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RESUMEN (en español) 

Esta tesis trata sobre la teoría de conjuntos difusos, los cuales fueron propuestos por Zadeh en 
1965. Los conjuntos difusos permiten dar grados de pertenencia a un conjunto, con un valor en 
el intervalo [0, 1]. Abordar la imprecisión en problemas del mundo real es tal desafío que ha 
llevado a que se creasen varias extensiones de conjuntos difusos, como los conjuntos difusos 
hesitant, los conjuntos difusos intuicionistas y los conjuntos difusos intervalo-valorados. Estas 
extensiones pueden resultar útiles en situaciones donde las herramientas difusas clásicas no 
son tan eficientes, por ejemplo, cuando no hay un procedimiento preciso para determinar los 
grados de pertenencia. Debido a su potencial para diversas aplicaciones, estas extensiones 
han llamado la atención de muchos investigadores. En esta tesis, nos centramos en los 
conjuntos difusos del tipo typical hesitant, que son un caso particular de conjuntos difusos 
hesitant donde la función de pertenencia toma un número finito de valores, y en los conjuntos 
difusos intervalo-valorados, donde la función de pertenencia es un intervalo en cada valor. 

Por otro lado, la convexidad es una herramienta matemática fundamental que resulta 
conveniente estudiar en diferentes escenarios, como los conjuntos clásicos o nítidos y los 
conjuntos difusos. Desde que Zadeh introdujo los conjuntos difusos, se han propuesto 
diferentes definiciones de convexidad en la literatura para tratar con este tipo de conjuntos y 
con sus extensiones. 

De igual manera, la toma de decisiones ha sido un campo que ha captado la atención de 
muchos investigadores, como Bellman y Zadeh o Yager y Bason. Existen al menos tres 
factores cruciales a considerar en un proceso de toma de decisiones: 1) una colección de 
alternativas, 2) un conjunto de limitaciones en la elección dentro de múltiples alternativas, y 3) 
una función de utilidad que asocia la ganancia o pérdida resultante de elegir esa alternativa con 
cada elección. 

En situaciones “reales” puede resultar muy desafiante especificar la función objetivo y las 
limitaciones con precisión. Según Czogala y Zimmermann, los conjuntos difusos pueden ser 
una herramienta muy útil para tratar con la imprecisión. 

Teniendo estos comentarios en cuenta, esta tesis se centra en la convexidad de los conjuntos 
difusos y sus extensiones. Comenzamos con los conjuntos difusos hesitant y las funciones de 
agregación, que son funciones crecientes que combinan varias entradas para dar una salida y 
que cumplen que, si las entradas son todas cero, la salida es 0 y lo mismo con 1. Proponemos 
una definición adecuada de un conjunto difuso hesitant convexo basada en funciones de 
agregación y estudiamos cuándo la intersección de dos conjuntos convexos es también 
convexa. Obtenemos resultados positivos con el mínimo y el máximo. También hemos 
demostrado que existen funciones entre el mínimo y el máximo que verifican esa afirmación. 
Después de eso, señalamos que el uso de la función de agregación podría generar una falta de 
información, por lo que presentamos una definición adecuada de conjuntos difusos hesitant 
convexos basada en órdenes admisibles, que son órdenes totales que refinan el conocido 
orden reticular. Nuestra propuesta de convexidad es compatible con los alfa-cortes, es decir, si 
consideramos un conjunto difuso hesitant convexo, entonces sus alfa-cortes son conjuntos 
clásicos convexos. También es compatible con el soporte (support) y el núcleo (core) de un 



                                                                 

 

conjunto difuso hesitant. Para evitar el uso de las funciones de agregación, presentamos un 
estudio de la intersección de conjuntos difusos hesitant donde recuperamos el significado 
clásico de la intersección. Con esta definición de intersección y la definición de convexidad, 
obtenemos muy buenos resultados y proporcionamos una aplicación en la toma de decisiones 
con resultados interesantes al considerar objetivos y limitaciones difusas hesitant convexas. 
 
En el caso de los conjuntos difusos intervalo-valorados, presentamos una definición de 
convexidad basada en órdenes de intervalos y estudiamos las propiedades de dicha 
convexidad. Obtenemos un comportamiento positivo con los alfa-cortes, el soporte y el núcleo 
de un conjunto difuso intervalo-valorado. También analizamos la definición de intersección para 
conjuntos difusos intervalo-valorados y proponemos otra que recupera el significado clásico de 
la intersección y es compatible con la convexidad definida. Es decir, la intersección de dos 
conjuntos convexos también es convexa. Finalmente, proporcionamos una aplicación para 
utilizar las teorías anteriores desarrolladas en procesos de toma de decisiones. 
 

 
RESUMEN (en inglés) 

 

This thesis discusses the concept of fuzzy sets, which were first proposed by Zadeh in 1965. 
Fuzzy sets allow for degrees of membership within a set, with the membership value being in 
the range of 0 to 1. Addressing imprecision in real-world problems has been a long-standing 
research challenge, leading to various extensions of fuzzy sets such as hesitant fuzzy sets, 
intuitionistic fuzzy sets, and interval-valued fuzzy sets. These extensions can prove useful in 
situations where classical fuzzy tools are not as efficient, for example when there is no objective 
procedure to determine crisp membership degrees. Due to their potential for various 
applications, these extensions have drawn the attention of many researchers. In this thesis, we 
focus on typical hesitant fuzzy sets, which are a particular case of hesitant fuzzy sets where the 
membership function takes a finite number of values, and interval-valued fuzzy sets, where the 
membership function is an interval for each value. 
 
On the other hand, convexity is a fundamental mathematical technique that is useful in studying 
different scenarios, including crisp sets and fuzzy sets. Since Zadeh introduced fuzzy sets, 
different convexity types have been proposed in the literature to deal with this kind of sets and 
its extensions. 
 
At the same time, decision-making has been a field that catches the attention of many 
researchers such as Bellman and Zadeh or Yager and Bason. There are at least three crucial 
factors to consider in a decision-making process 1) a collection of alternatives, 2) a set of 
limitations on the option within multiple alternatives, and 3) a utility function that associates the 
gain or loss resulting from choosing that alternative with each choice. 
It is very challenging to specify the objective function and the limitations precisely in many real-
world circumstances. According to Czogala and Zimmermann, fuzzy sets can be a very helpful 
tool for dealing with imprecision. 
 
Bearing this in mind, this thesis is focused on the convexity of fuzzy sets and its extensions. We 
start with hesitant fuzzy sets and aggregation functions, which are increasing functions that 
combine various inputs in order to give one output and fulfill that if the inputs are all zero the 
output is 0 and the same with 1. We propose a proper definition of a convex hesitant fuzzy set 
based on aggregation functions and study when the intersection of two convex sets is also 
convex. We obtain positive results with the minimum and the maximum. We were also able to 
prove that there exist functions between the minimum and the maximum that verify that 
statement. After that, we point out that the use of the aggregation function could generate a lack 
of information, so we introduce an appropriate definition of convex hesitant fuzzy sets based on 
admissible orders, which are total orders that refine the well-known lattice order. Our proposal 
of convexity is compatible with the level sets, that is, if we consider a convex hesitant fuzzy set, 
then its level sets are convex crisp sets. It is also compatible with the support and core of a 
hesitant fuzzy set. In order to avoid aggregation functions, we present a study of the intersection 
of hesitant fuzzy sets where we recover the classical meaning of intersection. With this 
definition of intersection and the definition of convexity, we obtain very good results and provide 
an application in decision-making with interesting results when considering convex hesitant 



                                                                 

 

fuzzy goals and constraints. 
 
 In the case of interval-valued fuzzy sets, we introduce a definition of convexity based on 
interval orders and study the properties of these convex sets. We obtain a positive behaviour 
with the level sets, support and core of an interval-valued fuzzy set. We also analyse the 
definition of intersection for interval-valued fuzzy sets and propose another one that recovers 
the classical meaning of intersection and it is compatible with the convexity defined. That is, the 
intersection of two convex sets is also convex. Finally, we provide an application for using the 
previous theories developed in decision-making processes. 
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Introduction

In 1965, Zadeh [91] proposed the idea of a fuzzy set. The degree of membership of
any object to a set in fuzzy set theory is a value in the range [0,1]. This idea is a very
useful instrument to explain human knowledge. Furthermore, Zadeh [92] suggested
the first extensions of these sets in 1973, indicating the necessity to develop this
theory.

One of the most used extensions is hesitant fuzzy sets, where the member-
ship takes values on the power set of [0,1]. Numerous researchers rapidly became
interested in these sets and presented a variety of extensions and operators to com-
pute with these forms of information. Eventually, various applications were created
[14, 50, 69].

Interval-valued fuzzy sets, where the values of the membership function are
subintervals of the interval [0,1], are another interesting and very used extension
of fuzzy sets. There are lots of applications for this theory. For instance, it was
used in the medical diagnosis of thyroid disease [70], image processing [36], ap-
proximate reasoning [10], interval-valued logic [63], medicine [4], clustering [67],
among others. Atanassov’s intuitionistic fuzzy sets are another frequently used ex-
tension of fuzzy sets and are equivalent to interval-valued fuzzy sets [20]. So work-
ing with interval-valued fuzzy sets and intuitionistic fuzzy sets is equivalent from
a mathematical perspective, nevertheless, these sets are different from one another
conceptually [74], and we use them depending on the situation.

All of these extensions can be included within the type-2 fuzzy sets [93].
In type-2 fuzzy sets, the value of the membership function is itself a fuzzy set.
This extension catches the attention of several researchers, such as McCulloch and
Wagner[58], Wu and Mendel[81, 82], Huidobro et al.[42], and others.
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2 Introduction

From another perspective, the idea of convexity is a fundamental mathematical
technique that may be applied to study a large range of scenarios. Different convex-
ity types have been discussed in the literature, initially to deal with crisp sets and
later for fuzzy sets and intuitionistic fuzzy sets. These concepts enable us to work
with any kind of set, whether it is crisp, fuzzy or intuitionistic [2, 21, 45, 90]. In or-
der to do this to hesitant fuzzy sets, appropriate concepts for scenarios in which the
universe is not always a vector space will be introduced [55] and also some methods
to order the hesitant fuzzy elements will be presented. In the case of interval-valued
fuzzy sets, we will also look for methods to order the intervals. Thus, we will
do a parallel study about the convexity for the case of interval-valued fuzzy sets,
where we will take into account the conclusions obtained for hesitant fuzzy sets.
Of course, an appropriate adaptation to this new environment should be done and
some different studies are required. It should be emphasized that convexity is one
of the most crucial factors in the study of the geometric properties of both classical
and fuzzy sets, as well as fuzzy multisets in particular, in addition to fuzzy sets in
general. It has grown more potent due to its usage in a variety of fields, including
optimization [53], image processing [75], robotics [51] or geometry [47], among
others. One of the most relevant properties of convexity is that the intersection of
two sets is also convex. Hence, we will deal with convexity and its preservation
under the intersection.

Therefore, this thesis will deal with fuzzy sets, hesitant fuzzy sets and interval-
valued fuzzy sets. We think that when the situation manages a discontinuous piece
of information, hesitant fuzzy sets seem like a proper tool, while in the case of a
continuum model we could use interval-valued fuzzy sets.

At the same time, decision-making has been a field that catches the attention of
many researchers such as Bellman and Zadeh [8], Naz and Akram [60] or Yager and
Bason [89]. There are at least three crucial factors to consider in a decision-making
process:

1. a collection of alternatives

2. a set of limitations on the option within multiple alternatives

3. a utility function that associates the gain or loss resulting from choosing that
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alternative with each choice

It is very challenging to specify the objective function and the limitations precisely
in many real-world circumstances. Fuzzy sets can be a very helpful tool for dealing
with imprecision, according to Czogala and Zimmermann [17].

Bearing this in mind, this work will be focused on convexity in fuzzy sets and
its extensions. The main objectives are the following:

• Propose an appropriate definition of convex hesitant fuzzy sets and convex
interval-valued fuzzy sets.

• Analyse the definition of intersection for hesitant fuzzy sets and interval-
valued fuzzy sets.

• Study properties of convexity hesitant fuzzy sets and interval-valued fuzzy
sets.

• Provide an application for using the previous theories in a decision making-
problem.

In the first chapter, we will review the definition of fuzzy sets and the basic
operations proposed by Zadeh in [91], and the ideas that correspond to the main
generalizations of fuzzy sets. In addition, we will also introduce some basic notions
about fuzzy convexity. In the second chapter, the main topic will be the convexity of
hesitant fuzzy sets. Taking into account the state of the art on this topic, we propose
two ways of defining convexity, one with aggregation functions and one without
them. In order to end the chapter, two applications are shown. In Chapter 3, we
study the convexity of interval-valued fuzzy sets and provide two applications, one
for decision-making and one for ranking theory. Finally, we finish this document
by showing its main conclusions.





Introduccción

En 1965, Zadeh [91] propuso la idea de un conjunto difuso o borroso. El grado de
pertenencia de cualquier objeto a un conjunto, en la teoría de conjuntos difusos, es
un valor dentro del rango [0,1]. Esta idea es un instrumento muy útil para explicar
el razonamiento humano. Además, Zadeh [92] sugirió las primeras extensiones de
estos conjuntos en 1973, indicando la necesidad de desarrollar esta teoría.

Una de las extensiones más utilizadas son los conjuntos difusos hesitant, donde
la función de pertenencia toma valores en el conjunto partes de [0,1]. Muchos inves-
tigadores se interesaron rápidamente en estos conjuntos y presentaron una variedad
de extensiones y operadores. También se crearon varias aplicaciones [14, 50, 69].

Los conjuntos difusos intervalo-valorados, donde los valores de la función de
pertenencia son subintervalos del intervalo [0,1], son otra extensión de los conjun-
tos difusos. Hay muchas aplicaciones con esta teoría. Por ejemplo, se usó en el
diagnóstico médico de la enfermedad de la tiroides [70], procesamiento de imá-
genes [36], razonamiento aproximado [10], lógica de intervalos [63], medicina [4],
etc. Los conjuntos difusos intuicionistas de Atanassov son otra extensión de los
conjuntos difusos que se usa con frecuencia y son equivalentes a los conjuntos di-
fusos intervalo-valorados [20]. Aunque trabajar con conjuntos difusos intervalo-
valorados y con conjuntos difusos intuicionistas de Atanassov es equivalente desde
una perspectiva matemática, estos conjuntos son diferentes entre sí conceptualmente
[74], por lo que decidiremos con cual trabajar dependiendo del contexto en el que
estemos.

Todas estas extensiones se pueden incluir dentro de los conjuntos difusos de
tipo 2 [93]. En los conjuntos difusos de tipo 2, el valor de la función de pertenen-
cia es en sí mismo un conjunto difuso. Esta extensión captó el interés de muchos
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investigadores como McCulloch y Wagner[58], Wu y Mendel[81, 82], Huidobro et
al.[42], entre otros.

Desde otra perspectiva, la idea de convexidad es una técnica matemática fun-
damental que se puede aplicar en una amplia gama de escenarios. En la literatura
se han discutido diferentes tipos de convexidad, inicialmente para tratar con con-
juntos clásicos (o nítidos) y luego para conjuntos difusos y conjuntos difusos intu-
icionistas. Estos conceptos nos permiten trabajar con cualquier tipo de conjunto,
ya sea nítido, difuso o intuicionístico [2, 21, 45]. Para hacer esto con los conjuntos
difusos hesitant, se introducirán conceptos apropiados para escenarios en los que el
universo no siempre es un espacio vectorial [55]. También se presentarán algunos
métodos para ordenar los elementos difusos hesitant, lo cual nos permitirá mane-
jar mejor la convexidad. En el caso de los conjuntos difusos intervalo-valorados,
también buscaremos métodos para ordenar los intervalos. Haremos en este caso un
estudio paralelo sobre la convexidad, donde tendremos en cuenta las conclusiones
que ya se hayan establecido para los conjuntos difusos hesitant. Por supuesto, la
adaptación a este nuevo entorno requerirá algunos estudios diferenciados. Cabe
destacar que la convexidad es uno de los factores más cruciales en el estudio de las
propiedades geométricas de los conjuntos tanto clásicos como difusos. Motivado
por este hecho, su uso ha crecido sustancialmente en muchos campos, incluyendo
la optimización [53], el procesamiento de imágenes [75], la robótica [51] o la ge-
ometría [47], entre otros. En general, una de las propiedades más relevantes es
que la intersección de dos conjuntos convexos es convexa. Por lo tanto, también
analizaremos el concepto de intersección y su preservación por convexidad.

Así, en esta tesis se hablará de conjuntos difusos, conjuntos difusos hesitant
y conjuntos difusos intervalo-valorados. Creemos que cuando la situación maneja
información discreta, los conjuntos difusos hesitant son una herramienta adecuada,
mientras que en el caso de un modelo continuo sería más adecuado el uso de los
conjuntos difusos intervalo-valorados.

Paralelamente, la toma de decisiones ha sido un campo que ha llamado la aten-
ción de muchos investigadores como Bellman y Zadeh [8], Naz y Akram [60] o
Yager y Bason [89]. En un procedimiento de toma de decisiones hay al menos tres
componentes importantes a tener en cuenta:
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1. un conjunto de alternativas,

2. un conjunto de restricciones,

3. una función de utilidad que cuantifica la ganancia o pérdida que surge de la
preferencia de esa alternativa con cada decisión.

En muchas situaciones reales, es extremadamente difícil describir con precisión la
función objetivo y las restricciones. Para lidiar con la imprecisión, los conjuntos
difusos pueden ser una herramienta muy útil [17].

Teniendo estos comentarios en cuenta, este trabajo se centrará en la convexidad
de los conjuntos difusos y sus extensiones. Para ello, los objetivos principales son
los siguientes:

• Proponer una definición apropiada de conjuntos difusos hesitant e intervalo-
valorados convexos.

• Analizar la definición de intersección para conjuntos difusos hesitant e intervalo-
valorados.

• Estudiar las propiedades de los conjuntos difusos hesitant e intervalo-valorados
convexos.

• Proporcionar una aplicación para usar las teorías anteriores en un problema
de toma de decisiones.

En el primer capítulo, revisaremos la definición de conjuntos difusos y las
operaciones básicas propuestas por Zadeh en [91] y también las ideas que corre-
sponden a las principales extensiones de los conjuntos difusos. Además, intro-
duciremos algunas nociones básicas sobre la convexidad difusa. Para el segundo
capítulo, el tema principal será la convexidad de los conjuntos difusos hesitant. Te-
niendo en cuenta lo que se ha hecho en la literatura, propondremos dos formas de
definir la convexidad, una con funciones de agregación y otra sin ellas. Para fi-
nalizar el capítulo, se muestran dos aplicaciones. En el Capítulo 3, estudiamos la
convexidad de los conjuntos difusos intervalo-valorados y proponemos una apli-
cación en la toma de decisiones y otra en rankings. Finalmente, cerraremos este
trabajo presentando las principales conclusiones del mismo.





Úvod

V roku 1965 Zadeh [91] zaviedol pojem fuzzy množiny. Stupeň príslušnosti akého-
kol’vek objektu k množine v teórii fuzzy množín je hodnota v intervale [0,1]. Táto
myšlienka je vel’mi užitočným nástrojom na popis niektorých aspektov l’udského
poznania. Okrem toho Zadeh [92] navrhol prvé rozšírenia týchto množín v roku
1973, čo neskor rozvinuli d’alší autori.

Jedným z najpoužívanejších rozšírení sú hesitant fuzzy množiny, kde funkcia
príslušnosti nadobúda hodnoty na potenčnej množine intervalu [0,1]. Mnohí autori
sa pomerne rýchlo začali zaujímat’ o tieto zobrazenia a predstavili rôzne rozšírenia
a operátory na manipuláciu s týmito formami informácií. Nakoniec vznikli aj rôzne
aplikácie [14, 50, 69].

Ďalším rozšírením fuzzy množín sú intervalovo hodnotové fuzzy množiny, kde
hodnoty funkcie príslušnosti sú podintervaly intervalu [0,1]. Existuje vel’a aplikácií
tejto teórie. Používa sa napríklad pri lekárskej diagnostike ochorenia štítnej žl’azy
[70], spracovaní obrazu [36], približnom odvodzovaní [10], intervalovej logike [63],
medicíne vo všeobecnosti [4], atd’. Atanassovove intuicionistické fuzzy množiny sú
d’alším často používaným rozšírením fuzzy množín a sú ekvivalentom intervalovo-
hodnotových fuzzy množín [20]. Štruktúry intervalovohodnotových fuzzy množín a
Atanassovovych intuicionistických fuzzy množín sú teda z matematického hl’adiska
ekvivalentné, avšak tieto objekty sa navzájom koncepčne líšia [74], a teda ich použí-
vame v závislosti od kontextu.

Všetky tieto rozšírenia môžu byt’ zahrnuté do kategórie fuzzy množín typu 2
[93]. Vo fuzzy množinách typu 2 je samotná hodnota funkcie príslušnosti fuzzy
množinou. Takýmito rozšíreniami sa zaoberajú autori ako napríklad McCulloch a
Wagner [58], Wu a Mendel[81, 82], Huidobro a kol. [42][58] a iní.

9
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Myšlienka konvexnosti je základnou matematickou technikou, ktorú možno
použit’ na štúdium širokej škály problémov. V literatúre sa diskutuje o rôznych
typoch konvexnosti, najprv pre ostré množinami a neskôr fuzzy množiny a intu-
icionistické fuzzy množiny. Tieto koncepty nám umožňujú pracovat’ s akýmkol’vek
druhom množiny, či už sú to ostré, neostré alebo intuicionistické [2, 21, 45, 90].
Aby to bolo možné urobit’ pre hesitant fuzzy set, budú zavedené vhodné kon-
cepty pre situácie, v ktorých základná množina nie je vždy vektorovým priestorom
[55], v tejto práci tiež zavádzame niektoré metódy na usporiadanie hesitant fuzzy
prvkov. V prípade IVFS sa tiež zaoberáme spôsobmi usporiadania intervalov. V
tejto súvislosti sa zaoberáme konvexnost’ou pre intervalovohodnotové zobrazenia,
pričom využívame výsledky dosiahnuté pre hesitant fuzzy množiny. Pochopitel’ne,
isté úpravy a odlišné prístupy sú v tomto prípade nevyhnutné. Je potrebné zdôraznit’,
že konvexnost’ je jedným z najdôležitejších faktorov pri štúdiu geometrických vlast-
ností klasických a fuzzy množín, ako aj fuzzy multimnožín. Tieto metódy získavajú
na význame vd’aka použitiu v rôznych oblastiach, vrátane optimalizácie [53], spra-
covania obrazu [75], robotiky [51] alebo geometrie [47]. Jednou z podstatných
vlastností konvexnosti je jej zachovávanie pri prieniku. Preto sa v práci zaoberáme
aj prienikmi a ich konvexnost’ou.

Základnými skúmanými objektami tejto práce sú teda fuzzy množiny, hesitant
fuzzy množiny a intervalovo hodnotové fuzzy množiny. Nazdávame sa, že ked’ si
situácia vyžaduje diskrétny priestor hodnôt, hesitant fuzzy set sa javia ako správny
nástroj, zatial’ čo v prípade kontinua je vhodné použit’ IVFS.

Rozhodovanie je oblast’ou, ktorá prit’ahuje pozornost’ mnohých výskumníkov
ako Bellman a Zadeh [8], Naz a Akram [60], Yager a Bason [89]. Tri kl’účové
faktory, ktoré je potrebné zvážit’ v rozhodovacom procese, sú: 1) súbor alternatív,
2) súbor obmedzení možností v rámci viacerých alternatív a 3) funkcia užitočnosti,
ktorá spája zisk alebo stratu vyplývajúcu z výberu tejto možnosti. Vo všeobecnosti
je v reálnych situáciách pomerne náročné presne špecifikovat’ ciel’ovú funkciu a
obmedzenia. Fuzzy množiny môžu byt’ podl’a Czogala a Zimmermann [17] vel’mi
užitočným nástrojom na riešenie problémov, ktoré vo svojom popise obsahjú prvky
neurčitosti.

Vzhl’adom na to sa táto práca zameria na konvexnost’ v oblasti fuzzy množín
a ich rozšírení, stanovili sme si nasledujúce hlavné ciele:
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• Navrhnút’ vhodnú definíciu konvexnosti pre hesitant fuzzy množiny, ako aj
pre intervalovohodnotové fuzzy množiny.

• Analyzovat’ existujúce definície prieniku pre hesitant fuzzy množiny a inter-
valovohodnotové fuzzy množiny.

• Skúmat’ vlastnosti konvexných hesitant fuzzy množín a intervalovohodno-
tových fuzzy množín.

• Prezentovat’ použitie predchádzajúcich teórií v rozhodovacom probléme.

V prvej kapitole zopakujeme definíciu fuzzy množiny a základné operácie pre
ne navrhnuté Zadehom v [91] a myšlienky, ktoré zodpovedajú hlavným zovšeobec-
neniam fuzzy množín. Okrem toho zavedieme aj niektoré základné pojmy týkajúce
sa fuzzy konvexnosti. V druhej kapitole je hlavnou témou konvexnost’ hesitant
fuzzy množín. Uvedieme prehl’ad existujúcich výsledkov a navrhneme spôsoby
definovania konvexnosti, ako pomocou agregačných funkcií, tak aj bez ich použi-
tia. Na záver kapitoly prezentujeme dve aplikácie. Nakoniec v kapitole 3 študu-
jeme konvexnost’ intervalovo hodnotových fuzzy množín a poskytujeme aplikáciu
v rozhodovacom procese a v klasifikácii.





Chapter 1

Fuzzy sets and generalizations

The fundamental ideas for fuzzy sets, as well as their key extensions, will be cov-
ered in this chapter because they are crucial to understanding this work. Thus, the
following sections are devoted to introducing the main concepts in this work and
establishing the considered notation.

1.1 Fuzzy sets

In an effort to expand on the traditional set theory, L. A. Zadeh developed the idea
of a fuzzy set [91]. Many authors have contributed to this notion since he first
proposed it. As a result of all of this research, there are numerous definitions of a
fuzzy set that are all equivalent in meaning. We first require an axiomatic reference
set or universe, which we will designate by the symbol X .

In [91], the first definition was the following:

Definition 1.1 A fuzzy set (class) A in X is characterized by a membership (char-
acteristic) function µA(x) which associates with each point in X a real number in
the interval [0,1]; the value of µA(x) at x represents the “grade of membership” of
x in A.

The motivation of Zadeh for this definition is that the closer µA(x) is to 1, the
larger x belongs to the class A.

13
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In this approach, several authors view the following as the typical definition of
a fuzzy set:

Definition 1.2 [21] Let X be a nonempty universe. A fuzzy set A on X is defined by
means of a map µA : X → [0,1]. The map µA is said the membership function (or
indicator) of A.

In the theory of fuzzy sets, a fuzzy set A is frequently represented [25] as:

A = {⟨x,µA(x)⟩ : x ∈ X}

where µA : X → [0,1] represents the membership function of A.
The concept is really well described by the previous definitions. Thus, the

set A and its membership function µA can both be used to represent a fuzzy set.
Therefore, µA(x) or A(x) indistinctly reflect the membership degree for a point x in
X in the literature. However, in this thesis we are going to use just the membership
representation. The fuzzy power set over X is the family of all fuzzy sets over X ,
and it is identified by the symbol F(X) [68].

It should be emphasized that an ordinary set A, also known as a crisp set, can be
thought of as a specific instance of a fuzzy set if its membership function is defined
as

µA(x) =

{
1 if x ∈ A
0 if x ̸∈ A

Example 1.3 Let us show an example of fuzzy sets.
If X is the interval [3,4], the following sets are fuzzy sets:

i) A is defined as µA(x) =

{
1 if x ∈ (3,4)
0 if x ̸∈ (3,4)

ii) B is defined as µB(x) = x−3, ∀x ∈ [3,4]

After recalling the fuzzy set description, we can move on to defining some key
terms that are related to it, such as its fundamental operations. Although the mem-
bership function of a fuzzy set and a probability function when X is a countable set
(or a probability density function when X is a continuum) are similar, it should be
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noted that there are significant differences between these concepts. These differ-
ences will become clearer once the rules for combining membership functions and
their fundamental properties have been established. The idea of a fuzzy set is also
entirely nonstatistical in nature [91].

Now we recall some interesting concepts related to fuzzy sets. Let us start with
its support.

Definition 1.4 [24, 91] Let A be a fuzzy set in X. The support of A, denoted by
Supp(A), is defined as the crisp set

Supp(A) = {x ∈ X : µA(x) ̸= 0}

The support could also be defined as Supp(A) = {x ∈ X : µA(x) > 0}, since
µA(x) ∈ [0,1], ∀x ∈ X .

It is easy to see that Supp(A) = /0 if and only if µA(x) = 0 ∀x ∈ X .
Another interesting concept in fuzzy set theory is the core of a fuzzy set.

Definition 1.5 [24, 91] Let A be a fuzzy set in X. The core of A, denoted by Core(A),
is defined as the crisp set

Core(A) = {x ∈ X : µA(x) = 1}

It is also immediate that Core(A) = /0 if and only if µA(x) = 0, ∀x ∈ X .
We now describe the condition under which a fuzzy set is a content in another

fuzzy set, i.e., whenever the first is a subset of the second.

Definition 1.6 [91] Let A and B be two fuzzy sets in X. A is contained in B, which
is denoted as A ⊆ B, if and only if µA(x)≤ µB(x) for any x ∈ X. In symbols,

A ⊆ B ⇔ µA(x)≤ µB(x), ∀x ∈ X

When A ⊆ B and B ⊆ A we can consider that they are the same set. Thus, we
obtain the following definition.

Definition 1.7 [91] Two fuzzy sets A and B in X are equal, denoted by A = B, if
and only if µA(x) = µB(x), ∀x ∈ X.



16 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

Before concluding this subsection, we introduce the fundamental operations
between fuzzy sets.

Definition 1.8 [68, 91] Let A be a fuzzy set in X.

• The standard complement of a A in X, which is denoted by Ac, is defined as
the fuzzy set in X whose membership function is given by

µAc(x) = 1−µA(x), ∀x ∈ X

• The standard intersection of A and B in X, which is denoted by A∩B, is the
fuzzy set of X defined by

µA∩B(x) = min{µA(x),µB(x)}, ∀x ∈ X

• The standard union A and B in X, which is denoted by A∪B, is the fuzzy set
of X defined by

µA∪B(x) = max{µA(x),µB(x)}, ∀x ∈ X

Example 1.9 Let X be the unit interval [3,4]. Let A and B be the fuzzy sets consid-
ered in Example 1.3.

The complement of these fuzzy sets are:

i) Ac defined as µAc(x) =

{
0 if x ∈ (3,4)
1 if x ̸∈ (3,4)

ii) Bc is defined as µBc(x) = 1− (x−3) = 4− x, ∀x ∈ [3,4]

Furthermore, it is clear that A ̸⊆ B and B ̸⊆ A.
The intersection of A and B is the fuzzy set A∩B defined as:

µA∩B(x) =

{
0 if x = 4
x if x ̸= 4

It should be noted that the largest fuzzy set that is contained in both fuzzy sets
is the intersection of the two fuzzy sets.
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The union of A and B is the fuzzy set A∪B defined as:

µA∪B(x) =

{
0 if x = 3
1 if x ̸= 3

With this classical interpretation, we can see that the smallest fuzzy set that
contains both is the union of two fuzzy sets.

0.2
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0.6

0.8

1

0
3 4

µA∪B

0.2

0.4

0.6

0.8

1

0
3 4

µA∩B

Figure 1.1: Union and intersection of A and B.

In Figure 1.1 the union of A and B is displayed in red, defined in Example 1.3,
and the intersection in blue.

These fundamental operations can be found in the literature in a more general-
ized way. The goal is always to simply extend the fundamental operations for crisp
sets. The main generalization is the one based on t-norms for the intersection and
t-conorms for the union, which are particular cases of aggregation functions, con-
cepts which will be used several times in this document. Thus, all these definitions
are recalled here.

Definition 1.10 [6, 59] Let A :
⋃

n∈N[0,1]n → [0,1] such that

• A (0, (n). . .,0) = 0,A (1, (n). . .,1) = 1,

• A (a) = a for all a ∈ [0,1],

• A is increasing in each variable,
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then A is an aggregation function.

Important examples of aggregation functions are the arithmetic mean, the geo-
metric mean, the median, the minimum, the maximum and the product. In general,
the four main classes of aggregation functions are averaging, conjunctive, disjunc-
tive and mixed (see [6]).

Definition 1.11 An aggregation function A has averaging behaviour or is an aver-
aging function if for every (α1, . . . ,αn) ∈ [0,1]n it is bounded by min{α1, . . . ,αn} ≤
A (α1, . . . ,αn)≤ max{α1, . . . ,αn}.

Definition 1.12 An aggregation function A has conjunctive behaviour or is a con-
junctive aggregation function if for every (α1, . . . ,αn) ∈ [0,1]n it is bounded by
A (α1, . . . ,αn)≤ min{α1, . . . ,αn}.

