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RESUMEN (en espaiiol)

En los ultimos afos, la investigacion ha revelado que los disefios hidroeléctricos en Ecuador no
han considerado adecuadamente la sensibilidad al cambio climatico. Ademas, las condiciones
climaticas determinan las variaciones en la generacion de electricidad a partir de esta fuente de
energia renovable. También, las variaciones en el régimen de lluvias provocan una sequia de
julio a octubre por la falta de lluvias. Por lo tanto, disminuiria el caudal de los rios que alimentan
las represas para la generacion hidroeléctrica, lo que resultaria en una importante reduccién de
su capacidad de generacion. En afios anteriores, la sequia provocé un aumento de la
generacion térmica con motores diésel, generando millones de toneladas de gases de efecto
invernadero que se emitieron a la atmésfera. Para evitar que se presente este inconveniente,
es necesario promover el uso de la energia edlica para diversificar la matriz energética
ecuatoriana. Esta matriz estda compuesta por un 70% de energia hidraulica y un 0,26% de
energia edlica. Sin embargo, la integracion de la energia edlica en la red eléctrica producida
por parques edlicos de alta potencia ubicados en zonas montafiosas es una tarea dificil debido
a la variabilidad del viento. Ademas, los Andes ecuatorianos tienen un importante potencial
eolico sin explotar debido a su compleja orografia. Actualmente, no existen estudios detallados
sobre potencial edlico o prediccion de energia edlica en los Andes. En consecuencia, la
caracterizaciéon del recurso edlico es necesaria. Asi como se requieren métodos precisos para
predecir la cantidad de energia edlica generada a corto plazo todos los dias, lo que se requiere
para integrarla a la red eléctrica. El operador de la red necesita el pronéstico de energia por
hora para programar los generadores renovables y administrar otros generadores estables para
mantener la red equilibrada y la distribucion eficiente de energia.

Con el fin de direccionar los desafios antes mencionados, promover el desarrollo de la energia
edlica, evaluar y predecir el potencial edlico y disminuir la necesidad de generadores térmicos,
esta tesis describe una metodologia para implementar un modelo hibrido basado en modelos
de regresion lineal como linea de base para el pronéstico de velocidad de viento (WS), Redes
Neuronales Dinamicas. y Redes Neuronales Recurentes (DNN-RNN) para optimizar la
prediccién, lo que representa un aporte relevante en este ambito de investigacién. La
metodologia propuesta permite caracterizar el recurso edlico, pronosticar la velocidad del
viento, predecir la energia edlica y estimar los costos de energia con seis horas de
anticipacion, tanto para invierno como para verano. También favorece la modelizaciéon de las
caracteristicas del viento a través del software Ansys Fluent CFD Dinamica Computacional de
Fluidos para el posicionamiento de 11 aerogeneradores Goldwind 70/1500 KW para optimizar
la Produccién Energética Anual (AEP) de un parque edlico hipotético. EI modelo propouesto de
prondstico de WS fue entrenado y validado usando datos medidos por dos torres
meteoroldgicas instaladas en el area montafiosa de estudio. Los principales hallazgos del
estudio indican que el paso del viento entre dos volcanes tiene un alto potencial edlico. Este
potencial depende de las variables meteoroldgicas, la orografia y el efecto acelerador de la
velocidad del viento. Estas favorables condiciones hacen posible la instalaciéon de un parque
edlico en esta zona con 11 aerogeneradores de alta potencia. Ademas, el disefio del parque
edlico utilizando Ansys CFD mostré que el modelo K-epsilon puede modelar el perfil de las
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velocidades del viento y la intensidad de turbulencia (T1) sobre una montafia simulada con gran
precision. Ademas, la red Memoria de Largo-Corto Plazo (LSTM), debido a su celda de
memoria integrada que permite recordar estados previos para predecir valores futuros, alcanzé
los valores mas bajos de Error Porcentual Absoluto Medio (MAPE) y Raiz del Error cuadratico
Medio (RMSE), en comparacion con la red Autorregresiva No Lineal con Entrada Exdgena
(NARX), para predecir la velocidad del viento y la energia edlica en verano a una altura de 80
m Sobre el Nivel del Suelo (AGL), trabajando con velocidades de viento nominales con baja
Intensidad de Turbulencia (TI), que permiten la operacién continua de viento turbinas a
potencia nominal.

RESUMEN (en inglés)

In recent years, research has revealed that hydropower designs in Ecuador have not
adequately considered sensitivity to climate change. In addition, climatic conditions determine
the variations in electricity generation from this renewable energy source. In addition, variations
in rainfall patterns cause a drought from July to October due to the lack of rain. Therefore, it
would decrease the flow of the rivers that feed the dams for hydroelectric generation, which
would result in a significant reduction of its generating capacity. In previous years, the drought
caused an increase in thermal generation with diesel engines, generating millions of tons of
greenhouse gases that were emitted into the atmosphere.

To prevent this inconvenience from occurring, it is necessary to promote the use of wind energy
to diversify the Ecuadorian energy matrix. This matrix is made up of 70% hydropower and
0.26% wind power. However, the integration of wind energy into the electrical grid produced by
high-power wind farms located in mountainous areas is a difficult task due to the variability of
the wind. Moreover, the Ecuadorian Andes has significant untapped wind potential due to their
complex orography. Currently, there are no detailed studies on wind potential or wind energy
prediction in the Andes. As a result, wind resource characterization is necessary. As well as,
precise methods are required to predict the amount of wind energy generated in the short term
every day, which is done to integrate it into the electrical grid. The grid operator needs the
hourly power forecast to schedule and manages renewable generators and other stable
generators to keep the grid balanced and power distribution efficient.

In order to address the challenges mentioned above, promote wind energy development,
assess wind potential, and diminish the need for thermal generators, this thesis describes a
methodology to implement a hybrid model based on linear regression models as a baseline for
WS forecasting and Dynamic Neural Networks and Recurrent Neural Networks (DNN-RNN) to
optimize prediction, which represents a relevant contribution in this research scope. The
proposed methodology allows for wind resource characterization, wind speed forecasting, wind
energy prediction, and estimating energy costs six hours in advance, both for winter and
summer. It also favors the modeling of wind characteristics through the Ansys Fluent CFD
(Computational Fluid Dynamics) software for the positioning of 11 Goldwind 70/1500 KW wind
turbines to optimize the AEP (Annual Energy Production) of a hypothetical wind farm. The
proposed WS forecasting model was trained and validated using data measured by two
meteorological towers installed in the mountainous study area. The study's main findings
indicate that the wind passing between two volcanoes has a high wind potential. This potential
is dependent on meteorological variables, orography, and the accelerating effect of wind speed.
These favorable conditions make it possible to install a wind farm in this area with 11 high-
power wind turbines. Furthermore, the wind farm design using Ansys CFD showed that the K-
epsilon model can model the profile of wind speeds and Turbulence Intensity (TI) over a
simulated mountain with great precision. Moreover, the Long-Short Term Memory (LSTM)
network, due to its embedded memory cell that allows remembering previous states to predict
future values, reached the lowest values of Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE) compared with the Nonlinear Autoregressive network with
Exogenous input (NARX), to predict wind speed and wind energy in summer at the height of 80
m AGL, working with nominal wind speeds with low Turbulence Intensity (TI), which allow
continuous operation of wind turbines at nominal power.
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Resumen (Spanish)

En los dltimos anos, la investigacién ha revelado que los disenos hidroeléctricos
en Ecuador no han considerado adecuadamente la sensibilidad al cambio climético.
Ademis, las condiciones climéticas determinan las variaciones en la generacién de elec-
tricidad a partir de esta fuente de energia renovable. También, las variaciones en el
régimen de lluvias provocan una sequia de julio a octubre por la falta de lluvias. Por
lo tanto, disminuiria el caudal de los rios que alimentan las represas para la generacién
hidroeléctrica, lo que resultaria en una importante reduccién de su capacidad de gen-
eracion. En anos anteriores, la sequia provocé un aumento de la generacién térmica
con motores diésel, generando millones de toneladas de gases de efecto invernadero que
se emitieron a la atmdsfera.

Para evitar que se presente este inconveniente, es necesario promover el uso de
la energia edlica para diversificar la matriz energética ecuatoriana. Esta matriz esta
compuesta por un 70% de energfa hidrdulica y un 0,26% de energfa edlica. Sin embargo,
la integraciéon de la energia edlica en la red eléctrica producida por parques edlicos de
alta potencia ubicados en zonas montanosas es una tarea dificil debido a la variabilidad
del viento. Ademsds, los Andes Ecuatorianos tienen un importante potencial edlico sin
explotar debido a su orografia compleja. Actualmente, no existen estudios detallados
sobre potencial edlico o prediccién de energia edlica en los Andes. En consecuencia, la
caracterizacion del recurso edlico es necesaria. Asi como se requieren métodos precisos
para predecir la cantidad de energia edlica generada a corto plazo todos los dias, lo que
se requiere para integrarla a la red eléctrica. El operador de la red necesita el prondstico
de energia edlica horaria para programar los generadores renovables, y administrar
otros generadores estables para mantener la red equilibrada y la distribucién eficiente
de energia.

Con el fin de direccionar los desafios antes mencionados, promover el desarrollo de
la energia edlica, evaluar y predecir el potencial edlico, y disminuir la necesidad de gen-
eradores térmicos. Esta tesis describe una metodologia para implementar un modelo
hibrido basado en modelos de regresiéon lineal como linea de base para el prondstico
de velocidad de viento (WS), Redes Neuronales Dindmicas. y Redes Neuronales Re-
curentes (DNN-RNN) para optimizar la prediccién, lo que representa un aporte rele-
vante en este ambito de investigacion. La metodologia propuesta permite caracterizar
el recurso edlico, pronosticar la velocidad del viento, predecir la energia edlica y es-
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timar los costos de energia con seis horas de anticipacién, tanto para invierno como
para verano. También favorece la modelizacién de las caracteristicas del viento a
través del software Ansys Fluent CFD Dindmica Computacional de Fluidos para el
posicionamiento de 11 aerogeneradores Goldwind 70/1500 KW para optimizar la Pro-
duccién Energética Anual (AEP) de un parque edlico hipotético. El modelo propouesto
de pronéstico de WS fue entrenado y validado usando datos medidos por dos torres
meteoroldgicas instaladas en el drea montanosa de estudio.

Los principales hallazgos del estudio indican que el paso del viento entre dos volcanes
tiene un alto potencial edlico. Este potencial depende de las variables meteoroldgicas, la
orografia y el efecto acelerador de la velocidad del viento. Estas favorables condiciones
hacen posible la instalacién de un parque eélico en esta zona con 11 aerogeneradores de
alta potencia. Ademsds, el diseno del parque edlico utilizando Ansys CFD mostré que el
modelo K-epsilon puede modelar el perfil de las velocidades del viento y la intensidad
de turbulencia (TI) sobre una montana simulada con gran precisién. Ademds, la red
Memoria de Largo-Corto Plazo (LSTM), debido a su celda de memoria integrada que
permite recordar estados previos para predecir valores futuros, alcanzo los valores més
bajos de Error Porcentual Absoluto Medio (MAPE) y Raiz del Error cuadrético Medio
(RMSE), en comparacién con la red Autorregresiva No Lineal con Entrada Exdgena
(NARX), para predecir la velocidad del viento y la energia edlica en verano a una
altura de 80 m Sobre el nivel del suelo (AGL), trabajando con velocidades de viento
nominales con baja intensidad de turbulencia (TT), que permiten la operacién continua
de aerogeneradores a potencia nominal.



Abstract

In recent years, research has revealed that hydropower designs in Ecuador have not
adequately considered sensitivity to climate change. Furthermore, climatic conditions
determine the variations in electricity generation from this renewable energy source.
Moreover, variations in rainfall patterns cause a drought from July to October due
to the lack of rain. Therefore, it would decrease the flow of the rivers that feed the
dams for hydroelectric generation, which would result in a significant reduction of its
generating capacity. In previous years, the drought caused an increase in thermal
generation with diesel engines, generating millions of tons of greenhouse gases that
were emitted into the atmosphere.

To prevent this inconvenience from occurring, it is necessary to promote the use
of wind energy to diversify the Ecuadorian energy matrix. This matrix is made up of
70% hydropower and 0.26% wind power. However, the integration of wind energy into
the electrical grid produced by high-power wind farms located in mountainous areas is
a difficult task due to the variability of the wind. In addition, the Ecuadorian Andes
have significant untapped wind potential due to their complex orography. Currently,
there are no detailed studies on wind potential or wind energy prediction in the Andes.
As a result, wind resource characterization is necessary. As well as, precise methods
are required to predict the amount of wind energy generated in the short term every
day, which is done to integrate it into the electrical grid. The grid operator needs the
hourly power forecast to schedule and manages renewable generators and other stable
generators to keep the grid balanced and power distribution efficient.

In order to address the challenges mentioned above, promote wind energy devel-
opment, assess wind potential, and diminish the need for thermal generators. This
thesis describes a methodology to implement a hybrid model based on linear regression
models as a baseline for WS forecasting and Dynamic Neural Networks and Recurrent
Neural Networks (DNN-RNN) to optimize prediction and Wind Resource Character-
ization in the Ecuadorian Andes to install a potential wind farm, which represent a
relevant contribution in this research scope. The proposed methodology allows for
wind resource characterization, wind speed forecasting, wind energy prediction, and
estimating energy costs six hours in advance, both for winter and summer. It also
favors the modeling of wind characteristics through the Ansys Computational Fluid
Dynamics (CFD software for the positioning of 11 Goldwind 70/1500 KW wind tur-
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bines to optimize the Annual Energy Production (AEP) of a hypothetical wind farm.
The proposed WS forecasting model was trained and validated using data measured
by two meteorological towers installed in the mountainous study area.

The study’s main findings indicate that the wind passing between two volcanoes
has a high wind potential. This potential is dependent on meteorological variables,
orography, and the accelerating effect of wind speed. These favorable conditions make
it possible to install a wind farm in this area with 11 high-power wind turbines. Fur-
thermore, the wind farm design using Ansys CFD showed that the K-epsilon model can
model the profile of wind speeds and Turbulence Intensity (TI) over a simulated moun-
tain with great precision. Moreover, the Long-Short Term Memory (LSTM) network,
due to its embedded memory cell that allows remembering previous states to predict
future values, reached the lowest values of Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE) compared with the Nonlinear Autoregressive
network with Exogenous Input (NARX), to predict wind speed and wind energy in
summer at the height of 80 m Above Ground Level (AGL), working with nominal wind
speeds with low Turbulence Intensity (TT), which allow continuous operation of wind
turbines at nominal power.
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Chapter 1

Introduction

In the first chapter, a light introduction to the short-term prediction of wind speed
and wind power in wind farms is presented, as well as specific objectives proposed in the
thesis are described. Finally, the summary of the content of the chapters is indicated.

1.1 Introduction

The global demand for energy coming from fossil fuels had a significant annual
growth tendency in 2018 [1]. Fuel combustion produces hazardous emissions that cause
environmental damage as global warming [2,3]. To mitigate this effect and reduce
conventional fuel dependence; it is important to use renewable energies available in
their different forms. According to OECD, the proportion of renewable energy in the
total primary energy supply for 2018 reached a new high of 10.2% [1]. Wind energy
has become one of the most relevant forms of renewable energy [4-6]. By the end of
2019, it reached a global installed wind power capacity of 6561 GW, with 60.4 GW of
newly installed power, with an increase of 10% compared to 2018 [7,8]. It is expected
to reach a total installed power of 840 GW by 2022. The global distribution of wind
power in 2017 was as follows: Africa 4.52 GW, Asia 228.6 GW, Europe 177.5 GW,
North America 150.3 GW, Pacific Region 5.1 GW, Latin America, and Caribbean 17.2
GW [2,5]. However, it is difficult to integrate renewable generation into the power
grid either temporally or spatially [9,10]. Nowadays, wind energy is considered one
of the renewable energy sources more economical and environmentally friendly due to
being a fully mature technology for energy use. Wind energy has had rapid growth
last two decades [2,4,7]. The growth of wind energy is driven by depletion in operation
and maintenance costs, as well as an increase in wind turbine size and reliability [2].
Currently, Vestas WT V236/15MW (See Fig. 1.1) leads the field of largest offshore
WTs built to innovate the future of the wind industry [11]. Whereas, the major problem
of introducing wind energy into the power grid is the variability and intermittence of
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Figure 1.1: Wind turbine offshore Vestas V236/15MW [11]

the wind, which is one of the main barriers faced by power system operators [3,7].
Accurate forecasting tools are required to solve this problem, directed to the principal
objectives of planning wind turbine schedules, cutting down power system operation
costs, and reducing its fluctuation [12,13].

Wind over complex terrain is mainly influenced by land topography and elevation
[14]. In this way, wind flow passing over topographical variations, such as mountain
tops, ridges, escarpments, and channel pits in mountain ranges, causes wind speed
acceleration and turbulence [15,16]. Wind Turbulence is fluctuations in wind speed
on a relatively fast time scale, generally less than ten minutes. It is generated by two
main causes: (1) friction of wind speed with the surface of the earth, which causes wind
flow disturbance, and (2) thermal effects caused by variations in air temperature and
density; which cause vertical movements in the air masses [17,18]. It should be noted
that wind speed increases with height above ground and there is a great wind potential
in the mountainous regions. In particular, between the Andes volcanoes Chimborazo
6263 m ASL and Carihuayrazo 5116 m ASL; where wind speed increases its speed and
reduces pressure named tunnel effect as is shown in Fig. 5.2 [17,19,20].

In recent years, research has revealed that hydroelectric power designs in Ecuador
have not appropriately considered climate change sensitivity. ” As a result, variations
in rainfall patterns, which in turn cause the drought that occurs from October to
March next year due to the warm current of El Nifio, could reduce the flow of rivers
that feed the dams for hydroelectric generation in Ecuador, could have a significant
impact on hydroelectric generation capacity. Drought concerns in prior years compelled
an increase in heat generation utilizing diesel engines, resulting in millions of tons of
greenhouse gas emissions [21].
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To prevent the occurrence of this inconvenience, and promote the use of non-
conventional renewable energies to diversify the Ecuadorian energy matrix. In March
2014, Resolution CONELEC 001/13/footnotemark[1] was published, which established
the goal of establishing the treatment of non-conventional renewable generators in the
Ecuadorian electricity sector. generation facilities under the centralized system whose
installed power is greater than 10 MW, both in the case of selling the energy generated
through preferential rate 1 to the electricity market. On the other hand, ARCONEL
regulation 004/15 establishes the criteria and technical requirements for the connection
of renewable generators to the transmission and distribution networks to ensure the
quality of the electricity service in the generator’s influence area and to maintain the
voltage and current levels within acceptable ranges.

The community of Mechahuasca located within of the zone of study, was the se-
lected place because of its high wind potential, which requires to be assessed for wind
energy applications [21,22]. Near this location, Garcfa et al. [23] studied the influence
of sampling rate on wind power density for these communities in the highlands of the
Ecuadorian Andes, and proposed a PDF based on the daily Gaussian average of si-
nusoidal waveforms. Additionally, Ayala et al. [24] estimated the wind energy in the
Villonaco wind farm located in complex terrain at a high altitude (2700 m ASL). The
results were an annual wind speed of over 10 m/s and a capacity factor of 0.53.

Specifically, the wind energy industry in recent years has used the CFD software
for WRA and predictions. The evolution of computational wind engineering makes
very attractive the evaluation of wind speed over complex terrain. In fact, significant
progress has been made in the CFD application for specific cases of the evaluation
of wind flow over escarpments, single and multiple hills, as well as valleys [25]. Many
decades ago, CFD emerged as a reliable tool for simulating several engineering problems
[26]. It consists in solving a set of Navier-Stokes differential equations, to describe the
flow in a particular domain. These equations accompanied by the turbulence models
have been able to characterize with acceptable precision the wind behavior on the top
of the mountains. In recent studies, Ayala et al. [24] used the Meteodyn CFD tool
based on a nonlinear flow model to compare the actual AEP of the Villonaco wind
farm with the estimated AEP by Meteodyn. The simulation results indicated that
the CFD modeling is adequate for complex terrain, which should be validated by site
measurements. Arteaga-Lépez et al, proposed a CFD methodology to improve wind
resource assessment for urban environments. The CFD results showed the efficacy of
the suggested methodology to implement small wind turbines in urban and rural areas
[27]. Tabas et al. [28] analyzed the Windsim CFD software to perform accurate wind
power prediction in wind farms over complex terrain. The CFD results showed that
Windsim with a proper combination of TI models can predict wind farm performance
with great accuracy. In this work, a two-dimensional-2D CFD modeling was carried out
using RANS and k-¢ turbulence model equations to evaluate wind flow characteristics
over a location in the Ecuadorian Andes complex terrain and to validate with similar
calculated values.

Regardless of studies about wind power assessment in complex terrain in the
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Ecuadorian Andes. Nowadays, there is no work on wind speed and power forecast-
ing. Consequently, it appears the need to develop a method to estimate the energy
potential of a wind regime in a mountainous region of the Western Ecuadorian Andes.
This research will enable us to identify feasible places for wind farm installation con-
sidering terrain orography through commercial software Ansys CFD. In addition, to
develop an accurate model for short-term wind speed and power forecasting. In order to
achieve this objective, the author presents a technique based on single-variable regres-
sive models, such as the persistence model, MA, and ARMA; which serve as the basis
for wind speed forecasting; to improve forecasting performance, advanced RNN, such
as LSTM networks, as well as NARX models using measured meteorological variables,
are employed. This thesis has three main contributions: (1) The proposed model takes
wind speed behavior over complex terrain to the next level using the NARX-LSTM
networks. (2) The results of the proposed model for wind speed forecasting repre-
sent a relevant contribution to scientific research due to no available previous studies
in Ecuador and worldwide. (3) This study provides updated data and novel insights
into WS and power forecasting over complex terrain very useful for electrical network
operators and investors in wind projects.

This thesis is directed to carry out a wind regime characterization and to develop
an approach for short-term WS forecasting 6 hours in advance in the western Andes
Mountains Range of Ecuador. A hybrid statistical and DNN-RNN model will be used
to forecast wind speed. The main reason for conducting this research is related to
the need to have an accurate approach to predicting wind speed and power in the
Ecuadorian Andes. This study provides updated data and novel insights into WS and
power forecasting over complex terrain. This knowledge is very useful for operators of
the electrical network and investors in wind projects.

1.2 Background

Selection of input variables and forecasting methods play major roles in influencing
the accuracy of wind speed forecasting results [3,4]. Wind power generation and wind
farm planning are heavily dependent on wind speed, so input variables selection has
become very relevant in wind speed forecasting [7,29]. Wind speed and power fore-
casting are influenced by meteorological variables, such as wind direction, barometric
pressure, temperature, humidity, and others. Because wind speed is a key factor in
wind power generation and wind farm planning, choosing the input variables has be-
come extremely important [13,30,31]. Wind speed is the most important factor in
a climate that varies according to geographical position [32,33]. An ANN model for
predicting wind speed based on measurements taken in Hamirpur has been developed
by Ramasamy et al. The MAPE and correlation coefficients achieved were 4.55% and
98.5% for predicting the daily wind speed. [34]. A forecasting model for short-term
household energy consumption was developed by Becalli et al. [35] using an Elman
network and weather variables. As a result of forecasting, the forecasting accuracy was
97.6% and the average error rate was 3.1%.
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In the last 20 years, the wind energy sector has experienced rapid growth [2,4,7].
Figure 1.1 shows the largest offshore wind turbine Vestas V236/15MW made to date.
The wind industry is growing exponentially as wind turbines are becoming more pow-
erful, and reliable, operating at lower costs, and reducing maintenance costs [2]. A
major obstacle for system operators in integrating wind power into the electrical grid
is the variability and intermittent nature of the wind [3,7]. In order to solve wind
intermittence, accurate forecasting tools are needed, which are mainly aimed at re-
ducing the cost of power system operation cost and reducing the variation of wind
turbine schedules [12,13]. At present, due to the fast spread of wind power generation,
worldwide wind speed forecasting techniques have significant great importance for the
characterization of wind resources, resource assessment, and forecasting of wind power
generation. Because of the complex physics of the atmosphere, wind power is generally
characterized by its instability and intermittence when forecasting based on a time
horizon [15,18,36]. For wind power to be incorporated into the electrical grid, it is
required that wind turbines are operated by integrated transmission systems, as well
as accurate forecasting tools based on weather forecasts [20,37]. A major objective of
wind speed and power forecasting is to predict wind speed and power with high preci-
sion and speed so that they can be incorporated into the power grid [3,38]. Wind speed
and power forecasting, spatial correlation forecasting, regional forecasting, probabilis-
tic forecasting, and offshore forecasting are the five classes of forecasting methods [3].
Various wind speed and power forecasting approaches, including physical, statistical,
and artificial intelligence for renewable energy systems have been performed to improve
the accuracy of forecasting methodologies [18,39,40]. Furthermore, the application of
machine learning techniques has enhanced energy efficiency, energy control, and sta-
bility in energy demand prediction in renewable energy systems [41]. These techniques
have been utilized in the modeling, design, and prediction of energy systems for many
years, with rapid development cite AHMAD2020102052,en12071301. These methods
have been used all around the world to assess wind power performance and collect
useful data for use in wind power producing systems [42—-44].

There are ten types of machine learning algorithms used in wind energy systems,
including ANN, MLP, ELM, SVM, WNN, ANFIS, decision trees, deep learning, en-
sembles, and sophisticated hybrid models [41]. Forecasting and prediction, prediction
and control, design optimization, fault detection, and diagnosis are four basic types of
ANN models that can be categorized based on the application [4]. In South America,
Zucatelli et al. [45] used an ANN approach to create a one-year short-term wind speed
forecasting model for Colonia Eulacio, Uruguay. The results revealed good accuracy
for the heights evaluated, as well as ideal wind speed forecasts at a reasonable cost of
computation. According to recent studies, forecasting accuracy declines over a six-hour
time frame, and the MAPE rises to roughly 15%.

Wind speed and wind power modeling and forecasting in complex terrain have
gained a lot of interest in recent years because wind speed increases on top of hills
and mountains that can be used to generate electricity through wind turbines [20,39].
For this reason, has been developed many research works dedicated to improving wind
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power forecasting performance. The wind power assessment in complex terrain must be
done carefully considering morphological features [6,46], and unstable weather regimes
to install wind turbines in a mountainous region [3]. FNN was used to predict hourly
wind speed in a coastal region with complex topography. To increase ANN accuracy
was used a wind vector incorporated variability [47]. Mana et al. [48] proposed two
models ANN pure and a hybrid ANN-CFD to forecast wind power in very complex
terrain in Italy. The two methods had similar performances. However, the hybrid
model showed better performance in low and high wind speed ranges. Tabas et al. [28]
analyzed a CFD technique to forecast wind power in complex terrain. It was stated
the combined presence of three complex factors: topography, heterogeneous vegetation,
and interactions between wind turbine wake.

In order to make a more accurate wind speed forecasting using real data measured in
complex terrain located at high altitudes. This study proposes wind speed forecasting
with great accuracy by using the NARX network used until now by a few researchers
as follows: Cadenas et al. [49] generated a model to forecast short-term wind speed in
Mexico by using the NARX model and compared with NAR and persistent models.
The results indicated that the NARX model had a performance of 4% over the NAR
and 11% over the persistence model. Gao and Er [50] proposed a NARMAX time series
model prediction using FNN and RNN as approaches to improve the performance of
the NARX model. Hence, comparative studies demonstrated that the FNN approach
can flexibly learn complex temporal sequences. Jawad et al. [51] developed a GA-
NARX model to predict short-term or medium-term wind power and electrical load.
The results showed good accuracy for short-term wind speed forecasting.

In recent studies, according to technological advances in machine learning. There-
fore, new deep learning algorithms have been designed and widely used for time series
prediction. Among these algorithms, the LSTM networks part of RNN are used for ac-
curate wind speed forecasting results [52]. Liu et al. [53] proposed a deep learning strat-
egy for multistep wind speed forecasting based on EWT to disintegrate original data,
LSTM to predict low-frequency data, and Elman networks to predict high-frequency
data. The results of the proposed model indicated good forecasting performance. Xie
et al. [54] presented a short-term wind speed forecasting model based on ARMA and
multi-variable LSTM network by using meteorological variables data in Beijing. The
results showed feasibility in forecasting and LSTM superiority over ARMA and simple
variable LSTM. These samples of LSTM studies show good feasibility for prediction;
as well as consider in this study this algorithm as a good option to improve the wind
speed forecasting performance.

From the literature review above, it is observed that have not been reported studies
about wind speed forecasting by employing LSTM or NARX models over complex
terrain located at high altitudes in the Western Ecuadorian Andes. The present work
improves on the previous ones in the fact that it is the first in predicting wind speed
at the highest altitude reported so far (4350 m ASL); as well as using RNN and DNN
models in place of hybrid models. The LSTM and NARX networks have been developed
using measured data instead of climatic models. Furthermore, it is validated by using
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DNN instead of hybrid models using wind speed measurements closer to the hub height
of high-power wind turbines. From this point of view, this study is unique, and the
conclusions obtained from the setup wind speed forecasting method can be helpful for
other researchers to forecast wind speed in mountainous terrains at high altitudes.

1.3 Description of the problem

In recent years, research has revealed that hydroelectric power designs in Ecuador
have not appropriately considered climate change sensitivity. Furthermore, climatic
conditions determine the variations in the electrical generation of this renewable energy
source. As a result, variations in rainfall patterns, in turn, causing the drought that
occurs from July to October of each year due to the absence of rainfall, could reduce the
flow of rivers that feed the dams for hydroelectric generation in Ecuador, could have a
significant effect on hydroelectric generation capacity. Drought concerns in prior years
compelled an increase in heat generation utilizing diesel engines, resulting in millions
of tons of greenhouse gas emissions [21].

To prevent the occurrence of this inconvenience, we need to promote the use of non-
conventional alternative energies in order to diversify the Ecuadorian energy matrix,
which is made up of 70% hydraulic power. The Resolution CONELEC 001/13/footnote
mark [1] of March 2014 established the objective of predicting hourly energy production
for each day as renewable non-conventional generators in the Ecuadorian electricity
sector for installations in centralized systems with an installed power of more than
10 MW, which is a preferential rate for the sale of electricity produced under the
preferential rate [55]. On the other hand, ARCONEL regulation 004/15 defines the
criteria and technical requirements for the connection of renewable generators to the
transmission and distribution networks. This is to ensure the quality of the electricity
service in the generator’s influence area and to maintain the voltage and current levels
within acceptable ranges.

Ecuador is a privileged country for the exploitation of wind energy, due to many
areas with high potentials, such as the Andes Mountains, due to its complex orography.
Specifically, one of the main areas with the greatest wind potential in the Highlands
is the wind passing between two volcanoes. The Wind Atlas of 2013 provides general
information on the wind regime in this zone. However, wind behavior in this zone is
specific because of the complex terrain orography. This causes large variations in WS,
but until now, this hasn’t been assessed in depth to take advantage of this high wind
potential for wind speed and power forecasting.

Wind speed behavior in the channel pass shows a wind speed-up effect originating
from the venturi effect. The Ecuadorian Wind Atlas at 80 m AGL uses an NWP
model and a mesoscale map, which suggests the need to prepare a WRA, short-term
WS forecasts, and power forecasts based on ANN models using collected meteorological
variables in situ in 2018.

01Generators that are subject to centralized dispatch must notify CENACE about the forecast of
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1.4 Thesis motivation

The main reason has arisen within the context of wind energy prediction, from the
critical need to have a tool that can predict short-term wind speed and power over
complex terrain with high accuracy, which has been required by electricity companies
and system operators, who have assigned significant economic investments in wind
farm projects. Furthermore, to generate and contribute original knowledge on wind
resource assessment in the Ecuadorian Andes and prediction of wind speed and wind
energy using DNN-RNN by highlighting the application of the wind speed forecasting
proposed model and modeling of wind characteristics in the study area using the Ansys
Fluent CFD software. Therefore, the feasibility of this wind farm project is highly
dependent on an accurate assessment and prediction of the wind power potential.

1.5 Thesis outline

The thesis is structured into seven chapters as follows:

Chapter 1 presents the thesis objectives, background, and contributions.

Chapter 2 introduces wind energy integration into the electrical grid and de-
scribes wind characteristics over complex terrain.

e Chapter 3 describes the current status of wind energy used for electricity gen-
eration in Ecuador and worldwide. Also, it shows wind energy integration into
the electrical grid.

e Chapter 4 examines different models used for wind speed and power forecasting.
Also, it describes the proposed model.

e Chapter 5 describes wind speed and power forecasting methodology using the
proposed model.

e Chapter 6 comprises the main results obtained for wind power assessment and
modeling of wind characteristics in the Ecuadorian Andes.

e Chapter 7 presents short-term wind speed forecasting, wind power, and wind
energy results using a theoretical wind farm in 2018. In addition, wind farm

micro-siting simulation results using Ansys Fluent CFD software are shown.

e The Appendix includes the journal publications derived from this research.

hourly energy production for each day, within the deadlines established in the Dispatch and Operation
Procedures, in order for CENACE to carry out the daily programming.



1.6 Thesis objectives and contributions

1.6 Thesis objectives and contributions

According to the motivations described above, there are two primary aims, encom-
passing other specific objectives:

1. Wind regime characterization over complex terrain in the Ecuadorian Andes in
2018 using the measured meteorological variables. This work has led to a pa-
per published in the Wind Engineering journal. Hence, the research developed
has contributed to an article submitted to the Electric Power Systems Research
(EPSR) Journal, which is currently under review.

e Determinate the wind characteristics and wind speed variation with the
height change.

e Select the most compatible wind turbine for the study area.
e Design a theoretical wind farm in the study area using Ansys Fluent CFD
software.

e Modelate TI and average WS in the study area using Ansys Fluent CFD
software.

2. Develop a methodology for a short-term wind speed and power forecasting model
over complex terrain in the Ecuadorian Andes. The work developed in this con-
text has contributed to a paper published in the Renewable Energy journal

e Elaborate the WS forecasting proposed model using linear regression models
as a baseline and DNN-RNN models to optimize the wind speed forecasting.

e Validate the WS forecasting proposed model using the meteorological vari-
ables measured in the study area.

e Predict short-term wind energy in the study area considering predicted wind
power.

e Determine the cost of short-term predicted energy in the study area using
NARX and LSTM networks.

The final result has been the design of a model based on statistical models RNN,
and DNN.

The case studies will be evaluated for the fulfillment of the specific objectives given,
as well as the forecast of power and wind energy, to test the accuracy of the proposed
prediction model, and the results obtained will be analyzed and compared to the results
of published works. Of course, the outcomes of the suggested model are expected to
outperform those of published studies.

1.7 Thesis publications

The following three papers are included in the thesis.
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1.7.1 Published papers

Paper 1

A novel probability density function applied to wind characterization in order to
evaluate the wind power potential in Tungurahua, Ecuador’s Andean region.

Javier Garcia del Valle, Alex Mayorga and Germanico Lépez, Published in Wind
Engineering, DOI:10.1177/0309524X18780383, 2018, Publisher SAGE. Quality in-
dexes of the Renewable Energy Journal: CiteScore rank 2021: 2.4, Third Quar-
tile (Q3), 43rd percentile, Subject Area: Energy: Energy Engineering and Power
Technology, Energy: Renewable Energy, Sustainability and the Environment, URL:
https://www.scopus.com/sourceid/13850. Hence, it has an Impact Factor (IF): 1,8,
Citations: Crosfef (1)

Paper 2

Short-term wind speed forecasting over complex terrain using linear regression mod-
els and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador

Germdnico Lépez and Pablo Arboleya, Published in Renewable Energy (183),
https : //doi.org/10.1016/j.renene.2021.10.070, January 2022, Publisher: Elsevier.
Quality indexes of the Renewable Energy Journal: CiteScore rank 2021: 13.6, First
Quartile (Q1), 90th percentile, Subject Area: Energy: Renewable Energy, Sustainabil-
ity and the Environment, URL: https : //www.scopus.com/sourceid/27569tabs = 1
Hence, it has an Impact Factor (IF): of 8,634, Citations: Google Scholar (14), Science
Direct (14), considering that the paper was published in January 2022, it is placed in the
94th quartile, according to the PlumX Metrics, URL: https : //plu.mx/plum/a/?doi =
10.1016/j.renene.2021.10.070theme = plum — sciencedirect —themehideU sage = true

1.7.2 Submitted paper

Paper 3 Status: In revision

Wind power assessment and wind farm design using Computational Fluid Dynamics
in the Andes Mountains, Ecuador

Germaénico Lépez, Pablo Arboleya, Diego Nifiez, and Andrés Freire submitted to
the Energy Conversion and Management Research journal on 2022- Nov- 25.



Chapter 2

Wind energy generation over
complex terrain

This chapter describes the wind’s origin and its characteristics. Wind over complex
terrain is also discussed, as well as the factors that affect wind speed over difficult
terrain.

2.1 Introduction to WECS

WECS transforms wind energy into mechanical power. This mechanical energy is
transformed into electricity by wind turbines. The energy is then used to do things like
pump water, process grains, or move machines in windmills. Windmills with a vertical
axis were probably the first wind turbines, dating back to 200 BC in Persia. They had
several arms on which they mounted sails to move their arms, which were initially made
from reed bundles. The first horizontal-axis windmills appeared in the Mediterranean
region in the tenth century. They were designed to harness coastal winds. In Europe,
horizontal windmills were first used a few hundred years later [56].

During the late nineteenth century, millions of windmills were built in the United
States as the American West was developed. Most of them were utilized to irrigate
farmland and ranches. Many European countries were using wind turbine generators
to generate power by 1910. Wind energy accounts for about 1% to 2% of the en-
ergy that comes from the Sun. This is around 50 to 100 times more energy than all
plants on Earth convert into biomass. Wind energy is a commercially viable renewable
energy source, with modern wind farms producing power for around $0.05 per kWh.
Wind-generated power is still not cost-competitive with coal- or natural-gas-generated
electricity for the vast majority of the market, even at that production cost.
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During the late nineteenth century, millions of windmills were built in the United
States as the American West was developed. Most of them were utilized to irrigate
farmland and ranches. Many European countries were using wind turbine generators
to generate power by 1910. Wind energy accounts for about 1% to 2% of the en-
ergy that comes from the Sun. This is around 50 to 100 times more energy than all
plants on Earth convert into biomass. Wind energy is a commercially viable renewable
energy source, with modern wind farms providing power for around $0.05 per kWh.
Wind-generated power is still not cost-competitive with coal- or natural-gas-generated
electricity for the substantial majority of the market, even at that production cost.

2.2 Wind origin and characteristics

2.2.1 Wind origin

The primary renewable energy resource on Earth comes from the Sun. Pressure
shifts over the surface of the Earth brought on by uneven solar radiation heating are
what produce global winds. The equator absorbs more solar energy than the poles
do at the planet’s surface. Depending on the received energy, convective cells develop
in the lowest layers of the atmosphere. A straightforward flow model shows that air
masses rise near the equator and fall near the poles. The circulation of the atmosphere,
which results from unequal heating, is greatly influenced by the effects of the Earth’s
rotation [57].

