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a b s t r a c t

The properties of orthogonal equivariance and componentwise increasingness are often
discussed for estimators of multivariate location. The former property is linked to a
coordinate-free nature of the data (as in spatial data), whereas the latter property is
linked to an ordered nature of the data (typically formed by several univariate variables).
Since both properties do not get along well with each other, if robustness in the presence
of outliers is to be pursued, one must choose between them. Admittedly, most of
the literature on multivariate estimation of location, in which affine equivariance is
pursued, typically abandons the latter property. Unfortunately, in the more and more
common presence of heterogeneous data (as in spatio-temporal data), both orthogonal
equivariance (therefore, affine equivariance) and componentwise increasingness might
bring very disappointing results. For this very reason, both properties should be forfeited
and only required for some of the components.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Statisticians are often interested in the estimation of different parameters describing a certain population. It is therefore
nsurprising that estimators of location have become a prominent subject of study in statistics. Actually, the analysis of
stimators of location currently reaches far beyond the most probabilistic and sampling-oriented approach to statistics
nd has become a core topic in fields as varied as aggregation theory (where estimators of location are referred to as
dempotent aggregation functions, averaging functions or means) (Grabisch et al., 2011), descriptive statistics (where
hey are referred to as central tendencies, measures of central tendency or averages) (Wilcox and Keselman, 2003), cluster
nalysis (where they are referred to as cluster centers) (MacQueen, 1967) and operations research (where they are referred
o as optimal facility locations) (Owen and Daskin, 1998).

The field of multivariate statistics is concerned with the simultaneous analysis of more than one variable. If the
ariables are assumed to be independent, the estimation of the multivariate location can be performed for each variable
ndividually. However, if there is no guarantee of independence, the estimation of the multivariate location becomes more
nvolved, resulting in a vast literature. Some prominent examples of estimators of multivariate location are the (weighted)
entroid (Gagolewski et al., 2020), the Euclidean center (Sylvester, 1857) and different extensions of the median to higher
imensions (Small, 1990) such as the componentwise median (Gagolewski, 2017), the medoid (Kaufman and Rousseeuw,
990), the spatial median (Vardi and Zhang, 2000; Weber, 1909; Weiszfeld, 1937), the orthomedian (Grübel, 1996), Tukey’s
alfspace median (Tukey, 1975), Oja’s simplex median (Oja, 1983), the convex hull peeling median (Eddy, 1982) and the
implicial depth median (Liu, 1990).
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The field of robust statistics focuses on reducing the influence of outliers (Rousseew and Hubert, 2011) in several
asks such as parameter estimation (Croux and Dehon, 2014; Huber, 1964), regression (Rousseeuw, 1984), principal
omponent analysis (Hubert et al., 2005) and cluster analysis (Cuesta-Albertos et al., 1997; Gagolewski et al., 2016;
allegos and Ritter, 2005). In particular, we are here interested in robust statistics for the estimation of multivariate
ocation, which is oftentimes performed jointly with the estimation of scatter. Some prominent estimators of multivariate
ocation and scatter are: M-estimators (Maronna, 1976), the Stahel–Donoho estimator (Donoho, 1982; Stahel, 1981),
he Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1984), the Minimum Volume Ellipsoid (MVE)
stimator (Rousseeuw, 1985) and S-estimators (Lopuhaä, 1989; Rousseeuw and Leroy, 1987).
The property of affine equivariance (Rousseeuw and Hubert, 2013) (sometimes referred to as affine invariance (Maronna

976)) has been largely venerated as a necessary property for estimators of multivariate location since it assures that
he estimator behaves well after applying an affine transformation to the space (e.g., a translation, scaling, rotation or
eflection). At least, the weaker property of orthogonal equivariance, which assures that the estimator behaves well after
pplying an orthogonal transformation to the space (e.g., a rotation or reflection), is typically required. Unfortunately,
rthogonal equivariance does not get along well with componentwise increasingness — as first pointed out in Gagolewski
2015, 2017) and further explored in Gagolewski et al. (2020), Pérez-Fernández et al. (2019) – thus restricting estimators
f multivariate location that satisfy both properties to the family of weighted centroids (i.e., componentwise extensions of
single weighted arithmetic mean). Since weighted centroids are known to be non-robust, it thus becomes necessary to
hoose between orthogonal equivariance and componentwise increasingness. In this paper, it is discussed that this choice
ust be made depending on the characteristics of the data. More precisely, in the presence of heterogeneous data, both
roperties should be forfeited and only required for some of the components.
The remainder of the paper is structured as follows. In Section 2, some preliminaries on the estimation of multivariate

