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1 Introduction

Consider a spacelike surface S in a 4-dimensional spacetime. At least locally,
there are two future-directed null vector fields orthogonal to it, one of them
ξ, pointing out to a direction will be called inwards, and the other one,
η, outwards. At each event p ∈ S, the shape operator associated to ξ,
Aξ (see definition in (1) for details), acting on a tangent vector v ∈ TpS,
measures how does the inwards directed family of light rays (orthogonal to
S) converge or diverge in the direction of v. Hence, if the mean curvature
function associated to Aξ is positive (resp. negative), then the inwards light
rays tends to converge (resp. diverge) in average.

Other physically relevant function is the mean null curvature function of
a spacelike surface S, defined as φS = (trAξ)(trAη), where ξ, η are future-
directed null vectors orthogonal to S with 〈ξ, η〉 = −1. The surface S is
called future converging when φS > 0 and trAξ > 0, i.e., when both families
of light rays ortogonal to it converge. If, in addition, S is compact, then S
is a trapped surface. These surfaces are the precursors of the singularities in
gravitational collapse (see, for instance, [6], [7], [14]).

In this work, we are interested in spacelike surfaces such that at least
one of its null-second fundamental forms IIξ (or IIη), defined in (Eq. 5), is
non degenerate. It physically means that, in each event of S, there does
not exist any direction v ∈ TpM such that the inwards directed light rays
neither approach, nor separate, nor rotate. As a consequence, IIξ defines a
new metric on the surface, which may be definite or not. If IIξ is positive
definite (resp. negative definite), then inwards directed light rays orthogonal
to S converge (resp. diverge) along any direction at each event of S. In
the indefinite case, the new metric is Lorentzian and the inwards directed
light rays converge in some directions and diverge in others. An analogous
interpretation may be done for the null direction η, but in this case the light
rays are now directed outwards. Our first aim precisely consists in to find
some sufficient conditions to assure that both null-second fundamental forms
are non degenerate (Prop. 2.1).

On the other hand, it is natural to ask ourselves about what relation is
there between both metrics on such surfaces. With this aim, we find a for-
mula which relate the Gauss curvatures of S when is endowed with the first
and the second fundamental forms (Eq. 17). This formula widely generalizes
the given in [2] and [3] for surfaces in the 3-dimensional De Sitter space-
time, and in [12] for surfaces in 4-dimensional Lorentz-Minkowski spacetime
through a light cone. By means of this new formula, we stablish some in-
tegral conditions to characterize the null umbilical directions for compact

2



spacelike surfaces a null second fundamental form positive definite (Th. 4.1)
and marginally trapped surfaces (Th. 4.4) in a Lorentzian space form.

Finally, we study spacelike surfaces immersed in a totally umbilical hy-
persurface of a Lorentzian space form and, by using the previous charac-
terization of umbilical directions of compact spacelike inmmersions, we give
new proofs of the rigidity Liebmann theorem for surfaces on the Euclidean,
hemispherical and hyperbolic 3-spaces (Th. 5.3, Th. 5.4 and Th. 5.6) and in
the 3-dimensional De Sitter spacetime (Th. 5.7).

2 Preliminaries

Let x : M2 −→ M
4

1 (c) be a spacelike immersion of a 2-dimensional (con-

nected) manifold M2 into a 4-dimensional Lorentzian space form M
4

1 (c) of
constant sectional curvature c. Denote by 〈 , 〉 for the Lorentzian metric of

M
4

1 (c) as well as the induced on M2 via x. We write∇ and∇ the Levi-Civita

connections of M2 and M
4

1 (c), respectively, and let ∇⊥ be the connection on
the normal bundle of the submanifold. The Gauss and Weingarten formulas
of x are

∇XY = ∇XY + II(X, Y ) and ∇Xξ = −AξX +∇⊥X ξ, (1)

for any tangent vector fields X, Y on M2 and a normal vector field ξ. The
shape (or Weingarten) operator Aξ is related to the second fundamental form
II by

〈AξX, Y 〉 = 〈II(X, Y ), ξ〉.