Definition 1.13 An aggregation function A has disjunctive behaviour or is a dis-
junctive aggregation function if for every (α1, . . . ,αn) ∈ [0,1]n it is bounded by
max{α1, . . . ,αn} ≤ A (α1, . . . ,αn).

Definition 1.14 An aggregation function A is mixed if it does not belong to any of
the above classes, i.e., it exhibits different types of behaviour on different parts of
the domain.

It is clear that the arithmetic mean, the geometric mean and the median are av-
eraging functions, the minimum and the product are conjunctive and the maximum
is disjunctive. An example of a mixed aggregation function (see [6]) could be:

A (α1, . . . ,αn) =

n

∏
i=1

αi

n

∏
i=1

αi +
n

∏
i=1

(1−αi)

with the convention
0
0
= 0.

When dealing with aggregation functions, some properties are very important
for our purposes. In particular, we will focus on continuity and associativity.

Definition 1.15 [34] Let A be an aggregation function. A is said to be:
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• Continuous if the corresponding n-ary function A |[0,1]n is continuous, for any
n ∈ N.

• Associative if its associated two-argument function A2 : [0,1]2 → [0,1] is as-
sociative.

Consequently, the n-ary aggregation function can be constructed in a unique
way by iteratively applying A |[0,1]2 as

A |[0,1]n(α1, . . . ,αn) = A |[0,1]2(A |[0,1]2(. . .A |[0,1]2(α1,α2),α3), . . . ,αn).

Thus bivariate associative aggregation functions univocally define extended ag-
gregation functions. It is known that the product, minimum and maximum are as-
sociative aggregation functions while the arithmetic mean is not associative.

Triangular norms, or t-norms for short, and triangular conorms, or t-conorms,
are two distinct families of aggregation functions since it is possible to extend them
to
⋃

n∈N
[0,1]n by their associativity. They appear to be generalizations of minimum

and maximum, which are used to define the intersection and union of two fuzzy
sets, respectively.

Definition 1.16 [48] A map T : [0,1]× [0,1] → [0,1] is said to be a t-norm if it
satisfies the following conditions:

• Associativity: T (T (α1,α2),α3) = T (α1,T (α2,α3)) for all α1,α2,α3 ∈ [0,1].

• Commutativity: T (α1,α2) = T (α2,α1) for all α1,α2 ∈ [0,1].

• Monotonicity: T (α1,α3)≤ T (α2,α3) for all α1,α2,α3 ∈ [0,1] with α1 ≤ α2.

• Boundary condition: T (α,1) = α for all α ∈ [0,1].

In a precisely analogous approach, a t-conorm is defined formally as follows:

Definition 1.17 [48] A map S : [0,1]× [0,1]→ [0,1] is said to be a t-conorm if it is
associative, commmutative, increasing, increasing on each argument and it fulfills
the boundary condition:

S(α,0) = α for all α ∈ [0,1].
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Clearly, there is a way to connect these two ideas via duality. If T is a t-
norm, it can be used to create a t-conorm ST : [0,1]× [0,1] → [0,1] as follows:
ST (α.β ) = 1−T (1−α,1−β ), for every α.β ∈ [0,1]. We say that T and ST are
dual or complementary.

Let us present several common t-norms and their dual t-conorms.

• The minimum t-norm and the maximum t-conorm:

TM(α.β ) = min{α.β} and SM(α.β ) = max{α.β}

• The product t-norm and the probabilistic sum t-conorm:

TP(α.β ) = α ·β and SP(α.β ) = α +β −α ·β

• The Lukasiewicz t-norm and t-conorm:

TL(α.β ) = max{α +β −1,0} and SL(α.β ) = min{α +β ,1}

• The drastic t-norm and t-conorm:

TD(α.β ) =

{
min{α.β} if α = 1 or β = 1
0 otherwise

SD(α.β ) =

{
max{α.β} if α = 0 or β = 0
1 otherwise

Moreover, it is known that for any t-norm T we have that T (α.β )≤ TM(α.β )

and for any t-conorm S we have that S(α.β )≥ SM(α.β ) for every α.β ∈ [0,1].
Thus, given any t-norm T and any t-conorm S, the general intersection and

union of two fuzzy sets A and B could be defined, for any x,y ∈ X , by µA∩T B(x) =
T (µA(x),µB(x)) and µA∪SB(x) = S(µA(x),µB(x)), respectively.
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1.2 Generalizations of fuzzy sets

Fuzzy sets cover some uncertainty cases, however, membership grades are real num-
bers that cannot be always determined with complete accuracy. The use of exact real
numbers as membership grades seems to go against the basic idea of fuzziness in
many real-world situations where any assessment of membership grades is often
an approximation that entails some degree of arbitrariness. Numerous generalized
forms of fuzzy sets have been proposed in the literature as solutions to this issue.

Considering the two most significant generalizations of fuzzy sets – hesitant
fuzzy sets and interval-valued fuzzy sets – is the next step. The first one appears in
a natural way for instance in a realistic decision-making problem. When a group
of experts is tasked with evaluating candidate alternatives, it is common for them
to find some disagreements. Due to the differing opinions of the experts and the
difficulty in persuading each other, achieving a consensus can be challenging. In-
stead, it is immediate for them to arrive at a set of possible values. The second
one appears when the expert has a clear idea of a lower and an upper bound for the
membership degree, although he or she does not know which is the exact value of
that membership. It is clear that they are not as specific as fuzzy sets, but this lack of
specificity makes them more realistic in some applications and therefore more cred-
ible. The following subsections illustrate the similarities and distinctions between
these topics, as well as the main concepts related to them which are necessary for
the remaining chapters.

1.2.1 Hesitant fuzzy sets

Hesitant fuzzy sets were first presented by Torra in 2010 [76]. Later, Xia and Xu
created a number of aggregation operators for uncertain fuzzy information [83] and
used them with multi-criteria discrete-valued data [62]. This large family of sets, the
hesitant fuzzy sets, includes both intuitionistic fuzzy sets and interval-valued fuzzy
sets. The concept of hesitant fuzzy sets was first suggested by Grattan-Guinnes in
1976 [35], although there have been a lot more studies on the subject since Torra
proposed his work in 2010. They were known as set-valued fuzzy sets at that time.

A hesitant fuzzy set A is defined by Torra [76] in terms of a function hA that,
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when applied to X , returns a subset of [0,1].
We can find definitions like the following in the literature that are equivalent to

Torra’s original suggestion.

Definition 1.18 [68] Let X be the reference universe. A hesitant fuzzy set A over
X is characterised by a function hA : X → P([0,1]), where P([0,1]) denotes the
power set of the interval [0,1].

It is clear that hesitant fuzzy sets are thus an extension of fuzzy sets. The
corresponding membership function of a hesitant fuzzy set arrives in any subset
of [0,1], but the membership function of a fuzzy set arrives on a single value in
[0,1]. Following Torra’s definition of hesitant fuzzy sets, Xia and Xiu [83] added
the mathematical description of a hesitant fuzzy set as follows:

A = {⟨x,hA(x)⟩ : x ∈ X}

where hA(x) is a set of some values in [0,1]. The family of all hesitant fuzzy sets
over the universe X will be denoted by HFS(X).

A particular sort of hesitant fuzzy set is a typical hesitant fuzzy set. There are
many definitions of this type of set in the literature. Here we present two definitions
that are equivalent.

Definition 1.19 [61] A typical hesitant fuzzy set A in the universe X is a hesitant
fuzzy set where for each x ∈ X, hA(x) is a finite subset of [0,1].

Other similar definitions for this concept were introduced by different authors.
Thus,

Definition 1.20 [5, 69] Let H = {S ⊆ [0,1] : S is finite and S ̸= /0}. A typical hes-
itant fuzzy set A in the universe X is given by A = {⟨x,hA(x)⟩ : x ∈ X}, where
hA : X −→H.

We will denote the family of all typical hesitant fuzzy sets over the universe X
by T HFS(X). In order to use hesitant fuzzy sets properly it is advised to take into
account typical hesitant fuzzy sets [61, 69]. From now on, we will be using typical
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hesitant fuzzy set despite the fact we write just hesitant fuzzy set. Thus, a hesitant
fuzzy set will be by default an element in T HFS(X). Each hA(x) ∈ H is called a
typical hesitant fuzzy element.

About the notation, we will follow Definition 1.20, so we will talk about a
hesitant fuzzy set A using its membership function hA. We will use #hA(x) as the
number of elements of the typical hesitant fuzzy element hA(x) for any x in X and
we will denote by 0H and 1H the typical hesitant fuzzy elements {0} and {1},
respectively.

We are also considering that typical hesitant fuzzy elements are ordered in
an increasing way, i.e., if hA(x), x ∈ X , is a typical hesitant fuzzy element where
#hA(x) = n, then hA(x)1 ≤ hA(x)2 ≤ ·· · ≤ hA(x)n, where hA(x)i is the ith compo-
nent of hA(x). Some authors as Santos et al. [71] and Bedregal et al. [5] ignore
this statement an apply a function σ which is a increasing permutation such that
given hA(x) with #hA(x) = n, then σ(hA(x)) = {σ(hA(x))1, . . . ,σ(hA(x))n} with
σ(hA(x))1 ≤ σ(hA(x))2 · · · ≤ σ(hA(x))n.

The set of all unitary subsets of P([0,1]) is called the set of diagonal or de-
generate elements of H and is denoted by EH = {h ∈ H : #h = 1}. With these sets
we recover the idea of fuzzy values. We will denote by H(n) = {h ∈ H : #h = n}.
Moreover, it is clear that H=

⋃
n∈N

H(n) with

H(n) = {(α1, . . . ,αn) ∈ [0,1]n : αi ≤ α j if i < j}.

Example 1.21 Let X = {0,0.5,1} be the referential. The following two sets are
examples of a typical hesitant fuzzy sets:

i) A = {⟨0,{0.25,0.5}⟩,⟨0.5,{0}⟩,⟨1,{0.2,0.4,0.6,0.8}⟩}

ii) B = {⟨x,hB(x)⟩ : x ∈ X} where hB(x) =
{

ex

e

}
It is clear that B can be seen as a fuzzy set, but A is not.

A hesitant fuzzy set can also be obtained from a set of fuzzy sets:

Definition 1.22 [69, 76] Let M = {µ1,µ2, ...,µn} be a set of n membership func-
tions. The hesitant fuzzy set associated to M is the one given by the membership
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function hM : X →H(n) defined as follows:

hM(x) =
⋃

µ∈M

{µ(x)}

It is interesting that this description fits decision-making so well when experts
need to evaluate a range of options. In this situation, M stands for the expert opin-
ions for each alternative, and hM for the opinions of the group of experts.

Since the typical hesitant fuzzy elements may have different cardinals, one
of the major problems of typical hesitant fuzzy elements is that there is no easy
way to compare them. We are going to discuss potential solutions to this issue in
this research. In order to avoid misunderstandings with orders on the real line or
for intervals, we will use the symbol “⊴” to denote when a typical hesitant fuzzy
element is smaller than or equal to another one, and “◁” when there is no equality.

Preorders for typical hesitant fuzzy elements based on score functions

For typical hesitant fuzzy sets, the membership value at any point in the referential
is a finite and nonempty subset of the interval [0,1]. Thus, we have several values
associated with each point. A first approach for dealing with this multiple informa-
tion is to summarize it in just a value. This idea is considered several times when
we are working with hesitant fuzzy sets and it was done by means of the score func-
tions. As we can see in [27], they are in fact aggregation functions applied to the
elements in H. Thus, one of the most usual score functions is the arithmetic mean,
denoted as previously by M .

Thus, a first approach for comparing typical hesitant fuzzy elements when
given by Xia and Xu [83] by using this score function. More precisely.

Definition 1.23 [83] Let A be a typical hesitant fuzzy set in X. The arithmetic mean
score function for any typical hesitant fuzzy element hA(x) is defined as:

s(hA(x)) =
1

#hA(x)
∑

γ∈hA(x)
γ,∀x ∈ X

where #hA(x) denotes the cardinal of hA(x).
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If we consider hA(x) = {hA(x)1,hA(x)2, . . . ,hA(x)n}, that is, if hA(x)i denotes
the component ith of hA(x), it is clear that s is just the consequence of applying the
arithmetic mean to the components of hA(x). That is,

s(hA(x)) = M (hA(x)) =
1
n

n

∑
i=1

hA(x)i

This is, in fact, the most typical score function. For this reason, sometimes it is just
called the score function.

This is also the reason why Xia and Xu, and later Rashid and Beg, use it to
define the following relations.

Definition 1.24 [83] Let X be the referential, let A and B be two sets in T HFS(X)

and let x be an element in X. It is said that the typical hesitant fuzzy element hA(x)
is s-lower than or equal to the typical hesitant fuzzy element hB(x), and it is denoted
by hA(x)⊴ hB(x), if s(hA(x))≤ s(hB(x)).

It is immediate that ⊴ is a preorder (reflexive and transitive) in H, but it is not
an order, since it is not symmetric.

They used this relation between typical hesitant fuzzy elements to define a
partial preorder for typical hesitant fuzzy sets.

Definition 1.25 [83, 65] Let X be the referential set and let A and B be two sets in
T HFS(X). A is said to be lower than or equal to B w.r.t. the score function s if

s(hA(x))≤ s(hB(x)), for all x ∈ X

Due to its importance, a lot of score functions were proposed in the literature,
apart from the one considered in Definition 1.23. Thus, Fahardinia [26] proposed
the score function:

SNia(hA(x)) =

n

∑
i=1

δ (i)hA(x)i

n

∑
i=1

δ (i)

such that {δ (i)}n
1 is an increasing positive-valued sequence of index i. It is common

to set {δ (i)}n
1 = {i}n

1.



26 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

Xu and Xia [86] introduce a class of hesitant fuzzy element ranking functions
based on the distance between the typical hesitant fuzzy element and the one with
the same cardinality but all the values equal to 1. There are two typical ranking
functions among others [28], and they are

• the hesitant normalized Hamming distance score function, defined as

S−dhnh
xux (hA(x)) = 1

n

n

∑
i=1

∣∣hA(x)i −1
∣∣ ,

• the hesitant normalized Euclidean distance score function, defined as

S−dhne
xux (hA(x)) =

(
1
n

n

∑
i=1

(
hA(x)i −1

)2
) 1

2

Considering the same ideas, Xu and Xia also proposed in [87] some other
distance measures for ranking typical hesitant fuzzy elements such as:

• S−d3
xux (hA(x)) = max

1≤i≤n

{∣∣hA(x)i −1
∣∣}

• S−d4
xux (hA(x)) = max

1≤i≤n

{∣∣hA(x)i −1
∣∣2}

• S−d5
xux (hA(x)) = 1

2

(
1
n

n

∑
i=1

∣∣hA(x)i −1
∣∣+ max

1≤i≤n

{∣∣hA(x)i −1
∣∣})

• S−d6
xux (hA(x)) = 1

2

(√
1
n

n

∑
i=1

∣∣hA(x)i −1
∣∣2 + max

1≤i≤n

{∣∣hA(x)i −1
∣∣2})

It should be pointed out that for all of these ranking functions, as they are based
on distances, for two different typical hesitant fuzzy elements hA(x) and hB(x), if
S−d

xux (hA(x))≥ S−d
xux (hB(x)), then hA(x)⊴ hB(x). In fact, we could consider that 1−d

is measuring the same as the score function and we are using the same criterium.
The similarity measure, correlation measure, or relative closeness measure can

be used in place of the distance measure to obtain the ranking order of typical hesi-
tant fuzzy elements and appear to provide different sorts of ranking systems.

Although the score function introduced in Definition 1.23 is the most typical,
Farhadinia [27] defined several score functions for rating typical hesitant fuzzy ele-
ments. Let us note that, in fact, they are just examples of the most usual aggregation
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function applied to the components of a typical hesitant fuzzy element. Thus, with
these examples, we will also show examples of aggregation functions and fix the
related notation about score functions.

• The smallest score function:

S∇(hA(x)) =

1, if hA(x)i = 1,∀i ∈ {1, . . . ,#hA(x)}

0, otherwise

• The greatest score function:

S△(hA(x)) =

0, if hA(x)i = 0,∀i ∈ {1, . . . ,#hA(x)}

1, otherwise

• The geometric-mean score function:

SGM(hA(x)) =

(
n

∏
i=1

hA(x)i

) 1
n

• The minimum score function:

SMin (hA(x)) = min
{

hA(x)1,hA(x)2, . . . ,hA(x)n}
• The maximum score function:

SMax (hA(x)) = max
{

hA(x)1,hA(x)2, . . . ,hA(x)n}
• The product score function:

SP(hA(x)) =
n

∏
i=1

hA(x)i
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• The bounded sum score function:

SBS(hA(x)) = min

{
1,

n

∑
i=1

hA(x)i

}

• The fractional score function:

SF(hA(x)) =

n

∏
i=1

hA(x)i

n

∏
i=1

hA(x)i +
n

∏
i=1

(
1−hA(x)i)

with the convention 0
0 = 0.

In all the cases, we may determine the order of the typical hesitant fuzzy el-
ements hA(x) and hB(x) by using any Farhadinia’s scoring function, let us denote
them S∗, thus if S∗ (hA(x))≤ S∗ (hB(x)), then hA(x)⊴ hB(x).

The problem that appears using score functions is that we can have two dif-
ferent objects hA(x) and hB(x) such that hA(x) ̸= hB(x), but satisfying S(hA(x)) =
S(hB(x)), which is a bit counter-intuitive as we can see in the following example.

Example 1.26 Let us consider two typical hesitant fuzzy elements hA(x) and hB(x)
defined as hA(x) = {0,0.2,0.8,1} and hB(x) = {0,0.1,0.9,1}. We have that,

• M (hA(x)) = 0.5 = M (hB(x))

• S−dhnh
xux (hA(x)) = 0.5 = S−dhnh

xux (hB(x))

• S−d3
xux (hA(x)) = 0.5 = S−d3

xux (hB(x))

• S∇(hA(x)) = 0 = S∇(hB(x))

• S△(hA(x)) = 1 = S△(hB(x))

• Smin(hA(x)) = 0 = Smin(hB(x))

• Smax(hA(x)) = 1 = Smax(hB(x))
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• SBS(hA(x)) = 1 = SBS(hB(x))

• SF(hA(x)) = 0.5 = SF(hB(x))

Thus, using the score function to summarize the values of the membership
function is a procedure where a lot of information is lost. Therefore, it is not possi-
ble to obtain a symmetric relation based on these functions and so order on H. To
solve this problem, it is necessary to consider a new approach for ordering typical
hesitant fuzzy elements.

Partial orders for typical hesitant fuzzy elements

First of all, we would like to introduce the more natural way to rank or compare
typical hesitant fuzzy elements, which is the lattice order, also known as product
order:

Definition 1.27 Given hA(x) and hB(x) two elements in H(n), hA(x) is said to be
lower than or equal to hB(x) w.r.t. the lattice order, and it is denoted by hA(x)⊴Lo

hB(x), if and only if hA(x)i ≤ hB(x)i for any i ∈ {1,2, . . . ,n}, where hA(x)i is the
component ith of hA(x).

Although this order is a generalization of the usual order on R, it presents at least
two inconveniences. First, it is limited as the typical hesitant fuzzy elements must
have the same cardinality, and second, it is not a total order.

Bedregal et al. [5] pointed out that two procedures could be implemented to
compare two typical hesitant fuzzy elements with different cardinals:

• ϕ-normalization, remove elements of the set having more elements,

• ψ-normalization, add elements to the set having fewer elements.

Other authors such as Fahardinia [26], Xia [84] or Zhang [95] also considered
the ψ-normalization.

Bedregal et al. [5] defined the ϕ-normalization by the function

ϕ(h,k) =

{
hA(x) if #hA(x)≤ k
hA(x) without the first #hA(x)− k elements otherwise
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where hA(x) is a typical hesitant fuzzy element, k ∈ N and #hA(x) denotes the car-
dinality of hA(x).

Example 1.28 If we consider the typical hesitant fuzzy elements hA(x) and hB(x)
given by hA(x) = {0.1,0.4,0.8} and hB(x) = {0.2,0.5,0.6,0.9}, we could apply the
ϕ-normalization in the following way. We obtain that

ϕ(hA(x),#hB(x)) = ϕ(hA(x),4) = hA(x)

ϕ(hB(x),#hA(x)) = ϕ(hB(x),3) = {0.5,0.6,0.9},

so it is clear that ϕ(hA(x),#hB(x))⊴Lo ϕ(hB(x),#hA(x)).
Thus, when we consider ϕ-normalization the comparison by means of the lat-

tice order is not restricted to typical hesitant fuzzy elements with the same cardinal-
ity. However, the second problem remains, since not all the elements are compara-
ble. For instance, if we consider hC(x) = {0.1,0.2,0.3,0.9}, we have that

ϕ(hA(x),#hC(x)) = {0.1,0.4,0.8}

ϕ(hC(x),#hA(x)) = {0.2,0.3,0.9}

and therefore we obtain that ϕ(hA(x),#hC(x)) ̸⊴Lo ϕ(hC(x),#hA(x)) and also that
ϕ(hC(x),#hA(x)) ̸⊴Lo ϕ(hA(x),#hC(x)).

Bedregal et al. [5] only take into account this kind of ϕ-normalization, where
hA(x) without #hA(x)− k elements means we are considering {hA(x)#hA(x)−k+1, . . . ,

hA(x)#hA(x)}. Nevertheless, it is clear that there are more possible ways such as
removing the greatest elements instead of the lowest ones, but using the lattice order
we will always have the drawback of being a partial order.

On the other hand, the ψ-normalization is defined by the function

ψ(hA(x),k) =

{
hA(x) if #hA(x)≥ k
hA(x) with k−#hA(x) more elements otherwise

where hA(x) is a typical hesitant fuzzy element and k ∈ N.
In the literature it is possible to find two common ψ-normalizations which are

the following [30]:
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Let us consider two typical hesitant fuzzy elements hA(x) and hB(x) with car-
dinalities l1 and l2, respectively, that is, hA(x) = {hA(x)1,hA(x)2, . . . ,hA(x)l1} and
hB(x) = {hB(x)1,hB(x)2, . . . ,hB(x)l2}.

• Optimistic: we add the maximum element, which means that we extend hA(x)

to hA(x)max = {hA(x)1,hA(x)2, . . . ,

l2−l1+1 times︷ ︸︸ ︷
hA(x)l1, . . . ,hA(x)l1}

• Pesimistic: we add the minimum element, which means that we extend hA(x)

to hA(x)min = {

l2−l1+1 times︷ ︸︸ ︷
hA(x)1, . . . ,hA(x)1,hA(x)2, . . . ,hA(x)l1}

Based on this idea, we can find the Xu and Xia’s order [86] defined as:

hA(x)⊴XX hB(x) if and only if

{
hA(x)min ⊴Lo hB(x) if l1 ≤ l2
hA(x)⊴Lo hB(x)min otherwise

Example 1.29 If we consider hA(x) and hB(x) defined in Example 1.28, we could
apply the ψ-normalization in the following ways.

• The optimistic ψ-normalization of hA(x) is hA(x)max = {0.1,0.4,0.8,0.8} and
therefore we have to compare this element with hB(x) = {0.2,0.5,0.6,0.9}.

• If we consider the pessimistic ψ-normalization, we have to compare hA(x)min =

{0.1,0.1,0.4,0.8} and hB(x) = {0.2,0.5,0.6,0.9}.

It is clear, in both cases that these elements are not comparable.

Garmendia et al. [30] proposed a different way of normalization. First, we
should introduce the following operator:

Definition 1.30 Let hA(x) = {hA(x)1,hA(x)2, . . . ,hA(x)l} be a typical hesitant fuzzy
element and r ∈ N. We define

hA(x)(r) = {

r times︷ ︸︸ ︷
hA(x)1, . . . ,hA(x)1, . . . ,

r times︷ ︸︸ ︷
hA(x)l, . . . ,hA(x)l}
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Keeping this in mind, Garmendia et al. [30] defined the following order:

hA(x)⊴G hB(x) if and only if hA(x)( lcm(l1,l2)
l1

) ⊴Lo hB(x)( lcm(l1,l2)
l2

)
where lcm(l1, l2) is the least common multiple of l1 and l2.

Example 1.31 If we consider hA(x) and hB(x) defined in Example 1.28, we could
try to compare them with the Garmendia et al. order. First, we should construct
hA(x)( lcm(l1,l2)

l1

) and hB(x)( lcm(l1,l2)
l2

).

• hA(x)(4) = {0.1,0.1,0.1,0.1,0.4,0.4,0.4,0.4,0.8,0.8,0.8,0.8}

• hB(x)(3) = {0.2,0.2,0.2,0.5,0.5,0.5,0.6,0.6,0.6,0.9,0.9,0.9}

And again we have the same drawback, these elements are not comparable with
the lattice order, since hA(x)

1
(4) = 0.1 < 0.2 = hB(x)

1
(3) and hA(x)

9
(4) = 0.8 > 0.6 =

hB(x)
9
(3).

Another approach also based on normalization was given by Zhang and Yang.

Definition 1.32 [94] Let us consider two typical hesitant fuzzy elements hA(x) =
{hA(x)1,hA(x)2, . . . ,hA(x)l1} and hB(x) = {hB(x)1,hB(x)2, . . . ,hB(x)l2}. The order
⊴ZY is defined as

hA(x)⊴ZY hB(x) if and only if

{
hA(x)i ≤ hB(x)i i = 1, . . . , , l1 if l1 ≤ l2
hA(x)l1−l2+i ≤ hB(x)i i = 1, . . . , , l2 otherwise

Clearly, this order is a combination of the lattice order and the ϕ-normalization. In
addition, this is also a partial order as we can see in the following example.

Example 1.33 If we consider again the elements in Example 1.28, that is, hA(x) =
{0.1,0.4,0.8} and hB(x)= {0.2,0.5,0.6,0.9}, then l1 = 3< l2 = 4. Thus, hA(x) ̸⊴ZY

hB(x) due to 0.8 ̸≤ 0.6 and hB(x) ̸⊴ZY hA(x) because 0.5 ̸≤ 0.1. Therefore, hA(x)
and hB(x) are not comparable by means of the order ⊴ZY .
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Normalization seems to be a nice possible way in order to compare two typical
hesitant fuzzy elements. However, we could have some troubles as they is no way
to define total orders. In fact, some drawbacks even arise when having a total order
for same-cardinality elements. Thus, let us suppose that we have a total order ⊴
on H(n), and that we have two typical hesitant fuzzy elements hA(x) and hB(x) with
cardinalities #hA(x)=m and #hB(x)= n. Let us suppose also that m< n. If we apply
ϕ-normalization of hB(x), i.e., ϕ(hB(x),#hA(x)), another problem arises, which is
how to compare hB(x) and ϕ(hB(x),#hA(x)) as if we compute the ϕ-normalization
of hB(x) we would obtain that hB(x) and ϕ(hB(x),#hA(x)) should be representing
the same information.

Example 1.34 For instance, if we consider again the elements in Example 1.28,
we have that hB(x) = {0.2,0.5,0.6,0.9} and its ϕ-normalization with respect to
#hA(x) is ϕ(hB(x),#hA(x)) = ϕ(hB(x),3) = {0.5,0.6,0.9}. It is clear that these two
elements are not the same. However, ϕ(hB(x),#hA(x)) is representing hB(x). Thus,
there is a loss of information which could be very significant.

In a similar way, we have the same problem with the ψ-normalization and the
method proposed by Garmendia et al. [30].

Total orders for typical hesitant fuzzy sets

When we consider total orders, we usually obtain better results as they are a par-
ticular case of partial orders. So as we add more restrictions, it is usually easier to
obtain good theoretical results. Nevertheless, in practice, it is more difficult to ob-
tain an order where for given any hA(x) and hB(x), we have to decide which one is
larger. One of the most employed techniques for dealing with total orders is the use
of admissible orders. The idea behind an admissible order is to consider a partial
order and make it linear. The usual partial order considered is the lattice order, just
taking into account that the only agreement among all of the proposed orders for
typical hesitant fuzzy elements is that they all refine the lattice order, which is the
natural order on Rn. More precisely,

Definition 1.35 [79] Let (H(n),⊴) be an ordered set. The order ⊴ is called admis-
sible if it is a linear order on H(n) and if it refines the lattice order (if hA(x)⊴Lo hB(x)
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then if hA(x)⊴ hB(x)).

Appropriate mappings acting on the n elements of typical hesitant fuzzy ele-
ments can provide partial orders as well as admissible orders. Wang and Xu [79]
proposed the following definition:

Definition 1.36 [79] Let ⊴ be an admissible order on H(n). The order ⊴ is called a
generated admissible order if there exist n continuous functions fi :H(n)→ [0,1], i=
1,2, . . . ,n, such that hA(x)⊴ hB(x) if, and only if,

{ f1(hA(x)), f2 (hA(x)) , . . . , fn (hA(x))}⊴Lex { f1 (hB(x)) , f2 (hB(x)) , . . . , fn (hB(x))} ,

for all hA(x),hB(x) ∈ H(n), where hA(x) ⊴Lex hB(x) if (hA(x) = hB(x))∨ [∃m > 0 :
∀i < m,(hA(x)i = hB(x)i)∧ (hA(x)m < hB(x)m)]

In this sense, the n functions f1, f2, . . . , fn are called a generating n-tuple of the
order ⊴.

Wang and Xu not only proposed some methods to obtain admissible orders for
hesitant fuzzy sets that have the same cardinal, but also characterised some results
of admissible orders.

Theorem 1.37 [79] Let ⊴ be an admissible order on H(n). Then it cannot be in-
duced by n−1 continuous functions fi : [0,1]n → [0,1], i = 1,2, . . . ,n−1.

Theorem 1.38 [79] Let fi : H(n) → [0,1](i = 1,2, . . . ,n) be n continuous aggrega-
tion functions such that ∀hA(x),hB(x) ∈H(n), fi (hA(x)) = fi (hB(x))(i = 1,2, . . . ,n)
hold if and only if hA(x) = hB(x). Define the relation ⊴ f1, f2, . . . , fn on H(n) by

hA(x)⊴ f1, f2,..., fn hB(x)⇔ (hA(x) = hB(x))∨
(
hA(x)≺ f1, f2,..., fn hB(x)

)
,

where hA(x)≺ f1, f2,..., fn hB(x) if and only if

(∃m > 0)(∀i < m)( fi (hA(x)) = fi (hB(x)))∧ ( fm(hA(x))< fm (hB(x))).

Then ⊴ f1, f2,..., fn is an admissible order on H(n).
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Nevertheless, this method has the limitation that the cardinals of the typical
hesitant fuzzy elements should be the same. Now, we will recall another perspective
of admissible orders for typical hesitant fuzzy elements.

Definition 1.39 [56] An order ⊴ on H is admissible if it refines the standard partial
order ⊴RH defined by

hA(x)⊴RH hB(x) if and only if (hA(x) = 0H or (hB(x) = 1H) or

(#hA(x) = #hB(x) = n and hA(x)(i) ≤ hB(x)(i),∀i ∈ Nn),

where Nk = {1,2, . . . ,k} be the subset of natural numbers.

It should be noticed that the admissible orders in Definition 1.39 are different
from the admissible orders for typical hesitant fuzzy elements proposed in Defini-
tion 1.35, as they considered a total order for typical hesitant fuzzy element when
they are restricted to a cardinal n [57].

Now we present two admissible orders proposed by Matzenauer et al., which
will be very important along this document.

Theorem 1.40 [56] The relations ⊴Lex1 and ⊴Lex 2 on H, are given, respectively,
as follows, for any typical hesitant fuzzy elements hA(x) and hB(x) with m = #hA(x)
and n = #hB(x):

• hA(x)⊴Lex1 hB(x) iff{
∃i ∈ Nmin{m,n} : hA(x)i < hB(x)i and hA(x) j = hB(x) j,∀ j < i;
or m ≤ n and hA(x) j = hB(x) j,∀ j ∈ Nm,

• hA(x)⊴Lex2 hB(x) iff{
∃i ∈ Nmin{m,n} : hA(x)i < hB(x)i and hA(x) j = hB(x) j,∀ j > i;
or m ≤ n and hA(x) j = hB(x) j,∀ j ∈ Nm;

are admissible orders.
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Example 1.41 Let us consider two typical hesitant fuzzy elements defined as hA(x)=
{0,0.2,0.8,1} and hB(x) = {0,0.1,0.9,1}. Then if we consider these orders, we ob-
tain that

• hB(x) ⊴Lex1 hA(x) as it exists 2 ∈ {1,2,3,4} such that hB(x)2 = 0.1 < 0.2 =

hA(x)2 and for all j < 2, i.e., for j = 1, we have that hB(x)1 = 0 = hA(x)1.

• hA(x) ⊴Lex2 hB(x) as it exists 3 ∈ {1,2,3,4} such that hA(x)3 = 0.8 < 0.9 =

hB(x)3 and for all j > 3, i.e., for j = 4, we have that hA(x)4 = 1 = hB(x)4.