ocation are provided and, in particular, the properties of orthogonal equivariance and componentwise increasingness are
resented. Section 3 presents some real-life examples of use of the estimation of multivariate location for heterogeneous
ata. Section 4 discusses some guidelines for the estimation of multivariate location in the context of heterogeneous data,
or which none of orthogonal equivariance or componentwise increasingness should be required. We end with some
oncluding remarks in Section 5.

. Two basic types of multivariate data

Let x1, . . . , xn be n points in Rd. We denote by x(j) the jth component of a point x ∈ Rd, and, given D ⊆ {1, . . . , d}, we
enote by x(D) the components of x corresponding to the indices in D. A function T : (Rd)n → Rd is called idempotent
f it is such that T (x, . . . , x) = x for any x ∈ Rd. Throughout this paper, we deal with idempotent functions of the type
T : (Rd)n → Rd and refer to them as estimators of multivariate location. The point T (x1, . . . , xn) is referred to as the
stimate of multivariate location based on x1, . . . , xn.

.1. Estimation of multivariate location for lists of univariate variables

A common type of multivariate data just consists of many univariate variables (e.g., height and weight of different
ndividuals). A natural property for this type of data is that of componentwise increasingness (or componentwise
onotonicity, as in Gagolewski et al., 2020; Pérez-Fernández et al., 2019), which requires that, if all the data points are

ncreased on a certain component, then the estimate should also increase on that component.

efinition 1. An estimator of multivariate location T : (Rd)n → Rd is called componentwisely increasing if, for any
∈ {1, . . . , d}, it holds that T (x1, . . . , xn) (j) ≤ T (y1, . . . , yn) (j), for any (x1, . . . , xn) , (y1, . . . , yn) ∈ (Rd)n such that
i(j) ≤ yi(j) for any i ∈ {1, . . . , n}.

It is to be noted that, as discussed in Gagolewski (2017), componentwisely increasing estimators of multivariate
ocation necessarily are componentwise extensions of increasing estimators of univariate location.

roposition 1. (Gagolewski, 2017) An estimator of multivariate location T : (Rd)n → Rd is componentwisely increasing
f and only if there exist d increasing estimators of univariate location T1, . . . , Td : Rn

→ R such that T (x1, . . . , xn) (j) =

j (x1(j), . . . , xn(j)) , for any j ∈ {1, . . . , d}.

The most typical estimator of multivariate location that is componentwisely increasing is the centroid, which is also
eferred to as the vector of means and is obtained by computing the (arithmetic) mean in each of the components.
he family of weighted centroids generalizes the notion of centroid by incorporating a weight for each of the points,
hus computing the same weighted arithmetic mean in each of the components (Gagolewski et al., 2020). Unfortunately,
he weighted centroids (and, thus, the centroid) are not robust in the presence of outliers. A highly-robust estimator of
ultivariate location that is componentwisely increasing is the componentwise median, which is obtained by computing

he median in each of the components.
2
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.2. Estimation of multivariate location for coordinate-independent variables

The choice of coordinates for some specific types of multivariate data is arbitrary, and the chosen coordinate system
ould have been naturally subjected to an orthogonal transformation. An example of such type of multivariate data is that
f spatial data, where the location of objects is usually expressed in terms of a somehow arbitrary coordinate system. A
atural property when dealing with spatial data is that of orthogonal equivariance, which requires that the estimation
f multivariate location should behave well even if the data points are subjected to any orthogonal transformation (e.g.
otation or reflection). We recall that an orthogonal transformation is characterized by an orthogonal matrix, i.e., a matrix
∈ Rd×d such that OT

= O−1.