The mean curvature vector field is given by H = 1
2

tr〈 , 〉II, and the Gauss and
Codazzi equations of x are respectively,

R(X, Y )Z = c {〈Y, Z〉X − 〈X,Z〉Y }+ A
II(Y,Z)

X − A
II(X,Z)

Y (2)

(∇XII)(Y, Z) = (∇Y II)(X,Z), (3)

where R stands for the curvature tensor of the induced metric and

(∇XII)(Y, Z) = ∇⊥X II(Y, Z)− II(∇XY, Z)− II(Y,∇XZ),

for any tangent vector fields X, Y, Z on M2. For each normal vector field ξ,
the Codazzi equation provides us that,

(∇XAξ)Y − (∇YAξ)X = A∇⊥
Xξ
Y − A∇⊥

Y ξ
X. (4)
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Assume ξ is globally defined and denote by IIξ the symmetric tensor field on
M2,

IIξ(X, Y ) = −〈AξX, Y 〉 = −〈II(X, Y ), ξ〉. (5)

When IIξ is nondegenerate everywhere on M2, we will say that ξ is a nonde-
generate normal section [4, p. 59]. At any p ∈ M2, Aξ is self-adjoint, hence,
there exists an orthonormal basis of tangent vectors e1, e2 to M2 consisting
of eigenvectors of Aξ, that is Aξ(ei) = λiei. The eigenvalues λ1, λ2 are the
principal curvatures and the eigenvectors e1, e2 the principal directions of
the normal direction ξ. The Casorati curvature of the normal direction ξ is
defined by,

Cξ =
tr(A2

ξ)

2
=

1

2
(λ21 + λ22). (6)

Clearly Cξ = 0 if and only if the normal direction ξ is geodesic.

From now on we assume M
4

1(c) is time orientable, i.e., there exists a

globally defined timelike vector field Z on M
4

1(c) (see [15, pp.345–346] for
instance). Now, we take the normal component of Z, Z⊥, and we define the
following future (with the same orientation that Z) unit timelike vector field
orthogonal to M2,

N =
1√

−〈Z⊥,Z⊥〉
Z⊥ ∈ X⊥(M2).

From now on we suppose M
4

1(c) and M2 to be orientable. Hence, we may
construct a new unit future timelike vector field E ∈ X⊥(M2), such that,
at each point p ∈ M2, (Np, Ep) be a orthonormal basis and for all positive
oriented basis of TpM

2, (e1, e2), then (Np, Ep, e1, e2) be a positive oriented
orthonormal basis of Tx(p)M . Thus, there exist two independent future null
vector fields ξ, η ∈ X(M2) defined as follows,

ξ =
1√
2

(N + E), η =
1√
2

(N− E),

which trivialize the normal bundle of M2 and satisfy 〈ξ, η〉 = −1. Moreover,
such a pair of null sections is essentially unique, i.e., for any (ξ′, η′) satisfying
the previous conditions it is holds that ξ′ = f ξ and η′ = 1

f
η for some

differentiable function f on M2.
The following formula holds for II,

II(X, Y ) = IIη(X, Y )ξ + IIξ(X, Y )η, (7)
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for every X, Y ∈ X(M2). In particular,

H = −〈H, η〉ξ − 〈H, ξ〉η. (8)

Contracting in (2) we obtain,

Ric(Y, Z) = c〈Y, Z〉+ 2〈AHY, Z〉+ 〈(AξAη + AηAξ)Y, Z〉, (9)

and

(K − c)Id =
(
− 2〈H, η〉Id+ Aη

)
Aξ +

(
− 2〈H, ξ〉Id+ Aξ

)
Aη,

where K is the Gauss curvature of M2. Taking into account that trAξ =
2〈H, ξ〉 and analogously for η, we obtain that,

(K − c)Id = AξAη + AηAξ + 2AH, (10)

Therefore,

2(K − c) = 4〈H,H〉+ 2tr(AξAη) = 4〈H,H〉 − 〈II, II〉, (11)

where, as usual, 〈II, II〉p = Σ2
i,j=1〈II(ei, ej), II(ei, ej)〉 for {e1, e2} an orthonor-

mal basis of TpM
2.

In order to obtain a sufficient condition which asserts that the null normal
sections ξ and η are nondegenerate we give the following result.

Proposition 2.1. Let x : M2 −→ M
4

1 (c) be a spacelike immersion. If the
following inequality is satisfied,

ϕ := (K − c)2 − 4(K − c)〈H,H〉+ 4 det(AH) > 0,

then the null normal sections ξ and η are nondegenerate.