Uneven solar radiation heating causes pressure variations across the Earth’s surface,
which produce global winds. The equator absorbs more solar energy than the poles
do at the surface of the globe. As the number of incoming energy changes, convective
cells develop in the lower layers of the atmosphere. In a straightforward flow model, air
masses rise near the equator and fall at the poles. The circulation of the atmosphere,
which results from uneven heating, is significantly influenced by the impacts of the
Earth’s rotation [57].

The atmospheric pressure field changes due to fluctuations in heat transmission to
the Earth’s atmosphere, causing air to move from high to low-pressure regions. In
the vertical direction, there is a pressure gradient force, which is usually balanced out
by the downward gravitational force. As a result, the winds are mainly horizontal in
nature, responding to horizontal pressure gradients. Simultaneously, forces work to mix
the various temperature and pressure air masses that are dispersed across the Earth’s
surface. The atmospheric winds are affected by the inertia of the air, the Earth’s
rotation, and friction with the Earth’s surface.

Worldwide wind circulation, as seen in Fig. 2.8, involves large-scale wind patterns
that cover the entire planet. These have an impact on the prevailing near-surface
winds. It’s worth noting that this model is an oversimplification because it ignores the
impact of land masses on wind distribution. Air masses movement provides a sideways
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push, causing air to circulate anticlockwise in the northern hemisphere and clockwise
in the southern hemisphere around areas of low pressure.

2.2.2 Characteristics of wind in time and space

There are many ways in which atmospheric motions vary over time (seconds to
months) and over space (centimeters to thousands of kilometers).

2.2.2.1 Temporal variations

In conventional practice, variations in wind speed over time are categorized as
follows:

e Inter-annual: Wind speed varies over time and scales more extensively than one
year. Their impact can be substantial on long-term wind turbine production as
they estimate long-term mean wind at a site to predict interannual variability.

e Annual: Over most of the world, wind speeds vary significantly seasonally or
monthly.

e Diurnal: A typical diurnal variation is an increase in wind speed during the day
with the wind speeds lowest during the hours from midnight to sunrise.

e Short-term: Wind speed variations include turbulence and gusts over short-time
periods. Turbulent fluctuations are typically considered to occur when wind speed
changes have a stochastic character and have a period lower than ten minutes [57].

2.2.2.2 Location and wind direction variations

e Local variations The wind speed varies significantly between two sites near each
other due to local topographical and ground cover variations.

e Wind direction variations The direction of the wind also varies over the same

time scales as the wind speed. During wind turbine design and siting, short-term
direction variations are considered a result of the turbulent nature of the wind.

2.2.3 Wind characteristics

Wind resource characteristics can help estimate wind resource potential by consid-
ering topics like its global origins.
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2.2.3.1 Wind shear profile

Wind shear is defined as the horizontal or vertical variation in WS or WD with a
height change in a small portion of the atmosphere [58]. These variations are due to
some variables, such as elevation, atmospheric stability, the hour of the day, surface
roughness, and terrain shape [20,57]. Furthermore, it is also known as wind profile
[17,19]. In this work, the vertical wind speed profile was calculated using the power
law. Its basic equation is shown in Equation 2.1.

Va Zo\*

R 2.1

2-(2) (21)
Where :

V5 = the projected speed at the desired height hs
V1 = the observed speed at the measurement height hq
« = a non-dimensional power law exponent

The power-law exponent is very variable from 0.1 to 0.35 due to many parameters,
such as terrain elevation, the hour of the day, terrain classification, wind speed value,
atmospheric stability, and other thermal and mechanical factors [57]. This exponent
increases its value during the night hours, causing a stable atmosphere, and decreases
during the day hours, originating a neutral and unstable atmosphere [59] « can be
calculated from Equation 2.1 as is shown in Equation 2.2. This work was developed
while considering a neutral atmosphere.

~ InVa—-InWy
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2.2.3.2 Wind direction

Wind direction frequency information helps determine the preferred terrain shape
and orientations within a wind farm and to optimize the placement of wind turbines
[60]. In the context of wind resource assessment and wind power forecasting, directional
changes in surface winds have significant relevance [61]. Wind speed and direction
change over the same time scales. Seasonal changes may be minor, on the order of 30
degrees, while the average monthly winds may shift 180 degrees in a year. The turbulent
nature of the wind causes short-term changes in wind direction. Wind turbine design
and placement must account for these short-term fluctuations in wind direction. With
changes in wind direction, horizontal axis wind turbines must spin (yaw). Yawing
places gyroscopic loads on the turbine construction and puts any yawing mechanisms
to the test. Blade loads are affected by crosswinds caused by shifts in wind direction.
As a result, short-term changes in wind direction and related motion have an impact
on components’ fatigue life, such as blade loads and yaw drives [57].
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2.2.3.3 Turbulence Intensity

Wind turbulence is the rapid disturbance in the wind speed, direction, and vertical
component. Usually, the duration is from ten minutes to one hour, ranging from 0.1 to
0.4. TI is defined in Equation 2.3 and is an influential site characteristic that depends
on the surface roughness, thermal behavior, height above the surface, and topographical
features [17,57]. High turbulence levels may decrease power output and cause extreme
loading on WT components.

g
TI = — 2.
2 (23)

Where o is the standard deviation of wind speed, and V is the mean wind speed.

2.2.3.4 Weibull PDF

The Weibull distribution based on k and ¢ parameters has been widely used for
short-term and long-term wind data studies to represent the probability of occurrence
of mean wind speed throughout one year [17,57,62].

The PDF Weibull is given for Equation 2.4.

=+ (2)2) e[

Where: k is the shape parameter dimensionless, which describes the wind speed distri-
bution, and c is the scale parameter measured in m/s.

(2.4)

There are numerous approximations to calculate Weibull parameters k and ¢; one
of them is the analytical model based on mean wind speed V and standard deviation
o which are shown in Equation 2.5 and Equation 2.6 respectively [37].

For 1 <k ;10
oo\~ 1086
%) e

Where v is the gamma function.

The annual mean wind speed V expressed in Equation 2.7 can be calculated from
Equation 2.4.

V =cy [1 + ] (2.7)
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The CDF is the time interval or probability that WS may be lower or equal to a
determined wind speed value. CDF is given in Equation 2.3 [57].

F(V)=1—exp |- <‘C/>k (2.8)

2.2.3.5 Wind Power Density

The relationship between wind speed and temporal (frequency) distribution at the
location determines WPD. Also, it is known as wind energy flux according to Equation
2.9. Furthermore, wind power resources are compared using WPD, which is indepen-
dent of wind turbine size, according to NREL, and are considered as the quantitative
basis of wind standard classification [37].

WPD = {ﬂ = M * px V3(W/m?) (2.9)

2.2.4 Wind power estimation

This subsection will determine the productivity (both maximum energy potential
and machine power output) of a given wind turbine at a given site in which wind speed
information is available in either time-series format or summary format.

2.2.4.1 Available wind power

Theoretically, power available from a wind speed stream (V) over a unit rotor area
can be calculated using Equation 2.10.

B pAV3
2

Pa (2.10)
Where:

Pa = Wind turbine active power (W)

p = Air density

A = Blades swept area (m?)

V = Wind speed (m/s)
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2.2.4.2 Efficiency in wind power extraction

The Power Coefficient (Cp) measures the efficiency of wind power extraction, which
is the proportion of power extracted by the turbine to the overall power of the wind
resource as is indicated in Equation 2.11 [63].

P
Cp=="T (2.11)
PWind

As a result, the WT power capture process is given in Equation 2.12.

p.AV3.Cp

5 (2.12)

Pyt =

Where:
Pyt = Wind turbine captured power (W)

The maximum extractable power fraction actually has a theoretical upper bound
known as the Betz limit. According to Betz’s theory, the maximum power coefficient,
Cp =16/27 (59 percent), is the highest that a conventional wind turbine can achieve
in terms of efficiency [57].

2.2.4.3 WT power curve

Each wind turbine has its own characteristic power curve, and its power output
varies as the wind speed increases. In addition, by using a power curve, wind turbine
energy production can be predicted without having to consider the details of its various
components. Each wind turbine has its own characteristic power curve, and its power
output varies as the wind speed increases. In addition, by using a power curve, wind
turbine energy production can be predicted without having to consider the details of
its various components [57]. Furthermore, power curves show the output of electrical
power in relation to hub height and wind speed. A wind turbine generator’s perfor-
mance is influenced by three key points on the velocity scale, as shown in Figure 2.1.

e Cut-in speed: The slowest wind speed that the machine can produce power at.
Modern WTs typically have speeds of 3-4 m/s.

o Rated speed: Wind speed at which the electrical generator produces its maximum
output. In addition, the ideal wind speed range for wind turbine operation to
reach maximum power generated is from 12 to 15 m/s [17,19].

e Cut-out speed: During wind farm operation, the cut-out wind speed is exceeded
25 m/s in order to protect the wind turbine from overloading.

The following three approaches will be considered to calculate wind power:
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Power (kilowatts)
A Rated output speed Cut-out speed

Rated output power j ‘L

i Power curve

Cut-in speed

3.5 14 25

Steady wind speed (metres/second)

Typical wind turbine power output with steady wind speed.

Figure 2.1: WT power curve [64]

e Direct use of data: Using a set of N wind speed readings collected during a time
interval At, the following relevant parameters can be calculated: average WS,
the standard deviation of WS, average WPD, and average Wind Energy Density.

e Method of bins: This method is also useful for analyzing wind data and predicting
turbine productivity. When utilizing this method, a histogram displaying the
number of occurrences and bin widths is commonly shown.

e Velocity and power duration curves from data: The velocity duration curve is a
graph showing wind speed on the y-axis and the number of hours per year that
the wind speed equals or exceeds any certain value on the x-axis.

In a hypothetical example, the three steps required in calculating wind power gen-
eration from wind speed are as follows [64]:

e 1. Mesoscale forecast wind speed interpolated to site.
e 2. The turbine power curve is used to determine gross production.

e 3. Subtract the losses associated with wind farms.

In most cases, the power curve established by manufacturers is only available for the
desired air density level, so it must be changed to meet the air density at the site [57].
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2.2.4.4 AEP and CF

The AEP is composed of gross and net energy production. The gross energy pro-
duction is considered the wind farm production without losses, as is shown in Equation
2.13.

Nd Ns
GEP = Z Z P, Fij58760 (2.13)
i=1 i=1
Where Nd is the number of direction steps, and Ns is wind speed bins, F;;; is the
wind power output for each direction from sector i, to wind speed, bin j, Fj;; is the
frequency of occurrence of wind speed.

Furthermore, wind resource assessment is influenced by the estimation of wind
power losses. Consequently, annual net energy production is estimated considering the
following losses: plant availability (2-4%), electrical losses (2-4%), turbine performance
(1.5-5%), environmental (1-3%), and curtailment (1-3%). Other losses, such as the site
climate and the project location, were considered to be 12% [37].

The CF prediction of a wind farm using data from a measurement campaign is
considered a complicated work [65]. In this work, the CF is estimated for one year
according to Equation 2.14.

actualenergyproduction

CF = 100 (2.14)

energyatratedspeed

2.2.5 Complex terrain effect on wind characteristics

Terrain influences on wind flow decrease with height above ground level until they
vanish completely at the altitude where the wind blows horizontally without changing
direction.

2.2.5.1 Horizontal wind speed-up effect

A wind flow crossing a hill has to squeeze through a narrow passage. While the
same amount of air must be moved through at a faster speed (mass-conservative), the
terrain has the effect of increasing the wind speed as is shown in Fig. 2.2. The density
of streamlines determines the wind speed; the denser the streamlines, the faster the
wind, assuming attached flow near the surface [57]. A relative horizontal fractional
speedup, A u, is defined as shown in Equation 2.15.

PN

. (2.15)

Where: po = On top of the hill, it represents the horizontal wind speed

1 = Over the terrain upstream of the hill, it represents the horizontal wind speed.
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/

Figure 2.2: Wind streams flow over an idealized hill [57]

2.2.5.2 Vertical wind speed-up effect

Maximum vertical wind speed-up occurs at altitudes below and above 1, where the
wind profile exhibits a distinct linear trend. But above I, the wind speed seems to
increase with height at a consistent rate. A 2L-height intersection is produced by
extrapolating the upstream and hilltop wind profiles. Fig. 2.3 provides definitions for
the two characteristic length scales, with L denoting the height at which the maximum
speed-up effect is found and 1 denoting the half-width of the hill’s middle [57]. However,

. :
]
S r
Undisturbed /
upstream profile [ 3 )
- 4 = Profile on

Figure 2.3: An idealized hilltop has undisturbed upstream wind profiles and a hill-top wind
profile [57]

for steeper slopes, the flow tends to become detached, resulting in flow separation,
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where arrows represent wind direction; dashed lines the virtual surface (see Fig. 2.4).
The separated flow layer generates vortex shapes, forming a virtual surface for the flow
above, which by and large remains laminar. In neutrally stratified air conditions, it is
commonly considered that flow separation occurs when the upstream slope or lee slope
exceeds 22° or 172, respectively. This is the case of the virtual slopes, which is the
basis for terrain categorization from flat where there is no flow separation to extremely
complex with flow separation [14,57]. Furthermore, Correa Radunz et al. [66] evaluated
the effects of atmospheric stability on the power performance of two wind farms located
over complex terrain. Consequently, performance variations are most likely the result of
atmospheric stability and flow patterns on the leeward side and windward slope rather
than in the wake. If the dimensions of the hill perpendicular to the wind direction are

Upstream virtual slope 22 Lee side virtual slope 17

Figure 2.4: Flow separation indicated by vortexes creates the virtual surface [57]

significantly greater than L, then it may be considered a long and gentle ridge, and the
flow may be regarded as two-dimensional. Equation 2.16 and Equation 2.17 are used
for fractional speed-up and 1, respectively.

h
A~ 2o 2.1
p2g (2.16)

0.67
1~0.3Z0 <Z0> (2.17)

2.2.5.3 Hill effect

The main characteristic of the flow over a hill or mountain chain is the acceleration of
the wind speed over the summit. A boundary layer over the crest can be separated into
two layers. Above the inner layer where frictional forces dominate over inertial forces
is the outer layer where the inertial forces dominate. Maximum fractional speed-up
occurs at the boundary between the inner and outer layers. Commonly, wind turbines
with hub heights over 100 m are located in the outer layer as is indicated in Fig.
2.5 [14].
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Figure 2.5: The principal characteristic of wind speed conditions over a ridge [14]

2.2.5.4 Tunnel effect

On the windy side of a building or between mountains, the air becomes compressed,
and its speed increases, as is indicated in Fig. 2.6 [20]. The placement of a wind turbine
in a natural wind tunnel is another way to achieve higher wind speeds than those found
in the surrounding areas [57]. Furthermore, wind speed in narrow valleys is typically
lower or negative wind shear, and there is less turbulence than the wind speed in an
open valley. This shows how geographic features can influence wind speed at hub
height, such as terrain or surface cover [67]. Moreover, the speed-up in a mountain
pass varies significantly depending on the incoming wind direction.

2.2.6 Winds over complex terrain

Forecasting wind speed can be much more challenging in locations with steep or
uneven terrain than in flat ones. The orography of the complex terrain on the west-
ern range is what causes mountain and valley breezes, which are similar to anabatic
and katabatic winds but smaller in scale [14,17,19]. Mountains produce three types
of thermally driven secondary circulation systems that alter the vertical structure of
the mountainous ABL under simple large-scale pressure gradients and mainly cloudless
skies: slope winds, mountain winds, and valley winds, as depicted in Fig. 2.7. Addi-
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Figure 2.6: Wind speeds increased by mountains channeling prevailing winds [57]

tionally, Lubitz [68] points out that the speed-up in a mountain pass changes greatly
depending on the direction of the oncoming wind.

In addition, a diurnally fluctuating wind system between mountain ranges and the
nearby plains resembles land-sea wind systems. The three occurrences have a one-day
time scale, but they each occur on a different spatial scale. The range of the slope
wind scale is a few meters to a kilometer. On a geographical scale ranging from a few
hundred meters to a few hundred kilometers, the lengths of valleys, mountains, and
valley winds are revealed.

The evening flow consists of dense air forming on slopes draining into the valley
(downslope, drainage, or katabatic winds) and air pooling at the valley’s bottom being
channeled to a nearby plane (down-valley winds). Topographic obstacles, valley ge-
ometry, and hydraulic control at the valley mouth all influence the amount of pooling
that occurs in a valley. During the day, anabatic winds occur when the wind consists
of upvalley and upslope air flows, propelled upward by buoyancy forces [14]. Moreover,
the speed-up in a mountain pass varies significantly depending on the incoming wind
direction [68].

2.2.7 Complex terrain classification

The height variations of terrain strongly influence the wind profile, as it is the
surface of the atmosphere. We categorize terrain according to orography to estimate
the suitability and uncertainty of various wind flow models. As shown in Fig. 2.8,
the attached flow will tend to become detached from the ground, and flow separation
will occur on steeper slopes. Within the separate layer of flow, virtual surfaces are
generated, which serve as a base for the flow above, which is largely laminar. Modeling
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night

Figure 2.7: Local and regional wind systems over mountains at night-time (top) and at
daytime (below) [14]

wind flow and assessing wind resources become tremendously more difficult when there
is a separation that no longer follows linear laws.

As a result, the possibility of flow separation forms the basis for categorizing topog-
raphy, ranging from basic (no flow separation) to exceedingly complex (flow separation).
When the upstream slope is larger than 22° and the lee slope is greater than 172 under
neutrally stratified air circumstances, such as the virtual slopes given in Fig. 2.8, flow
separation is usually recognized. Because wind can blow from any direction in nature,
17 degrees slope is often used as a threshold between simple and complex. The terrain
classification is carried out considering the main terrain characteristics as follows:

e Simple flat Category I: Winds near the surface are solely changed by roughness
changes and shielding impediments terrain.

e Simple hilly Category II: Terrain is a flat, gentle-sloped hills landscape. The
hills’ typical horizontal dimensions are a few Km. In addition to roughness and
obstacles, hills also accelerate winds near the surface.

e Complex hilly Category III: Terrain is hilly and complex. Furthermore, the hills
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Upstream virtual slope 22" Lee side virtual slope 17

Figure 2.8: Steeper slopes [14]

are typically no larger than a few kilometers in height; where flow separation
can no longer be considered empty, and flow modeling, becomes more compli-
cated, with too many unknowns to be ignored. In these instances, linearized
flow models tend to overstate the orographic speed-up effect, requiring the use
of three-dimensional flow models to hind the winds. Despite the fact that linear
models like WASP are incapable of reliability by calculating winds in complex
terrain, some suggest that adjustments can be made to obtain more acceptable
results.

e Extremely complex mountains Category IV: Most wind flow models, if not all,
cannot account for the complex terrain, which includes both high mountains and
deep valleys. The wind climate may be dominated by thermally induced valley
winds. A change in the pattern of the boundary layer of the atmosphere is also
possible [57].

2.3 Factors affecting wind speed

2.3.1 Temperature

A wind farm’s operating environment is greatly influenced by the air temperature.
This atmospheric variable is used to calculate air density, which has an impact on
power generation estimation [19]. If the atmosphere is modeled as a dry ideal gas, the
relationship between a change in pressure and elevation is given by Equation 2.18.

OP = —pg0z (2.18)

The negative sign arises from the tradition that height z is measured positively
upward, and pressure p is measured positively downward in the positive z direction.
For an ideal gas closed system of unit mass undergoing a quasi-static change of state,
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the first law of thermodynamics is as given in Equation 2.19.
1
dq = Ou + podv = Oh — vdp = CpresdT — ;8p (2.19)

where T is the temperature, ¢ is the amount of heat transferred, u is the internal
energy, h is the enthalpy, v is the volume, and Cpres is the constant pressure specific
heat.

Equation 2.18 becomes 0 q = 0 for an adiabatic process to obtain Equation 2.20.

CpresdT = %ap (2.20)

Under adiabatic conditions, the change in temperature is constant if the changes in
g and Cpres with elevation are assumed to be negligible, as is shown in Equation 2.21.

(8T> :_0.098 C (2.21)
0z Adiabatic m

According to conventional nomenclature, the atmospheric lapse rate G is equal to
the inverse of the temperature gradient in the atmosphere. Consequently, Equation
2.22 gives us the adiabatic dry lapse rate [57].

[=— <g€> ~ LC (2.22)

Adiabatic 100m

The dry adiabatic lapse rate measures the stability of the atmosphere. In the middle
latitudes, the atmospheric lapse rate typically decreases linearly with elevation up to
about 10,000 m [57] as is shown in Equation 2.23.

Standard B 10800m N 100m

(8T) ~ (216.7-288)°C ~ 0.0066°C (2.23)
0z

The temperature profile declines with increasing height near the ground before
sunrise and then reverses after sunrise. Air near the ground is heated, causing a
gradient in temperature close to the earth’s surface. Up until Zi (called the inversion
height), the temperature gradient for the air near the Earth’s surface increases [57].

2.3.1.1 Thermal stratification of the atmosphere

Air parcels rise adiabatically as a result of the decrease in atmospheric pressure,
causing the inner energy of the fluid element to expand. The fluid element’s tempera-
ture decreases due to this expansion. During neutral conditions, the temperature of the
new environment where the air parcel moves is unchanged, and no force is pushing it
further upward or downward. In addition, to compensate for cooling due to adiabatic
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expansion, the potential temperature related to the vanishing temperature gradient is
also increased. Furthermore, the pressure decreases linearly with height in a simplified
version [15]. At a height z, the potential temperature © is expressed in Equation 2.24.

©=T()+ [z (2.24)

Where T indicates absolute temperature and [ is the dry adiabatic temperature gra-
dient expressed in Equation 2.25.

K
—82T =~ 0.01— (2.25)
m

Three different types of thermal stratification can be distinguished using the vertical
gradient of potential temperature.

e Neutral stratification 0z = 0, the vertical momentum flux is not affected by
vertical temperature stratification.

e Unstable stratification 020 < 0, buoyancy enhances the vertical momentum trans-
port due to temperature stratification e.g. sun radiation on sunny days.

e Stable stratification 0z > 0, in a vertically stratified atmosphere, momentum is
dampened by temperature stratification. In most cases, this occurs during clear
nights.

The gradient sign only determines whether vertical air parcel movements are en-
hanced or dampened. In consequence, the power density of thermally driven turbulence
is greater than the power density of mechanical turbulence [69].

2.3.2 Air density

This variable is in proportion to air temperature and air pressure, which decreases
with height and temperature increases [57]. Wind power output decreases with lower
air density values [37]. The air density for the site of the study was calculated using
the ideal gas law shown in Equation 2.26.

P

oy

(kg/m?) (2.26)

Where P is air pressure expressed in KPa, air temperature in Kelvin degrees, and
R is the universal constant for gases (287 KPa/JxKg). International standards assume
288.15 °K and 101.32 kPa for the sea-level temperature and pressure [57].

Because of the unequal solar heating of the Earth’s surface, air pressure gradients
never totally vanish. When the air above the surface heats up, it expands and rises,
lowering the pressure. When the surface cools, the pressure rises [19]. The hydrostatic
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equation (Equation 2.27) describes this decrease in the absence of strong vertical accel-
erations. In this way, air pressure decreases with height, which causes the air density
to decrease [14].

oP gP
S —w=-% (2.27)

The atmospheric pressure is given by p. The vertical coordinate is given by z,
Earth’s gravity by g, the actual air density given by p, the specific gas constant of air
R, and the absolute temperature given by T.

2.3.3 Earth’s rotation

The Coriolis effect is caused by observing motion from a rotating reference frame,
such as the Earth. At the equator, the Earth’s surface moves faster around its axis
than at the poles as is indicated in Fig. 2.9. Objects moving freely toward the equator
cause the surface below them to speed up toward the east. A surface observer perceives
from its perspective the object turning westward. In addition, the combination of
temperature gradients and Coriolis forces produce equatorial trade winds and mid-
latitude west winds. A relatively humid, warm air mass tends to climb to high altitudes
through convection near the equator. Due to the Coriolis effect, air flowing into an
area turns westward, producing easterly Trade winds [19].

2.3.4 The wind profile

The relationship between AGL height and horizontal wind speed at that height
defines a wind profile. The wind profile has two fundamental characteristics:

e Near the surface, there is no wind, and as one rises in altitude.

e The rate at which the wind changes from being extremely rapid near the surface
to significantly slower further up [15].

In studies on wind energy, the vertical profile of wind speed has typically been modeled
using two mathematical models or laws, such as logarithmic law and power law.

062 According to the convention, wind direction can be determined based on the direction where
the wind is blowing from. In this way, winds blowing toward the north are described as southerly
winds.”
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Figure 2.9: Global flow circulation [14]

2.3.4.1 Logarithmic law

A logarithmic wind profile is derived from simple physical considerations applicable
to the surface layer, which is described in Equation 2.28.

.z
[, = %.lni; Z> 7, (2.28)

Where:
k von Karman’s constant equals 0.4
Z Wall height

Z, Surface roughness length

2.3.4.2 Power law

The logarithmic profile law Equation 2.28, which is based on physical and dimen-
sional reasoning, is sometimes replaced with empirical power law to characterize the
vertical wind profile (Equation 2.29).
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) =iz (Z) (2.29)

where: Zr = reference height
7 = given height
«a = power law exponent or Hellman exponent

The findings of comparing the slope and curvature of the power and logarithmic
profiles reveal that the power law has the same slope and curvature as the logarithmic
profile, which can only be found in the limit for completely smooth surfaces when the
power low exponent tends to zero. As a result, for neutral stratification, it is impossible
to create a power law that fits the logarithmic profile over a wider range of heights [14].

2.3.4.3 Roughness class and length

In the ABL lower than 1 Km AGL, wind speeds are affected by friction with the
earth’s surface. In the wind industry, a difference is made between the terrain rough-
ness, the influence of obstacles and the terrain contour influence also named the orog-
raphy of the area. The roughness class from the roughness length (Z,) is the height
AGL where the wind speed is theoretically zero. When the wind profile moves towards
lower speeds as we approach ground level is often named wind shear. The friction
speed is related to the shear stress of the terrain with the density of the fluid and is
represented by Equation 2.30

Mo = 4 | — (2.30)

Where:
1y Friction speed
T, Wind shear stress
p Air density

Theodore von Karman stated in 1930 that in a turbulent flow, its mean speed at
any point becomes proportional to the logarithm of the distance between any place
and the wall [70]. Equation 2.30 represents the average horizontal speed located at the
height of z.

The horizontal average velocity p, is known as the logarithmic wall law, and only
is used for flows that are closer to the wall. This method has been put into practice to
estimate the average velocity profile generated in the surface layer, but it is valid up
to 150 meters in height as long as there are strong winds.

The term z, indicates the size of the eddies generated on the surface of the ground
when the ground has a greater roughness; the eddies will be directly proportional to
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the roughness of the surface. Table 2.1 shows the roughness values of different rough
obstacles on uniform study surfaces.

Table 2.1: Roughness and length for some types of terrain [57]

Terrain Roughness Roughness
description class length (m)
Ice or mud 0 0.001
Outdoors, grass, airport lands 0.5 0.24
Agricultural land with
scattered buildings 1 0.03
0.5 0.24

Agricultural land with
fences up to 8 meters in height
and some houses separated
by more than 1 km. 1.5 0.055
Cities, villages, agricultural
land with high fences,
and forests 3 0.4
Centers of cities
with tall buildings 4 1.6

2.4 Wind resource assessment

The most known methodology for WRA includes the following steps:

2.4.1 Preliminary assessment

The preliminary evaluation provides a general notion of how the local wind climate
behaves (diurnal, monthly, seasonal, and annual) based on the available wind resource
and inputs from local people.

2.4.2 Wind resource assessment site

This stage refers to wind measuring programs used to characterize the wind resource
in a specific location or collection of areas where wind power development is being



32 Wind energy generation over complex terrain

investigated. For an estimation of WPP, it is mandatory to have wind data for a
minimum of one year. Nevertheless, large data measurements are more accurate [71].
The most common goals of this wind measuring scale are to:

e Determine or confirm whether there are adequate wind resources in the area to
warrant additional site-specific investigations.

e Compare areas to see where they stand in terms of development potential. Ob-
tain representative data in order to estimate the performance and/or economic
viability of specific wind turbines.

e Look for prospective locations for wind turbine installation [60].

2.4.3 Micrositing

Micrositing is the process of determining the precise placement of one or more
wind turbines to maximize overall AEP [60,72]. Each location must meet a number
of criteria, including existing wind resources, and distances from other wind turbines
nearby [73]. Furthermore, the lifespan of wind turbines is usually 20 years. Never-
theless, within the design parameters of wind conditions, such as mean wind speed,
turbulence intensity, inflow angle, and wind shear. In the case of exceeding the de-
sign limits, the major components may experience excessive wear and tear, resulting
in higher maintenance and operation costs [20]. The purpose of this procedure is to
design an efficient wind farm that fulfills the following requirements:

e Productivity. Annual Energy Production should be maximized with this system.
e Durability. The wind farm will approach the end of its expected service life.

e Possibility from a technical standpoint. The wind turbines will be placed in easily
accessible areas.

In recent work, Song et al. [74] proposed an approach to optimize wind turbine
micrositing using CFD to evaluate wind power variation by changing wind direction.

Results showed that by optimizing the position of the turbines in a wind farm, the
production of power can be more stable without reducing the yield.

2.5 Wind characteristics modeling using CFD

2.5.1 Mathematical formulation

The Navier-Stokes equations allow us to predict the flow of fluids. These equations
are not solvable analytically, except for specific cases, and it is complex to analyze the
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fluid behavior. For this reason, numerical and experimental models are used to obtain
a solution close to reality.

e Mass or continuity conservation equation according to Equation 2.31
ap 0

(p.U;) =0 (2.31)

e Equation for the conservation of momentum as is shown in Equation 2.32

op 0 , . oP  Otij
— Uj)) | = — 2.32
P (8t + i U UJ)) ot oa, (2:32)
e Energy conservation equation according to Equation 2.33
OFE 0.Ujny 0 . 0 oT
— = —.(U; — k— 2.
p<8t T o, > g (Ui + 5 +< axj> (2:33)

Where:
p flow density
Components that make up the viscous tensor stress
w; Cartesian speed components to direction Xi
1; Cartesian speed components to direction Xj
P Fluid pressure
717 Components that make up the viscous tensor stress
E Total energy
H Total enthalpy
k Thermal conductivity coefficient

T Absolute temperature

2.5.1.1 Turbulence model k-¢

The discretization techniques and turbulence model selection represent an impor-
tant function in the simulation accuracy of turbulent airflow [75]. The RANS turbu-
lence selected model contains transport equations that work with mean velocities and
scalar variables ¢, which are turbulent flows, so the Reynolds stress is represented by
the Equation 2.34

Reynoldsstress = [ft; (2.34)

The turbulent transport equation originates with the addition and subtraction of dif-
ferent terms such as production P;;), which is obtained from the gradient of average
velocities. Another term is dissipation €;;, to originate from real-time viscosity acting
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on fluctuating speeds. Finally, we have a redistribution term ¢;;, which facilitates the
energy transfer using pressure and fluctuations caused by the fluid current as is shown
in Equation 2.35.

Netenergy = Producedenergy(P;;) + Redistributedenergy(eij) — Dissipatedenergy(¢ij)
(2.35)

External terms must be considered the convective and diffusive that go from one
point to another of the created domain, so this turbulence model is the most practical
and used, consisting of two equations that represent the turbulent properties of a flow
according to Equation 2.36 [76].

E2
Cp = pup=— (2.36)
Where:
C}, Constant Turbulent kinetic energy
k Dissipation rate of turbulent kinetic energy
¢ Turbulent viscosity
The equations of the described model are

e Kinetic turbulence according to Equation 2.37

0 0 0 oy Ok
a(pk)Jr oz, (pku;) = oz, K,u+ aak.axj)] +Gr+Gp—pe—Ym — S (2.37)

e Turbulence dissipation as is shown in Equation 2.38

J

0 0 0 opy  0Oe Oe €2
a(pﬁ) + 8.I‘i (pﬁ,ul) = % |:(/14 + &.’681‘])] + GlEﬁ.(Gk +C3€Gmb) CQEPE + SE
(2.38)

Where:
G, Generation of the kinetic energy of the mean speeds gradients
G Kinetic power generation by buoyancy
Y,, Contribution of fluctuating expansion on compressible turbulence
C1e,C¢, Cse, 0y Experimental constants
¢ Turbulent viscosity
oy, Prandtl number as a function of k
o Prandtl number as a function of €

The diffusivities represented in the expression of molecular and turbulent viscosities
of the turbulence model are shown in Equation 2.39, and Equation 2.40.
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2.5 Wind characteristics modeling using CFD

k= u& (2.39)
PK
r¢= u& (2.40)

The identification constants C1¢,Co¢, Cp, 0k, 0. were defined by Launder and Spald-

ing for standard models [75,77] and their values are:

Cie =144
Coe = 1.92
Cu =0.09
o =1

oo =13






Chapter 3

Wind energy integration into
electrical grid

This chapter shows the current state of wind energy for electricity generation in
the Ecuadorian context and worldwide. In addition, it demonstrates how wind farms
are integrated into electrical power systems and their importance. Further, the most
relevant horizons for wind speed prediction are examined, as well as the parameters
used for evaluating the level of accuracy of wind speed and power forecasting.

3.1 Current status of wind energy

3.1.1 Overview

Wind energy has progressed to the point that we can confidently state that we are
dealing with a clean, cost-competitive, and well-established technology. Starting with
a natural, renewable, and non-polluting source, modern wind turbines can produce
power at competitive prices when compared to traditional energy sources, allowing
wind energy to become the world’s fastest-growing energy source. The need to combat
global climate change has largely fueled the rise of wind energy, which avoids carbon
dioxide emissions while also producing none of the other pollutants associated with
fossil fuel or nuclear generation. Because it does not emit damaging gases or produce
long-term waste, this type of energy production is more likely to be accepted in society.
According to the most recent data, wind power avoided the emission of about 18 million
tons of C'Oy into the atmosphere in 2007, compared to what would have been emitted
if the electricity had been generated in coal, gas, or fuel thermal power plants. This
allowed it to contribute to the Kyoto Protocol’s commitments.
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3.1.2 Wind energy global

In the last two decades, renewable energies for electricity generation, including
wind, solar, biomass, and hydroelectricity, have seen rapid growth. This has helped
achieve a more sustainable energy transition with lower fossil fuel consumption and
fewer greenhouse gas emissions. Wind energy is a clean and mature technology with
rapid growth in the past 20 years [1,13]. Wind power generation worldwide reached
2020 with a total installed power of 743 GW (onshore and offshore), adding 93 GW
in added installations, and showing a record increase of 53% compared to 2019 as is
illustrated in Fig. 3.1. Some countries set up new installations around Asia, America,
and Europe with a growing tendency to increase wind power generation [78,79]. A
record 8300 TWh of electricity will be generated by renewables in 2021, representing the
fastest year-on-year growth since the 1970s. Approximately two-thirds of the growth in
renewables will be attributed to solar PV and wind. It is estimated that Chinese wind
electricity generation of 141 TWh will represent almost half of the global increase of
17% from 2020 around 275 TWh, followed by the United States, European Union, and
Indian renewable electricity, as is shown in Fig. 3.2 [80].In 2020, China, the US, Brazil,
the Netherlands, and Germany were the top five markets for brand-new installations.
Together, these five markets accounted for 80.6% of global installations in 2018, which
is 10% higher than in 2019 [78].
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Figure 3.1: Global wind power in 2020 [80]
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Figure 3.2: Wind electricity generation increase by country and region, 2020-2021 [80]

3.1.3 Wind energy in Latin America

In 2020 Latin America will remain the fourth largest regional market (5%), followed
by Africa & Middle East (0.9). In 2020, Brazil had the biggest wind-installed power
in this region, around 17.75 GW, which represents 3% of total onshore wind power as
is shown in Figure 3.3.

3.1.4 Ecuadorian power matrix

The management of the generation and transmission of the electrical energy systems
is provided by the National Interconnected System of Ecuador, where the indicators of
the infrastructure of the energy matrix are detailed until the year 2021. The national
capacity of the energy matrix is indicated in Table 3.1.

Ecuador’s energy matrix is made up of renewable and non-renewable energies, as
seen in Fig. 3.4, with hydraulic energy accounting for the biggest share of the matrix.
Ecuador is crossed by the Andes mountain range, where many rivers pour onto the
Atlantic and Pacific slopes, accounting for a large portion of this energy. Several dams
with hydraulic turbines for energy generation have been erected in the channels of these
rivers due to the flow and great cascade, lowering the consumption of fossil fuels and
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Figure 3.3: Wind installed power in Latin America, 2020-2021 [80]

Table 3.1: National capacity Electricity generation systems in Ecuador [81]

System Renewable Non-Renewable Total
(MW) (MW) (MW)

NIS 5294.4 2063.5 7357.8
Non-incorporated 13.9 1362.7 1376.6
Total 5308.3 3426.1 8734.4

the emission of hazardous gases to the environment. The contribution of renewable
energies to the composition of the energy matrix is minimal due to the high cost of
installation, and the cost of generated renewable energy is higher than hydraulic energy.

The national energy production using renewable and non-renewable energy in
Ecuador during 2021 reached a value of 28161 GWh as indicated in Fig. 3.5 where it is
observed that hydraulic energy reached the highest percentage because this energy has
the highest installed power. In contrast, the wind energy generated reached a minimum
level due to the small installed power composed of two wind farms.

3.1.5 Wind energy in Ecuador

The change in the energy matrix to increase the use of renewable energy sources is
supplemented by the effective use of non-renewable energy sources available in Ecuador,
with the goal of drastically reducing the usage of fossil fuels. The plan named ”Inven-
tory of Energy Resources of Ecuador for the Purposes of Electricity Production, 2015,”
which identifies the viable technical potential by kind of source of natural energy was
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Figure 3.4: Ecuadorian energy matrix composition [81]

used to determine the availability of other energy resources for the Generation Expan-
sion Plan 2018-2027. The resources are classified into five categories: A. Hydraulic
resources B. Geothermal resources C. Solar resources D. Wind resources E. Biomass
and other energy sources resources

In Ecuador, wind power reached 21.5 MW in 2013, which represents around 0.26%
of total installed power systems [22,82]. Ecuadorian wind power is composed of two
wind power investments. The first is the Villonaco wind farm, which is installed at
the highest altitude worldwide (2720 m ASL), and holds an installed power of 16.5
MW supplied by 11 WT Goldwind 70/1500 KW each [83]. This wind farm operates
under particular conditions, such as an annual mean wind speed of over 10 m/s, low air
density around 0.89 kg/m?, and TI of 0.15 considered as A-class [84]. The second wind
farm is located in the Galapagos Islands with a capacity of 4.6 MW [22,85]. Nowadays,
the MEER has approved the construction of the projects to increase wind generation
Villonaco II and Villonaco III with an installed power of 110 MW, and Conolophus
(14MW) [83].