efinition 2. An estimator of multivariate location T : (Rd)n → Rd is called orthogonal equivariant if, for any (x1, . . . , xn) ∈

Rd)n and any orthogonal matrix O ∈ Rd×d, it holds that T (Ox1, . . . ,Oxn) = O T (x1, . . . , xn).
A typical estimator of multivariate location that is orthogonal equivariant is the spatial median (Vardi and Zhang,

000; Weber, 1909; Weiszfeld, 1937), which is obtained by computing the point that minimizes the sum of Euclidean
istances to all the points. Another example of estimator of multivariate location that is orthogonal equivariant is the
rthomedian (Grübel, 1996), which is obtained by orthogonalizing the componentwise median. Interestingly, this orthog-
nalization process turns the componentwise median orthogonal equivariant, at the cost of losing the componentwise
ncreasingness.

.3. A tension between orthogonal equivariance and componentwise increasingness in the estimation of multivariate location

Probably due to the somehow standard assumption of the points being drawn from an elliptical distribution, the
roperty of orthogonal equivariance is considered a ‘‘must’’ in the literature on estimators of multivariate location and,
uite surprisingly, the property of componentwise increasingness is oftentimes forgotten. A potential explanation could
e the inherent tension between these two properties: the unique estimators of multivariate location satisfying both
roperties are the weighted centroids.

heorem 1. (Gagolewski et al., 2020) An (idempotent) estimator of multivariate location T : (Rd)n → Rd is orthogonal
equivariant and componentwisely increasing if and only if it is a weighted centroid.

This implies that there exists no robust, orthogonal equivariant and componentwisely increasing estimator of multi-
variate location, and probably explains why most works on robust estimation of multivariate location only focus on the
property of orthogonal equivariance. Actually, the literature on robust multivariate location usually considers orthogonal
equivariance not to be sufficient and aims at an even stronger property: affine equivariance (see, e.g., Lopuhaä and
Rousseeuw, 1991).

Definition 3. An estimator of multivariate location T : (Rd)n → Rd is called affine equivariant if, for any (x1, . . . , xn) ∈

(Rd)n, any invertible matrix A ∈ Rd×d and any t ∈ Rd, it holds that T (A x1 + t, . . . ,A xn + t) = A T (x1, . . . , xn) + t.
Note that the spatial median and the orthomedian are examples of estimators of multivariate location that are

orthogonal equivariant but are not affine equivariant. An example of affinitization process based on the transformation
into a data-driven coordinate system and a subsequent retransformation into the original coordinate system is due
to Chakraborty and Chaudhuri (1996). Although originally proposed as a process for turning the componentwise median
affine equivariant (at the cost of losing the componentwise increasingness), this procedure has been studied for making
other estimators of multivariate location affine equivariant (see, e.g., Chakraborty et al. (1998) for a study on the
affinitization of the spatial median).

3. Some examples of estimation of multivariate location for heterogeneous data

3.1. Spatio-temporal data

Unfortunately, real-life data might be quite complex and be a combination of both aforementioned types of multivariate
data. For instance, consider the spatio-temporal data arising in Kong et al. (2016) for earthquake early warning. The
smartphones of the users of the app MyShake are used as seismic sensors and, in case of an earthquake, the location and
time of each trigger detection is recorded. In particular, each of the data points is of the form x ∈ R3, where x(1) and
x(2) represent the spatial location1 of the triggered sensor (horizontal and vertical position, respectively, both measured
in meters) and x(3) represents its trigger detection time (in seconds).

1 Interestingly, it was not until The International Prime Meridian Conference was held in Washington in October 1884 that the geographic coordinate
system based on latitude and longitude was considered a standard, and still nowadays one can find many alternative geographic coordinate systems.
Here, as this coordinate system is angle-based and the estimation of location for directional data (Fisher, 1985; Mardia, 1975) lies out of the scope
of this paper, we will transform the latitude and longitude to another coordinate system based on a projection to a map, for instance, the Universal
Transverse Mercator (UTM) coordinate system. Note that this simplification is not very problematic for locations distributed over a small area of the
Earth.
3
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In order to estimate the multivariate location, quoting from (Kong et al., 2016), ‘‘the origin time is set to the earliest
rigger time, and the centroid of [all the trigger detections] is used as the epicenter’’. We thus distinguish two components
n the data. On the one hand, we have the spatial component, which is bivariate in nature and for which an orthogonal
quivariant (even affine equivariant) estimator of multivariate location is considered: the centroid. On the other hand,
e have the temporal component, which is univariate in nature and for which an increasing estimator of univariate

ocation is considered: the minimum. Thus, the estimation of multivariate location is given by the centroid (in the first
wo components) and the minimum (in the third component). Formally, the considered estimator of multivariate location
ST : (R3)n → R3 is defined by

