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ABSTRACT 

Antioxidant enzymes form the first line of defense against free radicals in organisms. Their 

regulation depends mainly on the oxidant status of the cell, given that oxidants are their 

principal modulators. However, other factors have been reported to increase antioxidant 

enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin 

has been shown to possess genomic actions, regulating the expression of several genes. 

Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for 

these enzymes. In the present report, we review the studies which document the influence of 

melatonin on the activity and expression of the antioxidative enzymes glutathione 

peroxidase, superoxide dismutases and catalase both under physiological and under 

conditions of elevated oxidative stress. We also analyze the possible mechanisms by which 

melatonin regulates these enzymes.  
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INTRODUCTION 

Aerobic organisms require ground state oxygen to live. However, the use of oxygen 

during normal metabolism produces reactive oxygen species (ROS), some of which are 

highly toxic and deleterious to cells and tissues. The most abundant ROS formed in the 

course of cellular metabolism is the superoxide radical (O2
•-). This radical is mainly 

produced during electron transport in the mitochondria and in the endoplasmic reticulum, 

although it is also a byproduct in several enzymatic reactions (oxidases and oxygenases); 

likewise, it is formed during the hepatic metabolism of some molecules and also as a result of 

the decomposition of oxyhemoglobin [1]. 

Dismutation of the O2
•- gives rise to hydrogen peroxide (H2O2). This molecule is not a 

free radical per se but, in the presence of transition metals via the Fenton reaction, it is 

rapidly converted to the hydroxyl radical (•OH). The •OH is widely accepted as being the 

most damaging ROS produced by cells [2]. Free radicals in general and the •OH in particular 

react with virtually every molecule in living cells (i.e., lipids, sugars, amino acids, 

nucleotides) with very high rate constants [3]; the resulting damage ultimately may lead to 

diseases such as cancer, neurodegeneration and autoimmune conditions [4-6].  

To protect cells from the damage caused by free radicals and related reactants, organisms 

have evolved several defense mechanisms to rapidly and efficiently remove ROS from the 

intracellular environment. When the equilibrium between free radicals (oxidants) and 

antioxidant defense systems is imbalanced in favor of oxidants, the condition causes what is 

known as oxidative stress. The oxidants that are not directly scavenged or otherwise not 
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metabolized attack cellular components producing useless molecular debris and sometimes 

cell death. 

Antioxidant defense systems may be generally classified into indirect enzymatic 

antioxidant enzymes and into small molecular weight molecules which directly scavenge free 

radicals and related reactants. The antioxidant enzymes represent a first line of defense 

against these toxic reactants by metabolizing them to innocuous byproducts.  

The first enzymatic reaction in the reduction pathway of oxygen occurs during the 

dismutation of two molecules of O2
•- when they are converted to hydrogen peroxide (H2O2) 

and diatomic oxygen. The enzyme at this step is one of two isoforms of superoxide dismutase 

(SOD); CuZnSOD is present in the cytosol while (MnSOD) is located in the mitochondrial 

matrix. These enzymes possess transition metals (Cu2+ or Mn3+, respectively) at their active 

sites; this allows for the rapid exchange of electrons between the two superoxides. Although 

H2O2 is not a radical itself, it is reactive and it is rapidly converted into the highly reactive 

•OH in the presence of ferrous ion (Fe++) via the Fenton reaction unless it is efficiently 

removed. Two enzymes participate in the removal of H2O2 from the cellular environment, 

peroxidases and catalase. The most abundant peroxidase is the glutathione peroxidase (GSH-

Px), which is present in both the cytosol and mitochondria. This enzyme has the transition 

metal selenium at its active site and uses reduced glutathione (GSH) as a substrate to transfer 

electrons to H2O2 (and other peroxides) thereby converting it into two molecules of water. 

The second H2O2 metabolizing enzyme is catalase (CAT); it is present mainly in the 

peroxisomes, presents a molecule of ferric ion at its active site and converts two molecules of 

H2O2 into one molecule each of water and diatomic oxygen [7]. 
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Antioxidant enzymes are regulated by multiple factors. Oxidative status of the cell is the 

primary factor regulating gene expression and activity of these enzymes [8-10]. Both 

endogenous [11] and exogenous agents [12, 13] act as oxidants and alter cellular oxidative 

equilibrium and therefore antioxidant enzyme gene expression. There are, however, several 

other factors which influence antioxidant enzymes. In addition to developmental changes, 

differentiation and aging influences [14-18], inflammation [19, 20] and hormonal regulation 

of antioxidative enzymes have been reported [21-23]. Additionally, several antioxidants and 

cell protectors are believed to regulate gene expression and antioxidant enzyme activity [24-

29]. 