The wind Atlas published by CONELEC estimates the feasible wind potential at
around 884.2 MW. Most wind potential is in the mountainous region of the Andes
Highlands [22]. The full wind gross potential in Ecuador is around 1670 MW, and
annual wind energy production estimated at 80 m AGL, can reach 2868.98 GWh/year
[83].
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Figure 3.5: National energy production [81]

3.2 Integration of electrical energy of wind origin in

the electrical grid

3.2.1 Relevant companies of the Ecuadorian electrical system

The following are the most important firms involved in Ecuador’s electrical system:

e MEER: Created to serve the Ecuadorian society through the formulation of the

national policy of the electricity sector and the management of projects.

CONELEC: Designed to regulate the electricity sector and ensure compliance
with legal provisions, regulations, and other technical standards for electrification
in the country in accordance with the national energy policy [55].

CELEC: It is characterized as a strategic public service. Its goal is to provide
electrical service, which must adhere to the following principles: obligation, gen-
erality, uniformity, responsibility, universality, accessibility, regularity, continuity,
and quality. CELEC EP’s primary activities are as follows: 1. The generation,
transmission, distribution, commercialization, import, and export of electrical
energy; for which it is authorized to carry out all related activities, including,
but not limited to: a. the planning, design, installation, operation, and main-
tenance of systems that are not part of the National Transmission System. b.
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Purchase, sell, exchange, and market energy with distributors, other generation
companies, large users, exporters and importers, and engineering works [86].

e CENACE: The National Electricity Operator’s (CENACE) mission is to keep the
country’s energy supply in the best possible condition in terms of safety, quality,
economy, and sustainability, as well as to improve the commercial administra-
tion of the National Electric Transmission System, and International Electricity
Transactions [87].

3.2.2 Effects on the operation of the electrical grid

Technological progress in wind generation leads to the construction of high-power
wind turbines, used in wind farms with large installed power, which are generally lo-
cated in deserted areas with low energy demand. Therefore, wind energy generated
must be adjusted at high voltage levels via substations to the transmission and distri-
bution networks [59]. Wind energy integration is difficult due to the wind’s variability
and randomization, which causes disconnection in low-speed situations or when wind
speeds surpass the wind turbine’s cut-off speed. As a result of this condition, the other
systems contribute more to keep the electrical system balanced.

The main characteristic of wind energy regarding integration into the electrical grid
is that it is not programmable because the electrical production cannot be specified in
advance due to the following reasons:

e High vulnerability to voltage gaps

e Electric generation with high intermittence

Impossibility of control of electricity generation

Lack of certainty in the wind forecast

e Requires reactive power control

The Villonaco wind farm is a significant project of Ecuador’s Government that
helps to reduce fossil fuel usage and greenhouse gas emissions. At 2720 meters ASL,
this wind farm is positioned on the summit line of Villonaco mountain [86]. For this
reason, the electrical energy produced at the Villonaco wind farm must be discharged
through a substation to the 138 KV distribution network of the national transmission
system, as shown in Fig. 3.6.

3.2.3 Importance of short-term wind energy forecasting in wind
farms

In electrical power systems, electrical energy cannot be stored on a large scale.
As a result, the generation of electrical energy from wind sources must be planned
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Figure 3.6: National Transmission System [86]

ahead of time, as the electrical power sent to the network cannot be managed fast. It
is necessary to manage the hydraulic reserves when the generators fail and are out of
service in order to maintain a constant balance between generation and demand. There
are three types of reserve regulations:

e Primary: Changing the system frequency by adjusting the speed of the turbine
rotors in operation in less than 15 seconds.

e Secondary: It is a power reserve of the generators synchronized with the network,
it is used only to correct frequency drops from 15 to 150 seconds. It is activated
by the network operator after the primary regulation has been exhausted and to
recover it.

e Tertiary: It is a non-spinning reserve available after 30 minutes to 1 hour, to
recover the system’s spinning reserve [59)].

Regarding wind energy prediction in Ecuador, the CONELEC 004/11 regulation
named Treatment for energy produced with non-conventional renewable resources in-
volves renewable generation plants with an installed capacity of up to 50 MW. This
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Regulation sets preferential prices for energy obtained using renewable resources. Like-
wise, it establishes a preferential dispatch for energy delivered to the national trans-
mission system. This electrical energy delivered must have the same quality as the
energy produced with non-renewable resources. Regarding the energy, the forecast is
to be delivered to the National Transmission System, which must inform CENACE of
the hourly energy forecast to be produced each day within the established period, in
order to carry out the daily generation schedule for the next day.

3.2.4 Forecasting horizons

With respect to forecasting methods by using time horizon, wind power is rep-
resented by its instability and intermittence because of the complex physics of the
atmosphere [15,18,36]. To integrate variable wind energy into the electrical grid are
required integrated transmission systems for wind turbine operation and accurate fore-
casting tools, with weather forecasting included [88-90]. In addition, the expected
demand is required in hourly intervals in the energy markets at least one or two days
ahead [38]. Wind power forecasting is the estimation of wind conditions based on wind
data available, and topographical and meteorological variables of a place [20,37]. Wind
speed and power prediction with great quickness and precision, to integrate into the
power system are the principal objectives of wind speed and power forecasting [3,38].
The classification of wind speed forecasting according to time horizon and its main
applications is listed in Table 3.2.

Table 3.2: Classification of wind speed forecasting [30]

Categories Time horizon Applications
Very short term  Few seconds to 30 minutes Wind turbine control
and load tracking [32]
Short-term 30 minutes to 6 hours Wind speed forecasting

and wind turbines
power prediction [13,91]

Medium-term 6 to 24 hours Power system management
and energy trading [13,92]
Long-term 1 to 7 days Wind turbine

maintenance program [47,93]

The forecasting methods are classified into five groups as follows: wind speed and
power forecasting, spatial correlation forecasting, regional forecasting, probabilistic
forecasting, and offshore forecasting [3]. To increase the accuracy of the forecast-
ing methods have been accomplished various wind speed and power forecasting ap-
proaches, including physical, statistical, and artificial intelligence for renewable energy
systems [18, 39, 40]. Moreover, the energy efficiency, energy control, and stability in
the energy demand prediction in renewable energy systems have been improved with
the application of machine learning techniques [41]. These techniques have been used
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with quick development from many years ago in modeling, design, and prediction of
energy systems [29,41]. These approaches have been adopted worldwide to evaluate
wind power performance and to acquire relevant information for application in wind
power generation systems

3.2.5 Forecasting uncertainty

Wind resource estimates present an uncertainty percentage due to many factors,
such as wind speed measurements (1.0-2.5%), historical wind records (1.6-4%), future
wind resource (1.4-2.2%), wind shear (0.0-6.3%), wind flow modeling (2.0-10%) for a
total uncertainty of 3-13% [19]. Wind s nature and variability cause uncertainty in
wind power assessment and forecasting; for this reason, it is difficult to integrate wind
energy into the power grid [9,10]. Jung et al. [94] proposed a Bayesian approach con-
sidering uncertainties, such as the limited amount of data, wind speed, air density,
surface roughness, and WT performance. In order to estimate the AEP of a site for a
hypothetical WT of 3 MW, wind speed data from a nearby weather station is used. The
proposed model showed good performance for uncertainty modeling due to the limited
amount of data. Rodriguez-Herndndez et al. [95] developed a methodology based on
a probabilistic model considering different possibilities in the Weibull PDF associated
with wind speed to analyze the uncertainty of measurement equipment for wind re-
source assessment. The developed methodology is indicated to be a useful approach to
estimating wind energy production. Baker et al. estimated + 10% uncertainty and a
confidence level of 90% for wind data collected on-site for one or three years.

Because of the nature and variability of the wind, it is difficult to incorporate
wind energy into the power system [9,10]. A Bayesian strategy taking into account
uncertainties, such as the limited data, wind speed, air density, surface roughness,
and WT performance was proposed by Jung et al. [3]. Wind speed information from a
nearby weather station is used to calculate a site’s AEP for a fictitious WT of 3 MW. As
a result of the scant amount of data, the proposed model performed well in predicting
uncertainty. In order to investigate the uncertainty of measuring equipment for wind
resource evaluation, Rodrguez-Herndndez et al. [95] created an approach based on a
probabilistic model that takes into account several possibilities in the Weibull PDF
related to wind speed. It has been determined that the suggested methodology is an
effective way of estimating wind energy output. Over on-site wind data gathered for
one or three years, Baker et al. [96] estimated a pm 10% uncertainty and a confidence
level of 90%.

3.2.6 Forecasting verification

The forecasting performance to minimize uncertainty was evaluated by using Equa-
tions: 4.1, 4.2, and 4.3 named as Root Mean Square Error (RMSE), MSE, and MAPE
respectively [42].
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In the equations 4.1-4.3 n is the total number of inputs and outputs, W's,,, is measured
wind speed,Ws; is forecasted wind speed.

3.2.7 Conclusions

In this chapter, the state of wind energy in Ecuador and worldwide has been re-
viewed. It also discusses the problems caused by the integration of wind energy into
the electrical network. It should be noted that the main deductions are the following:

e Wind energy is a proven, clean technology that prevents millions of tons of green-
house gas emissions. It has expanded fast in the last 20 years, reaching a global
installed power of 743 GW.

e The fluctuation of the wind makes it difficult to integrate wind energy produced
by huge wind farms. As a result, it’s critical to forecasting the amount of wind
energy that will be generated so that the network operator can manage the hy-
draulic reserves and keep the generation-demand balance constant at any time.

e Because of the enormous number of rivers that flow from the Andes to the Pacific
and Amazon slopes, the Ecuadorian energy matrix contains a higher share of hy-
draulic energy. The Villonaco onshore wind farm contributes only a tiny amount
of wind energy. To compensate for the lack of water flowing in the Andes rivers
due to drought, the energy matrix must be diversified to take advantage of the
Andes mountains’ wind potential.






Chapter 4

Wind speed and power
forecasting approaches and
proposed model

This chapter presents the most relevant characteristics of short-term prediction
models of wind speed and wind energy in wind farms. The following models have
been considered: physical, statistical, ANN, and hybrid. A detailed study of the pro-
posed model composed of the following approaches is also carried out: linear regression
statistic, DNN, and RNN.

4.1 Physical approach

In physical systems, parameters are determined by detailed physical descriptions
of the atmosphere. In most cases, the wind speed provided by the weather service at
the wind farm site is converted to the local conditions [97]. Furthermore, the physical
approach scales down using a mesoscale or microscale model. Using a look-up table,
the mesoscale model can be run for multiple situations when the NWP model is run,
providing boundary conditions and initialization for the NWP model. The fundamental
distinction between the two is the maximum and minimum domain size and resolution
that can be achieved [4]. NWP model makes use of a set of equations that describe
fluid flow to forecast weather. Governing equations, numerical methods, and parame-
terizations of other physical processes are used to convert equations into computer code
prior to being run over a domain [15]. The downscaling method necessitates extensive
physical descriptions of the wind farms and their environs, including wind farm layout
and wind turbine power curve, among other things, and terrain description (orography,



50 Wind speed and power forecasting approaches and proposed model

roughness, obstacles, etc.). A calculation of wind power production is made using the
refined wind speed data at the hub height of the wind turbines.

In recent years, several physical approaches have been developed for wind speed
and power forecasting [98]. The most 4 known approaches are as follows:

e Prediktor The Danish Risoe National Laboratory created the Prediktor. It uses
the WAsP and the PARK program to account for local conditions using the NWP
forecast from the HIRLAM [15].

e Previento The Previento is a physical model developed by the University of
Oldenburg in Germany, but it uses the Lakel model of the German weather
service for its NWP forecast [99].

e eWind It is a numerical weather model adjusted with a high-resolution boundary
layer model developed by AWS TrueWind Inc. in the USA. It uses the boundary
layer model as a numerical weather model to take into account local conditions
[100].

e LocalPred CENER, Spain’s National Renewable Energy Centre, created Local-
Pred. It entails adaptive NWP forecast optimization, time series modeling, MM5
mesoscale modeling, and power curve modeling [101].

4.2 Statistical models

A time series model is used to anticipate future wind power or speed in the tradi-
tional statistical way. Model identification, model estimate, model diagnostics checking,
and forecasting are the four basic processes in the Box-Jenkins approach to creating
a mathematical model of the problem. As a reference model, conventional statistical
approaches are frequently used. [94]. Another approach to forecasting wind speed is
using statistical models that only use historical wind speed series to build their fore-
casting models [98]. According to conventional statistics, a future wind speed is a
linear combination of current and past wind speeds, so they are unable to capture the
nonlinear patterns hidden in the wind speed time series [45].

4.2.1 AR model

The most common statistical model for wind speed forecasting is an AR model,
which has been widely used in short-term forecasting.

4.2.2 MA model

The moving average measures the trends in a data set.
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4.2.3 ARMA model

An ARMA model is used to model and forecast short-term wind speed linear com-
ponents [102].

4.3 ANN

Wind speed and power forecasting use the ANN as one of the most commonly
used statistical approaches. An input layer is followed by one or more hidden layers,
then an output layer as is shown in Fig. 4.1. A layer contains artificial neurons, and
the neurons in each layer are connected using a connection approach. The training
and learning process makes it possible to model the complex non-linear relationship
between the input and output layers. The usual neural networks used for forecasting
and prediction will be detailed in the subsections below.

Input Hidden Layer Output
Layer Layer
LI
Wind Speed % ’ N i i Wind Speed or Power Forecast
Wind Direction
Temperature
. .
B .
o .

Figure 4.1: Wind speed and power forecasting model using ANN [94]

4.3.1 ANN used for WS and wind power forecasting
4.3.1.1 MLP Network

This network is especially true for the three-layer network layout, in which the input
and output layers are directly coupled through a single hidden layer in the middle. The
three-layer network structure’s intrinsic capacity to perform any conceivable input-
output mapping qualifies the MLP network for effective time series forecasting [103].

The following three aspects of the MLP are highlighted:
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e Fach neuron in the network has a differentiable nonlinear activation function in
its model.

e One or more levels are hidden from both the input and output nodes in the
network.

e The network has a high degree of connection, with the extent determined by the
network’s synaptic weights [104].

This network is especially true for the three-layer network layout, in which the
input and output layers are directly coupled through a single hidden layer in the
middle. The three-layer network structure’s intrinsic capacity to perform any
conceivable input-output mapping qualifies the MLP network for effective time
series forecasting [103].

4.3.1.2 DNN models

The output of DNN is determined not just by the network’s current input but
also by the network’s current or former inputs, outputs, or states. There are two
types of DNN: those with only feedforward connections and those including feedback or
recurrent connections. In general, DNNs are more powerful than static networks. DNN
may be trained to learn sequential or time-varying patterns since they contain memory.
This has applications in various fields, including time series prediction citeBeale2010.

4.3.1.3 RNN models

The RNN layers correspond to specific locations within a sequence one to one. The
timestamp is also known as the sequence position. As a result, instead of incorporating
a variable number of inputs into a single input layer, the network comprises a variable
number of layers, each with one output corresponding to a single time-stamp cites
Aggarwal2048. Rumelhart et al. proposed a comprehensive framework for training
recurrent networks termed backpropagation over time, comparable to the methodology
used for training feedforward networks. The algorithm is created by breaking down
the network’s temporal activity into a layered feedforward that grows with each time
step [103].

4.3.2 Deep learning models

Deep Learning is known as a Machine Learning technique that makes use of a deep
neural network. The deep neural network is a multi-layer neural network with two
or more hidden layers. Previous neural networks could not train their deeper hidden
layers and had degraded performance. [46].
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4.4 Hybrid models

Hybrid approaches combine different approaches such as physical, ANN, and sta-
tistical approaches or combining short-term and medium-term models, and others [97].
At the same time, maintaining the benefits of each approach enhances forecasting ac-
curacy [71].

4.5 Proposed model for short-term WS forecasting

For the design of the proposed model for short-term wind speed forecasting over
complex terrain, a hybrid model composed of three types of models were considered,
including statistical, DNN, and RNN.

4.6 Statistical models

The statistical models used were the regressive models, such as persistent, AR, MA,
and ARMA| to determine a baseline for the prediction to be developed.

4.6.1 Persistence model

According to the persistence model, a prediction can be made by considering that
the current time will be equal to the forecasted time [105]. Furthermore, this model
has been widely used by researchers in wind power forecasting as a baseline to make
comparisons against this model [106]. Moreover, this model has a high performance
when the weather variables have a slight variation and the forecasting time does not
exceed more than 1 hour [49].

Considering a time series Y;, knowing its historical data set H;, forecasting the
future values, through a persistence process is given in Equation 4.1. Statistical models
like persistent, AR, MA, and ARMA were used to determine a baseline for developing
a prediction.

Ht:Ht+1,Ht+2,...7Ht+TL (4].)
Specifically, forecasting of the oncoming value will be shown in Equation 4.2

H =Y, —n (4.2)

In this study, the wind speed at the moment n will be equal to the wind speed 12
similar hours of the previous day.
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4.6.2 Moving Average model

This approach is often used to model univariate time series. In this model, a certain
observation is conditioned by the random impulses of the previous observations. In this
way, the current observation is defined as the sum of the current pulse and the previous
random pulses with a certain weight. The general form of this model is defined in the
equation 4.3 [106].

)/t:at—@ﬂlt—l—ezat—2—@3(175—3—...—@(1&,5—(] (43)

Where: Y; is the time series to be described in terms of an unlimited amount of linear
a¢; which is the remainder in period t, and a; — 1 the previous values of the error,
(01,0,,...,0,) are the MA process parameters. Introducing the MA parameter of
order q as is shown in Equation 4.4:

0(B)=1-©,B—0,B*-0;B% - .. - 9,B1 (4.4)

The MA model contains (q+2) unknown parameters to be predicted from the observed
values [103]. The compact form of this model is expressed as equationd.5:

Y, = 0(B)a, (4.5)

4.6.3 ARMA model

The ARMA model is a practical tool used to express the dynamic behavior of time
series. The ARMA model is a practical tool used to express the dynamic behavior of
the time series. The estimation of future values of an independent time series through
this model is carried out as a combination of past values as well as by random impulses
of past observations [106]. Combining the AR and MA models yields this model.
Equation 4.6 represents the ARMA model’s general form.

The AR and MA models were combined to create this model. Equation 4.6 repre-
sents the ARMA model in its generic version.

Yi=01Y, =1+ @Y, -2+ ..+ 0,V —p+a; — dras — 1 — doar — 2 — ... — ¢pqa; — q
(4.6)

Writing again the model as equation 4.7.

Yi=¢1Y, =1+ @Y, -2+ ..+, —p+a; — dray — 1 —¢oa; — 2 — ... — ¢pqa; — q
(4.7)

Ordering again as equation 4.8.

(1 —¢1(B) — ¢o(B3) — ... — $,(B?)Y; = (1 - ©,B - OB* — ... —©,B%)a;  (4.8)
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The compact form of the ARMA model is written as equation 4.9.

4.7 Dynamic Neural Networks

The DNN replies temporally to an input signal applied from the output as feedback;
enabling them to obtain a state representation useful for modeling and forecasting
nonlinear systems [104]. In this study, the NARX and LSTM networks are used as
forecasters.

4.7.1 NARX network

The NARX model is a type of RNN dynamically driven, with feedback connections
enclosing several layers of the network [51,104,107]. The basic architecture of the
NARX model with one input only is shown in Fig. 4.2; which is based on the static
MLP to exploit its mapping capability [49,104]. The single output or predicted variable
Y(+1) 18 feedback to the network input creating a series-parallel architecture; which is
one unit of time ahead of the input u,,. The signal vector to the input layer is composed
of two parts: (1) present and past values of the input or exogenous inputs named u(,, ),
U(n—1)s -+ U(n—q+1), and (2) delayed values of the output named, y(»), y(n-1), -,
Y(n—q+1). The used equation to define the dynamic behavior of the NARX model is
shown in Equation 4.10:

y(n+1) = F(y(n)7 cee ,y(n—q—i-l)v u(n)v cee 7u(n—q+1)) (410)

Where F is a nonlinear function, n is the number of iterations [104]. In this study,
the exogenous variable to be incorporated into the NARX model is wind speed. The
representation of this model is shown in equation 4.11, considering Vav as wind speed
forecasted used as feedback from output to input layers.

Y1) = FW(n): - Yln—gt1), Vav(n), ..., Vav(n—g+1)) (4.11)

The general NARX (n,, Ny) model for prediction considers: on the one hand, y, e,
and x as output, noise, and input respectively. On the other hand,n,, n., and n,
as the maximum lags of input, noise, and input in the order given. In addition, F
is an unrevealed smooth function; it supposes a mean value of zero for e(t); which is
independent of the past value with a finite variance o2 as is represented in Equation
4.12 [50].

yt) =Fyt—1),...,yt —ny),z(t —1),...,2(t —ng)) +e(t) (4.12)

The optimum prediction theory is centered around reducing the Mean Square Error
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Figure 4.2: NARX model architecture [104]

(MSE) value, considering a finite set of past values dependent on the mean. The lowest
MSE predictor dependent on the mean is given by equation 4.13.

y(t) = Ely(t) | y(t — 1yt —2),...,y(1)] (4.13)

Supposing the conditions of zero noise and finite variance given in equation 4.10. The
optimal predictor NARX (ng,ny) is shown in Equation 4.14.

gt) =Fly(t—1), ...yt —ny),z(t — 1), z(t — ny)] (4.14)

4.7.1.1 NARX model learning algorithms

The hidden layer of this network has a tan-sigmoid transfer function, while the
output layer has a linear transfer function. This network is created and trained in an
open loop using true output, which is more accurate and efficient than a closed loop.
Once training has finished, the network may be converted to a closed loop for prediction
mode [107]. This process is developed using a static backpropagation algorithm and
decoupled feedback. To prevent overtraining, the regularization technique is used to
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solve the weights and connections problem in the network. By reducing the parameter
range, this technique improves performance. In this way, the performance function for
training MSE is changed by MSE, ., as is shown in Equation 4.15.

n

MSE = % > (ti—ty)? (4.15)
t=1

Considering Mean Square Weight (MSW) as is indicated in Equation 4.16:

MSW = % Zn:(wi)2 (4.16)

j=1
The MSE,., is shown Equation 4.17:

MSE,cy = EMSE + (1 — )MSW (4.17)

Where ¢; is the target, t; is the predicted value, and £ performance ratio. As a
result of the enhanced performance ratio, the weights and biases of the network are
smaller. Furthermore, the network is forced to respond more smoothly and has less
chance of overfitting [108].

The main advantage of the NARX model is that is composed of unlike models
and computational intelligence at a rational cost [Cadenas2016]. An influential feature
of the NARX model is the size of the embedded memory for input and output, as
well as the number of neurons in the input layer. Furthermore, its generalization and
convergence are better than other networks [51,108]. Therefore, the NARX network
can be used as a predictor, nonlinear filtering, and modeling of nonlinear dynamic
systems [107].

4.7.2 NAR network

The NAR network only has one series involved; in this way, the future values of a
time series y(t) are predicted from past values. This prediction is known as nonlinear
autoregressive [107].

The NARX model can be compared using the NAR network, which is suitable for
time series prediction with its delays. The NAR network structure is a combination
of MLP with an autoregressive model. In this model, the independent variable y(t) is
acquired as a nonlinear function from past d values [49]. The used equation to define
the NAR model is shown in Equation 4.18:

y(e) = fFy(e-1), s y(t—a) (4.18)

The architecture of the NAR model is composed of three layers: input, hidden,
and output as is shown in Fig. 4.3. The main characteristics of the hidden layer are
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feedback delays, the number of neurons, weights matrix, bias vector, and nonlinear
activation function between the hidden layer and output layer for each neuron. Fur-
thermore, the NAR architecture for optimization is reached through trial-and-error
testing of the feedback delays and neurons per hidden layer [109]. The algorithm to
train NAR networks is Levenberg-Marquardt, approximating Newton’s method based
on backpropagation with the descendent gradient technique to determine the second
derivative order without considering the Hessian matrix. The performance function is
the sum of the squares that differ between the real value and the estimated value; this
allows for the determination of the gradient as seen in Equation 4.19, and Equation
4.20 estimates the Hessian matrix nabla2f(z).

Input layer Hidden layer Output layer

S

R W
°
°
/A N> /o >
Vi
by |
71
fn
Figure 4.3: NAR model architecture [110]
Vf(x) = J" (x)e(x) (4.19)
V2 f(2) = T (@) () + S(a) (4.20)

Where J represents the Jacobian matrix of the first derivatives of the weight and
bias vectors of the network error. Additionally, each training step is accompanied by
an error vector. According to Equation 4.21, the /cite[Cigizogluetal2005] modification
to the Gauss-Newton method assumes S(x) = 0 and uses the following algorithm to
estimate the Hessian matrix.

§(z) = [TV (2)J(x) + pI) "1+ I (z)e(z) (4.21)

Where 1 is a parameter used to approximate Equation 4.21 to the Gauss-Newton
method through an easy modification to the backpropagation algorithm.
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4.7.3 NIO network

The NIO network is similar to the NARX model, where there are two series including
an input series x(t) and an output series y(t). This model predicts values of y(t) from
past values of x(t), with the absence of past values of y(t) [107]. The equation used to
define the NIO model is shown in Equation 4.22:

y(o) = f(@(e-1)s - 2(e-a)) (4.22)

4.7.4 Deep learning models
4.7.4.1 LSTM network

In terms of long-term and short-term dependency, the LSTM network is a special
kind of RNN characterized by its stability and high power. The LSTM is a cell memory
to connect previous data to current neurons. This cell can remember the temporal state
due to three temporary gates, which can add or delete data to these cells [53]. The
problem of vanishing gradient was solved by Hochreiter using a gate control LSTM
network [111].

The LSTM network is a unique type of RNN distinguished by its stability and excep-
tional capacity to address vanishing gradient problems with regard to both long-term
and short-term reliance. The LSTM serves as a cell memory to link prior information
to active neurons. Three temporary gates that can add or remove data from these cells
allow this cell to remember its temporal state [53].

The LSTM network can be trained using a gradient descendent algorithm in com-

bination with BPTT. This algorithm calculates the time required for the optimization
process to change the network weight in proportion to the derivative of the error. The
procedure to find the direct relationship between the loss function and the network
weights is known as unfolding; which is composed of an exact reproduction of the
hidden layer of the network for each period to update weights [112]. The LSTM archi-
tecture is represented in Fig. 4.4; which is composed of an input gate i;, a forgetting
gate fy, an output gate O, and a memory cell c. The hidden state is h; at time
point t, the network input at time point t is Xy, and the sigmoid activation function
is o [54,112]
1. The forgetting gate is used to select the information to be discarded or retained in
the previous cell m;_; according to Equation 4.23. By entering h;—; and including X}
to the sigmoid function as shown in Equation 4.24; the output cell is designed as ¢;
[0,1], considering that in zero information will be discarded, and in 1 information will
be retained. While W and b are the weights and bias vectors, respectively.

Jt = o(Wglhi—1, X¢] + by) (4.23)
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2. The input gate decides the updated information to be retained in the cell state.
By entering into the outputh;_; and attaching the present input X; at time point t
into Equation 4.24 (o function). The generated value [1,0] according to Equation 4.16
in the cell to select the updated information to be retained; the tan h layer accepts
simultaneously the selection signal C; expressed in Equation 4.25 to keep updated the
cell state.

it = O’(WZ [htfl, Xt} + bz) (425)
Ct = tcmh(Wc[ht_l, Xt] + bc) (426)

3. The output gate decides the information of the cell state that will be used as output.
The previous state of the output h;_; is entered at the last point time t, and attaching
the present input z; to the sigmoid function generates a signal[1,0] named O; according
to Equation 4.27 to decide the number of cells is used as output. The output signal h;
can be obtained by sigmoid and tanh from Equation 4.28.

O = O'(Wo[ht_l, Xt] + bo) (427)
ht = Ot.tanh(ct) (428)
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4.8 Conclusions

The forecasting models described in this chapter represent the most commonly used
in forecasting the future values of short-term time series. The proposed model uses
statistical, DNN-RNN to predict wind speed, available power, and electrical energy to
be produced at a wind farm. The following considerations must be made for all of the
prediction models indicated:

e The measured data derived from the meteorological variables and the NWP mod-
els must be handled carefully, considering outliers, gusts, and calm winds.

e Since statistical models have a moderate percentage accuracy of the estimated
value, they are considered univariate reference models for wind speed forecasting.
This is because the results of these models differ significantly from the predicted
value.

e In short-term wind speed forecasting, the ANN algorithm is used because it can
be used to predict using non-linear systems based on measured meteorological
data (multivariate), which results in highly accurate values.

e The components of the proposed model must be compared to the persistent model
to determine their accuracy. The statistical model is univariate and serves as a
predictor’s starting point. The NARX or LSTM multivariable models are used
to lower the proportion of error in WS forecasting.

e The NARX dynamic network has feedback between network layers creating a
series-parallel for prediction and an open loop for training. It has computational
intelligence at a low cost due to its embedded memory. It can be used in the
modeling and prediction of dynamic nonlinear systems.

e The LSTM recurrent network is a memory cell. It can remember temporary states
by adding or deleting data to its 3 temporary gates. This network is trained using
the downward propagation algorithm together with BPTT to calculate the time
of the network optimization process.






Chapter 5

Wind speed and power
forecasting methodology using
the proposed model

This chapter describes the methodology used for WRA, short-term wind speed,
and power forecasting considered in the proposed model composed of the following
approaches: linear regression models, DNN and RNN networks, and wind farm design
using CFD in the Ecuadorian Andes

5.1 Introduction

According to the statement at the beginning of this thesis, the main objective is to
design and validate a model to predict wind speed values short-term 6 hours in advance.
Due to the complexity of applying a physical model that reproduces the dynamic
processes that occur in the atmosphere of complex terrain at high altitude in the
Ecuadorian Andes, and taking as a reference the obtained results from the study of the
wind regime in that area, it has been chosen as forecaster a hybrid model: statistical-
DNN-RNN to reproduce with high accuracy the existing relationships between wind
speed behavior and other atmospheric variables measured in the study area. The data
from Tower 1 at 30 m AGL were used for the training and validation of the hybrid
model. These variables were used as input variables in the selected model. In the same
way, were considered the observations in tower 2 at 80 m AGL, whose characteristics
were detailed in Chapter 2.

To meet the objectives outlined in the first chapter, the study area in the Ecuadorian
Andes is described, then the wind database collected in 2018 is indicated. Finally, the
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characteristics of the measurement equipment used are determined. This area of study
has been chosen for the following reasons:

e It is a location located within a natural wind pass with strong winds where a
wind farm can be built.

e It is relevant to observe the wind behavior over complex terrain at high altitudes
away from any effect that could be caused by any external component.

e Because there are wind speed data corresponding to three levels in height, where
the existence of vertical variations and the possible repercussion that it could
have on the extractable wind energy are evaluated.

e The existing correlation between the two groups of data ( 30-80m AGL) is very
similar, as will be seen later.

5.2  Area of study

COLOMBIA

Figure 5.1: Geographic map of Ecuador [113]
1
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Fig. 5.1 illustrates that the study area is located in the Sierra region of the Ecuado-
rian Andes, within the provinces of Tungurahua, Chimborazo, and Bolivar. Further-
more, the study area is located in the Sierra region of the Ecuadorian Andes, among
the provinces of Tungurahua, Chimborazo, and Bolivar. Hence, there are few people in
this region. The majority of land, which is a natural reserve is owned by the state. Ac-
cording to the Ecuadorian Atlas, El Arenal valley is considered a windy sector within
the Ecuadorian Andes [114]. This 10 Km wide valley is located at a natural mountain
pass, between the volcanoes Chimborazo (6263 m ASL) and Carihuayrazo (5116 m
ASL), as is presented in Fig. 5.2. This wind channel pass causes a wind speed-up
effect due to the Venturi effect. This particular site with high wind potential was se-
lected after a preliminary assessment, which is considered the first phase in WRA [60].
Therefore, this site is classified as a region with accelerated wind flow [115]. A prelim-
inary assessment of the wind resource of this particular site was conducted [23], which
is considered the first phase of the wind resource assessment.

Chimborazo volcano Wind channel pass Carihuayazo
6263 m ASL volcano 5116 m

Meteorological
stations

Figure 5.2: Area of study in the Andes Mountains [116]
2

Ecuador is traversed from North to South in the Sierra region by the Andes Moun-
tains, which are composed of East and West mountain ranges. The topography of
the Andes Mountains is characterized by complex terrain at high altitudes, which is
composed of hills, plateaus, mountains (3000-4500 m ASL), and volcanoes (; 5000
m ASL) [113]. In the mountains, during the day, the sun heats air masses, and hot
air rises on the sides of the mountains, creating flow circulation and anabatic winds.
Katabatic winds occur at night when air parcels descend on the sides of the moun-

02»Reprinted from Renewable Energy, Volume 183, Germénico Lépez and Pablo Arboleya, Short-
term wind speed forecasting over complex terrain using linear regression models and multivariable
LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with
permission from Elsevier”
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tains [14,15]. There are two predominant climatic stations in this region, which are
winter from December to June and summer from July to November [113,117].

3

Table 5.1: Geographic coordinates of meteorological stations [118]

Parameter Station 1 Station 2
Latitude 1°54'S 1°54.8'S
Longitude 79°15'W 78°45.6'W
Elevation = 4260m ASL  4428m ASL

5.3 Equipment and data

The collected data were obtained using sensors mounted on two tubular towers at
30 m and 80 m AGL, respectively, installed in the moorland of the zone of study by
international guidelines [119]. Station 1 at a height of 30m AGL was positioned in
the community of Mechahuasca, as is shown in Fig. 5.3, and station 2 at a height
of 80m AGL was placed close to Chimborazo volcano. Furthermore, this region is
suitable for wind power assessment and installation, which does not represent a risk
to environmental care [118]. The measured data is formed of 10-minute intervals with
average, maximum, minimum, and standard deviation values of the following weather
variables:

e AVGTEMP Average air temperature (°C)

ATPRES Atmospheric pressure (millibars)

GSR Global solar radiation (W/m?)

WD wind direction (°)

WSAVG Wind speed average (m/s)

WSMAX Wind speed maximum (m/s)

e WSMIN Wind speed minimum (m/s)

This study is focused on wind speed and power forecasting, WRA, and wind farm
design using CFD in the Ecuadorian Andes. To get this purpose are considered data

03” Reprinted from Renewable Energy, Volume 183, Germénico Lépez and Pablo Arboleya, Short-
term wind speed forecasting over complex terrain using linear regression models and multivariable
LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with
permission from Elsevier”
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Figure 5.3: Meteorological station 1 in the community Mechahuasca

from two meteorological stations, which are the property of the Technical University
of Ambato and the MEER, respectively.

The location of the towers’ geographical coordinates is displayed in Table Table
5.1. Given that the set of wind data is a crucial parameter for WRA and that at least
one year’s worth of wind data is needed to predict WPP [71]. The data was gathered
from January 1st to December 31st, 2018. The 40 m-tall-tower was installed on a large
plateau. In addition, the tower of 80 m-tall-tower was installed on a round hill in the
El Arenal desert close to the Chimborazo volcano. The equipment, sensors, and their
characteristics installed on each tower to measure meteorological variables are listed
in Table 5.2. One data logger NRG Symphony Plus 3 for each tower, was used to
store data in memory during 2018 and to enable remote communication. Readings are
averaged at 10-minute intervals. The sampling frequency is 1 Hz [72].

04”Reprinted from Renewable Energy, Volume 183, Germénico Lépez and Pablo Arboleya, Short-
term wind speed forecasting over complex terrain using linear regression models and multivariable
LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with
permission from Elsevier”
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Table 5.2: Sensors installed on meteorological towers [118]

Type Model Range Deviation
Anemometer NRG #40C  1ms~'-96ms~! 0.5 %
4 Vane NRG 200P 0-360° 1%
Barometer NRG BP20 15KPa-115KPa 1.5%
Thermometer NRG 110S  -40° to 95.5°C 1.3 %

Pyranometer LI 200R 400 to 1100 nm 10pV

5.4  Application of proposed forecasting models for
wind speed forecasting

The particular application of linear regression and DNN models for wind speed
forecasting is directed here.

5.4.1 Linear regression models
5.4.1.1 ARMA or MA model

The forecasting methodology employed using ARMA or MA models is performed
in three steps:
1. Model definition: Concerning the election of the (p,q) order of the ARMA model,
or q for the MA model, which is designed as a model structure.
2. Model training: Involves the approximation of the model parameters by way of a
reduction process known as least squares.
3. Prediction of the next range: Estimation of the oncoming value of the time series
based on past values using measured data from one to three days ago.

5.4.2 Dynamic Neural Networks models

The forecasting methodology using DNN is performed in five steps:

5.4.2.1 Data preparation and feature extraction

The data preparation for prediction included five activities such as data collection,
data preprocessing, correlation matrix, data normalization, and structuring of data
[103]. The data were collected by two meteorological stations over a one-year period
and preprocessed to remove noise resulting from malfunctioning sensors. Then, data
were validated by using different algorithms [19]. Data normalization of preprocessed
data was required to convert data from natural range to operative network range [103].
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Structuring of data: Using a multivariable time series for the ANN toolbox, seven
variables were arranged as input vectors to the DNN. These input vectors were created
with the number of input variables equal to the number of neurons.

Then, the second set of one-time series as output vectors into a second cell
array. BEight data sets were arranged as follows: two for winter and two for summer,
two per 30m and two for 80 m AGL. Data were collected for each data set for
six hours on one day of each month of winter and summer. The output vectors
were eight vectors formed by six hours of average wind speed per day of each
month for winter and summer, four for each season, and four for each height. The to-
tal amount for winter was 36 x 7 = 252 (100%), total amount for summer 36 x 5 = 180.

Inputs and outputs vectors were randomly distributed as follows: 70% for the
training set, 15% for validation, and 15% for testing [107]. Data used for training in
each season were for winter 252x 0.7 = 176.4 (70.0%), for summer 180 x 0.7 = 126
(70%).

The amount for validation to calculate the error value during training was for winter
252 x 0.15 = 37.8, and for summer 180 x 0.15 = 27. The amount for testing is for
winter 252 x 0.15 = 37.8, for summer 180 x 0.15 = 27.

The feature extraction process is considered to be one of the most significant parts of
the machine learning process. This is because raw data is converted to information that
algorithms can use to eliminate repetition by overfitting. The features were extracted
using statistical tools, such as mean, median, standard deviation, and frequency domain
[120].

