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Abstract

Obstructions to the existence of trapped submanifolds in spacetimes of arbitrary di-
mension are given. These obstructions are obtained under natural geometric assumptions,
which can be applied to initial data set for Einstein equations, assuring the absence of
trapped submanifolds in its development. We highlight that for several of our results the
existence of symmetries in the spacetime is not necessary.

Keywords: Compact spacelike submanifold; causal mean curvature; Cauchy problem in
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1 Introduction

Physical and geometric interest come together in the study of trapped spacelike submanifold
embedded in a relativistic spacetime. The notion of trapped surfaces was introduced by
Penrose for the case of compact (without boundary) spacelike surfaces embedded in four-
dimensional spacetimes, being the original concept given in terms of the signs or the vanishing
of the so-called null expansions (see [15], [13]). More recently, a characterization about the
causal orientation of the mean curvature vector field of the spacelike embedded surface were
widely adopted by most authors. This one allows the generalization to arbitrary dimensional
spacelike submanifolds embedded in spacetimes with dimension n ≥ 4 (see [17] for more
details).

We now recall the most frequently used nomenclature. An embedded 2-codimensional
spacelike submanifold S is called a future (resp. past) trapped surface if its mean curvature
vector field ~H is timelike and future pointing (resp. past pointing). When ~H is causal
and future pointing over all the spacelike submanifold and timelike at least at a point of S,



the submanifold is called nearly future trapped, and correspondingly for nearly past trapped.
When ~H is causal and future-pointing everywhere, and non-zero at least at a point of S, the
submanifold is said to be weakly future trapped, similarly for weakly past trapped. Finally, the
submanifold S is called marginally future trapped if ~H is lightlike and future pointing all over
S and non-zero at least at a point of S, and analogously for the past case. The case ~H ≡ ~0
corresponds to extremal or symmetric submanifolds. As usual in this context, the vector ~0 is
consider causal, future or past.

From the classical notion of trapped surface, Hawking and Penrose showed the existence
of singularities in the evolution of a Cauchy initial data set containing a trapped surface
(see [12]). However, the most recent notions mentioned above have been gaining relevance
significantly. So, for example, marginally trapped surfaces play an important role in the study
of the weak cosmic censorship conjecture (see [1]). Also, cases with arbitrary dimension and
codimension have been recently considered obtaining interesting results (see for example [10]).

In this work we obtain several obstructions for the existence of trapped (in a broad sense)
compact spacelike submanifolds of arbitrary dimension and codimension, embedded in a rel-
evant class of spacetimes such as the stationary and globally hyperbolic ones. Alternatively,
we can get different classes of initial data set for Einstein’s equation such that a development
of that data no admits a trapped compact spacelike submanifolds.

2 Preliminaries

We denote by (M, g) an arbitrarym-dimensional spacetime, namely, a connectedm-dimensional
oriented and time-oriented Lorentzian manifold provided with the Lorentzian metric tensor
g (see [16]).

Recall that an isometric immersion x : Sn → Mm, 2 ≤ n < m, in a spacetime (M, g)
is spacelike if the induced metric via x is Riemannian. In this situation, S is said to be
an (immersed) spacelike submanifold of M (see, [18, Def. 1.27]). However, from a physical
point of view the concept of submanifold in a spacetime usually corresponds to the case of
embedding submanifold, i.e., Sn is a topological subspace of M and x is the inclusion map.
Although some of the geometric results that appear in this work can be formulated for the
more general framework of immersed submanifolds, our general interest is centered in the
case of embedded submanifolds. All the submanifolds considered in this work are supposed
connected and compactness is understood without boundary.

The extrinsic geometry of a submanifold S in a spacetime M is encoded by its second
fundamental form II : X(S)× X(S)→ X⊥(S), given by

II(V,W ) :=
(
∇VW

)⊥
,

where ∇ denotes the Levi-Civita connection of the metric g. The mean curvature vector field
can be defined according to several conventions. As it is usual in General Relativity, we define
it as minus the metric contraction (without dividing by the dimension of the submanifold) of
the second fundamental form, i.e.,

~H = −
n∑
i=1

II(Ei, Ei),

where {E1, ..., En} denotes a local orthonormal frame on S. Note that this choice of the
negative sign is opposite to the one usually taken in Differential Geometry.
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When the immersed submanifold x : S →M is a spacelike hypersurface (i.e. m = n+ 1)
and the induced metric is Riemannian, the time-orientation of M allows to take a global
unitary timelike vector field N on S pointing to the future.