Although, melatonin is known to be an indole secreted by the pineal gland, other organs 

may produce melatonin where it has functions without being released. Besides its properties 

as a circadian rhythm transducer [30], several other actions for this interesting molecule have 

been in uncovered in the last two decades [31, 32]. Its direct free radical scavenging activity 

[33, 34] and its regulation of gene transcription [35] for antioxidative enzymes are of special 

interest in the present review. The antioxidant properties of melatonin have been extensively 

studied and the use of this molecule as a cell protector and as a potential disease-preventing 

agent have been summarized [36-40]. Melatonin has been proven to be an efficient oxidant 

scavenger of a variety of radical and non-radical reactants [37, 41]. Control of gene 

expression by melatonin was initially suggested by Menendez-Pelaez et al. [42, 43]. 

Thereafter, the regulation of expression of several genes related to antioxidative enzymes 

was reported [24, 44-58]. Herein, the literature related to the regulation of enzyme activity 

and gene expression of antioxidant enzymes by melatonin is reviewed.  
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REGULATION OF ANTIOXIDANT ENZYMES BY MELATONIN 

Regulation under basal oxidative stress and conditions 

Reports documenting the influence of melatonin on antioxidant enzyme activity were first 

published in the mid–1990s [59, 60]. These papers described the amplification of GSH-Px 

activity in the brain of rat and in several tissues of chicks after exogenously administered 

melatonin (500 g/kg) [36, 59, 60]. Thereafter, several groups showed that melatonin 

increases the activity of antioxidant enzymes in other tissues and models. Thus, Ozturk et al. 

[61] found increased SOD activity in rat liver after administration of 10 mg/kg of melatonin 

for 7 days, while Liu and Ng [62] reported enhancement of SOD activity in rat kidney, liver 

and brain after a single melatonin injection (5 mg/kg). 

Antioxidant enzyme activities exhibit endogenous rhythms under normal light:dark 

conditions. This is true both in terms of their activity and gene expression. These changes 

with time suggested that these cycles might be dependent on the circadian melatonin rhythm 

[63-65]. Abolition of endogenous the melatonin cycle by exposure of animals to constant 

light, in fact, also abolished the nighttime rise in antioxidative enzyme activity. This 

illustrates that changes in physiological levels of melatonin are adequate to alter the 

antioxidative defense system as reflected in the level of activities of antioxidative enzymes. 

Continuous exposure to light is known to abolish the nocturnal melatonin rise; this was 

associated with a reduction in the nighttime increase in GSH-Px and SOD activities in 

several tissues of chicks [64, 66]. These results were subsequently confirmed by others in 

rodents [67, 68]. Similarly, Baydas et al [69] reported that melatonin deficiency caused by 

pinealectomy reduced GSH-Px activity levels in several tissues of rats.  
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Melatonin administration during pregnancy has also been shown to stimulate antioxidant 

enzyme activity in the fetuses. Okatani et al. [70, 71] have reported this finding in both rats 

[70] and humans [71]. They initially showed that relatively high doses of melatonin (10 

mg/kg), administered to pregnant rats, caused incremental changes in the concentration of the 

indole in both maternal serum and fetal brain as early as 1 h after its administration. 

Concomitantly, GSH-Px and SOD activities were likewise increased in fetal brain. This 

indicates that melatonin may be potentially beneficial in the treatment of stressful conditions 

that involve free radical production such as fetal hypoxia and preeclampsia. Subsequently, 

they administered much lower doses of melatonin (100 g/kg bw) to pregnant woman before 

they underwent voluntary interruption of pregnancy and they found an increase in GSH-Px 

activity in chorionic homogenates with a peak 3 h after indole administration. This again 

supports the idea that melatonin may have potential usefulness as a fetal protector under 

conditions of elevated oxidative stress. 

Melatonin has also been shown to influence antioxidant enzyme gene expression. As first 

reported by Antolin et al. [24], melatonin causes incremental changes in mRNA levels for 

both CuZnSOD and MnSOD in the Harderian gland of female Syrian hamsters after its 

exogenous administration (500 g/kg). Increases in antioxidant enzyme gene expression 

following melatonin injections (50 and 500 g/kg) were later confirmed by the same group 

[52] in rat brain cortex. Finally, Mayo et al. [72] showed that mRNA levels for antioxidant 

enzymes were elevated in non-differentiated PC12 cells and the human neuroblastoma cells 