Now we will discuss the case when we consider two typical hesitant fuzzy
elements with different cardinalities. Let us show the following example:

Example 1.42 Let us consider two typical hesitant fuzzy elements defined as hA(x)=
{0,0.2,0.8} and hB(x) = {0,0.2,0.8,1}. Then if we consider these orders, we ob-
tain that

• hA(x)⊴Lex1 hB(x) as #hA(x) = 3 ≤ #hB(x) = 4 and hA(x) j = hB(x) j,∀ j ∈N3.

• hA(x)⊴Lex2 hB(x) as #hA(x) = 3 ≤ #hB(x) = 4 and hA(x) j = hB(x) j,∀ j ∈N3.

Once we have seen these two examples of admissible order, we will show a
method to generate admissible orders from an increasing function.

Theorem 1.43 [56] Let A∗ : H → [0,1] be a function such that A ∗ is increasing
w.r.t. ⊴RH , A ∗ (0H) = 0 and A ∗ (1H) = 1 and f ∗ : H→R be a function such that:

IC: If f ∗(X) = f ∗(Y ) then #X = #Y (injective-cardinality property)

is satisfied. The relation defined by

X ⊴ f ∗
A ∗ Y ⇔


X = Y, or
A ∗(X)< A ∗(Y ), or
A ∗(X) = A ∗(Y ) and f ∗(X)< f ∗(Y ),

is a total admissible order on H if, for each n ∈N+, where A ∗
n , which is the restric-

tion of A ∗ to H(n), is injective.
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De Miguel et al. proposed in [19] an algorithm for group decision-making
using n-dimensional fuzzy sets, admissible orders and OWA operators. It is possible
to use it in typical hesitant fuzzy sets but first we should normalize them.

Wang and Xu worked with linguistic term sets in [80] and proposed some total
orders for extended hesitant fuzzy sets, which are hesitant fuzzy sets that have been
normalized and have the same cardinal.

It is clear that any of the previous proposals for ordering typical hesitant fuzzy
elements will allow us to define a subsethood relation in T HFS(X), as we will see
in detail in Chapter 2. In the remaining parts of this subsubsection we will review
other main operations for hesitant fuzzy sets.

Definition 1.44 [69, 76] Let X be the universe and let A be a hesitant fuzzy set in X.
The standard complement, or just complement for short, of A in X, which is denoted
by Ac, is the hesitant fuzzy set defined by the following membership function:

hAc(x) =
⋃

γ∈hA

{1− γ(x)}

We would like to remind the reader that we are considering typical hesitant
fuzzy elements ordered in an increasing way, so after we apply Definition 1.44, we
will order the components of the typical hesitant fuzzy elements.

Example 1.45 Let X, A and B be the sets defined in Example 1.21. The complement
of A and B are:

Ac = {⟨0,{0.5,0.75}⟩,⟨0.5,{1}⟩,⟨1,{0.2,0.4,0.6,0.8}⟩}

and Bc with membership function:

hBc(x) =
{

1− ex

e

}
, ∀x ∈ X

Logically, the intersection and union of two hesitant fuzzy sets were also de-
fined in the literature. Now, we will review the most standard definitions for these
concepts.
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Definition 1.46 [69, 76] Let A and B be two hesitant fuzzy sets in X. The standard
intersection of A and B, which is denoted by A∩B, is the hesitant fuzzy set in X
defined by

hA∩B(x) = {h ∈ (hA(x)∪hB(x)) : h ≤ min{max{hA(x)},max{hB(x)}}}

Example 1.47 Let X, A and B be again the sets defined in Example 1.21. The
standard intersection of A and B is obtained as follows:

• Since hA(0) = {0.25,0.5} and hB(0) = {1/e}, we have that hA(x)∪hB(0) =
{0.25,0.5,1/e} and min{max{hA(0)},max{hB(0)}}=min{0.5,1/e}= 1/e.
Thus,

hA∩B(0) = {h ∈ {0.25,0.5,1/e} : h ≤ min{0.5,1/e}}= {0.25,1/e}.

• Since hA(0.5) = {0} and hB(0.5) = {1/
√

e}, then

hA∩B(0.5) = {h ∈ {0,1/
√

e} : h ≤ min{0,1/
√

e}}= {0}

• Since hA(1) = {0.2,0.4,0.6,0.8} and hB(x) = {1}, then

hA∩B(1) = {h ∈ {0.2,0.4,0.6,0.8,1} : h ≤ min{0.8,1}}= {0.2,0.4,0.6,0.8}

Hence,

A∩B = {⟨0,{0.25,1/e}⟩,⟨0.5,{0}⟩,⟨1,{0.2,0.4,0.6,0.8}⟩}

These three hesitant fuzzy sets A, B and A∩B are represented in Figure 1.2.

On the other hand, De Miguel et al. [18] proposed the concept of meet-
convolution.

Definition 1.48 [18] Let A and B be two hesitant fuzzy sets in X. The meet-convolution
of A and B, which is denoted by A∩MC B, is the hesitant fuzzy set in X defined by

hA∩MCB(x) = sup{min{hA(u),hB(v)} : u,v ∈ X ,min{u,v}= x}
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Figure 1.2: Intersection of A and B.

Example 1.49 Let A, B and X be the sets defined in Example 1.21.
The meet-convolution of A and B is obtained as follows:

• For x = 0, we have that hA∩MCB(0) = sup{min{hA(u),hB(v)} : min{u,v} =

0}. Thus, for instance, if u = 0 and v = 0, we have that min{u,v}= 0 and we
should do the minimum between hA(u) = {0.25,0.5} and hB(v) = {1/e}. For
comparing these two sets, we will use the lexicographical order type 1 (see
Theorem 1.40).

Thus, we obtain the following:

u v min{u,v} A(u) B(v) min{A(u),B(v)}
0 0 0 {0.25,0.5} {1/e} {0.25,0.5}
0 0.5 0 {0.25,0.5} {1/

√
e} {0.25,0.5}

0 1 0 {0.25,0.5} {1} {0.25,0.5}
0.5 0 0 {0} {1/e} {0}
1 0 0 {0.2,0.4,0.6,0.8} {1/e} {0.2,0.4,0.6,0.8}

and therefore hA∩MCB(0) = {0.25,0.5}.

• For x = 0.5 we have that

and then hA∩MCB(0.5) = {0.2,0.4,0.6,0.8}.

• Finally, for x = 1 we have that Thus, hA∩MCB(1) = {0.2,0.4,0.6,0.8}.
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u v min{u,v} A(u) B(v) min{A(u),B(v)}
0.5 0.5 0.5 {0} {1/

√
e} {0}

0.5 1 0.5 {0} {1} {0}
1 0.5 0.5 {0.2,0.4,0.6,0.8} {1/

√
e} {0.2,0.4,0.6,0.8}

u v min{u,v} A(u) B(v) min{A(u),B(v)}
1 1 1 {0.2,0.4,0.6,0.8} {1} {0.2,0.4,0.6,0.8}

Hence, using the lexicographical order type 1, we have obtained that the inter-
section of A and B, A∩MC B, is the hesitant fuzzy set:

{⟨0,{0.25,0.5}⟩,⟨0.5,{0.2,0.4,0.6,0.8}⟩,⟨1,{0.2,0.4,0.6,0.8}⟩}

We can find an illustration of this in Figure 1.3.
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Figure 1.3: Meet-convolution of A and B.

As we saw in the last example, this type of intersection appears to be rather
counter-intuitive. For instance, for the intermediate element of X , we have that
hA(0.5) = {0}, but the membership values for the intersection are clearly greater
than zero. Maybe for this reason, both definitions for the intersection, Definitions
1.46 and 1.48, continue to be used. And the same happens for the union.

Definition 1.50 [69, 76] Let X be the reference and let A and B be two hesitant
fuzzy sets in X. The standard union of A and B, which is denoted by A∪B, is the
hesitant fuzzy set defined by

hA∪hB(x) = {h ∈ (hA(x)∪hB(x)) : h ≥ max{min{hA(x)},min{hB(x)}}}
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Example 1.51 Let X, A and B be the sets defined in Example 1.21. The standard
union of A and B is the hesitant fuzzy set obtained as follows:

hA∪B(0) = {h ∈ {0.25,0.5,1/e} : h ≥ max{0.25,1/e}}= {1/e,0.5}

hA∪B(0.5) = {h ∈ {0,1/
√

e} : h ≥ max{0,1/
√

e}}= {1/
√

e}

hA∪B(1) = {h ∈ {0.2,0.4,0.6,0.8,1} : h ≥ max{0.2,1}}= {1}

Consequently,

A∪B = {⟨0,{1/e,0.5}⟩,⟨0.5,{1/
√

e}⟩,⟨1,{1}⟩}

This can be illustrated in Figure 1.4, where we have A, B and their union.
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Figure 1.4: Union of A and B.

On the other hand, De Miguel et al. [18] proposed the concept of join-convolution.

Definition 1.52 [18] Let A and B be two hesitant fuzzy sets in X. The join-convolution
of A and B, which is denoted by A∪JC B, is the hesitant fuzzy set in X defined by

h(A∪JCB(x) = sup{min{hA(u),hB(v)} : u,v ∈ X ,max{u,v}= x}

Example 1.53 Let A, B and X be the sets defined in Example 1.21, and the join-
convolution of A and B is obtained as follows, considering again the lexicographical
order type 1.
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• For x = 0 we have that hA∪JCB(0) = sup{min{A(u),B(v)} : max{u,v} = 0}.
Thus,

u v max{u,v} A(u) B(v) min{A(u),B(v)}
0 0 0 {0.25,0.5} {1/e} {0.25,0.5}

and then hA∪JCB(0) = {0.25,0.5}.

• For x = 0.5 we obtain that
u v max{u,v} A(u) B(v) min{A(u),B(v)}
0 0.5 0.5 {0.25,0.5} {1/

√
e} {0.25,0.5}

0.5 0 0.5 {0} {1/e} {0}
0.5 0.5 0.5 {0} {1/

√
e} {0}

Then (hA∪JCB(0.5) = {0.25,0.5}.

• For x = 1 we have that

u v max{u,v} A(u) B(v) min{A(u),B(v)}
0 1 1 {0.25,0.5} {1} {0.25,0.5}
0.5 1 1 {0} {1} {0}
1 0 1 {0.2,0.4,0.6,0.8} {1/e} {0.2,0.4,0.6,0.8}
1 0.5 1 {0.2,0.4,0.6,0.8} {1/

√
e} {0.2,0.4,0.6,0.8}

1 1 1 {0.2,0.4,0.6,0.8} {1} {0.2,0.4,0.6,0.8}
Thus , hA∪JCB(1) = {0.25,0.5}.

As a result, using the lexicographical order type 1, we obtain that

A∪JC B = {⟨0,{0.25,0.5}⟩,⟨0.5,{0.25,0.5}⟩,⟨1,{0.25,0.5}⟩}

We can find an illustration of this union in Figure 1.5.

Here we have a similar situation as with the meet-convolution. As it is shown
in the previous example, this type of union looks again a bit counter-intuitive as we
can see for the membership function of the join-convolution at the point 1. For this
reason, we will consider, by default, the standard intersection and union of hesitant
fuzzy sets given at Definitions 1.46 and 1.50.

Finally, we will recall some definitions we will consider for the support and
core of a hesitant fuzzy set and we will conclude with some operations for hesitant
fuzzy elements which will be later needed.
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Figure 1.5: Meet-convolution of A and B.

Definition 1.54 [65] Let A be a hesitant fuzzy set in X. The support of A, which is
denoted by Supp(A), is the crisp set

Supp(A) = {x ∈ X : max{hA(x)} ̸= 0}

And now we introduce the definition of core.

Definition 1.55 [65] Let A be a hesitant fuzzy set in X. The core of A, denoted by
Core(A), is the crisp set

Core(A) = {x ∈ X : max{hA(x)}= 1}

For concluding this introduction to hesitant fuzzy sets, we will introduce some
concepts for hesitant fuzzy elements which are similar to the sum and the scalar
product.

Definition 1.56 [65, 83] Let hA(x) and hB(x) be two hesitant fuzzy elements.

1. k⊙hA(x) = ∪γ∈hA(x){1− (1− γ)k}.

2. hA(x)⊕hB(x) = ∪γ1∈hA(x),γ2∈hB(x){γ1 + γ2 − γ1γ2}.

1.2.2 Interval-valued fuzzy sets

In the previous section we introduce hesitant fuzzy sets, which can handle the un-
certainty provoked by several values. In the case of interval-valued fuzzy sets, we
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deal with the uncertainty generated by two values and all intermediate values. This
happens, for instance, when we are able to obtain a lower and upper bound for the
membership function, but we do have not precise information about the real value.

Interval-valued fuzzy sets were introduced independently by Zadeh [93], Grattan-
Guiness [35], Jahn [44], and Sambuc [70] in the seventies. In cases where traditional
fuzzy tools are unhelpful, such as when there is no objective method for choos-
ing crisp membership degrees, interval-valued fuzzy set can be helpful. Many re-
searchers have quickly been interested in these extensions as a result of their tremen-
dous potential for a variety of applications. Thus, for instance, Sambuc [70] used
them in medical diagnosis in thyrodian pathology, Bustince and Burillo [10] and
Gozalczany [33] in approximate reasoning and Cornelis et al. [16] and Turksen and
Zhong [77] in logic, among many others.

The definition of interval-valued fuzzy set we are considering is the following:

Definition 1.57 [7] An interval-valued fuzzy set A on X is a mapping A : X →
L([0,1]) such that A(x) = [A(x),A(x)], where L([0,1]) denotes the family of closed
intervals included in the unit interval [0,1].

Thus, an interval-valued fuzzy set A is totally characterized by two mappings,
A and A, from X into [0,1] such that A ≤ A. It could be represented as A =

{⟨x, [A(x),A(x)]⟩ : x ∈ X}, where A(x) and A(x) are the lower and upper bounds
of the membership interval and they satisfy that 0 ≤ A(x)≤ A(x)≤ 1,∀x ∈ X . The
collection of all the interval-valued fuzzy set in X is denoted by IV FS(X).

Naturally, a regular fuzzy set can be expressed as follows:

{⟨x, [µA(x),µA(x)]⟩ : x ∈ X}

and as a result, interval-valued fuzzy sets effectively generalize fuzzy sets.

Example 1.58 Let X be the interval [0,1]. The following sets are examples of an
interval-valued fuzzy set:

i) A = {⟨x, [0.25,0.5]⟩ : x ∈ X}

ii) B = {⟨x, [B(x),B(x)]⟩ : x ∈ X} where B(x) =
x
e

and B(x) =
ex

e
, for any x ∈ X.
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In 1986, Atanassov [3] proposed another extension of the notion of fuzzy set
called intuitionistic fuzzy set (IFS). So, in contrast to a fuzzy set,an intuitionis-
tic fuzzy set has associated two functions: a membership function and a non-
membership function. A point’s degree of set membership is represented by the
first function and its degree of set non-membership by the second. Let us recall
their definition.

Definition 1.59 [7] An intuitionistic fuzzy set A in X is defined as A = {⟨x,µA(x),
νA(x)⟩ : x∈X}, where µA(x) and νA(x) are the degrees of membership and nonmem-
bership of x in A, respectively. µA(x) and νA(x) must satisfy that µA(x),νA(x)∈ [0,1]
and 0 ≤ µA(x)+νA(x)≤ 1.

We will denoted the family of all intuitionistic fuzzy sets on X by IFS(X).
Atanassov [3] asserted that his intuitionistic fuzzy sets are equivalent to interval-

valued fuzzy sets. Despite not solving the same issue, both are frequently utilized
in the literature. The option that best suits the circumstances is typically the one
that is picked [61]. Since they are mathematically equal, we will not deal with
intuitionistic fuzzy sets and will use interval-valued fuzzy sets. However, from a
mathematical point of view, we can consider this equivalence to use any interesting
result for intuitionistic fuzzy sets.

By focusing on interval-valued fuzzy sets, we can take into consideration ei-
ther the epistemic interpretation or the ontic interpretation. The first one will be
the one that is chosen in our study. We, therefore, assume that inside the member-
ship interval of potential membership degrees, there is only one actual, real-valued
membership degree of an element, as it is shown in Figure 1.6.

Our proposal requires the preservation of convex interval-valued fuzzy sets un-
der intersection, which makes it crucial to first define the concept of the intersection
of two interval-valued fuzzy sets. However, to do this in a coherent manner, it is
necessary to define the inclusion between two interval-valued fuzzy sets beforehand.

Let us consider the following two interval-valued fuzzy sets in Figure 1.7. It
seems only obvious that in order to determine whether or not B is included in A, we
must compare intervals.

In addition, we need a definition of the convexity coherent with the fuzzy set
definition. We also need to define and analyze the union, which will depend on
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Figure 1.7: Is B “included” in A?

the order between intervals that is taken into consideration, in order to explore the
features of the level sets of an interval-valued fuzzy set. To define the inclusion in
IV FS(X) and subsequently the union and intersection of interval-valued fuzzy set,
we must first examine various orderings of real intervals.

Orders in L([0,1])

There are several ways to compare intervals and here are the most common relations
presented in [37]. If a = [a,a] and b = [b,b] are two intervals in L([0,1]), we say
that a is lower than or equal to b if:

• Interval dominance [29]: a ⪯ID b if a ≤ b

• Lattice order [32]: a ⪯Lo b if a ≤ b and a ≤ b, which is induced by the usual
partial order in R2
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• Lexicographical order type 1 [11]: a ⪯Lex1 b if a < b or (a = b and a ≤ b)

• Lexicographical order type 2 [11]: a ⪯Lex2 b if a < b or (a = b and a ≤ b)

• The Xu and Yager order [88]: a ⪯XY b if a+a < b+b or (a+a = b+b and
a−a ≤ b−b)

• Maximax order [72]: a ⪯MM b if a ≤ b

• Maximin order [73, 78]: a ⪯Mm b if a ≤ b

• Hurwicz order [43]: a ⪯H(α) b if α ·a+(1−α) ·a ≤ α ·b+(1−α) ·b with
α ∈ [0,1].

• Weak order [9]: a ⪯wo b if a ≤ b

These relations are connected in some cases. It is fairly obvious that if an
interval a w.r.t. the interval dominance is lower than or equal to b, then a is likewise
lower than or equal to b w.r.t. the lattice order. All of these implications, along with
a few others like them, are compiled in Figure 1.8.

a ⪯ID b
⇓

a ⪯Lo b
⇓︷ ︸︸ ︷

a ⪯Lex1 b a ⪯Lex2 b a ⪯XY b a ⪯H(α) b for any α ∈ [0,1]

⇓ ⇓ ⇓
a ⪯Mm b a ⪯MM b a ⪯H(1/2) b︸ ︷︷ ︸

⇓
a ⪯wo b

Figure 1.8: Relations between the interval relations.

At first sight, taking into account their names and the considered relations, the
reader could think that these expressions are truly orders, but this is not true. As
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we can see in Table 1.1, some of these ways to compare intervals are not orders
as they do not fulfill the order relation requirements (reflexivity, antisymmetry and
transitivity). However, we will refer to all of them as orders since this is the usual
name in the literature. In Table 1.1, we claim whether they are total orders or not
and also we identify the case of some preorders which are not orders.

Reflexive Antisymmetric Transitive Preorder Order Total Order
ID ✗ ✓ ✓ ✗ ✗ ✗

Lo ✓ ✓ ✓ ✓ ✓ ✗

Lex1 ✓ ✓ ✓ ✓ ✓ ✓

Lex2 ✓ ✓ ✓ ✓ ✓ ✓

XY ✓ ✓ ✓ ✓ ✓ ✓

Mm ✓ ✗ ✓ ✓ ✗ ✗

MM ✓ ✗ ✓ ✓ ✗ ✗

H(α) ✓ ✗ ✓ ✓ ✗ ✗

wo ✓ ✗ ✗ ✗ ✗ ✗

Table 1.1: Properties of the different relations.

After doing this short analysis, we can confidently assert that only the lexico-
graphical orders types 1 and 2 and the Xu and Yager order are total orders, being
the lattice order just a partial order.

With respect to total orders in L([0,1]), in this work we are considering the
so-called admissible orders, whose definition we review here.

Definition 1.60 [11] An admissible order on L([0,1]), ⪯ao, is a binary relation on
L([0,1]) fulfilling:

• it is a total order

• it refines the lattice order, that is, for every a,b ∈ L([0,1]), if a ⪯Lo b then
a ⪯ao b.

The ability to construct admissible orders using aggregation functions is an
important aspect to take into account [11]. An aggregation function is defined on
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⋃
n∈N

[0,1]n. In particular, [0,1]2 could be considered. There is a natural bijection

between L([0,1]) and K([0,1]) = {(u,v)∈ [0,1]2 |u ≤ v} that links the interval [a,a]
to the point made by its endpoints in R2. Consequently, we can add together the
information presented as an interval using aggregation methods. Bustince et al. [11]
develop the following procedure to create admissible orders based on this concept.

Proposition 1.61 [11] Let A ,B be continuous aggregation functions, such that
for all (u,v),(u′,v′) ∈ K([0,1]), the equalities A (u,v) = A (u′,v′) and B(u,v) =
B(u′,v′) can only hold if (u,v) = (u′,v′). Define the relation ⪯A ,B on L([0,1]) by
a ⪯A ,B b if and only if

A (a,a)< A (b,b)

or
A (a,a) = A (b,b) and B(a,a)≤ B(b,b)

Then ⪯A ,B is an admissible order on L([0,1]).

A possible procedure of building admissible orders on L([0,1]) is defining them
using the weighted mean which is a particular case of continuous aggregation func-
tion (see [11]):

Kα(u,v) = (1−α) ·u+α · v, where α ∈ [0,1]

This mapping can be used to represent the α-quantile of a probability distribu-
tion that is evenly distributed over the range [u,v]. In order to derive the admissible
order ⪯Kα ,Kβ

, which is denoted, for convenience, as ⪯α,β , we can apply Proposition
1.61 to the aggregation functions Kα and Kβ (see [37]).

The Xu and Yager order or the lexicographical orders type 1 and type 2 are
examples of these admissible orders. More precisely, ⪯Lex1≡⪯0,1, ⪯Lex2≡⪯1,0 and
⪯XY≡⪯1/2,β for any β ∈ (1/2,1] (see [11]).

Inclusion

According to the fuzzy set theory, A is said to be contained in B if and only if its
membership function is smaller than or equal to that of B, where A,B ∈ FS(X) (see
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[91]). Once we have orders on intervals we can suggest the following definition
of containment for interval-valued fuzzy sets, which goes further than the fuzzy set
definition.

Definition 1.62 [37] Let (L([0,1]),⪯o) be the set of closed interval included in
[0,1] and ⪯o an order on L([0,1]). Let A and B be any sets in IV FS(X), we say that
A is o-included in B, which is denoted by A ⊆o B if, and only if,

A(x)⪯o B(x),∀x ∈ X

It is obvious that if ⪯o is an order in L([0,1]), hence ⊆o is an order in IV FS(X).
While ⪯o may be a total order, ⊆o is only a partial order.

Example 1.63 Consider the interval-valued fuzzy set A, B and C defined as in Fig-
ure 1.9.

X

Membership

0
0.2
0.4
0.6
0.8

1
C

B

A

Figure 1.9: Membership functions of A, B and C.

It is clear that A,B ⊆ID C and therefore they are ID-included in C w.r.t. any of
the considered orders. We also have A ⊆Lo B, but A ̸⊆ID B. Thus, A is included in
B for any considered order except for the interval dominance. Finally, we can say
that B or C are not included in A for any order.

As we commented, the inherited relation in IV FS(X) is not a total order even
in case ⪯o is a total order. Thus, if we consider the lexicographical order type
1 and the interval-valued fuzzy set in Figure 1.10, we have that A and B are not
comparable by means of this order.
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Figure 1.10: A and B are ⊆Lex1- incomparable.

Thus, the inclusion for interval-valued fuzzy sets is based on orders on L([0,1]).
We will take this into account to define in Chapter 3 the union and intersection of
elements in IV FS(X). However, some operations, as the complement, are indepen-
dent of the chosen order and we can consider them just now.

Complement

In the literature, a number of operations have been used for the idea of a complement
set. Now let us focus on one of the most fundamental.

Definition 1.64 [23] Let A be in IV FS(X). The complement of A, denoted by Ac, is
defined by Ac(x) = 1−A(x) and Ac(x) = 1−A(x) for any x ∈ X, that is,

Ac(x) = [1−A(x),1−A(x)]

This idea can be made more inclusive by using a negation.

Definition 1.65 [31] A function N : [0,1]n → [0,1] is a negation if for all x ∈ [0,1]n

there is N(0) = 1 and N(1) = 0 and N is decreasing.

Furthermore, N is a strong negation if N(N(x)) = x for every x ∈ [0,1]. Note
that every strong negation is strictly diminishing and continuous.

As a result, we define the complement with respect to N as follows:

ANc(x) = [N(A(x)),N(A(x))]
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For all x in X , we will by default take into account the standard negation N(x)=
1− x for any x ∈ X .

Despite the existence of further fuzzy set extensions (see [61, 63, 68]), for this
study we use only the ones that we have built in this chapter. In Figure 1.11, we
show the connection between the different fuzzy set extensions. In this figure, we
can see that interval-valued fuzzy sets and typical hesitant fuzzy sets are particular
cases of hesitant fuzzy sets. Due to their importance, we will devote Chapter 3 to
the first ones and Chapter 2 to the second ones. At this point, we should recall that,
for simplicity, we are calling hesitant fuzzy sets for the typical hesitant fuzzy sets.

Fuzzy sets

Interval-valued
Fuzzy Sets

Typical Hesitants
Fuzzy Sets

Hesitants
Fuzzy Sets

Figure 1.11: Extensions of fuzzy set.

Finally, as convexity is one of the main points of this thesis, we will recall some
concepts and results of convexity in fuzzy sets in the next section.

1.3 Convexity of fuzzy sets

As we said in the introduction, convexity is a relevant concept in many areas of
mathematics. In particular, convexity, as the fundamental theory in optimization re-
search, has naturally formed one of the most important areas in fuzzy mathematics.
This section introduces several concepts related to convexity.
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As a starting point, we should review the traditional notion of convexity of
ordinal sets. If X is a vector space, a crisp set A⊆X is called convex if λx+(1−λ )y
belongs to A for every λ ∈ [0,1] and every x,y ∈ A (see [21]). Obviously, this
idea differs from the convex function concept. To put it another way, a function
f : X → R is called convex if and only if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), ∀λ ∈ [0,1]

and it is said to be concave if − f is convex.
A possible way to define convexity in fuzzy set theory is the following.

Definition 1.66 [91] Let X be a vector space. A fuzzy set A defined on X is convex,
if for each x,y ∈ X , λ ∈ [0,1] there is

µA(λx+(1−λ )y)≥ λ µA(x)+(1−λ )µA(y)

With this definition, the membership function is a concave function, but it is
still called a convex set since it takes into account the ideas behind the classical
convexity. Thus, now, the membership function at the point λx+(1−λ )y is at least
a combination of the membership values on x and y. In fact, if x and y belong to
A, that is, if µA(x) = µA(y), then we have that µA(λx+(1−λ )y) = 1 and therefore
λx+(1−λ )y also belong to A.

A really relevant concept in convexity is an α-set or a level set. Let us introduce
its definition.

Definition 1.67 [91] Let X be a referential and A a fuzzy set on X. Then the α-set
of A, denoted by Aα , is the crisp set defined as

Aα = {x ∈ X : µA(x)≥ α}

for any α ∈ (0,1].

However, with this definition of α-set, Definition 1.66 of convexity has at least
two drawbacks:

1. When the universe X we are working on is not a vector space, such as a lattice-
valued fuzzy set, since the addition in the lattice is, in general, not defined,
we could find some problems.
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2. The behaviour of convexity is not as good as it should be. In other words, a
fuzzy set for which all its level sets are convex, may not be convex [65], as
we can see in Example 1.68.

Example 1.68 [21] Let X be R. Let A be the fuzzy set of X given by

µA(x) =

{
0.2 if x ≤ 0
0.3 otherwise

The level sets or α-cuts of A are defined by the crisp sets Aα = {x ∈ X : µA(x)≥ α}
for any α ∈ (0,1]. Thus,

Aα =


R if α ≤ 0.2
(0,∞) if 0.2 < α ≤ 0.3
/0 if α > 0.3

It is clear that all of them are convex subsets of the real line. However, the fuzzy set
A fails to be convex:

If λ = 0.5, x=-4 and y=2, we may notice that λx+(1−λ )y =−1, so that

µA(λx+(1−λ )y) = 0.2

whereas
λ µA(x)+(1−λ )µA(y) = 0.25.

Zadeh tried to apply a general notion of convexity to fuzzy sets, when he pre-
sented the following idea of convex fuzzy sets. Initially, he considered that the ref-
erential was the Euclidean n-space Rn. However, we will consider the most general
definition, for any vector space.

Definition 1.69 [91] Let X be a vector space.A fuzzy set A on X is convex if and
only if the sets Aα are convex for all α in the interval (0,1].

In addition, Zadeh put up another, simpler concept that is equivalent to the first
one. Additionally, we can see that the traditional concept of convexity is still present
here.
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Definition 1.70 [91] Let X be a vector space. A fuzzy set A is convex if and only if

µA(λx1 +(1−λ )x2)≥ min{µA(x1),µA(x2)}

for all x1,x2 ∈ X and all λ ∈ [0,1].

Later, in 1992 Ammar [2] proposed the idea of calling quasi-convex to the
previous Zadeh’s definition of convexity.

According to this definition, µA need not be a convex or concave function (see
[91]), although it also means that the membership degree for any intermediate point
is at least the membership degree for at the minimum one of the points x and y.
Therefore, this is again the idea behind the convexity of a set. We actually analyze
convexity as a convexity of sets, as we already mentioned. The fuzzy set on the left
is convex (in the fuzzy sense), as shown in Figure 1.12, but its membership function
is a convex function in some parts of the referential, but also a concave function in
other parts. Moreover, there is an example of a non-convex fuzzy set on the right.

Figure 1.12: Convex and not convex fuzzy sets in R [91]

It is immediate to check that Definitions 1.69 and 1.70 are equivalent.

Proposition 1.71 Let X be a vector space. A fuzzy set A is convex in the sense of
Definition 1.70 if and only if the sets Aα are convex for all α in the interval (0,1].

Proof: Let us suppose that the α-cuts are convex. Let x1,x2 ∈X . If α =min{µA(x1),

µA(x2)}, Aα = {y ∈ X : µA(y) ≥ min{µA(x1),µA(x2)}}. It is obvious that x1,x2 ∈
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Aα . As the α-cuts are convex, λx1+(1−λ )x2 ∈ Aα . Thus, µA(λx1+(1−λ )x2)≥
α = min{µA(x1),µA(x2)}.

On the other hand, let A be a convex fuzzy set. For any α ∈ (0,1] and any
x1,x2 ∈Aα , we have that µA(λx1+(1−λ )x2)≥min{µA(x1),µA(x2)}≥min{α,α}=
α , since A is convex. Therefore, λx1+(1−λ )x2 ∈ Aα and then Aα is a crisp convex
set.

Thus, from now on, when we deal with the convexity of fuzzy sets we will use
Definition 1.70.

The fact that the intersection of any two convex sets is also convex is a crucial
aspect of convexity.

Theorem 1.72 [91] Let X be a vector space. Let A and B be two fuzzy sets on X. If
A and B are convex, then A∩B is convex.

Zadeh provided a thorough analysis of the preservation of convexity. Here, we
shall review the findings that are most pertinent to our goals.

Definition 1.73 [91] A fuzzy set A is bounded if and only if its α-sets Aα are
bounded for all α ∈ (0,1].

Lemma 1.74 [91] Let A be a bounded fuzzy set and let M = sup{µA(x) : x ∈ X}.
M will be referred to as the maximal grade in A. Then there is at least one point x0

at which M is essentially attained in the sense that, for each ε > 0, every spherical
neighborhood of x0 contains points in the set Q(ε) = {x : µA(x)≥ M− ε}.

Definition 1.75 [91] Let X be a vector space. A fuzzy set A is strongly convex if
and only if for any two points x1 and x2, x1 ̸= x2, and any λ in the open interval
(0,1)

µA(λx1 +(1−λ )x2)> min{µA(x1),µA(x2)}

Working with convex fuzzy sets, it should be noted that the intersection of two
strongly convex sets is also strongly convex [91].

Some other properties of convexity are collected below.
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Theorem 1.76 [91] Let X be a vector space, and let A be a fuzzy set on X. If A is
convex, then its core is a convex crisp set.

Corollary 1.77 [91] Let X be a vector space, and let A be a fuzzy set on X If. A is
strongly convex, then the point at which M is essentially attained is unique.

In 1987, Drewniak [22] worked with Zadeh’s theory and achieved these results
with X = Rn.

Theorem 1.78 [22] Let A with µA : Rn → [0,1] denote a fuzzy set in Rn for a given
positive integer n.