Proof. Assume det(Aξ) vanishes at p ∈ M2. Let e1, e2 be the principal
directions of the null normal direction ξ with Aξ(e1) = 0 and Aξ(e2) = λe2.
A direct computation shows that det(AξAη +AηAξ) = −λ2〈Aη(e1), e2〉2. But
taking account (10), we get,

det
(

(K − c)Id− 2AH

)
= (K − c)2 − 4(K − c)〈H,H〉+ 4 det(AH) ≤ 0,

which contradicts our assumption.
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Remark 2.2. Note that ϕ(p) = 0 if and only if K(p)− c is an eigenvalue of
2AH. On the other hand, assume that µ is a log-harmonic function defined on

a simply-connected domain U ⊂ R2. In [6], it is shown that
(
U, 1

µ
(dx2+dy2)

)
is a flat surface which can be isometrically immersed in the 4-dimensional
Lorentz-Minkowski space L4. Moreover, its second fundamental form satis-
fies,

II(∂x, ∂x) =
( 1

µ
− 1
)
H, II(∂x, ∂y) = 0, II(∂y, ∂y) =

( 1

µ
+ 1
)
H,

where H = (1, 1, 0, 0). Taking η = H it is clear that the null normal section
η is degenerate and det(Aξ) = 1/µ2 − 1. Therefore, for suitable choices of
µ > 0, we obtain that ξ is nondegenerate. In this case, a direct computation
shows that ϕ = 0 and thus Proposition 2.1 can not be weakened to ϕ ≥ 0.

On the other hand, the polynomial P (t) = t2− 4〈H,H〉t+ 4 det(Aξ) has,
at any point, non-negative discriminant as a consequence of the Schwarz
inequality. Thus, the assumption P (K − c) > 0 does not follows from a
condition on P (t) independent of K − c.

Corollary 2.3. Let x : M2 −→ M
4

1 (c) be a spacelike immersion. Assume
that M2 is extremal (H = 0) and not totally geodesic, then the null normal
sections ξ and η are nondegenerate, with IIη and IIξ Lorentzian metrics on
M2.

Proof. It is a direct consequence of (11). The Lorentzian signature is deduced
from trAξ = 2〈H, ξ〉 = 0.

Recall that a spacelike immersion x : M2 −→ M
4

1 (c) is called pseudo-
umbilical when AH = ρId for ρ ∈ C∞(M).

Corollary 2.4. Let x : M2 −→ M
4

1 (c) be a pseudo-umbilical spacelike im-
mersion. If K(p) 6= c + 2ρ(p) at every point p ∈ M2, then ξ and η are
nondegenerate null normal sections

Proof. Taking into account that det(AH) = ρ2 and 〈H,H〉 = ρ the result is
a direct consequence of Proposition 2.1.

Proposition 2.5. Let x : M2 −→M
4

1 (c) be a spacelike immersion with null
normal vector field ξ and H the mean curvature vector field of M2. Then,

det(Aξ) = 2〈H, ξ〉2 − Cξ. (12)
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Proof. The characteristic equation for the shape operator Aξ,

A2
ξ − (trAξ)Aξ + (detAξ)Id = 0,

implies that,
2(detAξ) = (trAξ)

2 − (trA2
ξ).

Taking into account that trAξ = 2〈H, ξ〉 the result easily follows.

3 Gauss curvature of IIξ

Assume ξ is a nondegenerate null normal section on M2 into M
4

1. In this
case, IIξ given by (5) provides with a new metric on M2. This section is
devoted to obtain an explicit formula for the Gauss curvature of the metric
IIξ.

Let D denote the Levi-Civita connection of the metric tensor IIξ. The
difference tensor L between the Levi-Civita connections D and ∇ is given
by,

L(X, Y ) = DXY −∇XY, (13)

for all X, Y ∈ X(M2). From the Koszul formula for IIξ and (4) we have,

L(X, Y ) =
1

2
A−1ξ

[
(∇XAξ)Y + A∇⊥

Y ξ
X +B(X, Y )

]
,

where 〈B(X, Y ), Z〉 = −〈A∇⊥
Z ξ
X, Y 〉 for all X, Y, Z ∈ X(M2).

Since 〈ξ, ξ〉 = 0 we obtain that 〈∇⊥Xξ, ξ〉 = 0 for every X ∈ X(M2).
Therefore there exists a 1-form ω such that,

∇⊥Xξ = ω(X)ξ. (14)

We define Θ ∈ X(M2) by 〈Θ, X〉 = ω(X) for every X ∈ X(M2). That is, Θ
is the vector field 〈, 〉-metrically equivalent to ω. A direct computation shows
that,

B(X, Y ) = IIξ(X, Y )Θ,

for every X, Y ∈ X(M2). Therefore the symmetric difference tensor L can
be written as follows,

L(X, Y ) =
1

2
A−1ξ

[
(∇XAξ)Y

]
+

1

2
ω(Y )X +

1

2
IIξ(X, Y )A−1ξ Θ. (15)
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Remark 3.1. The curvature of the normal connection satisfies,

R⊥(X, Y )ξ = dω(X, Y )ξ, R⊥(X, Y )η = −dω(X, Y )η.