TST (x1, . . . , xn) =

(
1
n

n∑
i=1

xi(1),
1
n

n∑
i=1

xi(2),
n

min
i=1

xi(3)

)
.

Note that this estimator is not robust. If one aims at substituting this estimator by a classic robust estimator of multivariate
location, neither orthogonal equivariant estimators, nor componentwisely increasing estimators should be used. On the
one hand, if the former ones are used, a miscalibration in the geolocation of the sensor could potentially affect the
estimation of location for the temporal component . On the other hand, if the latter ones are used, the choice of coordinate
system for the geolocation of the sensor could potentially affect the result of the estimation of location — something
unacceptable due to the coordinate-free nature of the geolocation .

3.2. Spatio-bathymetric data

In Bost et al. (2009), the complete at-sea movements of twelve macaroni penguins (Eudyptes chrysolophus) were
monitored from April to October 2006. In particular, each of the data points is of the form x ∈ R3, where x(1) and x(2)
represent the spatial location (in meters) and x(3) represents depth (in meters) at which a macaroni penguin was located.
Similarly to the case of the spatio-temporal data, for identifying the foraging areas, neither orthogonal equivariant robust
estimators of multivariate location, nor componentwisely increasing robust estimators of multivariate location can be
used. Again, the estimator of multivariate location should be orthogonal equivariant with respect to the spatial component
but increasing with respect to the depth.

4. Estimation of multivariate location for heterogeneous data

4.1. Appropriate estimation of multivariate location for heterogeneous data

It thus becomes clear that, in some cases, we should acknowledge that the variables composing the data might be
different in nature, and that neither orthogonal equivariance nor componentwise increasingness should be required. For
the purpose of multivariate location estimation, we may aim at identifying the (sets of) variables for which it is natural to
require orthogonal equivariance and the variables for which it is natural to require increasingness. Therefore, we aim at
partitioning {1, . . . , d} into m disjoint subsets D1, . . . ,Dm, where each Dℓ represents the indices of a set of variables that
are independent in nature of the choice of coordinate system and where said coordinate system could be subjected to any
orthogonal transformation. For the sake of simplicity, we assume that the indices in each Dℓ are consecutive and refer to
the set D = {D1, . . . ,Dm} as a partition of the variables. Both componentwise increasingness and orthogonal equivariance
might be defined just for the restriction to one such set of variables.

Definition 4. Consider a partition D = {D1, . . . ,Dm} of the d variables and ℓ ∈ {1, . . . ,m}. An estimator of multivariate
location T : (Rd)n → Rd is called componentwise increasing on Dℓ if, for any j ∈ Dℓ, it holds that T (x1, . . . , xn) (j) ≤

T (y1, . . . , yn) (j), for any (x1, . . . , xn) , (y1, . . . , yn) ∈ (Rd)n such that xi(j) ≤ yi(j) for any i ∈ {1, . . . , n}.

Definition 5. Consider a partition D = {D1, . . . ,Dm} of the d variables and ℓ ∈ {1, . . . ,m}. An estimator of multivariate
location T : (Rd)n → Rd is called orthogonal equivariant on Dℓ if, for any (x1, . . . , xn) ∈ (Rd)n and any orthogonal matrix
O ∈ Rd×d such that Ojj = 1 for any j /∈ Dℓ, it holds that T (Ox1, . . . ,Oxn) = O T (x1, . . . , xn).

