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RESUMEN (en espafiol)

Esta tesis estudia cdmo obtener una accion efectiva para el dual holografico de lineas de
Wilson en teorias de campos no conformes y fuertemente acopladas y algunas aplicaciones del
mecanismo obtenido. Encontramos una accion efectiva para una cuerda dual a la linea de
Wilson usando el mecanismo de renormalizacion de Wilson donde integramos los grados de
libertad mas préximos a la frontera de geometrias que asintéticamente se aproximan a AdS. La
integracion proporciona una contribucién para la accién en el cutoff dependiente de coeficientes
que pueden ser determinados por una ecuacion del flujo del grupo de renormalizacion.

Empleamos esta técnica para estudiar observables fenomenolégicos como el potencial quark-
antiguark y proporcionamos dos tipos de ejemplos: Teorias en 3+1 dimensiones con un RG
flow que acaba en un punto fijo en el infrarrojo y en las teorias confinantes de Witten QCD y el
modelo de Klebanov-Strassler. También aplicamos este formalismo para calcular las fuerzas
que experimenta un quark moviéndose en un plasma de quark-gluones, que modelamos con
una cuerda moviendose en una geometria en una brana negra.

Finalmente estudiamos como afecta este formalismo a la invarianza bajo reparametrizaciones
de los Wilson Loops, también conocida como simetria 'zig-zag'. Probamos que las
reparametrizaciones de los Wilson loops pueden ser identificadas con transformaciones
conformes en la hoja de mundo de la cuerda. La integracién se lleva a cabo hasta un punto de
corte en la direccién holografica que puede estar asociado a la geometria de fondo o a la hoja
de mundo. Cuando empleamos el primero rompemos la simetria bajo difeomorfismos y
transformaciones de Weyl de la hoja de mundo, pero conservamos transformaciones
conformes, sin embargo el segundo método rompe la invarianza conforme e induce una accion
de defecto en la escala del punto de corte.

RESUMEN (en Inglés)

This thesis studies how to obtain an effective theory for the holographic dual of Wilson lines in
strongly coupled non-conformal field theories and some applications of this mechanism. An
effective action is found for a string dual to the Wilson line using the Wilsonian renormalization
scheme where we integrate out the degrees of freedom that are close to the boundary in
asymptotically AdS spaces. This integration results in a contribution to the action at the cutoff
that depends on coefficients that are determined by an RG flow equation.

We use this technique to study some phenomenological observables such as the quark-
antiquark potential and provide two kinds of examples: 3+1 dimensional theories with an RG
Flow that ends in an IR fixed point and confining theories, specifically Witten QCD and
Klebanov-Strassler models. We also apply this formalism to compute the forces a quark
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experiences when moving through a quark-gluon plasma, modeled by a string moving in a black
brane geometry.

We finally study how does this affect the reparametrization invariance of Wilson loops, also
known as 'zig-zag' symmetry. We show that Wilson loop reparametrizations can be mapped to
conformal transformations of the string worldsheet. The integration is done up to a cutoff in the
holographic direction that can be anchored to either the background geometry or the
worldsheet. When we perform the former, we break worldsheet diffeomorphisms and Weyl
invariance, but we preserve conformal transformations, however the latter breaks conformal
invariance and induces a defect action at the cutoff scale.

SR. PRESIDENTE DE LA COMISION ACADEMICA DEL PROGRAMA DE DOCTORADO
EN MATERIALES



Abstract

Esta tesis estudia como obtener una accién efectiva para el dual holografico de lineas de Wilson
en teorias de campos no conformes y fuertemente acopladas y algunas aplicaciones del mecanismo
obtenido. Encontramos una accién efectiva para una cuerda dual a la linea de Wilson usando el
mecanismo de renormalizaciéon de Wilson donde integramos los grados de libertad mas préximos a
la frontera de geometrias que asintéticamente se aproximan a AdS. La integracién proporciona una
contribucién para la accién en el cutoff dependiente de coeficientes que pueden ser determinados
por una ecuacién del flujo del grupo de renormalizacién.

Empleamos esta técnica para estudiar observables fenomenolégicos como el potencial quark-
antiquark y proporcionamos dos tipos de ejemplos: Teorias en 3+1 dimensiones con un RG flow
que acaba en un punto fijo en el infrarrojo y en las teorias confinantes de Witten QCD y el modelo de
Klebanov-Strassler. También aplicamos este formalismo para calcular las fuerzas que experimenta
un quark moviéndose en un plasma de quark-gluones, que modelamos con una cuerda moviendose
en la geometria de una brana negra.

Finalmente estudiamos como afecta este formalismo a la invarianza bajo reparametrizaciones de
los Wilson Loops, también conocida como simetria 'zig-zag’. Probamos que las reparametrizaciones
de los Wilson loops pueden ser identificadas con transformaciones conformes en la hoja de mundo
de la cuerda. La integracién se lleva a cabo hasta un punto de corte en la direccién holografica
que puede estar asociado a la geometria de fondo o a la hoja de mundo. Cuando empleamos el
primero rompemos la simetria bajo difeomorfismos y transformaciones de Weyl de la hoja de mundo,
pero conservamos transformaciones conformes, sin embargo el segundo método rompe la invarianza

conforme e induce una accién de defecto en la escala del punto de corte.



Abstract

This thesis studies how to obtain an effective theory for the holographic dual of Wilson lines in
strongly coupled non-conformal field theories and some applications of this mechanism. An effective
action is found for a string dual to the Wilson line using the Wilsonian renormalization scheme where
we integrate out the degrees of freedom that are close to the boundary in asymptotically AdS spaces.
This integration results in a contribution to the action at the cutoff that depends on coefficients
that are determined by an RG flow equation.

We use this technique to study some phenomenological observables such as the gg potential
and provide two kinds of examples: 3+1 dimensional theories with an RG Flow that ends in an IR
fixed point and confining theories, specifically Witten QCD and Klebanov-Strassler models. We also
apply this formalism to compute the forces a quark experiences when moving through a quark-gluon
plasma, modeled by a string moving in a black brane geometry.

We finally study how does this affect the reparametrization invariance of Wilson loops, also
known as ’zig-zag’ symmetry. We show that Wilson loop reparametrizations can be mapped to
conformal transformations of the string worldsheet. The integration is done up to a cutoff in the
holographic direction that can be anchored to either the background geometry or the worldsheet.
When we perform the former we break worldsheet diffeomorphisms and Weyl invariance, but we
preserve conformal transformations, however the latter breaks conformal invariance and induces a

defect action at the cutoff scale.
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Chapter 1

Motivation

1.1 Quantum Cromodynamics

The Standard model is, up to date, the most precise model we have in physics to describe the
behaviour of the Universe. In this description, the fundamental interactions of nature are governed
by the electroweak and strong forces, governed by symmetry groups SU(2); x U(1) and SU(3)
respectively. The theory describing the latter is known as Quantum Chromodynamics (QCD) and
it is described by the Lagrangian:

Ny
1 a a —
L= _EGHVGIW + Z qr(iv"' D, — my)qy (1.1)
f=1

Where gy are quark fields, Aj, the gluon fields, Gy, is the QCD field strength tensor and D,
the covariant derivative. The coupling strength appears at the field strength and the covariant
derivative. The quarks are also charged under the SU(2) x U(1), and they have 6 distinct flavours.
The quarks masses are acquired through the Higgs mechanism in the electroweak sector, with the
3 flavours (up, down and strange) being relatively light and the other 3 (charm, bottom and top)
heavier. If we approximate the first three as massless and the remaining ones as infinitely massive

as in the review [1], we get a running coupling

1672

20 .2\ __
g0) bolog(q?/Aep)

(1.2)

Where Agcp depends on the renormalization scheme, and takes the value ~ 200MeV in the
Modified Minimal Substraction. This simplified computation provides us with an insight of the
behaviour of QCD at different scales, as it features a dependence with the dimensionful parameter
Agcep. At low energies, we see that the theory is strongly coupled, giving rise to the characteristic
confinement of QCD (we do not find isolated quarks in nature) and it becomes weakly coupled at
high energies (asymptotic freedom).

