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Mikel Subiza-Pérez a,b,c,d,*, Gonzalo García-Baquero d,e,g, Ana Fernández-Somoano c,f,g, 
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A B S T R A C T   

Availability of green and blue spaces in the area of residence has been related to various health outcomes during 
childhood, including neurodevelopment. Some studies have shown that children living in greener and/or bluer 
areas score better on cognitive tasks although the evidence is inconsistent. These protective effects are hy-
pothesized to occur in part through reductions in air pollution exposure and odds of attention-deficit/ 
hyperactivity disorder (ADHD). This study analysed the effects of residential green and blue spaces on work-
ing memory of children in the Spanish INfancia y Medio Ambiente (INMA) birth cohort and the potential joint 
mediating role of air pollution and ADHD. The study samples were composed of 1738 six-to eight-year-olds (M =
7.53, SD = 0.68, 49% female) and 1449 ten-to twelve-year-olds (M = 11.18, SD = 0.69, 50% female) living in 
Asturias, Gipuzkoa, Sabadell or Valencia, Spain. Individual Normalized Difference Vegetation Index (NDVI) 
values in 100-, 300- and 500-m buffers and availability of green and blue spaces >5000 m2 in 300-m buffers were 
calculated using Geographic Information Systems software. Individual NO2 values for the home environment 
were estimated using ESCAPE’s land use regression models. ADHD diagnosis was reported by participants’ 
parents via a questionnaire. Working memory was measured with numbers and colours (in the younger group 
only) N-back tests (2- and 3-back d’). Mixed-effects models informed of the beneficial effects of NDVI in a 300-m 
buffer on numerical working memory in the younger sample although the results were not consistent for all d’ 
scores considered and failed to detect significant effects through the candidate mediators. Availability of major 
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E-mail addresses: mikel.subiza@ehu.eus (M. Subiza-Pérez), ggbmoneo@usal.es (G. García-Baquero), fernandezsana@uniovi.es (A. Fernández-Somoano), monica. 
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blue spaces did not predict working memory performance. Provision of green spaces may play a role in children’s 
working memory but further research is required.   

1. Introduction 

Working memory (WM) is an executive function that emerges from 
the interaction between memory and attention and allows us to main-
tain and manipulate information for short periods of time (Cowan, 2014; 
Shelton et al., 2010). Information maintenance and management are key 
for dealing with cognitive tasks such as language comprehension, 
learning, reasoning, and problem-solving (Baddeley, 1992; Vuontela 
et al., 2003). Stored information can be numerical, verbal, chromatic, or 
spatial, depending on the nature of the content to be stored (e.g., 
numbers, words, or colours). Various biological and developmental 
factors have been associated with WM performance during childhood. 
For instance, children born preterm scored lower on WM tasks in studies 
conducted in Finland and the UK (Fitzpatrick et al., 2016; Saavalainen 
et al., 2007) and there is also some evidence of sex-related differences 
(Voyer et al., 2021). Neurodevelopmental conditions such as 
attention-deficit/hyperactivity disorder (ADHD) (Arrington et al., 2022) 
and autism (Hill, 2004) may also impair performance in WM tasks. In 
the socioeconomic sphere, WM scores have been observed to be lower in 
children of disadvantaged families (Mooney et al., 2021) and higher in 
those born to mothers with higher levels of education (Dadvand et al., 
2015; Forns et al., 2014). Most epidemiological evidence on WM 
development during childhood comes from cross-sectional studies that 
tend to group children of different ages (Yaple and Arsalidou, 2018); 
however, a couple of recent studies have addressed this question from a 
longitudinal perspective (Ahmed et al., 2022; Reynolds et al., 2022) and 
have shown that numerical WM grows rapidly during childhood, expe-
riences a period of latency in early adolescence (10–13 years) and ob-
serves a brief second period of growth in middle adolescence. 
Nevertheless, research by Demetriou et al. (2014) suggested that not all 
modalities of WM (i.e., verbal, numerical, and visuospatial) develop 
following the same pattern (see also Cowan, 2016). 

In recent years, there has been a growing interest in the impact of 
environmental exposures on the development of executive functions 
during childhood. In line with this emerging body of literature, we 
wanted to analyse the effects of residential greenness and blueness on 
working memory performance during childhood.1 By so doing, we 
aimed at increasing available evidence on the matter and help to stablish 
a scientific consensus. In the following lines we will review the evidence 
on both the school and residential settings together in order to give a 
more comprehensive description of available evidence. An early study 
by Dadvand et al. (2015) showed that greenness at school exerted a 
positive influence on WM development over 12 months in Spanish 
children aged 7–10 years; however, they found no association with 
residential greenness, as measured by the average Normalized Differ-
ence Vegetation Index (NDVI). In a study involving 1300 mother-child 

pairs from six European birth cohorts, Julvez et al. (2021) explored 
the effects of prenatal NDVI and green and blue space availability in 
residential and school contexts and did not find any associations with 
WM scores. These two studies have recently been included in a sys-
tematic review (Buczyłowska et al., 2023) together with five other 
observational studies on greenness and WM. These studies, categorized 
as having a low or probably low risk of bias by the authors of the review, 
were not consistent: four showed significant protective associations 
between greenness and WM while three did not. Only one of the 
observational studies included in the review analysed the relation be-
tween exposure to blue spaces and WM (Maes et al., 2021) which makes 
the need for further studies even more evident in the blue spaces 
literature. 

1.1. Pathways linking residential greenness and blueness to working 
memory 

Exposure to air pollution has been negatively related to WM and 
attention. For instance, higher NO2 concentrations in the school envi-
ronment were linked to lower WM scores (Alemany et al., 2018; Forns 
et al., 2017; Sunyer et al., 2015) in Spanish children aged 7 to 10. 
Exposure to NO2 was also linked to attention scores in two other Spanish 
studies (Sentís et al., 2017; Sunyer et al., 2017). Greener areas would be 
less polluted due to the deposition of pollutants (Liu et al., 2018), their 
absorption by leaves (Diener and Mudu, 2021), and their enhanced 
dilution due to the increased distance to emission sources (e.g., roads; 
Klingberg et al., 2017). Indeed, one of the proposed pathways linking 
the former to human health and well-being has been precisely the 
reduction of exposure to air pollution (Dzhambov et al., 2020; Marke-
vych et al., 2017). Past research on residential greenness and WM has 
not been unaware of this possibility. Dadvand et al. (2015) reported that 
between 20% and 65% of their observed associations between school 
greenness and WM could be explained through reductions in air pollu-
tion exposure at school. However, Anabitarte et al. (2022) were not able 
to confirm the residential greenness-air pollution-attention pathway in 
their study. 