The correlation matrix was based on PCC, which showed the correlation between
input variables and output variables. In fact, variables that are not highly correlated
can be deleted. PCC is a parametric statistical technique to measure the direction and
strength between two variables [121]. This way, we can determine if the points of the
two variables have a tendency to be placed in a straight line. PCC is defined as the
covariance between x and y divided by the product of the standard deviations of each
variable [20]. The equation 5.1 is used to calculate PCC.

cov(xy)
SISY

PCC = (5.1)

where cov is the covariance between variables x and y, ¢z is standard deviation of x
variable, ¢ is standard deviation of y variable.

The PCC results between measured weather variables and average wind speed at a
height of 80 m AGL in 2018 are shown in Table 5.3, which indicates that WSAVG had
a high linear correlation with WSMAX, and WSMIN, while the correlation coefficients
with AVGTEMP, ATPRES and GSR are very small, and there is an inverse correlation
with WD.
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Table 5.3: PCC results at 80m AGL

Variables WS WS WS WD AVG AT GSR

AVG MAX MIN TEMP PRES

WSAVG 1 0.96 0.94 -047 0 0.29 0.22
WSMAX 0.96 1 0.97 -0.46 0.03 0.28 0.25
WSMIN 0.94 0.97 1 -0.45 0.02 0.28 0.23
WD -047  -046  -0.45 1 0.02 -0.19 0.01
AVGTEMP 0.2 0.03 0.02 0.16 1 -0.12 0.72
ATPRES 0.29 0.28 0.28 -0.19 0.16 1 -0.01

GSR 0.22 0.25 0.23 0.01 -0.01 -0.01 1

5.4.2.2 Determination of Network Architecture

In order to achieve this aim, DNN was proposed to predict nonlinear time series
for the representation of systems whose internal state changes with time. They are
particularly appropriate for modeling nonlinear dynamic systems, generally defined
by the state-space [103]. DNN models with feedback, such as NARX and NAR, are
suitable for time series prediction/cite[Beale2010]. As part of the network architecture,
we conducted the following activities: determination of input nodes required to feed
neural networks; this was done according to seven selected variables including WSAVG,
VSMAX, WSMIN, WD, AVGTEMP, ATPRES, and GSR. In this way, one neuron per
variable is selected. Therefore, the output single node was considered the average wind
speed only, as shown in Figure 5.4.

5.4.2.3 Network Training Strategy

During network training for time series forecasting, all main characteristics inserted
in the training data of the time series should be known and learned [103]. The input-
selected parameters are used to train the DNN, and wind speed is the output. Any
of the input values had been used for testing and validation purposes. To prevent
overfitting, the input vectors and target vector were randomly divided into three sets
as follows: 70%, 15%, and 15% to attribute the data to training, validation, and test
of network generalization, respectively. MLP utilizes an algorithm named Levenberg-
Marquardt backpropagation to train the network. The performance of the three DNN
models was improved by adjusting the number of neurons in the hidden layers and the
number of epochs [107].
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Figure 5.4: Proposed NARX network architecture

5.4.2.4 Network forecasting

Forecasting of the next value was developed by presenting the network with an
input vector based on past observations.

5.4.2.5 Error parameters

The forecasting performance to minimize uncertainty was evaluated by using Equa-
tions: 5.2, 5.3, and 5.4 named as Root Mean Square Error (RMSE), MSE, and MAPE
respectively [42].

1 n
RMSE = 2| — Wsy —Wspm)? 5.2
w2 (Wer = W) (5.2)
1 n
MSE =~ > (Wsy—Wspn)? (5.3)
t=1
1o | Wspm — Wy
MAPE = = —m 71100 5.4
n ; Wsm (5.4)

In the equations 5.2-5.4 n is the total number of inputs and outputs, W's,,, is measured
wind speed,Ws; is forecasted wind speed
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5.4.2.6 Software tools

Three kinds of DNN were used with the Neural Network Time Series Toolbox, with
a graphic interface in MATLAB R2020b. In the present study, we used three kinds of
DNN, such as NARX, NAR, and NIO.

5.4.3 Forecasting using Multivariable LSTM networks

The forecasting process for Multivariable LSTM networks is developed in five stages
[54,122] as follows:

5.4.3.1 Data preprocessing

Multivariable time series means that there are seven meteorological variables for
each time step to be used as inputs to LSTM to generate one output, for example.
wind speed forecasted. The first step is preparing the measured variables dataset for
supervised learning for the LSTM network. Then, a PCC was developed using the seven
measured meteorological variables and the data from Table 6.1. The multivariable MV-
LSTM method contains four data sets; 12 hours of seven meteorological variables each;
one set for Winter, the other for Summer, one for 30 m, and the other for 80 m AGL.
The data set was divided into 80% for training and 20% for testing.

5.4.3.2 Data normalization

The seven meteorological variables were measured in different units and required a
unique range. Therefore, the selected variables were normalized to have values between
zero and one by using the highest and the lowest values of each variable, as shown in
Equation 5.5.

I _Yi ” Umaz (5.5)
Umaz — Umin
Where v, is the normalized value for any variable, v; is the current value of the variable
to be converted, v,,q, is the maximum range for any variable, v, is the minimum
range for any variable.

5.4.3.3 Define and fit LSTM model

This step is to create an LSTM regression network and define how many neurons
will be used in the hidden layer. The training options must be specified and set up by
the solver Adam to optimize performance. The gradient threshold should be set to 1
to prevent the gradient from exploding. The learning rate is set by default to 0.001
and should drop every 5 epochs.
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5.4.3.4 LSTM network training and optimization

To perfectly memorize the data sequence, a smaller number of neurons would be
used in the hidden layer. The RMSE plots the training report from the standardized
data and is employed to measure loss function together with the Adam network per-
formance optimizer. The training and validation loss converge after a certain number
of epochs.

5.4.3.5 LSTM network forecasting

The future values of multivariable time series are forecasted one at a time, and the
same is updated after each prediction. The last prediction is used as input for each
new prediction. The real wind speed forecasted and RMSE are obtained using inverse
normalization.

5.4.3.6 LSTM software tools

The simulations were developed using MATLAB R2020b together with the Neural
Network Deep Learning Tool.

5.5 Wind characteristics modeling using CFD

5.5.1 Process to create computational domain

It is well-known that the accuracy of CFD simulations relies mainly on the size and
shape mesh generated, the boundaries and initial conditions applied, the turbulence
model chosen, and the used wall functions [123]. Therefore, it is reasonable to work
based on previous research that has worked and shown acceptable results. The following
sections show the conditions under which the simulation was carried out. The numerical
methods design is developed in three phases to prevent the effects of possible hiding
where variables are subordinated as follows [124]:

e In the preprocessing phase, the input data already suitable to be treated are
defined by Ansys Fluent, determining the geometry, the domains, the grid, and
the selection of the physical and chemical phenomena.

e In the calculation stage, the solution of the algebraic equations resulting from
the discretization of the physical model for a volume defined by the numerical
grid is performed using 100 iterations.

e In the processing, the visible solution of the calculation is presented, transforming
it into a suitable form for its subsequent analysis, data post-processing, and
interpretation.
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AV

Figure 5.5: Study area located in Chimborazo National Park

The preprocessing phase is developed in three stages as follows:

1. Domain identification

The computational domain to be created must be large enough to reduce the un-
certainties that may be generated in the boundary conditions so that the analysis
generates the so-called wake effect. But the domain should not be too large due
to can affect the computational simulation time.

Through the Google Earth software, the location was made using the generate
polygon tool and thus finally locating the study area, to generate a kmz format
file with the selected study area as is shown in Fig. 5.5. By using the file gener-
ated in Google Earth Pro, we proceed to create the contour lines in this Global
Mapper software, where you can determine the maximum and minimum height
at sea level of the study areas as is shown in Fig. 5.6. With this, pressure out-
put data were obtained with the help of a pressure-height graph, data necessary
for the (Boundary Conditions) for further analysis. Global Mapper also allows
generating the contour lines in the study areas as presented in Fig. 5.7, which
the results were exported in DWG format for the next procedure. Gripphins and
Middelton [125] presented a standardization on sinusoidal hills for 2D analysis to
represent a parametric function, with a sinusoidal behavior as is shown in Equa-
tion 5.6. The post-processing of the contour lines was developed using AutoCAD
Civil 3D and then transformed to the surface, performing several procedures.
Rhinoceros 6 allowed completing the design and modeling of the surface to de-
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Figure 5.6: Altitude map of the terrain in the study area

termine the number of areas required per area of study as is presented in Fig.5.8.
The computational domain was determined, based on the predominant WD from
the east, and the diameter of the rotor of the WT Goldwind 70/1500 kW, which
diameter is 70 meters, In this way, the length on the X-axis is 28D, on the Y-axis
is 14D, and the height of 3D is shown in Fig. 5.9. In the preprocessing of the
computational domain of the study area, which is segmented into four surfaces
separated 333 meters from each other. This results in a total of 4 contours for
the study area as shown in Fig. 5.10.

. Grid generation The grid process consists of dividing the object of study into
several sections, the most relevant within a CFD simulation is the type of mesh
since it is where the wind data that already have been defined in its specific
coordinates, in the inlet of the computational domain to interpolate the values
for each cell until reaching the outlet of the computational domain.

Based on the topological relationship, we started by meshing each of the surfaces.
In this method, was created the 2D hybrid meshing of the 4 areas using the Ansys
Mechanical meshing tool as indicated in Fig.5.11, which combines structured
and unstructured meshing. This allows a better adaptation of the surface to
be analyzed. Through the use of skewness in the mesh quality-metric section,
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Figure 5.7: Contour lines in Global Mapper Zone 1

meshing asymmetry can be determined if the mesh performed has a high-quality
mesh structure through the asymmetry value. Using triangular and quadrilateral
shapes to mesh, an equilateral triangle would be the ideal shape for triangular
meshes. The same angular and quadrilateral form would be the ideal shape
for quadrilateral meshing. This is because highly skewed faces and cells are
unacceptable because the equations start to solve assuming the cells are in their
correct form. The mesh for study area 1, is excellent for the solution of the
equations that describe the model to be analyzed. The average skewness values
are in the range of (0 — 0.25) indicating excellent mesh quality.

. Setting boundary conditions

Set up:

It configures general data of the terrain, such as air temperature, air density, space
2D planar, and the elevation of the location wind farm location by considering a
stable atmosphere. In addition, the initial wind speed values of the wind speed,
roughness class and length, air density, and turbulence models are established,
which is the most used for the sites in CFD is the k-e¢ model, which is part of the
RANS models of the Navier-Stokes equations.

Edge conditions:
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Figure 5.8: Domain surface generated in Rhinoceros 6

Inlet: The inlet was configured to input values of mean wind flow inlet speed and
pressure. Also, the calculated monthly values of TI.

Outlet: The outlet was configured so that values of outlet pressure of the wind
flow are entered, where the respective calculated value of T1 was assigned.

Wall-down: The roughness class of the ground surface was considered, which
allows the generation of eddies, thus directly affecting the turbulence and the
roughness length. The assigned values are as follows:

Roughness class: 0.5 Landscape with smooth surfaces
Roughness length (Zo): 0.0024 m corresponding to uninhabited areas with grass

Wall-up: This boundary condition represents the atmospheric boundary layer
where it does not present roughness by placing zero values.

Trim: It is considered the interior of the study zone. This element of a cell zone
determines the type of fluid to be analyzed, by considering air density.

H Hax _
ZS:{ 21+ cos B2, 2L<x<2L} (5.6)

0, |z| < 2L



78 Wind speed and power forecasting methodology using the proposed model

Figure 5.9: Computational domain of Zone 1

Where:
H Hill height
L Hill length

5.5.2 Conclusions

In this chapter, the characteristics of the proposed statistical-DNN-RNN model
have been described, as well as the methodology for applying the model to predict
short-term wind speed and wind power over complex terrain in the Ecuadorian Andes.
Additionally, the Ansys Fluent CFD software can be used to develop wind character-
istics modeling. The following aspects should be highlighted.

e The proposed model for short-term wind speed prediction over complex terrain
in the Ecuadorian Andes is a hybrid model based on linear regression models as
a baseline for prediction. In addition, DNN-RNN networks are used to improve
forecasting accuracy.

e A computational domain to represent the size of the mountain is very large. For
this reason, the volume of the mountain in 3D was divided into 4 2D sections to
efficiently simulate the wind characteristics using the Ansys Fluent CFD software.
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Figure 5.10: Division of the 2D computational domains of Zone 1

Area
number

Number
of nodes Zone 1 meshing

Area 1

30596

Area 2

24972

Area 3

50996

Area 4

56548

Figure 5.11: Hybrid meshing in zone 1






Chapter 6

Wind regime characterization
and wind characteristics of the
Ecuadorian Andes

In this chapter, wind regime characterization results for the study area are reported.
Furthermore, a comparison between WPD and CF of the study area against the same
parameters of the Villonaco wind farm to select the most suitable WT is developed.

6.1 Wind regime characterization

6.1.1 Preliminary assessment

The Ecuadorian Wind Atlas indicates that wind speed at 80 m AGL is in the range
of 10-12 m/s, classified as a moderate breeze, which indicates the presence of strong
winds in the study area [114].

6.1.2 Daily and monthly average wind speed

The daily and monthly variation of wind speed average at 30 and 80 m AGL during
2018 from January to December is shown in Fig. 6.1 and Fig. 6.2 respectively. The
monthly wind speed analysis indicates two strong seasonal trends. The strongest winds
occur from June to September because cold air flows from the East and combines with
valley and mountain breezes during this season. Whereas the weakest winds in the
winter season are from January to April and from October to December [114, 117].
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Figure 6.1: Daily wind speed profile for winter and summer in 2018 at 80 m AGL

Garcfa et al. [23] observed a similar monthly mean wind speed in the wind data analysis
for a nearby location. Strong winds could be feasible for a future wind farm installation
with high-power wind turbines and could be a reliable option to forecast short-time
wind speeds for power generation. Fig. 6.3 indicates the daily winter and summer
wind speed profiles. In the winter profile, there is very low wind speed during the
night, which is not recommended for wind turbine operation. During the day, there is
a medium wind speed which could be used to forecast wind speed. The summer wind
speed profile, however, reaches high wind speed during the day and night; it is useful
for predicting wind speed at any time. As a result, summertime wind speed variations
exceeded the 10,2 m/s annual mean wind speed value. It should be noted that 12 to
15 m/s of wind speed is the most effective range for wind turbines operating in order
to create the most electricity possible [17,19].

WS was measured in tower 1 at heights of 10, 20, and 30 m AGL and labeled
"WS1”, "W Se”, and "W S3”, respectively. For tower 2, the heights are 40, 60, and
80 m AGL and are designated as "W .S,”, "WS5”, and "W Sg”, respectively. The
statistical summary of weather variables is stated in Table 6.1. The percentage of
measured values is over 99%, which represents a reliable data set. The mean wind
speed measured at six heights from 10 m to 80 m AGL shows an increase in wind
speed with height variation, [19] as is shown in Figure 7.1 where WS at 80 m AGL
is higher than at 30 m AGL. Moreover, it is observed that WS increases during the
summer months due to the influence of the Atlantic equatorial mass composed of the
East and Southeast winds that are of greater pressure than the North trade winds [126].

057 Reprinted from Renewable Energy, Volume 183, Germénico Lépez and Pablo Arboleya, Short-
term wind speed forecasting over complex terrain using linear regression models and multivariable
LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with
permission from Elsevier”
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Figure 6.2: Monthly wind speed profile for winter and summer 2018 at 80 m AGL

6.1.3 Wind Power Density

The average WPD was calculated for each month at 80 m AGL based on monthly
WS. It observes a WPD increase in summer months in direct proportion to wind speed
variation, as is shown in Fig. 6.4.

6.1.4 Wind rose and Weibull probability function

A wind rose diagram is used to display useful information based on wind speed bins
/cite [Brower2012]. The wind rose was represented through the software Matlab 2020b
by using ten-minute intervals for WS measurements of tower 2, and their corresponding
WDs at 80 m AGL are shown in Fig. 6.5. In addition, the predominant wind speed
direction at any time is the wind blowing from an azimuth of 90° (East) varying
slightly to 105° due to the zone of study being located within a mountain pass between
two volcanoes. Furthermore, a similar pattern of wind behavior was found in a nearby
location [23]. Moreover, a similar WD was observed in another region of the Ecuadorian
Andes [24]. Therefore, the predominant WD is from the East during the summer and
winter months.

The Weibull PDF for tower 2 at 80 m AGL is shown in Fig. 6.6, and the estimated
wind speed distribution parameters for each tower are presented in Table 6.2; which
summarizes the k and ¢ Weibull parameters. Furthermore, the k parameter for both
heights is variable due to the influence of the complex topography of the region over
eastern winds. Moreover, the annual mean WS is 10.9 m/s. In 2018, the shape param-
eter k and scale parameter ¢ at 80 m AGL are 1.5 and 11,8 m/s, respectively. Besides,
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Figure 6.3: Daily wind speed profile for winter and summer 2018 at 80 m AGL

k is considered a lower value, and c is close to the mean WS.

Therefore, according to the results of the Weibull parameters, the area of study
has high wind variability with less dispersion concerning the average wind speed and
increased availability of wind speed to obtain a large production of wind energy [59].
A similar pattern of Weibull parameters k and ¢ were obtained by Kéroly Tar [127] to
generate monthly average wind speed at different altitudes. In addition, B.K. Gupta
[128] attained a variable pattern for k and ¢ monthly values for five locations in India;
which is helpful to estimate annual and monthly wind energy production.
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Table 6.1: Weather variables statistics for the zone of study

Variable Units Min Avg Max Percentage
W S1at10mAGL m/s 0.2 6.02 231 99.68
W Sat20mAGL m/s 0.2 6.92 23.5 99.58
W S3at30mAGL m/s 0.2 7.02 24.2 99.81
W S4atd0mAGL m/s 0.2 9.15 414 99.86
W S5at60mAGL m/s 0.2 10.8 415 99.68
W Sgat80mAGL m/s 0.2 11.02 41.6 99.56
(WPDl) W/m? 0 135 4678 99.4
w W/m? 0 250 4990 99.35
(WPD?,) W/m? 0 351 5450 99.65
(WPD, W/m? 0 511 26500  99.61
(WPDs) VV/m2 0 584 27482  99.48
(WPDg) W/m? 0 647 28690  99.75
WD (from East) Degrees 0 90 350 99.45

Temp (3.0 m AGL) Celsius degrees -1.5 2.7 9.5 99.7 5
BP millibars 0 135 746.0 99.75
GSR W/m? 606.2610.9 615.1 98.85
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Figure 6.4: Monthly WPD for winter and summer 2018 at 80 m AGL
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Figure 6.5: Wind rose in tower 2 at 80 m AGL
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Figure 6.6: Short-term wind speed Weibull distribution in
tower 2 at 80 m AGL
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Table 6.2: Weibull parameters at 30 and 80 m AGL for 2018

30 m 80 m

Month K s K c
January 1.59 847 1.61 10.5
February 1.12 447 131 7.85
March 1.24 6.78 1.51 875
April 1.11 5.14 141 8.6

May 145 6.35 1.61 9.5
June 441 9.93 4.71 12.05
July 3.12 1094 3.31 14.25
August 2.16 10.79 241 13.89
September 1.39 8.83 1.51 10.85
October 1.12 447 131 7.65

November 1.1 447 1.31 6.5
December 145 7.85 1.81 10.5
Overall 1.68 6.95 1.51 11.87
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Figure 6.8: Monthly variation of Wind Shear Coefficient for Tower 1
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Figure 6.9: Monthly variation of Wind Shear Coefficient for Tower 2
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6.2 Wind characteristics

6.2.1 Wind shear profile

The values of WSC were determined using four pairs of wind speeds, two pairs for
each tower. The values of W.SC; and W SC,, were calculated between 10 and 20 m
AGL and 20 and 30 m AGL, respectively, using measured data from tower 1. W.SCs
and WSCy were calculated between 40 and 60 m AGL, 60 and 80 m AGL by using
measured data from tower 2. The monthly variation of WSC values in tower 1 and
tower 2 is shown in Fig. 6.8 and Fig. 6.9 respectively. The results indicate that WSC
on both towers is variable. In this way, the maximum WSC values appear in winter
when WS is low, and the minimum values appear in summer during July and August
when WS is high. In addition, one unexpected negative value was observed for W SC}
in January. Indeed, the WSC is highly influenced by temperature changes and the
complex topography of the Sierra region. It should be noted that tower 1 is installed
on a plateau, and tower 2 is installed on the top of a hill. Consequently, WSC is
affected by wind speed and flow turbulence effects on both towers.

6.2.2 Turbulence Intensity
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Figure 6.10: Hourly turbulence intensity at 80m AGL for Tower 2
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The hourly TT values at 80 m AGL are presented in Fig. 6.10. The higher TT values
are observed during the day hours, from 11:00 to 15:00, when the solar radiation reaches
its highest value and the wind speed of the anabatic winds is maximum.

The lower values are observed during night hours; when the wind speed of the
katabatic winds is lower [15,57]. Likewise, the monthly TT values at 80 m AGL during
2018 are shown in Fig. 6.11. The TI s higher values are observed in the winter months
when the wind speed is slow. On the other hand, the TI values are observed in the
summer months when the wind speed is high. Jeong and Ha [129] stated that wind
profile and TT are highly influenced by complex terrain topography such as steeper hills
and valleys, which cause wind flow separation. Frost et al. [115] stated that ideal sites
for WT sitting are regions with accelerated wind flow, such as mountain passes with
high mean wind speed and low T1I.
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Figure 6.11: Monthly variation of Turbulence Intensity for Tower 2
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Figure 6.12: Selected wind turbine power curves

6.3 AEP comparison results against Villonaco wind
farm

6.3.1 Selection of suitable wind turbines

In this study, the best-suited WT is determined based on annual wind energy pro-
duction, mean annual WS, and TI class. The selected WT are classified as large-scale
and suggested for wind farms in complex terrain [130], which are: Enercon E66/1.5
MW, Goldwind 70/1.5 MW, and Vestas 63/1.5 MW. The selected WT power curves
are shown in Fig. 6.12; which were designed from the manufacturers” web page consid-
ering the low air density of the zone of study. In this case, this variable is considered
a limitation. It causes a power loss between power start and nominal power compared
against power curves obtained with air density at sea level [57]. Table 6.3 summa-
rizes the technical specifications of selected wind turbines. The following aspects were
considered when choosing a WT: IEC wind class, power to be installed, hub height,
train/generator set, and power output to the grid [19]. Therefore, the comparison of
WT power curve results confirms that the best suitable WT for the zone of study is
Goldwind 70/1500 suitable choice considered, which is installed at the Villonaco wind
farm in Loja, Ecuador [86].
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Table 6.3: Technical data of the 1500 KW class wind turbines

Wind  Cut-in Cut-out Rated Rated Rotor Wind
turbine speed speed speed power diameter class
(m/s) (m/s) (m/s) power (KW) (m) IEC
Enercon 2.5 25 13 1500 66 ITa
Goldwind 3 25 11.8 1500 70 Ia
Vestas 4 16 25 1500 63.6 ITa

Table 6.4: Annual energy production and capacity factors

Wind Hub height Nominal power Net AEP Capacity

turbine (m) (MW) (GWh/year) factor
Enercon 67 1500 6.1 0.46

Goldwind 70 1500 7.24 0.56
Vestas 63 1500 6.2 0.52

6.3.2 AEP and CF estimation

In this work, gross AEP based on PDF Weibull was estimated for three large-scale
WT, such as Enercon 66/1500, Goldwind 70/1500, and Vestas 63/1500. The estimated
net AEP and its corresponding capacity factors for one selected WT are shown in
Table 6.4. Furthermore, the greatest AEP value was achieved with the Goldwind WT.
Moreover, the CF analysis for the three types of high-power analyzed wind turbines
showed high values. The highest net AEP and CF values were obtained with the WT
Goldwind 70/1500 for a hub height of 80 m AGL. A similar pattern of results was
obtained for the wind energy assessment for the Villonaco wind farm, located over
complex terrain at a high altitude [86].

Then, a hypothetical wind farm with an installed power of 16.5 MW, which is com-
posed of 11 WT Goldwind 70/1500 KW each, with 1.5MW active power achieved values
AEP and CF of 42,74 GWh and 0.54, respectively, to compare against the wind energy
production of the Villonaco wind farm, which in 2018 supplied 49.73 GWh of gross
electric energy and had a capacity factor of 54.95% [86,131]. The comparison results
between real Villonaco AEP and theoretical AEP and CF indicated that theoretical
AEP and CF values achieved performances of 85.9% and 98%, respectively.

There are 5 relevant characteristics of the study area to be considered a good wind
power area:

1. A high average annual wind speed: the site is located in a wide open valley with
no obstructions nearby. It has an annual average wind speed of 10.8 m/s, which
is considered excellent for wind turbine operation. Wind turbines generate power
proportional to the cube of wind speed.



6.3 AEP comparison results against Villonaco wind farm 93

2. There is at least 10 Km of separation from noise-sensitive neighbors. Further-
more, the selected WT is remarkably quiet, with low noise levels.

3. Reliable grid connection: There is an electric substation located about 30km
away to discharge generated energy from the theoretical wind farm to the grid.

4. Easy site access: Because wind turbines of 1.5 MW are large and heavy. The
access roads and tracks available are capable of carrying these loads without any
risk.

5. No environmental damage or landscape impact: There are now no objections to
wind turbine installation because of bird strikes, due to the absence of special

bird areas.
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Figure 6.13: Monthly wind energy yield during 2018 using
WT Goldwind 1500

From the above-exposed characteristics, it is clear that the region of study is promising
for wind energy projects using high-power wind turbines. Moreover, the evaluation
of the feasibility of wind energy projects in the Ecuadorian Highlands must contain
an exhaustive economic analysis according to the project requirements accomplish the
project requirements, such as estimated AEP, project lifetime, and profitability [37,57].
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6.4 Monthly wind energy yield and Capacity Factor
estimation

To calculate the monthly estimated wind energy during 2018, it is supposed a
hypothetical wind farm of 16.5 MW of installed power. The wind speed at 80 m AGL
is considered to estimate monthly gross wind energy; which was compared against
monthly net wind energy values from Villonaco wind farm as is shown in Fig. 6.13.
The estimated wind energy values were higher than the real values of Villonaco; which
were obtained during the winter months. In addition, many factors affect wind farm
operation, such as climatic conditions, grid features, and equipment performance [132].

100
[Real
MEstimated

T

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time (Months)

Figure 6.14: Monthly CF during 2018 using WT Goldwind
1500
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The mean monthly CFs were calculated by the comparison of the CF Villonaco
wind farm against an estimated CF theoretical wind farm, as is observed in Fig. 6.14.
The estimated CF is higher than the real CF for the winter months. Furthermore, it
is observed that height change increases CF and decreases WSC values at the height
of 80 m AGL. A similar pattern of wind energy and higher CF results were obtained
by comparing the annual wind energy and CF in 2018 at 80 m AGL against estimated
wind energy and CF at an altitude of 2957 m ASL in the Swiss Alps [133].



6.4 Monthly wind energy yield and Capacity Factor estimation 95

6.4.1 Conclusions

In this chapter, the results of the evaluation of the wind resource and characteristics
of the wind regime in the Ecuadorian Andes have been presented. The following
deductions are presented below:

e At 80 meters AGL, the annual wind speed at 80 m AGL is 10.5 m/s due to the
wind speed accelerating effects caused by the orography of the complex terrain,
and there is low turbulence which is considered A category. The wind speed
increases with the change in height, and the TI decreases.

e The monthly wind speed has a high value in summer due to the influence of air
masses coming from the Atlantic and the South. In contrast, the monthly wind
speed is moderate during winter.

e The monthly WPD value is a function of wind speed; therefore, the highest
values are observed in the months of May-August, which correspond to summer.
Furthermore, the mean WPD in 2018 in the zone of study is considered high and
is equal to 600 W/m?. Consequently, a hypothetical wind farm of 16.5 MW using
11 WT Goldwind 70/1500 KW was designed to determine the feasibility of wind
power generation in this sector. The WT Goldwind 70/ 1500 KW class A, using
direct-drive permanent magnet technology, was found to be the best option for
these site characteristics.

e Based on the comparison between the estimated AEP and CF of the theoretical
wind farm and the actual yields of the Villonaco wind farm in 2018, it can be seen
that they achieved ratios close to the actual yields of 77.2% and 94%, respectively.
Consequently, the WPD, AEP, and CF of the hypothetical wind farm indicate
the feasibility of its construction in the study area in Ecuador’s Andes.






Chapter 7

Short-term wind speed,
power, and energy forecasting
results

This chapter presents the results of the short-term WS, wind power, wind energy
over complex terrain in the FEcuadorian Andes, and the cost of forecasted energy in
winter and summer are all discussed in four cases. It’s worth noting that are reported
the results of other studies conducted in similar circumstances worldwide. In the four
cases, WS forecasting achieved a lower proportion of forecasting error than other studies
worldwide.

7.1 Short-term wind speed forecasting using pro-
posed model

This section presents the results of the short-term prediction of the wind speed
in the study area using the proposed hybrid model. For the proposed hybrid model,
statistical models served as a baseline for WS forecasting, and DNN-RNN models are
used to improve WS forecasting performance.

7.1.1 Comparison of obtained results among forecasting models

The comparison between measured hourly wind speed and forecasted hourly wind
speed by using DNN and RNN, such as NARX, NAR, NIO, and LSTM and linear
regression models, such as persistence, MA, and ARMA, 12 hours in advance was
developed to show the results during the best windy day hours to predict wind speed
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for winter and summer at heights of 30m and 80 m AGL. To evaluate the forecasting
performance of regressive and DNN models by using four case studies:

7.1.2 Wind speed forecasting in winter

7.1.2.1 Case-study 1 Short-term wind speed forecasting for winter at 30m
AGL

~+Measured
8t —MA
ARMA

~—Persistence]|

Wind speed(m/s)

08: 00 10: 00 12: 00 14: 00 16: 00 18:00
Time (Hours)

Figure 7.1: Wind speed forecasting in winter on March 05-18 at 30m AGL using linear
regression models

The comparison results for half day in winter at a height of 30m AGL using regres-
sive models and DNN models are presented in Table 7.1; where the highest performance
is highlighted in bold and shows that the LSTM network outperforms the other five
models reaching a MAPE value of 5.3% during the training phase by using Adam opti-
mizer, learning rate 0.001, and 200 epochs. The graphic sample of the results of linear
models is presented in Fig. 7.1; where the ARMA model outperforms better than the
other two models by considering p,q values (1,1) and wind speed data from three days
ago. Fig. 7.2 indicates a slight improvement in forecasting performance of the LSTM
network around 0.9% in MAPE value over the NARX model. These results are beyond
previous reports [54], showing a lower RMSE value.
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Figure 7.2: Wind speed forecasting in winter on March 05-18 at 30m AGL using DNN
models

7.1.2.2 Case-study 2 Short-term wind speed forecasting for winter at 80m
AGL

The comparison results for wind speed 12 next hours in winter at a height of 80m
AGL using regressive models and DNN models are shown in Table 7.2; where the
highest performance is highlighted in bold; which indicates that the LSTM network
outperforms the other five models reaching a MAPE value of 4.9% during the training
phase by using Adam optimizer, learning rate 0.001, and 300 epochs. The graphic
sample of the results of linear regression models is presented in Fig. 7.3; where the
ARMA model outperforms better than the other two models by including for (p,q)
values (2,1) and wind speed data from three days ago. Figure 7.4 shows a slight
improvement in forecasting performance of the LSTM network around 0.9% in MAPE
value over the NARX model. A similar pattern of results was obtained by Liu et
al. [53].

7.1.3 Wind speed forecasting in Summer

7.1.3.1 Case-study 3 Short-term wind speed forecasting for Summer at
30m AGL

The comparison results for wind speed 12 next hours in summer at a height of 30m
AGL using linear regression models and DNN models are shown in Table 7.3; where the
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Table 7.1: Results of simulation process for winter at a height of 30 m AGL

NN Model MSE RMSE MAPE(%) R

Persistence 2.5 1.58 41.2 0.52
MA 1.35 1.46 38.3 0.54
ARMA 1.08 1.03 24.9 0.8
LSTM 0.09 0.3 5.3 0.99
NARX 0.33 0.61 6.2 0.98
NAR 0.39 0.62 6.4 0.97
NIO 0.4 0.63 6.9 0.98

Table 7.2: Results of simulation process for winter at a height of 80m AGL

NN Model MSE RMSE MAPE(%) R

Persistence 1.5 1.37 25.2 0.55
MA 1.28 1.13 18.3 0.6
ARMA 1.01 1.004 14.9 0.85
LSTM 0.13 0.36 4.9 0.99
NARX 0.3 0.3 5.8 0.99
NAR 0.34 0.58 5.9 0.95
NIO 0.65 0.8 8.2 0.98

highest performance is highlighted in bold; where the LSTM network outperforms the
other five models reaching a MAPE value of 4.1% during the training phase by using
Adam optimizer, learning rate 0.001, and 300 epochs. The graphic sample of the results
of linear models is presented in Fig. 7.5; where the ARMA model outperforms better
than the other two models by using p,q values (2,1) and wind speed data from three
days ago. Fig. 7.6 shows a slight improvement of 0.7% in forecasting the performance of
the LSTM network over the NARX model. We found that LSTM networks outperform
other models by at least 10% when comparing the results from Wu et al. [134] with
our forecasting results.

7.1.3.2 Case-study 4 Short-term wind speed forecasting for summer at
80m AGL

A comparison of linear and RNN models are presented in Table 7.4 for wind speed
12 next hours at an altitude of 80m AGL during winter; the most successful model is
highlighted in bold, indicating that with Adam optimizer, the learning rate of 0.001,
and 400 epochs. The LSTM network outperformed the other five models, reaching a
MAPE value of 4.01% during the training phase. The graphic sample of the results
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Figure 7.3: Wind speed forecasting in winter on April 05-18 at 80m AGL using regressive
models

of linear models is presented in Fig. 7.7, where the ARMA model outperforms better
than the other two models by using (p,q) values (2,1) and wind speed data from three
days ago. Fig. 7.8 shows a slight improvement of 1.9% in forecasting the performance
of the LSTM network over the NARX model. In line with previous studies by Yao et
al. [135,136], where the LSTM network had effective forecasting performance.
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Figure 7.4: Wind speed forecasting in winter on April 05-18 at 80m AGL using DNN models

Table 7.3: Results of simulation process for summer at a height of 30m AGL

NN Model MSE RMSE MAPE(%) R

Persistence 1.9 1.37 23.1 0.55
MA 1.28 1.13 18.3 0.6
ARMA 1.01 1.004 14.9 0.85
LSTM 0.13 0.36 4.1 0.99
NARX 0.18 0.33 5.4 0.99
NAR 0.37 0.6 6.1 0.93

NIO 0.37 0.6 6.3 0.94
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Figure 7.5: Wind speed forecasting in summer on June 06-18 at 30 m AGL using linear
regression models

Table 7.4: Results of simulation process for summer at a height of 80m AGL

NN Model MSE RMSE MAPE(%) R

Persistence 1.5 1.22 20.5 0.57
MA 1.28 1.13 18.3 0.6
ARMA 1.01 1.004 14.9 0.85
LSTM 0.12 0.38 3.8 0.99
NARX 0.11 0.56 5.7 0.98
NAR 0.58 0.76 6.6 0.98

NIO 0.41 0.64 7.1 0.97
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Figure 7.6: Wind speed forecasting in summer on June 06-18 at 30m AGL using DNN
models
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Figure 7.7: Wind speed forecasting in summer on August 08-18 at 80 m AGL using linear
regression models
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7.2 Short-term wind power and wind energy fore-
casting
The sixth specific objective of this thesis is to obtain the average hourly wind power

and wind energy available for the next 12 hours in the theoretical wind farm for winter
and summer.
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Figure 7.8: Wind speed forecasting in summer on August 08-18 at 80m AGL using DNN
models

7.2.1 Forecasting analyzed models

For the prediction of the wind power available at 80 m AGL (hub height) for winter
and summer, the following forecasting models were used:

e LSTM
e NARX
e NAR
e NIO



106 Short-term wind speed, power, and energy forecasting results

7.2.2 Data available

The data used to make the wind power forecast, considering a horizon of 12 hours
in advance for winter and summer. In this case, the wind speed data from the proposed
hybrid model at an altitude of 80 m AGL.

7.2.3 Short-term wind power and wind energy forecasting in
winter

7.2.3.1 Short-term wind power forecasting

In both cases for winter and summer, 11 WT Goldwind 70/1500 KW were consid-
ered in the theoretical wind farm. Their power curve supplied by the manufacturer was
adjusted to the air density of the study area as indicated in Figure 6.12, which is used
for the conversion of wind speed to gross wind power and by using WS forecasted from
Fig. 7.5. The results of the wind power projection for the next 12 hours of the day
are shown in Fig. 7.9, with the highest wind speeds corresponding to GSR occurring
during this time. These are the real (measured) and DNN model values. The LSTM
model predicts values that are better suited to the real value.
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Figure 7.9: Wind power forecasting in winter on April 05-18 at 80m AGL using DNN models
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7.2.3.2 Short-term wind energy forecasting

The second proposed goal is to predict electrical energy in a hypothetical wind farm
for the next 12 hours. Information on available power and the number of hours of wind
speed obtained by the WS bins method from Fig. 7.2. Wind turbine energy generation
is determined by the wind turbine’s potential and how often the wind blows, or more
scientifically, by the wind speed frequency distribution at the site [15,19]. It is possible
to calculate the total energy generated over a period of 12 hours in advance by adding
up the power generated at all velocities (the actual cut-in speed to the shut-down
speed) multiplied by the number of hours where the wind blows at those speeds. For
power conversion, the bin method was used to determine the frequency of occurrence
of wind speeds within the 12-hour period. The LSTM model has the most predicted
gross energy that is closest to the true number as is shown in Fig, 7.10. Table 7.5
outlines the verification of the values used to establish the prediction’s accuracy. The
LSTM model has reduced RMSE and MSE values of 2.09 and 4.4, respectively.
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Figure 7.10: Wind energy forecasting in winter on April 05-18 at 80m AGL using DNN
models

7.2.3.3 Economic value of electricity forecast

To illustrate the economic benefit of short-term wind energy forecasting for the
next 12 hours, we proceed to calculate the cost of wind energy produced on a winter
day. Taxes or supplements for reactive power are not considered, nor are the costs for
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Table 7.5: Comparison results among wind energy forecasting for winter at a height
of 80 m AGL

NN Model MSE RMSE Error percentage

LSTM 4.4 2.09 6.6
NARX 7.0 2.6 7.7
NAR 9.4 3.06 8.9
NIO 12 3.46 11.4

secondary regulation as indicated in Fig. 7.11. Where it can be seen that the lowest
percentage of error is reached with the LSTM network. Furthermore, CONELEC Reg-
ulation 004/11 establishes the energy prices of wind generation at 0.0913 USD/kWh.
The validity of the prices will be 15 years from the date of subscription of the qualifying
title (2012-12-31) [55].