This behaviour generates a very rich phase diagram that we have not been able to determine

either theoretically or via experiments. Experimentally, a quark-gluon plasma is produced at RHIC



and CERN (see for example [2]), and some information can be inferred from observations of neutron
stars. Theoretically, we can use perturbation theory at high energies (or temperatures), and lattice
computations are useful when the configuration has zero chemical potential regardless of the tem-

perature. However, regions of both finite temperature and chemical potential remain unexplored.

T
A (w) QGP
LHC
RHIC
(s)QGP
gas lig CFL
—— - >

nuclear neutron star l,l
superfluid

Figure 1.1: QCD phase diagram. Extracted from: [1]

A useful probe into the properties of this phase diagram are Wilson lines, which are operators

that take this form in the fundamental representation:
1 . .
W(C) = NTrP (e’ fe dT(zMA“) (1.3)

This operator is analogous to an infinitely massive particle in the fundamental representation moving
along a trajectory determined by C, where A, are the gauge fields.

These operators are able to show us different properties of the interactions in QCD that we can
match with experimental data. One such configuration is that of an infinite rectangle in the time
direction, that can be thought of as 2 static particles separated by a distance L.

From this operator we can extract the potential between two quarks
Vaq o< log((W)) (1.4)

which in turn is a good predictor of IR confinement as we expect confining theories to have a
potential that grows linearly with the distance.

Wilson lines can also be useful to estimate how the energy of a heavy particle is dissipated when
moving through a medium. A state of quark-gluon plasma has been generated in LHCb and RHIC
by colliding two heavy nuclei (Au-Au and Pb-Pb). At the beginning of this process some on shell



partons (quarks and gluons) can be produced, which then travel through the plasma generated
afterwards. As per usual, quarks and gluons cannot be seen isolated in nature, and after they are
produced they usually decay into a shower of particles that move at high speeds known as jets. Due
to conservation of momentum, jets are produced in pairs that carry the same amount of energy.
However, if these partons are produced somewhere inside the plasma, one of them will have to travel
through it for a longer distance and some of its energy will be lost in the process. This difference

in energy can be measured through the nuclear modification factor
onn d*Naa/dprdn

Raa = 1.5
4 {(Nbin) dQUpp/dedn (1.5)

which can then be used to characterize the properties of the plasma. In this expression (Np;,) is
the average number of binary nucleon-nucleon collisions and ¢ are the cross section for the nucleon-
nucleon collision and proton-proton collision. N4 is the yield in nucleus-nucleus collisions . pr

and 7 are the transverse momentum and the pseudorapidity.

1.2 Holography

Holography first appeared in the late 90’s in [3, 4] as a derivation from string theory, proposing
a duality between N' = 4 Super Yang Mills theory in 4 dimensions and type II B supergravity in
AdS5 x Ss. This concept was then extended to dualities between more general Quantum Field
Theories (QFTs) being associated to different geometries with a boundary, where the gravity the-
ory has one more dimension than the QFT we are dualising. This suggests a possibility: Could
holography be used to make predictions in QCD if we find an appropriate dual geometry? The
proposal is indeed interesting, as generating thermal states in the dual gravity theory can be done
by introducing a black hole in the bulk of the geometry. The holographic dictionary then states
that the temperature and entropy of the black hole are related to those of the field theory thermal
bath, while the charge of the black hole is dual to the chemical potential, therefore allowing us to
probe into different sections of the phase diagram.

There are, of course, complications to this approach, of which maybe the most clear one is that
we have not found a gravity dual to QCD, hence all of the predictions that come out of holography
can be, for the most part, qualitative in nature. In this direction, some theories such as Witten
QCD and the Klebanov Strassler model [5, 6] have been able to produce theories that present
confinement, and recent work by [7] has found a fully backreacted gravity dual to a thermodynamic
bath with baryons in 2+1 dimensions. Good predictions have also been made about a universal
contribution at large 't Hooft coupling to the shear viscosity [8, 9, 10].

One of the possible interpretations of the AdS — CFT duality is that the extra dimension in
the gravity side is analogous to an energy scale, where the deeper you go in the bulk, the lower the
energy scale of the process is. This is interesting, as some of the properties we are interested in are
highly dependent on the deep bulk properties of the theory [11]. On the field theory side, this way

of looking only at the low energy interactions can remind us of the concept of an RG flow, which



will be the main focus of this thesis. We expect these results to be useful in hybrid models, allowing
us to ignore the UV details of the geometry but still making it possible to generate predictions.
The thesis will then follow this structure: Chapter 2 will be a review of the tools existing in the
literature that will allow us to tackle this problem. In chapter 3 we will present the results of this
thesis: a mechanism to generate an effective action and different applications to it. Chapters 4, 5

and 6 include the articles that compose this thesis and chapter 7 provides the conclusions.



Chapter 2

Renormalization and Wilson lines

in holography

2.1 Wilson RG Flow

Wilson renormalization starts from a theory which we will consider valid up to a certain cutoff
Ag. For the sake of simplicity, we will focus on a theory with one scalar field with a renormalized
partition function:
7 — / H d(;seifddﬂ?((a@z-i—zgi(Ao)Oi) (2.1)
llpll<Ao
Using a Fourier transformation, we can split these fields into high and low energy modes with

respect to a certain scale A:
o) = [ S+ [ S = ou(o) + ala) (22)
Ao>|pl|>A llpll<A
Inserting this into (2.1), we can write the partition function as:

Z = /Hdqud¢leifdd’”(£l+LH+Lm‘) (2.3)

Where the high energy modes of the field are then considered as heavy fields and then integrated
out of the action. At tree level, this amounts to solving the equations of motion for the heavy fields
and substituting them in the original action, while loop computations can be achieved with several
approaches (see for example [12]) . The result will then be a theory valid up to the energy scale A

containing new couplings that depend on the cutoff.
/Hd¢lei(so+5w) - /Hd¢l6i Jd?2((941)%+9:(1)0) (2.4)

Where Sy takes the form of [ £; and the operators O arise from the integration of the heavy modes

with modified couplings g;. The 3 functions that determine the running of the couplings are:

_ 9gi
Bi = Aa (2.5)



2.2 AdS — CFT and Holographic renormalization

The AdS — CFT correspondence [13] states that the generating functional of the field theory is

related to the supergravity action by:
W[(I)O] = SSUGRA| lirr}) 2AB D) P(z,2)=P () (26)

Where ®y(z) is the source field of an operator in the field theory, A is the conformal dimension of
the operator and A is a function that relates A, the dimensions of the theory d and the asymp-
totic behaviour of the field near the boundary in AdS. This relation is obtained by matching the
representations of the superconformal algebra to the mode expansion in the internal space in the
supergravity side. For example, chiral primary 1/2 BPS operators O are sourced by scalar fields
in AdS that behave asymptotically as ¢(z, 2) = 2472 ¢o(z), where we are using the Poincaré patch
in AdS and z is the holographic coordinate. The boundary of AdS is at z — 0.

The process of computing correlation functions in the conformal theory can be done by finding
a classical solution of a field with appropriate boundary conditions in AdS and then computing the
variation of the on-shell partition function with respect to the boundary field. This computation is
usually divergent, but can be regularized by adding some counterterms to the action.