Likewise, it has been hypothesized that blue spaces, such as beaches, 
rivers, and lakes, could have a positive effect on human health (White 
et al., 2020), although there have been relatively few studies (Gascon 
et al., 2017). While White et al. (2020, p. 5) asserted that blue spaces 
were unlikely to affect air pollution levels to the same extent as green 
spaces, this possible pathway has been mentioned in the blue spaces 
literature (Georgiou et al., 2021). Specifically, while not all the pro-
cesses involved in green air pollution reduction can take place in blue 
settings (i.e., absorption by leaves), pollutants could be deposited in 
water (Pryor and Barthelmie, 2000) and greater dilution due to 
increased distance to emission sources could also be expected. Indeed, 
recent studies have considered this in wetlands and lakes (Liu et al., 
2016, 2018; Qiu et al., 2015). 

Although evidence is still growing and is not unequivocal, these 
exposures also seem to be related to the symptoms and diagnosis of 
ADHD. Some authors have explained the potential effects of greenness 
on ADHD via several pathways; psychological restoration and stress 
recovery, and increased microbial diversity (Thygesen et al., 2020). A 
recent review of studies on greenness and child behaviour included 15 
studies on the presence of ADHD symptoms and 10 on the confirmed 
diagnosis of the disorder (Zare Sakhvidi et al., 2022). Most of the first 
group of studies found a negative association between residential 
greenness metrics and ADHD symptoms. Regarding ADHD diagnosis, 
results were less consistent, three reporting a protective association 
between greenness and ADHD diagnosis whereas the others yielded null 

1 Given that disadvantaged socioeconomic groups tend to live in areas of 
lower environmental quality (Gerrish and Watkins, 2018; Gray et al., 2013; 
Reuben et al., 2019; Rigolon, 2017) and also score lower in WM tasks (Dadvand 
et al., 2015; Forns et al., 2014; Mooney et al., 2021), SES and education vari-
ables have to be considered as potential confounders.  

2 See also www.escapeproject.eu.  
3 Timing of assessment the variables included in the study was as follows. 

Child’s sex, preterm birth, and birthweight, as well as maternal education were 
measured in the baseline assessment (2004–2008), which included the preg-
nancy and delivery of recruited mothers. Environmental exposures (i.e., 
greenness, blueness, and air pollution), working memory, ADHD diagnosis and 
area SES indicators were measured or calculated at every follow-up. The follow- 
up when children reached 6–8 years of age took place between 2012 and 2017 
and the follow-up when they reached 10–12 years between 2015 and 2019. 
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or mixed results. In the case of air pollution, the relationship is not that 
clear either. Aghaei et al. (2019) reviewed 28 studies on air pollution 
and ADHD. Only half of the 12 studies that included a measure of NO2 
reported statistically significant relations between NO2 exposure and 
ADHD. Adding to this mixed evidence, another study not included in the 
former review that analysed data from c. 30,000 European children 
indicated that exposure to air pollution during mothers’ pregnancy was 
not associated with ADHD symptoms (Forns et al., 2018). This evidence, 
and the association between ADHD and WM performance (Arrington 
et al., 2022), invite to consider ADHD as a potential mediator between 
exposure to greenness/blueness and working memory performance. 

The aim of this study was to analyse the effects of residential green 
and blue spaces on WM of children participating in the Infancia y Medio 
Ambiente (INMA) birth cohort and evaluate the potential joint medi-
ating role of air pollution and ADHD. According to the evidence 
reviewed above, we expected that green and blue spaces would have a 
positive effect on WM scores and that part of these effects may happen 
through the reduction of exposure to NO2 and reduced rates of ADHD. 
The analytic procedure we followed is fully explained in the corre-
sponding section of the manuscript. Nonetheless, we wish to make a 
point about the nature of the effects we have estimated for this study, 
which follow the theoretical and empirical background showed above. 
Our statistical models show the total effects of residential greenness and 
blueness metrics on WM. In fact, these total effects encompass: 1. the 
direct effects of greenness and blueness metrics on WM (this is also 
independently estimated); 2. a single mediation effect with the formula 
“greenness/blueness → NO2 → WM”; 3. another single mediation effect: 
“greenness/blueness → ADHD → WM”; and 4. a sequential mediation 
effect with the following structure: “greenness/blueness → NO2 → 
ADHD → WM”. 

2. Methods 

2.1. Sample of participants 

The study sample was composed of children 6 to 8 and 10–12 years of 
age participating in the INMA pregnancy cohort study (Guxens et al., 
2012; www.proyectoinma.org), which recruited women in the first 
trimester of pregnancy in public health system health centres and hos-
pitals in four regions of Spain, specifically, in Asturias, Gipuzkoa, 
Sabadell, and Valencia. These four areas correspond to two different 
climate and biogeographic regions (Dadvand et al., 2012), namely, 
Eurosiberian (Asturias and Gipuzkoa) and Mediterranean (Sabadell and 
Valencia). Women were invited to participate if they were 16 years old 
or older, had a singleton pregnancy, had not received assisted repro-
duction treatment, planned to give birth in their referral hospital, and 
were able to communicate in at least one of the official languages in 
their corresponding region. Between 2004 and 2008, a total of 2644 
women were recruited (Asturias, 494; Gipuzkoa, 638; Sabadell, 657; and 
Valencia, 855) and, since then, they and their children have been 
regularly followed up. In this paper, we present data from the children’s 
6- to 8-year and 10- to 12-year follow-ups, with 1738 participants 
(Asturias, 359; Gipuzkoa, 392; Sabadell, 539; and Valencia, 448) in the 
first of these periods and 1449 (Asturias, 213; Gipuzkoa, 379; Sabadell, 
491; and Valencia, 366) in the second. On average, they were aged 7.53 
(SD = 0.68) and 11.18 (SD = 0.69) respectively at the time when their 
neuropsychological development was measured and the samples were 
balanced in terms of sex (48.79% and 50.45% were female respectively). 
The ethics committees of the hospitals involved in each region approved 
the project and informed consent was obtained from all the participants’ 
parents in each wave. 