[Ne]
wn
(=3
=4
T
1

&
(=
(=]
T
1

Cost of wind energy (
—_ o
() f—)
() f—)
(=] [
T T
Il Il

500 §

O | | | | |
Measured NARX NAR NIO LST™M

Figure 7.11: Cost of wind energy in winter on April 05-18 at 80m AGL using DNN models
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7.2.4 Short-term wind power and wind energy forecasting in
summer

7.2.4.1 Short-term wind power forecasting

The power curve adjusted to the air density of the study area, as indicated in Fig.
6.12, was used to convert WS forecasted on August 08-18 at 80m AGL, from 7.8 into
wind power. In this particular case, when the nominal power stabilizes, the speeds
within the 12 hours are in the range of the nominal speed of 21-25m/s, which is a
relevant fact. The maximum power of the WT Goldwind 70/1500 KW is in the region
of 15-25 m/s, according to the power curve. After considering the 4 DNN forecasting
models, it is estimated that the available power will be a horizontal line with a power
of 16.5 MW. By assuming that the 11 WTs Goldwind 70/1500 KW operate at nominal
power during the analysis period.

7.2.4.2 Short-term wind energy forecasting

In order to determine the generated wind turbines’ energy in summer on August
08-18 at 80 m AGL, from 16.5 MW constant nominal wind power for 11 WTs, which is
multiplied by the wind occurrence frequency at the analyzed period of 12 hours. The
gross wind energy predicted by each of the 4 models is constant for 4 prediction models
reaching a measured and generated energy value of 198 MWh. Based on equal real and
predicted electrical energy values. Therefore, the values for RMSE, MSE, and Error
percentage in the four prediction models (NARX, NAR, NIO, LSTM) will have a zero
value, because there is no difference among them.

7.2.4.3 Economic value of electricity forecast

To demonstrate the economic value of short-term wind energy using the 4 fore-
casting models over the next 12 hours, we calculate the cost of wind energy produced
on a summer day on June 06-18 at 80 m AGL using DNN models, excluding taxes or
reactive power supplements, as well as secondary regulation costs. The energy cost will
be equal for 4 models considering generated energy (198 MWh), and the cost of wind
energy (0.0913 USD/KWh), because the energy value ($ 18.000) is the same for each
model.

7.3 Wind characteristics modeling and micro-siting

7.3.1 Wind characteristics on complex terrain

The wind speed map over the computational domain in Zone 1 is shown in Fig.
7.12, which represents the horizontal wind speed of the study area at 80 m AGL, which
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Figure 7.12: Wind speed simulation in zone 1

is similar to the hub height of the selected WT. We determined that the annual mean
wind speed (10.8 m/s) at the inlet of the computational domain in four areas of zone
1 would have as an outlet higher WS values on the summit of mountains of 3.3 m/s to
24 m/s due to the wind speed-up effect nearby to measured WS values during 2018.
A similar pattern of WS simulation results but with lower WS values was obtained by
Solano et al. [137] for the southern mountainous region of Ecuador at heights of 10 and
100 m AGL using the software Surfer 3D.

In this way, it confirms that WS increases and TI decreases with height change
[19,57]. On the other hand, The TI map over the computational domain in Zone 1 is
shown in Fig. 7.13, which represents the TT of the study area at 80 m AGL, which is
similar to the hub height of the selected WT. TI was simulated values using annual
mean WS (10.8 m/s) as WS inlet in four Areas of Zone 1 to have higher TI values on the
top of mountains from 0.04 to 0.18 due to the friction of WS against the terrain surface.
Consequently, from these results, it is clear that the risks to the WT performance and
durability caused by fatigue loads on WT blades could be greatly reduced by assessing
the wind characteristics of the WT installation site, such as T1I simulation over complex
terrain to optimize wind farm layout to keep clear of turbulent flows [129,138].
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Figure 7.13: TI simulation in Zone 1

7.3.2  Micro-siting of wind turbines of the proposed wind farm

Micro-siting to place 11 WT Goldwind 70/ 1500 KW was performed in three steps
for each of the four horizontal areas of Zone 1 as follows: First, we should consider
relevant factors such as WT orientation about predominant WD (windward from East),
and locating WT on the top of the mountains, considered as wind acceleration areas.

Second, removing WT from highly turbulent flows originated by wakes and vortices
from other surrounding terrains of lower height [115,139].

Third, consider WT row and column separation regulations [119]. Fig. 7.14 shows
the layout of the proposed wind farm by considering areas with high active power.

7.3.3 Conclusions

The results of wind speed and wind energy forecasting have been reported in this
chapter utilizing the proposed prediction model. Similarly, the results of the wind
speed and turbulence modeling have been displayed in a mountain in the study area
using the CFD Ansys Fluent software. The main inferences are listed below.
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Figure 7.14: WT positions in computational domain Zone 1

e Short-term wind speed prediction was carried out in complex terrain in the

Ecuadorian Andes, using the proposed model at heights of 30 m and 80 m AGL.
The predictions were developed in 4 cases of study. The prediction results indi-
cate that the lowest values of the MAPE and RMSE indicators were obtained at
80 m AGL using the LSTM recurrent network.

Short-term wind power prediction was performed in the study area using the WT
Goldwind 70/1500 KW, as well as the cost of generated power, using the NARX
and LSTM networks at the height of 80 m AGL. The predictions were developed
for winter and summer. The results of the predictions with the lowest percentage
of error were obtained with the LSTM recurrent network. These results indicate
that the most significant amount of energy was produced in summer.

The simulation of the wind characteristics was carried out using the Ansys Fluent
CFD software and the k-epsilon turbulence model. The simulation was performed
to determine the micro-siting of the 11 wind turbines. The results indicate that
the values of mean speed and intensity of turbulence are very close to the real
values.



Chapter 8

Conclusions, main
contributions, and future
works

8.1 Conclusiones (Spanish)

Esta tesis doctoral ha abordado la Evaluacién del Recurso Edlico (WRA), el disenio
de parques edlicos con Dindmica de Fluidos Computacional (CFD), y el uso de algorit-
mos de Redes Neuronales Artificiales (ANN), tales como Redes Neuronales Dindmicas
-Redes Neuronales Recurrentes (DNN-RNN), en el contexto de la prediccién de la
velocidad y potencia del viento en terreno complejo a gran altitud en los Andes Ecu-
atorianos. La base de datos se basa en las variables climéaticas medidas en 2018 por
dos torres meteoroldgicas instalaladas en una zona montanosa de investigacién en la
Cordillera de los Andes. Los siguientes son los hallazgos més relevantes de este estudio:

1. Las principales caracteristicas del viento superficial en el paso de viento entre dos
volcanes se definen a partir de las variables meteoroldgicas, la orografia del terreno
y el efecto embudo provocado por la aceleracién del viento que atraviesa el paramo
de El Arenal en los Andes Ecuatorianos. La dindmica atmosférica a gran altura
tiene una influencia significativa debido al predominio de una gran cantidad de
irradiacién solar global (GSR), debido a que el drea de estudio se encuentra en la
posicién geografica mas cercana al Sol, lo que provoca la variabilidad atmosférica
en el area.

2. Los valores més altos y mds bajos de Velocidad de Viento (WS) corresponden a
los meses de verano e invierno, respectivamente. Al hacer una correlaciéon entre
la velocidad media anual medida y la estimada en el Atlas Edélico Ecuatoriano,
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se obtiene un valor de Raiz del Error Cuadritico Medio (RMSE) de 0,45, lo que
representa una variacién de 1,5-2 m/s. Por lo tanto, el Atlas Ecuatoriano tiende

a subestimar la velocidad del viento en esta regiéon a 80 m sobre el Nivel de la
tierra (AGL).

. El andlisis mensual de la velocidad del viento para el 2018 mostré que la velocidad

del viento aumenta con el cambio de altura y la Intensidad de Turbulencia (TT)
disminuye. Ademds, los rangos de velocidad del viento fueron maés altos en los
meses de verano que en los meses de invierno debido a los grandes flujos de
aire frio del Sur. De acuerdo con el perfil de la velocidad del viento, el horario
de prondstico debe ser en verano en cualquier momento durante las 24 horas;
mientras que en invierno solo durante las horas del dia. Cabe senalar que las
velocidades de viento disponibles en la zona de estudio para invierno y verano a
una altura de 80m AGL pueden ser aprovechadas para generacién edlica de alta
potencia.

. La Densidad de Potencia Edlica (WPD) media en 2018 en la zona de estudio

se considera alta y es igual a 600 W/m?. En consecuencia, se diseiié un parque
edlico hipotético de 16,5 MW utilizando 11 Aerogeneradores (WT) Goldwind
70/1500 KW para determinar la factibilidad de generacién de energia edlica en
este sector. El Aerogenerador ( WT) Goldwind 70/ 1500 KW clase A, que utiliza
tecnologia de imanes permanentes de accionamiento directo, resulté ser la mejor
opcién para estas caracteristicas del sitio.

. Se encontré que la Produccién Anual de energia (AEP) en 2018 para un parque

edlico hipotético que utiliza 11 Aerogeneradores (WT) Goldwind 70/1500 KW
tenia alrededor de 75 GWh y un Factor de Capacidad (CF) alto de 0,46, que esté
mas cercano al del parque edlico Villonaco. Por lo tanto, estos valores de AEP
son adecuados para la generacién de energia edlica a gran escala.

. El disefio y el posicionado de los 11 aerogeneradores Goldwind 70/1500 KW del

parque edlico se desarrollaron utilizando el programa Ansys Fluent CFD. El mod-
elo estandar de Intensidad de Turbulencia (TT) k-e ha sido validado para el flujo
de viento sobre terreno complejo a grandes altitudes mediante la comparacion de
los resultados numéricos obtenidos del programa Ansys Fluent CFD con los datos
experimentales disponibles. Los resultados de la comparacién entre el modelo de
dos ecuaciones k-¢ y los datos calculados mostraron que el modelo k-¢ puede pre-
decir la velocidad media y la energia cinética turbulenta estdn mas cerca de los
valores medidos.

. El modelo propuesto para pronosticar la velocidad del viento con seis horas de

anticipacién, se desarrollé mediante la aplicacién de una metodologia que incluy
el uso de modelos de regresién lineal, como el persistente, Media Mévil (MA) y
Auto Regresivo Media Mévil (ARMA ) considerados como linea de base para la
prediccién, en combinacién con redes més complejas para mejorar el rendimiento
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del pronéstico, como redes con Memoria a Corto Plazo (LSTM) y Redes No
lineales con Entradas Exdégenas (NARX).

8. Los resultados de la comparacion entre los modelos propuestos se desarrollaron
utilizando las medidas de prondstico de errores, como Error Cuadratico Medio
(MSE), RMSE, Error Absoluto Medio Porcentual (MAPE) y el coeficiente de
correlacién (valor R); lo que mostré que el rendimiento del prondstico de los
modelos de regresién lineal utilizados como una linea de base indican valores altos
para las medidas de error. Considerando que se alcanzaron mejores resultados de
rendimiento de pronéstico utilizando la red LSTM multivariable con una mejora
de al menos un 10% sobre la red NARX. Los mejores rendimientos se alcanzaron
utilizando el modelo LSTM a una altura de 80 m AGL. Los resultados del MAPE
y del coeficiente R para el modelo LSTM indicaron valores para invierno de 4,1
v 99% respectivamente, y para verano de 3,8 y 99% de forma independiente.

9. Se realizo la prediccién de la potencia edlica a corto plazo en el area de estudio
utilizando el aerogenerador WT Goldwind 70/1500 KW, asi como el costo de la
potencia generada, utilizando las redes NARX y LSTM a una altura de 80 m
AGL. Las predicciones se desarrollaron para invierno y verano. Los resultados de
las predicciones con menor porcentaje de error se obtuvieron con la red recurrente
LSTM. Estos resultados indican que la mayor cantidad de energia se produjo en
verano.

10. El presente estudio es relevante debido a que contribuye a la comunidad cientifica
al brindar resultados novedosos sobre el prondstico de la velocidad de viento en
terrenos complejos en los Andes Ecuatorianos. Las redes multivariable LSTM o
NARX utilizadas en esta investigacién se pueden aplicar en otros trabajos para
pronosticar la velocidad del viento a corto plazo en terrenos complejos. Cabe
senialar que hasta el momento no existen trabajos publicados sobre la aplicacién
de técnicas RNN o DNN para el pronéstico de la velocidad del viento en Ecuador,
donde la energia edlica se encuentra en proceso de crecimiento.

8.2 Conclusions, main contributions, and future
works

8.2.1 Conclusions

This doctoral thesis has addressed WRA, wind farm design with CFD, and the use
of ANN algorithms, such as DNN-RNN, in the context of wind speed and power fore-
casting over complex terrain at high altitudes in the Ecuadorian Andes. The database
is based on climatic variables measured by two meteorological towers installed in a hilly
research zone in the Andes Mountains in 2018. The following are the most relevant
findings from this study:
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. The main characteristics of the surface wind in the wind pass between two vol-

canoes are defined based on the meteorological variables, terrain orography, and
the funnel effect caused by the acceleration of the wind that crosses the El Arenal
moorland in the Ecuadorian Andes. High-altitude atmospheric dynamics have
a significant influence due to the predominance of a large amount of GSR be-
cause the study area is in the closest geographical position to the Sun, causing
atmospheric variability in the area.

. The higher and lower WS values correspond to the summer and winter months,

respectively. By making a correlation between the mean annual speed measured
and the one estimated in the Ecuadorian Wind Atlas, an RMSE value of 0.45 is
obtained, which represents a variation of 1.5-2 m/s. Therefore, the Ecuadorian
Atlas tends to underestimate the wind speed in this region at 80 m AGL.

. The monthly wind speed analysis for 2018 showed that wind speed increases with

the change of height and turbulence decreases. In addition, wind speed ranges
were higher in summer months than in winter months because of great cold
air flows from the South. According to the wind speed profile, the forecasting
schedule should be in summer at any time during 24 hours; whereas in winter for
day hours only. It should be noted that the wind speeds available in the zone of
study for winter and summer at a height of 80 m AGL can be used for high-power
wind generation.

. The mean WPD in 2018 in the zone of study is considered high and is equal to

600 W/m?. Consequently, a hypothetical wind farm of 16.5 MW using 11 WT
Goldwind 70/1500 KW was designed to determine the feasibility of wind power
generation in this sector. The WT Goldwind 70/ 1500 KW class A, using direct-
drive permanent magnet technology, was found to be the best option for these
site characteristics.

. The AEP in 2018 for a hypothetical wind farm using 11 WT Goldwind 70/1500

KW was found to have around 75 GWh and a high CF of 0.46, which is closer to
the Villonaco wind farm. Therefore, these AEP values are suitable for large-scale
wind power generation.

. The meshing procedure of the two-dimensional CFD numerical simulation.

. Wind farm design and micrositing were developed using 11 WT Goldwind

70/1500 and Ansys Fluent CFD software. The TI standard k-e model has been
validated for wind flow over complex terrain at high altitudes by comparing the
numerical results obtained from the Ansys Fluent CFD software with the avail-
able experimental data. The comparison results between the k-¢ two-equation
model and calculated data showed that the k-¢ model can predict the mean ve-
locity and the turbulent kinetic energy that are closer to the measured values.

. The proposed model to forecast the wind speed six hours in advance was devel-

oped by applying a methodology that includes the use of linear regression models,
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such as persistent, MA, and ARMA, considered as a baseline for prediction, in
combination with more complex networks to improve forecast performance, such

as multivariable LSTM and NARX networks.

9. The comparison results among proposed models were developed by using the
error forecastings measurements, such as MSE, RMSE, MAPE, and correlation
coefficient (R-value); which showed that the forecasting performance of the linear
regression models used a baseline indicates high values for error measurements.
Whereas, better forecasting performance results were reached using a multivari-
able LSTM network with at least 10% improvement over the NARX network.
The best performances were reached using the LSTM model at a height of 80m
AGL. The MAPE and R coefficient results for the LSTM model indicated values
for winter of 4.1 and 99% respectively, and for summer of 3.8 and 99% indepen-
dently.

10. Short-term wind power prediction was performed in the study area using the WT
Goldwind 70/1500 KW, as well as the cost of generated power, using the NARX
and LSTM networks at a height of 80 m AGL. The predictions were developed
for winter and summer. The results of the predictions with the lowest percentage
of error were obtained with the LSTM recurrent network. These results indicate
that the greatest amount of energy was produced in summer.

11. The present study is relevant due to that contributes to the scientific community
by supplying novel results about wind speed forecasting over complex terrain in
the Ecuadorian Andes. The multivariable LSTM or NARX networks used in this
research can be applied in other works to forecast short-term wind speed over
complex terrain. It should be noted that until now there are no published works
about the application of RNN or DNN techniques for wind speed forecasting in
Ecuador, where wind power is in the growth process.

8.2.2 Main contributions of the thesis

The main outstanding original contributions of the research work carried out in the
thesis are the following:

e A novel short-term wind speed prediction model for application to complex high-
altitude terrain was developed using regressive models for baseline prediction and
DNN-RNN to improve model prediction. The results obtained as wind speed time
series for winter and summer allowed the short-term prediction of the following
parameters:

1. Short-term wind power available at hub height 80 m AGL.

2. Short-term wind power for the proposed wind farm using the wind turbine
selected for the study area.
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3. Cost of the energy to be produced by the proposed wind farm.

e A novel assessment of wind potential and wind regime characteristics over com-

plex high-altitude terrain in the Ecuadorian Andes was developed using data
measured at the site using sensors installed in two meteorological towers located
at 30m and 80m AGL. This evaluation allowed us to obtain the error percentage
compared to estimates of the wind map of Ecuador developed by NASA using
mesoscale and NWP models. The differences between the 2 values are indicated
below:

1. Average annual wind speed at 80 m AGL underestimated by between 1-
2m/s.

2. Average monthly speed in Summer, underestimated by 28.5%, equivalent to
a difference of 2 m/s.

3. WPD at 80 m AGL is undervalued with a 14.2% value corresponding to 100
W /m?2.

4. WT Golwind 70/1500 power curve adjusted to air density of study area.

Modeling of wind characteristics in complex high-altitude terrain in the Ecuado-
rian Andes has been developed for the first time using Ansys Fluent CFD soft-
ware. To achieve this objective a domain equivalent to the dimensions of a real
hill located in the study area has been considered placing as input variables to
the computational domain the values of the meteorological variables measured at
the site. The results obtained allowed us to obtain simulations of the following
wind characteristics:

1. Accelerating effects of wind speed due to hill effect in summer at 80 m AGL.
2. Turbulence intensity variation at 80 m AGL.

3. Micrositing of the 11 WT Goldwind 70/1500 KW that make up the theo-
retical wind farm on the hill chosen for its high wind potential.

Improvement in the prediction of short-term wind power obtained at hub height.
To achieve this objective, the following alternatives are proposed: Consider the
barometric pressure gradient to adjust the power curve to the air density to be
used.

CFD simulations of wind speed and turbulence intensity variations with height
on complex terrain have improved. The following options are offered in order
to attain this goal: In difficult terrain, take into account atmospheric stability.
Consider the temperature difference as a function of altitude. Take into account
the terrain’s orography.
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8.2.3 Future works

Once the wind energy prediction research work on complex terrain at high altitudes
is finished, several future lines of research are presented whose main objective is to
reduce and improve the prediction of the prediction indicated below:

e Increase the accuracy of the short-term wind speed prediction model over a 6-hour
horizon over complex terrain, taking into account the following alternatives:
1. Using advanced deep learning machine learning algorithms.

2. Analysis of the influence of atmospheric stability and complex terrain orog-
raphy on wind speed.
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ABSTRACT

Wind speed forecasting systems over complex terrain at high altitude are very complex and conventional
forecasting systems are unable to be applied due to wind variability. This study proposes an approach
developed specifically for this study with application of linear regression models as baseline, and
Recurrent Neural Networks (RNN): Long Short Term Memory (LSTM) network, and Dynamic Neural
Networks (DNN): Nonlinear Autoregressive Exogenous (NARX) network to perform accurate wind speed
forecasting in complex terrain in the Ecuadorian Andes to identify feasible places for wind energy ap-
plications. This work starts with the installation of two meteorological stations within of the moun-
tainous zone of study to collect measured variables during 2018. Later on, the measured variables were
evaluated by using statistical tools and Pearson Correlation Coefficient (PCC) to determine the input
variables. Finally, the proposed forecasting models were trained, validated, and tested by using measured
data. The DNN and RNN models were compared to determine the best performance through the sta-
tistical error forecast measurements as follows, Mean Absolute Percentage Error (MAPE), Mean Squared
Error (MSE), and correlation coefficient. The comparison results of the proposed models indicated that
the most precise values were for multivariable LSTM network, suggesting this model as a powerful
approach to forecast wind speed over complex terrain, demonstrating the importance by using measured
variables. Furthermore, the forecasted wind speed showed high values which are suitable for high wind
power generation.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

60.4 GW of newly installed power, with an increase of 10%
compared to 2018 [7,8]. It is expected to reach a total installed

The global demand for energy coming from fossil fuel had a
significant annual growth tendency in 2018 [1]. Fuel combustion
produces hazard emissions that causes environmental damage as
global warming [2,3]. To mitigate this effect and reduce conven-
tional fuel dependence; it is important to use renewable energies
available in their different forms. According to Organisation for
Economic Co-operation and Development (OECD) the proportion of
renewable energy in total primary energy supply for 2018 reached a
new high of 10.2% [1]. Wind energy has become one of the most
relevant forms of renewable energy [4—6]. By the end of 2019, it
reached a global installed wind power capacity of 651 GW, with

* Corresponding author.
E-mail  addresses:  U0260514@uniovi.es,  lopezgermanico51@gmail.com
(G. Lopez), arboleyapablo@uniovi.es (P. Arboleya).

https://doi.org/10.1016/j.renene.2021.10.070
0960-1481/© 2021 Elsevier Ltd. All rights reserved.

power of 840 GW by 2022. The global distribution of wind power in
2017 was as follows: Africa 4.52 GW, Asia 228.6 GW, Europe
177.5 GW, North America 150.3 GW, Pacific Region 5.1 GW, Latin
America, and Caribbean 17.2 GW [2,5]. However, it is difficult to
integrate renewable generation into the power grid either tempo-
rally or spatially [9,10].

Wind energy has have a rapid growth last two decades [2,4,7]. It
is growing at exponential rate due to depletion of operation,
maintenance costs, and increase of wind turbines reliability [2].
Whereas, the major problem of introducing wind energy into the
power grid is the variability and intermittence of the wind; which is
one of the main barriers faced by power system operators [3,7].
Accurate forecasting tools are required to solve this problem,
directed to principal objectives of planning wind turbine schedule,
cut down power system operation cost and reduce its fluctuation
[11,12].
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In Ecuador renewable energy represents a high percentage of
the total installed generation system around 8762 MW. Renewable
energy sources are composed the most of hydropower; which
represents 53.31% of total installed power, it is expected to become
5100 MW by March 2021 [14,15]. Wind power with a installed
power of 21.15 MW holds the lowest proportion around of 0.26% of
total installed generation systems [14—16]. In addition, Ecuador has
not still exploited its full wind gross potential of around
1670.96 MW. Loja and Galapagos are leading in onshore wind farms
[17]. The National Electricity Council (CONELEC) published in 2013
the Ecuadorian Wind Atlas developed by NASA based on Numeric
Weather Prediction (NWP) models. This Atlas estimated wind po-
tential around of 1670.8 MW at 80 m above ground level (AGL) [17].
Therefore, wind speed range is from 10 to 25 m/s and wind power
density range from 250 to 600 W/m?2, which are classified as superb
according to NREL [18].

Wind over complex terrain is mainly influenced by land
topography and elevation [18]. In this way, wind flow passing over
topographical variations, such as mountain tops, ridges, escarp-
ments, and channel pits in mountain ranges cause wind speed
acceleration and turbulence [19,20]. Turbulence are fluctuations in
wind speed on a relatively fast time scale, generally less than
10 min. It is generated by two main causes: (1) friction of wind
speed with the surface of the earth, which cause wind flow
disturbance, (2) thermal effects caused by variations in air tem-
perature and density; which cause vertical movements in the air
masses [21,22]. It should be noted that wind speed increases with
height above ground and there is a great wind potential in the
mountainous regions. In particular, between the Andes volcanoes
Chimborazo 6263 m Above Sea Level (ASL) and Carihuayrazo
(5116 m ASL); where wind speed increases its speed and reduces
pressure named tunnel effect as is shown in Fig. 1 [21,23,24].

The community of Mechahuasca located within of the zone of
study, was the selected place because of its high wind potential,
which requires to be assessed for wind energy applications [14,17].
Near to this location, Garcia et al. [25] studied the influence of
sampling rate on wind power density for these communities in the
highlands of the Ecuadorian Andes, and proposed a Probability
Density Function (PDF) based on the daily Gaussian average of si-
nusoidal wave forms. Additionally, Ayala et al. [26] estimated the
wind energy in Villonaco wind farm located in complex terrain at
high altitude (2700 m ASL). The results were annual wind speed of
over 10 m/s, and a capacity factor of 0.53.

Chimborazo volcano
6263 m ASL

Wind channel pass
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Regardless of studies about wind power assessment in complex
terrain in the Ecuadorian Andes. Nowadays, there is not a work
about wind speed and power forecasting. Consequently, it appears
a need to develop an accurate model to forecast wind speed. To
reach this objective a technique based on uni-variable regressive
models, such as persistence model, MA, and ARMA; which are
considered a base line for wind speed prediction; to improve the
forecasting performance are employed complex RNN, such as a
deep learning algorithm known as multi-variable LSTM network,
and DNN models using a NARX model through measured meteo-
rological variables are going to be used. The authors present a novel
application of linear regression models, LSTM network and NARX
model to predict short-term wind speed in a mountainous region of
the Ecuadorian Western Andes to identify feasible places for wind
farm installation considering wind shear profile. The main contri-
bution of this paper is twofold: (1) The proposed model sets out to
develop one important step further on wind speed behavior over
complex terrain using the LSTM and NARX models. (2) The results
of the proposed model for wind speed forecasting represents a
relevant contribution to the scientific research due to no available
previous studies in Ecuador and worldwide. This paper is struc-
tured as follows: Section 2; presents a background of wind speed
and power forecasting by using Artificial Neural Networks (ANN).
Section 3; describes the area of study in the Highlands and used
methodology. Section 4; presents the comparison results and dis-
cussion of the proposed forecasting models. Section 5; shows the
corresponding forecasting results and discussion. Section 6; ex-
poses main conclusions and further directions.

2. Literature review

Nowadays, wind speed forecasting methods are very relevant
due to fast propagation of wind power generation worldwide for
wind characterization, resource evaluation, and wind power fore-
casting [27,28]. Accurate wind and power forecasting methods are
required to reduce forecasting errors in wind power generation
considering wind uncertainty and advances on wind energy con-
version systems [3,4]. The accuracy of prediction of wind speed
forecasting results are affected by two main aspects as: selection of
input variables and forecasting methods [3].

Regarding to input variables selection to be used in wind speed
forecasting have reached great relevance because wind power
generation and wind farm planning are influenced by wind speed

Carthuayazo

volcano 5116 m

Meteorological
stations

Fig. 1. Area of study in the Andes Range [13].
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[7,35]. Wind speed and power forecasting depends on meteoro-
logical variables, such as wind direction, barometric pressure,
temperature, humidity, and others [12,29,36]. Among climate fac-
tors that change according with the geographical position, wind
speed is the most relevant [30,37]. Ramasamy et al. [38] proposed
an Artificial Neural Networks (ANN) model to predict wind speed
using measured wind data of Hamirpur. The MAPE and correlation
coefficient achieved in prediction of daily wind speed were 4.55%
and 98% respectively. Beccali et al. [39] stated a forecasting model
by using Elman network and weather variables for short time
household electricity consumption. The forecasting results had an
accuracy of 97% and average percentage error of 3.1%.

Respect to forecasting methods by using time horizon, wind
power is represented by its instability and intermittence because of
the complex physics of the atmosphere [19,22,40]. To integrate
variable wind energy into electrical grid are required integrated
transmission systems for wind turbines operation and accurate
forecasting tools, with weather forecasting included [41—43]. In
addition, the expected demand is required in hourly intervals in the
energy markets at least one or two days ahead [44]. Wind power
forecasting is the estimation of wind conditions based on wind data
available, and topographical and meteorological variables of a place
[24,45]. Wind speed and power prediction with great quickness
and precision, to integrate into the power system are the principal
objectives of wind speed and power forecasting [3,44]. The classi-
fication of wind speed forecasting according to time horizon and its
main applications is listed in Table 1.

The forecasting methods are classified in five groups as follows:
wind speed and power forecasting, spatial correlation forecasting,
regional forecasting, probabilistic forecasting, and offshore fore-
casting [3]. To increase accuracy of the forecasting methods have
been accomplished various wind speed and power forecasting
approaches, including physical, statistical, and artificial intelligence
for renewable energy systems [22,46,47]. Moreover, the energy
efficiency, energy control and stability in the energy demand pre-
diction in renewable energy systems have been improved with the
application of machine learning techniques [48]. These techniques
have been used with quick development from many years ago in
modelling, design, and prediction of energy systems [35,48]. These
approaches have been adopted worldwide to evaluate wind power
performance and to acquire relevant information for application in
wind power generation systems [49—51]. In wind energy systems
are found 10 groups of machine learning algorithms, such as ANN,
MLP, ELM, SVM, WNN, ANFIS, decision trees, deep learning, en-
sembles, and advanced hybrid models with great acceptance in
wind energy systems [48]. The ANN models according to the
application can be classified in four main categories, such as fore-
casting and prediction, prediction and control, design optimization,
fault detection and diagnosis [4]. In South America, Zucatelli et al.
[52] performed a short-term wind speed forecasting model for
Colonia Eulacio, Uruguay for one year, by applying an ANN tech-
nique. The results showed good accuracy for heights tested and
optimal wind speed forecasting with low computational cost.
Recent studies show that the forecasting accuracy decreases after
6 h time horizon and the MAPE increases to around 15% [35,37,53].
In recent years, it has occurred a growing interest to research wind
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speed, wind power modelling and forecasting in complex terrain
because wind speed increases on top of hills and mountains to be
exploited by wind turbines [24,46]. For this reason has been
developed many research works dedicated to improve wind power
forecasting performance. The wind power assessment in complex
terrain must be done carefully considering morphological features
[6,54], and unstable weather regimes to install wind turbines in a
mountainous region [3]. Feed forward Neural Networks (FNN) were
used to predict hourly wind speed in a coastal region with complex
topography. To increase ANN accuracy was used a wind vector
incorporated variability [34]. Mana et al. [55] proposed two models
ANN pure and a hybrid ANN-CFD to forecast wind power in very
complex terrain in Italy. The two methods had similar perfor-
mances. However, the hybrid model showed better performance in
low and high wind speed range. Tabas et al. [56] analyzed
Computational Fluid Dynamics (CFD) technique to forecast wind
power in complex terrain. It was stated the combined presence of
three complex factors: topography, heterogeneous vegetation, and
interactions between wind turbine wakes.

In order to make a more accurate wind speed forecasting using
real data measured in complex terrain located at high altitude. This
study proposes wind speed forecasting with great accuracy by us-
ing NARX network used until now by few researchers as follows:
Cadenas et al. [57] generated a model to forecast short term wind
speed in Mexico by using NARX model and compared with NAR and
persistent models. The results indicated that NARX model had a
performance of 4% over the NAR and 11% over the persistence
model. Gao and Er [58] proposed a NARMAX time series model
prediction using FNN and RNN as approaches to improve the per-
formance of the NARX model. Hence, comparative studies
demonstrated that FNN approach can learn complex temporal se-
quences in a flexible way. Jawad et al. [59] developed a GA-NARX
model to predict short term or medium term wind power and
electrical load. The results showed good accuracy for short-term
wind speed forecasting.

In recent studies, according to technological advances in ma-
chine learning. Therefore, new deep learning algorithms have been
designed and widely used for times series prediction. Among these
algorithms the LSTM networks part of RNN are used for accurate
wind speed forecasting results [60]. Liu et al. [61] proposed a deep
learning strategy for multistep wind speed forecasting based on
EWT to disintegrate original data, LSTM to predict low frequency
data, and Elman networks to predict high frequency data. The re-
sults of the proposed model indicated good forecasting perfor-
mance. Xie et al. [62] presented a shor-term wind speed forecasting
model based on Auto Regressive Mean Average (ARMA) and multi-
variable LSTM network by using meteorological variables data in
Beijing. The results showed feasibility in forecasting and LSTM su-
periority over ARMA and simple variable LSTM. These samples of
LSTM studies show good feasibility for prediction; as well as to
consider in this study this algorithm as a good option to improve
the wind speed forecasting performance.

From literature above reviewed it is observed that have not been
reported studies about wind speed forecasting by using LSTM or
NARX models over complex terrain located at high altitude in the
Western Ecuadorian Andes. The present work improves on the

Table 1
Classification of wind speed forecasting [29].
Categories Time horizon Applications
Very short term Few seconds to 30 min Wind turbine control and load tracking [30]
Short term 30minto6h Wind speed forecasting and Wind turbines power prediction [12,31]
Medium term 6—24h Power system management and energy trading [12,32]
Long term 1-7 days Wind turbine maintenance program [33,34]
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previous ones on the fact that it is the first in predicting wind speed
at the highest altitude reported so far (4428 m ASL); as well as
using RNN and DNN models in place of hybrid models. The LSTM
and NARX networks have been developed using measured data
instead of using climatic models. Furthermore, it is validated by
using DNN instead of hybrid models using wind speed measure-
ments closer to the hub height of high power wind turbines. From
this point of view, this study is unique, and the conclusions ob-
tained of the setup wind speed forecasting method can be useful for
other researchers to forecast wind speed in mountainous terrains at
high altitude.

3. Methodology

This section presents the characteristics of the area of study, as
well as wind speed forecasting features, such as proposed fore-
casting models, forecasting process, forecasting optimization
techniques. Furthermore, the fundamentals of the proposed fore-
casting models: linear regression, DNN and RNN are given here; in
addition forecasting process for each model.

3.1. Area of study

The country of Ecuador is composed of four regions as: Coast,
Highlands or Sierra, East or Amazon, and Galapagos Islands. The
topography of Highlands is marked by the snow-capped peaks of
the Andes mountains [63]. The province of Tungurahua is located
within of the highlands between the Eastern and Western Andes

Renewable Energy 183 (2022) 351-368

Range; which are traversing the country from North to South in two
parallel ranges [Fig. 2] [63]. The zone of study is located in Tung-
urahua, within a mountainous area in The Andes Western Range
[63]. It is composed of valleys, plateaus, hills (3000 m—4500 m ASL)
and snow peaks (5000m—6263m ASL), within a mountainous area
of 220 Km?2 [13]. This region has two climatic stations winter from
December to May; summer from June to November. The high
elevation terrain shows moderate snow fall in winter and strong
winds in summer. The total annual rainfall varies from 2000 to
2500 mm. The average summer temperature changes from 3°C to
7°C and winter temperature varies from — 3°C to 2°C [64]. The
orography of the complex terrain on the western range cause large
and temporal variations as mountain and valley breezes which are
similar to anabatic and katabatic winds, but smaller in scale
[18,21,23].

3.2. Data collection

Two meteorological stations were installed within the zone of
study. The station 1 at a height of 30m AGL was installed in the
community of Mechahuasca as is shown in Fig. 3 and the station
2 at a height of 80m AGL was installed close to Chimborazo volcano.
The geographic coordinates and land elevation of both towers are
detailed in Table 2. The main objective of data collection is to save
that measured data are available to make data analysis and to
protect data from damage or loss [23]. The collected data are from
January 15th, 2018 to January 15th, 2019 according to IEC 61400 12-
1 [65]. The measured parameters to forecast the future value of

COLOMBIA

Fig. 2. Orographic map of Ecuador [63].
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Fig. 3. Meteorological station 1 in the community Mechahuasca.

wind speed are the following:

e AVGTEMP Average air temperature (°C)

e ATPRES Atmospheric pressure (millibars)
o GSR Global solar radiation (W/m?)

¢ WD wind direction (°)

o WSAVG Wind speed average (m/s)

o WSMAX Wind speed maximum (m/s)

¢ WSMIN Wind speed minimum (m/s)

This study is focused in wind speed characterization and fore-
casting in the Ecuadorian Andes. To get this purpose are considered
data from two meteorological stations, which are property of the
Technical University of Ambato, and Ministry of Electricity and
Renewable Energy (MEER) respectively. The meteorological sensors
and its features installed on the two stations to measure weather
variables are listed on Table 3. The daily variations of wind speed
average measured at heights of 30m and 80m AGL during 2018 are
shown in Fig. 4. It is observed higher average wind speed in station
2 than station 1; due to that station 2 is installed at a height of 80m
AGL. It confirms that wind speed increases with terrain height
[23,24].

Table 2

Geographic coordinates of meteorological stations.
Parameter Station 1 Station 2
Latitude 1°54'S 1°54.8'S
Longitude 79°15'W 78°45.6'W
Elevation 4350 m ASL 4428 m ASL

355

Renewable Energy 183 (2022) 351-368

Table 3

Sensors installed on both meteorological towers.
Type Model Range Deviation
Anemometer NRG #40C 1ms~1-96ms~! +0.5%
Vane NRG 200P 0-360- +1%
Barometer NRG BP20 15 KPa-115KPa + 1.5%
Thermometer NRG 110S —400 t0 95.5-C + 1.3%
Pyranometer LI 200R 400—-1100 nm + <10pvV

3.3. Proposed linear regression forecasting models

This subsection presents the fundamentals of the mathematical
formulation of the regressive models used as reference in this paper
for wind speed forecasting studies, such as persistence, Moving
Average (MA), and Auto Regressive Moving Average (ARMA).

3.3.1. Persistence model

The persistence model is considered as the easiest to make a
prediction; by considering that the present time will be equal to
time forecasted [66]. Furthermore, this model has been widely used
by researchers in wind power forecasting as baseline to make
comparisons against this model [67]. Moreover, this model has a
good performance when the weather variables have a slight vari-
ation, and the forecasting time does not exceed more than 1 h [57].

Considering a time series Y;, knowing its historical data set H,
forecasting of the future values, through a persistence process is
given in Equation (1).

Hi=Hi+1,H +2, .. H+n 1)

Specifically, forecasting of the oncoming value will be shown in
Equation 2
Ht = Y[ —n (2)
In this study the wind speed at the moment n will be equal to the
wind speed 12 similar hours of the previous day.

3.3.2. MA model

This approach is often used to modelate univariate time series.
In this model, a certain observation is conditioned by the random
impulses of the previous observations. In this way, the current
observation is defined as the sum of the current pulse and the
previous random pulses with a certain weight. The general form of
this model is defined in the Equation (3) [67].
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Fig. 4. Daily wind speed average at 30m and 80m AGL for 2018.
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Yt:at7®1at—1—®2at—27®3a[—3—.A.—G)qat—q
(3)

Where: Y; is the time series to be described in terms of unlimited
amount of linear a;; which is the remainder in period t, and a; — 1
the previous values of the error, (@1, 0, ..., ®4) are the MA process
parameters. Introducing the MA parameter of order q as is shown in
Equation (4).