(a) If A is a convex fuzzy set, then Supp(A) is a convex set.

(b) If A is a strongly convex fuzzy set, then Supp(A) = Rn.

New definitions are required if the universe X is not a vector space. We can
investigate the idea of a convex crisp set introduced by Llinares [55] in depth in
order to think of additional potential approaches to define the convexity of a fuzzy
set for any referential.

Definition 1.79 [21, 55] Let X be a nonempty set. A convex structure on X is a
map H : X ×X × [0,1]→ X that satisfies the following properties:

(i) H(x,y,λ ) = H(y,x,1−λ ), for every x,y ∈ X and λ ∈ [0,1].

(ii) H(x,x,λ ) = x, for every x ∈ X and λ ∈ [0,1].

(iii) H(x,y,1) = x, for every x,y ∈ X.

Definition 1.80 [21, 55] A subset A of X is said to be convex with respect to H, or
H-convex for short, if H(x,y,λ ) ∈ A, for all x,y ∈ A and for all λ ∈ [0,1].

Due to Condition (ii) in Definition 1.79, any set with a single element is H-
convex for any H.

If X is a vector space, it is immediate that any subset A of X is convex if and
only if it is H-convex with H(x,y,λ ) = λx+(1−λ )y.

We will show in the following example that there are H-convex sets that are
not convex.
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Example 1.81 [21] Let us consider the map H : R×R× [0,1]→ R defined by:

H(x,y,λ ) =


x if λ = 1
y if λ = 0
x if λ ∈ (0,1) and x = y
0 if λ ∈ (0,1) and x ̸= y

It is easy to check that H is a convex structure on R.
Then, it is clear that the set A = {0,0.3} is H-convex, but it is not convex

because for λ = 0.5 and x = 0 and y = 0.3 we have that

λx+(1−λ )y = 0.15 ̸∈ A

As a result, the idea of H-convex sets is a generalization of the idea of a convex
set.

Taking this fact into consideration, it only makes sense to formulate a new
definition for fuzzy convexity.

Definition 1.82 [21] Let X be the universe. Assume that X is equipped with a con-
vex structure through a map H : X ×X × [0,1]→ X. Then, a fuzzy set A of X (whose
membership function is µA : X → [0,1]) is said to be an H-convex fuzzy set if for
every x,y ∈ X and every λ ∈ [0,1] it holds that µA(H(x,y,λ ))≥ min{µA(x),µA(y)}.

Convex fuzzy sets are clearly expanded by this definition. Hence, if X is a
vector space and H(x,y,λ ) = λx+(1− λ )y, we have Definition 1.70, moreover,
there is a relationship between H-convex fuzzy sets and its α-cuts.

Proposition 1.83 [21] Let X be the universe and let H be a convex structure on X.
The following statements are equivalent:

(i) A is an H-convex fuzzy set,

(ii) any α-cut of A is an H-convex crisp set.

According to this argument, the H-convexity of a fuzzy set’s α-cuts defines
any H-convex fuzzy sets.



Chapter 2

Convexity of hesitant fuzzy sets

In this chapter, we are going to show two different proposals for defining the con-
vexity of a hesitant fuzzy set. The first one is based on aggregation functions [38],
whereas a totally different approach is considered in the second one. Both of them
are based on the revision done in the related literature, as can be seen in the follow-
ing section.

2.1 Overview of convexity of hesitant fuzzy sets

Several different approaches to the idea of convexity of hesitant fuzzy sets have
been considered in the literature. This chapter starts with the introduction of the
most relevant since this will be the starting point for the new proposal given here.

The first approach was given by Rasihd and Beg [65]. An important step, in
this case, was to deal with the uncertainty associated with any membership degree.
Thus, they considered α-cuts as a good way to solve this problem. More precisely,
they started by suggesting a definition for the α-cuts of a hesitant fuzzy set based
on the score function which is, in fact, an aggregation function.

Definition 2.1 [65] Let X be a universe, let A be a hesitant fuzzy set defined on X,
let s be the score function in T HFS(X) and let α be a number in the interval (0,1].
The crisp subset of X defined by

Aα = {x ∈ X : s(hA(x))≥ α}

59
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is said to be the α-cut (level set) of the hesitant fuzzy set A.

Hence, they defined convexity using the score function given in Definition 1.23.

Definition 2.2 [65] Let (X ,+, ·) be a vector space and let s be the score function in
T HFS(X). A hesitant fuzzy set A on the universe X is said to be convex if it holds,
for any x,y ∈ X and any λ ∈ [0,1], that

s(hA(λx+(1−λ )y))≥ s(λ ⊙hA(x)⊕ (1−λ )⊙hA(y))

where ⊕ and ⊙ are the operations considered in Definition 1.56 and − is the usual
subtraction in the real line.

Definition 2.2 has at least two drawbacks:

1. It cannot be considered when the universe X is not a vector space since the
addition and scalar multiplication could be not defined.

2. It has not an appropriate behaviour with respect to the level sets, that is, it is
not cut-consistent. The reason is that even in the case that all the level sets of
a hesitant fuzzy set are convex, the set may be not convex.

Due to its importance, the second drawback is illustrated in a detailed way in
the following example.

Example 2.3 Let X be the real line with the usual addition and multiplication on
R. Let A be the hesitant fuzzy set on X given by

hA(x) =

{
{0.2,0.25,0,27} if x ≤ 0
{0.3,0.35,0.4} otherwise

As s({0.2,0.25,0,27}) = 0.24 and s({0.3,0.35,0.4}) = 0.35, the α-cuts are:

• If 0 < α ≤ 0.24:

Aα = {x ∈ X : s(hA(x))≥ α}= R

• If 0.24 < α ≤ 0.35

Aα = {x ∈ X : s(hA(x))≥ α}= (0,∞)
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• If 0.35 < α ≤ 1
Aα = {x ∈ X : s(hA(x))≥ α}= /0

Thus, it is clear that any level set of A is a convex set of the real line.

However, if we consider λ = 0.5, x = −5 and y = 3 then we have that 0.5x+
(1−0.5)y =−1. Thus,

hA(0.5x+(1−0.5)y) = h(−1) = {0.2,0.25,0,27}

and therefore
s(hA(0.5x+(1−0.5)y)) = 0.24

On the other hand,

0.5⊙hA(x) = {0.1056,0.1340,0.1456}

and
(1−0.5)⊙hA(y) = {0.1633,0.1938,0.2254}

Hence 0.5⊙ hA(x)⊕ (1− 0.5)⊙ hA(y) = {0.2517,0.2789,0.3072, 0.2754, 0.3018,
0.3292, 0.2852,0.3112,0.3382}. Thus,

s(λ ⊙hA(x)⊕ (1−λ )⊙hA(y)) = 0.2976

and therefore s(hA(0.5x+(1−0.5)y)) < s(λ ⊙hA(x)⊕ (1−λ )⊙hA(y)) that is, A
is not a convex hesitant fuzzy set with respect to Definition 2.2.

As a result, the initial Rashid and Beg concept of convexity was changed by
themselves.

Definition 2.4 [65] Let (X ,+, ·) be a vector space and let s be the score function
in T HFS(X). A hesitant fuzzy set A on the universe X is said to be quasi-convex if
it holds, for any x,y ∈ X and any λ ∈ [0,1], that

s(hA(λx+(1−λ )y))≥ min{s(hA(x)),s(hA(y))}

The quasi-convexity is cut-consistent, that is, this concept has the cutworthy
property, as follows from the following proposition.
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Proposition 2.5 [65] Let (X ,+, ·) be a vector space and let A be a hesitant fuzzy
set on T HFS(X). The followings statements are equivalent:

1. A is a quasi-convex hesitant fuzzy set.

2. Any α-cut of A is a convex crisp set.

Thus, the second drawback of the initial definition is now solved. Moreover,
we can see that quasi-convexity is a generalization of convexity.

Theorem 2.6 [65] Let (X ,+, ·) be a vector space and let A be a hesitant fuzzy set
on T HFS(X). If A is a convex hesitant fuzzy set, then A is a quasi-convex hesitant
fuzzy set.

According to this theory, every convex hesitant fuzzy set is also a quasi-convex
hesitant fuzzy set. The opposite, however, is not true. Due to Proposition 2.5,
Example 2.3 shows that A is a quasi-convex hesitant fuzzy set since the level sets
are convex sets of the real line. However, we could see in this example that it is not
a convex hesitant fuzzy set.

The second weakness in Definition 2.2 may also be solved if a convex structure
is used to extend the idea of convexity, even in the case it is not a vector space.

Definition 2.7 [65] Let X be the universe. Let H be a convex structure on X. A
hesitant fuzzy set A in X is said to be an H-convex hesitant fuzzy set if for all x,y∈X ,

and λ ∈ [0,1] it holds that

s(hA(H(x,y,λ )))≥ min{s(hA(x)),s(hA(y))}

This definition also fulfills the cutworthy approach, as it was proven in the next
proposition.

Proposition 2.8 [65] Let X be a universe and let H be a convex structure on X.
Then the following statements are equivalent:

1. A is an H-convex hesitant fuzzy set.

2. Any α-cut of A is an H-convex crisp set.

Rashid and Beg put up this theory in [65], but it can be investigated in various
ways. We would get new results if we choose an aggregation function other than
the score. We will analyze this subject in the section that follows.
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2.2 Aggregation functions in convexity of hesitant
fuzzy sets

In the previous section, the different values of the membership function at any point
are summarized by means of the score function. This is, in fact, the arithmetic mean
of these values. Thus, along this section, a more general approach is considered,
based on aggregation functions. Of course, this proposal has to be coherent with
the previous studies and, in particular, to avoid the two drawbacks of some of them:
only vector spaces can be considered as referential and not cut-consistent.

Moreover, an extra property will be required. Thus, we are interested in a
definition that guarantees the convexity of the intersection of two convex hesitant
fuzzy sets. In this section, we will use Definition 1.46 proposed by Torra[76] for the
intersection of hesitant fuzzy sets. It is defined as the membership values in either
of the two sets for this point that are lower than or equal to the lowest of the two
maximums. Some partial results on this topic were published in [38, 41].

According to the traditional concept of convexity, we should take into account
that every intermediate point is actually a membership degree that must be at least as
high as the membership degree at which we are confident it is at the extreme points.
Nevertheless, as the membership value for hesitant fuzzy sets can be a collection of
values, we will aggregate them using an aggregation function before checking the
earlier requirement.

Definition 2.9 Let X be an ordered set, let A be a hesitant fuzzy set on X and let
A be an aggregation function. A is said to be A -convex, if for each x,y,z ∈ X with
x < y < z it follows that

A (hA(y))≥ min{A (hA(x)),A (hA(z))}

It is clear that this definition only makes sense if the ordered set has at least
three ordered elements, so this is the case we will consider by default in this section.

In order to verify the cut-consistency of this definition, we need to consider a
concept of α-level set based on the same ideas.
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Definition 2.10 Let X be any referential, let A be a hesitant fuzzy set on X and let
A be an aggregation function. For any α ∈ (0,1], we define the A −α-level set of
A, or simply α-level set when there is no ambiguity, as follows:

AA
α = {x ∈ X : α ≤ A (hA(x))}

It is possible to find an equivalent between convex hesitant fuzzy sets and the
crisp convexity of the α-level sets as we show in the following result.

Proposition 2.11 Let X be a totally ordered set, let A be a hesitant fuzzy set on X
and let A be an aggregation function. A is a A -convex if and only if AA

α are convex
crisp sets for all α ∈ (0,1].

Proof: Let us consider x,y,z ∈ X such that x < y < z.
If x ∈ AA

α and z ∈ AA
α , then α ≤ A (hA(x)) and α ≤ A (hA(z)). Consequently,

as A is convex, we have min{A (hA(x)),A (hA(z))} ≤ A (hA(y)). For this reason,
α ≤ A (hA(y)) and so y ∈ AA

α . Thus AA
α is a convex crisp set.

On the other hand, we can take c = min{A (hA(x)),A (hA(z))} ∈ [0,1]. Then,
x,z ∈ AA

c . As AA
c is a convex crisp set, we have that y ∈ AA

c and so min{A (hA(x)),
A (hA(z))} ≤ A (hA(y)).

One of the advantages of α-cuts or level sets of fuzzy sets is that given some
particular level sets, we can construct one unique set from them. This allows us to
work with level sets instead of the original sets which could be easier depending
on the context. The main drawback of using Proposition 2.11 is that given some
α-level sets it is not possible to be sure about the set they came from. For instance,
if we are using the arithmetic mean M as the aggregation function, X = {x} and
A = ⟨x,{0,1}⟩, B = ⟨x,{0,0.5,1}⟩ or C = ⟨x,{0,0.1,0.2,0.8,0.9,1}⟩, then AM

α =

BM
α = CM

α ,∀α ∈ (0,1], although they are clearly different sets. In Section 2.3 we
will define another kind of α-level set that would work properly with our purposes
of reconstruction of the set, but the considered here is the most coherent proposal for
the level set taking into account the ideas behind the concept of convexity managed
in this section.

The major goal of this part of our research is to examine how the A -convexity
of the intersection is affected by the aggregation function A . For the purposes of
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our study, we have divided it in some circumstances based on the characteristics of
the aggregation function A , as follows:

1. A is lower than the minimum at some point

2. A is greater than the maximum at some point

3. A is equal to the maximum or the minimum

4. A is between the maximum and the minimum but it is different from both

2.2.1 The case under the minimum

The first situation is when there exists at least one point (α,β ) ∈ [0,1]2 that fulfills
A (α,β )< min{α,β}.

It is well known that t-norms are aggregation functions such that T (α,β ) ≤
min{α,β}, ∀(α,β ) ∈ [0,1]2. Let us check the next case to verify if a concrete
t-norm (product t-norm) satisfies that convexity is conserved with the intersection.

Example 2.12 Let X = {x,y,z} be the referential with x < y < z and let TP the
product t-norm, that is, TP(α,β ) = α ·β ,∀α,β ∈ [0,1]. Let A and B be two hesitant
fuzzy set defined by:

hA(x) = {0.5},∀x ∈ X

hB(x) = hB(z) = {0.1,0.6}, hB(y) = {0.2,0.3,1}

Then the intersection is given by:

hA∩B(x) = hA∩B(z) = {0.1,0.5}

and
hA∩B(y) = {0.2,0.3,0.5}

In Figure 2.1 we can see a graphical representation of A, B and A∩B.
Let us check if hA and hB are TP − convex:

TP(hA(x)) = TP(hA(y)) = TP(hA(z)) = 0.5

TP(hB(x)) = TP(hB(z)) = 0.1 ·0.6 = 0.06
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Figure 2.1: Graphical representation of the TP-intersection.

and
TP(hB(y)) = 0.2 ·0.3 ·1 = 0.06

by applying the associativity of the t-norm.
So, it is clear that A and B are TP-convex.
However,

TP(hA∩B(x)) = TP(hA∩B(z)) = 0.1 ·0.5 = 0.05

and
TP(hA∩B(y)) = 0.2 ·0.3 ·0.5 = 0.03

Thus,
TP(hA∩B(y))< min{TP(hA∩B(x)),TP(hA∩B(z))}

that is, A∩B is not TP-convex.

We have seen a negative behaviour for a specific t-norm and therefore we know
that the convexity is not preserved in general for any t-norm or for any aggregation
function when it is below the minimum. In fact, we can prove a general result for
any aggregation function taking a value below the minimum.

Proposition 2.13 Let X be an ordered set. If A is an aggregation function such
that there is at least one pair of mutually distinct elements (α1,α2) ∈ [0,1]2 for
which A (α1,α2) < min{α1,α2}, then A does not preserve A -convexity for the
intersection.
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Proof: Let x,y,z be three elements in X such that x < y < z. If we denote by β the
value of A (α1,α2) and we consider the hesitant fuzzy sets A and B defined by,

hA(x) = hA(z) = {α1,α2},hA(y) = {β}

hB(x) = hB(y) = hB(z) = {min{α1,α2}}

It is immediate to prove that both A and B are A -convex.
On the other hand, their intersection is the hesitant fuzzy set defined by

hA∩B(x) = hA∩B(z) = {min{α1,α2}},hA∩B(y) = {β}

Then

A (hA∩B(y)) = β < min{A (hA∩B(x)),A (hA∩B(z))}=

min{min{α1,α2},min{α1,α2}}= min{α1,α2}

Thus, the intersection is not A -convex and therefore, it is possible to find a
counterexample for any aggregation function lower than the minimum at least at
one point.

This proof could be illustrated in Figure 2.2, where we suppose that α1 < α2.

α1

β

α2

1

x y z
A is A -convex

α1

β

α2

1

x y z
B is A -convex

α1

β

α2

1

x y z
A∩B is not A -convex

Figure 2.2: Graphical representation of the general counterexample considered at
the proof of Proposition 2.13.
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Corollary 2.14 Let X be an ordered set. If A is a conjunctive aggregation different
from the minimum, then A does not preserve A -convexity for the intersection.

Hence, any t-norm other than the minimum is not a suitable option for defining
the convexity when using Definition 2.9.

2.2.2 The case over the maximum

Then, we examined what occurs when there exists a point (α,β ) ∈ [0,1]2 such that
A (α,β )> max{α,β}.

Once more, we begin with a particular example, to study if the convexity is
properly preserved for the intersection, at least for a particular case of aggregation
functions fulfilling this property. In particular, we are going to consider the case of
t-conorms since any t-conorm S is known to be an aggregation function that satisfies
the condition that S(α,β )≥ max{α,β}, ∀(α,β ) ∈ [0,1]2.

Example 2.15 Let X = {x,y,z} be the referential with x< y< z and the Lukasiewicz
t-conorm:

SL(α,β ) = min{α +β ,1}, ∀α,β ∈ [0,1].

Let A and B be two hesitant fuzzy set defined as follows

hA(x) = {0.1,0.8},∀x ∈ X

hB(x) =
{

0.8− |x|
5
,0.9− |x|

5

}
,∀x ∈ X

Thus the intersection is

hA∩B(x) = hA∩B(z) = {0.1,0.6,0.7}

and
hA∩B(y) = {0.1,0.8}

A, B and A∩B are graphically represented in Figure 2.3.
Thus,

SL(hA(x)) = SL(hA(y)) = SL(hA(z)) = 0.9
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Figure 2.3: Two SL-convex hesitant fuzzy sets whose intersection is not SL-convex.

SL(hB(x)) = SL(hB(z)) = min{0.6+0.7,1}= 1

and
SL(hB(y)) = min{0.8+0.9,1}= 1

Then, it is clear that A and B are SL-convex. Nevertheless, A∩B is not SL-convex,
since

SL(hA∩B(x)) = SL(hA∩B(z)) = min{min{0.1+0.6,1}+0.7,1}= 1

and
SL(hA∩B(y)) = min{0.8+0.1,1}= 0.9

We know now that there is at least an aggregation function assuming a value
over the maximum such that the convexity is not preserved for the intersection. This
is the case of the Lukasievicz t-conorm.

At this point, we also check the behaviour of another important t-conorm dif-
ferent from the maximum, which is called the product t-conorm or probabilistic
sum.

Example 2.16 Let us consider again that X = {x,y,z} with x < y < z. Let A and B
be two hesitant fuzzy sets considered in Example 2.15, where the intersection of A
and B was also obtained. If we consider the product t-conorm

SP(α,β ) = α +β −α ·β , ∀α,β ∈ [0,1]
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we have that A and B are SP − convex, since:

SP(hA(x)) = SP(hA(y)) = SP(hA(z)) = 0.8+0.1−0.8 ·0.1 = 0.82

SP(hB(x)) = SP(hB(z)) = 0.6+0.7−0.6 ·0.7 = 0.88

and
SP(hB(y)) = 0.8+0.9−0.8 ·0.9 = 0.98

On the contrary, A∩B is not SP − convex, since

SP(hA∩B(x)) = SP(0.1+0.6−0.1 ·0.6,0.7) = SP(0.64,0.7) = 0.892,

and
SP(hA∩B(z)) = SP(hA∩B(x)) = 0.892,

but
SP(hA∩B(y)) = 0.1+0.8−0.1 ·0.8 = 0.82.

These two counterexamples allow us to confirm that the required property is
not fulfilled for the most important t-conorms different from the maximum. In fact,
we will prove in the next result that the answer is negative for any aggregation
function assuming at least one value over the maximum. For this purpose, we will
generalize the previous counterexamples.

Proposition 2.17 Let X be an ordered set. If A is an aggregation function such that
there exists (α1,α2) ∈ [0,1]2 such that A (α1,α2)> max{α1,α2}, then A does not
preserve A -convexity for the intersection.

Proof: Let x,y,z be three elements in X such that x < y < z and let us denote by
β the value A (α1,α2). If we consider two hesitant fuzzy sets A and B defined as
follows:

hA(x) = hA(z) = {α1,α2},hA(y) = {β}

hB(x) = hB(y) = hB(z) = {max{α1,α2}}
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It is easy to check that both A and B are A -convex. Their intersection is the
hesitant fuzzy set determined by the membership function:

hA∩B(x) = hA∩B(z) = {α1,α2},hA∩B(y) = {max{α1,α2}}

A, B and their intersection are represented in Figure 2.4 for the case α1 < α2.
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Figure 2.4: Graphical representation of A, B and A∩B.

Then
A (hA∩B(y)) = A (max{α1,α2}) = max{α1,α2},

A (hA∩B(x)) = A (α1,α2) = β

and
A (hA∩B(z)) = A (hA∩B(x)) = β .

Thus, the intersection A∩B is not A -convex as

A ((hA ∩hB)(y)) = max{α1,α2}< β = min{A (hA∩B(x)),A (hA∩B(z))}.

Corollary 2.18 Let X be an ordered set. If A is a disjunctive aggregation different
from the maximum, then A does not preserve A -convexity for the intersection.

Consequently, any t-conorm other than the maximum is not a suitable option
for defining the convexity when using Definition 2.9.
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2.2.3 The case of the maximum and minimum

From the previous subsections we know that the convexity is not preserved under
intersections if it is based on an aggregation function assuming a value above the
maximum or below the minimum. Thus, we will focus on the case of aggregation
functions between these two maps, that is, the case of average functions. We will
start by studying the two extreme cases. In both we will obtain a positive behaviour.
In fact, the case of the maximum was already studied by Janis et al. [46] in 2018,
being this paper the starting point for these general studies.

Proposition 2.19 [46] Let X be an ordered set and let A and B be two hesitant fuzzy
sets on X. If A and B are max-convex, then A∩B is also a max-convex hesitant fuzzy
set.

The remaining case of the minimum was not studied previously, but it is also
possible to prove its good behaviour with respect to this property.

Proposition 2.20 Let X be an ordered set and let A and B be two hesitant fuzzy sets
on X. If A and B are min-convex, then A∩B is also a min-convex hesitant fuzzy set.

Proof: Let A and B be two min-convex hesitant fuzzy sets on X . Let x,y,z ∈ X such
that x ≤ y ≤ z. Due to the definition of intersection it is clear that:

min{(hA∩B(x)}= min{hA(x),hB(x)},∀x ∈ X

As hA is min-convex, we have that

min{hA(y)} ≥ min{min{hA(x)},min{hA(z)}}= min{hA(x),hA(z)}

and the same happens for B,

min{hB(y)} ≥ min{min{hB(x)},min{hB(z)}}= min{hB(x),hB(z)}

Thus, for A∩B, we have that

min{(hA∩B(y)}= min{hA(y),hB(y)} ≥

min{min{hA(x),hA(z)},min{hB(x),hB(z)}}=
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min{min{hA(x),hB(x)},min{hA(z),hB(z)}}=

min{min{hA∩B(x)},min{hA∩B(z)}}

and therefore, we have proven that A∩B is min-convex.

2.2.4 Averaging functions different from maximum and mini-
mum

Until now we have completely studied and characterized the behaviour of any ag-
gregation function which is conjunctive, disjunctive or mixed with respect to the
preservation of the convexity under intersections. The remaining case is the case
of the averaging functions different from maximum and minimum. Thus, we need
to study the aggregation functions that are neither min{x,y} nor max{x,y} but fall
between those two values.

We will divide our study into two parts. The case when the averaging function
is strictly increasing and the case when it is just increasing. For the first one, we
will obtain a general result. However, for the second one, there is no a common
behaviour.

The strict increasing case

We start by assuming that the aggregation functions are strictly monotonic func-
tions.

The arithmetic mean is a well-known example of a strictly increasing aggre-
gation function. Using the arithmetic mean as our aggregation function, let us just
look at an example.

Example 2.21 Let us consider that our domain would be {x,y,z} with x < y < z.
Let M be the arithmetic mean. This, in the unit square,

M (α,β ) =
α +β

2
,∀α,β ∈ [0,1]
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Let A and B be two hesitant fuzzy sets on X defined as follows:

hA(x) = hA(z) = {0.4}, hA(y) = {0.2,0.6}

hB(x) = hB(y) = hB(z) = {0.4}

It is clear that the membership function of the intersection is

hA∩B(x) = hA∩B(z) = {0.4}

and
hA∩B(y) = {0.2,0.4}

The three sets are represented in Figure 2.5.
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Figure 2.5: A, B and their intersection.

One the one hand, we have that

M (hA(x)) = M (hA(y)) = M (hA(z)) = 0.4

M (hB(x)) = M (hB(z)) = M (hB(y)) = 0.4

and therefore A and B are M -convex. However,

M (hA∩B(x)) = M (hA∩B(z)) = 0.4

and
M (hA∩B(y)) =

0.4+0.2
2

= 0.3

that is, A∩B is not M -convex.
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Therefore, we are aware that convexity is not being preserved for the intersec-
tion by the arithmetic mean. Moreover, we can prove that this negative answer can
be obtained in general for any strictly increasing aggregation function.

Proposition 2.22 Let X be an ordered set. If A is a strictly monotonic aggregation
function, then A does not preserve A -convexity under intersection.

Proof: We are considering that min{α1,α2}≤A (α1,α2)≤max{α1,α2},∀α1,α2 ∈
[0,1]. Since A is strictly, then A cannot be equal to the maximum. Then there ex-
ists α1,α2 ∈ [0,1] such that A (α1,α2) < max{α1,α2}. This implies that α1 ̸= α2

(otherwise the previous inequality is an equality since A is between minimum and
maximum). If we consider β = A (α1,α2), then β < max{α1,α2}. Thus, if we
consider x,y,z ∈ X with x < y < z and we define the hesitant fuzzy sets A and B as
follows:

hA(x) = hA(z) = {β},hA(y) = {α1,α2}

hB(x) = hB(y) = hB(z) = {β}

we have that both A and B are A -convex. Their intersection is the hesitant fuzzy
set defined by

hA∩B(x) = hA∩B(z) = {β},hA∩B(y) = {β ,min{α1,α2}}

These sets are illustrated in Figure 2.6, where we have supposed, without loss
of generality, that α1 < α2.

Although A and B are A -convex, we have that

A (hA∩B(y)) = A (min{α1,α2},β )< A (min{α1,α2},max{α1,α2})

since A is strictly increasing and β < max{α1,α2}.
Thus,

A (hA∩B(y))< A (α1,α2) = β = min{A hA∩B(x)),A (hA∩B(z)}

so, the intersection A∩B is not A -convex.
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Figure 2.6: Graphical representation of A, B and their intersection.

The non-strict increasing case

Until now, we have been able to obtain general results for all the cases of aggre-
gation functions considered. Thus, in most of them the convexity is not preserved
for the intersection, but for any conjunctive, disjunctive, mixed, strictly increasing
averaging aggregation function, the maximum and the minimum, we know when
convexity is preserved and when it is not. In the remaining case, the case of averag-
ing functions different from maximum and minimum which are not strictly mono-
tonic, there is no a general behaviour. Thus, we can obtain functions preserving the
convexity and functions that do not preserve it.

In order to obtain these examples, we will use the following result, which will
allow us to define the averaging function from a map on [0,1]2 and extend it by its
associativity.

Proposition 2.23 If A is an associative averaging function, then there exists α1,α2 ∈
[0,1] with α1 ̸=α2 such that A (α1,α2)=min{α1,α2} or A (α1,α2)=max{α1,α2}.

Proof: If there exists α1,α2 ∈ [0,1] with α1 ̸=α2 such that A (α1,α2)=min{α1,α2}
the proof is finished. Otherwise, it has to be A (α1,α2) > min{α1,α2} for any
α1,α2 ∈ [0,1] with α1 ̸=α2. Let’s suppose α1 <α2, if we denote by β =A (α1,α2),
we have that α1 < β and

A (α1,β ) = A (α1,A (α1,α2)) = A (A (α1,α1),β ) = A (α1,α2) = β
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Thus, A (α1,β ) = max{α1,β} and therefore the proof is concluded.

Thus, if A is associative and it is between minimum and maximum, it has to be
equal to max or min in at least one point, that is, it is not possible that min{α,β}<
A (α,β )< max{α,β},∀α,β ∈ [0,1].

We will use the previous result to obtain more examples where the convexity
is not preserved the convexity for the intersection, apart from the arithmetic mean.

Example 2.24 For the aggregation function generated by A 1, which is a combina-
tion between min{x,y} and max{x,y}, where:

A 1(α,β ) =

{
max{α,β} if α +β > 1
min{α,β} if α +β ≤ 1

if we consider X = {x,y,z} with x < y < z and the hesitant fuzzy set A and B defined
as:

hA(x) = hA(z) = {0.4}, hA(y) = {0.2,1}

hB(x) = hB(y) = hB(z) = {0.4}

then the intersection is
hA∩B(x) = hA∩B(z) = {0.4}

and
hA∩B(y) = {0.2,0.4}

We can see A, B and A∩B in Figure 2.7.
Since

A 1(hA(x)) = A 1(hA(z)) = 0.4, A 1(hA(y)) = 1

A 1(hB(x)) = A 1(hB(z)) = A 1(hB(y)) = 0.4

we have that A and B are A 1-convex. However, A∩B is not A 1-convex, since

A 1(hA∩B(x)) = A 1(hA∩B(z)) = 0.4

and
A 1(hA∩B(y)) = min{0.2,0.4}= 0.2
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Figure 2.7: Counterexample for A 1.

Thus, the averaging function generated by A 1 is not strictly increasing and it
does not preserve the convexity for the intersection.

Example 2.25 If we consider the aggregation function generated by:

A 2(α,β ) =


1 if α +β = 2
0.5 if 1 < α +β < 2
min{α,β} if α +β ≤ 1

we have that the hesitant fuzzy sets A and B considered at the previous example are
also A 2-convex:

A 2(hA(x)) = A 2(hA(z)) = 0.4, A 2(hA(y)) = 0.5

A 2(hB(x)) = A 2(hB(z)) = A 2(hB(y)) = 0.4

but again it does not preserve the convexity for the intersection, since A∩B is not
A 2-convex:

A 2(hA∩B(x)) = A 2(hA∩B(z)) = 0.4

and

A 2(hA∩B(y)) = min{0.2,0.4}= 0.2

Example 2.26 Finally, if we consider:
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A 3(α,β ) =

{
min{α,β} if α,β ≤ 0.5 or α,β ≥ 0.5
0.5 otherwise

the aggregation function generated by A 3 is an averaging function non-strictly
increasing. Moreover, if we consider X = {x,y,z} with x < y < z and the two typical
hesitant fuzzy set A and B over X, defined as follows:

hA(x) = hA(z) = {0.5}, hA(y) = {0.3,0.7}

hB(x) = hB(y) = hB(z) = {0.5}

we obtain that the intersection is given by

hA∩B(x) = hA∩B(z) = {0.5}

and
hA∩B(y) = {0.3,0.5}

A, B and A∩B are illustrated in Figure 2.8.
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Figure 2.8: Counterexample for A 3(x,y).

On the one hand, we have that

A 3(hA(x)) = A 3(hA(z)) = 0.5, A 3(hA(y)) = 0.5

A 3(hB(x)) = A 3(hB(z)) = A 3(hB(y)) = 0.5
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so that A and B are A 3-convex. However, A∩B is not A 3-convex, since

A 3(hA∩B(x)) = A 3(hA∩B(z)) = 0.5

and
A 3(hA∩B(y)) = min{0.3,0.5}= 0.3

And again, it does not preserve the convexity of the intersection.

At this point, after all these negative examples, we could think that it is possible
to prove a general result about the no-preservation of the convexity for this kind of
aggregation function. However, this is not true, since there are functions in this
family preserving the convexity for the intersection. One of them is shown in the
following result.

Proposition 2.27 Let X be an ordered set. If we consider the map

A 4(α,β ) =


max{α,β} if α,β ∈ [0,0.5]
min{α,β} if α,β ∈ (0.5,1]
0.5 otherwise

then it is possible to generate from it an averaging function different from the maxi-
mum and the minimum, non-strictly increasing and such the intersection of any two
A 4-convex hesitant fuzzy sets is a A 4-convex hesitant fuzzy set.