2.2. Study variables 

2.2.1. Environmental exposures 
Participants’ home environment was characterized via two metrics 

of greenness: NDVI and availability of greenspace >5000 m2. These 
measures, and the buffers described below, are extensively used in the 
field (Nordbø et al., 2018), and partially (i.e., in relation to green space 
availability) based on the recommendations of the World Health Orga-
nization (2016). The NDVI is a greenness measure derived from satellite 
imagery obtained from Landsat 4–5 Thematic Mapper and Landsat 8 
Operational Land Imager and Thermal Infrared Sensor with a resolution 
of 30 × 30 m in the maximum vegetation period (see Supplementary 
Table 1). This variable ranges from − 1 to +1 (Tucker, 1979), 1 being the 
maximum greenness level. Negative NDVI values correspond to water. 
As the aim was to obtain a vegetation index during the greenest period of 
the year, negative NDVI values were removed before calculating the 
mean NDVI values in buffer zones (Peters et al., 2022; Zhang et al., 
2020). For the current study, we averaged NDVI in 100-, 300- and 500-m 
buffers around the home address. We also included the availability of 
major (>5000 m2) greenspace using Urban Atlas. Land cover classes 
14100 (Green urban areas), 30000 (Forests and semi-natural areas), and 
20000 (Agricultural areas) included in Urban Atlas (Copernicus, 2006) 
were used to estimate this exposure for the 6- to 8-year follow-up, while 
a wider set of classes included in Urban Atlas (Copernicus, 2012) were 
used for the 10- to 12-year follow-up: 14100 (Green urban areas), 21000 
(Arable land [annual crops]), 22000 (Permanent crops), 23000 (Pas-
tures), 24000 (Complex and mixed cultivation patterns), 25000 (Or-
chards), 31000 (Forests), and 32000 (Herbaceous vegetation 
associations). Blue spaces were defined by considering the 50000 
(Water) land cover class in both versions of the Urban Atlas and the 
availability of major blue spaces (>5000 m2). The blue space size and 
the buffer radii were selected following previous studies (Binter et al., 
2022; Nieuwenhuijsen et al., 2019) 

2.2.2. Mediators 
Individual residential exposure to NO2 was estimated using the land 

use regression (LUR) models developed in the European Study of Co-
horts for Air Pollution Effects2 (ESCAPE; Beelen et al., 2013). The LUR 
model for Asturias included surface area (m2) of high-density residential 
land in a 1,000-m buffer, number of households in a 5,000-m buffer, and 
surface area of low-density residential land in a 100-m buffer, and the 
one for Gipuzkoa, surface area of high-density residential land in a 
1000-m buffer and industry and ports in 100-m buffers. Surface area of 
high-density natural land in a 5000-m buffer, population in a 500-m 
buffer, and surface area of high-density residential land in a 5000-m 
buffer were the predictor variables in the Sabadell LUR model. 
Finally, the Valencia model incorporated surface area of high-density 
residential land in 500-m buffer, number of households in a 5000-m 
buffer, and square of the inverse distance to the sea. Models R2 values, 
which indicate the correlation between the models and the observed 
NO2 values in intensive monitoring campaigns in each location, varied 
as follows: Asturias = 0.88, Gipuzkoa = 0.89, Sabadell = 0.90, and, 
Valencia = 0.91. These models were used to estimate NO2 values for 
each follow-up. 

The presence of an ADHD diagnosis at 6–8 and/or 10–12 years was 
based on report by the parents in follow-up questionnaires. At the 6- to 
8-year follow-up, the parents were asked to complete a questionnaire 
including the following question: “Has your child been diagnosed with 
ADHD?”, while at the 10- to 12-year follow-up, they were asked to 
indicate whether a health professional had diagnosed their child with 
any psychological or psychiatric condition, and if so, specify which. 
Children were assumed to have ADHD if their parents reported this 
diagnosis. 

2.2.3. Outcome 
Working memory was measured with N-back tests, computerized 

cognitive tasks consisting of the recall of a previously presented stimulus 
(e.g., a number, colour, or shape). Both number (measuring numerical 
WM) and colour (measuring chromatic WM) N-back tests were used in 
the 6- to 8-year-olds but only numbers were used in the 10- to 12-year- 
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olds. The stimuli appear on the screen one at a time, and the participant 
is instructed to press a button if the current stimulus is the same as the 
previous one (1-back; not included in this study), the second to last (2- 
back), or the third to last (3-back). The cognitive load of the task and, 
therefore, the demand on WM, increases accordingly. In this study, 
participants completed 2- and 3-back number tests at both follow-ups 
and also 2- and 3-back colour tests at the 6- to 8-year follow-up. N- 
back tests were administered to participants following a common pro-
tocol defined for the cohorts by trained research assistants in the data 
collection sessions that took place in participants’ schools in Gipuzkoa 
and referral hospitals and health centres in Asturias, Sabadell, and 
Valencia. For each block separately, we calculated the overall accuracy 
including both hits and correct rejections and d prime (d’), a measure 
derived from signal detection theory that allows the distinction of signal 
from noise. Measures of d’ were calculated for each trial as follows: d’ =
z (hit rate) – z (false alarm rate), a higher d’ indicating better detection, 
and thus, a more accurate performance (Deserno et al., 2012; Stanislaw, 
1999). The task was created using the psychology experiment software 
E-Prime version 2.0 (Psychology Software Tools Inc, Pittsburgh, PA, 
USA). 

2.2.4. Covariates3 

Based on the available literature, a set of variables was selected as 
potential covariates for this study: sex of the child (female/male), age 
when the WM test was conducted, preterm birth (<37 weeks of preg-
nancy, yes/no), birthweight (in grams), maternal education (primary, 
secondary, university) as an indicator of household socioeconomic sta-
tus (SES) and area SES (1-most deprived end to 5- least deprived) based 
on the deprivation index developed in the MEDEA 2011 project (Dom-
ínguez-Berjón et al., 2008). This index is a composite census tract-based 
measure of five area indicators, namely, rates of 1) unemployment, 2) 
manual work, 3) short-term contract work, and 4) and 5) respectively, 
insufficient educational attainment overall and among young people. 

