (u0, α0)]

)
,

which, by Proposition 5.1, results in

DnS(An;X ) ≤1 − [1 − Fu0,α0(sAn(u0, α0))]p+1

− [Fu0,α0(sAn(u0, α0)) − P (sX1(u0, α0) = sAn(u0, α0))]p+1.

Taking limits and using (A.9) and the properties of the cumulative distribution function, we obtain limn DnS(An; X ) =
0.

Property P4a. According to [8, Proposition 5.8], P4b implies P4a for the metrics dr and ρr for any r ∈ [1, ∞). �
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