Let us represent by g the induced metric on the spacelike hypersurface S and, by ∇ its
induced Levi-Civita connection. The Gauss and Weingarten formulae of S are respectively

∇VW = ∇VW − g(AV,W )N ,

AV = −∇VN ,

for all V,W ∈ X(S), where A is the shape operator associated with N . Then, the mean
curvature function associated with N is given, according to our convention, by H := trace(A).

The mean curvature function is identically zero if and only if the spacelike hypersurface is,
locally, a critical point of the n-dimensional area functional for compactly supported normal
variations. A spacelike hypersurface with H = 0 is called a maximal hypersurface.

As is well-known, spacelike hypersurfaces in general, and of constant mean curvature in
particular, are interesting initial data sets to study the Einstein equation (see, for instance [7,
Chap. 8]). In fact, let (M, g) be an (n+1)-dimensional spacetime and denote by Ric and R(g)
its Ricci tensor and its scalar curvature, respectively. Consider a stress-energy tensor field T
on M , namely a 2-covariant symmetric tensor which satisfies some reasonable conditions from
a physical viewpoint (say T (v, v) ≥ 0 for any timelike vector v, see for example [16, Section
3.3]). It is said that the spacetime (M, g) is an exact solution to the Einstein equation with
zero cosmological constant and source T , if the spacetime satisfies

Ric− 1

2
R(g)g = T. (1)

If (1) holds, then the following constraint equations are satisfied on each spacelike hyper-
surface S in M

R(g)− trace(A2) + trace(A)2 = ϕ, (2)

div(A)−∇trace(A) = X, (3)

where g is the Riemannian metric on S induced by g, R(g) its scalar curvature, and ϕ ∈ C∞(S)
and X a 1-form depend on the stress energy tensor T . We remark that equations (2) and (3)
are respectively obtained from the classical Gauss and Codazzi equations for the spacelike
hypersurface x : S →M .

Conversely, given ϕ ∈ C∞(S) and X ∈ X(S), they can be seen as differential equations
with unknown g and A. Thus, an initial data set for the Cauchy problem in General Relativity
is given by a triple (S, g,A), where (S, g) is an n-dimensional Riemannian manifold and
A : X(S) → X(S) is a (1, 1)-tensor field, self-adjoint with respect to g, which satisfies the
constraint equations (2) and (3).

Global hyperbolicity is an assumption for physically reasonable spacetimes. Using a well-
known characterization, we can recall that a spacetime is globally hyperbolic if it admits a
Cauchy hypersurface, i.e., a C0 spacelike hypersurface which is crossed exactly once by any
inextensible timelike curve. Indeed, if the spacetime is globally hyperbolic, an embedded
smooth Cauchy hypersurface may be found (see, [11], [3], [4], [5]).

A solution to the Cauchy problem of the Einstein equation (1) corresponding to the initial
data (S, g,A) is a spacetime (M, g), such that (S, g) is an (embedded) Cauchy spacelike
hypersurface and the tensor field A coincides with the shape operator of the embedding. In
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this setting, the spacetime (M, g) is called a development of the given initial data set. In [6],
Choquet and Geroch shown that given an initial data set for the Einstein’s equation satisfying
the constrain conditions, there exists a development of that data set, which is maximal in the
sense that it is an extension of every other development.

3 Set up

For the sake of making this work self-contained, we will reformulate in an intrinsic language
and for arbitrary spacelike submanifolds, an integral formula previously obtained in [2, For.
4] for the case of surfaces in 4-dimensional spacetimes.

Let x : Sn → Mm, n < m, be an immersed spacelike submanifold in a spacetime (M, g).
Let {Ei}ni=1 and {Nj}m−nj=1 be local orthonormal frames in the tangent vector bundle TS

and in the normal vector bundle T⊥S, respectively. Given a smooth vector field X on the
immersion, we define the operator divS : X(M) −→ C∞(S), given by

divSX :=
∑
i

g
(
∇EiX,Ei

)
.

At any point p ∈ S, we can split X(p) = X(p)>+X(p)⊥, being X> and X⊥ the tangent and
normal projections relative a S. So,

divSX
⊥ =

∑
i

g
(
∇EiX

⊥, Ei

)
=
∑
i,j

εj g
(
X⊥, Nj

)
g
(
∇EiNj , Ei

)
= g

(
X, ~H

)
,

where εj = g(Nj , Nj). Hence,

divS (X) = divS

(
X⊥
)

+ divS

(
X>
)

= g
(
X, ~H

)
+ div

(
X>
)
, (4)

where div denotes the divergence operator on (S, g), and ~H is the mean curvature vector field
of x. We should point out that the operator divS defined as (4) is well-defined, i.e., it is
independent of the chosen local orthonormal frame.