2.3. Data analysis 

The dataset was analysed using R software v.4.0.3 (R Core Team, 
2022). After estimating descriptive statistics, we applied a three-steps 
procedure to select the covariates to be included in the regression 
models. First, to represent our literature review-based assumptions 
concerning the natural process underlying WM, we developed a direct 
acyclic graph (DAG) (Fig. 1) (Pearl, 2009; Tennant et al., 2021). Such a 
DAG was used independently for the 6–8 and 10–12 year analyses. 
Second, we tested the validity of the DAG using the R packages dagitty 
(Textor et al., 2017, 2020) and lavaan (Rosseel, 2012). This requires the 
identification of the testable implications of the DAG, for which we 
applied the d-separation criterion (Pearl, 1986; Verma and Pearl, 1990) 
via the dagitty function impliedConditionalIndependencies(). Testable 
implications are pairwise marginal and conditional independencies 
implied by a given DAG (Elwert, 2013): if these properties of the joint 
distribution are not satisfied by the data, we find reason to reject, or 
possibly modify, the model (Chen et al., 2014). Thus, since our dataset is 
a combination of categorical and continuous data, we computed the 
polychoric correlation matrix of the dataset (Ankan et al., 2021) through 
the lavaan function lavCor(), and then applied the test itself of the 
aforementioned conditional independencies against the correlation 
matrix using the dagitty function localTests() (Textor, 2020). Testable 
implications were considered unmet when p-values were found to be 
lower than 0.05 and r-scores larger than 0.20; unmet implications were 
taken to be an indication of missing relationships and subsequently 
included in the DAG. Having tested the validity of the DAG, we pro-
ceeded to the third and last step: the identification of covariate adjust-
ment sets by applying a complete generalized adjustment criterion 
(Perković et al., 2015; Van Der Zander et al., 2014). Covariate adjust-
ment sets are sets of covariates that permit unbiased estimation of effects 
from observational data by blocking biasing paths and leaving open the 

paths of interest for the study, and we obtained these sets using the 
dagitty function adjustmentSets(). Once this issue was solved, we pro-
ceeded to the estimation of the total and direct effects of the exposure 
variables on outcomes (in this case, WM scores). Indirect effects would 
be the difference between total and direct effects. For this purpose, we 
assumed linearity (a DAG is a non-parametric object) and applied 
mixed-effects modelling with the function lme() of the R package nlme 
(Pinheiro et al., 2022), for which we used <cohort> as a random factor 
and the corresponding sets of covariates as adjustment sets. We only 
interpreted the fixed effects of exposures on outcomes, since the role of 
covariates is just to act as adjustment sets, and hence, their coefficients 
are not interpretable. We followed the same procedure to estimate the 
associations between the two mediators (i.e. NO2 and ADHD) and the 
working memory scores obtained by the participants in each follow-up. 
All the statistical analyses here described were conducted using the 
complete cases (i.e. without missing values on study variables) in each 
follow-up, which meant 933 participants for the 6–8 years follow-up and 
1041 participants for the 10–12 years one. Finally, we used lme () to fit 
longitudinal mixed models in order to analyse the total effects of 
greenness and blueness over time on d2 and d3 number scores. The 
sample used for each of the aforementioned models, determined by the 
number of complete cases at each follow-up, is as follows: 933 partici-
pants for the 6–8 years models, 1041 for the 10–12 years models and 648 
for the longitudinal models. 

3. Results 

Among the mothers of the children aged 6 to 8 (see Supplementary 
Table 2), a third had completed secondary education and nearly a third 
had a university degree. More than half of the participants lived in areas 
with high SES (quintiles 1 and 2), whereas the most challenged quintiles 
were underrepresented (3.34%). Twenty (1.15%) and 122 (8.42%) 
children had been diagnosed with ADHD before each of the follow-ups. 
With regard to the environmental conditions, most participants lived 
within 300 m of a green space, while only a fifth had a blue space 
nearby. NDVI values ranged from 0.20 to 0.49, being slightly lower in 
the Sabadell and Valencia cohorts. Air pollution levels were comparable 
in all the cohorts but that of Sabadell, where levels were higher. Children 

Fig. 1. DAG explaining the relationship between exposure to residential green 
and bluespaces and working memory. The arrows indicate causal paths. All the 
relationships were defined based on previous literature. Arrows highlighted in 
green correspond to the effects of interest for this study. SES = area socioeco-
nomic status, NO2 = nitrogen dioxide, and ADHD = attention deficit/hyper-
activity disorder. 
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scored higher in numerical than colour n-back trials, and lower scores 
were obtained in 3- than 2-back back trials. Among the 10- to 12-year- 
olds (see Supplementary Table 3), the proportion whose mothers had 
secondary or university education was higher, but area SES and envi-
ronmental exposures were similar to those described above for the 
younger sample. Again, WM scores were higher in the 2-back trials and 
participants performed better at this stage than in the previous follow- 
up. 

3.1. Estimation of effects 

Not all the testable implications derived from the DAG shown in 
Fig. 1 were met in the study samples. Table 1 and Supplementary Fig. 1 
show the results of the localTest() function for models with NDVI in a 
100-m buffer and d’ in the colour 2-back task. To avoid redundancy, 
results of checking testable implications for the rest of the models are not 
described in this paper but will be available on request. In the case of the 
models for the 6- to 8-year-olds, the testable implications “age ⊥ NO2” 
and “age ⊥ green exposure”4 were not met and, therefore, they were 
included in a new version of the DAG. This meant that the minimum 

adjustment set of covariates included age, area SES, and maternal edu-
cation for the total effects and those three plus ADHD diagnosis and NO2 
for the direct effects models. In the sample of 10- to 12-year-olds, “age ⊥
area SES” showed an r score >0.20 across all the exposure models. “Age 
⊥ blue exposure” was unmet in the blue space availability models. This 
implied the use of area SES and maternal education to estimate the total 
effects of the exposure on the outcome plus ADHD and NO2 for the direct 
effects. Models including availability of blue space as a predictor vari-
able were additionally adjusted for age. 

Most of the models we fitted with the 6- to 8-year-olds sample 
showed effects in the expected direction, but only one was statistically 
significant (Table 2): NDVI in a 300-m buffer was positively associated 
with d’ values for the 2-back number tasks. We found some marginally 
significant effects (p < .10) of NDVI in a 100-m buffer on 3-back colour 
scores and of NDVI in a 500-m buffer on the 2-back number tasks. In the 
three cases, both total and direct effects obtained a similar p-value, 
indicating that both were similarly relevant in statistical terms. The total 
effects coefficients were lower than those for the direct effects in all the 
situations where the exposure coefficients had p-values lower than 0.10, 
but due to the fact that their confidence intervals overlapped, we did not 
find any evidence of mediation through the proposed mediators. The 
availability of green or blue spaces within 300 m of the home address 
had no effect on performance in any of the tasks. 