We then find that in order to compute correlation functions, our partition function looks like:

7 = ei(SsUGRA-‘rSct) (27)

Wilson renormalization can then be implemented in this holographic setup in quite an intuitive
way. We start by proposing that the boundary theory with a cutoff Ag can be identified with a
bulk geometry that extends up to a cutoff in the holographic direction z = z,,. The equivalent of
performing a Wilson renormalization up to a new cutoff A’ is to integrate out the geometry up to a
new 2(,) < za,- This results in a boundary term Sp. Notice that due to regularization requirements,
the original action in the bulk had already a boundary term, and the process of integrating out
gives out a similar bulk theory but with a new boundary and new boundary conditions. This new
boundary term can be interpreted as the Wilsonian action we described above.

The new boundary conditions are obtained by demanding the total action to be independent
from the cutoff, which leads to a group of equations over the couplings that are interpreted as the

RG flow equations.

2.3 Wilson loops in holography

When we work in the AdS — CFT duality, we can define 1/2 BPS Wilson lines in SYM that
preserve some of the symmetries of the theory. In order to get an infinitely massive particle in the
fundamental representation, we start from a configuration of N 4+ 1 D3 branes and we take one of
them an infinite distance away. The N remaining branes generate the expected AdSs X S5 geometry,
and the original SU(N + 1) symmetry is broken to SU(N) x U(1). The separated brane is then
situated in the boundary of AdS and strings can hang from it to the other D3 branes. From a field

theory perspective, what is seen is an infinitely massive particle that generates a Wilson loop [14]



1 , " )
WBPS(C) — NTI,P (el fc dT(ﬂC Au"l‘ll“aI@I)) , 62 — 1 (28)

In the gravity side what is seen is a string that follows the Wilson line trajectory at the boundary
and propagates into the interior of the bulk. In the large N limit, the expectation value reduces to

the on-shell action of a Nambu-Goto string:

(W(C)) = e~ Son™ et (2.9)

This interpretation can be extended to other geometries, where we just let a Nambu-Goto string

propagate on the bulk, and we compute its action to obtain the expectation value in the dual theory.

When we set two parallel Wilson lines in order to compute the potential between quarks our

string hangs from one of the lines at the boundary, reaching a tipping point in the IR where it turns
towards the other line as indicated in the figure:

As we are focusing on geometries that present some sort of RG-flow, the holographic dual can

have a general metric:
ds?o = A0, 7)dr? + X(0, )0, detde” + dM? (2.10)

Where A and X are warping factors that depend on the radial and internal space Mj coordinates.

We will focus on metrics that can be put in a domain wall form where the boundary is at r — oo:

dr? .
dsty = % + 2y, dat dz” + dM3 (2.11)

If we identify the metric coordinates r, ¢ with the string coordinates o, 7 respectively, the
Nambu-Goto action is given by:

___ b e’ ,

B is the time extension of the rectangular Wilson loop, and it is taken to 8 — oo. It is immediate
to see that there is a conserved quantity in the action that allows us to compute the equation of

motion for the embedding:

_ 5SNG B / €_3A

T Ty T ot T T _p\/f /1 — e—44p2

Which can be related to the lowest point in the string profile, as the square root should vanish

(2.13)

in order to make =’ — co.
Using (1.4) and (2.9) we can identify the on-shell Nambu-Goto action of the string with the
potential between quarks. Taking into account that the separation L between quarks varies when

we modify the boundary value of z, we can now find the force between quarks as:

§Vyg 0SNG 1
x = = = 2.14
7 oL 0T (o0) 27ra’p ( )

Where () is the position of the string at the boundary and the distance between quarks can be

obtained by integrating =’ in (2.13).



Chapter 3

Results

In the thesis we analyze the properties of Wilson loops duals in effective field theories through
Wilsonian renormalization. As seen in the introduction, the classical string profile needs knowledge
of the full geometry. For large separations, however, we expect the profile of the string to be mostly
below some finite value of a certain cutoff r(,), where as in section 2.2 we use the subindex (u) to
identify the coordinate where we introduce the cutoff. In the regions close to the boundary (which
are analogous to high energies in the field theory) quarks should not feel each other and the profile
of the string should be that of a single isolated quark, not deviating much from a straight line
configuration. This profile should persist into the interior until far below the cutoff, where it starts
turning parallel to the boundary to meet the other end of the string. This allows us to divide the

string in the following way:
SStTing:S;t'r'ing—’—S]f]G:SI?/'GJ'_SCJ?—’—SE'G (31)

S>

string

and a counterterm that renormalizes the action S, ;.. As the string does not deviate a lot from the

is the action of the string above the cutoff, and it includes the Nambu-Goto action Sz

straight profile we can expand the action to quadratic order in ' and write that contribution to

the action (including counterterms) as:

> ___B 2
Sstring - 2ral |:M(l‘) + QG(H) x(/»“) (32)
Where
T(A) A
M) = lim do=— — Alrw) (3.3)
T — 00
(A) T(w)
oo —3A
c (3.4)

a = e

(r) - \/T
The on-shell action should be stationary for small perturbations in the profile that do not modify
the boundary conditions. Imposing this at the cutoff fixes the conjugate momentum for the solution

below the cutoff value:

L ()
p=—" (3.5)
()

10



Figure 3.1: Profile of a string dual to a ¢q pair separated a distance £ (blue line). The vertical
direction corresponds to the holographic radial coordinate, with the asymptotic boundary (UV) at
the top. A cutoff is introduced at an IR scale (horizontal red line) and degrees of freedom above
the cutoff are integrated out. The separation in the field theory directions between the endpoint of

the string at the boundary and at the cutoff is denoted by dz, it corresponds to z(,) in the text.

And if we regard r(,) as an RG scale, the RG-flow equations of the parameters M(,) and a,)

are given by:
6_3‘4(#) eA(u)
M,=-° " (3.6)

Orc Oy = ——F==—=, O = .
() ) \/m (ot \/ﬂ
The coefficients cannot be determined from the IR theory, we need to match them with a UV

theory or making a fit measuring the force at a separation L since the conditions at the cutoff imply

that:
T(w) e_SA

2A(0)

L
p=e Ty = 0y 5 = L) +P 3.7
(r) (W) 5 (w) o VT — e—4Ap2 (3.7)

3.1 Effective field theory potentials

3.1.1 IR fixed point

We will first study a theory with an IR fixed point that flows towards a UV CFT through an

irrelevant operator of conformal dimension A. In this case the force between quarks is given by:

R? ¢ 2ag [ coR 3 2aa_q [ coR AA=d) 3
r = — 1 b e 9 A - d o 38
2 2mo! L2 +00(L)+ co (L) 7£2 (3.8)
or s X
R2 Cg 2&0 C()R 2043/2 C()R C(z).R2 3
z = — [1+— — — | 1 , A—d=—, )
Tl L (L> T, \) e pOL2) 2 (3:9)

11



The coefficients are given by:

2/l (2 2 9 2
CO — W’ a’O — QG(H) _ 56*37”(“)/]% (1 _ a€2(Ad)(T(M)T(“))/R) ,

F(Z 42(A—-d)—3
aA_g = &26—2(A—d)r(M)/R (A — d)\/ﬂ“ (% — %)
- 2 2r (3 — 859) '
1 2 (3.10)

)

2
do = 2a,) — %e—%wm (1 - 9Z6—3(T<M>—T<u>)/ﬂ‘/T(}§))

3a?
Q32 = == e ODIR - py = 2725,

Where a(,, is defined as in (3.4), R is the AdS radius of the space corresponding to the IR fixed
point and r(5s) denotes the point where the geometry deviates significantly from AdS. The first
term in both expressions is determined by the conformal length-dependence of the IR CFT, and
the last one is given by the contribution from the irrelevant operator that deforms the CFT. The
second term is a bit less intuitive, it appears as a consequence of adding the boundary action in the
effective field theory. From a defect theory perspective, this introduces a double-trace deformation
on the string. The operator producing this double trace deformation can be identified with the
electric field strength in the x direction E,. When we are close to the IR fixed point, conformal
invariance fixes the contribution of this deformation to the potential as.