In particular, if the submanifold S is compact (without boundary), then making use of
the Gauss theorem, we can obtain the following integral formula,∫

S

{
divS (X)− g

(
X, ~H

)}
dVg = 0 , (5)

where dVg is the Riemannian volume element of (S, g).

4 Obstructions to the existence of trapped submanifolds for
stationary spacetimes

The notion of symmetry is essential in Physics. In General Relativity, an infinitesimal sym-
metry is usually based on the assumption of the existence of an one-parameter group of
transformations generated by a Killing vector field or, more generally, a conformal Killing
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vector field. In fact, an usual simplification for the search of exact solutions to the Ein-
stein equation is to assume the existence, a priori, of such an infinitesimal symmetry ([8],
[9]). Although different causal characters for the infinitesimal symmetry may be assumed,
the timelike choice is natural, since the integral curves of a timelike infinitesimal symmetry
provide a privileged class of observers or test particles in the spacetime.

Recall that a spacetime admitting a globally defined timelike Killing vector field is called
stationary. In this family of spacetimes is well-known the absence of marginally trapped,
nearly trapped or trapped compact imbedded submanifolds (see [14, Th. 1]).

In the following result we describe a class of initial data set for the Cauchy problem of
the Einstein’s equations, whose development can not be a stationary spacetime.

Theorem 1 Let (S, g,A) be an initial data set for the Cauchy problem of the Einstein’s
equation. Assume any of the hypothesis,

(i) the Riemannian manifold S admits a compact submanifold P , whose mean curvature
vector field ~h in S satisfies ∥∥∥~h∥∥∥ < ∣∣trace|PA

∣∣ , (6)

where trace|PA is the trace of the restriction of A to TP .

(ii) the Riemannian manifold S admits a compact submanifold P , whose mean curvature
vector field ~h in S has no zeros and satisfies∥∥∥~h∥∥∥ ≤ ∣∣trace|PA

∣∣ . (7)

Then, a development spacetime (M, g̃) of this data set cannot be a stationary spacetime.

Proof.
We reason by reductio ad absurdum. So, suppose that a such compact submanifold

exists. Consider {E1, ..., Ek} a local orthonormal frame on P , and let us extend it to a local
orthonormal tangent frame {E1, ...Ek, Uk+1, ..., Un} on S. The mean curvature vector field ~H
of P in the spacetime M is given by

− ~H =

k∑
i=1

IIP (Ei, Ei) =

k∑
i=1

(∇EiEi)
⊥

=
n∑

j=k+1

k∑
i=1

g(∇EiEi, Uj)Uj −
k∑
i=1

g(∇EiEi, N)N,

where N denotes the future unitary normal vector field on S in the development M . Taking
in account this equality it is clear the relation

~H = ~h+
(
trace|PA

)
N . (8)

Using (8), we know in the first case that ~H is a timelike vector field. Now, making use of
integral formula (5) for a timelike Killing vector field, the contradiction appears. Taking into
account that the vector field ~H must be causal and time-oriented, an analogous reasoning
holds for (ii).

�
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Remark 2 Note that Theorem 1 presents a clear obstruction on an initial data set to belong
to the class of initial data set, whose Cauchy development spacetime is stationary.

An alternative and interesting formulation of the previous result is given as follows,

Corollary 3 A spacetime admitting a spacelike hypersurface S which satisfies the hypotheses
(i) or (ii), being A its shape operator, cannot admit a global timelike Killing vector field.

Remark 4 On the optimality hypotheses of the Theorem 1. Consider the Lorentzian product
manifold M = R × S3, where S3 denote the unitary Riemannian 3-dimensional sphere. Let
t0 ∈ R and take us S = {t0}×S3. If we take a copy of the sphere S2 embedded in S3, then we
have a clear counterexample for the Theorem 1 when the assumption (i) does not hold. To
deny the assumption (ii), consider the upper hyperboloid leaf H3 in L4 and take us a suitable
totally umbilical round sphere in the hyperbolic space H3.