0(B) =1— 0B 0,B% - O3B — ... — ©¢B1 (4)

The MA model contains (q+2) unknown parameters to be pre-

dicted from the observed values [68]. The compact form of this
model is expressed as Equation (5):

Y[ = ﬁ(B)at (5)

3.3.3. ARMA model of order p,q

The ARMA model is a practical tool used to express dynamic
behaviour of the time series. The estimation of future values of an
independent time series through this model is carried out as a
combination of past values as well as by random impulses of past
observations [67]. This model is the result of the combination of the
AR and MA models. The general form of the ARMA model is
expressed in Equation 6.

Ye=01Ye—1+02Ye =2+ +opYe —p+0a — ¢10: — 1 — g0t
—2—...—<pqat—q
(6)

Writing again the model as Equation 7.

Yi=01Ye =14+ 2Vt =2+ +opYe —p+a — ¢10: — 1 — ga0r

—2- .. —gga—q
(7)
Ordering again as Equation 8.
(1= 01B) — 02(B3) — ... — 9p(B)Y:
=(1-0,B-0B%— ... - Q¢B%)a; (8)
The compact form of the ARMA model is written as Equation 9.
»(B)Y; = 0(B)ar (9

3.4. Proposed forecasting RNN and DNN models

The RNN are a special kind of deep learning technique designed
to work with time series. The RNN are characterized by introducing
the time dimension to network topology; as well as a short-term
memory to acquire information from past states of inputs to have
influence on input and output [68]. In this study, will be used DNN
and RNN as short-term wind speed forecasters.

3.5. Dynamic Neural Networks

The DNN reply temporally to an input signal applied from
output as a feedback; enabling them to obtain a state representa-
tion useful for modelling and forecasting of non linear systems [69].
In this study the NARX network is used as forecaster.
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3.5.1. NARX model architecture

The NARX (Nonlinear Auto Regressive network with exogenous
inputs) model is a type of RNN dynamically driven, with feedback
connections enclosing several layers of the network [59,69,70]. The
basic architecture of the NARX model with one input only is shown
in Fig. 5; which is based in the static Multi Layer Perceptron (MLP)
to exploit its mapping capability [57,69]. The single output or pre-
dicted variable y ) is feedback to the network input creating a
series-parallel architecture; which is one unit of time ahead of the
input uy. The signal vector to input layer is composed of two parts:
(1) present and past values of the input or exogenous inputs named
U(p)s Un-1ys -+ U(y_gyq), and (2) delayed values of the output
named, y(;), ¥(5_1)s -+ ¥(q_q4+1)- The used equation to define the
dynamic behavior of the NARX model is shown in Equation (10).

Y(n+1) = F(Y<n)v "'3y<n—q+l)71'l(n)7 "'ﬂu(n—qﬂ)) (]0)
Where F is a nonlinear function, n is the number of iterations [69].
In this study, the exogenous variable to be incorporated in the
NARX model is wind speed. The representation of this model is
shown in equation (11), considering Vav as wind speed forecasted
used as feedback from output to input layers.

Y (ne1) =F0(), --~vy<n—q+1)vva“(n)’ ---»Vﬂu(n—qﬂ)) (11)

The general NARX (ny, Ny) model for prediction considering: on
the one hand, y, e, and x as output, noise and input respectively. On
the other hand,ny, ne, nx as the maximum lags of input, noise, and
input in the order given. In addition, F is an unrevealed smooth
function; it supposes a mean value of zero for e(t); which is inde-
pendent of the past value with a finite variance ¢ as is represented
in Equation (12) [58].

Input
Vav(t)

Vav(t-1)

Vav(t-2)

F
.{__.
I

Vav(t-q+2)

Vav(t-q+1) 71
z Output
) y(t+1)
Multilayer

perceptron

y(t-g+1)

y(t-q+2)

Fig. 5. NARX model architecture [69].



G. Lopez and P. Arboleya

y(t) 1),....,x(t—nx)) +e(t)

(12)

The optimum prediction theory turns around of reducing the
Mean Squere Error (MSE) value; considering a finite set of past
values dependent of the mean. The lowest MSE predictor depen-
dent of the mean is given by Equation (13).

y(©) =Ey@Oly(t-1,y(t-2),...y(1)] (13)

Supposing the conditions of zero noise and finite variance given
in equation (1). The optimal predictor NARX(ny,ny) is shown in
Equation (14).

V() = Fly(t—1), .y(t—ny), x(t—1),X(t )] (14)

3.5.2. NARX model learning algorithms

This network is a two-layer feedforward network, with a tan-
sigmoid transfer function in the hidden layer and a linear transfer
function in the output layer. This network is created and trained in
open loop using true output; which is more accurate and efficient
than closed loop. Once training has finished the network may be
converted to closed loop for prediction mode [70]. This process is
developed using static backpropagation algorithm and decoupled
feedback.

The regularization technique is used to solve the training
problems regarding to weights and connections contained in the
network to prevent overtraining. This technique changes the per-
formance reducing the parameters range. In this way, the perfor-
mance function for training MSE Eq. (15) is changed by MSE;e; as is
shown in Equation (17).

1 n 2
MSE:EZ[:I (t—tp) (15)

Considering Mean Square Weight (MSW) as is indicated in
Equation (16):

1 n 2
MSW = ZH (W) (16)
The MSE;.g is shown Equation (17):
MSEreg = EMSE + (1 —§)MSW 17)

Where ¢; is the target, t; is the predicted value, £ performance ratio.
The new performance ratio generates that the network acquires
smaller weights and biases. Furthermore, the network is forced to
reply smoother and little chance of overfitting [71].

The main advantage of the NARX model indicates that the
similar structure is composed of unlike models and computational
intelligence with rational cost [57]. The main feature of NARX
model is based on the size of embedded memory of input, output,
and number of neurons in the input layer. Furthermore, its gener-
alization and convergence are better than others networks [59,71].
Therefore, the NARX network can be used as a predictor, nonlinear
filtering, and modelling of nonlinear dynamic systems [70].

3.5.3. NAR model

The NAR network only has one series involved; in this way the
future values of a time series y(t) are predicted from past values.
This prediction is named nonlinear autoregressive [70]. The per-
formance comparison of the NARX model can be made using NAR
network; which is satisfactory for time series prediction using its
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delays. The NAR network structure is a combination of MLP with a
autoregressive model. In this model the independent variable y(t) is
acquired as a nonlinear function from past d values [57]. The used
equation to define the NAR model is shown in Equation (18).

(18)

The architecture of the NAR model is composed by three layers:
input, hidden and output as is shown in Fig. 6. The main charac-
teristics of the hidden layer are: feedback delays, number of neu-
rons, weights matrix, bias vector, and nonlinear activation function
between hidden layer and output layer for each neuron. Further-
more, the NAR architecture for optimization is reached through
trial-and error-testing of the feedback delays and neurons per
hidden layer [72]. The algorithm used for NAR network training is
Levenberg-Marquardt; which is an approximation to the method of
Newton method through backpropagation with descendent
gradient technique to determine the second derivative order
without considering Hessian matrix. The sum of the difference of
squares between the real and the estimated value constitutes the
performance function; which allows to determine the gradient as
seen in the Equation (19) and the Hessian matrix V2f(x) is esti-
mated by the Equation (20).

V(%) =J" (x)e(x) (19)

V2f(x) = T (X)) (%) + S(x) (20)
Where ] is the Jacobian matrix of the first derivatives of the network
error regarding to weights and biases vectors, e is a network error
vector correspondent to each training step. The modification to
Gauss-Newton method made by Cigizoglu & Ozgur [74] assumes
S(x) = 0 and uses the following algorithm to estimate Hessian
matrix according to Equation (21).
8(x) = UTJx) + )1+ (x)e(x) (1)
Where u is a parameter used to approximate Equation (21) to
Gauss-Newton method through an easy modification to the back-
propagation algorithm.

3.5.4. NIO model

The Nonlinear Input-Output (NIO) network is similar to the
NARX model, where there are two series included an input series
x(t) and an output series y(t). This model predicts values of y(t)
from past values of x(t), with absence of past values of y(t) [70]. The
used equation to define NIO model is Equation (22):
(22)

3.6. LSTM network

The LSTM network is a special kind of RNN characterized by its
stability and great power to solve vanishing gradient problems
regarding to long-term and short-term dependency. The LSTM is a
cell memory to connect previous data to current neurons. This cell
can remember temporal state due to three temporary gates, which
can add or delete data to these cells [61]. The problem of vanishing
gradient was solved by LSTM network through gate control; which
was proposed by Hochreiter [75].

The LSTM network can be trained using gradient descendent
algorithm in combination with BPTT (Back Propagation Through
Time) to calculate the time required for optimization process to
change the network weight in proportion to derivative of the error.
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Fig. 6. NAR model architecture [73].

The procedure to find the direct relation between the loss function
and the network weights is named unfolding; which is composed
of an exact reproduction of hidden layer of the network for each
time period to update weights [76]. The LSTM architecture is rep-
resented in Fig. 7; which is composed of an input gate i, a forget-
ting gate f;, an output gate O, and a memory cell c. The hidden state
is h; at time point t, the network input at time point t is X;, the
sigmoid activation function is ¢ [62,76].

1. The forgetting gate is used to select the information to be dis-
carded or retained in the previous cell m;_; according to
Equation (23). By entering h,_; and including X; to sigmoid
function as is shown in Equation (24); the output cell designed
as ¢; [0,1], considering that in zero information will be discarded,
and the information will be retained. While W and b are the
weights and bias vector respectively [62].

fr = o(Wglhe_1,X] + by) (23)

1

[ ———
"1 ex

(24)

2. The input gate decides the new information to be retained in the
cell state. By going into the output h,_; and attaching the pre-
sent input X; at time point t into Equation (24) (¢ function). The
generated value [1,0] according to Equation (25) in the cell to
select the new information to be retained; the tanh layer accepts
simultaneously the selection signal C; expressed in Equation
(26) to keep updated the cell state [62].

ir = a(Wilhe_1, Xe] + by) (25)

Fig. 7. LSTM cell memory architecture [62].
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¢t = tanh(Welhe_1, Xe] + be) (26)

3. The output gate decides the information of the cell state will be
used as output. The previous state of the output h;_; is entered
at the last point time t, and attaching the present input x; to the
sigmoid function generates a signal[1,0] named O; according to
Equation (27) to decide the number of cells are used as output
[62]. The output signal h; can be obtained by sigmoid and tanh
using Equation (28).

or = a(Wo[h¢_1,Xt] + bo) @7

h[ = Ot.tanh(ct) (28)

4. Application of proposed forecasting models for wind speed
forecasting

The particular application of linear regression and DNN models
for wind speed forecasting is directioned here.

4.1. Linear regression models

4.1.1. ARMA or MA model
The forecasting methodology employed using ARMA or MA
models is performed using three steps [67]:

1. Model definition: Concerning to election of the (p,q) order of the
ARMA model, or q for MA model; which is designed as model
structure.

. Model training: Regarding to approximation of the model pa-
rameters by way of a reduction process known as least squares.

. Prediction of the next range: Estimation of the oncoming value
of the time series based on past values using measured data
from one to three days ago.

4.2. Dynamic Neural Networks models

The forecasting methodology using DNN is performed in five
steps:

4.2.1. Data preparation and feature extraction

The data preparation for prediction included five activities, such
as data collection, data preprocessing, correlation matrix, data
normalization, and structuring of data [68]. Data collected during
one year by two meteorological stations, data preprocessing to
detect and delete noise due to sensors malfunction. Then, data were
validated by using different algorithms [23]. Data normalization of
preprocessed data were required to convert data from natural
range to operative network range [68]. Structuring of data was used
to define a multivariable time series for the ANN toolbox; it were
arranged a set of seven variables as input vectors to DNN; which
were created according to the number input variables equal to
number of neurons. Then, was arranged another set of one time
series as output vector into a second cell array. Eight data sets were
arranged as follows: two for winter and two for summer, two per
30m and two for 80m AGL. It were taken for each data set 6 h of one
day of each month of winter and summer. The output vectors were
eight vectors formed by 6 h of average wind speed per one day of
each month for winter and summer, four for each season, and four
for each height. The total amount for winter were 36 x 7 = 252
(100%), total amount for summer 36 x 5 = 180.
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The input and output vectors were randomly divided into three
parts as follows: 70% for training set, 15% for validation set, and 15%
for testing set [70]. Data used for training in each season were for
winter 252 x 0.7 = 176.4 (70.0%), for summer 180 x 0.7 = 126 (70%).

The amount for validation to calculate the error value during
training were for winter 252 x 0.15 = 37.8, for summer 180 x
0.15 = 27. The amount for testing is for winter 252 x 0.15 = 37.8, for
summer 180 x 0.15 = 27.

Feature extraction is considered one of the most important parts
of machine learning process because raw data is converted into
suitable information for that algorithms can eliminate repetition by
overfitting. The features were extracted using statistical tools as
mean, median, standard deviation, and frequency domain [77]. The
correlation matrix was based on PCC, which showed the correlation
between input variables and output variable. In fact, the variables
that are not highly correlated can be deleted. PCC is a parametric
statistical technique to measure the direction and strength be-
tween two variables [78]. In this way, to know if the points of the
two variables have a tendency to be placed in a straight line. PCC is
defined as the covariance between x and y divided by the product
of the standard deviations of each variable [24]. The equation (29) is
used to calculate PCC.

(29)

Where cov is the covariance between variables x and y, ¢x is stan-
dard deviation of x variable, ¢ is standard deviation of y variable.

The PCC results between measured weather variables and
average wind speed at a height of 80m AGL in 2018 are shown in the
Table 4, which indicates that WSAVG had high linear correlation
with WSMAX, WSMIN, while the correlation coefficients with
AVGTEMP, ATPRES and GSR are very small, and there is an inverse
correlation with WD.

4.2.2. Determination of network architecture

In order to achieve this aim were proposed DNN to predict
nonlinear time series for representation of systems whose internal
state changes with time. They are particularly appropriate for
modelling of nonlinear dynamic systems, generally defined by the
state-space [68]. The DNN models with feedback, such as NARX and
NAR models are good for time series prediction [70]. The following
activities were carried out to configure the network architecture as
follows: determination of input nodes required as inputs to neural
networks; which was realized according to seven selected variables
such as, WSAVG, VSMAX, WSMIN, WD, AVGTEMP, ATPRES, GSR. In
this way, one neuron per each selected variable. Therefore, the
output single node was considered the average wind speed only as
is presented in Fig. 8.

4.2.3. Network training strategy
During network training for time series forecasting all main
characteristics inserted in the training data of the time series

Table 4

PCC results at 80m AGL.
Variables WSAVG WSMAX WSMIN WD, AVGTEMP ATPRES GSR
WSAVG 1 0.96 0.94 -047 0 0.29 0.22
WSMAX  0.96 1 0.97 —0.46 0.03 0.28 0.25
WSMIN 0.94 0.97 1 —-0.45 0.02 0.28 0.23
WD -047 046 -045 1 0.02 -0.19 0.01
AVGTEMP 0.2 0.03 0.02 016 1 -012 072
ATPRES 0.29 0.28 0.28 -0.19 0.16 1 —-0.01
GSR 0.22 0.25 0.23 0.01 —0.01 —0.01 1
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Fig. 8. Proposed NARX network architecture.

should be known and learnt [68]. The input selected parameters are
used to train DNN, and wind speed as output. Any of the input
values had been used for testing and validation purposes. In order
to prevent overfitting, the input vectors and target vector were
randomly divided into three sets as follows: 70%, 15%, 15% to
attribute the data to training, validation and test of network
generalization respectively. MLP utilizes an algorithm named
Levenberg-Marquardt backpropagation to train the network. The
performance of the three DNN models were improved by adjusting
the number of neurons in the hidden layers, delay, and number of
epochs [70].

4.2.4. Network forecasting
Forecasting of the next value by presenting the network an input
vector based in the past observations.

4.2.5. Error parameters

The forecasting performance to minimize uncertainty was
evaluated by using Equations: 30, 31, and 32 named as Root Mean
Square Error (RMSE), MSE, and MAPE respectively [49].

1
RMSE = \Z/H S (Wsp — Wsm)? (30)
MSE =1 5™ (Ws; — W2 31
752[:1( Sp — Wsm) 31
1 n |Wspm — st
MAPE =% " | ‘W 100 (32)

In the equations (30)—(32) n is the total number of inputs and
outputs, Ws;, is measured wind speed,Ws; is forecasted wind
speed.

4.2.6. Software tools

Three kinds of dynamic networks were employed in MATLAB
R2020b together with the Neural Network Time Series Tool with
graphic interface. In the present study were used three kinds of
DNN, such as NARX, NAR, and NIO.
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4.3. Forecasting using multivariable LSTM networks

The forecasting process for Multivariable LSTM networks is
developed in five stages [62,79] as follows:

4.3.1. Data preprocessing

Multivariable time series means that there are seven meteoro-
logical variables for each time step to be used as inputs to LSTM to
have one output e,g. wind speed forecasted. The first step to pre-
pare measured variables dataset as a supervised learning to enter
LSTM network. Then was developed a PCC analysis using the seven
measured meteorological variables and obtained data from Table 4.
The multivariable LSTM method contains four data sets; 12 hours of
seven meteorological variables each; one set for Winter, and other
for Summer, one for 30 m and other for 80m AGL. The data set was
divided 80% for training and 20% for testing.

4.3.2. Data normalization
The seven meteorological variables have different measurement
units and require a same range. Therefore, the selected variables
were normalized to have values between zero and one, by using the
highest and lowest values of each variable as is shown in Equation

(33).
Vi — Umax

vy =— (33)

VYmax — Vmin
Where v, is the normalized value for any variable, v; is the current
value of the variable to be converted, gy is the maximum range for
any variable, v, is the minimum range for any variable.

4.3.3. Define and fit LSTM model

This step is to create a LSTM regression network and to define
how many neurons will be used in the hidden layer. The training
options must be specified, set up the solver Adam to optimize
performance. The gradient threshold should be set to prevent
gradient exploding. The learn rate is set by default to 0.001 and
should drop each 5 epochs.
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4.3.4. LSTM network training and optimization

To perfectly memorize data sequence would be used a lower
number of neurons in the hidden layer. The RMSE plots the training
report from the standardized data, and is employed to measure loss
function together with Adam network performance optimizer. The
training and validation loss converge after a certain epochs number.

4.3.5. LSTM network forecasting

The future values of multivariable time series are forecasted one
at time, and the same are updated after each prediction. The last
prediction is used as input for each new prediction. The real wind
speed forecasted and RMSE are obtained using an inverse
normalization.

4.3.6. LSTM software tools
The simulations were developed using MATLAB R2020b
together with the Neural Network Deep Learning Tool.

5. Results and discussion

The wind speed forecasting process was developed in three
steps to have good results as follows: First, time series data analysis
and feature extraction. Second, the importance of the weather
variables used as DNN inputs. Third, optimization capacity of the
DNN to forecast wind speed.

5.1. Data analysis and feature extraction

The monthly variation of wind speed average at 30 and 80 m
AGL during 2018 from January to December is shown in Fig. 9. The
monthly wind speed analysis indicates two strong seasonal varia-
tions. The strongest winds appear from June to September because
of cold air flows from the East are present in this season added to
valley and mountain breezes. Whereas, the weakest winds in
winter season from January to April and from October to December
[17,64]. Garcia et al. [25] observed similar monthly wind speed
average in the wind data analysis for a nearby location. Strong
winds could be feasible for a future wind farm installation with
high power wind turbines, and could be a good option to forecast
short time wind speed for power generation. The Fig. 9 indicates
the daily winter and summer wind speed profiles. In the winter
profile there is very low wind speed during the night, which is not
recommended for wind turbine operation. During day hours there
is medium wind speed which could be used to forecast wind speed.
In contrast, the daily wind speed profile in summer reached high
wind speed during the day and night; it is excellent to forecast wind
speed anytime. Therefore, in summer showed variable wind speed
higher than annual mean wind speed value of 10,2 m/s. It should be

—30m AGL
—80m AGL

Wind speed (m/s)
S 5 B =

)

10- 18

07-18
Time (months)

04- 18

Fig. 9. Monthly wind speed for 2018 at 30m and 80m AGL.
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Fig. 10. Daily wind speed profile for winter and summer 2018 at 80 m AGL.

noted that the ideal wind speed range for wind turbine operation to
reach maximum power generated is from 12 to 15 m/s [21,23] (see
Fig. 10).

5.2. Importance of input variables

The relative importance of input variables were found from the
highest to the lowest importance in the following order: WSMAX,
WSMIN, GSR, ATPRES, AVGTEMP, and WD, as is shown in Table 4. It
is observed that the importance of WSMAX and WSMIN are almost
equal because both variables are wind speed control limits. The
variables ATPRES and GSR have low importance because both are in
direct relation with altitude and hour of the day; there is an inverse
relation between WD and WSAVG.

5.3. Wind speed forecasting optimization

In order to evaluate the forecasting performance employing
DNN architecture; twenty one simulations per each model were
developed using the NARX, NAR, NIO models varying the number of
neurons in the hidden layer from 5 to 25, and delay number from 1
to 4. The best performance for DNN models was developed
considering the lowest values of MSE, RMSE, MAPE, and R coeffi-
cient of the test set. The lowest results for MSE, RMSE, MAPE and
the highest PCC with the lowest MSE of the test set for winter were
reached with 1 network defined by and 1 delay, 13 neurons in the
hidden layer, 1 output at a height of 80m AGL. The NARX model
with the best performance for summer had seven neurons in the
input layer, 13 neurons in the hidden layers, one neuron in the
output layer by using Log-Sigmoid transfer as activation function
and feedforward connection between hidden layers between the
input layer and the hidden layer, and the linear transfer function in
the output layer [69,70].

The best performance results for summer at 80m AGL were
reached with 1 network defined by 1 delay, 11 neurons in the
hidden layer, 1 output. The results with the best performance are
shown in the Table 6 and Table 8 respectively. The MAPE and R
coefficient results indicated that the NARX model had values for
Winter at a height of 80m AGL of 5.8% and 98% respectively, and for
summer 5.7% and 98% respectively. It should be noted that the best
NARX performances were gotten at a height of 80m AGL due to that
the wind speed increases with height and the turbulence decreases.
Therefore, wind speed is not affected by terrain roughness [19].

The performance plot of NARX model for training, validation,
and testing sets, for winter and summer at a height of 80m AGL are
shown in Fig. 13 and Fig. 14 respectively. These figures indicate that
when the number of epochs increases the MSE reaches the lowest
value. This action is known as early stopping, which is realized at
the point where the network has reached maximum generalization.
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Hence, if the training continues past this point could occur the
network overfitting [68]. One epoch is defined as one complete
pass of data set through the learning algorithm to update the
weights [68]. The test set error and validation set error shows
different features and the best validation performance had
occurred at the epoch 5 and epoch 6 as are shown in the Fig. 11 and
Fig. 12 respectively.

The regression analysis performed by NARX model for winter
and summer in weather station 2 at a height of 80m AGL shows the
correlation coefficient, which measures the correlation between
output and target. The R value takes values from one to zero, which
indicates a strong and weak relation respectively [69].

The R value reached for training data set in winter is 0.96 is
represented in Fig. 13(a). The R value is 0.99 in validation data set as
is displayed in Fig. 13(b). The R value is 0.98 in test data set as is
described in Fig. 13(c). The R value in whole data set is 0.97 as is
illustrated in Fig. 13(d). The R value reached for training data set in
summer is 0.99 is represented in Fig. 14(a). The R value is 0.99 in
validation data set as is presented in Fig. 14(b). The R value is 0.85 in
test data set as is displayed in Fig. 14(c). The R value in whole data
set is 0.97 as is showed in Fig. 14(d). The R values represented in the
last two figures indicate good forecasting accuracy in complex
terrain located at high altitude showing that wind speed forecasted
for winter and summer at a height of 80m AGL is close to measured
values.

5.4. Comparison and analysis of the proposed models for short-
term wind speed forecasting

The comparison between measured hourly wind speed and
forecasted hourly wind speed by using DNN and RNN, such as
NARX, NAR, NIO, and LSTM and linear regression models, such as
persistence, MA, and ARMA, 12 hours in advance was developed to
show the results during the best windy day hours to predict wind
speed for winter and summer at heights of 30m and 80 m AGL. In
order to evaluate the forecasting performance of regressive and
DNN models by using four case-studies as follows:

5.4.1. Case-study 1 short-term wind speed forecasting for winter at
30m AGL

The comparison results for half day in winter at height of 30m
AGL using regressive models and DNN models are shown in Table 5;
where the best performance is highlighted in bold and shows that
the LSTM network outperforms the other five models reaching a
MAPE value of 5.3% during training phase by using Adam optimizer,
learning rate 0.001, and 200 epochs. The graphic sample of the

Best Validation Performance is 0.18832 at epoch 5

—Train
— Validation|
—Test

Best

Mean Squared Error (mse)

0 1 2 3 4 5 6 7 8 9
11 Epochs

Fig. 11. NARX model performance plot for winter at 80m AGL.
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Best Validation Performance is 0.11519 at epoch 6
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Fig. 12. NARX model performance plot for summer at 80m AGL.

results of linear models are presented in Fig. 15; where the ARMA
model outperforms better than other two models by using p,q
values (1,1) and wind speed data of three days ago. The Fig. 16
shows a slight improvement on forecasting performance of the
LSTM network around 0.9% in MAPE value over NARX model. These
results go beyond previous reports [62], showing a lower RMSE
value.

5.4.2. Case-study 2 short-term wind speed forecasting for winter at
80m AGL

The comparison results for wind speed 12 next hours in winter
at a height of 80m AGL using regressive models and DNN models
are shown in Table 6; where the best performance is highlighted in
bold; which indicates that the LSTM network outperforms the
other five models reaching a MAPE value of 4.9% during training
phase by using Adam optimizer, learning rate 0.001, and 300
epochs. The graphic sample of the results of linear regression
models are presented in Fig. 17; where the ARMA model out-
performs better than other two models by using for (p,q) values
(2,1) and wind speed data of three days ago. The Fig. 18 shows a
slight improvement on forecasting performance of the LSTM
network around 0.9% in MAPE value over NARX model. A similar
pattern of results was obtained by Liu te al [61].

5.4.3. Case-study 3 short-term wind speed forecasting for summer
at 30m AGL

The comparison results for wind speed 12 next hours in summer
at a height of 80m AGL using linear regression models and DNN
models are shown in Table 7; where the best performance is
highlighted in bold; where the LSTM network outperforms the
other five models reaching a MAPE value of 4.1% during training
phase by using Adam optimizer, learning rate 0.001, and 300
epochs. The graphic sample of the results of linear models are
presented in Fig. 19; where the ARMA model outperforms better
than other two models by using p,q values (2,1) and wind speed
data of three days ago. The Fig. 20 shows a slight improvement of
0.7% on forecasting performance of the LSTM network over NARX
model. By comparing the results from Wu et al. [80] against our
forecasting results, we determined that LSTM networks out-
performs over other models at least 10%.

5.4.4. Case-study 4 short-term wind speed forecasting for summer
at 80m AGL

The comparison results for wind speed 12 next hours in winter
at a height of 80m AGL using linear models and RNN models are
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Fig. 13. Results of NARX model performance regression plot for winter at a height of 80m AGL. (a) Training dataset. (b) Validation dataset. (c) Testing dataset. (d) All datset.

shown in Table 8; where the best performance is highlighted in
bold and indicates that the LSTM network outperforms the other
five models reaching a MAPE value of 4.01% during training phase
by using Adam optimizer, learning rate 0.001, and 400 epochs. The
graphic sample of the results of linear models are presented in
Fig. 21; where the ARMA model outperforms better than other two
models by using (p,q) values (2,1) and wind speed data of three
days ago. The Fig. 22 shows a slight improvement of 1.9% on fore-
casting performance of the LSTM network over NARX model. In line
with previous studies developed by Yao el al. [81,82]; where LSTM
network has good forecasting performance.

5.4.5. Deductive arguments
This section highlights the important findings obtained through
comparison of statistical analysis as follows:

5.4.5.1. Wind shear profile and turbulence. In this work to observe
the change of height effect on wind speed is considered forecasting
performance by using measured data at heights of 30 m and 80m
AGL for training, validation and testing of the DNN realized by
comparison between measured and forecasted values. The best
MAPE values 5.7%, and 5.8% for winter and summer respectively,
were for NARX model at a height of 80m AGL, which are better to
previous results (11%) [57] and (16%) [55]. These concrete results

363

are mainly because NARX model has computational intelligence
with with embedded memory to forecast future values from past at
this height wind is more stable with lower turbulence. Therefore,
wind speed is not affected by topography of complex terrain [23].
Based on the indicated results, it is inferred that the wind speed at a
height of 30m AGL is significantly affected by surface roughness and
topography. Furthermore, it is observed that wind speed values
reach higher values in summer at a height of 80m AGL than at a
height of 30m AGL due to that wind speed increases with height
and turbulence decreases [22,23]. The turbulence decreasing cau-
ses wind more stable, which is used to reach stability in wind po-
wer generation [4,24]. The forecasting results of LSTM and NARX
models presents a better adjustment than NAR and NIO models, for
both heights in winter and summer due to the embedded which is
used to retain past values of wind speed. Moreover, it is suggested
that the LSTM or NARX approaches can be used for other studies
about wind speed forecasting at high altitude to exploit its great
wind potential available, and to promote wind energy development
in Ecuador.

5.4.5.2. Influence of number of epochs and amount of data over
forecasting performance. The forecasting results MAPE and MSE
values indicate that if the number of epochs, data quantity are
increased the forecasting performance is increased at least 10% of
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Fig. 14. Results of NARX model performance regression plot for summer at a height of 80m AGL. (a) Training dataset. (b) Validation dataset. (c) Testing dataset. (d) All datset.

Table 5

Results of simulation process for winter at a height of 30 m AGL.
NN Model MSE RMSE MAPE(%) R
Persistence 25 1.58 41.2 0.52
MA 135 1.46 383 0.54
ARMA 1.08 1.03 24.9 0.8
LSTM 0.09 03 53 0.99
NARX 0.33 0.61 6.2 0.98
NAR 0.39 0.62 6.4 0.97
NIO 0.4 0.63 6.9 0.98

the remaining value between NARX forecasting values and
measured value using a multivariable LSTM networks. In other
words there is a direct proportion between both parameters.

5.4.6. Research limitation
The limitations of the present study during research period
naturally include the following aspects:

ee Time measurement constraint for weather variables
The minimum time for wind speed assessment is one year ac-

cording to IEC 61400-12-1. However, to reach more accurate results
is suggested by using measured data from more than one year.
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Fig. 15. Wind speed forecasting in winter on March 05—18 at 30m AGL using linear
regression models.

o Lack of previous studies in research area

The absence of previous studies in complex terrain at high altitude
have been one lackness in this research to be considered as a
baseline to improve our results; considering that is the first wind
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Fig. 16. Wind speed forecasting in winter on March 05—18 at 30m AGL using DNN
models.
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Fig. 18. Wind speed forecasting in winter on April 05—18 at 80m AGL using DNN
models.

Table 6 Table 7
Results of simulation process for winter at a height of 80m AGL. Results of simulation process for summer at a height of 30m AGL.
NN Model MSE RMSE MAPE(%) R NN Model MSE RMSE MAPE(%) R
Persistence 1.5 1.37 252 0.55 Persistence 19 137 23.1 0.55
MA 1.28 1.13 183 0.6 MA 1.28 1.13 18.3 0.6
ARMA 1.01 1.004 149 0.85 ARMA 1.01 1.004 14.9 0.85
LSTM 0.13 0.36 49 0.99 LSTM 0.13 0.36 4.1 0.99
NARX 0.3 0.3 58 0.99 NARX 0.18 0.33 5.4 0.99
NAR 0.34 0.58 5.9 0.95 NAR 0.37 0.6 6.1 0.93
NIO 0.65 0.8 8.2 0.98 NIO 0.37 0.6 6.3 0.94
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Fig. 17. Wind speed forecasting in winter on April 05—18 at 80m AGL using regressive
models.

speed forecasting at the highest altitude reported until now.
6. Conclusions and future works

In the present study, the hourly average wind speed over com-
plex terrain was modeled and forecasted 12 hours in advance by
using linear regression models, such as persistence, MA, and ARMA
considered as a baseline for prediction, in combination with more
complex networks to improve forecasting performance, such as
multivariable LSTM, and NARX networks. Database is based on
measured meteorological variables during 2018 by two meteoro-
logical towers installed within mountainous zone of study in the
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Time (Hours)

Fig. 19. Wind speed forecasting in summer on June 06—18 at 30m AGL using linear
regression models.

Andes Range. The most important results about this work can be
summarized as follows:

e The results of correlation analysis among measured variables by
using PCC tool to determine the contribution of each measured
variables to obtain as output average wind speed indicated that
the wind speed is highly dependent of atmospheric variables,
mainly wind speed maximum and minimum values.

The monthly wind speed analysis for 2018 showed that wind
speed increases with change of height and turbulence de-
creases. In addition, wind speed ranges were higher in summer
months than in winter months because of great cold air flows
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Fig. 20. Wind speed forecasting in summer on June 06—18 at 30m AGL using DNN
models.

Table 8
Results of simulation process for summer at a height of 80m AGL.
NN Model MSE RMSE MAPE(%) R
Persistence 15 1.22 20.5 0.57
MA 1.28 1.13 183 0.6
ARMA 1.01 1.004 14.9 0.85
LSTM 0.12 0.38 38 0.99
NARX 0.11 0.56 5.7 0.98
NAR 0.58 0.76 6.6 0.98
NIO 0.41 0.64 7.1 0.97
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Fig. 21. Wind speed forecasting in summer on August 08—18 at 80m AGL using linear
regression models.

from the East. According to wind speed profile the forecasting
schedule should be in summer at anytime during 24 hours;
whereas in winter for day hours only. It should be noted that the
wind speeds available in the zone of study for winter and
summer at a height of 80m AGL can be used for high power wind
generation.

The comparison results among proposed models were devel-
oped by using the error forecasting measurements, such as MSE,
RMSE, MAPE, and correlation coefficient (R-value); which
showed that the forecasting performance of the linear regres-
sion models used a base line indicate high values for error
measurements. Whereas, better forecasting performance results
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Fig. 22. Wind speed forecasting in summer on August 08—18 at 80m AGL using DNN
models.

were reached using multivariable LSTM network at least 10%
improvement over the NARX network. The best performances
were reached using NARX model at a height of 80m AGL. The
MAPE and R coefficient results for LSTM model indicated values
for winter of 4.1 and 99% respectively, and for summer of 3.8 and
99% independently.

e The present study is relevant due to that contributes to the
scientific community by supplying novel results about wind
speed forecasting over complex terrain in the Ecuadorian
Highlands. The multivariable LSTM or NARX networks used in
this research can be applied in other works to forecast short
term wind speed over complex terrain. It should be noted that
until now there are no published works about application of
RNN or DNN techniques for wind speed forecasting in Ecuador,
where wind power is in growth process. Future works will be
focused on the analysis of orography in complex terrain and the
application of other deep learning algorithms to forecast wind
speed with better accuracy.
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Abstract

In this investigation, the measured wind characteristics over the span of a year is reported for a location in the highlands of the
Ecuadorian Andes. The first part of the article has been devoted to study the influence of the sampling rate on the annual power
density by means of a number of techniques, namely the ensemble of means, aliasing, and Fourier low-pass filters. A byproduct of
this analysis, once the wind frequency pattern was identified, has been the proposal of a new probability density function based on
a daily Gaussian-weighted average of sinusoidal waveforms. The second part of the article thoroughly develops the proposed model
along with a comparison with the measured data. The model proposed herein was found appropriate for describing poor class wind
locations, as the one portrayed here, due to its ability of predict a zero wind probability.

Keywords
Probability density function, Fourier analysis, truncated Gauss distribution, remote electrification, high altitude

Introduction

Wind energy has played a residual role in Ecuador’s national electric grid. Aside from the recent publication of a nation-
wide wind map (MEER, 2013), publicly available experimental wind measurements are altogether missed, with the
exception of Villonaco wind farm (Ollague and Crespo, 2014). The contribution from neighboring regions is also discrete.
Encinas et al. (2015) and Forero et al. (2009) measured the wind potential for the Bolivian altiplano and a site close to
Bogota, respectively and concluded a poor annual average wind speed. In this investigation, experimental wind measure-
ments over a year in the Ecuadorian highlands are introduced. Frequency-domain analysis as well as wind characterization
through probability density functions (PDFs) will be applied to the experimental data set.

Frequency-domain analysis is two-fold. In the lower frequency range, its application is directed toward the determina-
tion of seasonal or yearly wind patterns (Bett et al., 2017). Such analysis is excluded in the present investigation due to
the limited measured range. On the contrary, in the higher frequency range, power spectrum analysis has been used to
determine the sampling time to be employed in data-loggers in meteorological stations (Van der Hoven, 1957). The cur-
rent industry standard 10-min time averages (International Electrotechnical Commission (IEC), 2005) have been recently
challenged by Rodriguez-Hernandez et al. (2016), where 1-min time averages are suggested to accurately capture the
actual energy pattern for small wind turbine simulations. Provided the majority of data-loggers store signal time averages,
the question arises whether other averaging methods could provide better signal fidelity. This remark has been largely
overlooked in the literature and will be explored in this investigation.
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Wind characterization is usually described by means of a PDF, which fully suppresses any time information. As sug-
gested by the IEC (2005) standard, Weibull and Rayleigh PDFs have been repeatedly used for this purpose (Bilir et al.,
2015; Pishgar-Komleh et al., 2015). Furthermore, the goodness of fit of the Weibull distribution for a number of algo-
rithms has been studied by Dorvlo (2002), Bhattacharya and Bhattacharjee (2009), and Mohammadi et al. (2016). The
results show no agreement due to the fact that not all algorithms, neither the fitting tests were uniform among these inves-
tigations. The performance of a number of well-known, non-symmetrical PDFs have been examined by Tar (2008) and
Ouarda et al. (2015). The Weibull distribution did not excel in any of the cases studied. The mathematical derivation of a
PDF is a more complex subject often associated with a number of simplified hypothesis, as it is the case for the Rayleigh
distribution (Davenport, 1967). Harris and Cook (2014) extended the model by assuming non-zero mean velocity vector
and different variance for each of the x and y wind components. They concluded that the Weibull distribution is a espe-
cial case of their model. However, there are two scenarios where the aforementioned PDFs fail to correctly predict wind
behavior. The first is when calms are present and the second is when long periods are considered.

