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Abstract

Background: Altered systemic and cellular lipid metabolism plays a pivotal role in the pathogenesis of prostate
cancer (PCa). In this study, we aimed to characterize T1-magnetic resonance imaging (MRI)-derived radiomic
parameters of periprostatic adipose tissue (PPAT) associated with clinically significant PCa (Gleason score ‡7
[3 + 4]) in a cohort of men who underwent robot-assisted prostatectomy.
Methods: Preoperative MRI scans of 98 patients were identified. The volume of interest was defined by
identifying an annular shell-like region on each MRI slice to include all surgically resectable visceral adipose
tissue. An optimal biomarker method was used to identify features from 7631 intensity- and texture-based
properties that maximized the classification of patients into clinically significant PCa and indolent tumors at the
final pathology analysis.
Results: Six highest ranked optimal features were derived, which demonstrated a sensitivity, specificity, and
accuracy of association with the presence of clinically significant PCa, and area under a receiver operating
characteristic curve of 0.95, 0.39 0.82, and 0.82, respectively.
Conclusion: A highly independent set of PPAT features derived from MRI scans that predict patients with
clinically significant PCa was developed and tested. With future external validation, these features may provide
a more precise scientific basis for deciding to omit biopsies in patients with borderline prostate-specific antigen
kinetics and multiparametric MRI readings and help in the decision of enrolling patients into active surveillance.
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Introduction

Prostate cancer (PCa) is the most commonly diagnosed
malignancy in men and is considered the fifth leading

cause of cancer-related mortality in Western countries.1 One of
the major challenges in the management of patients with sus-
pected PCa is confirming the diagnosis by performing a biopsy.
A substantial number of patients with suspected PCa may
undergo unnecessary biopsies, where clinically insignificant

cancers are often detected and clinically significant cancers are
sometimes missed.2 Over the years, several efforts have been
made to optimize PCa biopsy by using extended templates,
tumor markers, incorporating multiparametric magnetic reso-
nance imaging (mpMRI), and targeted biopsies in the prostate
biopsy pathway.3

mpMRI of the prostate provides anatomical information
about the lesion location within the prostate and its relation to
the neurovascular bundle and urethra. In addition, it provides
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data on tumor characteristics, such as enhancement, vascu-
larity, and metabolite.4 There is growing evidence showing
that mpMRI tends to detect high-grade disease and system-
atically overlooks low-grade disease. However, mpMRI still
fails to detect a significant proportion of high-grade tumors.5

Altered systematic and cellular lipid metabolism plays a
pivotal role in the pathogenesis of PCa. Recent evidence has
shown that periprostatic adipose tissue (PPAT) affects the
prostate microenvironment by either a paracrine effect or
cell-to-cell interactions.6 Several studies have shown an as-
sociation between the total PPAT area and density with high-
risk PCa at the final pathology analysis.7–10 Conversely, other
studies found no correlation between PPAT density and ag-
gressive PCa.6

We theorized that preoperative MRI-derived radiomic
features of PPAT, obtained using an optimal biomarker
(OBM) approach, might help identify patients with clinically
significant PCa. In this study, we sought to characterize the
MRI-derived radiomic features of PPAT associated with
clinically significant PCa (Gleason score, GS ‡7 [3 + 4]) in a
cohort of men who underwent robot-assisted prostatectomy.

Methods

Study population

This retrospective study was approved by the institutional
review board of our institution. We identified 140 patients
who underwent robot-assisted prostatectomy at a single in-
stitution between 2013 and 2018. All patients underwent
preoperative mpMRI, did not receive any neoadjuvant
treatment, or had undergone prior surgery. Patients were
excluded (N = 42) if they had suboptimal imaging quality or
missing T1 sequences. Only nonfat-suppressed small field-
of-view T1-weighted axial MR images were used in this
study.

The MRI scans were acquired for clinical purposes on 1.5 to
3.0 Tesla Siemens clinical MRI scanners with Espree model
and *tse2d1_3 sequence. The axial slice images varied from
192 · 192 to 512 · 512 in size, with 18 to 40 slices acquired
from the aortic bifurcation to the equator of the femoral heads.
The voxel size varied from 0.62 · 0.62 · 4 mm3 to
1.48 · 1.48 · 12 mm3. The repetition time ranged from 1000 to
6680 ms, and the echo time ranged from 80 to 93 ms. Sup-
plementary Table S1 summarizes patients’ characteristics.