As shown in Table 3, the results for the 10- to 12-year-olds revealed 
only two total effects with p-values less than 0.10, again suggestive of a 
trend but not statistically sound. The first of them, consistent with what 
was found in the younger sample, indicated that higher scores for NDVI 
in a 300-m buffer predicted a greater WM performance in the 2-back 
number task. Contrary to theoretical expectations, however, living 
within the vicinity of a major green space led to a worse performance in 
the 3-back number task. Supplementary Table 4 shows the associations 
between the mediators and the working memory scores. As can be seen 
in said table, no association could be confirmed between NO2 values and 
WM scores. With regard to ADHD, and only in the 10–12 years follow-up 
sample, it was negatively associated with scores in the 2 and 3-backs 
trials. 

The results of the longitudinal models fitted to analyse the associa-
tions between green and blue metrics with d2 and d3 numbers scores can 
be seen in Supplementary Tables 5 and 6. The obtained pattern of results 
is comparable to the one seen in the cross-sectional models although the 
coefficients had lower p-values in the case of NDVI. NDVI scores, 
regardless of the buffer size, were positively associated with d2 and d3 
numbers scores and showed statistically significant interaction effects 
with time. These effects indicate that said association disappears in the 
second follow-up. Neither main effects nor interaction effects were 
detected for green space availability and despite the main effect of blue 
space availability was non-significant, a statistically significant inter-
action with time was observed. 

4. Discussion 

This study sought to improve our understanding of the effects of 
exposure to residential green and blue spaces in the WM of children. We 
also aimed to explore whether or not part of those effects, if any, 
occurred through the differences in mediators of air pollution (Dadvand 
et al., 2015; Markevych et al., 2017) and ADHD diagnosis (Donovan 
et al., 2019; Thygesen et al., 2020; Zare Sakhvidi et al., 2022). To do so, 
we built on previous scientific evidence and defined a comprehensive 
DAG which accounted for the relationships among the exposures and the 
outcome of interest. The application of the principle of d-separation and 
graphical adjustment criteria to this DAG allowed us to find out the 
minimum sets of adjustment variables to estimate the total and direct 
effects of green and blue spaces on WM scores. For the 6- to 8-year-olds, 
we found that NDVI scores in a 300-m radius from participants’ homes 
predicted higher WM values in the 2-back number task, although the 
pattern was not observed in the other buffer and outcome combinations. 

Table 1 
r scores resulting from checking the testable implications for a model using NDVI 
as a predictor and d’ in the colour 2-back task as the outcome using the localTest 
() function in the dagitty R package.  

Testable implication r p- 
value 

Lower CI 
(2.5%) 

Upper CI 
(97.5%) 

ADHD⊥Age − 0.077 0.018 − 0.14 − 0.01 
ADHD⊥ Maternal ed. | area 

SES, NDVI 100, NO2 

0.001 0.981 − 0.06 0.07 

ADHD⊥ BW | area SES − 0.003 0.923 − 0.07 0.06 
ADHD⊥ PTB| area SES − 0.021 0.516 − 0.09 0.04 
ADHD⊥ Sex − 0.002 0.943 − 0.07 0.06 
Age ⊥ area SES 0.125 0.000 0.06 0.19 
Age ⊥ Maternal ed. − 0.053 0.105 − 0.12 0.01 
Age ⊥ NDVI 100 0.376 0.000 0.32 0.43 
Age ⊥ NO2 − 0.503 0.000 − 0.55 − 0.46 
Age ⊥ BW − 0.018 0.588 − 0.08 0.05 
Age ⊥ PTB 0.095 0.004 0.03 0.16 
Age ⊥ Sex 0.054 0.098 − 0.01 0.12 
SES ⊥ Sex 0.027 0.409 − 0.04 0.09 
Maternal ed. ⊥ BW | area SES − 0.009 0.791 − 0.07 0.06 
Maternal ed. ⊥ PTB| area SES 0.052 0.113 − 0.01 0.12 
Maternal ed. ⊥ Sex 0.029 0.381 − 0.04 0.09 
NDVI 100 ⊥ BW | area SES 0.058 0.076 − 0.01 0.12 
NDVI 100 ⊥ PTB| area SES 0.047 0.149 − 0.02 0.11 
NDVI 100 ⊥ Sex 0.059 0.070 0.00 0.12 
NO2⊥ BW | area SES − 0.007 0.821 − 0.07 0.06 
NO2⊥ PTB| area SES − 0.081 0.013 − 0.14 − 0.02 
NO2⊥ Sex − 0.027 0.406 − 0.09 0.04 
PTB⊥ Sex − 0.010 0.768 − 0.07 0.05 

Note: PTB = preterm birth, BW = birth weight, area SES = area socioeconomic 
status, NO2 = nitrogen dioxide, and ADHD = attention-deficit/hyperactivity 
disorder. A r coefficient larger than 0.20 and with p-value <.05 indicates that the 
testable implication is unmet. This means that the original DAG did not specify a 
relationship between two variables that actually exists in the dataset. To 
correctly apply the d-separation criterion to select the minimal adjustment set of 
covariates, which is the final aim of the DAG validation process; unspecified 
relationships need to be included in a new version of the DAG by adding the 
arrows. If those specifications were not added to the new version of the DAG and 
we used the previous DAG to select the minimal adjustment set, the effect es-
timates might be biased because not all the biasing paths would be effectively 
blocked. 

4 ⊥ indicates independence between the terms at each side of the symbol. 
Therefore, the testable implications mentioned in the text should be read as 
follows: “age of the children is independent from their NO2 values” and “age of 
the children is independent from green exposure metrics”. 
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Table 2 
Total and direct effects of residential greenness and blueness metrics on working memory in the 6- to 8-year-olds (n = 933).  

Exposure Outcome Kind of effect Covariate adjustment set Estimate 95% CI t p-value 

NDVI 100 d2 colours Total effect Age, area SES, maternal education 0.48 (-0.15, 1.11) 1.5 0.134 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.32 (-0.40, 1.05) 0.88 0.381 

d3 colours Total effect Age, area SES, maternal education 0.47 (-0.02, 0.96) 1.89 0.060 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.56 (-0.01, 1.12) 1.96 0.050 

d2 numbers Total effect Age, area SES, maternal education 0.44 (-0.25, 1.12) 1.25 0.211 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.36 (-0.43, 1.16) 0.89 0.372 

d3 numbers Total effect Age, area SES, maternal education 0.07 (-0.51, 0,66) 0.24 0.807 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.01 (-0.68, 0.68) 0.01 0.992  