SK-N-SH after melatonin was added to the medium in which the cells were grown. These 

workers reported that the increases in CuZnSOD and gene expression were maximal at 24 

and 6 hours, respectively, following melatonin administration. This effect was induced with a 
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melatonin concentration of 10-9M, the physiological levels of this indole in nighttime serum; 

conversely, no effect was observed when higher doses of the indole were used. Regulation of 

antioxidant enzyme gene expression by melatonin is dependent on new protein synthesis, 

since use of an inhibitor of protein synthesis, i.e., cycloheximide, prevents mRNA increases 

after melatonin administration. The indole also reduced the half life of CuZnSOD and GSH-

Px while it did not affect that of MnSOD indicating that a larger amount of mRNA may be 

generated for GSH-Px and less mRNA for CuZnSOD. Finally, the presence of melatonin in 

the culture medium for 1 hour only is sufficient to increase mRNA for antioxidant enzymes 

24 h later, indicating a possible role for melatonin receptors in the regulation of antioxidant 

enzymes by this indole.  

Regulation under elevated oxidative stress conditions  

When cells are exposed to oxidative stress they increase the activity and expression of 

antioxidant enzymes as a compensatory mechanism to better protect them from the damage 

induced by free radicals. In many cases the number of free radicals generated may be so great 

that even the increased activity of the antioxidative enzymes are insufficient to counteract the 

potential damage. When antioxidant enzyme activities and/or gene expression were 

examined under highly elevated oxidative stress conditions, it was found that they are 

sometimes diminished; thus, it has been proposed that moderate levels of toxic reactants 

induce rises in antioxidant enzymes while very high levels of reactants reduce enzyme 

activities due to damage of the molecular machinery that is required to induce these enzymes 

[18, 73]. Melatonin has a lengthy history of beneficial actions. For example, almost two 

decades ago it was reported as a protector against glucocorticoid damage [74, 75], against 

some degenerative neurological conditions [76], as an anticancer agent [31, 77-79], and also 
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as an enhancer of immune function [32, 79]. Subsequently, the multiple antioxidant 

properties of melatonin were described [33, 34, 80, 81] and research on its protective effects 

against oxidative processes have now been identified under a very wide range of conditions 

in both experimental animals [82-84] and man [85, 86]. Some of the earliest studies 

documented the antioxidant properties of melatonin in the central nervous system [87], in the 

prevention of cataract formation [88], and in the reduction in the severity of colitis [89]. At 

roughly the same time, Pablos et al. [60] described the regulation of antioxidant enzyme 

activities by melatonin; this was quickly followed by studies confirming the original findings 

and extending the observations of melatonin’s influence on gene expression for antioxidative 

enzymes. 

Antioxidant enzyme regulation by melatonin has been shown to occur concomitant with 

its protection against elevated oxidative stress in numerous experimental situations. In the 

first report to document this correlation it was shown that melatonin increased GSH-Px 

activity and simultaneously reduced free radical damage to the brain and liver of rats treated 

with lipopolysaccharide (LPS) [90]. In this study, LPS increased total glutathione (tGSH) 

levels as well as oxidized glutathione (GSSG) concentrations while reducing the activity of 

GSH-Px. Melatonin (4mg/kg) given to LPS-treated rats enhanced tGSH above basal levels 

and lowered GSSG concentrations while stimulating the activity of GSH-Px. This indicated 

that melatonin may act on several points in the antioxidant defense system, not exclusively 

on GSH-Px. Subsequently, Antolin et al. [24] reported rises in both CuZn and MnSOD gene 

expression in the Harderian gland after melatonin (500 g /kg) was administered to female 

hamsters. The female hamster Harderian gland is in continual jeopardy of experiencing 

oxidative stress which causes cell damage due to the extremely high content of porphyrins in 
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this organ. The administration of melatonin lowered porphyrin synthesis and cell damage in 

this extraorbital tissue and increased gene expression for both isoforms of SOD. In a number 

of subsequent studies, the activities of both GSH-Px and the SOD were repeatedly shown to 

be regulated by melatonin with these changes being concurrent with the ability of the indole 

to reduce oxidative damage.  

Multiple reports on neural protection by melatonin via its antioxidant properties have 

appeared subsequent to the initial reports of this action [81, 90, 91]. In several experiments, 

antioxidant enzyme activity as well as expression was studied. Mayo et al. [25] found that in 

an experimental model of Parkinson disease in which dopaminergic PC12 cells were treated 

with the neurotoxin 6-hydroxydopamine (6-OHDA), low doses of melatonin (10-7M) 

provided protection against apoptotic death induced by the neurotoxin. In this study, 

melatonin also prevented the reduction in gene expression for three antioxidant enzymes, 

GSH-Px, CuZnSOD and MnSOD, which followed 6-OHDA treatments. In vivo experiments 

have provided results consistent with the in vitro findings. When rodents (rats and mice) 

were treated with either beta-amyloid peptide 25-35 [92] or with D-galactose [93] both of 

which cause oxidative damage to the brain, melatonin at doses ranging from 0.1-10 mg/kg 

restored both SOD and GSH-Px activities. Naidu et al. [94] reported reversal of haloperidol-

induced decreases in brain SOD and catalase activities by 1-5 mg/kg melatonin. Melatonin 

(10 mg/kg or 2 g/ml in drinking water, respectively) also has been shown to be protective 

against oxidative stress in both fetal [95] and aging brain of rodents [96], with these 

beneficial effects being associated with increased GSH-Px activity.  