5 Obstructions to the existence of trapped submanifolds in
absence of symmetries

In the previous Theorem 1, the presence of a infinitesimal symmetry given by a timelike vector
field is essential. Nevertheless, in what follows we obtain several obstructive results, being
noticeable that no special symmetry on the spacetime is assumed. So, we will show that
the existence of a certain spacelike hypersurface S in the spacetime assures the non-existence
of compact spacelike submanifolds with strictly causal mean curvature around S. We can
transfer this fact imposing suitable conditions on a set of initial data for the Cauchy problem
in General Relativity, which obstruct the existence of compact spacelike submanifolds with
strictly causal mean curvature in a development of that data.

Let S be a spacelike hypersurface embedded in the spacetime M and take us N an unitary
timelike future normal vector field on S. We can define a natural extension N of N on an open
tubular neighbourhood of S in M . Indeed, given an arbitrary point p ∈ S we consider the
unique geodesic φp(t) = expp(tNp) with velocity Np at p. Therefore, the map φp(t) define the

flow of the extension N. Due to the construction itself, it is clear that the 1-form metrically
equivalent to the vector field N is closed. As a direct consequence we have that

g
(
∇XN,Y

)
=

1

2

(
LNg

)
(X,Y )

for X,Y ∈ X(M). Hence, the (1, 1)-tensor field A : X(M) → X(M) defined by g
(
AX,Y

)
=

−1
2

(
LNg

)
(X,Y ) extends in a canonical way the shape operator of S.

We denote by φ(−ε,ε)S the open subset in the spacetime M given by the points q of M such
that q = φp(r) for p ∈ S and r ∈ (−ε, ε). Physically, it is the portion of the spacetime which
is Cauchy-development forwards and backwards from S up to a quantity of ε. Analogously
we can define φ(−ε,ε)Ω, being Ω ⊂ S a domain in S.

Theorem 5 Let (S, g,A) be an initial data set for the Einstein’s Equation such that the
tensor field A is negative (resp. positive) definite. Then, for any compact domain Ω ⊂ S,
there exists ε > 0 such that there is no compact spacelike submanifold with future (resp. past)
causal mean curvature in φ(−ε,ε)Ω, included the extremal case with ~H = ~0.
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Proof. Consider a geodesic γp : (−δ, δ) → M , with γp(0) = p ∈ Ω ⊂ S and γ′p(0) = Np. On

γp we consider the function η := det(A ◦ γp). Then, there exists a positive number δ+ < δ,
such that the sign of η is constant on (−δ+, δ+) and this implies that A is negative definite
on that interval. Otherwise, it would have a zero eigenvalue and so its determinant would be
null, which is a contradiction.

Now, since Ω is compact, we can find another positive constant ε such that for any geodesic
γq : (−ε, ε)→M , q ∈ Ω, the same holds. Thus, A is negative definite on φ(−ε,ε)Ω.

The proof finishes using formula (5) for the timelike vector field N , whose divergence is
positive. The proof is similar when A is positive defined.

�

Previous results has an interesting consequence if we attend to closed models.

Corollary 6 Let (S, g,A) be an initial data set for the Einstein’s Equation, such that the
Riemannian manifold S is compact, and the tensor field A is negative (resp. positive) def-
inite. Then, there exist two positive constants σi, i = 1, 2, such that there is no compact
spacelike submanifold with future (resp. past) causal mean curvature, in φ(−σ1,σ2)S, included

the extremal case with ~H = ~0. In particular, there is no compact marginally, weakly, nearly
future (resp. past) trapped, or future (resp. past) trapped submanifold in φ(−σ1,σ2)S.

Remark 7 Corollary 6 admits the following nice topological interpretation: any compact
spacelike submanifold with future (resp. past) causal mean curvature is far from any simply-
connected compact Cauchy hypersurface with negative (resp. positive) definite shape opera-
tor.

We may weak the assumption on the operator A, assuming an initial data set (S, g,A)
with A negative semi-definite. Nevertheless, we can guarantee the (global) character of the
operator A via a curvature assumption. In fact, let γ be an arbitrary integral curve of the
geodesic timelike vector field N and consider a spacelike vector field X on γ, such that X
commute with N . Then

−g
(
R(N,X)N,X

)
= g

(
∇N∇XN,X

)
=

1

2
γ′
((
LNg

)
(X,X)

)
− g

(
∇XN,∇XN

)
.