It then seems intuitive to decide on the basis of the data whether orthogonal equivariance or componentwise
increasingness should be pursued for each group of variables. Since being componentwisely increasing on Dℓ is equivalent
to being increasing on each of the variables associated with the indices in Dℓ, it is assumed that all Dℓ for which
componentwise increasingness is required are such that |Dℓ| = 1.

Definition 6. Consider a partition D = {D1, . . . ,Dm} of the d variables. An estimator of multivariate location T : (Rd)n →

Rd is appropriate for D if there exist m estimators of location {Tℓ : (R|Dℓ|)n → R|Dℓ|}
m
ℓ=1 such that

T (x1, . . . , xn) = (T1 (x1(D1), . . . , xn(D1)) , . . . , Tm (x1(Dm), . . . , xn(Dm))) ,

here, for any ℓ ∈ {1, . . . ,m}, T is orthogonal equivariant on Dℓ (and, thus, Tℓ is orthogonal equivariant) if |Dℓ| > 1 and
omponentwisely increasing on D (and, thus, T is componentwisely increasing) if |D | = 1.
ℓ ℓ ℓ

4
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On the one hand, in case we are dealing with coordinate-independent data, m should equal 1, thus T being orthogonal
quivariant. On the other hand, in case we are dealing with a list of univariate variables, m should equal d, thus T being

componentwisely increasing.
Any estimator of multivariate location T : (Rd)n → Rd that is appropriate for a partition D = {D1, . . . ,Dm}

f the d variables, can easily be proven to be componentwisely increasing if and only if all Tℓ are componentwisely
increasing. Unfortunately, there is no guarantee of orthogonal equivariance even in case all Tℓ are orthogonal equivariant.
Interestingly, T is translation equivariant if and only if all Tℓ are translation equivariant. It is recalled that an estimator
of multivariate location T : (Rd)n → Rd is called translation equivariant if, for any x1, . . . , xn, a ∈ Rd, it holds that
T (x1 + a, . . . , xn + a) = T (x1, . . . , xn) + a.

Proposition 2. Consider a partition D = {D1, . . . ,Dm} of the d variables. Any estimator of multivariate location T : (Rd)n →

Rd that is appropriate for D:

(i) is componentwisely increasing if and only if all Tℓ are componentwisely increasing;
(ii) does not need to be orthogonal equivariant, even in case all Tℓ are orthogonal equivariant;
(iii) is translation equivariant if and only if all Tℓ are translation equivariant.

4.2. Robust estimation of multivariate location for heterogeneous data

A popular measure of robustness is the (finite sample) breakdown point (Donoho and Huber, 1983; Gather and Davies,
2005; Hampel, 1971), which measures the smallest proportion of contaminated observations that may cause an estimator
of location to take arbitrarily large values.

Definition 7. Consider X = (x1, . . . , xn) ∈ (Rd)n. The set Zq(X) of q-corrupted (by replacement) lists given X is defined
as the set of all lists Z = (z1, . . . , zn) ∈ (Rd)n such that | {i ∈ {1, . . . , n} | xi ̸= zi} | ≤ q. The maximum bias caused by
q-corruption at X for an estimator of multivariate location T : (Rd)n → Rd is defined as b(T ,X, q) = supZ∈Zq(X) ∥T (X) −

T (Z)∥. The finite-sample breakdown point of an estimator of multivariate location T : (Rd)n → Rd at X is defined as
ϵ(T ,X) = infq∈{1,...,n},b(T ,X,q)=+∞

q
n . The finite-sample breakdown point of an estimator of multivariate location T : (Rd)n →

d is defined as ϵ(T ) = inf
X∈(Rd)n

ϵ(T ,X)

The maximum breakdown point that can be attained by a translation equivariant estimator of location is 0.5. This
aximum value is attained by three popular estimators of multivariate location: the componentwise median, the spatial
edian and the orthomedian. Interestingly, the componentwise median is componentwisely increasing, whereas the
patial median and the orthomedian are orthogonal equivariant.
As pointed out in previous sections, there exists no robust estimator of multivariate location that is, at the same

ime, orthogonal equivariant and componentwise increasing. This result still holds if componentwise increasingness is
ubstituted by the weaker property of componentwise increasingness on at least one variable. Obviously, the result also
olds if orthogonal equivariance is substituted by affine equivariance.

heorem 2. Consider a partition D = {D1, . . . ,Dm} of the d variables. The breakdown point ϵ of an (idempotent and)
orthogonal equivariant estimator of multivariate location T : (Rd)n → Rd that is componentwise increasing on Dℓ for at least
one ℓ ∈ {1, . . . ,m} is 1

n .