NDVI 300 d2 colours Total effect Age, area SES, maternal education 0.44 (-0.14, 1.03) 1.49 0.137 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.27 (-0.46, 1.00) 0.73 0.465 

d3 colours Total effect Age, area SES, maternal education 0.25 (-0.21, 0.72) 1.06 0.287 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.29 (-0.29, 0.87) 0.97 0.330 

d2 numbers Total effect Age, area SES, maternal education 0.69 (0.04, 1.34) 2.10 0.036 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.85 (0.06, 1.64) 2.10 0.036 

d3 numbers Total effect Age, area SES, maternal education 0.23 (-0.33, 0.81) 0.81 0.421 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.24 (-0.47, 0.95) 0.67 0.505  

NDVI 500 d2 colours Total effect Age, area SES, maternal education 0.39 (-0.19, 0.96) 1.33 0.185 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.12 (-0.65, 0.89) 0.30 0.762 

d3 colours Total effect Age, area SES, maternal education 0.16 (-0.32, 0.63) 0.65 0.517 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.12 (-0.50, 0.74) 0.37 0.710 

d2 numbers Total effect Age, area SES, maternal education 0.59 (-0.06, 1.24) 1.80 0.072 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.73 (-0.10, 1.56) 1.73 0.084 

d3 numbers Total effect Age, area SES, maternal education 0.27 (-0.31, 0.85) 0.91 0.362 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.32 (-0.44, 1.07) 0.82 0.410  

Total and direct effects of residential greenness and blueness metrics on working memory in the 6- to 8-year-olds (n = 933). 

Exposure Outcome Kind of effect Covariate adjustment set Estimate 95% CI t p-value 

Green avail. d2 colours Total effect Age, area SES, maternal education − 0.02 (-0.28, 0.24) − 0.16 0.877 
Direct effect Age, area SES, maternal education, ADHD, NO2. − 0.09 (-0.37, 0.18) − 0.66 0.508 

d3 colours Total effect Age, area SES, maternal education 0.1 (-0.10, 0.30) 0.98 0.327 
Direct effect Age, area SES, maternal education, ADHD, NO2. 0.09 (-0.12, 0.30) 0.88 0.378 

d2 numbers Total effect Age, area SES, maternal education − 0.11 (-0.38, 0.17) − 0.75 0.453 
Direct effect Age, area SES, maternal education, ADHD, NO2. − 0.15 (-0.44, 0.13) − 1.05 0.294 

d3 numbers Total effect Age, area SES, maternal education − 0.13 (-0.36, 0.10) − 1.08 0.282 
Direct effect Age, area SES, maternal education, ADHD, NO2. − 0.14 (-0.38, 0.10) − 1.14 0.253  

Blue avail. d2 colours Total effect area SES, maternal education 0.04 (-0.22, 0.31) 0.31 0.754 
Direct effect Age, area SES, maternal education, ADHD, NO2 0.04 (-0.17, 0.26) 0.39 0.700 

d3 colours Total effect area SES, maternal education − 0.09 (-0.29, 0.11) − 0.85 0.393 
Direct effect Age, area SES, maternal education, ADHD, NO2 − 0.05 (-0.23, 0.13) − 0.58 0.600 

d2 numbers Total effect area SES, maternal education 0.08 (-0.20, 0.36) 0.56 0.574 
Direct effect Age, area SES, maternal education, ADHD, NO2 0.08 (-0.17, 0.33) 0.64 0.521 

d3 numbers Total effect area SES, maternal education 0.04 (-0.19, 0.27) 0.33 0.738 
Direct effect Age, area SES, maternal education, ADHD, NO2 0.07 (-0.59, 0.29) 0.62 0.536 

NDVI 100, 300, and 500: Normalized Difference Vegetation Index in 100-, 300- and 500-m buffers; green and blue avail.: green and blue space availability; area SES: area socioeconomic status; ADHD: attention-deficit/ 
hyperactivity disorder. 
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Table 3 
Total and direct effects of residential greenness and blueness metrics on working memory in the 10- to 12-year-olds (n = 1041).  

Exposure Outcome Kind of effect Covariate adjustment set Estimate 95% CI t p-value 

NDVI 100 d2 numbers Total effect area SES, maternal education 0.28 (-0.25, 0.82) 1.04 0.301 
Direct effect area SES, maternal education, ADHD, NO2 0.16 (-0.44, 0.76) 0.53 0.596 

d3 numbers Total effect area SES, maternal education 0.21 (-0.21, 0.64) 0.98 0.327 
Direct effect area SES, maternal education, ADHD, NO2 0.27 (-0.22, 0.75) 1.08 0.281  

NDVI 300 d2 numbers Total effect area SES, maternal education 0.5 (-0.06, 1.07) 1.75 0.080 
Direct effect area SES, maternal education, ADHD, NO2 0.51 (-0.17, 1.86) 1.47 0.141 

d3 numbers Total effect area SES, maternal education 0.22 (-0.22, 0.66) 0.98 0.329 
Direct effect area SES, maternal education, ADHD, NO2 0.36 (-0.17, 0.90) 1.33 0.184  

NDVI 500 d2 numbers Total effect area SES, maternal education 0.49 (-0.10, 1.09) 1.62 0.106 
Direct effect area SES, maternal education, ADHD, NO2 0.49 (-0.26, 1.24) 1.28 0.201 

d3 numbers Total effect area SES, maternal education 0.22 (-0.23, 0.68) 0.96 0.337 
Direct effect area SES, maternal education, ADHD, NO2 0.39 (-0.19, 0.97) 1.33 0.183  

Green avail. d2 numbers Total effect area SES, maternal education − 0.01 (-0.21, 0.18) − 0.14 0.889 
Direct effect area SES, maternal education, ADHD, NO2 − 0.01 (-0.21, 0.18) − 0.12 0.905 

d3 numbers Total effect area SES, maternal education − 0.14 (-0.30, 0.02) − 1.68 0.093 
Direct effect area SES, maternal education, ADHD, NO2 − 0.13 (-0.30, 0.04) − 1.51 0.132  

Blue avail. d2 numbers Total effect Age, area SES, maternal education 0.02 (-0.18, 0.22) 0.16 0.871 
Direct effect Age, area SES, maternal education, ADHD, NO2 − 0.02 (-0.17, 0.13) − 0.21 0.834 

d3 numbers Total effect Age, area SES, maternal education − 0.02 (-0.16, 0.12) − 0.24 0.813 
Direct effect Age, area SES, maternal education, ADHD, NO2 − 0.02 (-0.17, 0.12) − 0.21 0.834 

NDVI 100, 300, and 500: Normalized Difference Vegetation Index in 100-, 300- and 500-m buffers; green and blue avail.: green and blue space availability; area SES: area socioeconomic status; ADHD: attention-deficit/ 
hyperactivity disorder. 