Proof: The map A 4 is illustrated at Figure 2.9.
It is clear from this representation that A 4 is increasing but not strictly. Apart

from that, from its definition, we have that A 4(0,0) = max{0,0} and A 4(1,1) =
min{1,1}. Moreover, this mapping is a nullnorm (see [12]) and it is known that
nullnorms are associative. So, it can be in a natural way extended to a mapping
A 4 : ∪n[0,1]n → [0,1], which is also an aggregation function.

By definition it is clear that min{x} ≤ A 4(x)≤ max{x} for any x ∈ ∪n[0,1]n.
Furthermore, A 4(0.7,0.2) = 0.5, so it is also clear that A 4 is different from the
minimum or the maximum.

Finally, we will show that A 4-convexity is preserved by intersections.
Let us suppose that X is an ordered set. Let A and B be A 4-convex hesitant

fuzzy sets. Let x,y,z ∈ X such that x < y < z.
The proof will be divided into three cases:
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Figure 2.9: Graphical representation of A 4.

1. The case A 4(hA∩B(y))> 0.5.

(a) If A 4(hA∩B(x))≤ 0.5 or A 4(hA∩B(z))≤ 0.5 then

min{A 4(hA∩B(x)),A 4(hA∩B(z))} ≤ 0.5 < A 4(hA∩B(y))

and therefore the condition to be A∩B A 4-convex is fulfilled in this
case.

(b) If A 4(hA∩B(x))> 0.5 and A 4(hA∩B(z))> 0.5 then, by the definition of
A 4, A 4(hA∩B(x)) = min{hA∩B(x)} and A 4(hA∩B(z)) = min{hA∩B(z)}
and considering the definition of the intersection (Definition 1.46), we
have that 0.5<A 4(hA∩B(x))=min{hA∩B(x)}=min{hA(x),hB(x)} and
that 0.5 < A 4(hA∩B(z)) = min{hA∩B(z)}= min{hA(z),hB(z)}.

Then,

min{A 4(hA∩B(x)),A 4(hA∩B(z))}= min{hA(x),hB(x),hA(z),hB(z)}=

min{min{min{hA(x)},min{hA(z)}},min{min{hB(x)},min{hB(z)}}}.

As we noticed that 0.5<min{hA(x),hB(x)} and 0.5<min{hA(z),hB(z)},
by definition of A 4, we have that

A 4(hA(x)) = min{hA(x)} A 4(hA(z)) = min{hA(z)}
A 4(hB(x)) = min{hB(x)} A 4(hB(z)) = min{hB(z)}



82 CHAPTER 2. CONVEXITY OF HESITANT FUZZY SETS

Then,

min{A 4(hA∩B(x)),A 4(hA∩B(z))}=

min{min{A 4(hA(x)),A 4(hA(z))},min{A 4(hB(x)),A 4(hB(z))}}.

But, by the A 4-convexity of A and B we have that

min{A 4(hA∩B(x)),A 4(hA∩B(z))} ≤ min{A 4(hA(y)),A 4(hB(y))}

On the other hand, A 4(hA∩B(y))> 0.5, we also have that A 4(hA∩B(y))=
min{hA∩B(y)}=min{hA(y),hB(y)}=min{min{hA(y)},min{hB(y)}}=
min{A 4(hA(y)),A 4(hB(y))}.

Thus, we have proven that

min{A 4(hA∩B(x)),A 4(hA∩B(z))} ≤ A 4(hA∩B(y)).

2. If A 4(hA∩B(y))< 0.5, then A 4(hA∩B(y)) = max{hA∩B(y)}.

By the definition of the intersection, we have max{hA∩B(y)} = max{hA(y)}
or max{hA∩B(y)} = max{hB(y)}. Suppose we have the first case (the proof
for the second case it totally analogous). Since max{hA(y)} < 0.5, then
A 4(hA(y)) = max{hA(y)}. By applying that A is a A 4-convex hesitant fuzzy
set, we have A 4(hA(x)) ≤ A 4(hA(y)) or A 4(hA(z)) ≤ A 4(hA(y)). Let us
consider that we have the first case (again the second case is analogous).
Thus, A 4(hA(x)) < 0.5 and then A 4(hA(x)) = max{hA(x)} < 0.5. By con-
sidering again the definition of the intersection, we see that max{hA∩B(x)} ≤
max{hA(x)}< 0.5 and therefore A 4(hA∩B(x)) = max{hA∩B(x)}. Now, if we
join the above inequalities and equalities, we have:

A 4(hA∩B(x)) = max{hA∩B(x)} ≤ max{hA(x)}= A 4(hA(x))≤

A 4(hA(y)) = max{hA∩B(y)}= A 4(hA∩B(y))

and then

A 4(hA∩B(y))≥ min{A 4(hA∩B(x)),A 4(hA∩B(z))}.
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3. The case A 4(hA∩B(y)) = 0.5.

If A 4(hA∩B(x)) ≤ 0.5 or A 4(hA∩B(z)) ≤ 0.5, then the proof is trivial. Thus,
we will consider that A 4(hA∩B(x)) > 0.5 and A 4(hA∩B(z)) > 0.5. In that
case,

A 4(hA∩B(x)) = min{hA∩B(x)}= min{hA(x),hB(x)}> 0.5

and

A 4(hA∩B(z)) = min{hA∩B(z)}= min{hA(z),hB(z)}> 0.5

Then

min{hA(x)},min{hA(z)},min{hB(x)},min{hB(z)}> 0.5

and therefore A 4(hA(x)) = min{hA(x)}> 0.5 and similarly we prove that

A 4(hA(z)),A 4(hB(x)),A 4(hB(z))> 0.5.

As A and B are A 4-convex, then A 4(hA(y)) > 0.5 and A 4(hB(y)) > 0.5.
Then, min{hA(y),hB(y)}> 0.5 and therefore A 4(hA∩B(y))=min{hA∩B(y)}>
0.5 which is a contradiction, so we can assure that A 4(hA∩B(x)) ≤ 0.5 or
A 4(hA∩B(z))≤ 0.5 and therefore

A 4(hA∩B(y)) = 0.5 ≥ min{A 4(hA∩B(x)),A 4(hA∩B(z))}.

Thus, we have proven that A∩B is A 4-convex.

Note that in fact any nullnorm and its extensions could be used in the previous
demonstration.

As all four cases are studied, we know the behaviour of the different aggre-
gation functions with respect to the preservation of convexity under intersections.
Now we can say that only minimum, maximum and some specific aggregation func-
tions between them are appropriate to define convexity for hesitant fuzzy sets.
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2.3 Convexity of hesitant fuzzy sets without using ag-
gregation functions

In this section we show the second approach of convexity for hesitant fuzzy sets.
The problem when using aggregation functions is that one can find one result com-
ing from different inputs. This is a clear summarization of the information which
allows identifying any membership value with a number. Thus, any element in⋃
n∈N

[0,1]n is mapped into an element in [0,1] and we have to deal with numbers in

the real line, where we have a lot of known good properties. However, as we com-
mented previously, this is an important lack of information. We will try to solve
this problem by considering a different approach for the convexity of hesitant fuzzy
sets. Now we will deal with the original membership function and no fusion of the
values will be done. Thus, we have to manage elements in

⋃
n∈N

[0,1]n and we have

to order them since it is an essential step when working with convexity. Therefore,
the orders in H considered in Section 1.2.1 will be essential in this approach.

2.3.1 Operations for hesitant fuzzy sets based on orders in H

It is clear that we are now considering a different point of view for dealing with
hesitant fuzzy sets. Taking into account this, we can use this approach as well as the
considered orders to redefine the main operations. More precisely, we will propose
a new definition of the intersection and union of hesitant fuzzy sets and define the
idea of level sets. For the study of convexity, the intersection and level sets of
hesitant fuzzy sets are crucial concepts, and the union is required to understand the
idea of a level set.

Intersection

First, we would like to recall the classical notion of intersection. For crisp sets, the
intersection of two sets A and B is the largest set contained in A and B. Thus, the
intersection is closely related to the content between sets and a definition for this
operation for hesitant fuzzy sets is required. Taking into account that if µA and µB
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are fuzzy sets then µA is contained in µB if and only if µA(x)≤ µB(x) for all x ∈ X ,
it is clear that we can follow a similar reasoning for the case of hesitant fuzzy sets
based on orders for typical hesitant fuzzy elements. Thus,

Definition 2.28 Let A and B be two hesitant fuzzy sets in X. Let us consider an
order ⊴o in H. It is said that A is o-content in B, and it is denoted by A ⊆o B, if and
only if A(x)⊴o B(x) for any x ∈ X.

It is immediate to prove that ⊆o is an order in T HFS(X), which is not a total
order, even in the case ⊴o so is. It is also clear that Definition 1.46 proposed by
Torra does not fulfill, in general, that it is the largest set contained in A and B. Then
we propose the following definition.

Definition 2.29 Let A and B be two hesitant fuzzy sets in X. Let us consider an
order ⊴o in H. The o-intersection of A and B, which is denoted by A∩o B, is the
largest hesitant fuzzy sets o-contained in A and B.

Under this definition, we tried to collect the main ideas for the intersection of
classical sets. An equivalent definition is obtained from the following proposition
in the case the order is total. It is in general more useful for practical cases.

Proposition 2.30 Let ⊴o be a total order on H. For any A,B ∈ T HFS(X), the o-
intersection of A and B is the hesitant fuzzy set whose membership function assumes
the value mino{hA(x),hB(x)}, for any x ∈ X, where mino denotes the minimum w.r.t.
the order ⊴o.

Proof: If we denote by H the hesitant fuzzy set with this membership function, it is
clear that

hH(x) =

{
hA(x) if hA(x)⊴o hB(x),
hB(x) if hB(x)⊴o hA(x).

This set is obviously a hesitant fuzzy set. Thus, we know that hH(x) = hA(x) if
hA(x)⊴o hB(x) and hH(x) = hB(x) if hB(x)⊴o hA(x). The fact that hH(x)⊴o hA(x)
and hH(x)⊴o hB(x) for each x ∈ X is true since ⊴o is transitive. Therefore H ⊆o A
and H ⊆o B.
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Additionally, if we take into account a set C ∈ T HFS(X) with C ⊆o A and
C ⊆o B, thus for each x ∈ X , since there are no incomparable items under ⊴o, we
get two possibilities:

a) If hA(x)⊴o hB(x), then hH(x) = hA(x). But, hC(x)⊴o hA(x) = hH(x).

b) If hB(x)⊴o hA(x), then hH(x) = hB(x). But, hC(x)⊴o hB(x) = hH(x).

So, for both cases, we arrive at the conclusion that hC(x)⊴o hH(x) and thus C ⊆o H.
As a result, H is the largest hesitant fuzzy set which is o-included in A and B

and that implies it is their o-intersection.

Example 2.31 Let A, B and X be the sets defined in Example 1.21 and let us con-
sider the lexicographical order type 1.

The ⊴Lex1-intersection of A and B is obtained as follows:

• For x= 0, we have that hA∩Lex1B(0)=minLex1{hA(0),hB(0)}=minLex1{{0.25,
0.5},{1/e}}= {0.25,0.5} as it exists i ∈ {1} such that hA(0)1 < hB(0)1.

• For x= 0.5, we have that hA∩Lex1B(0.5)=minLex1{hA(0.5),hB(0.5)}=min{{0},
{1/

√
e}}= {0}.

• For x = 1, we have that hA∩Lex1B(1) = minLex1{hA(1),hB(1)}= minLex1{{0.2,
0.4,0.6,0.8},{1}}= {0.2,0.4,0.6,0.8}.

Hence,

A∩Lex1 B = {⟨0,{0.25,0.5}⟩,⟨0.5,{0}⟩,⟨1,{0.2,0.4,0.6,0.8}⟩}

It is represented in Figure 2.10 and it is clear that it is different that the inter-
sections obtained in Examples 1.47 and 1.49.

Lexicographical orders are particular examples of admissible orders, which
are total orders refining the lattice order. It should be noticed that we ask for a total
order because if we use a partial order, the intersection can not be properly defined
as we can see in the following example.
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Figure 2.10: Lex1-intersection of A and B.

Example 2.32 Let us consider that X = {x} and the hesitant fuzzy sets A and B in
X are defined by A = {⟨x,{0,0.2,0.8,1}⟩} and B = {⟨x,{0,0.1,0.9,1}⟩}.

If we use the minimum score function, then Smin(hA(0)) = 0 = Smin(hB(0)) and
therefore hA(x) ⊴min hB(x) and hB(x) ⊴min hA(x), but hA(x) ̸= hB(x). Thus, as the
relation ⊴min is just a preorder, and therefore it is not symmetric, we can not decide
which one is bigger so the intersection could be any of them and it is not properly
defined.

In fact, the problem could remain when the relation is an order, but it is not a
total order. For instance, if we consider the lattice order ⊴Lo, taking into account
the definition of intersection given in Definition 2.29, we know that, in this example,
hA(x) and hB(x) are not comparable and therefore, we cannot obtain the minimum
of both elements. It could be possible to consider the infimum instead of the mini-
mum, in this case it would be hC(x) = {0,0.1,0.8,1}, however, we can not always
assure the existence of the infimum as we need a lower bounded set to guarantee it.
This happens in this case, since the lattice order generates a lattice. Really this is
the reason for the name given to this order.

Union

If the lowest set that includes both sets is the definition of the union of two sets,
then there is again a different interpretation of the union for each order we use in
T HFS(X). As the union would be a useful tool for the following item, we can
thus do a research similar to the one given for the intersection. It is also clear that
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Definition 1.50 proposed by Torra does not fulfill in general that it is the smallest
set containing A and B. Then we propose the following definition of the union.

Definition 2.33 Let A,B ∈ T HFS(X) and let ⊴o be an order in H. We define the
o-union of A and B, denoted by A∪o B, as the smallest hesitant fuzzy set such that A
and B are o-contained in it.

In an analogous way to the intersection, we will only consider total orders.

Proposition 2.34 Let ⊴o be a total order on H. For any A,B ∈ T HFS(X), the o-
union of A and B is the hesitant fuzzy set whose membership function, at any point
x ∈ X, is maxo{hA(x),hB(x)}, for any x ∈ X, where maxo denotes the maximum
w.r.t. the order ⊴o.

Proof: If we consider

hH(x) = maxo{hA(x),hB(x)}=

{
hB(x) if hA(x)⊴o hB(x),
hA(x) if hB(x)⊴o hA(x).

it is clear that this is the membership function of a hesitant fuzzy set H, since ⊴o is
a total order and it is clear that H is well-defined, since hA(x)⊴o hB(x) or hB(x)⊴o

hA(x), for all x ∈ X .
By definition, it is obvious that A ⊆o H and B ⊆o H.
Lastly, if we assume that there exists a hesitant fuzzy set C ∈ T HFS(X) such

that A ⊆o C and B ⊆o C, then hA(x)⊴o hC(x) and hB(x)⊴o hC(x), for all x ∈ X . By
the transitivity of ⊴o, it is immediate that hH(x) ⊴o hC(x) and therefore H ⊆o C.
Thus, H is the smallest hesitant fuzzy set o-containing A and B.

Example 2.35 In Figure 2.11, it is possible to find the Lex1-union of the hesitant
fuzzy sets considered in Example 1.21.

Level sets of hesitant fuzzy sets

An α-cut or a level set is one of the most crucial ideas in fuzzy sets, according to
Klir [49]. In this section, we provide an appropriate definition of a level set for hes-
itant fuzzy set taking into account the criterion of avoiding the loss of information
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Figure 2.11: Lex1-union of A and B.

by fusing the values of the membership function, since the ones considered in the
previous chapter were based on that idea and, therefore, are not appropriate in this
case.

Definition 2.36 Let ⊴o be an order on H. For any A ∈ T HFS(X) and for any
α ∈H, we define the α-level sets of A w.r.t. the order ⊴o as follows:

Ao
α = {x ∈ X : α ⊴o hA(x)}

It is indeed remarkable that if we employ a different order, we would get dif-
ferent level sets because the definition varies depending on the order we choose.

Example 2.37 Let X = {x,y,z}. Let us consider A ∈ HFS(X) defined as:

A = {⟨x,{0.3}⟩,⟨y,{0.5,0.6}⟩,⟨z,{0.4,0.7,0.8}⟩}

We have calculated some level sets of this set for different orders in Table 2.1.

Order \ Level (α) {0.3} {0.5,0.6} {0.4,0.7,0.8} {0.4,0.6}
Lexicographical type 1 {x,y,z} {y} {y,z} {y,z}
Lexicographical type 2 {x,y,z} {y,z} {z} {y,z}

Table 2.1: Level sets for different orders.
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Based on this example, we can notice there could be some relations between
level sets.

Proposition 2.38 If ⊴1 and ⊴2 are orders in H such that a ⊴1 b implies a ⊴2 b,
then for any A ∈ T HFS(X) and any α ∈H we have that A1

α ⊆ A2
α .

Proof: Since A1
α = {x ∈ X : α ⊴1 hA(x)} and A2

α = {x ∈ X : α ⊴2 hA(x)}, it is
immediate that A1

α ⊆ A2
α .

Let us take a quick look at some of the characteristics that these level sets
satisfy for a fixed order.

Proposition 2.39 Let ⊴o be an order on H. For any A,B ∈ T HFS(X) and any
α,β ∈H, we have that:

i) If α ⊴o β , then Ao
β
⊆ Ao

α .

ii) A ⊆o B ⇔ Ao
α ⊆ Bo

α for any α ∈H.

iii) (A∩o B)o
α ⊆ Ao

α ∩ Bo
α . Moreover, if ⊴o is a total order, then (A∩o B)o

α =

Ao
α ∩Bo

α .

iv) Ao
α ∪Bo

α ⊆o (A∪o B)o
α . Therfore, if ⊴o is a total order, then Ao

α ∪Bo
α = (A∪o

B)o
α .

Proof: Let us consider A,B ∈ T HFS(X) and α,β ∈H.

i) If α ⊴o β , then it is immediate by definition that Ao
β
⊆ Ao

α , since ⊴o is transi-
tive.

ii) If A ⊆o B then hA(x) ⊴o hB(x),∀x ∈ X . Thus, if α ⊴o hA(x), since ⊴o is
transitive, then α ⊴o hB(x) and so Ao

α = {x ∈ X : α ⊴o hA(x)} ⊆ {x ∈ X :
α ⊴o hB(x)}= Bo

α .

On the other hand, for any x ∈ X , if we use the inclusion for the level sets, we
obtain that x ∈ Ao

hA(x)
since ⊴o is reflexive, and therefore x ∈ Bo

hA(x)
. This is

equivalent to saying that hA(x)⊴o hB(x). As we have this result for all x ∈ X ,
this means that A ⊆o B.
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iii) Since A∩o B ⊆o A and A∩o B ⊆o B, by applying ii), we have that (A∩o B)o
α ⊆

Ao
α and (A∩o B)o

α ⊆ Bo
α and then (A∩o B)o

α ⊆ Ao
α ∩Bo

α .

On the other hand, if x ∈ Ao
α ∩Bo

α , then α ⊴o hA(x) and α ⊴o hB(x). Thus,
if we consider a total order, from Proposition 2.30 we obtain that hA∩B(x) =
hA(x) or hA∩B(x) = hB(x) and so α ⊴o hA∩B(x).

iv) As A ⊆o A∪o B and B ⊆o A∪o B, by applying ii), we obtain that Ao
α ⊆o (A∪o

B)o
α and Bo

α ⊆o (A∪o B)o
α . Thus, Ao

α ∪Bo
α ⊆o (A∪o B)o

α .

On the other hand, for any x∈X we obtain that hA∪oB(x)= hB(x) or hA∪oB(x)=
hB(x), by applying Proposition 2.34, as ⊴o is a total order. Therefore, if
x ∈ (A∪o B)o

α , then α ⊴o hA∪B(x) and then α ⊴o hA(x) or α ⊴o hB(x). Then,
x ∈ Ao

α ∪Bo
α .

In fuzzy sets theory, Decomposition Theorems [49] are known for allowing to
represent a fuzzy set through its α-cuts, so we would like to adapt this for hesitant
fuzzy sets. Before giving a general result, we will present it in an example.

Example 2.40 Let X = {x,y,z}. We will consider the hesitant fuzzy set A defined
in Example 3.23 and the lexicographical order type 1, where the level sets were
ALex1
{0.3} = {x,y,z}, ALex1

{0.4,0.7,0.8} = {y,z} and and ALex1
{0.5,0.6} = {z}.

If we choose the proper elements, the level sets of the hesitant fuzzy set can be
used to represent it. Now, we will obtain a hesitant fuzzy set Lex1

α A based on these
level sets whose membership function at any x ∈ X is:

hLex1
α A(x) =

{
α if x ∈ ALex1

α ,

0H otherwise.

With this procedure, we are hesitant fuzzifying the level sets, that is, we begin
with level sets (crisp sets) and then we obtain hesitant fuzzy sets.

Thus,

hLex1
{0.3}A(t) = {0.3},∀t ∈ X
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hLex1
{0.4,0.7,0.8}A(t) =

{
{0.4,0.7,0.8} if t ∈ {y,z},

0H if t = x,

and

hLex1
{0.5,0.6}A(t) =

{
{0.5,0.6} if t = z,

0H if t ∈ {x,y}.

It is immediate that the Lex1−union of these hesitant fuzzy sets is the original
set A. That is,

A = Lex1
{0.3}A∪Lex1

Lex1
{0.4,0.7,0.8}A∪Lex1

Lex1
{0.5,0.6}A

Based on this idea, we propose the following theorem:

Theorem 2.41 (Decomposition Theorem) Let ⊴o be a total order in H with least
element 0o

H. For every A ∈ T HFS(X), we have that

A = ∪o
α∈H

o
α A

where ∪o denotes the o−union and o
α A(x) = α if x ∈ Ao

α , o
α A(x) = 0o

H if x /∈ Ao
α .

Proof: Let A be any set in T HFS(X). For any x ∈ X , we have that hA(x) = β ∈H.
Then, hA(x) = o

β
A(x) and therefore hA(x)⊴o ∪o

α∈H
o

α A(x), by the definition of ∪o.

On the other hand, as ⊴o is a total order, for any x in X , there exists a βx ∈ H
such that ∪o

α∈H
o

α A(x) = o
βx

A(x).

By the definition of o
βx

A(x), we get two possible cases:

• If x /∈ Ao
βx

, then o
βo

A(x) = 0o
H ⊴o hA(x).

• If x ∈ Ao
βx

, then βx ⊴o hA(x) and so o
βx

A(x) = βx ⊴o hA(x).

So by the symmetry of the order ⊴o, we obtain that hA(x) = ∪o
α∈H

o
α A(x).

Instead of using the hesitant fuzzy set, this theorem enables us to operate with
level sets.

We will consider it in the next corollary because it is remarkable that multiple
elements could produce the same level set. If we take into account that Λ(A) is the
set of all elements that indicate various level sets of A, then there is an equivalent
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relation in X . As a result, the following result is a simplified version of the preceding
one in which just one element is taken from each class in Λ(A). It means that
instead of taking H, we consider Λ(A). For instance, in Example 3.23, Λ(A) =
{{0.3},{0.4,0.7,0.8},{0.5,0.6}}.

Corollary 2.42 Let ⊴o be a total order in H with least element 0o
H. For every

A ∈ T HFS(X), we have that

A = ∪o
α∈Λ(A)

o
α A

This is how a hesitant fuzzy set is represented without using the same level set twice.
The proof is straight from the Decomposition Theorem.

2.3.2 Convexity of hesitant fuzzy sets

In previous section we considered that a hesitant fuzzy set A on X is A -convex if
for each x < y < z in X there is A (hA(y)) ≥ min{A (hA(x)),A (hA(z))} where A

is an aggregation function. With this definition Huidobro et al. [38] were able to
characterize the cases when the convexity of two typical hesitant fuzzy sets through
intersections is preserved. However, as two different typical hesitant fuzzy elements
could have the same value for a given aggregation function while being different
sets, we think this definition is not proper and we propose the following one that can
achieve better results and we do not reduce the information about the membership
values of the hesitant fuzzy sets.

Definition 2.43 Let X be an ordered set and let ⊴o be a total order on H. A hesitant
fuzzy set A is o-convex if mino{hA(x),hA(z)} ⊴o hA(y) for any x,y,z ∈ X such that
x < y < z.

In a similar way, we can also define strict convexity.

Definition 2.44 Let X be an ordered set and let ⊴o be a total order on H. A hesitant
fuzzy set strictly A is o-convex if mino{hA(x),hA(z)}◁o hA(y), for any x,y,z ∈ X such
that x < y < z.
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Definition 2.43 is accurate, because, as the following result proves, there is an
equivalence between the convexity for a given hesitant fuzzy set and the convexity
of its level sets.

Proposition 2.45 Let X be an ordered vector space, let A ∈ T HFS(X) and let ⊴o

be a total order in H. A is an o-convex typical hesitant fuzzy set if and only if Ao
α

are convex crisp sets for all α ∈H.

Proof: Let us consider x,y,z ∈ X such that x ≤ y ≤ z.
For any α ∈H, if x ∈ Ao

α and z ∈ Ao
α , thus α ⊴o hA(x) and α ⊴o hA(z). There-

fore, since A is convex, we have mino{hA(x),hA(z)} ⊴o hA(y). By the transitivity
of ⊴o, α ⊴o hA(y) or α ⊴o hA(y) and so y ∈ Ao

α . This is true, in particular, for the
case y = λx+(1−λ )z with λ ∈ [0,1]. Thus Ao

α is a convex crisp set.
On the other hand, since ⊴o is a total order, we can consider α = mino{hA(x),

hA(z)} ∈H. Then, x,z ∈ Ao
α . As Ao

α is a convex crisp set, we have that y ∈ Ao
α and

so mino{hA(x), hA(z)}⊴o hA(y).

As we saw in Subsection 1.2.1, admissible orders are a particular case of total
orders, so they could be a good option for dealing with convexity.

Admissible orders will also be very important for the preservation of the con-
vexity for the support and the core of a hesitant fuzzy set. For the support, we could
consider the usual proposal given in Definition 1.54. But also we could think on a
natural way to define the support of a hesitant fuzzy set, which is also coherent with
the ideas for support for fuzzy sets (Definition 1.4). In fact, we will prove that both
definitions are equivalent when we manage admissible orders in H. More precisely,

Proposition 2.46 Let A be a hesitant fuzzy set in X and ⊴o an admissible order on
H. We have that

Supp(A) = {x ∈ X : hA(x) ̸= 0H}

Proof: For any x in X , we have that x ∈ Supp(A) if, and only if, max{hA(x)} ̸= 0.
As 0H = {0} and any element in H is a finite subset of [0,1], this is equivalent to
say that hA(x) ̸= 0H.
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Thus, we can generalize the definition of support to any order with a least
element, as follows:

Definition 2.47 Let A be a hesitant fuzzy set in X and ⊴o an order on H with least
element 0o

H. The support of A is defined as

Suppo(A) = {x ∈ X : hA(x) ̸= 0o
H}

In the case of admissible orders on H, we have that the least element is 0H and
therefore Definition 1.54 and Definition 2.47 are equivalent, as we have proven in
Proposition 2.46.

Also, the definition of convexity fits well with this general idea of support of a
hesitant fuzzy set as we can see in the following result.

Proposition 2.48 Let us consider the ordered vector space X, let ⊴o be a total
order on H with least element 0o

H and A ∈ T HFS(X). If A is an o-convex hesitant
fuzzy set, then the support of A is a convex crisp set.

Proof: Let A be an o-convex hesitant fuzzy set. For any x,z ∈ Suppo(A) = {x ∈ X :
hA(x) ̸= 0o

H} and any λ ∈ [0,1], we have the following cases:

• if x = z, then λx + (1− λ )z = x and it is then clear that λx + (1− λ )z ∈
Suppo(A).

• if x < z, then x ≤ λx+(1−λ )z ≤ z. Moreover, as A is an o-convex hesitant
fuzzy set, we have that

mino{hA(x),hA(z)}⊴o hA(λx+(1−λ )z)

and as 0o
H is the least element, hA(x) ̸= 0o

H and hA(z) ̸= 0o
H, we obtain that

hA(λx+(1−λ )z) ̸= 0o
H, that is, λx+(1−λ )z ∈ Suppo(A).

• the case z < x is totally analogous to the previous case.

Therefore, Suppo(A) is a crisp convex set.

Not only with the support but also convexity works with the core of a hesitant
fuzzy set. Let us start by considering an appropriate definition of core for hesi-
tant fuzzy sets. Again, we will consider the original ideas of core of a fuzzy set
(Definition 1.5). Thus,



96 CHAPTER 2. CONVEXITY OF HESITANT FUZZY SETS

Definition 2.49 Let A be a hesitant fuzzy set in X and an order ⪯o on H with great-
est element 1o

H. The core of A, which is denoted by Coreo(A), is the crisp set

Coreo(A) = {x ∈ X : hA(x) = 1o
H}

Nevertheless, even in the case of admissible orders, this definition is not equiv-
alent to the one given at Definition 1.55, as we show in the next example.

Example 2.50 Let us consider X = {x}, any admissible order on H and the hesitant
fuzzy set A defined by hA(x) = {0.5,1}. If we consider Definition 1.55, the core of
A is X, since max{hA(x)} = 1. However, for Definition 2.49, the core of A is the
empty set, since {0.5,1} ̸= {1} and {1} is the greatest element of the order.

In the following result we show that the core is compatible with the definition
of convexity.

Proposition 2.51 Let us consider the ordered vector space X, the total order ⊴o on
H with greatest element 1o

H and A ∈ T HFS(X). If A is an o-convex hesitant fuzzy
set, then the core of A w.r.t. this order is a convex crisp set.

Proof: Let us suppose that Coreo(A) is not a convex crisp set. That is, there exists
y = λx+(1−λ )z ∈ X with λ ∈ (0,1) such that y ̸∈ Coreo(A) for x,z ∈ Coreo(A).
Then hA(y) ̸= 1o

H. As 1o
H is the greatest element, hA(y)◁o 1o

H = mino{hA(x),hA(z)},
which is a contradiction, since A is an o-convex hesitant fuzzy set. Thus, Coreo(A)
is a crisp convex set.

An interesting property of convexity is being preserved when intersections, i.e.,
the intersection of two convex hesitant fuzzy sets is also convex.

Proposition 2.52 Let X be an ordered set and let ⊴o a total order on H. If A,B ∈
T HFS(X) are o-convex (resp. strictly o-convex) and A∩o B ̸= /0, then A∩o B is also
o-convex (resp. strictly o-convex).

Proof: Let x, y, z in X with x < y < z.
If hA(y) ⊴o hB(y), by Proposition 2.30 we have that hA∩oB(y) = hA(y). Since

A is o-convex (resp. strictly o-convex), hA(x) ⊴o hA(y) (resp. hA(x) ◁o hA(y)) or
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hA(z) ⊴o hA(y) (resp. hA(z) ◁o hA(y)). But by the definition of the intersection for
this order we have that hA∩oB(x)⊴o hA(x) and hA∩oB(z)⊴o hB(z). By the transitivity,
hA∩oB(x)⊴o hA(y) = hA∩oB(y) (resp. hA∩oB(x)◁o hA(y) = hA∩oB(y)) or hA∩oB(z)⊴o

hA(y) = hA∩oB(y) (resp. hA∩oB(z)◁o hA(y) = hA∩oB(y)).
The case hB(y) ⊴o hA(y) is totally analogous. Therefore, A∩o B is o-convex

(resp. strictly o-convex).

If we consider the objectives and restrictions in a decision-making process as
typical hesitant fuzzy sets, this theorem is crucial. They will also be convex at their
intersection if they are convex. When the choice is a convex hesitant fuzzy set, we
can use the following theorem to get some interesting optimization results.

Theorem 2.53 Let X be an infinite ordered set. Let ⊴o be a total order on H with
a least element.

i) If A is an o-convex hesitant fuzzy set over X and x∗ ∈ Suppo(A) is a strict local
maximizer of hA, then it is also a global maximizer of hA over Suppo(A).

ii) If A is a strictly o-convex hesitant fuzzy set over X and x∗ ∈ Suppo(A) is a
local maximizer of hA, then it is also a global maximizer of hA over Suppo(A).

Proof: Suppose that x∗ ∈ Suppo(A).
If x∗ a strict local maximizer of hA, this means that there exists a neighborhood

Y such that for all x ∈ Y , we have that hA(x)◁o hA(x∗).
Let us suppose that there exists x′ ∈ Suppo(A), different from x∗, such that

hA(x∗) ⊴o hA(x′). It is clear that x′ ̸∈ Y because otherwise x∗ would not be a strict
local maximizer.

Let us consider y ∈ Y such that x′ < y < x∗ or x∗ < y < x′. If we suppose that
A is o-convex, we have that hA(x′)⊴o hA(y) or hA(x∗)⊴o hA(y). Then, if we take y
close enough to x∗, that is, y ∈ Y and y ̸= x∗, that contradicts hA(y)◁o hA(x∗).