Therefore, if there exists at least one component for which componentwise increasingness is pursued, then orthogonal
nd affine equivariant should be abandoned in the context of robust estimation of multivariate location. Obviously, this
oes not mean that orthogonal and affine equivariance should be completely abandoned since these properties can still
e required for the variables for which componentwise increasingness is not pursued.
In order to propose a robust estimator of multivariate location that is appropriate for a partition D = {D1, . . . ,Dm}

f the d variables, it suffices that all Tℓ : (R|Dℓ|)n → R|Dℓ| are robust. In particular, it can be assured that the optimal
breakdown point of 0.5 is attained if (and only if) all Tℓ attain the optimal breakdown point of 0.5.

Proposition 3. Consider a partition D = {D1, . . . ,Dm} of the d variables. The breakdown point ϵ of an estimator of
ultivariate location T : (Rd)n → Rd that is appropriate for D (with associated estimators of location {Tℓ : (R|Dℓ|)n → R|Dℓ|}

m
ℓ=1

ith respective breakdown points {ϵℓ}
m
ℓ=1) satisfies that ϵ = min

ℓ∈{1,...,m}

ϵℓ.

A possible option would then be to consider the classical median for those components such that |Dℓ| = 1 and
he orthomedian for those components such that |Dℓ| > 1. The use of the orthomedian is encouraged over the
patial median because – although it is not componentwisely increasing – it satisfies the weaker property of (SC)-
onotonicity described in Pérez-Fernández et al. (2019). In case affine equivariance is pursued, the orthomedian should be
ubstituted by a robust affine equivariant estimator of multivariate location such as the transformation–retransformation
edian (Chakraborty and Chaudhuri, 1996), the Stahel–Donoho estimator (Stahel, 1981; Donoho, 1982) or the Minimum
ovariance Determinant (MCD) estimator (Rousseeuw, 1984).
5
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Coming back to the examples of the spatio-temporal data in Kong et al. (2016) and the spatio-bathymetric data in Bost
t al. (2009), a natural robust estimator of multivariate location is given by the orthomedian for the spatial component
nd the median for the temporal/depth component. It is to be noted that, since the temporal component in the case of
he spatio-temporal data in Kong et al. (2016) prioritizes early trigger detections, the use of an order statistic smaller than
he median might be recommendable, even despite the loss in robustness.

. Conclusions

The estimation of (univariate) location typically builds upon the property of increasingness. Surprisingly, the estimation
f multivariate location has historically neglected this property and has built around the properties of orthogonal
quivariance and the even stronger affine equivariance. This is probably explained by the incompatibility of these latter
roperties with componentwise increasingness when combined with the robustness in the presence of outliers. In this
ork, it is discussed that, in this era of big data in which countless variables from very different nature are often monitored,
oth (componentwise) increasingness and orthogonal equivariance might lead to a very undesirable behavior. Thus, the
hoice between (componentwise) increasingness and orthogonal equivariance must depend on the type of data one is
ealing with. In the presence of heterogeneous data, both properties should be forfeited and only required for some of
he components.

We end by concluding that, as principal component analysis and other techniques for feature selection and extraction
equire to subject the data to a carefully chosen affine transformation, if robustness is prioritized over componentwise
ncreasingness, then the latter property must be abandoned. Other weaker monotonicity-related properties that are
oordinate-free in nature, such as (SC)-monotonicity (as described in Pérez-Fernández et al. (2019)), should be then
ursued.
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ppendix. Proofs

roof of Proposition 2. (i) Follows straightforwardly from Proposition 1. More specifically, T : (Rd)n → Rd is
omponentwisely increasing if and only if there exist d increasing estimators of univariate location T0,1, . . . , T0,d : Rn

→ R
such that T (x1, . . . , xn) (j) = T0,j (x1(j), . . . , xn(j)), for any j ∈ {1, . . . , d}. Equivalently, T : (Rd)n → Rd is componentwisely
increasing on all Dℓ if and only if for all ℓ there exist dℓ increasing estimators of univariate location Tℓ,1, . . . , Tℓ,dℓ

: Rn
→ R

such that Tℓ (x1, . . . , xn) (j) = Tℓ,j (x1(j), . . . , xn(j)), for any j ∈ {1, . . . , dℓ}. The result follows from identifying each T0,j
with its corresponding Tℓ,j′ .