M
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We did not find evidence supportive of the suggested mediation effects. 
For the 10- to 12-year-olds, we only found marginally significant effects 
showing that NDVI in a 300-m buffer increased WM scores in the nu-
merical 2-back task and that, contrary to expectations, these scores 
decreased for participants living in the proximity to major green spaces. 
The results of the longitudinal models went in the same direction 
although with lower associated p-values. 

Further, we did not find any support for the potential association 
between the availability of blue spaces and WM performance. This might 
be due to the fact that only 20% of the participants lived in the vicinity of 
a blue space larger than 5000 m2, which could have diminished our 
ability to detect such effects due to a lack of sufficient environmental 
heterogeneity. Similar reasoning, but in the reverse direction, would 
apply to the availability of major green spaces, which were found in the 
vicinity of children’s homes in 80–83% of cases in both samples. 
Moreover, we could not confirm the mediating role of NO2 and ADHD. 
However, some studies with children have used air pollution as mediator 
and obtained mixed results. Dadvand et al. (2015) observed that 
elemental carbon mediated between greenness and working memory 
scores whereas reductions in NO2 did not explain the effects of greenness 
on attention scores in the study by Anabitarte et al. (2022). In our study, 
we failed to confirm the NO2 pathway because there was no connection 
between exposure to such pollutant and WM scores. Besides, estimations 
on the removal of NO2 by vegetation are substantial at larger scales but 
minimal in urban contexts, according to a study conducted in the UK 
(Nemitz et al., 2020) and therefore other pollutants might be better 
candidates to test the air pollution pathway. To our knowledge, this is 
the first study using ADHD as a mediator of the association between 
greenness/blueness and cognitive development so there is no prior ev-
idence to compare to. Nevertheless, our results are partially supportive 
of the theoretical assumptions described in the DAG and presented in the 
current literature on residential green and blue spaces and neuro-
development (Anabitarte et al., 2022; Dadvand et al., 2015, 2017; 
Reuben et al., 2019; Jimenez et al., 2021). 

As mentioned in the introduction, relatively few studies have 
addressed the relation between residential greenness and neuro-
development during childhood, and among those that have, the results 
are mixed (Anabitarte et al., 2022; Dadvand et al., 2015), this high-
lighting the need for further research. The data from our study 
contribute to this heterogeneity. First, as already stated, we found sta-
tistical support for the association between residential greenness and 
WM in only a small fraction of the models we were able to fit. Therefore, 
in general terms, our study does not offer substantial support to the 
hypothesis of residential greenness having a positive effect on WM. 
Specifically, we were unable to confirm beneficial effects of residential 
greenness on WM. On the other hand, this lack of supporting results 
could be also explained by neurodevelopmental factors. It might be that 
the effects of residential greenness on WM are more evident in certain 
periods of development and the children in our study were not in such 
potential windows at the times of data collection. Supporting this idea, 
some longitudinal studies have observed differences in the development 
of WM, and have described a period of latency in late childhood and an 
acceleration in adolescence, due to contextual and biological changes 
(Ahmed et al., 2022; Reynolds et al., 2022). Another possibility may lay 
on differential use patterns of green and blue spaces by younger and 
older children (Marquet et al., 2019). It may be that the detected link 
between NDVI and WM performance in the 6–8 years follow-up is due to 
longer exposure times (more frequent use of green/blue settings) or to 
the practice of certain activities. However, such information was not 
collected for this study, and we can only speculate. Finally, it is also true 
that our findings show effects mostly in one specific outcome, the score 
obtained in the 2-back number task. Performance in 3-back number 
tasks has been seen as an indicative of higher cognitive processing in 
previous studies (Dadvand et al., 2015; Fernandes et al., 2023), which 
may indicate that the effects of residential greenness on cognitive per-
formance may be limited or superficial at the population level. Further 

studies with better characterizations of the exposure to greenness (e.g. 
frequency and duration of visits to parks) may help to clarify this point. 

Further, it may seem intriguing that in the models for the 6- to 8- 
year-olds the point estimates for the (statistically significant) co-
efficients of the direct effects were larger in magnitude than those for the 
total effects. But this is only if we expect direct effects to be less than, or 
equal to, total effects; however, in such reasoning, we have forgotten to 
take into account that these estimates are, in fact, point estimates, 
which, naturally, have been estimated with an intrinsic error that is not 
reflected in the point estimate itself. Thus, when we also look at the 
corresponding 95% confidence intervals (which do take error into ac-
count) the supposedly intriguing result vanishes, and we observe that, 
when this happened, the interval estimates for direct and total effects 
almost completely overlap. Interval estimates are, by nature, less precise 
than point estimates (since interval estimates are “wider” than point 
estimates), but their accuracy is expressed explicitly (in this case, with 
95% confidence intervals) while the accuracy of point estimates is not 
expressed in the estimate itself. In summary, what we may conclude 
when we look at these no-longer-intriguing point and interval estimates 
is that the size of the direct effect is of about the same magnitude as the 
size of the total effect; or in other words, that there is no mediation 
involved, i.e., that all the effect is direct since no indirect effect appears 
to exist despite evidence from previous studies (Aghaei et al., 2019; 
Alemany et al., 2018; Amoly et al., 2014; Donovan et al., 2019; Thy-
gesen et al., 2020). For instance, in the case of taking as exposure NDVI 
in a 100-m buffer and as the outcome d3 colours (Table 2), the point 
estimate for the total effect was 0.47 with a 95% confidence interval of 
(− 0.96, − 0.02), while the point estimate for the direct effect was 0.56 
with a 95% confidence interval of (− 1.12, − 0.01). In other words, there 
was no indirect effect and the observed size of the direct and total effect 
is negative and, with 95% accuracy, about one unit in width. The same 
interpretation applies to the other two cases (for NDVI in 300m and 
500-m buffers as exposures and d2 numbers as the outcome). 