Cp2
L4

AV,g o cpe (E2) ~ (3.11)

3.1.2 Confining theories

We also applied this method to top-down confining gravity duals, namely Witten QCD and the
Klevanov-Strassler model. As stated in [11], field theories are confining if the dual geometry ends
at some point in the IR (we look for a collapsing cycle deep into the bulk). For both of these
geometries we find a cycle that collapses, and the string becomes almost paralell to the field theory
directions near the end of the geometry as long as L is large enough.

The WQCD model can be written as in (2.11) with coefficients

2

. r \6 TMI
6214(7):(@) , fr)=1- <T1)2 : (3.12)

and we find that the force between quarks is given by:
Fo =05 (L+que M), (3.13)

where the string tension and the coefficient of the exponential term are

Py _ 2

— = 2 = _Lf —ao/ca
Os Y 27#)\)/]\4]\4'7 qm 6\/56 2vie . (314)

The coefficient ¢y = % (T‘tR) ) only depends on the characteristics of the geometry (R is the curvature
m

8
radius and 7,7y is the lowest point of the geometry), and ag = 2a(,) — (;L(R)) .
"
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The KS model has the metric of a deformed conifold, and has a collapsing cycle in its internal

manifold. Near the end of the geometry, the metric can be written in the ansatz (2.11) with:
XA = pm V2723 f(r) = 6hT Y2 (73 (K (e %)), (3.15)

Where the functions h and k are given near the limit where the geometry collapses by:

K(r) ~ (;)1/3 (1 - I;) h(r) = (;)Uga (izM - 762) , (3.16)

The force computation can be written as in (3.13) with coefficients:

31/6A il —ap/c
= 22;12, = o VM2, gy = ?Me /o, (3.17)

Os

In this case, the glueball mass scale is defined as:

—-2/3 1 2/3
M= = L (3.18)
CoPm (12)1/6hM gcha

The first contribution to the force is the expected one for confining theories. The exponential
correction can be interpreted if we look at the string as a flux tube in the IR with sources at the
points where the string curves towards the boundary. This allows us to identify that contribution
to the force with an internal massive mode corresponding to excitations of the string along the

holographic direction.

3.2 Quark moving through plasma

The holographic dual of a strongly coupled plasma in 3+1 dimensions is realized by a 5 dimen-
sional geometry with an event horizon that extends along 4 dimensions, hence we will work with a

background metric of the form
ds® = GyndaMda™ = G, (2)dz* + Gy (2)dt? + Gy (2)dijda’ da? (3.19)

We will pick our coordinates so that there is a horizon characterized by G (zn,) = 0 with the
boundary located at z — oo
Our quark will be modelled by a NG string and we will only consider movement in one direction
on the field theory.
We can consider both a static trajectory in the boundary with small perturbations or a high
speed moving quark. In both cases the lagrangian can be expanded to second order as:
Lyg = Lo(v) + Li.(v)X' — Ly (v) X —

%gv(z) (X)2 n % Ful2) (X)? (3.20)

Where v is the velocity of the quark moving through the plasma (we will supress the subindex
from now on), the first order terms are total derivatives so they do not contribute to the equations

of motion for the fluctuations. The two Lq; coefficients are also linear in v, which means they vanish

13



Figure 3.2: The holographic dual of a heavy quark moving at speed v is a string (red curve) ending at the
asymptotic boundary at the position of the quark (black dot). The strings extends from the asymptotic
boundary at the top to the black brane horizon at the bottom of the figure. A cutoff (dashed blue line)
is introduced and the shaded region between the boundary and the cutoff is “integrated out”. One is left
with the string in the region between the cutoff and the horizon and determined boundary conditions for
the endpoint of the string at the cutoff (blue dot).

for a slow moving quark that is perturbed around a rest frame. The equations of motion can be

written in general as:
(fX') —gX =o0. (3.21)
With

-1/2 (Gtth:c - p%)3/2

(IGu| — Guwv?)?
(3.22)

These solutions can be found by expanding the profile of the string to the order in time derivatives,

12 (G| G — p3)'

9(2) = (|G| GGz )
()= (GulGuuor) 2 222100,

f(Z) = (|Gtt|Gzszz)

the first orders are given by

Z du

XOt,2) = 2(t) + pO(t)a(z), XV(t,2) =pP(D)a(z), alz)= ) (3.23)
0
XM(t,2) = p™ (t)a(z) + / du dvg(v) X™=2(t,v). (3.24)
0 f(u) Z(“)
p(™) (t) are integration constants fixed by the boundary conditions:
X(t,z=0)=2(t), 0.X S (p<0>(t) +p () +p(t) + - ) =P (395
=20 S (Zw) flzn)

The force can be determined from these solutions. When we work with a fast moving quark,

the linear terms in the Lagrangian add a contribution:

FU = —Tupo. (3.26)

x
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Where we Ts = 1/(2ma/) is the tension string. The force due to perturbations can be computed in

both cases with the coefficients f and g from the quadratic terms in the expansion.
F(t) =p+ #A(0) + pB(0) + O(9}z, d;'p). (3.27)

Where we have defined the functions

10 =3 [ (o0 -35) 5= [ gt (329

Z()

Once the general theory parameters are defined, we can apply the effective field formalism
described previously. The action above the cutoff can be expressed as:
S, T, / dt | M, Lk i
=1 L) T o VT — 5
uv (W)~ 5% W) 2a,)
(3.29)

Where we have defined the coefficients as

R2 1 Z(w) N 1 2w
My = —, Ky = A0), agy = alz), M) = —5— dvg(v)a(v)®, ke = / dvg(v)a(v).
&) iy Jo Ay Jo
(3.30)
with RG flow equations:
R2
8Z(M)M(M) N
(1)
Oz Ky = —9(z ()
P _ 1
20 Ww) = FGo) (3.31)
2 m( )
. My = — Bt g(zw),
) ") FGa) ag (w)
1 I<L( )
8,2 K = - 4 + g(z )
W F o) agy
The force can then be expressed in terms of these coeflicients:
1 .. ..
F(t) =~ m(xw =)+ (M) — K50 E ) + Ky = My + 262))% + 002, 0/wy).  (3.32)
n

This formalism can be applied to a theory with an IR fixed point. In this case the physics are
dominated by the IR conformal theory and we can approximate the holographic dual by an AdSs
black brane.

R? R? R? 2
G (z) o h(z), G..(2) ha) Gua 2 h(z) p (3.33)

Then for the slow moving quark the force is given by:

5 3
F(t) = 23 F (andh)a + O(0k). (3.34)

V4
hoj=1
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With coefficients

P=—t =,
A ()
Iy = Ky + Ky + R + K + Ha(uy)), (3.35)
o

~ ~ S3 —~ —~ —~ Py
Fy = (M) — K1+ i () (2R ) — agy) — (e (uquy) + 2a()) Ha(u(u)) + Hs(u)-
n

Where ¢;(u(,)) = —tlog(1 — u‘(lﬂ)) and the other coefficients can be written as a function of the
cutoff:
. 1 1+, 1 _ 1 _ _
Q) = 1 log 1_71;;3 - gtan ! Uy = 5 (tanh ! U(y) — tan ! ’LL(M)) +apv,
~ 1
Ko =~ —w + Kuv,

Ty
~ 1 ag 1 “1/2 KUV
Ry =——+ ——+ —tanh™ (ug,) + =—,

o U(p) 2 2a,,) W77 g
1
HQ(U( )):774»1’
T u

_aluw)