In addition to the brain, antioxidant enzyme activity regulation by melatonin has been 

shown to be involved in the protection against oxidative damage in other tissues. Restoration 
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or even augmentation of antioxidant enzyme activity by melatonin has been shown to be 

associated with prevention of free radical damage induced by several toxins [97-99]. For 

example, intestinal and gastric damage following ischemia-reperfusion or drug 

administration [100-103], multiple organ damage resulting from therapeutic and non-

therapeutic chemotherapeutic agents [104-110], ultraviolet damage to tissues [111], free 

radical damage in experimental diabetes [112, 113], as well as chemio- and radiotherapy 

lesions [114-115] are reduced by melatonin. Finally, it has been recently shown that 

melatonin may retard aging of the senescence-accelerated mouse with this being associated 

with augmented antioxidant enzyme activity [96].  

INTRACELLULAR PATHWAYS INVOLVED IN ANTIOXIDANT ENZYME 

REGULATION BY MELATONIN 

Mayo et al. [72] provided an insight into the mechanisms by which melatonin regulates 

antioxidant enzyme gene expression using cultured dopaminergic cells. They found that 

melatonin induced synthesis of new protein as a condition for regulation of gene expression 

of all the three antioxidative enzymes, CuZnSOD, MnSOD and GSH-Px. Melatonin also 

diminished the half-life of mRNAs coding for both CuZnSOD and GSH-Px, without altering 

that of MnSOD in this study. This indicates that, in the case of the two former enzymes, 

melatonin in the medium probably induced more abundant levels of mRNAs with shorter 

half-lives. Finally, nanomolar concentrations of melatonin were adequate to induce 

antioxidant gene expression with a one-hour exposure to melatonin being adequate to sustain 

elevated mRNA levels 24 hours later. As noted above, this points to the likelihood of 

receptors being involved in antioxidant enzyme gene expression. 
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The mechanisms involved in the regulation of antioxidant enzymes by melatonin in vivo 

have not precisely determined. It is known, however, that stimulation of antioxidant enzyme 

gene expression occurs at nanomolar concentrations of melatonin in cultured cells [72]; these 

melatonin levels are equivalent to the serum concentration of melatonin at its nocturnal peak 

in vivo. The quantities of melatonin used in most of the in vivo experiments, however, very 

likely caused circulating levels to exceed physiological concentrations. Thus, melatonin in 

these studies may have functioned as a direct radical scavenger thereby changing the redox 

state of cells, which in turn may have altered the specific activity of these enzymes or their 

level of translation [116]. Only twice, as far as could be determined, has gene expression for 

antioxidative enzymes under the influence of melatonin been analyzed in in vivo experiments 

[24, 52] and, surprisingly, changes in enzyme activities after melatonin treatment has not 

been examined in cell culture experiments. 

Kotler et al. [52] found that after chronic administration of melatonin (50 and 500 g/kg) 

to rats, the lower dose clearly had a greater stimulatory effect on antioxidant enzyme gene 

expression than did the 500 g/kg dose. Antolin et al. [117] reported melatonin protection 

against in vivo neurotoxicity of MPTP using 500 g/kg melatonin (the presumed equivalent 

melatonin used to induce nanomolar concentrations in serum may be roughly 25-50 g/kg). 

The work of Barlow-Walden et al. [59] using 500 g/kg and Kotler et al. [52] using 50 and 

500 g/kg, indicate that antioxidant enzyme activity and expression, respectively, are 

elevated after the administration of melatonin peripherally. 