Therefore, for every normal vector field α ∈ X⊥(M2) we obtain that,

R⊥(X, Y )α = dω(X, Y )ᾱ,

where ᾱ = 〈α, ξ〉η − 〈α, η〉ξ. It should be pointed out that if we put Jα = ᾱ
then 〈Jα, Jα〉 = −〈α, α〉 and J2 = Id.

Now consider the Riemannian curvature tensor Rξ of IIξ which can be
decomposed as follows

Rξ = R +Q1 +Q2

where,
Q1(X, Y )Z = (DXL)(Y, Z)− (DYL)(X,Z),

Q2(X, Y )Z = L(Y, L(X,Z))− L(X,L(Y, Z)),

and X, Y, Z ∈ X(M2). Therefore we get the following formula for the Gauss
curvature Kξ of IIξ,

2Kξ = trIIξ(Ric) + trIIξ(Q̂1) + trIIξ(Q̂2) (16)

where Q̂i(X, Y ) = tr{Z 7→ Qi(Z,X)Y } i = 1, 2, and for a symmetric
(0, 2) tensor T , trIIξT is the ordinary trace of the (1, 1)-tensor T defined

by IIξ(T (X), Y ) = T (X, Y ).

Lemma 3.2. The trace with respect to IIξ of the Ricci tensor Ric is given
by,

trIIξ(Ric) = trIIξ(K · 〈 , 〉) =
−2K〈H, ξ〉

det(Aξ)
.

Proof. Let {E1, E2} be a 〈 , 〉-orthonormal basis of TpM
2, such thatAξ(Ei) =

λiEi at a point p ∈M2. Consider now Fi = |λi|−1/2Ei, i = 1, 2, then {F1, F2}
is a IIξ-orthonormal basis of TpM

2 with εi = IIξ(Fi, Fi) = −λi/|λi|. A direct
computation gives now the result.

Now observe that the vector field −A−1ξ Θ is metrically equivalent to ω
with respect to IIξ. The following result relates this vector field with the
second right term of (16).

Lemma 3.3. The trace with respect to IIξ of the tensor Q̂1 is given by,

trIIξ(Q̂1) = divIIξ(A
−1
ξ Θ).
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Proof. Consider {E1, E2} and {F1, F2} constructed as previously. Extend F1

and F2 near the point p as a local be a 〈 , 〉-orthonormal IIξ-orthonormal
frame {F1, F2} satisfying (DFiFj)p = 0.

A direct computation shows that,[
trIIξ(Q̂1)

]
p

= ε1ε2

[
IIξ

(
F2, Q1(F2, F1)F1)

)
p

+ IIξ

(
F1, Q1(F1, F2)F2)

)
p

]
.

On the other hand,

IIξ

(
F2, Q1(F2, F1)F1)

)
p

= (F2)pIIξ

(
F2, L(F1, F1)

)
− (F1)pIIξ

(
F2, L(F2, F1)

)
,

and taking into account (21) we obtain,[
trIIξ(Q̂1)

]
p

= −ε1(F1)pω(F1)− ε2(F2)pω(F2) =
[
divIIξ(A

−1
ξ Θ)

]
p

Lemma 3.4. The trace with respect to IIξ of the tensor Q̂2 is given by,

trIIξ(Q̂2) = IIξ(L,L)− 1

4 det(A2
ξ)

IIξ

(
∇IIξ(det(Aξ)),∇IIξ(det(Aξ))

)
+ω
(
A−1ξ Θ +

∇IIξ (det(Aξ))

2 det(Aξ)

)
.

Proof. Let {E1, E2} be a local 〈 , 〉-orthonormal frame at a point p ∈ M2

such that Aξ(Ei) = λiEi for i = 1, 2 at p ∈M2. Then, construct {F1, F2} as
in Lemma 3.3.

A direct computation shows,[
trIIξ(Q̂2)

]
p

= ε1ε2

[
IIξ

(
L(F1, L(F2, F1))− L(F2, L(F1, F1)), F2

)
+IIξ

(
L(F2, L(F2, F1))− L(F1, L(F2, F2)), F1

)]
p
.

Now, from (21) we obtain,

IIξ(L(X, Y ), Z)− IIξ(L(X,Z), Y ) = ω(Y )IIξ(X,Z)− ω(Z)IIξ(X, Y ),

and therefore,[
trIIξ(Q̂2)

]
p

= ε1ε2

[
IIξ

(
L(F1, F2), L(F1, F2)

)
− ε1(ω(F2))

2

−IIξ

(
L(F2, F2), L(F1, F1)

)
− ε2ω(L(F1, F1))
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+IIξ

(
L(F1, F2), L(F1, F2)

)
− ε2(ω(F1))

2

−IIξ

(
L(F2, F2), L(F1, F1)

)
− ε1ω(L(F2, F2))

]
.