When calms are a predominant site feature, either the Weibull or Rayleigh PDF fail due to its property of assigning
zero probability to zero wind velocity. A mathematical artifact was introduced by Takle and Brown (1978) and later
used by Torrielli et al. (2013) to modify this behavior. A joint PDF consisting of a Weibull and a Dirac delta function
was used, being the latter responsible for modeling the calms. If long periods are considered, seasonal effects sub-
stantially modify the wind histogram, usually producing a curve with local maximums associated with each season
(Kumaravel et al., 2014). Again, a joint probability function, that is, a weighted average of simple PDFs, is used in
these cases (Cook, 2015).

This investigation is focused on two areas. The first one, taking as starting point the work of Rodriguez-Hernandez
et al. (2016), studies the influence of data-averaging procedures on the power density. Three techniques have been con-
sidered, the industry standard signal time averages, Fourier-based low-pass filters, and random signal undersampling.
The second one deals with the characterization of the wind measurements by means of a PDF. The selected site presents
calms and seasonal variations. The latter have been minimized by a monthly analysis of the wind. In order to account for
the calms, rather than a joint PDF, a new two-parameter PDF based on the truncated Gaussian distribution of a sinusoidal
daily wind pattern has been derived and applied to the measured data. To the best of the authors knowledge, this PDF
has not been used before to describe the wind characteristics. Provided the resulting fitting error was below than that of
the Weibull distribution, a number of two-parameter PDFs were evaluated in order to see the extent of the validity of the
proposed algorithm.

Site selection and measurement station

The orography of the equatorial Andes is characterized for two ranges running alongside in north to south direction. The
valley in between is home to major cities, from Quito to Cuenca. Tungurahua province is also located in this valley, span-
ning from the east to west range. The criteria established in order to place the meteorological tower included a socio eco-
nomical constraint, that is proximity to remote communities as portrayed by EEASA (2014) and an orography constraint
that is to favor local prominent locations (Kim et al., 2017).

After visual inspection of six potential sites, a location close to the community of Rioblanco was considered the best
option as the former criteria were met. The actual location is detailed in the Table 1. The place is a high plateau bordering
the Chimborazo volcano (6263 MASL).

The sensors used in the meteorological tower are specified in Table 2. The wind speed was measured at heights of 10,
20, and 30 m. The remaining properties were measured at a height of Sm. A data logger model “NRG Symphony Plus
3” was used to collect the data. The sampling frequency is 1 Hz, averaging the readings in 10 min intervals. The aver-
age, standard deviation, and extreme values are stored in the data logger memory. The system has run continuously from
October 2015 to September 2016. No data error was detected in the whole data set.

Due to the bias introduced in the wind velocity analysis due to the wind direction, it has been preferred to provide a
short account of the vane measurements in this section. The wind rose, represented in plane mode, has been included in
Figure 1. An east blowing wind is predominant in this site, feature which indicates a site effect due to the complex range-
valley-range structure described earlier. Usually, the PDF for each direction is included, but, since the dispersion is low,

Table I. Location of the meteorological tower.

Latitude 1°2122.0799” S
Longitude 78°49'3.1689” Q
Altitude 4016.5 MASL
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Table 2. Relevant measure sensors used in the meteorological tower.

Type Model Full scale Deviation
Anemometer NRG #40C Ims™ 96 ms™! +0.5% F.S.
Vane NRG #200P 360° +1% F.S.
Barometer NRG BP20 15-115kPa +1.5% F.S.
Temperature NRG 110S —40° to 52.5°C +1.3% F.S.
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Figure |. Wind direction probability. Each bin represents the monthly contribution to each direction.

this would merely be the PDF of the wind series itself. Therefore, the monthly contribution to each direction has been
preferred. It can be seen that monthly contributions are uniform for each direction.

Part |: effect of averaging techniques into the power density
Methodology

As discussed in “Introduction,” this section explores the adequacy of wind speed time averaging commonly used in com-
mercial data-loggers (Rodriguez-Hernandez et al., 2016) in relation with other averaging techniques. The final goal of this
section is to apply three different averaging procedures to the measured data and compare the mismatch between the actual
and the signal-averaged wind power density. In order to standardize the nomenclature, simple time averaging is referred to
as the mean ensemble, meaning the average of the measured velocity over a span of time. Its application is largely due to
a legacy byproduct of the dawn of the personal computer, as discussed by Griffith et al. (1956). The mathematics behind
its analysis are an adaptation of that used in electrical signal processing (Blackman and Tukey, 1958). Little though has
been devoted to the fact that while in electrical engineering the signal squared (either the voltage or intensity) is a direct
measurement of the power, in fluid dynamics is not, and it rather should be called a variance spectrum analysis instead of
power spectrum. The wind power density can be computed by means of equation (1), (Safari and Gasore, 2010), for either
a discrete or a continuous sample.

3_
pVi=

N | =

~p~fv3~f(V)-dv (1
0

The mean ensemble technique applied to the wind speed will result in an underestimation of the power density due to
the fact that the cube of the mean is lower than the mean of the cubes. A simple case may be devised to test this statement.
For the sake of discussion, if a dipole with values “ u+oc ™ and “ u—o ” is considered, where “u” is the mean value
and “o2” is the variance, the mean power relative error for the averaged power density P may be easily computed,

equation (2)
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The first term in the numerator is the variance and the second term is the skewness. Since typical wind distributions
have negative skewness, the first term may be considered as the upper bound for the mismatch between the actual power
density and that obtained by the mean ensemble technique. If a periodic symmetric function, “g(f),” as define in equation
(4) is considered, an expression may be derived for the power density mismatch, equation (5)
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Being the dipole, a particular case of equation (4), the latter result, not only includes but is equal to the former. The
implications of equation (5) may be further extended. Provided the equation (1) is commutative, the data series order may
be altered. If the wind were to be derived from a symmetrical PDF, the data could be rearranged in a way equation (4)
applies. The result of equation (3) together with equation (5) suggests that not only the upper limit for the power density
mismatch is a function of the variance over the mean squared but also that this bound is related with a symmetric distri-
bution. Thus, it can be inferred that the quotient of the actual power relative error, to that computed with equation (5) is
a direct measurement of the symmetry of the wind distribution. A long discussion related with the non-Gaussian wind
behavior and its implications applied to structural aecrodynamic loads may be found in Gurley et al. (1997).

Along with the mean ensemble technique, a low-pass Fourier-based filter and undersampling the original data set have
been considered as alternative averaging procedures. The latter is related to the notion of signal aliasing in electrical engi-
neering. Its behavior is well defined (Griffith et al., 1956), there is mainly a shift of energy from a higher frequency to a
lower frequency. The former is based on the fast Fourier transform (FFT) of the data set, it then nulls higher frequencies
and transforms back the filtered data.

As stated earlier, this three methods have been applied to the measured data. Given the 10-min average mean velocity
provided by the data logger, “v,,” the algorithms to compute the upper bound, mean ensemble, and aliasing curves are
shown in equations (6) to (8), respectively. The function “INV” refers to the inverse gate (INV) function, equation (9).
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Figure 2. Programed flow diagram for computing the power density by means of a Fourier-based low-pass filter.

The operator “%” computes the remainder of a division. In each of the three cases, the data is clustered in “j” elements.
The artificial sample rate is thus reduced by a factor of “j” The upper bound term requires further explanation. Both the

mean and the variance are computed in an interval ranging from the “i-j ” to the “(i-(j +1)—1)” index, that is the “j”
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Regarding the FFT, it takes an “n” length vector “ v and returns another “n” length vector “fv,”” where the first ele-
ment is the averaged value and the “1+2-;” and “2+2- ;j” are the cosine and sine component of the “j,,” harmonic,
respectively. The flow diagram of the computer program implemented to solved the low-pass filter procedure has been

detailed in Figure 2 and will be used in the following section, so only the central branch will be considered here. The
Heaviside function H (x), used in Figure 2, is defined in equation (10)

H(x) = 0 ifx<0 0
VTN 0 (10

Furthermore, the density “p” in equations 7 and 8 is considered constant and equal to 0.824. It is computed by the ideal
gas law based on the year average pressure, 658.2 Pa, and temperature, 5.3°C. It is assumed that the density variation plays



6 Wind Engineering 00(0)

Aliasing -« ." e
Aliasing avg. "

04 | Fuurivraj\f

P

-~

 P=P

< ¢ e
4 £
S 01 f -
g ; el el it
[ y i dn s tad o
AT
0 I R 7 Sk
. * Ty
0.1 i
-0.2 L L s n N
0 4 8 12 16 20 24
Sampling period [hour]

Figure 3. Relative power density error for the mean ensemble and undersample techniques.

but a residual role in the former equations. All the data processing was programed in C++, using, when necessary, the
mathematical library GNU-GSL (GSL, 2017). For simplicity and readability of the figures, only the wind speed at 30m
has been considered throughout the manuscript unless explicitly noted.

Results

The results for the three different averaging procedures considered has been plotted in Figure 3, with a maximum averaged
period of 1 day.

The following remarks can be made regarding Figure 3: (1) the mean ensemble technique power density underestima-
tion grows proportionally to the averaged window considered; (2) the upper limit term follows the same pattern, being its
value approximately doubled in relation with the former for whole window considered; this fact clearly demonstrate the
non-symmetry of the wind speed as discussed earlier; (3) the undersample technique error is always below than that of the
mean ensemble, confirming the shifting energy behavior mentioned earlier. The result of the aliasing curve is remarkable,
since with only three measurements a day (8 h interval), the power density error would be within + 3%; (4) although it
may seem unnoticeable, three peaks are clearly visible at 6, 12, and 24 h. The third peak induce a massive error in the alias-
ing curve. The 12-h peak error is predominant in all curves; (5) trying to smooth out the aliasing curve, the moving average
of two elements was introduced as “Aliasing avg.” It does smooth the curve, diminishing the error for every point, but the
peaks are still clearly visible; (6) from the aliasing curve results, it is clear than the day is the key temporal unit to measure
wind power potential; (7) for the Fourier-based low-pass filter, as expected, the result for a 24-h period, which is simply
the average of the data, is the same as that obtained by the mean ensemble technique; and (8) the error falls almost linearly
with the sampling period considered and is almost halved for each point in relation with the mean ensemble technique,
inferring that the Fourier transform is a more suitable procedure than the former.

Based on the former results, a prediction concerning the power leakage due to the averaging procedure of 1 Hz signals
to obtain the 10-min mean ensemble output produced by the data logger, may be accomplished. Since both the value of the
standard deviation and the average are directly provided by the data logger, the upper limit bound term for the measured
data is straightforward computed by means of the equation (11), obtaining a value of 0.146

2 2

P c 3| o;
bound = 3- == i 11
Aupper oun ( ] E { j (11)

H n i=1 ,U,-

It is theorized that the rule 2:1 found for the macro time scale also applies to the micro time scale. Thus, a theoretical
extra 7.3% power would be available for the selected site. However, this enhancement is quite unlikely to be realized by
an actual machine, since the inertia of the system would rather prevent or at least attenuate this high-frequency power
resource as mentioned by Rodriguez-Hernandez et al. (2016). It is beyond the scope of this investigation the dynamic time
response of wind turbines. A last remark concerning equation (11), since the quotient “c / u” is commonly portrayed as
the turbulence intensity, this parameter might be thought as the upper limit high-frequency power potential hindered by
wind turbines dynamic response.
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As a summary of this section, three methods have been studied, the aim of which is to represent a set of data by means
of a smaller subset. Provided that ultimately for each and every point in Figure 3, each method uses a reduced subset of
the same length, it must be concluded that the aliasing method excels in utilizing scarce data. It is followed by the Fourier
analysis and the mean ensemble technique in that order.

Part 2: wind characterization based on PDFs

Methodology

PDFs are a convenient way of summarizing wind characteristics, since a reduced number of parameters, namely those of
the distribution, are needed. As discussed in the preceding section, the wind is largely a non-symmetric phenomenon, such
as the PDF traditionally used to represent it. Instead of working with the PDF, its integral or cumulative density function
(CDF) is preferred, since the dependence of the bin velocity size used to compute the discrete PDF is eliminated. The
algorithm to compute the experimental CDF is shown in equation (12) in terms of the Heaviside function, equation (10).
The mean absolute deviation (MABD) is proposed to compare any two CDFs, equation (13). The bin velocity size used
in this investigation is 0.25ms ™.

CDF(v) = %ZH(V—V,-) (12)
i=1

MABD (CDF,,CDF,) = lE\CDFZ(bin-i) —CDF,(bin- )| (13)
n

i=1

After considering the results obtained so far and after plotting the combination of the daily averaged speed together
with the cloud of points which originated it, Figure 4(a), the concept of new way of obtaining a PDF arose based on the
daily wind velocity profile.

From Figure 4(a), it can be seen that the daily wind pattern is characterized by the existence of a night calm, and a half-
sine like velocity profile during light hours. This behavior is found in other locations (Buflasa et al., 2008; Cook, 2015).
Thus, instead of a timeless PDF, the information provided by the daily wind velocity profile may be used as the base
for the construction a daily-based PDF. The idea is to assume a daily velocity curve and apply to that curve a PDF. The
assumed daily velocity has been taken as a sinusoidal wave and the PDF as a truncated Gaussian distribution. Provided
the velocities cannot be negative, the left Gaussian tail producing such negatives values are clustered at zero, thus the
truncated distribution. The outcome of this arrangement is two-fold, first it produces a non-symmetric PDF, and second,
it assigns a non-zero value probability to zero velocity, a feature of paramount importance in poor wind resource sites.

The use of a sine function for the day velocity profile is not random. If the Fourier filter described in the preceding sec-
tion is used, the experimental CDF may be compared against the CDF obtained by the Fourier-filtered data. The numerical
procedure follows the lower branch of the flow diagram shown in Figure 2. The results are shown in Figure 5, where the
dependence of the MABD in terms of the number of Fourier harmonics is illustrated. As expected, the error rapidly falls
with the numbers of terms. However, the bulk of the error reduction appears at the transition between the zeroth harmonic
(mean ensemble) and the first harmonic. A slow error reduction rate is found afterwards. Based on this results, the sinu-
soidal waveform was taken as the base function for the proposed PDF.

The parameters of the proposed PDF are three, the mean (u,) and amplitude (“60”) of the sinusoidal waveform,
“pg,—0-sin(((2-7)/T)-t),” and the standard deviation of the Gauss distribution (“ & ). The CDF of such waveform may
be computed according to equation (14). For simplicity, this function will be called “CDF _,,(4,B,v)”. The proposed CDF
is simply the Gaussian-weighted average of the sinusoidal waveform. To fully understand the concepts put forth herein,
Figure 4(b) has been included. This figure is a bitmap representing the probability of having a given speed at a given
time. The sinusoidal period has been set to 24 h. Furthermore, the maximum probability has been scaled to one in order to
improve the readability of the figure.

In the continuum, this function may be written as in equation (15). The following remarks apply: (1) the mean value
of the sinusoidal wave must not be negative, thus the first integral term starts at 0; (2) the tail probability for mean values
lower than zero is assigned to zero (second integral term); (3) consequently, there are two non-symmetrical sources, the
second integral term and the fact that the speed v cannot be negative.
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Figure 4. Wind speed values for the month of May at a height of 30m: (a) daily mean velocity together with measured values and
(b) daily probability of the proposed PDF, computed with y,=6.36ms™!, 6=3.72ms™!, and 6=2.37ms™".
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Figure 5. Mean absolute deviation between the original CDF and the CDF obtained from the Fourier-filtered data as a function of
the terms of Fourier harmonics.

The equation (15) has been discretized in order to be implemented in a computer program. The second integral may be
computed explicitly. The trapezoidal rule with “n” steps was used for the first one. The integral extents up to 2- i, being
the right tail probability assigned to this value

0 if v<(u,—0)

CDF ;,(u,,0,v) = %_l.arcsin ('HS;V J if (u, —0) <v<(u, +0) (14)
b3

1 if v (u,+6)
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© 0
CDF(t,,0,0.v) = [ G~ ,,0): CDF,,, (x,0.v) dx-+ CDF,, (0,0.v)- [ Glx—p1,,0)-dx (15)
0

—0

Before this procedure is applied to the measured data, it is worth exploring the meaning of the three parameters of the
proposed distribution. Is theorized that “/,”” should be close to the mean value of the wind speed in the considered period.
The parameter “0” should be related with an estimator of the width of the distribution. In this case, either the variance
0= NG o) or the MABD (6 = MABD-(x/2)) of the measured data in the considered period could be used. A subtle
detail should be considered for the Gaussian standard deviation “o”. This parameter is related with the mean of the variance
of the data for each time rather than the variance of the whole data set. Since the former two parameters are directly related
with a visible shape feature and the latter is not, it has been considered useful to independently study its influence on the
distribution fitting error. For that purpose, the CDF proposed herein has been fitted to the measured data in a monthly basis,
as illustrated in the flow diagram introduced in the preceding section, Figure 2. The least square fitting procedure has been
used for that purpose. The details of the algorithm can be found in the GSL library documentation (GSL, 2017).

After any calculation was performed, the influence of the number of terms used for the integral shown in equation (15)
was explored. If was found, Figure 6, that after 200 terms, the error variation is minimal. The value of “o” amounted to
0.25- u, thus the fitting algorithm only has to compute two parameters, namely those related with the underlaid sinusoidal
wave. For the remaining calculations, the number of terms was set to 500.

In order to find a dimensionless parameter, the quotient “c / 11, was introduced. This quantity was sequentially varied from
0 to 1 and the subsequent two-parameter fitting performed. The resulting year-averaged MABD is shown in Figure 6. There
is a minimum at a ratio of approximately 0.3, being the error moderate in the range from 0.2 to 0.4. Based on these results, for
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Table 4. Selected probability density function for wind speed characterization.

Type PDF Range
Rayleigh [7&] x>0
X 2.c2
f(x)=—-e
c
Weibull *(i)k x>0
ko ¢
f()= o x e
C
Gamma | X x>0
= e
I'(a)-b*
Beta f(x)= [(a+b) X (1= x) 0<x<lI
[(a)-T(b)
Log-normal _(n(x)=¢) x>0
2

e 20

A

PDF: probability density function.

the remaining calculations “c” was taken as 0.3 p1..” It shall be noted that, according the description given earlier, the year
average of the quotient “o / 1™ for each of the 10-min interval is 0.42, relatively close to the minimum error value.

Results

The proposed two-parameter PDF has been fitted to the experimental CDF in a monthly basis following the procedure
shown in the upper branch of Figure 2. The absolute deviation for the fitting is shown in Figure 7. Furthermore, the
numerical values for the parameters “i,” and “6”” have been included in Table 3 along with other wind statistics. The fol-
lowing comments follows: (1) the fitting error is approximately 1% for all months; (2) the fitting coefficients “;”” and “6,”
from Table 3, are in accordance with the detail provided earlier, namely they are closely related with the monthly mean
and absolute deviation, respectively; (3) the month analysis is justified by the strong seasonal variation, as can be seen
by the mean power density in Table 3. The best months in terms of power density are June, July, and August. This is also
the case for Villonaco wind farm (Ollague and Crespo, 2014); and (4) an average wind speed of 5.99 and power density
of 147 show a low-grade wind class completely out of reach from commercial exploitation. However, mini eolic could by
feasible with such moderate resource.

Provided the fitting error was small, it was decided to test a number of commonly used PDF (Ouarda et al., 2015). The
list of selected one- and two-parameter PDFs are included in Table 4. Any further detail about these distributions may be
found in most statistics books (Montgomery and Runger, 2014). Since the range of Beta distribution is right bounded, the
data velocity has been scaled by dividing the month data set by the maximum value. The least square fitting algorithm has
been chosen for all cases. Moreover, the maximum likelihood method, as suggested by Safari and Gasore (2010), has also
been used for the Weibull distribution.

Since all the proposed PDFs are readily available in the GSL library, the numerical implementation of such routines is
straightforward. The results have been included in Figure 7, albeit the Weibull maximum likelihood case due to its prox-
imity with the Weibull least squared one, depicted in the aforementioned plot; the MABD was 2.03% and 1.88%, respec-
tively, slightly favoring the least square method. Both the fitting coefficients and year-averaged deviations, but for the
Rayleigh case, alongside with basic wind speed statistics have been included in Table 3. Based on the former information,
the following comments may be derived as follows: (1) the Rayleigh distribution underperformed globally, as was found
by Tar (2008). This result may be related with the fact the Rayleigh distribution assumes zero mean velocity vector, feature
distant from the actual velocity vector. (2) Log-normal, Gamma, and Weibull distributions behave quite similar although
the error decrease in the mentioned order; (3) the Beta distribution, not frequently used for this application, is second best
only after the distribution proposed herein; (4) another error estimators were tested, namely the autocorrelation parameter

R? and the variance. They do not alter the discussion so far.

The distributions behavior for the best and worst fitted months deserves further attention in order to fully identify the
reasons behind the proposed model low-error estimations. From Figure 7, it is clear that November and August are the
worst and best months in that regard, respectively. From Table 3, it is verified that the same is true for either the mean
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Figure 8. Probability density function and its cumulative for the months of August and November. Predicted values for the CDF by
the Weibull distribution and the proposed model have also been included. The bin speed has been set to 0.25ms™".

speed or power density. To further enhance this discussion, the PDF and its cumulative for the measured data have been
included in Figure 8. Moreover, the CDF reconstruction based on the Weibull and the proposed distribution have been
included.

The difference between both months is clear. A visual inspection shows that August closely resembles a Weibull-type
distribution. On the contrary, the appearance of probability assigned to zero (it is not actually zero due to the offset of the
anemometer) wind speed clearly distort the distribution in November. Translated to the CDF, the initial step increase of
the curve cannot be met by the Weibull distribution. However, the proposed model shows, as noted before, cumulative
probability at zero speed. By extension, any PDF which lacks the feature of non-zero probability assigned to zero would
likely underperform in this case. This gap is filled by the model proposed herein. On the contrary, a smooth cumulative
curve near the origin is found for August. In this case, both models capture appropriately the cumulative curve profile.

A final thought regarding the distribution proposed here is related with its application to high windy locations. As the
average value “u,” increases, the non-symmetry fades away since low cumulative probability will be left in the underlaid
Gauss distribution lower tail. Thus, is theorized that for high-grade winds this method shall underperform in relation with
the results presented here.

Conclusion

In the present investigation, the wind resource for a location in the highlands of the Equatorial Andes has been studied.
The year-round available experimental wind speed and direction data have been but a vehicle to provide further insights
into wind characterization techniques. In Part I, the influence on the wind power density of techniques aimed at lowering
the experimental sampling rate has been lengthly discussed. An upper limit for the power density error for any of these
procedures was derived. Furthermore, it was proposed that the non-symmetry characteristic of the wind is closely related
to the disagreement between this theoretical upper limit and the actual computed value. The aliasing method provide an
extraordinary accuracy, being able to closely match wind power density with sampling intervals up to a day. The worst
method of clustering information was found to be the mean ensemble technique.

Based on those results, a new time-based PDF, derived as the Gaussian dispersion of a daily wind curve of sinusoidal
waveform, was proposed. The non-symmetry obtained by tail probability shifting to zero wind speed has proved useful
when dealing with poor wind potential sites, as is the present case, with an average year wind speed of 5.99ms™! and
power density of 147 Wm™!. This feature is missed in commonly used distributions, namely Rayleigh, Weibull, Beta,
Gamma, and Log-normal, which showed inferior prediction performance for the measured data. Furthermore, the wind
direction shows consistent east-facing alignment, which is a positive factor if a small eolic turbine were to be fitted into
place.
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Notation

fv) probability density function

fv Fourier transform result

v wind speed (m s7!)

vr reconstructed wind speed (m s7!)
A area (m?)

G(x,0) Gauss PDF with zero mean

H(x) Heaviside function

P wind power (W)

P mean wind power (W)

% percentage, modulus operator

wind shear coefficient

0 sinusoidal amplitude (m s7')
oc mean value
P density (kgm)

o variance
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Abstract

In recent years, research has revealed that hydropower designs in Ecuador have not adequately considered sensitivity to climate
change. In addition, variations in rainfall patterns cause a drought from July to October. Therefore, it would decrease the flow of
the rivers that feed the dams for hydroelectric generation, which would result in a significant reduction of its generating capacity.

To prevent this inconvenience from occurring, it is necessary to promote the use of wind energy to diversify the Ecuadorian
energy matrix. This matrix is made up of 70% hydropower and 0.26% wind power. Moreover, the Ecuadorian Andes has significant
untapped wind potential due to their complex orography. Currently, there are no detailed studies on wind potential or wind
energy prediction in the Andes. As a result, wind resource characterization is necessary. In order to address the challenges
mentioned above, promote wind energy development, assess wind potential, and diminish the need for thermal generators, this
article describes a methodology for wind resource characterization over complex terrain in the Ecuadorian Andes using measured
data from two meteorological towers installed in the mountainous zone of study and wind characteristics modeling through the
Ansys Computational Fluid Dynamics (CFD) software for the positioning of 11 Goldwind 70/1500 KW wind turbines to optimize
the Annual Energy Production (AEP) of a hypothetical wind farm.

The study’s main findings indicate that the wind passing between two volcanoes has a high wind potential. This potential is
dependent on meteorological variables, orography, and the accelerating effect of wind speed. These favorable conditions make it
possible to install a wind farm in this area with 11 high-power wind turbines. Furthermore, the wind farm design using Ansys
CFD showed that the K-epsilon model can model the profile of wind speeds and Turbulence Intensity (TI) over a simulated
mountain with great precision.

Index Terms

Ecuadorian Andes; Wind power; Wind characteristics; Ansys CFD; Weibull wind distribution

NOMENCLATURE

ABL Atmospheric Boundary Layer

AGL Above Ground Level

ASL  Above Sea Level

CDF Cumulative Density Function
CONELEC National Electricity Council
GSR Global Solar Radiation

MEER Ministry of Electricity and Non-Renewable Resources
NREL National Renewable Energy Laboratory
PDF Probability Density Function

RANS Reynolds Average Navier-Stokes
RMSE Root Mean Square Error

WD  Wind Direction

WRA Wind Resource Assessment

WS Wind Speed

WSC Wind Shear Coefficient

I. INTRODUCTION

In the last two decades, renewable energies for electricity generation including wind, solar, biomass, hydropower, and others
have had rapid growth to reach an energy transition more sustainable with lower fuel fossil consumption and fewer greenhouse
gases emissions [1]. Wind energy is a clean and mature technology with rapid growth in the past 20 years [2, 3]. Wind power
generation worldwide reached during 2020 a total installed power of 743 GW, adding 93 GW in new installations, and showing
a record increase of 53% compared to 2019. Some countries set up new installations around Asia, America, and Europe with
a growing tendency to increase wind power generation [4, 5].

Germiénico Lopez (corresponding author) is with Lemur Research Oviedo, Spain, email: UO260514 @uniovi.es
Pablo Arboleya is with LEMUR Research Group at the Electrical Engineering Department at University of Oviedo, Spain
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In recent years, research has revealed that hydroelectric power designs in Ecuador have not appropriately considered climate
change sensitivity. Furthermore, climatic conditions determine the variations in the electrical generation of this renewable
energy source. As a result, variations in rainfall patterns, in turn, causing the drought that occurs from July to October of
each year due to the absence of rainfall, could reduce the flow of rivers that feed the dams for hydroelectric generation in
Ecuador, could have a significant effect on hydroelectric generation capacity. Drought concerns in prior years compelled an
increase in heat generation utilizing diesel engines, resulting in millions of tons of greenhouse gas emissions [6]. To prevent
this inconvenience from occurring, it is necessary to promote the use of wind energy to diversify the Ecuadorian energy matrix.
This matrix is made up of 70% hydropower, 28% thermal, and 2% renewable energies.

In Ecuador, wind power reached 21.5 MW in 2013, which represents around 0.26% of total installed power systems [7, 8].
Ecuadorian wind power is composed of two wind power investments. The first is the Villonaco wind farm, which is installed
at the highest altitude worldwide (2720 m ASL), and holds an installed power of 16.5 MW supplied by 11 WT Goldwind
70/1500 KW each [9]. This wind farm operates under particular conditions, such as annual mean wind speed of over 10 m/s,
low air density around of 0.89 kg/m?, and TI of 0.15 considered as A-class [10]. The second wind farm is located in the
Galapagos Islands with a capacity of 4.6 MW [7, 11]. Nowadays, the MEER has approved the construction of the projects
Villonaco II and Villonaco III with an installed power of 110 MW to increase wind generation [9]. The wind Atlas published
by CONELEC estimates the feasible wind potential at around 884.2 MW. Most wind potential is in the mountainous region of
the Andes Highlands [7]. The full wind gross potential in Ecuador is around 1670 MW, and annual wind energy production
estimated at 80 m AGL, can reach 2868.98 GWh/year [9]. In Ecuador, wind power reached 21.5 MW in 2013, which represents
around 0.26% of total installed power systems [7, 8]. Ecuadorian wind power is composed of two wind power investments.
The first is the Villonaco wind farm, which is installed at the highest altitude worldwide (2720 m ASL), and holds an installed
power of 16.5 MW supplied by 11 WT Goldwind 70/1500 KW each [9]. This wind farm operates under particular conditions,
such as an annual mean wind speed of over 10 m/s, low air density around 0.89 kg/m?, and TI of 0.15 considered as A-class
[10]. The second wind farm is located in the Galapagos Islands with a capacity of 4.6 MW [7, 11]. Nowadays, the MEER has
approved the construction of the projects Villonaco II and Villonaco III with an installed power of 110 MW to increase wind
generation [9]. The wind Atlas published by CONELEC estimates the feasible wind potential at around 884.2 MW. Most wind
potential is in the mountainous region of the Andes Highlands [7].

The full wind gross potential in Ecuador is around 1670 MW, and annual wind energy production estimated at 80 m AGL,
can reach 2868.98 GWh/year [9]. The influence of the complex terrain on the wind flow in the highlands tends to decrease
with height above ground level [12]. On the other hand, the wind speed blowing over mountains increases its value due to
speed-up effects [13]. Because of these effects, most wind turbines are sited on the summits of mountains due to their high
wind potential [14, 15]. Many research studies have been developed in this field to exploit wind potential. Tabas et al. [16]
stated that the complex site study features promote the combination of three complicated parameters: topography, heterogeneous
vegetation, and interactivities among turbine wake. Solano et al. [17] proposed a regression model by using correlation between
average wind speed and terrain elevation in the southern region of Ecuador. The results showed good correlation between both
magnitudes and 83% accuracy rate for wind speed prediction. Other studies showed that wind potential over complex terrain in
the Andes Highlands is an encouraging region for wind power generation projects [18, 19]. Lopez and Arboleya [20] presented
a multivariable LSTM network for short-term wind speed forecasting in the Andes Mountains. The forecasting results showed
good performance at 80 m AGL and high wind speed values, which are feasible for large scale wind power generation. However,
the integration of wind energy into the electrical grid produced by high-power wind farms located in mountainous areas is a
difficult task due to the variability of the wind. Moreover, the Ecuadorian Andes has significant untapped wind potential due
to their complex orography. Currently, there are no detailed studies on wind potential or wind energy prediction in the Andes.
As a result, wind resource characterization is necessary. In this work, a two-dimensional-2D CFD modeling was carried out
using RANS and k-¢ turbulence model equations to evaluate wind flow characteristics over a location in the Ecuadorian Andes
complex terrain, and to validate with similar calculated values.

This paper aims to promote wind energy development over complex terrain through a WRA and wind farm design using
Ansys CFD software in the Ecuadorian Andes for the potential installation of a wind farm. By providing novel and relevant
information for wind farm investors, researchers, and grid operators. First, we presented a detailed study of wind characteristics;
furthermore, local values of the WSC and air density were calculated based on data from 2 meteorological stations installed in
the study zone. Then, wind speed frequency distribution was described by the Weibull Probability Density Function (PDF) for
daily, hourly, and 10-minute WS intervals. Next, we estimate the Wind Power Density (WPD) for the location at the height of
80 m AGL, using logarithmic wind profiles at each station and wind duration curves. After that, we calculated the AEP and
the corresponding CF, which we compared with the historical values of the Villonaco wind farm. The CF of three wind turbine
configurations was calculated to select the best-fit technology. Finally, a micro-siting study was performed using Ansys CFD
software to optimize the AEP of the proposed wind farm. The present paper is structured as follows: Section 2 describes the
site and measurement equipment. Section 3 presents the methodology. Section 4 shows the results and discussion. Section 5
outlines the main conclusions and future studies



NOVEMBER 2022 3

II. LITERATURE REVIEW
A. 2.1 Wind characteristics modelling using CFD

Specifically, the wind energy industry in recent years has used the CFD software for WRA and predictions. The evolution of
computational wind engineering makes very accuracy the evaluation of wind speed over complex terrain. Significant progress
was made in the CFD application for specific cases of wind flow evaluation over escarpments, single and multiple hills, and
valleys [21]. Many decades ago, CFD emerged as a reliable tool for simulating several engineering problems [22]. It consists in
solving a set of Navier-Stokes differential equations to describe the flow in a particular domain. These equations accompanied
by the TI models have been able to characterize with high precision the wind behavior on the top of the mountains. In recent
studies, Ayala et al. [19] used the Meteodyn CFD tool based on a nonlinear flow model to compare the actual AEP of the
Villonaco wind farm with the estimated AEP by Meteodyn. The simulation results indicated that the CFD modeling is adequate
for complex terrain, which site measurements should validate. Arteaga-Lopez et al. proposed a CFD methodology to improve
wind resource assessment for urban environments. The CFD results showed the efficacy of the suggested method to implement
small wind turbines in urban and rural areas [23]. Tabas et al. [16] analyzed the Windsim CFD software to perform accurate
wind power prediction in wind farms over complex terrain. The CFD results showed that Windsim on the company of a proper
combination of TI patterns could predict wind farm performance with high accuracy.

Over the last two decades, CFD models have been used to improve the accuracy of wind speed forecasting and to assess wind
resource in complex terrain. Numerical solving of Navier-Stokes equations provides a more accurate and feasible method to
model wind fields with more detailed configurations. Research has explored many advanced CFD models, including large-eddy
simulations (LES). However, there is still a high computational cost associated [24]. Yuan and Li [25]presented a coupled
on-site measurement/CFD-based approach to replicate the spatial variability of wind speed over complicated terrain to be used
for future wind turbine micro-siting. The coupled on-site measurement/CFD approach is anticipated to promote the growth of
wind energy and enable reliable WRA. By integrating CFD with data from various masts, Correa-Radunz proposed a framework
for creating maps of wind resources and estimating energy output in challenging terrain. The framework made a significant
contribution to the mapping of wind resources in difficult terrain and was more sensitive to the number of simulated wind
directions. Bilal et al. [26]used a set of mesoscale winds that were modelled with WRF and CFD to take into account the
actual topographical effects on wind flow over difficult terrain. The findings show that the quality of mesoscale winds used as
input determines how well microscale models work.Specifically, the wind energy industry in recent years has used the CFD
software for WRA and predictions. The evolution of computational wind engineering makes very attractive the evaluation of
wind speed over complex terrain. In fact, significant progress has been made in the CFD application for specific cases of
the evaluation of wind flow over escarpments, single and multiple hills, as well as valleys [21]. Many decades ago, CFD
has emerged as a reliable tool for simulating several engineering problems [22]. It consists in solving a set of Navier-Stokes
differential equations, to describe the flow in a particular domain. These equations accompanied with the turbulence models
have been able to characterize with an acceptable precision the wind behavior on the top of the mountains. In recent study, Tang
et al. [27] presented a novel method for assessing wind resources at high resolution. It combined sequential wind velocities
at any point within the wind farm. CFD simulations and on-site measurements from multiple meteorological masts. Dynamic
sequential velocity at the desired location has been successfully estimated with high accuracy, using the CFD-measurement
coupled method.

According to the literature review above, there have been no published studies of WRA and wind characteristics modeling
over complex terrain in the Western Ecuadorian Andes using CFD. The present work is the first to assess wind characteristics
at the highest altitude reported so far (4350 m ASL). Furthermore, mean WS and TI are modeled using Ansys CFD software
to select the most suitable WT for this region. From this point of view, this study is relevant. The conclusions obtained in the
wind power assessment method can be valuable for other researchers to forecast wind speed in mountainous terrains at high
altitudes.

III. 3. METHODOLOGY

This chapter describes the methodology used for WRA, short-term wind speed, and power forecasting considered in the
proposed model composed of the following approaches: linear regression models, DNN and RNN networks, and wind farm
design using CFD in the Ecuadorian Andes

A. 3.1 Area of study

The study area is located in the Sierra region of the Ecuadorian Andes, among the provinces of Tungurahua, Chimborazo,
and Bolivar, as is shown in Figure 1. Hence, there are a few people in this region. The majority of land, which is a natural
reserve is owned by the state. According to the Ecuadorian Atlas, El Arenal valley is considered a windy sector within the
Ecuadorian Andes [28]. This 10 Km wide valley is located at a natural mountain pass between the volcanoes Chimborazo
(6263 m ASL), and Carihuayrazo (5116 m ASL) as is presented in Figure 2. This wind channel pass causes a wind speed-up
effect due to the Venturi effect. This particular site with high wind potential was selected after a preliminary assessment; which
is considered the first phase in WRA [29]. Therefore, this site is classified as a region with accelerated wind flow [30].
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Figure 1: Geographic map of Ecuador [31]
1

Ecuador is traversed from North to South in the Sierra region by the Andes Mountains, which are composed of East and
West mountain ranges. The topography of the Andes Mountains is characterized by complex terrain at high altitude, which is
composed of hills, plateaus, mountains (3000-4500 m ASL), and volcanoes (> 5000 m ASL) [31]. In the mountains, during
the day, the sun heats air masses, and hot air rises on the sides of the mountains, creating flow circulation and anabatic winds.
Katabatic winds occur at night when air parcels descend on the sides of the mountains [12, 32]. Two climatic stations are
predominant in this region, such as winter from December to June and summer from July to November [31, 33].

Chimborazo volcano Carihuayazo
6263 m ASL volcano 5116 m

Meteorological
stations

Figure 2: Area of study in the Andes Mountains [34]
2

3

Table I: Geographic coordinates of meteorological stations [20]
Parameter Station 1 Station 2
Latitude 1°54'S 1°54.8'S
Longitude 79°15'W 78°45.6'W
Elevation 4260m ASL  4428m ASL

01"Reprinted from Renewable Energy, Volume 183, Germénico Lépez and Pablo Arboleya, Short-term wind speed forecasting over complex terrain using
linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with permission
from Elsevier"

02"Reprinted from Renewable Energy, Volume 183, Germanico Lépez and Pablo Arboleya, Short-term wind speed forecasting over complex terrain using
linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with permission
from Elsevier"
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B. 3.2 Equipment and data

The collected data were obtained using sensors mounted on two tubular towers at 30 m and 80 m AGL respectively installed
in the moorland of the zone of study in accordance with international guidelines [35]. Furthermore, this region is suitable
for wind power assessment and development, which does not represent a risk to environmental care [20]. The measured data
is formed of 10-minute intervals with average, maximum, minimum, and standard deviation values of the following weather
variables: wind speed, wind direction, air temperature, barometric pressure, and GSR. The geographical coordinates of the
position of the towers are shown in Table I. Given that wind data set is a parameter very important for WRA, and is required
at least wind data of one year to predict WPP [36]. The data was gathered from January 1st to December 31st, 2018. The 40
m-tall-tower was installed on a large plateau. In addition, the tower of 80 m-tall-tower was installed on a round hill in the El
Arenal desert close to the Chimborazo volcano. The equipment, sensors, and their characteristics installed on each tower to
measure meteorological variables are listed in Table II. One data logger, NRG Symphony Plus 3, for each tower, was used to
store data in memory during 2018, and to enable remote communication. Readings are averaged at 10-minute intervals. The
sampling frequency is 1 Hz [37].