C

N 1. 1 9
+ag,) — 3 tan™ " u(,) + 1 (2 log(1 4 u(,)) — 3log (1 + u(#)>) .
(3.36)
The integration constants ayy, Kyy, kyy depend on the specific geometry of the UV region,
they are zero for the AdSs black brane, and they could be fixed with lattice computations or

experimental data. If we identify the geometry parameters with the corresponding field theory

constants using the holographic dictionary

R VX 1

2 _ _ VA _
TsR* = ool — op0 th= o (3.37)
The force acting on the heavy quark is, to third order in derivatives of the trajectory
~ ﬂ -~ 2 2 3 4
Fo o (=(xT)?0x + 7T F2 0w + F3 0;x) + O(9;x). (3.38)
Where the coefficient of the term proportional to d;z agrees with the drag force [15, 16]. The

coefficient proportional to the acceleration can be interpreted as a thermal correction to the mass
of the quark and the coefficient of the jerk 97z can be interpreted as a combination of the Abraham-
Lorentz force produced by Larmor radiation emission ([17, 18] and a viscosity contribution from

the surrounding plasma. The fast moving quark can be similarly obtained

Fo =~ £ (—(7rT)2'yv — (7T)*A20x + 7T Fy /2022 + Fy 7467533:) +O0(0}tx). (3.39)
7r

The ~ factors appearing in higher derivative terms imply that this expansion requires time deriva-

tives to be much smaller than the temperature for very fast quarks 9, < v~ /27T
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3.3 Symmetries of the Wilson loop

3.3.1 Wilson loop reparametrization in holography

Wilson lines are determined by the holonomy of the gauge field along a closed curve C. This curve
can be parametrized in any way, resulting in the zig-zag symmetry [19]. For half BPS Wilson loops
the coupling to the scalars breaks this symmetry, but it is recovered at strong coupling [20]. In this
section we will discuss how does our Wilson renormalization mechanism in the holographic dual
affect this symmetry, we will start from the simple case of a straight Wilson line along a spatial
direction.

We will describe the dual fundamental string with the renormalized Polyakov action in the

Poincaré patch in dimensionless coordinates
L2
ds®> = GyndzMdzN = y (dz2 + nm,dx“d:r”) .

T,L?
Sp = = /d%—\/ﬁh“bgab + doxE — TSLQ/ dr\/hrr.

g=€

(3.40)

Where g4, and hgp, the induced and worldsheet metrics respectively. We will work with worldsheet
coordinates (7,0)and embedding functions XM (7, o). For the straight string we will use X! =
X, X* =7 . xg is the Euler characteristic and has a coefficient proportional to the constant
dilaton ¢g = log gs, and the last contribution is a counterterm to regularize the action. We will
introduce an arbitrary parametrization of the line at the boundary

lim X = zo(7), (3.41)

o—0

without modifying the shape of the string in the embedding space. This results in the non trivial
embedding functions X = X(7,0), Z = Z(7,0). Diffeomorphisms and Weyl transformations allow
us to fix the gauge of the worldsheet metric to the conformal gauge hy, = %5@. Then the

embedding functions must be compatible with the induced metric and solve the equations of motion.

1
Gab — ihachbdgcd = 0. (342)
1 O XM 2
ﬁ@a (\/Ehab bZ2 ) + Ehabgab(gi\/[ =0. (343)

The first condition is met by any conformally flat metric and both of them are solved by:
Z'=X, X'=-Z7, X'"+X=0, Z'+Z=0. (3.44)

When the derivatives of xy are small compared to 1/0 the solutions to these equations can be

expanded as:

d 1 1
X =cos (adT) xo(T) = 20 — 50.2%0 + ﬂ(_I4$(()4) T
Z =sin (UCZT> xo(T) = odo — 603 o + 12005%,(85) 4

17



The conformal factor in the induced metric can be given in terms of the Schwarzian derivative:

1 2
Q= P g{xg,T} + 02 < 0*{xo, T} Jr ({:EO,T}) )

N (3.46)
(w0, 7} = 0 _3 (T
0 2 \ o

The Schwarzian is invariant under GL(2, R) reparametrizations of the form
b
xo(T) — zjcjg—td’ a,b,c,d €R, ad—bec#D0. (3.47)

Which are the symmetries induced by AdSs isometries.
Full reparametrization invariance on the boundary can be reproduced however in the following

way: We start performing a worldsheet diffeomorphism

T=71(7,0), 0=0(T,0) (3.48)

where ¢ = Z, 7 = X. This transforms the induced and worldsheet metrics as:
1 _ _
Jab = ?511117 hap = Qdap, (3.49)

Then we can use a Weyl transformation to recover the original worldsheet metric, which shows that
we can use a conformal transformation to produce any arbitrary reparametrization from the trivial

embedding.

3.3.2 Induced anomalies in the cutoff action

When we work with a non-trivial embedding of the string, we have two possible choices for the
cutoff, it can either be in the worldsheet coordinate o = 1/(LA) or introduce a cutoff in the radial

coordinate z = 1/(LA). If we take the former option, we obtain a cutoff action

Sa :TSLZ/dT (LA %LlA{zo, L (Li) (15 O {xo, 7} + = ({xO,T}) > ) ;50 (/d 1;/\
3.50

which is not invariant under reparametrizations. However from the bulk perspective, the string

extended beyond this cutoff is reparametrization invariant up to boundary terms. This is compen-
sated by the action at the cutoff, allowing us to identify the terms depending on the Schwarzian
as a reparametrization anomaly at the cutoff. On the other hand, a cutoff in the radial coordinate
is readily identified with an energy scale in the field theory dual. Fixing this radial cutoff implies

integrating the string action up to a value of the coordinate given by
Z(t,00(1)) = 1/(LA) (3.51)

The integrated action up to this value is just a reparametrization of the worldline coordinate

dT — d7p = dTip where

]. 1 (f(] 1 1 45[:'0 .if.() — i-E()iU((;l)
= e 3.52
AT TN R T REA @ (8:52)
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However, the contribution from the Ricci scalar in the Euler characteristic gives a non-trivial con-
tribution
Sp = Tst/dTA (—LA) + f—g /dTA <LA + ;%{t(m),m} 4. ) . (3.53)
Where t is the inverse of xg. This result can also be reproduced performing a worldsheet diffeomor-
phism (3.48). This indicates that there is an anomaly at the cutoff compensating the non invariance
of the string under worldsheet diffeomorphisms, but as we saw before this can be removed using a
Weyl transformation, indicating these transformations have an associated anomaly in such a way
that both anomalous terms cancel out.
This analysis can also be performed for nonzero temperatures, where we have a black brane

AdSg41 solution.

ds* = L—z d—ZQ — f(2)(d2®)? + 6;;dx'da? flz)=1- =z ' (3.54)
EERVE ” ) |
Picking a new radial coordinate determined by
du— — % (3.55)
f(z)

and rescaling the coordinates u — ugu, z — zgz, =" — ugx* yields the metric

72 o 11
5 = o (0~ J0)da”) 4 Syda'd?) ) =1 st =1 (55) . (356)
Where I, '(a,b) is the inverse of the regularized incomplete Beta function and L = Luy/zg =
B (é, %) L/d, B,(a,b) being the incomplete Beta function. Using the embedding
1
X'=X=71, X*=U=0, XM=0,M#1,u. hgy=—50a, (3.57)
o
the problem is now analogous to the zero temperature case. One distinct feature, however, is that
when fixing the radial cutoff in the geometry there is a physical cutoff at the horizon of the black
brane. The effective action can then be integrated all the way to this cutoff yielding a Schwarzian

term:

11
Ssen = lfgzw / a7 {t(7), 7} (3.58)

Where we have restored the units g — zo/ug and 7 — 7/ug

3.3.3 Applications to Circular Wilson loops

In the circular Wilson loop we will work using polar coordinates

ds? = = <d22 +dr? +r?do* + Z(dx“)2> : (3.59)
pn=3
and the generalized embedding
r
©=¢qg7+0(r,0), R= &, Z =rotanh S, S = qo + s(7,0). (3.60)
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Where the periodicity of 7 is 2mp and p, ¢ are nonzero integers, both 6 and s are periodic functions
in 7. Notice that setting ¢ — 1, 8 — 0, s — 0 we obtain the induced metric is that of global AdSs
in conformally flat coordinates. We will select the string metric to be precisely this one:

L . (3.61)

. 12 Ya
sinh” o

hab =

the embedding functions have to satisfy the same set of equations as in the flat case (3.44), however

in this case they have to satisfy periodic boundary conditions. The solutions can be expanded as:

_ a _ 1o 1 4
O =cos <0d7> Oo(1) = 69 57 ®0+24U 0, + ,
j , - (3.62)
iy d PN SPPEI S
S =sin <0d7') O0(7) = 00 i O+ 120° 0y + .