Observe that,

IIξ(L,L) =
∑
i,j

εiεjIIξ(L(Fi, Fj), L(Fi, Fj))

whereas,

IIξ(trIIξ(L), trIIξ(L)) =
∑
i,j

εiεjIIξ(L(Fi, Fi), L(Fj, Fj)),

where trIIξ(L) = ε1L(F1, F1) + ε2L(F2, F2) is the vector field obtained from
the IIξ−contraction of L. Hence, we obtain the following formula,

trIIξ(Q̂2) = IIξ(L,L)− IIξ(trIIξ(L), trIIξ(L))− ω(trIIξ(L))− IIξ(A
−1
ξ Θ, A−1ξ Θ).

We end the proof obtaining an explicit expression of the vector field
trIIξ(L). A straightforward computation shows,

trIIξ(L) =
1

2
A−1ξ Θ +

1

2

{
ε1A

−1
ξ

[
(∇F1Aξ)F1

]
+ ε2A

−1
ξ

[
(∇F2Aξ)F2

]}
.

Until now, we have not used the concrete expressions for F1 and F2, which
are needed to obtain the vector field trIIξ(L). In fact, for every X ∈ X(M2)
we get,

X det(Aξ) = X(〈AξE1, E1〉〈AξE2, E2〉)

= λ2〈(∇XAξ)E1, E1〉+ λ1〈(∇XAξ)E2, E2〉.

Using the Codazzi equation (4) we can rewrite the previous formula as fol-
lows,

X det(Aξ) = − det(Aξ)
[
ε1〈(∇F1Aξ)F1, X〉+ ε2〈(∇F2Aξ)F2, X〉 − ω(X)

]
,

and therefore,

X det(Aξ) = det(Aξ)IIξ

(
A−1ξ

[
ε1(∇F1Aξ)F1 + ε2(∇F2Aξ)F2 −Θ

]
, X
)
.

Moreover,

∇IIξ(det(Aξ)) = − det(Aξ)A
−1
ξ Θ + det(Aξ)

{
ε1A

−1
ξ

[
(∇F1Aξ)F1

]
+ε2A

−1
ξ

[
(∇F2Aξ)F2

]}
,
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and thus,

ε1A
−1
ξ

[
(∇F1Aξ)F1

]
+ ε2A

−1
ξ

[
(∇F2Aξ)F2

]
=
∇IIξ(det(Aξ))

det(Aξ)
+ A−1ξ Θ.

Finally, for the vector field trIIξ(L) we have,

trIIξ(L) = A−1ξ Θ +
∇IIξ(det(Aξ))

2 det(Aξ)
,

concluding the proof.

The three previous lemmas show our key result.

Theorem 3.5. Let x : M2 −→ M
4

1 (c) be a spacelike immersion of a 2-
dimensional orientable manifold M2 into an 4-dimensional Lorentzian space

form M
4

1 (c) of constant sectional curvature c. Assume that ξ is a nondegen-
erate null normal section. Then the Gauss curvature Kξ of the metric IIξ
satisfies,

2Kξ = −2K〈H,ξ〉
det(Aξ)

+ divIIξ(A
−1
ξ Θ) + IIξ(L,L)

(17)

− 1
4 det(A2

ξ)
IIξ

(
∇IIξ(det(Aξ)),∇IIξ(det(Aξ))

)
+ ω

(
A−1ξ Θ +

∇IIξ (det(Aξ))

2 det(Aξ)

)
.

Remark 3.6. Note that (17) widely extends formula (10) in [13].

Now, assume the nondegenerate normal null direction ξ is umbilical.
Then, there exists a smooth function f on M such that Aξ = −e2fId. Next,
we will analyse each of the terms in (17).

Since IIξ = e2f〈 , 〉, that is, IIξ and 〈 , 〉 are conformally related, we can
deduce the following formulas.

dξ = e4f , ∇IIξdξ = e−2f∇dξ = 4e2f∇f,

where we have denoted by dξ = det(Aξ). Thus, for the fourth term of the
second member of (17), we have,

1

4d2ξ
IIξ

(
∇IIξdξ,∇IIξdξ

)
=

4

e2f
‖∇f‖2. (18)

Now from the Codazzi equation (4), taking into account that Aξ =
−e2fId, we have
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−X(e2f )Y + Y (e2f )X = −e2fω(X)Y + e2fω(Y )X, (19)

for all X, Y ∈ X(M). Therefore, from (19), we arrive to

ω(X) = 2X(f) for all X ∈ X(M). (20)