Table II: Sensors installed on meteorological towers [20]

Type Model Range Deviation
Anemometer  NRG #40C ~ 1ms~1-96ms—1! 0.5 %
4 Vane NRG 200P 0-360° 1%
Barometer NRG BP20 15KPa-115KPa 1.5%
Thermometer ~ NRG 110S -40° to 95.5°C 13 %

Pyranometer LI 200R 400 to 1100 nm <10pVv

Wind speed was measured in the tower 1 at heights of 10, 20, and 30 m AGL and labeled "WS,", "WS,", "W S3"
respectively. For tower 2, at heights of 40, 60, 80 m AGL and designated "W S,", "W .S5", "W Sg" respectively. The statistical
summary of weather variables is stated in Table III. The percentage of measured values is over 99%; which represents a reliable
data set. The mean wind speed measured at six heights from 10 m to 80 m AGL shows an increase in wind speed with height
variation, [13] as is shown in Figure 3 where WS at 80 m AGL is higher than at 30 m AGL. Moreover, it is observed that WS
increases during the summer months due to the influence of the Atlantic equatorial mass composed of the East and Southeast
winds that are of greater pressure than the North trade winds [38].

20
—30m AGL|
—80m AGL

|

|

y

Wind speed (m/s)

0
010118 040118 070118 100118 010119
Time (days)

Figure 3: Monthly WS values at 30 m and 80 m AGL in 2018
5

The WPD was calculated for each height from 10 m to 80 m AGL. It observes an increase in WPD with wind speed
variation. The air temperature varies from 1.5 °C to 9 °C. Similarly, the barometric pressure reached a mean value of 611.3
millibars due to the high altitude terrain. On the other hand, GSR reaches the highest value of 1245.5 W/m? close to the solar
constant due to the proximity of the land to the sun because the zone of study is on the Equator. Furthermore, solar radiation
outside the Earth’s atmosphere is referred to as the solar constant, with a value of approximately 1,361W/m? [39, 40].

03"Reprinted from Renewable Energy, Volume 183, Germanico Lépez and Pablo Arboleya, Short-term wind speed forecasting over complex terrain using
linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with permission
from Elsevier"

04"Reprinted from Renewable Energy, Volume 183, Germanico Lépez and Pablo Arboleya, Short-term wind speed forecasting over complex terrain using
linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with permission
from Elsevier"

05"Reprinted from Renewable Energy, Volume 183, Germanico Lépez and Pablo Arboleya, Short-term wind speed forecasting over complex terrain using
linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador, Pages 351-368, Copyright 2022, with permission
from Elsevier"
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Table III: Weather variables statistics for the zone of study

Variable Units Minimum Average Maximum Percentage
Wind speed (W S1at10mAGL m/s 0.2 6.02 23.1 99.68
Wind speed (W S2at20mAGL m/s 0.2 6.92 235 99.58
Wind speed (W S3at30mAGL m/s 0.2 7.02 24.2 99.81
Wind speed (W S4atd0mAGL m/s 0.2 9.15 41.4 99.86
Wind speed (W S5at60mAGL m/s 0.2 10.8 41.5 99.68
Wind speed (W Seat80mAGL m/s 0.2 11.02 41.6 99.56
Wind Power Density (W PDy) W/m? 0 135 4678 99.4
Wind Power Density (W PD>) W/m? 0 250 4990 99.35
Wind Power Density (W PDs3) W/m? 0 351 5450 99.65
Wind Power Density (W PDy W/m? 0 511 26500 99.61
Wind Power Density (W PDs) W/m? 0 584 27482 99.48
Wind Power Density (W PDeg) W/m? 0 647 28690 99.75
Wind direction (from East) Degrees 0 10 350 99.45
Air temperature (3.0 m AGL) Celsius degrees  -1.5 2.7 9.5 99.7°5
Barometric pressure millibars 0 135 746.0 99.75
Global Solar Radiation W/m? 606.2 610.9 615.1 98.85

C. 3.3 Roughness class and length

In the ABL lower than 1 Km AGL, wind speeds are affected by friction with the earth’s surface. In the wind industry,
a difference is made between the terrain roughness, the influence of obstacles, and the terrain contour influence also named
the orography of the area. The roughness class from the roughness length (Z,) is the height AGL where the wind speed is
theoretically zero. When the wind profile moves towards lower speeds as we approach ground level is often named wind shear.
The friction speed is related to the shear stress of the terrain with the density of the fluid and is represented by Equation 1

e = ]2 (1)
p

Where:

s Friction speed

7., Wind shear stress

p Air density

Theodore von Kdrman stated on 1930 that in a turbulent flow, its mean speed at any point becomes proportional to the
logarithm of the distance between any place to the wall [41]. Equation 2 represents the average horizontal speed located at
the height of z.

pe=tins 7> 7, @

Where:

k von Karman’s constant equals to 0.4

Z Wall height

Z, Surface roughness length

The horizontal average velocity p. is known as the logarithmic wall law, and only is used for flows that are closer to the
wall. This method has been put into practice to estimate the average velocity profile generated in the surface layer, but it is
valid up to 150 meters in height as long as there are strong winds.

The term z, indicates the size of the eddies generated on the surface of the ground while the ground has a greater roughness;
the eddies will be directly proportional to the roughness of the surface. Table IV shows the roughness values of different rough
obstacles on uniform study surfaces.

Table IV: Roughness and length for some types of terrain [42]

Terrain description Rough class  Rough length (m)
Ice or mud 0 0.001
Outdoors, grass, airport lands 0.5 0.24
Agricultural land with scattered buildings 1 0.03
Agricultural land with fences up to 8 meters height
and some houses separated by more than 1 km. 1.5 0.055
Cities, villages, agricultural land with high fences, and forests 3 0.4

Centers of cities with tall buildings 4 1.6
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D. 3.4 Wind shear profile

Wind shear is defined as the horizontal or vertical variation in WS or WD with a height change in a small portion of the
atmosphere [43]. These variations are due to some variables such as, elevation, atmospheric stability, the hour of the day,
surface roughness, and terrain shape [14, 42]. Furthermore, it is also known as wind profile [13, 44]. In this work, the vertical
wind speed profile was realized using the power law. Its basic equation is shown in Equation 3:

Where :

b-(2)
1 1

V5 = the projected speed at the desired height ho

V) = the observed speed at the measurement height h,

« = a non-dimensional power law exponent

The power-law exponent is very variable from 0.1 to 0.35 due to many parameters, such as terrain elevation, the hour of the
day, terrain classification, wind speed value, atmospheric stability, and other thermal and mechanical factors[42]. This exponent
increases its value during the night hours, causing a stable atmosphere, and decreases during the day hours, originating a neutral
and unstable atmosphere [45] « can be calculated from Equation 3 as is shown in Equation 4. This work was developed while
considering a neutral atmosphere.

_InVa—InV; 4
Thmz-mz (

E. 3.5 Air density
This variable is in proportion to air temperature and air pressure, which decreases with height and temperature increases

[42]. Wind power output decreases with lower air density values [46]. The air density for the site of the study was calculated
using the ideal gas law is shown in Equation 5.

P
pP= W(kg/mg) ®)

Where P is air pressure expressed in KPa, air temperature in Kelvin degrees, and R is the universal constant for gases (287
KPa/JxKg).

F. 3.6 Turbulence Intensity

Wind turbulence is the rapid disturbance in the wind speed, direction, and vertical component. Normally, the duration time
is from ten minutes to one hour, and the range is from 0.1 to 0.4. TI is defined in the Equation 6, and is an important site
characteristic that depends on the surface roughness, thermal behavior, height above the surface, and topographical features
[42, 44]. High turbulence levels may decrease power output and cause extreme loading on WT components.

ag
TI = v (6)

Where o is the standard deviation of wind speed, V is the mean wind speed.

G. 3.7 Weibull probability density function

The Weibull distribution based on k and ¢ parameters has been widely used for short-term and long-term wind data studies
to represent the probability of occurrence of mean wind speed over a period of one year [42, 44, 47]. The PDF Weibull is

given for Equation 7.
vk
(%)

Where k is the shape parameter dimensionless, which describes the wind speed distribution, and c is the scale parameter
measured in m/s.

There are numerous approximations to calculate Weibull parameters k and c¢; one of them is the analytical model based on
mean wind speed V, and standard deviation o, which are shown in Equation 8 and Equation 9 respectively [46].

For1 <k< 10
ov 1086
== 8
(%) ®)

k—1
1) =k (e %
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Where -~y is the gamma function.
The annual mean wind speed V' expressed in Equation 10 can be calculated from Equation 7.

V=cy {1+H (10)

The CDF is the interval of time or probability that wind speed may be smaller or equal to a determined wind speed value.
CDF is given in Equation 11 [42].
k
|4
FOV) =1 exp { <7> } (n
c

H. 3.8 Wind power density

It is known as wind energy flux according to Equation 12. Furthermore, wind power resources are compared using WPD,
which is independent of wind turbine size, according to NREL and is considered as the quantitative basis of wind standard
classification [46].

P 1 5
WPD = {Z} = {5} * px V3(W/m?) (12)

1. 3.6 Annual Energy Production and Capacity Factor

The AEP is composed of gross and net energy production. The gross energy production is considered the wind farm
production without losses, as is shown in Equation 13.

Nd Ns
GEP =" P,;xF;;s8760 (13)

i=1 i=1

Where Nd is the number of direction steps, and Ns is wind speed bins, P;;; is the wind power output for each direction from
sector i, to wind speed, bin j, Fj;; is the frequency of occurrence of wind speed.

Furthermore, wind resource assessment is influenced by the estimation of wind power losses. Consequently, annual net
energy production is estimated considering the following losses: plant availability (2-4%), electrical losses (2-4%), turbine
performance (1.5-5%), environmental (1-3%), and curtailment (1-3%). Other losses, such as the site climate and the project
location, were considered to be 12% [46].

The CF prediction of a wind farm using data from a measurement campaign is considered a complicated work [48]. In this
work, the CF is estimated for one year according to Equation 14.

actualenergyproduction

CF = .100 14
energyatratedspeed a4

J. 3.9 Measurement uncertainty

Wind resource estimates present an uncertainty percentage due to many factors, such as wind speed measurements (1.0-2.5%),
historical wind records (1.6-4%), future wind resource (1.4-2.2%), wind shear (0.0-6.3%), wind flow modelling (2.0-10%) for
a total uncertainty of 3-13% [13]. Wind “s nature and variability causes uncertainty in wind power assessment and forecasting;
for this reason, it is difficult to integrate wind energy into the power grid [49, 50]. Jung et al.[51] proposed a Bayesian approach
considering uncertainties, such as the limited amount of data, wind speed, air density, surface roughness, and WT performance.
In order to estimate the AEP of a site for a hypothetical WT of 3 MW, wind speed data from a nearby weather station is
used. The proposed model showed good performance for uncertainty modeling due to the limited amount of data. Rodriguez-
Hernandez et al.[52] developed a methodology based on a probabilistic model considering different possibilities in the Weibull
PDF associated with wind speed to analyze the uncertainty of measurement equipment for wind resource assessment. The
developed methodology is indicated to be a useful approach to estimate wind energy production. Baker et al. estimated + 10%
uncertainty and a confidence level of 90% for wind data collected on-site for one or three years.
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K. 3.10 Wind speed modelling using CFD

1) 3.10.1 Mathematical formulation: The Navier-Stokes equations allow us to predict the flow of fluids. These equations are
not solvable analytically, except for specific cases, and it is complex to analyze the fluid behavior. For this reason, numerical
and experimental models are used to obtain a solution close to reality.

* Mass or continuity conservation equation according to Equation 15

0 0
5t g PU) =0 (15)
» Equation for the conservation of momentum as is shown in Equation 16
ap 0 oP  0Otij
UiUj) | = = 16
<8t [ )) at o (10)
» Energy conservation equation according to Equation 17

OE  0.U;n 0 0 or
- U; — 17
”(m* axj> g \Umi + 5 +(613> an

Where:

p flow density

Components that make up the viscous tensor stress

1; Cartesian speed components to direction Xi

; Cartesian speed components to direction Xj

P Fluid pressure

7ij Components that make up the viscous tensor stress

E Total energy

H Total entalphy

k Thermal conductivity coefficient

T Absolute temperature

2) 3.10.2 Turbulence model k-e: The discretization techniques and turbulence model selection represents an important
function in the simulation accuracy of turbulent air flows [53]. The RANS turbulence selected model contains transport equations
that work with mean velocities and scalar variables ¢, which are turbulent flows, so the Reynolds stress is represented by the
Equation 18

Reynoldsstress = [i;fi; (18)

The turbulent transport equation originates with the addition and subtraction of different terms such as production F;;), which
is obtained from the gradient of average velocities. Another term is dissipation ¢;;, to originate from real-time viscosity acting
on fluctuating speeds. Finally, we have a redistribution term ¢;;, which facilitates the energy transfer using pressure and
fluctuations caused by the fluid current as is shown in Equation 19.

Netenergy = Producedenergy(P;;) + Redistributedenergy(eij) — Dissipatedenergy($ij) 19)

External terms must be considered the convective and diffusive that go from one point to another of the created domain, so
this turbulence model is the most practical and used, consisting of two equations that represent the turbulent properties of a
flow according to Equation 20 [54].

k2
C;L = th? (20)

Where:
C}, Constant Turbulent kinetic energy
k Dissipation rate of turbulent kinetic energy
1 Turbulent viscosity
The equations of the described model are
« Kinetic turbulence according to Equation 21

Oat(pk) + ;(Pkuz) - % |:</"' + %%)} + Gk + Gb — Pe — Ym - Sk (21)

 Turbulence dissipation as is shown in Equation 22

o o 9 Oy Oe de
o =7 (pe) + TE(P%) = oz, KH + ﬁ@)} + Glf?-(Gk + C3eGmy,) — C2e + Se (22)
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Where:
G, Generation of the kinetic energy of the mean speeds gradients
G), Kinetic power generation by buoyancy
Y, Contribution of fluctuating expansion on compressible turbulence
C1¢,Ca¢, Cse, 0y Experimental constants
¢ Turbulent viscosity
oy, Prandtl number as a function of k
. Prandtl number as a function of €
The diffusivities represented in the expression of molecular and turbulent viscosities of the turbulence model :

= (23)
PK

re = ptt (24)
pe

The identification constants C1.,Csc, C,,, o), 0. were defined by Launder and Spalding for standard models [53, 55] and
their values are:

Cie = 1.44
Cye =192
C, =0.09
o =1
o.=13

L. 3.11 Wind characteristics modeling using Ansys CFD software

This section exposes the process to create a computational domain and results of wind characteristics modeling over a
simulated mountain complex terrain using Ansys CFD software.

M. 3.11.1 Process to create computational domain

It is well-known that the accuracy of CFD simulations relies mainly on the size and shape mesh generated, the boundaries
and initial conditions applied, the turbulence model chosen, and the used wall functions [56]. Therefore, it is reasonable to
work based on previous research that has worked and shown acceptable results. The following sections show the conditions
under which the simulation was carried out. The numerical methods design is developed in three phases to prevent the effects
of possible hiding where variables are subordinated as follows [57]:

Figure 4: Study area located in Chimborazo National Park

« In the preprocessing phase, the input data already suitable to be treated are defined by Ansys Fluent, determining the
geometry, the domains, the grid, and the selection of the physical and chemical phenomena.

« In the calculation stage, the solution of the algebraic equations resulting from the discretization of the physical model for
a volume defined by the numerical grid is performed using 100 iterations.

« In the processing, the visible solution of the calculation is presented, transforming it into a suitable form for its subsequent
analysis, data post-processing, and interpretation.



NOVEMBER 2022 11

2996 m 3250 m 3500 m 3750 m 4000 m 4250 m 4500 m 4709 m

Figure 5: Altitude map of the terrain in the study area

Figure 6: Contour lines in Global Mapper Zone 1

The preprocessing phase is developed in three stages as follows:

1) Domain identification The computational domain to be created must be large enough to reduce the uncertainties that may
be generated in the boundary conditions so that the analysis generates the so-called wake effect. But the domain should
not be too large due to can affect the computational simulation time. Through the Google Earth software, the location
was made using the generate polygon tool and thus finally locating the study area, to generate a kmz format file with
the selected study area as is shown in Figure 4.

By using the file generated in Google Earth Pro, we proceed to create the contour lines in this Global Mapper software,
where you can determine the maximum and minimum height at sea level of the study areas as is shown in Figure 5.
With this, pressure output data were obtained with the help of a pressure-height graph, data necessary for the (Boundary
Conditions) for further analysis. Global Mapper also allows generating the contour lines in the study areas as is presented
in Figure 6, which the results were exported in DWG format for the next procedure.

The post-processing of the contour lines was developed using AutoCAD Civil 3D and then transformed to the surface,
performing several procedures. Rhinoceros 6 allowed completing the design and modeling of the surface to determine
the number of areas required per area of study as is presented in Figure 7.

The computational domain was determined, based on the predominant WD from the east, and the diameter of the rotor of
the WT Goldwind 70/1500 kW, which diameter is 70 meters, In this way, the length on the X-axis is 28D, on the Y-axis
is 14D, and the height of 3D is shown in Fig. 8. In the preprocessing of the computational domain of the study area,
which is segmented into four surfaces separated by 333 meters from each other and thus obtains a total of 4 contours
for the study area as is indicated in Figure 9.
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2)

3)

Figure 7: Domain surface generated in Rhinoceros 6

Figure 8: Computational domain of Zone 1

Grid generation The grid process consists of dividing the object of study into several sections, the most relevant within
a CFD simulation is the type of mesh since it is where the wind data that already have been defined in its specific
coordinates, in the inlet of the computational domain to interpolate the values for each cell until reaching the outlet of
the computational domain.

Based on the topological relationship, we started by meshing each of the surfaces. In this method, was created the 2D
hybrid meshing of the 4 areas using the Ansys Mechanical meshing tool as indicated in Fig.10, which combines structured
and unstructured meshing. This allows a better adaptation of the surface to be analyzed. Through the use of skewness
in the mesh quality-metric section, meshing asymmetry can be determined if the mesh performed has a high-quality
mesh structure through the asymmetry value. Using triangular and quadrilateral shapes to mesh, an equilateral triangle
would be the ideal shape for triangular meshes. The same angular and quadrilateral form would be the ideal shape for
quadrilateral meshing. This is because highly skewed faces and cells are unacceptable because the equations start to solve
assuming the cells are in their correct form. The mesh for study area 1, is excellent for the solution of the equations
that describe the model to be analyzed. The average skewness values are in the range of (0 — 0.25) indicating excellent
mesh quality.

Setting boundary conditions

Set up:
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Separation view
of 3D surfaces to
2D surfaces

Figure 9: Division of the 2D computational domains of Zone 1

Area | Number

number | of nodes Zone 1 meshin
T -

Area2 |24972

i -

Area4 | 56548

Figure 10: Hybrid meshing in zone 1

It configures general data of the terrain, such as air temperature, air density, space 2D planar, and the elevation of the
location wind farm location by considering a stable atmosphere. In addition, the initial wind speed values of the wind
speed, roughness class and length, air density, and turbulence models are established, which is the most used for the
sites in CFD is the k-e model, which is part of the RANS models of the Navier-Stokes equations.

Edge conditions:

Inlet: The inlet was configured to input values of mean wind flow inlet speed and pressure. Also, the calculated monthly
values of TI.

Outlet: The outlet was configured so that values of outlet pressure of the wind flow are entered, where the respective
calculated value of TI was assigned.

Wall-down: The roughness class of the ground surface was considered, which allows the generation of eddies, thus
directly affecting the turbulence and the roughness length. The assigned values are as follows:

Roughness class: 0.5 Landscape with smooth surfaces

Roughness length (Zo): 0.0024 m corresponding to uninhabited areas with grass

Wall-up: This boundary condition represents the atmospheric boundary layer where it does not present roughness by
placing zero values.

Trim: It is considered the interior of the study zone. This element of a cell zone determines the type of fluid to be
analyzed, by considering air density.
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Table V: Weibull parameters at 30 and 80 m AGL for 2018

30 m 80 m
k c k c

January 1.59 847 1.61 10.5
February .12 447 1.31 7.85
March 124 678 1.51 8.75

Month

April 1.11 5.14 1.41 8.6
May 1.45 6.35 1.61 9.5
June 4.41 993 471 12.05
July 312 1094 331 1425

August 216 1079 241 13.89
September  1.39  8.83 1.51  10.85

October .12 447 1.31 7.65
November 1.1 4.47 1.31 6.5
December 1.45 7.85 1.81 10.5

Overall 1.68  6.95 151 11.87

Table VI: Technical data of the 1500 KW class wind turbines

Wind Cut-in  Cut-out Rated Generator Rated Rotor Wind
turbine speed speed speed power diameter class
turbine (m/s) (m/s) (m/s) power (KW) (m) IEC
Enercon 2.5 25 13 1500 Synchronous 66 1la

Goldwind 3 25 11.8 1500 Synchronous 70 Ia

Vestas 4 16 25 1500 Asynchronus 63.6 Ia

IV. 4. RESULTS AND DISCUSSION

This chapter presents the results of the short-term WS, wind power, wind energy over complex terrain in the Ecuadorian
Andes, and the cost of forecasted energy in winter and summer are all discussed in four cases. It’s worth noting that are
reported the results of other studies conducted in similar circumstances worldwide. In the four cases, WS forecasting achieved
a lower proportion of forecasting error than other studies worldwide.
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Figure 11: Monthly variation of Wind Shear Coefficient for Tower 1

A. 4.1 Wind shear profile

The values of WSC were determined using four pairs of wind speeds, two pairs for each tower. The values of W .SC; and
WSC,, were calculated between 10 and 20 m AGL and 20 and 30 m AGL, respectively, using measured data from tower 1.
WSCs and WSCy were calculated between 40 and 60 m AGL, 60 and 80 m AGL by using measured data from tower 2.
The monthly variation of WSC values in tower 1 and tower 2 is shown in Figure 11 and Figure 12 respectively. The results
indicate that WSC on both towers is variable. In this way, the maximum WSC values appear in winter when WS is low, and the
minimum values appear in summer during July and August when WS is high. In addition, one unexpected negative value was
observed for W.SC} in January. Indeed, the WSC is highly influenced by temperature changes and the complex topography
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Table VII: Annual energy production and capacity factors

Wind Hub height Nominal power Net AEP Capacity
turbine (m) (MW) (GWh/year) factor
Enercon 1.5 67 1500 6.1 0.46
Goldwind 1.5 70 1500 7.24 0.56
Vestas 1.5 63 1500 6.2 0.52
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Figure 12: Monthly variation of Wind Shear Coefficient for Tower 2

of the Sierra region. It should be noted that tower 1 is installed on a plateau, and tower 2 is installed on the top of a hill.
Consequently, WSC is affected by wind speed and flow turbulence effects on both towers.

B. 4.2 Air density

Monthly values of air pressure were based on collected data by a barometer on each tower. There is a slight change in
monthly values of air density . The minimum and maximum values were found to be 0.768 Kg/m? to 0.773 kg/m? which
were observed in February and June. These air density results are considered lower due to high altitude terrain, and air pressure
decreases with height according to the statement indicated by Emeis [12]. Low air density is considered a weakness in this
research, which is compensated for high wind speed values.

C. 4.3 Turbulence Intensity

The hourly TI values at 80 m AGL are presented in Figure 13. The higher TI values are observed during the day hours
from 11:00 to 15:00; when the solar radiation reaches its highest value and the wind speed of the anabatic winds is maximum.
The lower values are observed during night hours; when the wind speed of the katabatic winds is lower [32, 42]. Likewise,
the monthly TI values at 80 m AGL during 2018 are shown in Figure 14. The TI s higher values are observed in the winter
months when the wind speed is slow. On the other hand, the TI values are observed in the summer months when the wind
speed is high. Jeong and Ha [58] stated that wind profile and TI are highly influenced by complex terrain topography such as
steeper hills and valleys, which cause wind flow separation. Frost et al. [30] stated that ideal sites for WT sitting are regions
with accelerated wind flow, such as mountain passes with high mean wind speed and low TI.

D. 4.4 Wind rose and Weibull probability function

The prevalent wind speed direction is shown by using a wind rose diagram to indicate useful information through wind
speed bins. The wind rose was represented through the software Matlab 2020b, by using ten-minute intervals for wind speed
measurements of tower 2, and their corresponding wind directions at 80 m AGL are shown in Figure 15. The prevalent wind
speed direction anytime is the wind blowing from an azimuth of 90° (East) varying slightly to 105° due to the zone of study
being located within a mountain pass between two volcanoes. A similar pattern of wind behavior was found in a nearby
location [18]. In addition, the identical wind direction was observed in another region of the Ecuadorian Andes [19]. Moreover,
the prevalent wind direction from East because during summer and winter months

The Weibull PDF for tower 2 at 80 m AGL is shown in Figure 16, and the estimated wind speed distribution parameters
for each tower are presented in Table IV; which summarizes the k and ¢ Weibull parameters. Furthermore, the k parameter
for both heights is variable due to the influence of the complex topography of the region over eastern winds. Moreover, the
annual mean WS is 10.9 m/s. The shape parameter k and scale parameter ¢ overall in 2018 at 80 m AGL have values of
1.5 and 11,8 m/s, respectively. Besides, k is considered a lower value, and c is close to the mean WS. Therefore, according
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Figure 13: Hourly turbulence intensity at 80m AGL for Tower 2
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Figure 14: Monthly variation of Turbulence Intensity for Tower 2

to the results of the Weibull parameters, the area of study has great wind variability with less dispersion with respect to the
average wind speed and a high availability of wind speed to obtain a large production of wind energy [45]. A similar pattern
of Weibull parameters k and ¢ was obtained by Karoly Tar [59] to generate monthly average wind speed at different altitudes.
In addition, B.K. Gupta [60] attained a variable pattern for k and ¢ monthly values for five locations in India; which is useful
to estimate annual and monthly wind energy production.

In addition, according to CDF curves from 10 m to 80 m AGL, the maximum probability of wind speed of 15m/s is 4.1%
at 80 m AGL for 2018, and the maximum probability of wind speed of 3 m/s at 40 m AGL is 6.2% as is shown in Figure 17.
Fig. 18 shows WPD variability at 80 m AGL for 2018 based on available WS; where higher values are observed in summer
months due to the influence of Atlantic equatorial mass and lower values in winter months [38].

E. 4.5 Selection of suitable wind turbines

In this study, the best-suited WT is selected based on annual wind energy production, mean annual WS, and TI class. The
selected WT are classified as large-scale and suggested for wind farms in complex terrain [61], which are: Enercon E66/1.5
MW, Goldwind 70/1.5 MW, and Vestas 63/1.5 MW. The selected WT power curves are shown in Figure 19; which were
designed from the manufacturers © web page considering the low air density of the zone of study. This variable is contemplated
as one limitation found in this case and causes a power loss between power start and nominal power compared against power
curves obtained with air density at sea level [42]. Table VI summarizes the technical specifications of selected wind turbines.
The following aspects were considered when selecting a WT: IEC wind class, power to be installed, hub height, train/generator
set, power output to the grid [13]. Therefore, the comparison of WT power curve results confirms that the best suitable WT
for the zone of study is Goldwind 70/1500 as a good choice to consider, which is installed at the Villonaco wind farm in Loja,
Ecuador [62].
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F. 4.6 Estimation of wind energy production and capacity factor

In this work, net AEP based on PDF Weibull was estimated for three large scale WT, such as Enercon 66/1500, Goldwind
70/1500, and Vestas 63/1500. The estimated net AEP and its corresponding capacity factors for selected WT are shown in
Table VII. Furthermore, the highest AEP value was obtained with the Goldwind WT. Moreover, the CF analysis for the three
types of high power analyzed wind turbines showed high values. The highest CF value was 56% obtained with WT Goldwind
70/1500. The best net AEP and CF values were obtained with the WT Goldwind 70/1500 for a hub height of 80 m AGL.
A similar pattern of results was obtained for the wind energy assessment for the Villonaco wind farm, located over complex
terrain at a high altitude[62].

Then, a hypothetical wind farm with an installed power of 16.5 MW was designed to compare against the wind energy
production of the Villonaco wind farm; which in 2015 supplied 94.5 GWh of net wind energy, and reached a higher capacity
factor of 63.46% [62].

From the results, it is clear that the region of study is promising for wind energy projects by using high power wind turbines.
Moreover, the evaluation of the feasibility of wind energy projects in the Ecuadorian Highlands must contain an exhaustive
economic analysis according to the project requirements to accomplish the project requirements such as, estimated AEP, project
lifetime, and profitability [42, 46].

There are 5 relevant characteristics of the study area to be considered a good wind power area:

1) A high average annual wind speed: the site is located in a wide open valley with no obstructions nearby. It has an annual
average wind speed of 10.8 m/s, which is considered excellent for wind turbine operation. Wind turbines generate power
proportional to the cube of wind speed.

2) There is at least 10 Km of separation from noise-sensitive neighbors. Furthermore, the selected WT is remarkably quiet,
with low noise levels.

3) Reliable grid connection: There is an electric substation located about 30km away to discharge generated energy from
the theoretical wind farm to the grid.
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Figure 18: Monthly average wind power density at 80m AGL for 2018

4) Easy site access: Because wind turbines of 1.5 MW are large and heavy. The access roads and tracks available are
capable of carrying these loads without any risk.

5) No environmental damage or landscape impact: There are now no objections to wind turbine installation because of bird
strikes, due to the absence of special bird areas.

G. 4.7 Monthly wind energy yield and Capacity Factor estimation

To calculate the monthly estimated wind energy during 2018, it is supposed a hypothetical wind farm of 16.5 MW of
installed power; which is composed of 11 WT Goldwind 70/1500 KW, each with an active power of 1.5 MW. The wind
speed at 80 m AGL is considered to estimate monthly net wind energy; which was compared against monthly net wind
energy values from Villonaco wind farm as is shown in Figure 20. The estimated wind energy values were higher than
the real values of Villonaco; which were obtained during the winter months. In addition, there are many factors that
affect wind farm operation, such as climatic conditions, grid features, and equipment performance [63].
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Figure 20: Monthly wind energy yield during 2018 using WT Goldwind 1500

The mean monthly CFs were calculated by the comparison of the CF Villonaco wind farm against an estimated CF
theoretical wind farm as is observed in Figure 21. The estimated CF is higher than the real CF for the winter months.
Furthermore, it is observed that height change increases CF and decreases WSC values at a height of 80 m AGL. A
similar pattern of wind energy and higher CF results were obtained by comparing the annual wind energy and CF in
2018 at 80 m AGL against estimated wind energy and CF at an altitude of 2957 m ASL in the Swiss Alps [64].

H. 4.8 Wind characteristics modeling using CFD

The wind speed map over the computational domain in Zone 1 is shown in Figure 22, which represents the horizontal
wind speed of the area of study at 80 m AGL, which is similar to the hub height of selected WT. Wind speed simulated
values using annual mean WS (10.8 m/s) as WS inlet to computational domain in four Areas of Zone 1 to have as
WS outlet higher WS values on the summit of mountains from 3.3 m/s to 24 m/s due to the wind speed-up effect. A
similar pattern of WS simulation results but with lower WS values were obtained by Solano et al. [17] for the southern
mountainous region of Ecuador at heights of 10 and 100 m AGL using software Surfer 3D. In this way it confirms that
WS increases. and TI decreases with height change [13, 42]. On the other hand, The TI map over the computational
domain in the Zone 1 is shown in Figure 23 which represents the TI of the area of study at 80 m AGL, which is similar
to the hub height of selected WT. TI was simulated values using annual mean WS (10.8 m/s) as WS inlet in four Areas
of Zone 1 to have higher IT values on the top of mountains from 0.04 to 0.18 due to the friction of WS against terrain
surface. From these results it is clear that the risks to the WT performance and durability caused by fatigue loads on WT
blades could be highly reduced by assessing the wind characteristics of the WT installation site, such as TI simulation
over complex terrain to optimize wind farm layout keep way WT of turbulent flows [58, 65].
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Next, WT micro-siting to place 11 WT Goldwind 70/ 1500 KW was performed in three steps for each of the four
horizontal areas of Zone 1 as follows:

First, taking into consideration important factors, such as WT orientation to prevalent WD (windward from East), the
most net power sectors, locating WT on the top of the mountains considered as wind acceleration areas.

Second, removing WT from highly turbulent flows originated by wakes and vortices from other surrounding terrains of
lower height [30, 66]. Third, considering regulations for separation between WT rows and WT columns [35]. The wind
farm layout is obtained as is depicted in Fig. 24.

1. 4.9 Discussion

This study has presented a structured methodology to assess with great precision WPP and develop a wind farm design
using CFD in the Ecuadorian Andes by showing novel and relevant findings.

a) First, in terms of mean WS, this study discovered the highest values during the summer months of June to August,
when WS increased due to the presence of large air masses coming from the east and south, reaching more than
25 m/s in some 10-minute periods.

b) Second, regarding the TIL, it is found that the areas with the lowest values were at 80 m AGL, with values ranging
from 0.14 to 0.16 between 10 a.m. and 2 p.m., which is considered a TI A class.
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Third, WPD reached the highest values during the summer months, between 10 a.m. and 2 p.m., reaching values
of up to 800 W/m? because of the existence of higher WS provoked by wind speed-up effects, orography, and
climatic conditions.

Fourth, according to the results of the PDF Weibull parameters, the area of study has great wind variability due
to the influence of complex terrain orography, with less dispersion concerning the annual mean WS of 10.9 m/s,
which is a high availability of wind speed to obtain a large production of wind energy.

Fifth, the comparison results of the AEP and CF of the theoretical wind farm found that the estimated wind energy
values were higher than the real values, which were obtained during the winter months. The estimated CF is higher
than the real CF for the winter months. Furthermore, it is observed that height change increases CF and decreases
at a height of 80 m AGL. In addition, climatic conditions affect durectly to wind farm operations.

Sixth, with respect to the best suitable WT for this site, WT power curve results confirm that the best suitable WT
for the zone of study is Goldwind 70/1500 KW, which is a good choice to consider.

Seventh, this research found that it is clear that the risks to WT performance and durability caused by fatigue loads
on WT blades could be highly reduced by assessing the wind characteristics of the WT installation site, such as
through TI simulation over complex terrain to optimize wind farm layout and keep WT out of turbulent flows.
Eight, The TI standard k-¢ model has been validated for wind flow over complex terrain at high altitudes by
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comparing the numerical results obtained from the Ansys Fluent CFD software with the available experimental

data.
This study used and validated WRA methodology to assess WPP in the Ecuadorian Andes. The methodology combines
WRA and wind farm design using Ansys CFD. This study provides key drivers for wind energy development in Ecuador’s
renewable energy sector to increase wind energy’s percentage in the Ecuadorian energy matrix. Before coming to any
conclusions, it is important to highlight several limitations affecting the above-discussed results. It should be noted
that the methods used in this research were compared with other studies, but the lack of information on WRA in the
study area from Ecuadorian government sources or other particular sources has restricted the possibility of high-accuracy
comparisons. To address this limitation, a wind measurement campaign was launched in 2018 based on data collected
from two meteorological towers installed in the study area. The mean WS and WPD values provided by the Ecuadorian
Wind Atlas were compared against the WS-measured values, indicating an underestimation of about 2 m/s. In the case of
GSR, the comparison results show a difference of about 300 W/m?2. Another key problem to address in future research
with the wind characteristics modeling presented in this study is the use of atmospheric variability over complex terrain
at high altitudes.

V. 5. CONCLUSIONS

In this study, a novel assessment of wind characteristics and wind potential in the Andes Mountains of Ecuador is
performed using measured data from two meteorological towers installed on the site. Furthermore, the study of the airflow
over a hill considered a complex terrain has also been carried out; through two-dimensional numerical simulations using
the Ansys CFD software; to describe the behavior of the field of speeds and turbulence corresponding to the site of study.
The obtained results are useful for researchers, and wind power investors interested in developing wind farm projects in
this region. Based on the wind analysis, the following conclusions are drawn:

o The annual mean WS was found at 10.9 m/s at 80 m AGL and the predominant wind direction was from East to
West due to the influence of Atlantic equatorial mass. The higher and lower WS values correspond to the summer
and winter months, respectively. By making a correlation between the mean annual speed measured and the one
estimated in the Ecuadorian Wind Atlas, an RMSE value of 0.45 is obtained, which represents a variation of 1.5-2
m/s. Therefore, the Ecuadorian Atlas tends to underestimate the wind speed in this region at 80 m AGL .

« In the zone of study, the TI at 80 m AGL is low, corresponding to the A-class, which reached lower values between
0.07-0.14. These values were in the winter months and the higher values were in summer, when the wind speed is
low and high, respectively. Thus, it confirms that wind speed increases and TI decreases with a change in height.
In consequence, this site is ideal for wind farm projects because is a natural mountain pass between two volcanoes
with an accelerated wind flow with high mean wind speed and low turbulence.

o The mean WPD in 2018 in the zone of study is considered high and is equal to 600 W/m?2. Consequently, a
hypothetical wind farm of 16.5 MW was designed to determine the feasibility of wind power generation in this
sector. The WT Goldwind 70/ 1500 KW class A, using direct-drive permanent magnet technology, was found to be
the best option for these site characteristics.

o The AEP 2018 by using 11 WT Goldwind 70/1500 KW was found to have around 75 GWh and a high CF of 0.46,
which is closer to the Villonaco wind farm. Therefore, these AEP values obtained in the zone of study are suitable
for large-scale wind power generation.

o The meshing procedure of the two-dimensional CFD numerical simulation process applied to the computational
domain of the analysed hill used a hybrid topological structure, to guarantee the accuracy of the results obtained for
the turbulent velocity and kinetic energy fields.

o The TI standard k-¢ model has been validated for wind flow over complex terrain at high altitudes by comparing the
numerical results obtained from the Ansys Fluent CFD software with the available experimental data.The comparison
results between the k-¢ two-equation model and calculated data show that the k-¢ model can predict the mean velocity
and the turbulent kinetic energy that are closer to the measured values. The simulation was performed to determine
the micro-siting of the 11 selected wind turbines.

o Future research will consider atmospheric stability on the complex terrain in the CFD approach.
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