Since the last addend is always non-positive, the previous equality means that γ′
((
LNg

)
(X,X)

)
is non-negative if so is the sectional curvature of timelike planes in the spacetime. In particu-
lar, since

(
LNg

)
(X,X) is non-negative at S (for any tangent vector X), then the same holds

in the future of S. Thus, if the sectional curvature of timelike planes is non-negative, then(
LNg

)
is positive or semi-definite in the future of S. Therefore, we can state

Theorem 8 A spacetime whose timelike sectional curvatures are non-negative and which
admits an (intrinsic) initial data set with negative (resp. positive) semi-definite shape operator
A, does not admit a compact spacelike submanifold in the future (resp. in the past) of the
initial data set, with future (resp. past) causal mean curvature vector field, unless ~H = ~0.
In particular, there is no compact marginally, weakly, nearly future (resp. past) trapped, or
future (resp. past) trapped submanifold in the future I+(S) (resp. in the past I−(S)) of the
initial data set.
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Remark 9 Note that no special symmetry on (S, g) is assumed in previous results in this
section, thus, the results can be applied to the case when S is any Cauchy hypersurface in a
spacetime (which, a posteriori, can be regarded as a slice in a global orthogonal splitting (see
[5]).

Taking into account this last remark, we can give, for example, a reformulation of the
Theorem 8, as follows.

Corollary 10 A globally hyperbolic spacetime whose timelike sectional curvatures are non-
negative and which has a Cauchy hypersurface S with negative (resp. positive) semi-definite
shape operator A, does not admit a compact spacelike submanifold in the future (resp. in
the past) of S with future (resp. past) causal mean curvature vector field, unless ~H = ~0.
In particular, there is no compact marginally, weakly, nearly future (resp. past) trapped, or
future (resp. past) trapped submanifold in the future I+(S) (resp. in the past I−(S)) of the
Cauchy hypersurface S.

Remark 11 Note that in Theorems 8 and 10 no topological conditions are assumed on the
spacelike hypersurface.

Acknowledgments

The first two authors are partially supported by Spanish MICINN Project No. PID2021-
126217NB-I00.

On behalf of all authors, the corresponding author states that there is no conflict of
interest.

6 Data availability

Not applicacable.

References

[1] L. Andersson, M. Mars, W. Simon, Stability of marginally outer trapped surfaces and
existence of marginally outer trapped tubes, Adv. Theor. Math. Phys. 12(4), 853–888.

[2] I. Bengtsson and J.M. Senovilla, Region with trapped surfaces in spherical symmetry,
its core and their boundaries, Physical Review D 83 (2011), 044012.

[3] A.N. Bernal and M. Sánchez, On Smooth Cauchy Hypersurfaces and Gerochs Splitting
Theorem, Commun. Math. Phys., 243 (2003), 461–470.

[4] A.N. Bernal and M. Sánchez, Smoothness of time functions and the metric splitting of
globally hyperbolic spacetimes, Com. Math. Phys. 257 (2005), 43–50.

[5] A.N. Bernal and M. Sánchez, Further results on the smoothability of Cauchy hypersur-
faces and Cauchy time functions, Lett. Math. Phys, 77 (2006), 183–197.

8



[6] Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in General
Relativity, Commun. Math. Phys. 14 (1969), 329–335.

[7] Y. Choquet-Bruhat, Introduction to General Relativity, Black Holes and Cosmology,
Oxford University Press, 2015.

[8] V. Daftardar and N. Dadhich, Gradient conformal Killing vectors and exact solutions,
Gen. Rel. Grav. 26 1994, 859–868.

[9] D. Earley, J. Isenberg, J. Marsden and V. Moncrief, Homothetic and conformal symme-
tries of solutions to Einstein equations, Commun. Math. Phys. 106(1) (1986), 137–158.

[10] G. Galloway and J.M. Senovilla, Singularity theorems based on trapped submanifolds
of arbitrary co-dimension, Class. Quantum Grav., 27 (15) (2010), 152002.

[11] R. Geroch, Domain of dependence, J. Math. Phys. 11 (1970), 437–449.

[12] S.W. Hawking and G. Ellis, The large scale structure of space-time, Cambridge Mono-
graphs on Mathematical Physics, No. 1. Cambridge University Press, London-New York,
1973.

[13] S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology,
Proc. Roy. Soc. Lond. A. 314 (1970), 529–548.

[14] M. Mars and J.M. Senovilla, Trapped surfaces and symmetries, Class. Quantum Grav.
20 (2003), 293–300.

[15] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14(3)
(1965), 57.

[16] R.K. Sachs and H. Wu, General Relativity for Mathematicians, Grad. Texts Math.,
Springer-Verlag, New York, 1977.

[17] J.M.M. Senovilla, Trapped surfaces, Internat. J. Modern Phys. D 20 (2011), 2139–2168.

[18] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New
York, 1983.

9