On the other hand, if x∗ is just a local maximizer of hA, then there is a neighbor-
hood Y where hA(y) ⊴o hA(x∗),∀y ∈ Y . Let us assume that there exists x′ a global
maximizer such that hA(x∗) ⊴o hA(x′). If we consider that A is strictly o-convex,
we get hA(x∗) ⊴o hA(x′) ◁o hA(y) or hA(x∗) ◁o hA(y), so hA(x∗) ◁o hA(y) for all the
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points y between x′ and x∗. If we pick y close enough to x∗, that is y ∈ Y , there is a
contradiction.

Finally, we will study the set of the points at which the membership function
attains its maximum.

Theorem 2.54 Let X be an ordered set. Let ⊴o be a total order on H with least
element. Let A be an o-convex hesitant fuzzy set over the ordered set X.

i) The set of points at which hA attains its global maximum over its support is a
convex crisp set.

ii) If A is strictly o-convex, hA attains its global maximum over Suppo(A) at no
more than one point if X is uncountable or no more than two points if X is
finite or countable.

Proof: We consider that A is an o-convex hesitant fuzzy set over X

i) Let us suppose that α is the typical hesitant fuzzy element where hA attains
its maximum value. If we construct the level set of A associated to α w.r.t.
the order ⊴o, it is a convex crisp set by Proposition 2.39 as A is an o-convex
hesitant fuzzy set, and it coincides with the set of points at which hA attains
its global maximum over Suppo(A).

ii) Let us assume that x∗,x′ ∈ Suppo(A) are two different global maximizers, that
is, hA(x) ⊴o hA(x∗) = hA(x′) for all x ∈ X . Let us suppose that x‘ < x∗ (the
case x∗ < x′ is totally analogous).

If there exists y ∈ X such that x′ < y < x∗ (this always happens in the uncount-
able case), since A is strictly convex, then hA(x∗) = hA(x′) ◁o hA(y), and that
contradicts the fact that there are two global maximizers and so the of points
at which hA attains its global maximum over Suppo(A) has no more than one
point.

If X is countable or finite and the maximizers are consecutive (otherwise we
are at the previous case), hA only has, at most, two global maximizers. Oth-
erwise, if it has three consecutive maximizers, which are denoted by x∗, x′
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and x′′, with x∗ < x′ < x′′, then hA(x∗) = hA(x′′) ◁o hA(x′) by the strictly o-
convexity of A, but this is a contradiction with the fact that x∗ and x′′ are
global maximizers.

Thus, in the finite case, we could have two consecutive global maximizers,
since we could have two points such that there is no other point between them, as
we can see at the following example.

Example 2.55 It should be noticed that if we consider X = {x1,x2,x3,x4} with x1 <

x2 < x3 < x4}, the lexicographical order type 1 on H and the hesitant fuzzy set
A = {⟨x1,{0.3}⟩, ⟨x2,{0.6}⟩, ⟨x3,{0.6}⟩,⟨x4,{0.3}⟩}, A is strictly convex but it has
two maximum points that are together. If instead of two, there are three points,
B = {⟨x1,{0.6}⟩, ⟨x2,{0.6}⟩, ⟨x3,{0.6}⟩,⟨x4,{0.3}⟩}, then B is not strictly convex
as hB(x2) ̸ ◁Lex1 min{hB(x1),hB(x3)}.

Theorems 2.53 and 2.54 can be applied to any admissible order ⊴o, since it
refines the standard partial order ⊴RH and therefore (H,⊴o) is a bounded lattice.

2.3.3 Decision-making based on hesitant fuzzy sets

Theories regarding using fuzzy sets in decision-making can be found in the litera-
ture. Bellman and Zadeh [8], for instance, worked to demonstrate how a choice can
be thought of as a collection of objectives and restrictions with symmetry between
them. Using this method, we can treat objectives and restrictions as if they were
symmetrically related notions joined together by the conjunction “and”.

It is assumed in fuzzy set theory that each element’s level of membership in a
set is known. Unfortunately, there are instances in real life where the membership
function is not completely understood. This happens very frequently in decision-
making, when any expert can provide a value for the membership function. With
this in mind, hesitant fuzzy sets are a strong and useful tool for expressing uncertain
information, as it allows the membership degree of an element to a set represented
by multiple alternative values in [0,1] (see [60]).
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In this work, we will employ the Bellman and Zadeh methodology [8], which
states that the choice D would be the intersection of all the hesitant fuzzy constraints
and goals if we were to treat the constraints and the goals as hesitant fuzzy set over
the set of alternatives, X .

A decision, in the sense of Yager and Basson [89], is the place at which all
objectives and restrictions meet. So we could reach the following definition by
using this concept as a guide.

Definition 2.56 Let X = {x1, . . . ,xn} be the set of alternatives, G1, . . . ,Gp be the set
of goals that can be expressed as hesitant fuzzy sets on the space of alternatives, and
C1, . . . ,Cm be the set of constraints that can also be expressed as hesitant fuzzy sets
on the space of alternatives. Let ⊴o be an order on H. The goals and constraints
then combine to form a decision Do, which is a hesitant fuzzy set resulting from the
intersection of the goals and the constraints, that is,

Do = G1∩o, . . .∩o Gp ∩o C1 ∩o . . .∩o Cm.

For any x ∈ X , the interpretation of D(x) might be the extent to which the
alternative x satisfies the objectives and constraints. We must choose the best option
before the decision has been made.

Since the intersection is actually an o-intersection, it follows immediately from
this definition that D directly depends on the chosen order ⊴o in H. As a result,
depending on the sequence we use, the decision D, built as the intersection of the
goals and restrictions, would alter.

In order to a better understanding, let us show the following example.

Example 2.57 A big company has to decide a new country to expand their facilities
between one of three locations x1, x2 and x3. They would like to choose a place that
reduces the cost of real estate, G, and is near stores, C1. Let X = {x1,x2,x3}. In
this case, there is a committee of experts that evaluates several aspects, so hesitant
fuzzy set could be a good option to model it. Let us assume that the membership
grades of the hesitant fuzzy goal G is

G = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.8,1}⟩,⟨x3,{0.6,0.7,0.8}⟩}
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where they measure the electricity, the rent and the water prize; and the membership
function of the hesitant fuzzy constraint C1 is

C1 = {⟨x1,{0.5,0.6,0.7}⟩,⟨x2,{0.9,0.6,1}⟩,⟨x3,{0.6,0.9,0.9}⟩}

where they take into account the difficulty of getting workforce, the machinery and
the salaries. In this case, we have to reorder this constraint as

C1 = {⟨x1,{0.5,0.6,0.7}⟩,⟨x2,{0.6,0.9,1}⟩,⟨x3,{0.6,0.9,0.9}⟩}

If we consider lexicographical order type 1, the membership values of the hes-
itant fuzzy decision DLex1 are:

DLex1 = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.8,1}⟩,⟨x3,{0.6,0.7,0.8}⟩}

and the optimal decision would be x2, due to the fact that it is the alternative with
the highest possible value of DLex1 in terms of the lexicographical order type 1. Nev-
ertheless, if we employ lexical order type 2, the membership degrees of the hesitant
fuzzy decision DLex2 are:

DLex2 = {⟨x1,{0.5,0.6,0.7}⟩,⟨x2,{0.6,0.8,1}⟩,⟨x3,{0.6,0.7,0.8}⟩}

but in this case the optimal decision does not change and it is still to x2.

Once we have seen this easy example, we would like to point out how important
is the chosen order on H.

In a hesitant fuzzy decision, similar to the one above, all the objectives and
restrictions are hesitant fuzzy sets over exactly the same set of alternatives, however
this can occasionally change. We can prevent this circumstance by employing the
extension principle.

Definition 2.58 (Extension principle) Let (H,⊴o) be a complete lattice. Any func-
tion f : X → Y produces a functions f̃ : T HFS(X)→ T HFS(Y ) such that, for any
A ∈ T HFS(X), f̃ (A) is the hesitant fuzzy set in Y whose membership function is:

h f̃ (A)(y) = supo
x|y= f (x)

hA(x),∀y ∈ Y

where supo means the supremum w.r.t. the order ⊴o
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When there is not ambiguity, f̃ could also be denoted as f .
With this technique, the situation where the hesitant fuzzy constraints or goals

are defined in different spaces can be mapped into exactly the same universe.
Let us show in the following example how this methodology works.

Example 2.59 Continuing Example 2.57, but there is now another space Y denot-
ing the set of previous works done in that countries, Y = {y1,y2,y3,y4}. The infor-
mation about these former works is the following: y1 and y2 were made in x1, y3

was done in x2 and y4 was performed jointly in x2 and x3.
Using this data, we create the following function:

f : Y → X

characterized by f (y1) = x1, f (y2) = x1, f (y3) = x2 and f (y4) = x3.
Additionally, we are aware of a fuzzy restriction over Y that evaluates the sig-

nificance of each work described by the cost to carry it out and the success they had:
CY

2 = {⟨y1,{0.6,0.8}⟩,⟨y2,{0.7,0.9}⟩,⟨y3, {0.75,0.8}⟩, ⟨y4,{0.5,0.9}⟩}. It is rep-
resented as CY

2 to emphasize that it is a hesitant fuzzy set over the space Y . Applying
the extension principle now will allow us to have all of the objectives and constraints
represented as hesitant fuzzy sets over the same domain. In this situation, we will
employ lexicographical order type 1. For x1, h f (CY

2 )
(x1) = supy|x= f (y) hCY

2
(y) =

sup{hCY
2
(y1),hCY

2
(y2)}= sup{{0.6,0.8},{0.7,0.9}}= {0.7,0.9}. In a similar way,

h f (CY
2 )
(x2) = {0.75,0.8} and h f (CY

2 )
(x3) = {0.5,0.9}.

As a consequence,

f (CY
2 ) = {⟨x1,{0.7,0.9}⟩,⟨x2,{0.75,0.8}⟩,⟨x3,{0.5,0.9}⟩}

Eventually, the decision is

D′
Lex1 = G∩Lex1 C1 ∩Lex1 f (CY

2 )

where the membership values are now:

D′
Lex1 = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.8,1}⟩,⟨x3,{0.5,0.9}⟩}

Thus, the optimal decision is x2.
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There are circumstances where a decision parameter is dependent on another
domain. Yager and Basson [89] proposed the idea of fuzzy conditional sets to be
capable of dealing with such circumstances. With these concepts in mind, we arrive
at the subsequent definition:

Definition 2.60 Let X and Y be two crisp sets and let (H,⊴o) be a complete lattice.
If we have a family of hesitant fuzzy sets on X given by {A|y ∈ T HFS(X) : y ∈ Y}
and B ∈ T HFS(Y ), we can obtain a new hesitant fuzzy set on X by combining the
information given by A|y for any y ∈ Y and B. This set will be denoted by A|B and
its membership function is:

hA|B(x) = supo
y∈Y

mino{hB(y),hA|y(x)}

We can see how to apply these ideas in our practical example.

Example 2.61 Let us add more details to Example 2.59. The company is required
to minimize the cost of moving experienced workers and basic machinery to the
new office. They would focus on the distance from the main office to the new one.
Let Z = {Near(N),Med(M),Far(F)}. This restriction is set by the hesitant fuzzy
set BZ = {⟨N,{0.8}⟩,⟨M,{0.5}⟩,⟨F,{0.3}⟩}. The following conditioned typical
hesitant fuzzy sets describe how the options and distance to the main office are
related:

CX
3 |N = {⟨x1,{0.6,0.6}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

CX
3 |M = {⟨x1,{0.6,0.7}⟩,⟨x2,{0.4,0.7}⟩,⟨x3,{0.7,0.9}⟩}

CX
3 |F = {⟨x1,{0.3,0.5}⟩,⟨x2,{0.4,0.4}⟩,⟨x3,{0.3,0.4}⟩}

Then, we can construct the typical hesitant fuzzy sets CX
3 |BZ . Thus, for x1 we

obtain that
hCX

3 |BZ
(x1) = supLex1

z∈Z
minLex1{hBz(z),hCX

3 |z
(x1)}.

As

minLex1{hBZ(N),hCX
3 |N

(x1)}= minLex1{{0.8},{0.6,0.6}}= {0.6,0.6}
minLex1{hBZ(M),hCX

3 |M
(x1)}= minLex1{{0.5},{0.6,0.7}}= {0.5}

minLex1{hBZ(F),hCX
3 |F

(x1)}= minLex1{{0.3},{0.3,0.5}}= {0.3}
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we obtain that

hCX
3 |BZ

(x1) = supLex1{{0.6,0.6},{0.5},{0.3}}= {0.6,0.6}

With an analogous process, we can calculate the constraint for x2 and x3 so
that we get the hesitant fuzzy set CX

3 |BZ :

CX
3 |BZ = {⟨x1,{0.6,0.6}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

As a result, the decision is the hesitant fuzzy set D′′
Lex1 = G ∩Lex1 C1 ∩Lex1

f (CY
2 )∩Lex1 CX

3 |BZ described by:

D′′
Lex1 = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

Thus, x2 is again the optimal decision.

If we now combine Proposition 2.52 and Theorem 2.54 with the decision-
making theory, we could achieve some good results:

Corollary 2.62 Let X be an ordered set. Let ⊴o be an order on H, let G1, . . . ,Gp

be the hesitant fuzzy goals, C1, . . . ,Cm the hesitant fuzzy constraints, and D =

G1∩, . . .∩Gp ∩C1∩, . . .∩Cm be the resulting decision.

• If the hesitant fuzzy goals and the hesitant fuzzy constraints are o-convex hes-
itant fuzzy set, then the resulting decision D is an o-convex hesitant fuzzy set
and the set of maximizing decisions of the hesitant fuzzy set D is a convex
crisp set.

• If the hesitant fuzzy goals and the hesitant fuzzy constraints are strictly o-
convex hesitant fuzzy set, then the resulting decision D is a strictly o-convex
hesitant fuzzy set and the cardinality of the set of maximizing decisions is at
most two.

Let us sum up the decision-making problem of Example 2.61 in the following
example.
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Example 2.63 We will summarize the hesitant goal and constraints of the previous
examples:

G = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.8,1}⟩,⟨x3,{0.6,0.7,0.8}⟩}

C1 = {⟨x1,{0.5,0.6,0.7}⟩,⟨x2,{0.6,0.9,1}⟩,⟨x3,{0.6,0.9,0.9}⟩}

f (CY
2 ) = {⟨x1,{0.7,0.9}⟩,⟨x2,{0.75,0.8}⟩,⟨x3,{0.5,0.9}⟩}

CX
3 |BZ = {⟨x1,{0.6,0.6}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

If we assume that x1 < x2 < x3 and consider the lexicographical order type 1,
then we obtain that G, C1, f (CY

2 ) and CX
3 |BZ are strictly convex hesitant fuzzy set,

so the decision DLex1 is also a convex hesitant fuzzy set w.r.t. the same order. It is
immediate to check it as

D′′
Lex1 = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

Then we can affirm that x2 is a global maximizer, following the ideas considered in
Corollary 2.62.

It is clear that the choice of the order on H is an essential step for this method.
This is clearly shown at the following example.

Example 2.64 Considering the same hesitant fuzzy set for the goal and constraints
from the Examples 2.57, 2.59 and 2.61, we have obtained that the chosen optimal
decision is x2, since

D′′
Lex1 = {⟨x1,{0.4,0.8,0.8}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.5,0.8}⟩}

It is clear from the notation used for the decision set that it depends on the order
considered on H. In that case, the considered order was the lexicographical order
type 1. This is also important for obtaining the sets f (CY

2 ) and CX
3 |BZ , since the

supremum and minimum are considered. Thus, if we consider the lexicographical
order type 2, we obtain that

D′′
Lex2 = {⟨x1,{0.5,0.6,0.7}⟩,⟨x2,{0.6,0.7}⟩,⟨x3,{0.6,0.7,0.8}⟩}.

Thus, DLex2 is not only convex but also strictly convex, so it is possible to assure
that the unique optimal decision is x3.
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2.3.4 Ranking method based on hesitant fuzzy sets

In this section we propose a ranking method for hesitant fuzzy sets. The first step
is to model it like the decision-making procedure explained in the previous section.
Once we have constructed the decision D, we have to order their components, i.e.,
we should decide which hesitant fuzzy element is the largest. That element would
be the first one, then we delete it and we do the same until we have no more ele-
ments. When two or more elements have the same value we have to decide on one
randomly.

In order to achieve a better understanding, we are going to show some practical
cases. Let us present this example where the data was extracted from [52].

Example 2.65 In Taiwan, marketing has faced a hard task because of the high-
speed railroad development. More airlines are making an effort to attract customers
by lowering prices, particularly since the worldwide economic crisis in 2008. How-
ever, they soon realised that this is a lose-lose situation and that the one essential
component to surviving in this extremely competitive home market is quality of ser-
vice. The Civil Aviation Administration of Taiwan (CAAT) is interested in finding
out which national airline in Taiwan provides the best customer service. In order to
study the four main national airlines, UNI Air, Transasia, Mandarin and Daily Air;
the CAAT sets up a committee. Four key criteria are provided to assess these four
domestic airlines. These four criteria are the booking and ticket service (C1), the
check-in and boarding process (C2), the cabin service (C3) and the responsiveness
of the company (C4). The data is presented in Table 2.2.

C1 C2 C3 C4

UNI Air {0.6,0.7,0.9} {0.6,0.8} {0.3,0.6,0.9} {0.4,0.5,0.9}
Transasia {0.7,0.8,0.9} {0.5,0.8,0.9} {0.4,0.8} {0.5,0.6,0.7}
Mandarin {0.5,0.6,0.8} {0.6,0.7,0.9} {0.3,0.5,0.7} {0.5,0.7}
Daily Air {0.6,0.9} {0.7,0.9} {0.2,0.4,0.7} {0.4,0.5}

Table 2.2: Hesitant fuzzy decision matrix.

Now we should transform this into a decision-making problem and then com-
pute the intersection of the criteria. If we consider lexicographical order type 1,
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then

UNI Air Transasia Mandarin Daily Air
C1 ∩C2 ∩C3 ∩C4 {0.3,0.6,0.9} {0.4,0.8} {0.3,0.5,0.7} {0.2,0.4,0.7}

So therefore, our ranking with lexicographical order type 1 is

Transasia >UNIAir > Mandarin > DailyAir

as

{0.2,0.4,0.7}◁Lex1 {0.3,0.5,0.7}◁Lex1 {0.3,0.6,0.9}◁Lex1 {0.4,0.8}.

On the other hand, if we consider the lexicographical order type 2, we obtain
that

UNI Air Transasia Mandarin Daily Air
C1 ∩C2 ∩C3 ∩C4 {0.4,0.5,0.9} {0.5,0.6,0.7} {0.3,0.5,0.7} {0.2,0.4,0.7}

and the ranking is UNI Air > Transasia > Mandarin > Daily Air.

Finally, let us show another example where the data was extracted from [1].

Example 2.66 In the academic world, there are several methods to provide metarank-
ings of universities. In this example, various data given by the Academic Ranking of
World Universities (Shanghai Ranking, henceforth Sh) by [15], QS World Univer-
sity Rankings (henceforth QS) by [54], and Times Higher Education World Univer-
sity Rankings (henceforth THE) by [66]. These organizations use a unique scoring
system, with a maximum score of 100 assigned to each university. Although the
experts are well renowned for their overall rankings of top institutions worldwide,
they also provide rankings of universities by specialty. Alcantud et al. [1] de-
velop five fields that are appropriate to the classification methods used by the three
experts which are Arts and Humanities (AH), Life Sciences and Medicine (LM), En-
gineering and Technology (ET), Natural Science and Mathematics (SCI) and Social
Sciences (SOC).

The data is presented in Table 2.3.
Now we should transform this data into hesitant fuzzy sets dividing by 100 and

grouping by fields. This is in Table 2.4.
Then we have to obtain the intersection using lexicographical order type 1.
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University AH(THE) AH(QS) LM(THE) LM(SH) LM(QS) ET(THE) ET(SH) ET(QS) SCI(THE) SCI(SH) SCI(QS) SOC(THE) SOC(SH) SOC(QS)
Stanford 87.1 86.8 87.6 69.4 91.2 91.9 92.1 93.3 89.9 91.4 92.5 93.6 80.1 89.2
Harvard 86.1 89.7 91.3 100 98.2 - 65.1 85.7 90.2 100 92.3 91.9 100 96.3
Oxford 84.4 99.1 91.1 60.9 92.3 87.6 64.4 86.1 87.3 72.3 90.4 93.5 59.9 94.2

Cambridge 83.9 93.5 88.5 75.6 91.8 88.8 74.8 90.5 88.8 92.2 97.0 87.5 59.4 91.2
California, Berkeley 81.4 87.2 81.6 58.0 85.6 90.6 86.8 90.2 89.9 96.3 93.4 86.9 79.6 87.3

Princeton 81.2 86.5 42.5 24.8 74.1 89.5 71.1 81.6 91.0 93.7 89.2 91.1 76.4 84.4
Yale 81.2 89.0 83.7 62.4 88.6 - 49.1 75.2 83.6 65.2 84.3 90.0 72.8 87.4

Table 2.3: Collected data.

University AH LM ET SCI SOC
Stanford {0.868, 0.871} {0.694,0.876, 0.912} {0.919, 0.921, 0.933} {0.899, 0.914, 0.925} {0.801, 0.892, 0.936}
Harvard {0.861 , 0.897} {0.913, 0.982, 1} {0.651, 0.857} {0.902, 0.923, 1} {0.919, 0.963, 1}
Oxford {0.844, 0.991} {0.609, 0.911 , 0.923} {0.644, 0.861, 0.876} {0.723, 0.873, 0.904} {0.599, 0.935, 0.942}

Cambridge {0.839, 0.935} {0.756, 0.885, 0.918} {0.748, 0.888, 0.905} {0.888, 0.922, 0.97} {0.594, 0.875, 0.912}
California, Berkeley {0.814 , 0.872} {0.580, 0.816, 0.856} {0.868, 0.902,0.906} {0.899, 0.934, 0.963} {0.796, 0.869, 0.873}

Princeton {0.812, 0.865} {0.248, 0.425, 0.741} {0.711, 0.816, 0.895} {0.892, 0.910, 0.937} {0.764, 0.844, 0.911}
Yale {0.812, 0.89} {0.624, 0.837, 0.886} {0.491, 0.752} {0.652, 0.836, 0.843} {0.728, 0.874, 0.900}

Table 2.4: Hesitant Fuzzy Data.

University AH∩Lex1LM∩Lex1ET∩Lex1SCI∩Lex1SOC
Stanford {0.694,0.876, 0.912}
Harvard {0.651, 0.857}
Oxford {0.599, 0.935, 0.942}

Cambridge {0.594, 0.875, 0.912}
California, Berkeley {0.580, 0.816, 0.856}

Princeton {0.248, 0.425, 0.741}
Yale {0.491, 0.752}

So therefore, our ranking with lexicographical order type 1 is:

Stanford > Harvard > Oxford > Cambridge > California, Berkeley > Yale >

Princeton.

On the other hand, if we consider the lexicographical order type 2, we obtain
that
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University AH∩Lex2LM∩Lex2ET∩Lex2SCI∩Lex2SOC
Stanford {0.868, 0.871}
Harvard {0.651, 0.857}
Oxford {0.644, 0.861, 0.876}

Cambridge {0.748,0.888,0.905}
California, Berkeley {0.580, 0.816, 0.856}

Princeton {0.248, 0.425, 0.741}
Yale {0.491, 0.752}

And the ranking w.r.t. the lexicographical order type 2 is:
Cambridge > Stanford > Oxford > Harvard > California, Berkeley > Yale

>Princeton.





Chapter 3

Convexity of interval-valued fuzzy
sets

The other extension of fuzzy sets where we are interested in studying convexity is
the case of the interval-valued fuzzy sets. Unfortunately, we could not find reason-
able results about this topic in the literature. However, there are several interesting
papers devoted to the study of the convexity of intuitionistic fuzzy sets. Thus, we
will start this chapter by providing a review of them, since they could be the starting
point for our purposes, taking into account the mathematical equivalence between
interval-valued fuzzy sets and intuitionistic fuzzy sets, which was already com-
mented in Chapter 1. Taking these studies into account, we will later present our
proposal, which was published in [37, 39, 40].

3.1 Overview of convexity of intuitionistic fuzzy sets

For dealing with the convexity of intuitionistic fuzzy sets, it is essential to manage
the concept of α-cut. Thus, we will start by recalling this definition.

Definition 3.1 [21] Let A = {⟨x,µA(x),νA(x)⟩ : x ∈ X} be an intuitionistic fuzzy set
on a referential X and let α be a real number in the interval (0,1]. The α-cut of A
is the crisp set denoted by Aα and defined by

Aα = {x ∈ X : µA(x)≥ α and νA(x)≤ 1−α}

111
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As we can see in the following proposition, there is a redundant condition in
the previous definition.

Proposition 3.2 [21] Let A = {⟨x,µA(x),νA(x)⟩ : x ∈ X} be an intuitionistic fuzzy
set on a referential X and let α be a real number in the interval (0,1]. The α-cut of
A is equal to the α-cut of the fuzzy set whose membership function is µA, that is,

Aα = {x ∈ X : µA(x)≥ α}

This fuzzy set defined by means of the membership function of an intuitionistic
fuzzy set A will be denoted by Aµ . It is clear that it is also possible to associate
another fuzzy set Aν such that Aν(x) = 1−νA(x),∀x ∈ X .

Now that α-cuts have been established, we may utilize them to determine when
an intuitionistic fuzzy set is convex.

Definition 3.3 [21] Let X be a vector space. An intuitionistic fuzzy set A on X is
said to be convex if its cuts Aα are convex subsets of X for all α ∈ (0,1].

Since the convexity of the α-cuts is equivalent to the convexity of the sets, it is
obvious that the idea of convexity in fuzzy sets is extended.

Corollary 3.4 [21] Let A be an intuitionistic fuzzy set on the vector space X. The
following statements are equivalent:

(i) A is a convex intuitionistic fuzzy set,

(ii) Aµ is a quasi-convex fuzzy set.

Thus, the convexity of an intuitionistic fuzzy set is independent of the non-
membership function associated with it. This is a natural consequence of Definition
3.3 and Proposition 3.2.

This corollary makes it easier to prove that the intersection of two convex intu-
itionistic fuzzy sets is convex too.

Proposition 3.5 Let us consider the vector space X. If A and B are convex intu-
itionistic fuzzy sets on X, then A∩B is also convex, where

A∩B = {⟨x,min{µA(x),µB(x)},max{νA(x),νB(x)}⟩ : x ∈ X}.
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Proof: Let us consider A,B ∈ IFS(X). If we suppose that A and B are convex
intuitionistic fuzzy sets, then µA and µB are the membership functions of two quasi-
convex fuzzy sets. If we denote them by Aµ and Bµ , respectively, we have that
Aµ ∩Bµ . The membership function of Aµ ∩Bµ coincides with µA∩B by definition
of the intersection of two intuitionistic fuzzy sets. Thus, µA∩B is the membership
function of a quasi-convex fuzzy set. Hence, A∩B is a convex intuitionistic fuzzy
set.

The concept of quasi-convex intuitionistic fuzzy set was first described in [85].

Definition 3.6 [21, 85] Let X be a vector space. An intuitionistic fuzzy set A is said
to be quasi-convex if

µA(λx+(1−λ )y)≥ min{µA(x),µA(y)}

νA(λx+(1−λ )y)≤ max{νA(x),νA(y)}

for all x,y ∈ X and λ ∈ [0,1].

In [21] the following result was demonstrated:

Proposition 3.7 [21] Let X be a vector space and let A be an intuitionistic fuzzy
set on X. The following statements are equivalent:

(i) A is a quasi-convex intuitionistic fuzzy set.

(ii) The α-cuts of the fuzzy sets Aµ and Aν are convex, for any α ∈ (0,1].

Thus, we have obtained that A is a quasi-convex intuitionistic fuzzy set if, and
only if, the associated fuzzy sets Aµ and Aν are quasi-convex.

It is also clear that convexity and quasi-convexity are related, but they are not
equivalent. The next proposition demonstrates how one implies the other.

Proposition 3.8 [21] Let X be a vector space. Let A be an intuitionistic fuzzy set on
X. If A is quasi-convex, then it is also convex. The converse is not true in general.

To show that the opposite is not true in general, it is possible to consider the
example below.



114 CHAPTER 3. CONVEXITY OF INTERVAL-VALUED FUZZY SETS

Example 3.9 [21] If we consider the intuitionistic fuzzy set A on R with the follow-
ing membership and non-membership functions:

µA(x) = νA(x) =

{
0.5 if x ∈ [1,2]
0 otherwise

we have that

Aα = {x : µA(x)≥ α and νA(x)≤ 1−α}=

{
[1,2] if α ∈ (0,0.5]
/0 if α ∈ (0.5,1]

It is clear that each Aα is convex for any α ∈ (0,1]. Therefore A is a convex
intuitionistic fuzzy set.

However, the 0.7-cut of Aν is not a convex crisp set, since (Aν)0.7 = (−∞,1)∪
(2,∞), and hence, A is not a quasi-convex intuitionistic fuzzy set.

Additional generalizations of convexity of intuitionistic fuzzy set can be intro-
duced when the universe X is not a vector space, as shown below.

Definition 3.10 [21] Let A be an intuitionistic fuzzy set defined on a universe X.
Let H : X ×X × [0,1]→ X be a convex structure on X.

(i) The intuitionistic fuzzy set A is said to inherit a convex structure from H, if
for every α ∈ (0,1] the restriction of H to Aα ×Aα × [0,1] takes values in the
Aα . That is, each α-cut Aα has also a convex structure induced by H.

(ii) The intuitionistic fuzzy set A is said to be convex with respect to H, if

µA(H(x,y,λ ))≥ min{µA(x),µA(y)} and νA(H(x,y,λ ))≤ max{νA(x),νA(y)}

hold for all x,y ∈ X and λ ∈ [0,1].

Additionally, the relationship between an intuitionistic fuzzy set that is convex
with regard to H and its α-cuts can be generalized.

Proposition 3.11 [21] Let A be an intuitionistic fuzzy set defined on a universe X.
Let H : X ×X × [0,1]→ X define a convex structure on X. The following statements
are equivalent:
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(i) The intuitionistic fuzzy set A is convex with respect to H.

(ii) The restriction of H to each of the α-cuts of the fuzzy sets Aµ and Aν defines
a convex structure on the corresponding α-cut, for any α ∈ (0,1].

A summary of these results can be seen in Figure 3.1.

(Aµ)α ,(Aν)α H-convex crisp sets (Aµ)α H-convex crisp set

(Aµ)α ,(Aν)α convex crisp sets (Aµ)α convex crisp set

A quasi-convex IFS A convex IFS

A convex w.r.t. H Aα H-conxex

Prop.3.8

Prop.3.7 Cor.3.4

Trivial

Trivial

Trivial Trivial

Prop.3.11 Prop.3.2

Def.3.10

Figure 3.1: Relationships between convexity for intuitionistic fuzzy sets (IFSs) and
the associated fuzzy sets.

3.2 Operations for interval-valued fuzzy sets

We will consider the previous studies about intuitionistic fuzzy sets and their cor-
respondence with the interval-valued fuzzy sets as the starting point to analyze the
convexity in the second case. Taking also into account that interval-valued fuzzy
sets and (typical) hesitant fuzzy sets could be seen as two examples of the same
family of generalized fuzzy sets, we will also consider the obtained results in Chap-
ter 2, as well as the conclusions obtained there.

Thus, to study the convexity of interval-valued fuzzy sets, we will begin by
analyzing the intersection and union of interval-valued fuzzy sets and defining level
sets for interval-valued fuzzy sets.
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3.2.1 Intersection

In the literature for classical sets, the intersection of two sets is described as the
largest set that is contained in both sets. We will use again this idea to describe the
intersection of two interval-valued fuzzy sets, so we have a different definition of
intersection for each of the considered orders because, as we have seen, the order
that is selected is important.

Definition 3.12 [37, 39, 40] Let A, B be interval-valued fuzzy sets in X and let
(L([0,1]),⪯o) be a lattice. We define the o-intersection of A and B, denoted by
A∩o B, as the greatest interval-valued fuzzy set such that A∩o B ⊆o A and A∩o B ⊆o

B.

It is clear from this definition that the selection of the order totally determines
the concept of intersection. Only in some particular cases, the obtained sets are
related, as we can see in the following proposition.

Proposition 3.13 Let (L([0,1]),⪯o1) and (L([0,1]),⪯o2) be two lattice. If a ⪯o1 b
implies that a ⪯o2 b, for all a,b ∈ L([0,1]), then we have that A∩o1 B ⊆o2 A∩o2 B
for any A,B ∈ IV FS(X).

Proof: By definition A∩o1 B ⊆o1 A and A∩o1 B ⊆o1 B. By the relation between the
orders and Definition 1.62, we can assure that A∩o1 B ⊆o2 A and A∩o1 B ⊆o2 B.
Finally, by definition A∩o2 B is the greatest interval-valued fuzzy set o2-included in
A and B and therefore A∩o1 B ⊆o2 A∩o2 B.