Trimming, image intensity standardization,
PPAT delineation

The workflow of the proposed method is illustrated in
Figure 1. Prostate MRI scans were acquired from the patients.
The set of slices in the scan from each patient was then
trimmed in a standard manner by excluding slices that did not
cover the region of interest. The trimmed data set is then
standardized so that the same tissue regions have similar
image intensity meanings.11 Subsequently, in each slice of
the trimmed and standardized data set, the PPAT region was
manually identified and delineated using the CAVASS soft-
ware system (Computer-Aided Visualization and Analysis
Software System) by a fellowship trained urologist.12

Several methods have been employed to delineate PPAT.
Most of these studies rely on characterizing the PPAT in one
slice to measure different features, such as thickness and
density.6–9 However, the use of one slice image to charac-
terize PPAT assumes that PPAT is homogeneous in tissue
properties across slices. After an extensive review of the
literature and several videos provided by the senior surgeon
(D.I.L.), the authors decided to define PPAT in this study as
all surgically resectable visceral adipose tissue anterior to the
endopelvic fascia extending from the prostatic base to the
apex, while excluding mesorectal and ischiorectal/ischioanal
fossa fat.13

Software. CAVASS is an advanced and innovative
medical image processing software developed by the Medical
Image Processing Group (MIPG) at the University of Penn-
sylvania. Building upon the legacy of their previous system,
CAVASS represents the next generation of medical image
analysis and observation tools. A core focus of CAVASS lies
in its specialization for the observation, processing, and
analysis of three-dimensional (3D) and higher dimensional
medical imagery. With a strong emphasis on supporting
DICOM data and implementing algorithms with optimal ef-
ficiency, CAVASS is tailored to the specific needs of medical
professionals and researchers.12

OBM selection—OBM model

The OBM approach utilized in this study first creates a
model in the training stage by using data sets wherein the
classification of each patient case as clinically significant or

FIG. 1. The proposed radiomic method workflow. Scan data set was trimmed, and in each slice of the trimmed data set,
the ROI corresponding to PPAT was manually delineated. To ensure the intensity values in the images have numerical
meaning, all images were first corrected for intensity nonuniformities. Then images were standardized in accordance with a
standard intensity scale. The parameters of the scale were estimated from control MRI data sets. PPAT = periprostatic
adipose tissue; ROI = region of interest.
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nonsignificant cancer is known. Subsequently, for any other
given test patient data set, the model is utilized to classify the
patient into one of two classes.14

Three different groups of features computed from the de-
lineated PPAT region were employed in the adaptation of the
OBM approach for each patient study: volumetric, image
intensity-based, and textural. Intensity-based features are
derived from the histogram of image intensities within the
PPAT region and include the mean, median, standard devi-
ation, mode, maximum, minimum, quartiles, moments,
skewness, kurtosis, and peak height. The textural features
derived from the PPAT region textural characteristics were
defined using two different types of texture descriptors: local
binary pattern (LBP) and gray level co-occurrence matrix
(GLCM).15,16 The total number of features derived in this
manner for each patient case was 7631.

To create the OBM model, the OBM approach first selects
a small subset of 5 to 10 best performing features from a large
set of (7631) features by simultaneously requiring that the
selected features satisfy two conditions: (1) they are as least
uncorrelated among all features as possible and (2) they hold
the best power to discriminate between the two classes of
clinically significant and nonsignificant cancer.14 The final
step is the computation of the OBM model using Bayesian
optimization, which results in the best classification model
and optimal hyperparameters for the model and the consid-
ered problem.

Finally, the created model was utilized to test its classifi-
cation performance on an entirely independent set of patient
studies set aside for testing. The sensitivity, specificity, and
accuracy of prediction and the area under the receiver oper-
ating characteristic (ROC) curve were computed to describe
the predictive performance of the designed model.14 As such,
using random selection, we utilized 60% of the data for
training, 20% for validation, and 20% for testing. After the
selection of features, the assessment of discrimination per-

formance takes place, employing a k-fold cross-validation
methodology.

Notably, no sample that contributes to training is utilized
for testing, ensuring the integrity of the results. To evaluate
performance, Bayesian optimization is applied to a subset of
samples, whereas the remaining samples are used for assess-
ment. This entire process is iterated across various groups.
The ultimate outcomes are derived from the average of iter-
ations where testing never involves samples used for training.
Experts in machine learning with a robust statistical back-
ground meticulously designed and reviewed the procedure.

Results

Feature selection and classification

Each patient study yielded 14 intensity properties, 56 LBP
texture properties, and 7560 GLCM texture properties, for a
total of 7631 features per patient. Figure 2 displays exemplar
slices from four different patient studies, where both the
standardized mpMRI slice (top row) and the delineated PPAT
region (bottom row) are shown. Figure 3 shows a heat map
representing the correlation of features among each other;
blue indicates a positive correlation, and red indicates a
negative correlation. The heat map was clustered to show
groupings of features that were similar in terms of correla-
tion. As shown in Figure 3, large groups of features are highly
correlated, suggesting that they carry redundant information.

The optimal configuration obtained using the OBM ap-
proach resulted in six features. Table 1 provides a description
of the six features employed in the best classifier. Notably, all
optimally selected features denote the textural properties of
the PPAT region. Therefore, texture appears to have the most
important discrimination capability for the two classes.

These features combined provided a classification accu-
racy of 0.82 with a sensitivity and specificity of 0.95 and 0.39,
respectively. Table 2 gives the confusion matrix that

FIG. 2. Visual appearance of the PPAT region in the standardized image (top row) and the delineated mask (bottom row)
for the region of interest. As can be seen, the visual appearance in different patients greatly varies.
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describes the performance of the classification model built
using the set of these six optimal features.