As in the straight case, this leads to a conformal metric, this time with a conformal factor:

1 2 A9 of 1 Og 4 SN ?
0=~ 2ltan 2 sy o2 — 20 Uy 2 an 20 S .
23 {tan ) ,T} o (15@ tan 5T 15 tan 5T (3.63)

Where the Schwarzian terms are now
C] 1.
{tan 20,7} ={Op, 7} + 5@3. (3.64)

Which is invariant under boundary reparametrizations

i® 4 7
90 ;‘ETOIQ a,BeC, |af2— |82 =1. (3.65)
As in 3.3.1, this can be interpreted as the boundary limit of the isometry transformations of the
global AdSy metric SU(1,1). The analysis from this point onwards is analogous to the straight
Wilson line, replacing the Schwarzian in (3.50) and (3.53) with (3.64) for the cutoff in the worldsheet

coordinate ¢ and the geometry cutoff respectively.

3.3.4 Polyakov Loop

We can also apply this method to a finite temperature Polyakov loop. The holographic dual is a
string wrapped around the Euclidean time direction of a Wick rotated AdSg4+1 black brane with

metric:

+f(2)dt% + 5ijdxidxj> , fe)=1— (Z>d (3.66)

2 _ £2 dz?
ZH

2 \ f(2)
The euclidean time direction has periodicity § = 1/T. The string has the topology of a disk as in

the circular case. In this case the conformally flat metric is obtained through a change of variables

dz 1 1

du = —— =——7r, tgp= 3.67
“ f(z)’ YT omenT” P T 2nznT (3:67)

We can then choose a non trivial embedding
©=gq7+0(r,0), R=S5=gqo+ s(r,0). (3.68)
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that coupled with an embedding

1
hab = ——5—0ab; (3.69)

sinh® o
yields the same solutions for the embeddings and the symmetries of the worldsheet metric as the

ones we found in the circular Wilson loop, obtaining the same result of a Schwarzian action for the

worldsheet diffeomorphism.
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1 Introduction

The gauge/gravity correspondence [1-3], or holographic duality, has been used extensively
as a phenomenological tool to describe properties of strongly coupled systems in QCD and
condensed matter (see [4-9] for reviews on the topic). In most cases the gravity dual corre-
sponds to a theory which is microscopically different from the actual system of interest, but
whose properties at low energy/large distance compared to some characteristic scale can
be qualitatively similar. Since many relevant observables are mostly sensitive to the long
distance physics, dissimilarities at high energy/small distances are frequently inconsequen-
tial. In the holographic dual description this means that only some part of the geometry is
of relevance for those observables. More precisely, while the geometry has an asymptotic
boundary that is identified with the ultraviolet (UV) of the field theory, infrared (IR) dy-
namics are controlled by the deep interior of the geometry and long distance observables
are mostly sensitive to this region. The problem of restricting the holographic description
to the low energy effective theory has been approached multiple times in different contexts,
e.g. [10-19].

In the holographic “Wilsonian” renormalization group (RG) flow approach of [16, 17]
the effective TR description is obtained by introducing a cutoff in the holographic radial
coordinate and “integrating out” degrees of freedom between the asymptotic boundary



and the cutoff. This results in a description consisting of the dual theory below the cutoff
plus a boundary action that determines the boundary conditions of the fields at the cutoff.
The RG flow equations are obtained from the condition that the full on-shell action has
to be independent of the cutoff. The boundary action is a functional of the values of the
field at the cutoff, and, by mapping these values to operators in the field theory dual, it
is interpreted as introducing multitrace deformations in the effective theory at the cutoff
scale. The RG flow equations then become equations for the multi-trace couplings.

A particularly significant set of observables in gauge theories for which an IR effec-
tive description would be useful are Wilson loops. Their holographic dual description is
a Nambu-Goto string with endpoints attached to the asymptotic boundary of the dual
geometry [20, 21]. Even though this is a fairly simple setup, its holographic Wilsonian RG
flow has not been worked out.! We will partially fill in the blank by studying the expecta-
tion value of a Wilson loop corresponding to two static sources separated a fixed distance,
much larger than the characteristic scale of the theory. This is equivalent to computing
the quark-antiquark potential. In this configuration, most of the profile of the dual string
remains in the deep interior of the geometry and is mostly sensitive to IR physics. This
observation will allow us to use the inter-quark distance L as an expansion parameter to
approximate the string profile and its energy. Applying the holographic Wilsonian RG
flow approach, we will derive the effective IR behavior of the potential and determine its
most relevant long distance corrections.

We will use this method to analyze two different types of holographic constructions
with well understood IR geometries. The first type is dual to a strongly coupled field
theory that possesses an IR fixed point, such that at higher energy scales the theory flows
away from the IR fixed point in a way determined by an irrelevant scalar deformation. The
second type is dual to a confining theory. In the first case, the characteristic scale appears
in the coefficient of the irrelevant operator. At energies much lower than this scale, the
theory is very close to being conformal, with only small corrections induced by the flow. We
will introduce a cutoff much below this scale, in such a way that the dual geometry is close
to an AdS dual to the IR fixed point. In the case of a confining theory, the cutoff will be
introduced at a scale much larger than the mass gap of the theory. For the confining theory
we will use duals with explicit string theory constructions, the Witten QCD (WQCD) [24]
and Klebanov-Strassler (KS) [25] models. For the case of an IR fixed point there are
several examples in five-dimensional supergravity [26-31]. In principle these can be lifted
to ten dimensions using general reduction formulas [28, 32-39], but the examples where
this has been carried out explicitly (e.g. [40]) are even scarcer and the geometry turns out
to be more complicated than what we will be considering in this work. In both those two
families of models, the effective field theory approach we develop will allow us to determine
generic properties of the potential, independent of the details of the UV behavior of the
dual field theories.

For a flow with an IR fixed point, we observe two types of corrections. One is produced
by the non-trivial RG flow, and depends on the dimension of the leading irrelevant operator

'Tn [22] it was suggested that the holographic RG flow will be given by a mean-curvature RG flow of the
type described in [23]. Although we do not discard that a map to a description of this form might exist,
our results seem to correspond to a different type of flow.



that drives the flow away from the long distance conformal field theory (CFT). The other
correction has a universal form, in the sense that it is independent of the dimensions of
the leading irrelevant operator. We propose an interpretation in terms of an effective IR
defect theory localized on the Wilson loop. In addition to the bulk RG flow, there is
an RG flow on the defect triggered by a double trace deformation, that we identify from
the boundary conditions of the string at the cutoff. The L-dependence of both kinds of
corrections depends solely on the properties of the IR field theory, and all the information
about its UV structure is restricted to the value of a single coeflicient, which determines
the universal contribution.

For a flow in a confining theory we observe exponentially suppressed corrections to the
potential beyond the leading linear dependence on the quark-antiquark separation. The
exponent is proportional to the mass scale of glueballs, and it coincides with the mass
of some internal excitations of a flux tube in the dual field theory. We interpret this
result in terms of the effective IR theory as a flux tube with sources at the endpoints for
the internal modes, that have a non-vanishing profile in the ground state of the quark-
antiquark pair. Since these excitations correspond to fluctuations of the string along the
holographic direction, these type of correction are a generic property of confinement as
described by the gauge/gravity duality.