Thus, we can use the previous result to take into account the relations among
the different orders given in Figure 1.8. At that moment, we were considering rela-
tions usually called orders in the literature, but some of them were not really orders.
However, they were frequently used to compare two intervals and the previous def-
inition of intersection could be extended for those cases. Hence, first of all, we will
analyze these cases and we will classify them in accordance with their behaviour
with respect to the intersection. For the first group (interval dominance and lattice
order), partial relations are taken into consideration, which define the intersection
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as a unique set; for the second group (admissible orders, particularly the lexico-
graphical orders and the Xu and Yager order), the intersection will once again be
defined uniquely, since these are total orders; and finally, for the third group (max-
imin, maximax, Hurwicz, and weak orders), the intersection is not properly defined,
since it is not a unique interval-valued fuzzy set.

Let us start by expressing the intersection using lattice order (Lo) or interval
dominance (ID).

Proposition 3.14 [37, 40] Let A, B be sets in IV FS(X). Then, for any x ∈ X, we
have that

A∩ID B(x) = min{A(x),B(x)}
A∩Lo B(x) = [min{A(x),B(x)},min{A(x),B(x)}]

Proof:
We start with the case of the interval dominance:
For any value x in X , it is clear that min{A(x),B(x)} is a number in [0,1] and

therefore an element in L([0,1]). Thus, if we consider the fuzzy set I defined as
I(x) = min{A(x),B(x)} for any x ∈ X , or equivalently the interval-valued fuzzy set
defined as I(x) = [min{A(x), B(x)},min{A(x),B(x)}] for any x ∈ X , we have that
I(x) = min{A(x),B(x)} ≤ A(x) and I(x)≤ B(x). Thus, I(x)⪯ID A(x) and I(x)⪯ID

B(x) for any x ∈ X and therefore I ⊆ID A and I ⊆ID B.
Apart from that, if we consider a set C ∈ IV FS(X) such that C ⊆ID A and

C ⊆ID B, then C(x) ≤ A(x) and C(x) ≤ B(x). So, C(x) ≤ min{A(x),B(x)} = I(x),
that is, C ⊆ID I.

Thus, the fuzzy set I is the greatest interval-valued set that is ID-included in
both sets and therefore it is the intersection of them.

Now, for the lattice order:
It is immediate that [min{A(x),B(x)},min{A(x),B(x)}] ∈ L([0,1]) for any x ∈

X . Thus, we can define an interval-valued fuzzy set I as follows: I(x) = [min{A(x),
B(x)},min{A(x), B(x)}] for all x∈X . Then, we have that I(x)=min{A(x), B(x)}≤
A(x) and I(x)=min{A(x),B(x)}≤A(x). Thus, I(x)⪯Lo A(x) and therefore I ⊆Lo A.
Similarly, we can prove that I ⊆Lo B.

Finally, if we consider a set C ∈ IV FS(X) such that C ⊆Lo A and C ⊆Lo B,
then C(x)≤ A(x) and C(x)≤ B(x). Therefore, C(x)≤ min{A(x),B(x)}= I(x). It is
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analogous to prove that C(x)≤ min{A(x),B(x)}= I(x) and then C ⊆Lo I.
Thus, the interval-valued fuzzy set I is the greatest, w.r.t. the lattice order,

interval-valued such that it is Lo-included in A and B and therefore, by definition, I
is the Lo-intersection of them.

The reader may be cognizant now that the expression obtained for the lattice or-
der is the intersection that is taken into account the most frequently in the literature,
whereas the intersection of two interval-valued fuzzy sets using interval dominance
is just a fuzzy set.

The intersection is found as a result of the following general result for total
orders in the case of the lexicographical orders and the Xu and Yager order, which
are particular cases of admissible order.

Proposition 3.15 [37, 40] Let ⪯o be a total order on L([0,1]). For any A,B ∈
IV FS(X), the o-intersection of A and B is the interval-valued fuzzy set defined by:

A∩o B(x) =

{
A(x) if A(x)⪯o B(x),
B(x) if B(x)⪯o A(x).

Proof: It is clear that the set defined in the statement is an interval-valued fuzzy set.
Let us denote it by I. We have that I(x) = A(x) if A(x) ⪯o B(x) and I(x) = B(x) if
B(x) ⪯o A(x). Since ⪯o is transitive, we have that I(x) ⪯o A(x) and I(x) ⪯o B(x)
for any x ∈ X . Thus, I ⊆o A and I ⊆o B.

Moreover, if we consider a set C ∈ IV FS(X) such that C ⊆o A and C ⊆o B, then
for any x ∈ X , as under ⪯o there are no incomparable elements, we have two cases:

a) If A(x)⪯o B(x), then I(x) = A(x). But, C(x)⪯o A(x) = I(x).

b) If B(x)⪯o A(x), then I(x) = B(x). But, C(x)⪯o B(x) = I(x).

Thus, in both cases we obtain that C(x)⪯o I(x) and therefore C ⊆o I.
Therefore I is the greatest interval-valued fuzzy set o-included in A and B and,

by definition, it is their o-intersection.

This result is fulfilled for any total order, so for any admissible order. In par-
ticular, if we consider the admissible order ⪯A ,B obtained in Proposition 1.61, we
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have that

A∩A ,B B(x) =

{
A(x) if A(x)⪯A ,B B(x),
B(x) if B(x)⪯A ,B A(x),

Thus, we can use it in the particular cases of the lexicographical orders and the Xu
and Yager order, where now we know that:

• Lexicographical order type 1:

A∩Lex1 B(x) =

{
A(x) if A(x)⪯Lex1 B(x),
B(x) if B(x)⪯Lex1 A(x).

• Lexicographical order type 2:

A∩Lex2 B(x) =

{
A(x) if A(x)⪯Lex2 B(x),
B(x) if B(x)⪯Lex2 A(x).

• Xu and Yager order:

A∩XY B(x) =

{
A(x) if A(x)⪯XY B(x),
B(x) if B(x)⪯XY A(x).

As we can see, a unique intersection can be obtained using interval dominance,
lattice order, or any of the admissible orders. Unfortunately, as we can see from the
results below, not all of the relations taken into consideration in Subsection 1.2.2
have the same behaviour.

Proposition 3.16 [37, 39] Let A, B be sets in IV FS(X). Then, for any x ∈ X, we
have that

• Maximin order: A∩Mm B(x) = [min{A(x),B(x)},v] where v can be any num-
ber in the interval [min{A(x),B(x)},1].

• Maximax order: A∩MM B(x) = [u,min{A(x),B(x)}] where u can be any num-
ber in the interval [0,min{A(x),B(x)}].

• Hurwicz order: A ∩H(α) B(x) =
[
u, k−α·u

1−α

]
where k = min{α · A(x) + (1 −

α) · A(x), α · B(x) + (1 − α) · B(x)} and u is any number in the interval[
max{0, k−(1−α)

α
},k
]
.
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• Weak order: A ∩wo B(x) = [u,v] where u and v could be any number in
the interval [0,min{A(x),B(x)}] and v can be any number in the interval
[min{A(x),B(x)},1].

Proof: It is obvious to check that this set is a part of A and B in the first two cases
(Mm and MM), and it is the largest element of IV FS(X) that satisfies this property.

For the Hurwicz order, the intersection is well-defined, since u ≥ 0, u ≤ k−α·u
1−α

if and only if u ≤ k and this is true by definition and, finally, k−α·u
1−α

≤ 1 if and only if

u ≥ k−(1−α)
α

and this is true by definition too. Moreover, since αu+(1−α)k−α·u
1−α

=

k, we have that the defined set is H(α)-included in A and B. Furthermore, if we take
any other set C such that C ⊆H(α) A and C ⊆H(α) B, thus, for any x ∈ X , αC(x)+
(1−α)C(x)≤ k = αu+(1−α)k−α·u

1−α
. Hence, there is not an interval-valued fuzzy

sets H(α)-included in A and B which is not contained in the set defined in the
statement.

For the weak order, since u≤min{A(x),B(x)}, then [u,v]⪯wo A(x) and [u,v]⪯wo

B(x) and any other set C such that C ⊆wo A and C ⊆wo B fulfils that C(x) ≤ A(x)
and C(x)≤ B(x), that is, C(x)≤ min{A(x),B(x)} ≤ v.

Hence, from Proposition 3.16, it is clear that the intersection is not always
clearly defined since there is not a unique set fulfilling the required conditions,
but an infinite collection of sets. Apart from that, it is also remarkable that the
intersection of two interval-valued fuzzy sets for interval dominance is merely a
fuzzy set (see Table 3.1).

By using the following examples, we may explain the earlier remarks.

Example 3.17 Let us consider the case X = {x} and the interval-valued fuzzy set A
and B defined by A(x) = [0.4,0.8] and B(x) = [0.2,0.9]. Then, the intersection for
the last four relations in Table 3.1 is shown in Table 3.2 and illustrated in Figure
3.2, where non-uniqueness is clearly evidenced.

If we consider the relations where the intersection is unique, we obtain the
results in Table 3.3.

We can see again in this table that the intersection is just a fuzzy set for the
case of the interval dominance. These examples are graphically represented in
Figure 3.3.
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Interval order
Is the Is the

intersection intersection
unique? a proper IVFS?

Interval dominance ✓ ✗

Lattice order ✓ ✓

Lex. order type 1 ✓ ✓

Lex. order type 2 ✓ ✓

Xu and Yager order ✓ ✓

Maximin order ✗

Maximax order ✗

Hurwicz order ✗

Weak order ✗

Table 3.1: Behaviour of the intersection.

A∩MM B(x) A∩Mm B(x) A∩H(1/2) B(x) A∩wo B(x)
[u,0.8] [0.2,v] [u,1.1−u] [u,v]

u ∈ [0,0.8] v ∈ [0.2,1] u ∈ [0.1,0.55] u ∈ [0,0.8]
v ∈ [0.8,1]

Table 3.2: Intersection for the maximin, maximax, Hurwicz and weak relations.

Although this is not always the case, in this example both the Xu and Yager
order and the type 1 lexicographical order provide the same intersection. For in-
stance, if we consider C an interval-valued fuzzy set such that C(x) = [0.4,0.5], we
have that B ⪯Lex1 C and C ⪯XY B and therefore B∩Lex1 C = B ̸= B∩XY C =C.

This example also makes it very evident that the intersection depends on the
order that is taken into account. From now on, we will consider the relations where
the intersection is uniquely specified.
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0.2

0.4

0.6

0.8

0.9

1

A B

A∩MM B

A∩Mm B

A∩H(1/2) B

A∩wo B

Figure 3.2: Not unique intersections of A and B.

A∩ID B A∩Lo B A∩Lex1 B A∩Lex2 B A∩XY B
0.2 [0.2,0.8] [0.2,0.9] [0.4,0.8] [0.2,0.9]

Table 3.3: Intersection for interval dominance, lattice order and some well-known
admissible orders.

3.2.2 Union

If the smallest set that includes two sets is an essential characteristic of the union
of two sets, then there is also a different definition of union for each order that we
are considering in L([0,1]).Since the union would be a useful tool for the following
section, we can do a study similar to the one for the intersection.

Definition 3.18 [39] Let A, B be sets in IV FS(X) and let (L([0,1]),⪯o) be a lattice.
We define the o-union of A and B, denoted by A∪o B, as the smallest interval-valued
fuzzy set such that A ⊆o A∪o B and B ⊆o A∪o B.

As a result of the previous studies, we will only take into account the relations
where the intersection is unique and we will study the union using a similar scheme.

Proposition 3.19 [39] Let A, B be sets in IV FS(X). Then, for any x ∈ X we have:

• A∪ID B(x) = max{A(x),B(x)}.

• A∪Lo B(x) = [max{A(x),B(x)},max{A(x),B(x)}].
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0.2

0.4

0.6

0.8

0.9

1

A B A∩ID B

A∩Lo B

A∩Lex1 B

A∩Lex2 B

A∩XY B

Figure 3.3: Intersection of A and B by different relations.

Proof: Interval dominance (ID): we should prove that A ⊆ IDA ∪ID B and B ⊆
IDA∪ID B and that if there is another interval-valued fuzzy set containing both of
them, then the union is contained in it. It is immediate that A ⊆ IDA∪ID B and
B ⊆ IDA∪ID B by definition. Let us suppose there is an interval-valued fuzzy set
C fulfilling A ⊆ IDC and B ⊆ IDC. If A ⊆ IDC, then A(x) ≤ C(x). If B ⊆ IDC, thus
B(x) ≤ C(x). If A∪ID B(x) = max{A(x),B(x)}, then max{A(x),B(x)} ≤ C(x) and
A∪ID B ⊆ IDC.

Lattice order (Lo): let us check that this union is well defined. It is immediate
from the definition that, A ⊆ LoA∪Lo B and B ⊆ LoA∪Lo B. If we suppose that there
exists an interval-valued fuzzy set C ∈ IV FS(X), C(x) = [C(x),C(x)], such that
A ⊆ LoC and B ⊆ LoC. If A ⊆ LoC, then A(x) ≤C(x) and A(x) ≤C(x). If B ⊆ LoC,
thus B(x)≤C(x) and B(x)≤C(x). Then A∪Lo B ⊆ LoC.

As with the intersection, the interval dominance is just a fuzzy set because the
membership function assumes only one point at any element of the referential.
Once again, the lattice order provides the union that is typically taken into account
in the literature.

When it comes to total orders, we have the following:

Proposition 3.20 [39] Let ⪯o be a total order on L([0,1]). For any A,B∈ IV FS(X),
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the o-union of A and B is the interval-valued fuzzy set defined by:

A∪o B(x) =

{
B(x) if A(x)⪯o B(x),
A(x) if B(x)⪯o A(x).

Proof: Let us make sure that this union is well-defined. It follows that ⪯o is a total
order, it is evident that A∪o B can be defined for any x ∈ X , as A(x) ⪯o B(x) or
B(x)⪯o A(x).

By definition, it is immediate that A ⊆ A∪o B and B ⊆ A∪o B.
We assume that there is an interval-valued fuzzy set C ∈ IV FS(X) such that

A ⊆o C and B ⊆o C, thus, by the transitivity of ⪯o, A(x)⪯o C(x) and B(x)⪯o C(x),
for any x ∈ X . Hence, by definition, it is clear that A∪o B(x)⪯o C(x) and therefore
A∪o B ⊆o C.

Therefore, for the admissible order considered in Proposition 1.61, we obtain
that

A∪A ,B B(x) =

{
B(x) if A(x)⪯A ,B B(x),
A(x) if B(x)⪯A ,B A(x),

and, in particular:

• Lexicographical order type 1:

A∪Lex1 B(x) =

{
B(x) if A(x)⪯Lex1 B(x),
A(x) if B(x)⪯Lex1 A(x).

• Lexicographical order type 2:

A∪Lex2 B(x) =

{
B(x) if A(x)⪯Lex2 B(x),
A(x) if B(x)⪯Lex2 A(x).

• Xu and Yager order:

A∪XY B(x) =

{
B(x) if A(x)⪯XY B(x),
A(x) if B(x)⪯XY A(x).

For a better understanding of this operation, we provide an example.
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A∪ID B A∪Lo B A∪Lex1 B A∪Lex2 B A∪XY B
0.9 [0.4,0.9] [0.4,0.8] [0.2,0.9] [0.4,0.8]

Table 3.4: Union for the lattice order, the lexicographical orders and the Xu and
Yager order.

0.2

0.4

0.6

0.8

0.9

1

A B A∪ID B A∪Lo B A∪Lex1 B A∪Lex2 B A∪XY B

Figure 3.4: Union of A and B by different orders.

Example 3.21 Under the same conditions of Example 3.17, the union for the dif-
ferent orders is calculated in Table 3.4.

This is depicted graphically in Figure3.4.

In this instance, for the lattice order, A and B are not comparable, nevertheless,
B⊆Lex1 A, A⊆Lex2 B and B⊆XY A. Thus, it is logical that A∪Lo B ̸=A and A∪Lo B ̸=
B, A∪Lex1 B = A, A∪Lex2 B = B and A∪XY B = A. It is once again clear that the
order used to specify the inclusion operation in IV FS(X) had a significant impact.
It would seem that the union is closely tied to this idea.

As in the intersection, if we use the lexicographical order type 1 or the Xu
and Yager order we obtain the same interval-valued fuzzy set but, in general, this
is not true. For instance, if we consider C an interval-valued fuzzy set such that
C(x) = [0.5,0.6], we have that A ⪯Lex1 C and C ⪯XY A and therefore A∪Lex1 C =

C ̸= A∪XY C = A.
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3.2.3 Level sets

An α-cut or a level set is one of the most crucial ideas in fuzzy sets, according to
Klir [49]. We provide a reasonable definition of a level set for interval-valued fuzzy
sets in this section.

Definition 3.22 [40] Let ⪯o be an order on L([0,1]). For any A ∈ IV FS(X) and
for any [α,β ] ∈ L([0,1]), we define the [α,β ]-level sets of A w.r.t. the order ⪯o as
follows:

Ao
[α,β ] = {x ∈ X : [α,β ]⪯o A(x)}

In [64], Ramik and Vlach have considered the definition for level sets of intu-
itionistic fuzzy sets given in Definition 3.1. The mathematical connection between
interval-valued fuzzy sets and intuitionistic fuzzy sets leads to equivalence to the
previous proposal, for the particular case of the lattice order and β = 1−α . Thus,
we can consider that Definition 3.22 is in some sense a generalization of Definition
3.1.

It is evident that we would get various level sets if we used different orders,
because the definition depends on the order we use.

Example 3.23 Let X = {x,y,z} be the referential. If we consider the interval-
valued fuzzy sets A on X defined as A = {⟨x, [0.1,0.7]⟩,⟨y, [0.2,0.8]⟩,⟨z, [0.4,0.5]⟩},
we have computed some level sets for different orders in Table 3.5.

Order A[0.1,0.7] A[0.2,0.8] A[0.4,0.5] A[0.3,0.6]

Lattice order {x,y} {y} {z} /0
Lexicographical type 1 {x,y,z} {y,z} {z} {z}
Lexicographical type 2 {x,y} {y} {x,y,z} {x,y}

Xu and Yager {x,y,z} {y} {y,z} {y}

Table 3.5: Level sets for different orders and levels.

We can notice from this example that some level sets are included in others.
This is a direct consequence of the relationship between these orders.
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Proposition 3.24 [40] If ⪯1 and ⪯2 are orders in L([0,1]) such that a ⪯1 b implies
a ⪯2 b, then for any A ∈ IV FS(X) and any [α,β ] ∈ L([0,1]) we have that A1

[α,β ] ⊆
A2
[α,β ].

Proof: By definition, A1
[α,β ] = {x∈X : [α,β ]⪯1 A(x)}⊆ {x∈X : [α,β ]⪯2 A(x)}=

A2
[α,β ].

The level sets of A obtained using lattice order are included in the level sets
acquired using the lexicographical order type 1, type 2, or the Xu and Yager order,
as in Example 3.23.

Let us just take a quick look at some of the characteristics that these level sets
satisfy.

Proposition 3.25 [40] Let ⪯o be an order on L([0,1]). For any A,B ∈ IV FS(X)

and any [α,β ], [γ,δ ] ∈ L([0,1]), we have that:

i) If [α,β ]⪯o [γ,δ ], then Ao
[γ,δ ] ⊆ Ao

[α,β ].

ii) A ⊆o B ⇔ Ao
[α,β ] ⊆ Bo

[α,β ] for any [α,β ] ∈ L([0,1]).

iii) (A∩o B)o
[α,β ] ⊆ Ao

[α,β ] ∩Bo
[α,β ]. If ⪯o is a total order, then (A∩o B)o

[α,β ] =

Ao
[α,β ]∩Bo

[α,β ].

iv) Ao
[α,β ]∪Bo

[α,β ] ⊆o (A∪o B)o
[α,β ]. If ⪯o is a total order, then Ao

[α,β ]∪Bo
[α,β ] =

(A∪o B)o
[α,β ].

Proof: Let us consider A,B ∈ IV FS(X) and [α,β ], [γ,δ ] ∈ L([0,1]).

i) If [α,β ]⪯o [γ,δ ], then it is immediate by definition that Ao
[γ,δ ] ⊆ Ao

[α,β ], since
⪯o is transitive.

ii) If A ⊆o B then A(x) ⪯o B(x),∀x ∈ X . Thus, if [α,β ] ⪯o A(x), since ⪯o is
transitive, then [α,β ] ⪯o B(x) and so Ao

[α,β ] = {x ∈ X : [α,β ] ⪯o A(x)} ⊆
{x ∈ X : [α,β ]⪯o B(x)}= Bo

[α,β ].

On the contrary, for any x ∈ X , if we apply the inclusion for the A(x)-level
sets, we have that x ∈ A0

A(x) since ⪯o is reflexive, and therefore x ∈ B0
A(x). This

is equivalent to say that A(x)⪯o B(x). As we have proven it for any x ∈ X we
have that A ⊆o B.
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iii) Since A ∩o B ⊆o A and A ∩o B ⊆o B, by applying ii), we have that (A ∩o

B)o
[α,β ]⊆Ao

[α,β ] and (A∩o B)o
[α,β ]⊆Bo

[α,β ] and therefore (A∩o B)o
[α,β ]⊆Ao

[α,β ]∩
Bo
[α,β ].

On the other hand, if x ∈ Ao
[α,β ] ∩Bo

[α,β ], then [α,β ] ⪯o A(x) and [α,β ] ⪯o

B(x). As we are using a total order, from Proposition 3.15 we have that A∩
oB(x) = A(x) or A∩ oB(x) = B(x) and so [α,β ]⪯o A∩ oB(x).

iv) Since A ⊆o A∪o B and B ⊆o A∪o B, by applying ii), we have that Ao
[α,β ] ⊆o

(A∪o B)o
[α,β ] and Bo

[α,β ]⊆o (A∪o B)o
[α,β ]. Then, Ao

[α,β ]∪Bo
[α,β ]⊆o (A∪o B)o

[α,β ].

Conversely, for any x ∈ X we have that A∪o B(x) = B(x) or A∪o B(x) = B(x),
by applying Proposition 3.20, since ⪯o is a total order. Thus, if x ∈ (A∪o

B)o
[α,β ], then [α,β ] ⪯o A∪ oB(x) and therefore [α,β ] ⪯o A(x) or [α,β ] ⪯o

B(x). Then, x ∈ Ao
[α,β ]∪Bo

[α,β ].

In fuzzy sets theory, we can represent a fuzzy set by its α-cuts through the
Decompositions Theorems (see [49]), so the next task we consider is adapting these
results of fuzzy sets into interval-valued fuzzy sets. Thus, we will try to identify
an interval-valued fuzzy set through its level sets. First of all, we will do it in an
example, where we can explain in detail the considered notation and then we will
prove a general result.

Example 3.26 Let X = {x,y,z} be the referential. If we consider the interval-
valued fuzzy set A defined in Example 3.23 and the lexicographical order type 1.
Then the level sets are

ALex1
[0.1,0.7] = {x,y,z}, ALex1

[0.2,0.8] = {y,z} and ALex1
[0.4,0.5] = {z}

If we choose proper intervals, the interval-valued fuzzy set can be represented by its
level sets. Let us use the following characteristic functions to define the level sets:

ALex1
[0.1,0.7] = 1 · {x}+1 · {y}+1 · {z}= {x,y,z}

ALex1
[0.2,0.8] = 0 · {x}+1 · {y}+1 · {z}= {y,z}
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and

ALex1
[0.4,0.5] = 0 · {x}+0 · {y}+1 · {z}= {z}

Now, we are going to obtain interval-valued fuzzy set based on these level sets
defined as follows:

Lex1
[α,β ]A = [α,β ] ·ALex1

[α,β ] =

{
[α,β ] if x ∈ ALex1

[α,β ],

[0,0] otherwise.

With this operation, we are interval-valued fuzzifying the level sets, that is, we
start from level sets (crisp sets) and we get interval-valued fuzzy set.

Then,
Lex1
[0.1,0.7]A(t) = [0.1,0.7],∀t ∈ X

Lex1
[0.2,0.8]A(t) =

{
[0.2,0.8] if t ∈ {y,z},
[0,0] if t = x,

and

Lex1
[0.4,0.5]A(t) =

{
[0.4,0.5] if t = z,
[0,0] if t ∈ {x,y}.

In accordance with the previous notation, if we find a fixed interval in any of the
level set functions, it indicates that the element belongs to that level set, as shown
in the following example:

Lex1
[0.1,0.7]A(x) = [0.1,0.7], Lex1

[0.1,0.7]A(y) = [0.1,0.7] and Lex1
[0.1,0.7]A(z) = [0.1,0.7]

Lex1
[0.2,0.8]A(y) = [0.2,0.8] and Lex1

[0.2,0.8]A(z) = [0.2,0.8]

Lex1
[0.4,0.5]A(z) = [0.4,0.5]

It is clear that the Lex1−union of these interval-valued fuzzy set is the original
set A. That is,

A = Lex1
[0.1,0.7]A∪Lex1

Lex1
[0.2,0.8]A∪Lex1

Lex1
[0.4,0.5]A

On the basis of this concept, we put forward the following theorem:
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Theorem 3.27 (Decomposition Theorem) [40] Let ⪯o be a total order in L([0,1])
with least element 0o. For every A ∈ IV FS(X), we have that

A = ∪o
[α,β ]∈L([0,1])

o
[α,β ]A

where ∪o denotes the o−union and o
[α,β ]A(x) = [α,β ] if x∈Ao

[α,β ] and 0o otherwise.

Proof: Let A be any set in IV FS(X). For any x ∈ X , we have that A(x) = [γ,δ ] ∈
L([0,1]). Thus, A(x) = o

[γ,δ ]A(x) and therefore A(x)⪯o ∪o
[α,β ]∈L([0,1])

o
[α,β ]A(x), by the

definition of ∪o.
Conversely, since ⪯o is a total order, we have that ∪o

[α,β ]∈L([0,1])

o
[α,β ]A(x) =

o
[ε,ζ ]

A(x) for some [ε,ζ ] ∈ L([0,1]).
By the definition of o

[ε,ζ ]
A(x), we have two cases:

• If x /∈ Ao
[ε,ζ ]

, then o
[ε,ζ ]

A(x) = 0o ⪯o A(x).

• If x ∈ Ao
[ε,ζ ]

, then [ε,δ ]⪯o A(x) and so o
[ε,ζ ]

A(x) = [ε,ζ ]⪯o A(x).

Then, by the symmetry of ⪯o, we have that A(x) = ∪o
[α,β ]∈L([0,1])

o
[α,β ]A(x).

This theorem allows us to work with level sets instead of the interval-valued
fuzzy set, but not all the operations hold.

For example, the standard complement for interval-valued fuzzy set is not cut-
worthy, that is,

(Ac)o
[α,β ] ̸= (Ao

[α,β ])
c

as we can see in the following example.

Example 3.28 Under the same conditions of Example 3.23 and considering Defi-
nition 1.64, we have that

A = {⟨x, [0.1,0.7]⟩,⟨y, [0.2,0.8]⟨,⟨z, [0.4,0.5]⟩}

Ac = {⟨x, [0.3,0.9]⟩,⟨y, [0.2,0.8]⟩,⟨z, [0.5,0.6]⟩}

If we consider again the lexicographical order type 1 and the level [0.3,0.9],
we obtain that (Ac)Lex1

[0.3,0.9] = {t ∈ X : [0.3,0.9]⪯Lex1 Ac(t)}= {x,z}.
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On the other hand, ALex1
[0.3,0.9] = {z} and then

(ALex1
[0.3,0.9])

c = {x,y} ̸= (Ac)Lex1
[0.3,0.9]

It is interesting that different intervals could generate the same level set, so
we are going to take it into account in the next corollary. If we consider Λ(A) =
{A(x) : x ∈ X}, there is an equivalent relation in L([0,1]) because Λ(A) is the set of
all intervals that represent different level sets of A. So the next result is a version
of the first one where we only take one interval from each equivalent class in Λ(A).
That is, instead of considering L([0,1]), we would use Λ(A). In Example 3.23,
Λ(A) = {[0.1,0.7], [0.2,0.8], [0.4,0.5]}.

Corollary 3.29 [40] Let ⪯o be a total order in L([0,1]) with least element 0o. For
every A ∈ IV FS(X),

A = ∪o
[α,β ]∈Λ(A)

o
[α,β ]A

This is how interval-valued fuzzy sets are represented without using the same level
set twice. The proof is a consequence of the previous Decomposition Theorem.

It is clear that we can apply these results for admissible orders, since they are
total orders and as they refine the lattice order, we have that [0,0] is the least element.
Really, by the same reason, we also know that [1,1] is the greatest element.

3.2.4 Convexity of interval-valued fuzzy sets

Taking into consideration the comments from the previous section, we do not con-
sider all the relations introduced in Subsection 1.2.2. As we could see, the intersec-
tion based on the maximax, the maximin, the Hurwicz or the weak order does not
work well and the interval dominance is not really an order. For the remaining inter-
sections, we will determine whether the intersection of two convex interval-valued
fuzzy set is a convex set as well for any order in L([0,1]).

In the literature, there are some approaches to convex interval-valued functions
as [13]. Nevertheless, Cao [13] is not dealing with interval-valued fuzzy set, so we
will consider the following definition of convexity that does not have the problem
of defining the addition for interval-valued fuzzy set. We have also taking into
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account the problems on summarizing the membership values shown in Section
2.2. Thus, this proposal is, in some way, the result of all the previous studies.

Definition 3.30 [37] Let X be an ordered set and let ⪯o be an order in L([0,1]).
An interval-valued fuzzy set A on X is said to be o-convex, if for each x < y < z in
X the following inequalities are fulfilled:

A(x)⪯o A(y) or A(z)⪯o A(y)

This definition is based on the usual idea of convexity. It is easy to prove that
if we consider a convex fuzzy set as an interval-valued fuzzy set, it is convex w.r.t.
the previous definition. In addition, this definition has as particular cases the usual
definition of convexity of crisp sets and fuzzy sets.

When X is a totally ordered set, the previous definition of convexity is equiva-
lent to check

min{A(x),A(z)} ⪯o A(y)

If we work with partial orders, it may happen that A(x) is not related to A(z), so this
is the reason for considering A(x)⪯o A(y) or A(z)⪯o A(y) in previous definition.

Basis on this idea, Huidobro et al. [39, 40] introduce the concept of strictly
convex interval-valued fuzzy set.

Definition 3.31 Let X be an ordered set and let ⪯o be an order on L([0,1]). An
interval-valued fuzzy set A on X is said to be strictly o-convex, if for each x < y < z
in X the following inequalities are fulfilled:

A(x)≺o A(y) or A(z)≺o A(y)

which means that

A(x)⪯o A(y) and A(x) ̸= A(y) or A(z)⪯o A(y) and A(z) ̸= A(y)

Definition 3.30 is accurate because, as the following result proves, there is an
equal relationship between convexity and the convexity of the level sets.

Proposition 3.32 [39, 40] Let X be a ordered set and let ⪯o be an order in L([0,1]).
Let A be an interval-valued fuzzy set on X. If A is o-convex, then Ao

[α,β ] are convex
crisp sets for all [α,β ] ∈ L([0,1]). The converse is true if ⪯0 is a total order.
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Proof: Let us consider x,y,z ∈ X such that x < y < z.
If x ∈ Ao

[α,β ] and z ∈ Ao
[α,β ], then [α,β ]⪯o A(x) and [α,β ]⪯o A(z). Moreover,

as A is convex, we have A(x) ⪯o A(y) or A(z) ⪯o A(y). By the transitivity of ⪯o,
[α,β ]⪯o A(y) or [α,β ]⪯o A(y) and so y ∈ Ao

[α,β ]. Thus Ao
[α,β ] is a convex crisp set.

Conversely, since ⪯o is a total order, we can consider c = mino{A(x),A(z)} ∈
L([0,1]). Then, x,z ∈ Ao

c . Since Ao
c is a convex crisp set, then y ∈ Ao

c and so
mino{A(x), A(z)} ⪯o A(y).

Crisp sets and interval-valued fuzzy set are related to the idea of a level set. If
we deal with the specific orders that were taken into consideration in the previous
sections, we find that Lo-convexity implies Lex1-convexity, Lex2-convexity, and
XY -convexity.

As in the case of hesitant fuzzy sets, we show in the next result that the defini-
tion of convexity also fits well with the definition of support of an interval-valued
fuzzy set. First of all, we will propose a definition for the support of an interval-
valued fuzzy set, based on how the support of fuzzy sets is defined.

Definition 3.33 Let A be an interval-valued fuzzy set in X and let ⪯o be an order on
(L([0,1]) with least element 0o. The o-support of A, which is denoted by Suppo(A),
is the crisp set

Suppo(A) = {x ∈ X : A(x)̸= 0o}

Proposition 3.34 Let X be a vector space and an order ⪯o in L([0,1]) with least
element 0o. If A is an o-convex interval-valued fuzzy set on X, then the o-support of
A is a convex crisp set.