(ii) Due to the fact that the univariate median is orthogonal equivariant in one dimension, it suffices to consider the
componentwise median (which is not orthogonal equivariant).

(iii) Consider any x1, . . . , xn, a ∈ Rd. If all Tℓ are translation equivariant, then it holds that

T (x1 + a, . . . , xn + a)
= (T1 (x1(D1) + a(D1), . . . , xn(D1) + a(D1)) , . . . , Tm (x1(Dm) + a(Dm), . . . , xn(Dm) + a(Dm)))
= (T1 (x1(D1), . . . , xn(D1)) + a(D1), . . . , Tm (x1(Dm), . . . , xn(Dm)) + a(Dm))
=
(
T1 (x1(D1), . . . , xn(D1)) , . . . , Tm (x1(Dm), . . . , xn(Dm))

)
+ a

= T (x1, . . . , xn) + a .

If T is translation equivariant, then for any ℓ ∈ {1, . . . ,m} it holds that

Tℓ (x1(Dℓ) + a(Dℓ), . . . , xn(Dℓ) + a(Dℓ))
= T (x1 + a, . . . , xn + a) (Dℓ)
= T (x1, . . . , xn) (Dℓ) + a(Dℓ)
= Tℓ (x1(Dℓ), . . . , xn(Dℓ)) + a(Dℓ) .

■
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roof of Theorem 2. If an estimator of multivariate location T : (Rd)n → Rd is componentwise increasing on Dℓ for at
east one ℓ ∈ {1, . . . ,m}, then it is ej-SP-monotone for any j ∈ Dℓ in the sense of Definition 4 in Pérez-Fernández et al.
2019). Proposition 14 and Theorem 28 in Pérez-Fernández et al. (2019) imply that T is a weighted centroid. The result
hen follows from the fact that the breakdown point of a weighted centroid is 1

n . ■

Proof of Proposition 3. On the one hand, suppose that ϵ < min
ℓ∈{1,...,m}

ϵℓ. This implies that supZ∈Znϵ (X) ∥T (X)−T (Z)∥ = +∞,

nd, for any ℓ ∈ {1, . . . ,m}, supZ∈Znϵ (X) ∥Tℓ(X(Dℓ)) − Tℓ(Z(Dℓ))∥ < +∞. The contradiction follows from the fact that

∥T (X) − T (Z)∥2
=

d∑
j=1

(
T (X)(j) − T (Z)(j)

)2
=

d∑
j=1

(
Tℓj (X(Dℓj ))(j) − Tℓj (Z(Dℓj ))(j)

)2
≤

d∑
j=1

∥Tℓj (X(Dℓj )) − Tℓj (Z(Dℓj ))∥
2 < +∞ ,

here ℓj represents the subindex ℓ associated with the component j.
On the other hand, suppose that ϵ > min

ℓ∈{1,...,m}

ϵℓ. Consider ℓ∗ such that ϵℓ∗ = min
ℓ∈{1,...,m}

ϵℓ. It holds that

sup
Z∈Znϵℓ∗ (X)

∥T (X) − T (Z)∥ < +∞ and sup
Z∈Znϵℓ∗ (X)

∥Tℓ∗
(X(Dℓ∗

)) − Tℓ∗
(Z(Dℓ∗

))∥ = +∞.

he contradiction follows from the fact that

∥T (X) − T (Z)∥2
=

m∑
ℓ=1

∥T (X)(Dℓ) − T (Z)(Dℓ)∥2
=

m∑
ℓ=1

∥Tℓ(X(Dℓ)) − Tℓ(Z(Dℓ))∥2 . ■
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