What intracellular molecular pathways are involved in the regulation of antioxidant 

enzyme gene expression and/or activity by melatonin is presently unknown. A membrane G-

protein-coupled melatonin receptor MT1 was cloned and characterized by Ebisawa et al. 
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[118]. Subsequently, MT2 and Mel 1c receptors have also been identified, the former mainly 

differing from MT1 in terms of the tissues in which it is expressed, while Mel 1c is not found 

in mammals [119]. Melatonin also has been tentatively shown to activate a nuclear orphan 

receptor belonging to the retinoid Z receptor  and  (RZR  and ), family. Melatonin’s 

action on ROR receptor represses the expression of the 5-lipoxygenase gene [35] and 

inhibits growth of the breast cancer MCF-7 cells [120]. The results from Mayo et al. [72] 

suggest that melatonin regulation of antioxidant enzymes is receptor-mediated, thereby most 

likely implicating the MT1/MT2 receptors via second messengers such as cAMP, 

phospholipase C or intracellular calcium concentration, being involved. In addition, binding 

of melatonin to membrane receptors could stimulate MAP kinase cascades thereby activating 

several transcription factors [121]. The possibility exists that RZR/ROR receptors could also 

mediate melatonin effects on antioxidative enzymes as suggested by the results of Pablos et 

al [122]; if so, the pathways involved in their regulation obviously remain unknown. One 

possibility may relate to MT1/MT2 melatonin binding that, through second messengers and 

phosphorylation cascades, activates RZR/ROR as reported by Ram et al. [120]. Another 

possibility by which melatonin may regulate RZR/ROR receptors would be via modulation 

of the calcium/calmodulin signaling pathway, either by changing intracellular calcium 

concentrations by binding to MT1/MT2 receptors [123], or by direct binding to calmodulin 

[124]. The calcium/calmodulin signaling pathway has been reported to regulate 

transcriptional activity of RZR/ROR receptors via CaM kinases [125]. 

Antioxidant enzymes are known to be regulated by several factors which induce oxidative 

stress [12, 13, 19, 126]; these factors presumably activate oxidative stress-sensitive 

transcription factors. Also, transcriptional activation of antioxidant enzyme genes has been 
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reported after the treatment of cells with protective agents [29] where non-oxidative stress-

dependent transcription factors are involved. Melatonin has been shown to regulate the 

activation or repression of several transcription factors [55, 127-130], all of them present in 

the promoter region of the three-antioxidant enzymes reviewed herein. Thus, subsequent 

experiments should be undertaken in order to shed light on the intracellular pathways and 

transcription factors involved in the regulation of antioxidant enzyme gene expression and 

activity by melatonin. 
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FIGURE LEGENDS 

Figure 1.- Hypothetical pathways involved in melatonin regulation of antioxidant enzyme gene 

expression and activity. 1) Melatonin activation of MT1/2 receptors, vía G inhibitory protein 

(Gi), inhibits adenylate cyclase and reduces cyclic AMP (cAMP). This results in inhibition of 

protein kinase A (PKA) and cAMP response element binding protein/activation transcriptor 

factor (CREB-ATF). This pathway could modulate immediate early gene (IEG) transcription and 

consequently gene transcription regulation and antioxidant enzyme concentration. 2) MT1/2 

binding by melatonin activates the phospholipase C pathway. The consequent increase in Ca2+ 

concentration will phosphorylate protein-kinase C (PKC) which activates CREB/ATF thereby 

increasing the transcription of IEG. Indeed, PKC activates IEG. PKC activation may also 

activate NF kappa B (NFB) and other transcription factors (TF). Melatonin may also, in other 

systems, induce a Ca2+ decrease leading to inhibition of PKC. 3) MT1/2 activation may, through 

both inhibitory G (Gi) and other G proteins, activate several mitogen activated protein kinases, 

i.e., extracellular regulated kinase (ERK) and Jun N-terminal kinase (JNK), which regulate IEG 

activation and thereby gene transcription. 4) Melatonin may inhibit calcium-calmodulin (Ca-

CaM) complex by direct binding a lowered Ca2+ concentration mediated by MT1/2 receptors has 

been reported in some models. This would inhibit calmodulin-kinase (CaMK), which in turn may 

regulate NFB, the retinoid-related receptor (ROR) and other transcription factor activation, 

thereby influencing gene transcription. Ca2+-CaM inhibition may also regulate PKC. 5) 

Melatonin is a free radical scavenger. Although this effect is not receptor-mediated, we should 

not rule out the possible involvement of receptors the regulation of antioxidant enzymes. 

Changes in the cellular redox state towards a more reduced environment produces protein 

reduction which may lead to enzyme activation (a). Also this environment may induce 
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translational changes which would increase enzyme concentrations (b). Finally, a decrease of 

free radicals would allow repression of redox-sensitive transcription factors (i.e., NFB, AP-1) 

which would regulate gene transcription (c). Continuous lines indicate previously reported 

melatonin actions. Dashed lines indicate general cellular mechanisms previously known but not 

probed with melatonin. *These effects of melatonin have not been documented. 
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