4.1. Strengths and limitations 

This study makes a meaningful contribution to the field for several 
reasons. First, it included three different measures of residential expo-
sure, namely, NDVI, green space availability, and blue space availabil-
ity, as well as a validated computerized task to measure WM (Forns 
et al., 2014). Second, the evidence here obtained adds to that provided 
by a small number of previous studies that describe positive effects of 
residential greenness on neurodevelopment scores (Anabitarte et al., 
2022; Dadvand et al., 2015; Julvez et al., 2021; Reuben et al., 2019), 
although as in the previous research, we did not find a consistent pattern 
of results. Further, we had complete data for sample of children in two 
different age ranges that allowed us to estimate the effects of interest at 
two different time points. Finally, we also followed a systematic statis-
tical procedure for selecting covariates, which involved constructing 
and updating a DAG (Ankan et al., 2021; Elwert, 2013; Pearl, 2000; 
Tennant et al., 2021; Textor et al., 2017) to select the adequate control 
variables and, thereby, obtain relatively unbiased estimates of the ef-
fects of residential greenness and blueness on WM. Even though the use 
of DAGs is becoming more common in health studies, researchers rarely 
test the DAG implications, which is a major methodological shortcoming 
(Ankan et al., 2021; Tennant et al., 2021). By so doing, we gain confi-
dence that our estimates of the effects of interest are accurate and pre-
cise. We also trust that this procedure may consolidate within this area 
of research. 

Nevertheless, there are some limitations. A direct consequence of 
focusing on the home environment is that we have not taken into ac-
count the effects of green and blue infrastructure in other potentially 
meaningful environments. It might be the case that the children 
included in the sample spent considerable amounts of time in places 
other than their immediate home environment (Kwan, 2009, 2012), and 
that green and blue features of those settings also exerted a positive 
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effect on their WM scores. The school environment is a very clear 
example here (Dadvand et al., 2015). Further, although pervasive in this 
area of research, we have selected arbitrary boundaries (i.e., buffers) to 
operationalize the individual home environment which may or may not 
coincide with the actual area where daily activities around the home 
occur (Vallée et al., 2015). In their review of green space studies, Labib 
et al. (2020) listed a series of limitations that apply to this type of 
research, namely, the neglect of greenness visibility from the home, the 
uncertainty about the frequency and duration of use of green and blue 
spaces by study participants, and the quality of such spaces. These 
limitations might be affecting not only our ability to disentangle the 
total effects of greenness and bluennes on WM but also specific pathways 
such as the one involving the reduction of ADHD symptomatology. 
Including tools such as the global positioning system and accelerometry 
(Marquet et al., 2020), quality audits (Knobel et al., 2019), or ad hoc 
questionnaires, could help to overcome these shortcomings and gather 
more accurate and useful data on this matter. Our study design could not 
account for the role that other urban variables might play (e.g., noise) 
and therefore this question remains open for future studies. In addition, 
our study being focused on the potential mediating role of air pollution 
and ADHD, we did not investigate the specific role of other candidate 
mediators such as physical activity, temperature regulation, or noise 
(Buczyłowska et al., 2023; Markevych et al., 2017), although their joint 
effect was modelled in our direct effects models. Finally, our oper-
ationalization of SES lacked, despite comprising an individual measure 
(i.e., maternal education) a comprehensive area indicator, information 
on family income, so some residual confounding might be affecting our 
results. 

5. Conclusion 

Higher-quality neighbourhoods can promote healthier lives. This 
study explored the potential positive effects that residential greenness 
and blueness might have on WM during late childhood and early 
adolescence and found scarce evidence to support such a hypothesis. 
Despite the inconsistency of the evidence in this area of research and the 
fact that more work is needed to achieve a scientific consensus, our re-
sults contribute to the specific literature and warrant further examina-
tion in future studies. 
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causal inference using directed acyclic graphs: the R package “dagitty.”. Int. J. 
Epidemiol. 45 (6), 1887–1894. https://doi.org/10.1093/ije/dyw341. 

Thygesen, M., Engemann, K., Holst, G.J., Hansen, B., Geels, C., Brandt, J., Pedersen, C.B., 
Dalsgaard, S., 2020. The association between residential green space in childhood 
and development of attention deficit hyperactivity disorder: a population-based 
cohort study. Environ. Health Perspect. 128 (12), 1–9. https://doi.org/10.1289/ 
EHP6729. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 
vegetation. Rem. Sens. Environ. 8, 127–149. 

Vallée, J., Le Roux, G., Chaix, B., Kestens, Y., Chauvin, P., 2015. The ‘constant size 
neighbourhood trap’ in accessibility and health studies. Urban Stud. 52 (2), 
338–357. https://doi.org/10.1177/0042098014528393. 

Van Der Zander, B., Lis̈kiewicz, M., Textor, J., 2014. Constructing separators and 
adjustment sets in ancestral graphs. CEUR Workshop. Proceedings 1274, 11–23. 

Verma, T., Pearl, J., 1990. Causal networks: semantics and expressiveness* *this work 
was partially supported by the national science foundation grant #IRI-8610155. 
“Graphoids: a computer representation for dependencies and relevance in automated 
reasoning (computer information science).”. Mach. Intell. Pattern Recogn. 9, 69–76. 
R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, North-Holland.  

Voyer, D., Saint Aubin, J., Altman, K., Gallant, G., 2021. Sex differences in verbal 
working memory: a systematic review and meta-analysis. Psychol. Bull. 147 (4), 
352–398. https://doi.org/10.1037/bul0000320. 

Vuontela, V., Steenari, M.R., Carlson, S., Koivisto, J., Fjällberg, M., Aronen, E.T., 2003. 
Audiospatial and visuospatial working memory in 6-13 year old school children. 
Learn. Mem. 10 (1), 74–81. https://doi.org/10.1101/lm.53503. 

White, M.P., Elliott, L.R., Gascon, M., Roberts, B., Fleming, L.E., 2020. Blue space, health 
and well-being: a narrative overview and synthesis of potential benefits. Environ. 
Res. 191 (September), 110169 https://doi.org/10.1016/j.envres.2020.110169. 

WHO Regional Office for Europe, 2016. Urban Green Spaces and Health, p. 92. 
Yaple, Z., Arsalidou, M., 2018. N-Back working memory task: meta-analysis of normative 

fMRI studies with children. Child Dev. 89 (6), 2010–2022. https://doi.org/10.1111/ 
cdev.13080. 

Zhang, Y., Mavoa, S., Zhao, J., Raphael, D., Smith, M., 2020. The association between 
green space and adolescents mental well-being: a systematic review. Int. J. Environ. 
Res. Publ. Health 17 (18), 1–26. https://doi.org/10.3390/ijerph17186640. 

Zare Sakhvidi, M.J., Knobel, P., Bauwelinck, M., de Keijzer, C., Boll, L.M., Spano, G., 
Ubalde-Lopez, M., Sanesi, G., Mehrparvar, A.H., Jacquemin, B., Dadvand, P., 2022. 
Greenspace exposure and children behavior: a systematic review. Sci. Total Environ. 
824, 3–5. https://doi.org/10.1016/j.scitotenv.2022.153608. 
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