Discussion

A major challenge in PCa diagnosis is the ability to detect
clinically significant cancers, avoid unnecessary biopsies,
and overtreatment. In this study, we identified MRI-derived
radiomic features of PPAT associated with clinically signif-
icant PCa (GS ‡7 [3 + 4]) at the final pathology analysis in a
cohort of men who underwent robot-assisted prostatectomy.
We referred to PPAT as surgically resectable fat during
robot-assisted prostatectomy. Therefore, the PPAT was de-
lineated volumetrically on several slice images, which differs
from other studies that used only a single slice image to refer
to PPAT.6–10 We believe that accounting for fat volumetri-

cally in 3D space instead of just one slice image allows us to
account for tissue heterogeneity and increase the replicability
and generalizability of our approach.

We used the OBM to identify features extracted from T1-
weighted MRI scans that can classify prostate tumors into
clinically significant tumors and nonclinically significant
tumors. With a 98-patient training set and using features from
T1-weigthed MRI sequences alone, our algorithm demon-
strated discriminatory sensitivity, specificity, accuracy of
prediction, and area under the ROC curve of 0.95, 0.39, 0.82,
and 0.82, respectively.

The findings from our study agree with previously pub-
lished literature that showed a correlation between PPAT
enhancement and high GS.17 However, in this study, the
volume and thickness of PPAT were not found to be features
to discriminate between clinically significant PCa of GS >7

FIG. 3. Heat map representation of feature derived from PPAT regions of interest on axial T1-weighted MR images
correlations expressed as a 7631 · 7631 matrix. The heat map is symmetric about the diagonal. A value of -1 means a total
negative linear correlation, 0 means no correlation, and +1 means a total positive correlation.

Table 1. The Top Six Features Selected by the Optimal Biomarker Method

Rank order of feature Description of feature

1 Peak intensity, GLCM with angle 180, distance 3, bins 20, window size 2 · 2, and feature 6.
2 Minimum intensity, GLCM with angle 90, distance 3, bins 10, window size 2 · 2, and feature 3.
3 Maximum intensity, GLCM with angle 90, distance 3, bins 10, window size 2 · 2, and feature 2.
4 Minimum intensity, GLCM with angle 90, distance 3, bins 10, window size 2 · 2, and feature 1.
5 Minimum intensity, GLCM with angle 45, distance 3, bins 20, window size 3 · 3, and feature 3.
6 Maximum intensity, GLCM with angle 45, distance 3, bins 20, window size 3 · 3, and feature 2.

GLCM = gray level co-occurrence matrix.
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(3 + 4), and nonclinically significant PCa. This might be at-
tributed to the different methods used to measure PPAT
volume and thickness in other studies.6–10

Moreover, it is noteworthy to mention that these studies
used a different definition of high-grade PCa, which creates a
challenge for physicians to interpret these findings, incor-
porate them in daily clinical practice, and replicate the find-
ings of these studies. Therefore, in this study, we used the
universal definition of clinically significant PCa of GS >7
(3 + 4).

Recent evidence has shown that PPAT modulates the
prostate microenvironment by either a paracrine effect or
cell-to-cell interactions.6 Either by secreting proin-
flammatory and protumor adipokines, which induce inflam-
matory cell infiltration in the adipose tissue and destroy the
extracellular matrix or through metabolic alterations, adipo-
cytes lose their intracellular lipid content and provide exog-
enous fatty acids to cancer cells.18,19

Hence, several studies explored the qualitative changes in
the peritumor adipose tissue on diagnostic imaging exami-
nation, and found correlation between several imaging pa-
rameters of the peritumor adipose tissue and disease
progression, as well as expression of proinflammatory
markers such as IL-6.20–23 As such, our findings that the
textural properties of the PPAT associated with clinically
significant PCa might reflect qualitative changes in the PPAT
that can be related to altered metabolism and presence of
crown like structures.18,19

Our study has several limitations, including the small
sample size, retrospective nature, imbalance between the
groups, and use of different MRI scans. Also, our analysis did
not account for different pathologic variables such as volume
of tumor, percentage of GS 4, presence of lymphovascular
invasion, presence of perineural invasion, or presence of a
cribriform pattern. Although the proposed model used in this
study is highly effective in handling many features in a
complex search space, involving selection of the most rele-
vant and potent features while ensuring stable and repeatable
results with a low number of samples, it is currently limited to
a binary outcome. In addition, our approach has not been
externally validated. Although the performance of the
method is promising, it is possible that the model was created
by overfitting the training data.

This study used a novel OBM approach to identify PPAT
radiomics features derived from T1-weighted MR images to
distinguish patients with clinically significant PCa from those
with indolent PCa. This is the first study to comprehensively
examine PPAT volumetrically three dimensionally instead of
relying on one image level. If our results are validated in the
future on external independent data sets, we believe that the

integration of our approach in daily clinical practice would
help physicians avoid unnecessary biopsies and improve the
decision-making process. Finally, future efforts should focus
on studying the correlation of these radiomic features of
PPAT with the tumor genome.
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