The structure of the paper is as follows: we start reviewing some basic facts about
Wilson loops and their calculation using gauge/gravity duality in § 2. In § 3 we present
general formulas for the holographic RG flow of a Wilson loop. The case with an IR fixed
point is studied in § 4 and confining theories in § 5. A summary of the results and their
interpretation from the point of view of the field theory dual is gathered in § 6.

2 Wilson loops in holography

The study of Wilson loops in holographic duals was initiated in [20, 21]. In N/ = 4 super
Yang-Mills (SYM), a locally BPS Wilson loop in the fundamental representation is given
by the path-ordered exponential

Waps(C) = %TrP (e et duriaton®)) g2 — g, (2.1)

Where z#(7) parametrizes the closed curve C on which the loop is defined, A,, is the gauge
field and ®!, I = 1,---,6 are the adjoint scalar fields of the N = 4 SYM theory. In the
large- N limit the expectation value of the Wilson loop can be determined at strong 't Hooft
coupling Ay s > 1 by the classical Nambu-Goto action of an open string whose boundary
is along the curve C at the asymptotic boundary of the holographic dual geometry. The
position of the string endpoints in the internal space is determined by identifying the
functions 0! (7) with coordinates on the S° of the dual AdSs x S® geometry.

The identification of BPS loops with a dual string is based on the weakly coupled
D-brane construction. The N/ = 4 SYM theory is the low energy description of a stack
of coincident N D3 branes. When one of the branes is separated from the rest, a string
extended between the separated brane and the rest acts as a source in the fundamental



representation. When the isolated brane is taken to infinity, the string becomes an infinitely
heavy source and therefore it is equivalent to the insertion of a Wilson loop. In the near-
horizon limit that replaces D3 branes by geometry, the isolated brane can be though as
being at the asymptotic boundary, and the string extends from it to the interior. A similar
argument can be used for any low energy effective theory on the worldvolume of a stack
of branes, so the identification of the string with a Wilson loop extends naturally to more
general gauge/gravity duals obtained from a near-horizon limit.

We will see that the holographic Wilsonian RG flow changes the boundary conditions
of the string at the cutoff. This could alter the nature of the Wilson loop, for instance it was
proposed in [41] that the holographic dual to an ordinary Wilson loop should correspond
to a string satisfying Neumann boundary conditions along the S° directions. The logic is
that an ordinary Wilson loop does not couple to the scalars ®!, and therefore it is invariant
under the SO(6) R-symmetry that rotates them. More generally, one could define a family
of Wilson loops with different couplings to the scalar fields [42]

We(C) = %Tm (eifc dT(i“AM‘i“’"I’I)) : (2.2)

with ¢ = 1 corresponding to the BPS loop and ¢ = 0 to the ordinary Wilson loop. In [42]
it was shown that there can be an RG flow between the ordinary and BPS Wilson loops,
both at weak and strong coupling. For Wilson loops with intermediate values of ¢ one
may expect that the dual description is a string with mixed boundary conditions. The
case at hand differs from the (-deformed loops in that the boundary conditions that are
modified are not along the S°, but along the field theory directions. There are however
some similarities, in that we can identify a deformation of the BPS loop and an associated
RG flow.

2.1 Calculation of the quark-antiquark potential in an RG flow

The holographic dual to a conformal field theory is an AdS5 x My geometry, where Ms is
a compact space. In Gaussian coordinates

ds%o _ GMNd$Md$N — dr? + eQT/R,,?MVdmNde + d./\/lg’ (2.3)

where z# = (t,x,y,2) are coordinates along the field theory directions and 7),, is the
flat Minkowski metric. The coordinates along the compact space will be denoted by 64,
A =1,---,5. The radial coordinate r characterizes the energy/distance scale in the field
theory, with » — oo the asymptotic boundary associated to the UV. R is the radius of
AdS space.

The potential Vi3 between a static quark-antiquark pair separated a distance L can
be computed from the expectation value of a time-like Wilson loop along a rectangular
contour of sides of length L along space and [ along time. When 8 — oo,

W) ~ e PVaalL), (2.4)

In the large-N limit, and at strong 't Hooft coupling, the potential is determined by the
Nambu-Goto action of a string evaluated on-shell

B Vaq(L) = —Sna- (2.5)



The Nambu-Goto action is

1
2ma!

Sng = — /dQU\/Th, hop = GMNaaXMabXN, o = (7’, (7)7 (2.6)
where 0 are the world-sheet coordinates, h is the determinant of the induced metric h,; and
XM(7,0) are the embedding functions that describe the string profile in the target space.

The relevant configuration is a solution to the classical equations of motion with ap-
propriate boundary conditions, following previous works (e.g. [43]) we review here the
main points of the derivation and properties of the solutions. We can choose the following
static gauge

XOZT, Xlzl'(a—)a X2:X3:O, XT:U7 XA:H(IJL" (27)

where ' are constant. The boundary conditions are

UILIEO z(o) =0, UIEE* 7'(0) = oo, UlLr{}* z(o) = g (2.8)
where o, is a particular value of the world-sheet coordinate o, whose value depends on L,
via the last condition. This solution actually describes a branch of the solution extending
from the asymptotic boundary to a point in the interior, there is another symmetric branch
returning to the boundary at the point x = L.

In general the action evaluated on this class of solutions is divergent, one can regularize
it by introducing a cutoff at o = 7(,) and adding a counter-term at the boundary of the
string, in such a way that the total action is Ssring = Sng + Se.t., so that

/ d2ov/—h+ -2 /dT\/—fy, (2.9)
TSI

. 1
Sstring = lim -

ray—oo  2mal 2ma/

where v = hw’ A For an asymptotically AdS space like (2.3), the value of the coefficient

o=r
of the counter—terril is cp = R.

The holographic dual of a generic RG flow can be a relatively complicated geometry
with various warping factors depending on the radial coordinate and coordinates along the
internal space

dsy = A0, r)dr? + 3(0, r)n,datdz” + dME. (2.10)

In this work, we will concentrate in simpler examples, in which the ten-dimensional metric
can be put in the domain wall form

er T v AL
dsiy = [0l + A0y datda” + dME. (2.11)

Where, as the asymptotic boundary at » — oo is approached, A(r) — oo and f(r) — 1.
In this case (2.7) is a consistent ansatz and the induced metric is

ds2 = =4 dr? 4 f(lg) + 240 ()2 | do?. (2.12)



Figure 1. Profile of a string dual to a ¢g pair separated a distance £ (blue line). The vertical
direction corresponds to the holographic radial coordinate, with the asymptotic boundary (UV) at
the top. A cutoff is introduced at an IR scale (horizontal red line) and degrees of freedom above
the cutoff are integrated out. The separation in the field theory directions between the endpoint of
the string at the boundary and at the cutoff is denoted by éx, it corresponds to x(,) in the text.