Observe that Θ = 2∇f . Therefore, formula (20) gives,

ω
(
A−1ξ Θ +

∇IIξdξ
2d

)
= ω(0) = 0,

and so the last term in (17) identically vanishes.
We analyse now the third term in (17). The metrics IIξ and 〈 , 〉 are

conformally related and therefore the difference tensor (13) satisfies

L(X, Y ) = X(f)Y + Y (f)X − 〈X, Y 〉∇f. (21)

Let {F1, F2} be a (local) IIξ-orthonormal frame and denote L(Fi, Fj) by Lij.
A direct computation from (21) shows

L11 = 2F1(f)F1 − e−2f∇f, L22 = 2F2(f)F2 − e−2f∇f,

L12 = L21 = F1(f)F1 + F2(f)F2.

Therefore,

IIξ(L,L) = IIξ(L11, L11) + 2IIξ(L12, L12) + IIξ(L22, L22) =

= 4e−2f‖∇f‖2. (22)

Finally, we will compute the divergence term of (17). Taking into account
that Θ = 2∇f and using the relation between two conformal metrics

divIIξ(X) = div(X) + 2X(f),

we have that
divIIξ(A

−1Θ) = −2 e−2f∆f. (23)

Consequently, from (18), (22) and (23), and taking into account that
Tr(Aξ) = 2〈H, ξ〉, equation (17) is reduced to the well-known formula that
relates the Gauss curvature of two conformal metrics 〈· , ·〉 and IIξ,

K −Kξ e
2f = ∆f.

Moreover, since ξ is umbilical and by using of (14), we conclude that f
is constant if and only if ∇⊥Xξ = 0 (and, as consequence, ∇⊥Xη = 0). In
other words, 〈· , ·〉 and IIξ are homothetic if and only if there is a parallel
umbilical (nondegenerate) normal null section. This motives the study of
when a normal null section is umbilical, which we present in the next section.
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4 Applications

Let us denote by dµ for the canonical measure associated with the induced
metric 〈 , 〉, and by dξ = det(Aξ).

Theorem 4.1. Let x : M2 −→ M
4
(c) be a compact spacelike immersion.

Assume ξ is a normal null section with IIξ positive definite and K signed
(i.e., K > 0 or K < 0). Then,∫

M2

K〈H, ξ〉
dξ

dµIIξ ≤ −2πχ(M) (K > 0), or

∫
M2

K〈H, ξ〉
dξ

dµIIξ ≥ −2πχ(M) (K < 0).

Moreover, equality holds if and only if ξ is an umbilical direction.

Proof. Assume K > 0. Since IIξ is supposed to be definite positive, we
have that at every point p ∈ M2 the eigenvalues of Aξ satisfy λi < 0 for
i = 1, 2. Hence, −tr(Aξ) = −2〈H, ξ〉 ≥ 2

√
dξ with equality holding at every

point if and only if ξ is an umbilical direction. Note that since K > 0, then
K〈H, ξ〉 ≤ −K

√
dξ with equality at every point if and only if ξ is umbilical.

Therefore, by using the Gauss-Bonnet Theorem we get,∫
M2

K〈H, ξ〉
dξ

dµIIξ ≤ −
∫
M2

K√
dξ
dµIIξ = −

∫
M2

Kdµ = −2πχ(M)

and the equality holds if and only if ξ is umbilical.
The case K < 0 follows analogously.

Corollary 4.2. Let x : M2 −→ M
4
(c) be a compact spacelike immersion.

Assume ξ is a normal null section with IIξ positive definite and K signed
(i.e., K > 0 or K < 0). Suppose that dξ is constant and ∇⊥ξ = 0. Then, ξ
is an umbilical direction.

Proof. Assume K > 0. Directly from the formula (17), we have

2

∫
M2

K〈H, ξ〉
dξ

dµIIξ =

∫
M2

[
IIξ(L,L)− 2Kξ

]
dµIIξ ≥ −4πχ(M),

and therefore the equality holds in Theorem 4.1.
A similar argument works for K < 0.
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Corollary 4.3. Let x : M2 −→ M
4
(c) be a compact spacelike immersion.

Assume ξ and η are normal null sections with IIξ and IIη positive definite
and K signed (i.e., K > 0 or K < 0). Then,∫

M2

[K〈H, ξ〉
d
1/2
ξ

+
K〈H, η〉
d
1/2
η

]
dµ ≤ −4πχ(M) (K > 0), or

∫
M2

[K〈H, ξ〉
d
1/2
ξ

+
K〈H, η〉
d
1/2
η

]
dµ ≥ −4πχ(M) (K < 0).