The action becomes "
B / e
= —/1 24 (N2, 2.1
SNG D do JT + fe2d(z!) (2.13)

Again, one needs to add a counter-term of the form given in (2.9) to render it finite.
Since it depends only on the derivative of the embedding function z’, the conjugate

dSNG B
L o constant. (2.14)

\/7 €3A '

momentum is constant

This leads to the equation

—— = —p, 2.15
1+ fe2d(2')? (2.15)
or, solving for x’, we obtain the equation of motion for the embedding
—3A
/ < (2.16)

B N

If we picture the string as hanging from the asymptotic boundary, as in figure 1, the
conditions (2.8) fix the relation between the lowest point of the string profile oy, the
separation L of the pair and p

_ eZA(a*)

L
d 2.1
p 5 (2.17)

)

00 e—3A

o V1 —e14p2
Note that under a change of the boundary condition dx(cc) = §L, the solution changes
z — x + 0z and the change of the Nambu-Goto action is proportional to the conjugate

B

2mad

momentum

5SN(;:/ do 702" = pdL. (2.18)



The change of the potential is

1

Therefore, p should be identified with the force that the (anti)quark feels
Weg 1

fx:_ﬁ_ 2mo

. (2.20)

3 Holographic RG flow of the Wilson loop

The analysis of the previous section demanded to have full knowledge of the dual geometry
all the way to the boundary to determine the classical string profile that controls the
potential. However, for large enough separation it is expected that it is enough to know
the geometry below certain cutoff r(,). To materialize this expectation, we note that for
sufficiently large values of L, the profile of the string is typically mostly below some finite
value of the radial cutoff r(,). In the dual geometry the region between the boundary and
the cutoff corresponds to length scales much smaller than the separation L. At these scales,
the quark and antiquark do not feel much the presence of each other, and the profile of
the string around each of the endpoint positions is close to that of a single isolated quark,
remaining close to the endpoint position in the parallel directions to the boundary and
extending almost completely straight into the interior. The straight shape of the profile
persists from the cutoff to the interior, until, far from the cutoff, the profile changes and
extends in the directions parallel to the boundary in such a way that the two endpoints are
joined (see figure 1). This characteristic behavior implies that the information about the
UV properties of the theory is confined to the position of the string profile at the cutoff,
which is close to the position of the endpoints at the boundary and introduces a length
scale much smaller than the separation between the endpoints. The ratio between these two
length scales works as a perturbative parameter that we will use to find the first corrections
to the leading order dependence of the potential on the quark-antiquark separation.

Based on the considerations above, we separate the contribution of the straight seg-
ments from the rest by introducing a cutoff at o = r(,,) such that

T(p) = x(r(ﬂ)) < L. (3.1)

In the region closer to the asymptotic boundary o > r(,, the string does not wander far
from its initial position 0 < z < z(,), and 2’ is a small quantity, as shown in figure 1.
Taking advantage of this fact, we will split the string action in two parts, an upper part

S>

string» Where we integrate for values o > r(,) and add the boundary counterterms, and

the lower part where we integrate below the cutoff Sg.
Sstring = Ss>tring +5%a = Sxg + Set. + SXa- (3.2)

Expanding the upper action to quadratic order one finds

S3 :—i alUi 1+1f62‘4(a:’)2 . (3.3)
NG 27 Josr,, VT 2



The solution to the equations of motion is
T~ —p—. (3.4)

Comparing with the exact solution (2.16), this is a valid approximation as long as
p2e 440 w) « 1. Defining a function

o] 6_3A
a(o) = / 7, ) = a(r(#)), (3.5)
the displacement at the cutoff is z(,) = a(,)p. The profile of the string is then

a(o)

T~ . (3.6)
(W7 "
The on-shell action (regularized by an UV cutoff) is
S~ ——— do— + 7'z . (3.7)
NG 27(@/ () \/f 2 T(w)
The string action, including counterterms, is thus
> B Lo
Sstring = ~ 57 [M(u) + 2@(“)1’(#)] ; (3-8)
where "
T(A) e
M,y = lim do—= — A 3.9
W= B ) VT (3.9)

We can then replace our original string action by the NG action below the cutoff plus a
boundary term that appears as a double-trace deformation, the a:i term appearing in (3.8),
its effect is to modify the boundary conditions at the cutoff. In order to see this, consider
a string with slightly perturbed profile, but keeping the endpoints at the boundary fixed
r — z+06mw, 0z(r(p)) = 0. The variation of the on-shell string action under this perturbation
has a bulk contribution and a contribution localized at the cutoff

3A ./
5 Sutsing = — = @&”(uﬁ/ PR sy (3.10)
2ral | agy) o<r( 1+ fe?A(2!)?

Integrating the bulk term by parts and using the equations of motion (2.15), one is left

with only cutoff contributions

X
5Sstring - B |:(/i) - p:| (S.TI(u) (311)

2/ ay)

Since the on-shell action should be stationary for small perturbations of the profile that do
not change the boundary conditions, the variation above should vanish for any dx,). This
condition fixes the conjugate momentum for the solution below the cutoff to the right value

p=—W, (3.12)
A(u)

Therefore, the string dual to the Wilson loop that determines the quark-antiquark potential
can be replaced by a string with endpoints at a cutoff satisfying mixed boundary conditions.



3.1 IR description of the Wilson loop

The analysis above has made precise the expectation that the long distance potential only
depends on the IR physics. By replacing the full string action from the cut-off to the
boundary by the quadratic approximation, (3.8), we have managed to express the problem
in terms of quantities evaluated at the cut-off. All the information about the UV part of
the geometry, and its manifestation in the string embedding, is condensed into the (cut-
off dependent) values of the parameters M, and a(,). Starting from this action, in this
section we will show how to use the independence of physical quantities on the cutoff to
constraint the long distance behavior of the heavy quark potential.

Suppose we are given a geometry that will be used as a holographic dual description
of the IR physics of some strongly coupled theory. We introduce a cutoff in this geometry
and consider the string action with the additional boundary terms we have derived

i = 55— 2 [0+ | 19
Physical quantities computed using the holographic dual should be independent of the
cutoff we have introduced. However, the string action has an explicit dependence on the

) (3.5)
and M, (3.9). If we regard r(,) as corresponding to an RG scale similar to the ones used

cutoff, that is apparent from the definition of the coefficients of the cutoff terms a

in perturbative renormalization schemes, the dependence on the cutoff can be encoded in

the RG flow equations (A, = A(r)), fu) = f(r)))

B = (3.14)
o ) = ——F—> Or My=——F—. .
s Fowy & " VI

Integrating these equations one would obtain M, and a,) up to indeterminate integration
constants. It should be noted that the RG equations involve terms that are evaluated at
the cutoff position, so they only depend on the local geometry close to the cutoff. In the
language of the field theory dual, the RG equations only depend on the physics of the
scale close to the cutoff. All the information about UV physics is hidden in the integration
constants. This fits with the usual Wilsonian paradigm of renormalisation, the terms that
can appear in the effective action are determined by the IR degrees of freedom, but with
coefficients that have to be fixed by experiments or by matching with UV physics.

Using the equations (3.14) it is easy to show that physical quantities are independent of
the cutoff. The equations of motion for the embedding below the cutoff are given by (2.16),
and we have to impose the conditions

T(w) e—34

L
L) = AP 5 = L) TP o VF/I—c A

The force, which is proportional to p, is independent of the cutoff by construction. The

— €2A(U*)7

P (3.15)

separation between the quark-antiquark pair is invariant under changes of the cutoff at
leading order

e 3w 5 oA
O L=2p|0 =0 (ple”m). (3.16)
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Then, the dependence of the force (2.20) with the length is also invariant to leading order.
In principle one could systematically add higher order corrections by including further
multi-trace terms in the boundary action, we show how to proceed using the Wilsonian
RG flow equations for the boundary action and show explicitly that the length is invariant
at the next order in appendix A. As we already mentioned, the value of a(,) cannot be
determined by the IR theory, rather it would have to be fixed by matching with the UV
theory if this one is known, or by measuring the force at a separation L and doing a fit.

4 Theory with an IR fixed point

In this section we will use the formalism developed in the previous section to study a
particularly simple example, that of a strongly coupled field theory with an IR fixed point.
Because it is a fixed point, the long distance dynamics are controlled by a CFT. As a
consequence of conformal symmetry, the dual geometry must approach AdS space in the
interior, meaning it takes the form in (2.3) as r — —oo. We will assume that the flow away
from the fixed point is driven an irrelevant scalar op