Moreover, equality holds if and only if x is totally umbilical.

We end this section with an application to the so-called marginally trapped
surfaces. Recall that a compact spacelike surface M2 in a 4-dimensional
Lorentzian manifold is called marginally trapped when its mean curvature
vector field H is null everywhere, i.e., 〈H,H〉 = 0 and H nowhere vanishes.
From the formula (8) we have

〈H,H〉 = −2 〈H, ξ〉〈H, η〉 = −1

2
tr(Aξ) tr(Aη),

and, from the discussion of uniqueness (up to a positive function) of the null
normal sections ξ, η which satisfy 〈ξ, η〉 = −1, we may equivalent define that
M2 is marginally trapped if tr(Aξ) = 0 and tr(Aη) > 0 [7]. In this case, the
natural choice for the null normal section ξ in Theorem 4.1 would be ξ = H.
However, from Proposition 2.5 it follows that the metric IIH is Lorentzian
and, therefore, the assumptions of Theorem 4.1 are not satisfied.

We recall [10] that a marginally trapped surface cannot be contained in
a region of the spacetime where there exists a timelike Killing vector field.

Thus, we consider now the case M
4

1(c) where c > 0.

Theorem 4.4. Let x : M2 −→ M
4

1 (c), c > 0, be a (compact) marginally
trapped surface. Assume its mean curvature vector H is nondegenerate, null
and satisfies that det(AH) is a (necessarily nonzero) constant. Then,∫

M2

[
IIH(L,L)− IIH(A−1H Θ, A−1H Θ)

]
dµIIH = 0.

Proof. This equality directly follows from an integration of (17) over M2 and
taking into account that every compact Lorentzian surface is a topological
torus.
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5 Surfaces in totally umbilical hypersurfaces

In this section all the manifolds are assumed to be orientable.
Let i : P 3

ε → M
4

1 (c) be a semi-Riemannian hypersurface with sign ε,
that is, ε = +1 when P 3

ε inherits a Lorentzian metric and ε = −1 when P 3
ε

inherits a Riemannian metric. Assume i : P 3
ε → M

4

1 (c) is totally umbilical
with second fundamental form

IIi = α〈, 〉T, (24)

where α ∈ R and T is a unit normal vector field on P 3
ε which satisfies

〈T,T〉 = ε. Therefore, the hypersurface P 3
ε inherits a Riemannian or Lorentzian

metric of constant sectional curvature c+ εα2.
Assume now φ : M2 → P 3

ε is a spacelike immersion. The composition

x = i ◦ φ is a spacelike immersion in M
4

1 (c) with null normal sections,

ξ =
1√
2

(N + T), η =
−ε√

2
(−N + T), (25)

where N is the unit normal vector field along the immersion φ which satisfies
〈N,N〉 = −ε. In that follows we will write IIx for the second fundamental
form of the immersion x and analogously for φ and i. Other geometric
elements will be distinguished in a similar way. We have Ai = εα · Id and

IIx = IIφ + IIi,

[4, Chap. 3]. On the other hand, K = c + εα2 − ε det(AφN) and tr(AφN) =
2〈Hφ,N〉 = −2εHφ, where Hφ denotes the mean curvature function of the
inmersion φ. Now a direct computation shows that,

Axξ =
1√
2

(
AφN + εαId

)
, Axη =

−ε√
2

(
− AφN + εαId

)
,

and therefore,

det(Axξ ) =
1

2

(
det(AφN) + εαtr(AφN) + α2

)
=

1

2

(
ε(c−K)− 2αHφ + 2α2

)
,(26)

det(Axη) =
1

2

(
det(AφN)− εαtr(AφN) + α2

)
=

1

2

(
ε(c−K) + 2αHφ + 2α2

)
,(27)

Remark 5.1. Since Axξ and Axη commute, the normal curvature tensor of
the immersion x vanishes identically. Therefore, there exists at any TpM

2 an
orthonormal basis {e1, e2} which diagonalizes simultaneously every AxZ for
Z ∈ X⊥x(M2) [4, Proposition 4.1.2].

15



Lemma 5.2. Let φ : M2 → P 3
ε be an immersion of a surface (spacelike if

ε = 1) in P 3
ε . If i : P 3

ε → M
4

1 (c) is a totally umbilical hypersurface, then
∇⊥xξ = ∇⊥xη = 0.

Proof. Since ∇⊥xv ξ = ω(v)ξ a straightforward computation from (25) shows,

ω(v) = −〈∇⊥xv ξ, η〉 = 〈∇⊥xv T,N〉 = 0.

Now we apply our technique to give new proofs of results in [2].

Theorem 5.3. (Liebmann classical rigidity theorem [9]) Let φ : M2 −→ E3

be a compact connected surface in the 3-dimensional Euclidean space. If the
Gauss curvature of M2 is a positive constant K, then M2 is a totally umbilical
round sphere.

Proof. From the Gauss-Bonnet Theorem, the surface M2 is topologically an
sphere. Let i : E3 ↪→ L4 be the usual totally geodesic embedding at t = 0.
Since the scalar α in (24) is zero, we deduce that

det(Axξ ) = det(Axη) =
K

2
,

making use of (26). Therefore Axξ and Axη are positive definite (otherwise, we
make a change of ξ or η to −ξ or −η). Now, Lemma 5.2 and Corollary 4.2
can be called to ensure that the null normal sections ξ and η are umbilical
and so, M2 is a totally umbilical round sphere in L4 and so also in E3.

Theorem 5.4. Let φ : M2 −→ S3
+ be a compact connected surface in the 3-

dimensional north hemisphere S3
+. If the Gauss curvature of M2 is a constant

(K > 1), then M2 is a totally umbilical round sphere.

Proof. Again here we have that M2 is a topological sphere. Let i : S3 ↪→ S4
1

be the totally geodesic embedding at t = 0, where we have considered S4
1 as

the warped product R×cosh(t) S3. Since the scalar α in (24) is 0, making use
of (26) we deduce that

det(Axξ ) = det(Axη) =
1

2
(K − 1) > 0.

The last inequality is due to on a surface in a hemisphere an elliptic point
p0 is always reached (then, K(p0) > 1). Therefore Axξ and Axη are positive
definite (otherwise, we make a change of ξ or η to −ξ or −η). Now, Lemma
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5.2 and Corollary 4.2 can be called again to ensure that the null normal
sections ξ and η are then umbilical and so, M2 is a totally umbilical round
sphere in S3

+.

Remark 5.5. Let φ : M2 −→ S3 be a minimal compact connected surface of
(arbitrary) Gauss curvature K and i : S3 → S4

1 the above embedding. From
Theorem 4.1 and (26), we derive that there is at least a point p ∈ M2 with
satisfies K(p) = 0 or at least a point with K(p) = 1. In particular, if K is
constant, we can deduce the classical result K = 0 or K = 1.

Consider the 4-dimensional anti De sitter spacetime of sectional curvature
−1,

H4
1 = {v ∈ R5 : −v20 − v21 + v22 + v23 + v24 = −1}.

The 3-dimensional hyperbolic space H3, the complete simply connected Rie-
mannian manifold with sectional curvature −1, may be realized as the fol-
lowing totally geodesic spacelike hypersurface of H4

1,

H3 = {v ∈ H4
1 : v0 = 0, v1 > 0}.

Theorem 5.6. Let φ : M2 −→ H3 be a compact connected surface in the 3-
dimensional hyperbolic space. If the Gauss curvature K is a positive constant,
then M2 is a totally umbilical round sphere.

Proof. We have that, one more time, M2 is a topological sphere. Let i :
H3 ↪→ H4

1 be the above embedding. Since the scalar α in (24) is 0, making
use of (26) we deduce that

det(Axξ ) = det(Axη) =
1

2
(K + 1).

Therefore Axξ and Axη are positive definite (otherwise, we make a change of
ξ or η to −ξ or −η). Now, Lemma 5.2 and Corollary 4.2 can be called one
more time to ensure that the null normal sections ξ and η are umbilical and
so, M2 is a totally umbilical round sphere in H3.

We end this article obtaining a new proof of [3, Th. 12].

Theorem 5.7. Let φ : M2 −→ S3
1 be a compact connected spacelike surface

with constant positive Gauss curvature K < 1. Then M2 is a totally umbilical
round sphere.
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Proof. From the assumption on K, we have that M2 is a topological sphere.
Denote by i : S3

1 ↪→ S4
1 the usual totally geodesic immersion, and consider as

bellow x = i ◦ φ. Since α = 0, we deduce that

det(Axξ ) = det(Axη) =
1

2
(1−K).

Therefore Axξ and Axη are positive definite. Lemma 5.2 and Corollary 4.2
imply that the null normal sections ξ and η are umbilical. Therefore, M2 is
a totally umbilical round sphere in S3

1.

Remark 5.8. Observe that the totally geodesic embeddings L3 ↪→ L4 and
H3

1 ↪→ H4
1 have not been considered previously because there exists no com-

pact spacelike surface in L3 (see for instance [8]) neither in the anti De Sitter
spacetime H3

1 (see for instance [1, Cor. 3]).
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