Proof: Let A be a o-convex interval-valued fuzzy set. For any x,z ∈ Suppo(A) and
any λ ∈ (0,1), if we consider y = λx+(1−λ )z, by the o-convexity of A, we have
that A(x)⪯o A(y) or A(z)⪯o A(y). On the other hand, as x,z ∈ Suppo(A), we have
that A(x) ̸= 0o and A(z) ̸= 0o. Since 0o is the least element, then A(y) ̸= 0o and
therefore y ∈ Suppo(A), so Suppo(A) is a crisp convex set.

In a similar way, we will also introduce the idea of core and prove that it works
well with convexity.
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Definition 3.35 Let A be an interval-valued fuzzy set in X and let ⪯o be an order
on L([0,1]) with greatest element 1o. The core of A, which is denoted by Coreo(A),
is the crisp set

Coreo(A) = {x ∈ X : A(x) = 1o}

Proposition 3.36 Let us consider the universe X, an order ⪯o on L([0,1]) with
greatest element 1o and A ∈ IV FS(X). If A is an o-convex interval-valued fuzzy set,
then the core of A is a convex crisp set.

Proof: If x,z ∈ Coreo(A), then A(x) = 1o and A(z) = 1o. Thus, for any λ ∈ [0,1],
we have that y = λx+(1−λ )z ∈ X and A(x)⪯o A(y) or A(z)⪯o A(y). Since 1o is
the greatest element, we have that A(y) = 1o, that is, λx+(1−λ )z ∈Coreo(A) and
therefore, Coreo(A) is a crisp convex set.

Finally, we would like to study the significant attribute of convexity preserva-
tion under intersections. Unfortunately, as we will see at the following example, it
is not possible to obtain a general result for any order.

Example 3.37 Let X = {x,y,z} with x < y < z. If we consider the interval-valued
fuzzy sets A and B defined as follows:

A = {⟨x, [0.1,0.7]⟩,⟨y, [0.2,0.8]⟩,⟨z, [0.3,0.5]⟩}

B = {⟨x, [0.1,0.7]⟩,⟨y, [0.4,0.6]⟩,⟨z, [0.3,0.5]⟩}

and we consider the lattice order, we obtain that,

A∩Lo B = {⟨x, [0.1,0.7]⟩,⟨y, [0.2,0.6]⟩,⟨z, [0.3,0.5]⟩}

Then A is Lo-convex, since [0.1,0.7] ⪯Lo [0.2,0.8] and B is Lo-convex since
[0.3,0.5] ⪯Lo [0.4,0.6]. However, A∩Lo B is not Lo-convex since [0.2,0.6] is not
related with [0.1,0.7] or [0.3,0.5] by means of the order relation ⪯Lo.

We have reached a general, favorable outcome for total orders, which is re-
flected in the statement below.
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Proposition 3.38 [39, 40] Let X be an ordered set and let ⪯o a total order on
L([0,1]). If A,B ∈ IV FS(X) are o-convex (resp. strictly o-convex) , then A∩o B is
also o-convex (resp. strictly o-convex).

Proof: Let x, y, z be three elements in X with x < y < z.
If A(y) ⪯o B(y), by Proposition 3.15 we have that A∩o B(y) = A(y). Since A

is o-convex (resp. strictly o-convex), A(x)⪯o A(y) (resp. A(x)≺o A(y)) or A(z)⪯o

A(y) (resp. A(z)≺o A(y)). But by the definition of the intersection for this order we
have that A∩o B(x)⪯o A(x) and A∩o B(z)⪯o B(z). By the transitivity, A∩o B(x)⪯o

A(y) = A∩o B(y) (resp. A∩o B(x) ≺o A(y) = A∩o B(y)) or A∩o B(z) ⪯o A(y) =
A∩o B(y) (resp. A∩o B(z)≺o A(y) = A∩o B(y)).

The case B(y)⪯o A(y) is totally analogous.

To continue, we arrive at the following conclusion by applying Proposition 3.38
to the situation of admissible order, and in particular the lexicographical orders and
the Xu and Yager order.

Corollary 3.39 [39, 40] If ⪯o is an admissible order, then o-convexity (resp. strictly
o-convexity) is preserved under intersections.

Finally, we will give some optimization-related conclusions that will be helpful
for the following section.

Theorem 3.40 [39, 40] Let ⪯o be an order on L([0,1]) with least element. Let
A be an interval-valued fuzzy set over an ordered set X. Let x∗ be an element in
Suppo(A). If

i) A is o-convex and x∗ is a strict local maximizer of the membership function of
A

or

ii) A is strictly o-convex and x∗ is a local maximizer of the membership function
of A

then x∗ is also a global maximizer of the membership function of A over Suppo(A).
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Proof: Suppose that x∗ ∈ Suppo(A) is a strict local maximizer. It means that there
exists a neighborhood Y such that for all x ∈ Y , there is A(x)≺o A(x∗).

Let us suppose that there exists x′ ∈ Suppo(A), different from x∗, such that
A(x∗)⪯o A(x′).

By convexity, we have that A(x′)⪯o A(y) or A(x∗)⪯o A(y), for all y∈ Suppo(A)
such that x′ < y < x∗ or x∗ < y < x′. Then, if we take y close enough to x∗, that is,
y ∈ Y and y ̸= x∗, that contradicts A(y)≺o A(x∗).

If A is strictly o-convex, but x∗ is just a local maximizer, this means that there
exists a neighborhood Y where A(x)⪯o A(x∗) for any x ∈ Y . Let us suppose that x∗

is not a global maximizer, then there exists x′ ∈ Suppo(A) such that A(x∗)≺o A(x′).
By the strictly o-convexity of A, we have that A(x′) ≺o A(y) or A(x∗) ≺o A(y) for
any element y between x∗ and x′. If we choose y close enough to x∗, that is y ∈ Y ,
there is a contradiction since x∗ is a local maximizer.

We also analyse the set where the membership function attains its maximum.

Theorem 3.41 Let ⪯o be an order on L([0,1]) with a least element. Let A be an
o-convex interval-valued fuzzy set over an ordered set X.

i) The set of points at which A attains its global maximum over its support is a
convex crisp set.

ii) If A is strictly o-convex, A attains its global maximum over Suppo(A) at no
more than one point if X is uncountable or no more than two points if X is
finite or countable.

Proof: Let’s suppose that A is an o-convex interval-valued fuzzy set over an ordered
set X .

i) Let us suppose that [α,β ] is the maximum value for the membership function
of A. If we build the level set associated with [α,β ] following Proposition
3.32, it is a convex crisp set as A is a o-convex interval-valued fuzzy set. This
level set is, in fact, the set of point at which A attains its global maximum.
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ii) Let us suppose that x∗,x′ ∈ Suppo(A) are two global maximizers, that is
A(x) ⪯o A(x∗) = A(x′) for all x ∈ X . We will assume that x′ < x∗. The other
case is totally analogous.

If X is countable, there exists y ∈ X such that x′ < y < x∗. Since A is strictly o-
convex, then A(x′)≺o A(y) or A(x∗)≺o A(y), and that contradicts the fact that
they are global maximizers and so the set of points at which the membership
function of A attains its global maximum over Suppo(A) has no more than
one point.

If X is countable or finite and we have three global maximizers, x∗, x′ and
x′′, they have to be consecutive. Otherwise, we are in a case similar to the
previous one and a contradiction arises. Let us suppose that x∗ < x′ < x′′,
then A(x∗) = A(x′′) ≺o A(x′) by the strictly o-convexity of A, but this is a
contradiction with the fact that x∗ and x′′ are global maximizers.

Previous results can be applied to any admissible order, since (L([0,1]),⪯o) is
then a bounded lattice with least element 0o = [0,0] and greatest element 1o = [1,1],
taking into account that any admissible order refines the lattice order.

3.2.5 Decision-making based on interval-valued fuzzy sets

In this section, we offer a solution to a problem involving decision-making. This
proposal has been introduced by Huidobro et al. in [39]. We also take into account
here the comments given at the beginning of the Subsection 2.3.3. Again we have
an approximate knowledge of the membership function. However, in this case, the
available information about it is an interval where the value is included.

Utilizing Bellman and Zadeh method [8], the decision D would now be the
intersection of the interval-valued fuzzy constraints and objectives if the constraints
and the goals were thought of as interval-valued fuzzy set over the set of alternatives,
X .

So according to Yager and Basson [89], a choice is created by intersecting all
the goals and constraints. In light of this concept, Huidobro et al. suggested the
definition below.
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Definition 3.42 [39, 40] Let X = {x1, , . . . ,xn} be the set of alternatives, G1, , . . .Gp

be the set of goals that can be expressed as interval-valued fuzzy sets on the space
of alternatives, and C1, . . . ,Cm be the set of constraints that can also be expressed
as interval-valued fuzzy sets on the space of alternatives. Let ⪯o be an order on
L([0,1]). The goals and constraints then combine to form a decision Do, which
is an interval-valued fuzzy set resulting from the intersection of the goals and the
constraints. Thus, Do = G1∩o, . . .∩o Gp ∩o C1 ∩o . . .∩o Cm.

For any x ∈ X , the meaning of Do(x) could refer to how well the alternative x
validates the objectives and restrictions. After making a choice, we must choose the
best alternative.

Since the intersection is actually an o-intersection, it follows that Do depends
on the chosen order ⪯o in L([0,1]) right away. As a result, depending on the se-
quence we are examining, the decision Do, which is the intersection of all the goals
and constraints, would vary. When there is no ambiguity, Do could be denoted just
as D.

Let us show an example.

Example 3.43 A person has to choose to locate a new plant in one of three loca-
tions x1, x2 and x3. He wants to select a location that minimizes real estate cost,
G, and is located near supplies, C1. Let X = {x1,x2,x3}. This is a similar case
as the one considered in Example 2.57, but in this case the information about any
membership value is just an lower and an upper bound for his value. Thus, the ap-
propriate sets to deal with this problem would be interval-valued fuzzy sets. Let’s
suppose that the membership functions of the goal G is

G = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.6,0.7]⟩,⟨x3, [0.4,0.8]⟩}

and the membership function of the interval-valued fuzzy constraint C1 is

C1 = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.5,0.9]⟩,⟨x3, [0.3,0.9]⟩}.

If we consider lexicographical order type 1, we emphasize the lower endpoint
of the interval. Then the membership functions of the interval-valued fuzzy decision
DLex1 is:

DLex1 = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.5,0.9]⟩,⟨x3, [0.3,0.9]⟩}
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and the optimal decision would be x2, since it is the alternative with a maximum
value of DLex1 with respect to the lexicographical order type 1.

However, if we use lexicographical order type 2, then he membership functions
of the interval-valued fuzzy decision DLex2 is:

DLex2 = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.6,0.7]⟩,⟨x3, [0.4,0.8]⟩}

and the optimal decision changes to x3.

Following this simple illustration, it is demonstrated how crucial it is to choose
the order on L([0,1]) correctly. It is clear that this correctness depends on any
particular problem.

There are instances where the goals and constraints are defined in a different
set of alternatives than they are in the previous example, which uses interval-valued
fuzzy sets over the same collection of alternatives. We can keep clear of this cir-
cumstance if we apply the extension principle.

Definition 3.44 (Extension principle) [39, 40] Let (L([0,1]),⪯o) be a complete
lattice. Any given function f : X → Y induces two functions, f : IV FS(X) →
IV FS(Y ) and f−1 : IV FS(Y )→ IV FS(X), which are defined by

[ f (A)](y) = supo
x|y= f (x)

A(x)

for all A ∈ IV FS(X), where supo denotes the supremum using the order ⪯o and
[ f−1(B)](x) = B( f (x)) for all B ∈ IV FS(Y ).

With this procedure, when the interval-valued fuzzy constraints or goals are
defined in different spaces, they can be mapped into the same space. When we
have an n-ary function which maps X1×X2×·· ·×Xn to Y , we would assume that if
A∈ IV FS(X1×X2×·· ·×Xn), then A(x1,x2, . . . ,xn)=A(x1)∩o A(x2)∩o · · ·∩o A(xn).

Let us show it by the following example.

Example 3.45 Suppose the same conditions as in Example 3.43, but now there is
another space Y meaning a set of former works developed by the potential financial
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directors, Y = {y1,y2,y3,y4}. We have some information about these former works:
y1 and y2 were made by x1, y3 was supervised by x2 and y4 was produced by x3.

With this information we construct the following mapping:

f : Y → X

defined by f (y1) = x1, f (y2) = x1, f (y3) = x2 and f (y4) = x3.
We also know a fuzzy constraint over Y that measures the impact of each one

of works defined by: CY
2 = {⟨y1, [0.4,0.65]⟩,⟨y2, [0.7,0.9]⟩,⟨y3, [0.7,1]⟩, ⟨y4, [0.6,

0.9]⟩}. It is denoted as CY
2 in order to point out that it is an interval-valued fuzzy set

over the space Y . Now we should apply the extension principle to have all the goals
and constraints as interval-valued fuzzy sets over the same space. To apply the
extension principle we should first decide which order are we taking into account,
in this case, we would use lexicographical order type 1. Thus, for x1,

[ f (CY
2 )](x1) = supo

y|x1= f (y)
CY

2 (y) = sup
o
{CY

2 (y1),CY
2 (y2)}= [0.7,0.9].

Analogously, [ f (C2)](x2) = [0.7,1] and [ f (C2)](x3) = [0.6,0.9].
Consequently, f (CY

2 ) = {⟨x1, [0.7,0.9]⟩,⟨x2, [0.7,1]⟩,⟨x3, [0.6,0.9]⟩}.
Finally, the decision is D′

Lex1 = G∩Lex1C1∩Lex1 f (CY
2 ), that is, the membership

degrees for the different alternatives in D′
Lex1 are:

D′
Lex1 = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.5,0.9]⟩,⟨x3, [0.3,0.9]⟩}

Thus, the optimal decision is still x2.

Taking into account again the concept of conditional set, introduced in the
fuzzy case by Yager and Basson [89], we provide the following definition, which
was first considered in [39, 40].

Definition 3.46 Let X and Y be two crisp sets and let (L([0,1]),⪯o) be a complete
lattice. If we have a family of interval-valued fuzzy sets on X given by {A|y ∈
IV FS(X) : y ∈ Y} and B ∈ IV FS(Y ), we can obtain a new interval-valued fuzzy set
on X by combining the information given by A|y for any y ∈ Y and B. This set will
be denoted by A|B and its membership function is:

A|B(x) = supo
y∈Y

mino{B(y),A|y(x)}
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We can see how this conditional information is considered by means of the
previous example.

Example 3.47 Suppose the same conditions of Example 3.45. The company is
forced to minimize the facility of employing workers. They would concentrate on
the distance to the main office. Let Z = {Near(N),Med(M),Far(F)}. This con-
strain is given by the interval-valued fuzzy set

BZ = {⟨N, [0.85,1]⟩,⟨M, [0.4,0.7]⟩,⟨F, [0.15,0.35]⟩}.

The relation between the alternatives and the proximity to the main office is given
by the following conditioned interval-valued fuzzy sets:

CX
3 |N = {⟨x1, [0.7,0.8]⟩,⟨x2, [0.5,0.6]⟩,⟨x3, [0.3,0.9]⟩},

CX
3 |M = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.55,0.7]⟩,⟨x3, [0.6,0.9]⟩}

CX
3 |F = {⟨x1, [0.35,0.7]⟩,⟨x2, [0.4,0.65]⟩,⟨x3, [0.35,0.7]⟩}.

Thus, we can construct the interval-valued fuzzy set facility of hiring workers.
For x1, CX

3 |BZ(x1) = supLex1
z∈Z

minLex1{BZ(z),CX
3 |z(x1)} = supLex1{minLex1{BZ(N),

CX
3 |N(x1)},{minLex1{BZ(M),CX

3 |M(x1)},{minLex1{BZ(F),CX
3 |F(x1)}}=

supLex1{[0.7,0.8], [0.4,0.7], [0.15,0.35]}= [0.7,0.8].
We have to repeat the same procedure for x2 and x3 and we obtain that

CX
3 |BZ(x2) = [0.5,0.6] and CX

3 |BZ(x3) = [0.4,0.7].

Then, we have that the interval-valued fuzzy set CX
3 |BZ is given by

CX
3 |BZ = {⟨x1, [0.7,0.8]⟩,⟨x2, [0.5,0.6]⟩,⟨x3, [0.4,0.7]⟩}.

Finally, the decision is D′′
Lex1 = G∩Lex1 C1 ∩Lex1 f (CY

2 )∩Lex1 CX
3 |BZ , that is, the

decision if the interval-valued fuzzy set D′′
Lex1 defined as:

D′′
Lex1 = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.5,0.6]⟩,⟨x3, [0.3,0.9]⟩}.

Thus, x2 is again the optimal decision.



142 CHAPTER 3. CONVEXITY OF INTERVAL-VALUED FUZZY SETS

It is time to combine a decision-making problem with Proposition 3.38 and
Theorem 3.41.

Corollary 3.48 [39, 40] Let ⪯o be a total order on L([0,1]) with least element, let
G1, . . . ,Gp be the interval-valued fuzzy goals, C1, . . . ,Cm the interval-valued fuzzy
constraints, and D = G1 ∩ . . .∩Gp ∩C1 ∩ . . .∩Cm be the resulting decision.

• If the interval-valued fuzzy goals and constraints are o-convex interval-valued
fuzzy set, then the resulting decision D is an o-convex interval-valued fuzzy
set and the set of maximizing decisions of the interval-valued fuzzy set D is a
convex crisp set.

• If the interval-valued fuzzy goals and constraints are strictly o-convex interval-
valued fuzzy set, then the resulting decision D is a strictly o-convex interval-
valued fuzzy set and the cardinal of the set of maximizing decisions of D is no
more than two.

Let us summarize the decision-making problem of Example 3.47 in the follow-
ing example.

Example 3.49 In the previous examples we consider one interval-valued fuzzy goal

G = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.6,0.7]⟩,⟨x3, [0.4,0.8]⟩}

and three interval-valued fuzzy constraints

C1 = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.5,0.9]⟩,⟨x3, [0.3,0.9]⟩}

f (CY
2 ) = {⟨x1, [0.7,0.9]⟩,⟨x2, [0.7,1]⟩,⟨x3, [0.6,0.9]⟩}

CX
3 |BZ = {⟨x1, [0.7,0.8]⟩,⟨x2, [0.5,0.6]⟩,⟨x3, [0.4,0.7]⟩}

If we suppose x1 < x2 < x3, it is clear that G, C1, f (CY
2 ) and CX

3 |BZ are strictly
convex interval-valued fuzzy set with respect to the lexicographical order type 1, so
the decision D′′

Lex1 is also a convex interval-valued fuzzy set w.r.t. the same order. It
is easy to check it, since

D′′
Lex1 = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.5,0.6]⟩,⟨x3, [0.3,0.9]⟩}
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We can apply the previous result to assert that x2 is a global maximizer.
We can also find an illustration of the goal and constraints for x1, x2 and x3 in

Figures 3.5, 3.6 and 3.7, respectively. The importance of the choice of the order is
clearly shown in these figures.
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Figure 3.5: Visualization of examples (x1)
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Figure 3.6: Visualization of examples (x2)

We demonstrate what occurs when we choose lexicographical order type 2 in
the following example because switching the order could also be interesting.

Example 3.50 Using the same interval-valued fuzzy sets for the goal and con-
straints from the previous examples but using the lexicographical order type 2 in-



144 CHAPTER 3. CONVEXITY OF INTERVAL-VALUED FUZZY SETS

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G(x3)

C1(x3)

f (CY
2 )(x3)

CX
3 |BZ (x3)

D′′
Lex1(x3)

D′′
Lex2(x3)

D′′
XY (x3)

Figure 3.7: Visualization of examples (x3)

stead of type 1, the decision-making problem is

G = {⟨x1, [0.2,0.7]⟩,⟨x2, [0.6,0.7]⟩,⟨x3, [0.4,0.8]⟩}

C1 = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.5,0.9]⟩,⟨x3, [0.3,0.9]⟩}

f (CY
2 ) = {⟨x1, [0.7,0.9]⟩,⟨x2, [0.7,1]⟩,⟨x3, [0.6,0.9]⟩}

and
CX

3 |BZ = {⟨x1, [0.7,0.8]⟩,⟨x2, [0.4,0.7]⟩,⟨x3, [0.3,0.9]⟩}

It should be noticed that there are changes in the constraint CX
3 |BZ because we used

lexicographical order type 2 and it affects the supremum and the minimum.
We can also see that D′′

Lex2 is a Lex2-convex interval-valued fuzzy set, as

D′′
Lex2 = {⟨x1, [0.5,0.6]⟩,⟨x2, [0.4,0.7]⟩,⟨x3, [0.4,0.8]⟩}

Thus, D′′
Lex2 is not only convex but strictly Lex2-convex, so we can assure that x3

is the optimal decision. This happens even in the case CX
3 |BZ is not a Lex2-convex

interval-valued fuzzy set.

3.2.6 Ranking method based on interval-valued fuzzy sets

In this section, we follow similar steps to the case of hesitant fuzzy sets presented in
Subsection 2.3.4. We will introduce a ranking method for interval-valued fuzzy sets.
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Once we have shown how to model the decision-making problems in the previous
section, the method is almost done. We must obtain the decision D and order their
components. We keep the largest element as the first element of the ranking and
delete it from the others. We iterate this process until there are no elements on the
list. In case two or more elements have the same value we must decide on one
randomly.

For the sake of clarity, we introduce here a pair of practical cases.

Example 3.51 Let us consider a situation similar to the one described in Example
2.65. Thus, we have the four national airlines: UNI Air, Transasia, Mandarin and
Daily Air, and the four criteria: the booking and ticket service (C1), the check-in
and boarding process (C2), the cabin service (C3) and the responsiveness of the
company (C4). In this case, we can consider that the experts only propose a lower
bound and an upper bound for the different membership values. Thus, we will deal
with interval-valued fuzzy sets. The data is shown in Table 3.6.

C1 C2 C3 C4

UNI Air [0.6,0.9] [0.6,0.8] [0.3,0.9] [0.4,0.9]
Transasia [0.7,0.9] [0.5,0.9] [0.4,0.8] [0.5,0.7]
Mandarin [0.5,0.8] [0.6,0.9] [0.3,0.7] [0.5,0.7]
Daily Air [0.6,0.9] [0.7,0.9] [0.2,0.7] [0.4,0.5]

Table 3.6: Interval-valued fuzzy decision matrix.

Now we should transform this into a decision-making problem and then com-
pute the intersection of the criteria. If we consider lexicographical order type 1,
then we obtain the results given in Table 3.7.

UNI Air Transasia Mandarin Daily Air
C1 ∩Lex1 C2 ∩Lex1 C3 ∩Lex1 C4 [0.3,0.9] [0.4,0.8] [0.3,0.7] [0.2,0.7]

Table 3.7: Lex1-intersection of the criteria.

So therefore, our ranking with lexicographical order type 1 is

Transasia >UNIAir > Mandarin > DailyAir
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as

[0.2,0.7]⪯Lex1 [0.3,0.7]⪯Lex1 [0.3,0.9]⪯Lex1 [0.4,0.8].

On the other hand, if we consider the lexicographical order type 2, the inter-
section is clearly different, as we can see in Table 3.8.

UNI Air Transasia Mandarin Daily Air
C1 ∩Lex2 C2 ∩Lex2 C3 ∩Lex2 C4 [0.6,0.8] [0.5,0.7] [0.3,0.7] [0.4,0.5]

Table 3.8: Lex2-intersection of the criteria.

And the ranking using the lexicographical order type 2 is

UNIAir > Transasia > Mandarin > DailyAir.

Example 3.52 In we consider now a similar scenario to the Example 2.66, but
again with a piece of information given by means of intervals. Thus, we have seven
universities: Stanford, Harvard, Oxford, Cambridge, California-Berkeley, Prince-
ton and Yale. We also have five fields: Arts and Humanities (AH), Life Sciences and
Medicine (LM), Engineering and Technology (ET), Natural Science and Mathemat-
ics (SCI) and Social Sciences (SOC).

The data is the was presented in Table 3.9.

University AH LM ET SCI SOC
Stanford [0.868, 0.871] [0.694, 0.912] [0.919, 0.933] [0.899, 0.925] [0.801, 0.936]
Harvard [0.861 , 0.897] [0.913, 1] [0.651, 0.857] [0.902, 1] [0.919, 1]
Oxford [0.844, 0.991] [0.609, 0.923] [0.644, 0.876] [0.723, 0.904] [0.599, 0.942]

Cambridge [0.839, 0.935] [ 0.756, 0.918] [0.748, 0.905] [0.888, 0.97] [0.594, 0.912]
California, Berkeley [0.814 , 0.872] [0.580, 0.856] [0.868, 0.906] [0.899, 0.963] [ 0.796, 0.873]

Princeton [0.812, 0.865] [0.248, 0.741] [0.711, 0.895] [0.892, 0.937] [0.764, 0.911]
Yale [0.812, 0.89] [0.624, 0.886] [0.491, 0.752] [0.652, 0.843] [0.728, 0.900]

Table 3.9: Interval-valued Fuzzy Data.

Then we have to obtain the intersection using the Xu and Yager order, which is
shown in Table 3.10.

So, therefore, our ranking with the Xu and Yager order is:
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University AH ∩XY LM∩XY ET ∩XY SCI ∩XY SOC
Stanford [0.694, 0.912]
Harvard [0.651, 0.857]
Oxford [0.644, 0.876]

Cambridge [0.594, 0.912]
California, Berkeley [0.580, 0.856]

Princeton [0.248, 0.741]
Yale [0.491, 0.752]

Table 3.10: XY -intersection.

Stan f ord > Ox f ord > Harvard >Cambridge >Cali f ornia,Berkeley
> Yale > Princeton.

It is clear, that this ranking could be different if we consider a different order
to manage the information. Thus, for the lexicographical order type 1, the ranking
remains equal for the last positions, but we obtain that:

Stan f ord > Harvard > Ox f ord >Cambridge

and for the lexicographical order type 2, these first positions are:

Cambridge > Stan f ord > Ox f ord > Harvard

These differences are the clear consequence of the different points of view con-
sidered by the chosen orders.

Despite the fact we obtain the same results as in the hesitant case, this is not
always fulfilled as we can see in the following example.

Example 3.53 Let us consider X = {x1,x2,x3} and the following hesitant fuzzy
set:

A = {⟨x1,{0.1,0.6,0.7}⟩,⟨x2,{0.2,0.7}⟩,⟨x3,{0.2,0.6,0.8}⟩}
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If we transform this hesitant fuzzy set into an interval-valued fuzzy set A′ by
using the minimum and maximum values for defining the extremes of the interval,
we would obtain the following interval-valued fuzzy set:

A = {⟨x1, [0.1,0.7]⟩,⟨x2, [0.2,0.7]⟩,⟨x3, [0.2,0.8]⟩}

It is easy to check that, if we use lexicographical order 2 we could obtain
different maximums. In the case of the typical hesitant fuzzy set the maximum is
attained in x2, while in the interval-valued case is in x3.

Also with this example, we showed that the loss of information when consider-
ing just the minimum and the maximum could affect the final maximizer.



Conclusions

In this thesis we have done a deep study of the convexity for two of the most used
extensions of the fuzzy sets. In all the cases we have tried to keep the original ideas
for crisp and fuzzy sets. However, as we have more degree of uncertainty, this also
increases the difficulty of the related studies. Apart from theoretical studies, some
possible applications have also been shown. More precisely, about hesitant fuzzy
sets:

• First, we have presented a definition of convex hesitant fuzzy sets in a way
that is consistent with the conventional understanding of convexity and is
based on aggregation functions.

• We have found that the convexity of hesitant fuzzy sets is conserved under
intersections when we employ as an aggregation function the minimum and
the maximum.

• We have characterized the behaviour of any aggregation function with respect
to the preservation of the convexity under intersections in all the cases that it
is possible.

• Once we created the theory about the convexity of hesitant fuzzy sets using
aggregation functions, we have considered a different approach for the cases
the use of aggregation functions fails. This is done by considering all the
original information given at the membership function. For this reason, we
need to propose some operations on hesitant fuzzy sets, such as the intersec-
tion, union and level sets, to restore the traditional concept of these operations
based on admissible orders, which are total orders that improve the lattice or-
der.
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• We apply convexity to optimization or decision-making problems and develop
a novel ranking method by analyzing the convexity found in the literature and
proposing an appropriate definition that is compatible with the intersection.

In addition, we conclude here the results we obtain for interval-valued fuzzy
sets:

• In this thesis we propose a definition for the intersection of interval-valued
fuzzy sets. Because the inclusion relation changes with the chosen order,
there are multiple definitions of intersection. It should come as no surprise
that not all of the usually considered relations to order the intervals are suit-
able for defining the intersection, despite the fact that the lattice order gener-
ates a definition of the intersection that is consistent with the standard defi-
nition found in the literature. However, it appears that admissible orders are
better suited for our purposes.

• In a similar way, we introduce the union and level sets for interval-valued
fuzzy sets and they work well with admissible orders. We look at some in-
teresting properties and proposed a proper definition of convexity, which is
preserved through intersections.

• Moreover, we prove a decomposition theorem for interval-valued fuzzy sets
in order to characterize them through their level sets.

• We also presented a natural cutworthy property-satisfying definition of con-
vexity of interval-valued fuzzy set, based on an order relation between inter-
vals.

• Finally, we present a strategy for applying convexity and interval-valued fuzzy
sets to optimization or decision-making issues.



Conclusiones

En esta tesis hemos realizado un estudio en profundidad sobre la convexidad de
dos de las extensiones más utilizadas de los conjuntos difusos. En todos los casos
hemos tratado de mantener las ideas originales para conjuntos nítidos y difusos. Sin
embargo, como tenemos un grado de incertidumbre mayor, esto hace que aumente
la dificultad de los estudios realizados. Además de un análisis teórico, también se
han mostrado algunas posibles aplicaciones. Más precisamente, sobre conjuntos
difusos hesitant:

• Hemos presentado una definición de conjunto difuso hesitant convexo que
es coherente con las ideas clásicas de convexidad y que está basada en las
funciones de agregación.

• Hemos concluido que se preserva la convexidad para la interseción de con-
juntos difusos hesitant cuando la función de agregación que se utiliza es el
mínimo o el máximo.

• Hemos caracterizado el comportamiento de cualquier función de agregación
respecto a la conservación de la convexidad bajo intersecciones en todos en
los casos que esto es posible.

• Concluimos la teoría sobre la convexidad de los conjuntos difusos hesitant
usando funciones de agregación, poniendo de manifiesto sus debilidades y
dando una alternativa, en la que se considera toda la información original
contenida en la función de pertenencia. Motivado por esto, hemos definido
algunas operaciones sobre conjuntos difusos hesitant, como son la intersec-
ción, la unión y alfa-cortes, con el objetivo de recuperar el concepto tradi-
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cional de estas operaciones basadas en órdenes admisibles, que son órdenes
totales que mejoran el orden reticular.

• Aplicamos la convexidad a problemas de optimización o toma de decisiones
y desarrollamos un método de ranking novedoso analizando la convexidad
encontrada en la literatura y proponiendo una definición apropiada que sea
compatible con la intersección.

Además, para los conjuntos difusos intervalo-valorados, hemos obtenido lo
siguiente:

• Proponemos una definición para la intersección de conjuntos difusos intervalo-
valorados. Debido a que la relación de inclusión cambia con el orden elegido,
existen múltiples definiciones de intersección. No debería sorprender que no
todas las relaciones habitualmente consideradas para ordenar intervalos sean
adecuados para definir la intersección, a pesar de que el orden reticular genera
una definición de la intersección que es consistente con la definición estándar
encontrada en la literatura. Sin embargo, parece que los órdenes admisibles
son los más adecuados para nuestros propósitos en este campo.

• De manera similar, presentamos los conjuntos de nivel y la unión para con-
juntos difusos intervalo-valorados, las cuales tienen buenas propiedades si se
trabaja con órdenes admisibles. Con todo lo anterior, proposimos una defini-
ción adecuada de convexidad, que se preserva por intersecciones.

• Además, demostramos un teorema de descomposición para conjuntos difusos
intervalo-valorados, que nos permite caracterizarlos a través de sus conjuntos
de nivel o alfa-cortes.

• También presentamos una definición de convexidad para conjuntos difusos
intervalo-valorados que satisface la propiedad de conservación por alfa-cortes,
basada en una relación de orden entre intervalos.

• Finalmente, presentamos un método para aplicar la convexidad y los con-
juntos difusos intervalo-valorados a problemas de optimización o toma de
decisiones.



Závery

V tejto práci sme podrobne skúmali konvexnost’ pre dve z najpoužívanejších rozšírení
fuzzy množín. Vo všetkých prípadoch sme sa snažili zachovat’ pôvodné koncepty
zaužívané pre ostré a fuzzy množiny. Ked’že v skúmaných štruktúrach je vyššia
miera neistoty, zvyšuje to aj náročnost’ súvisiaceho výskumu. Okrem teoretických
výsledkov sme ukázali aj niektoré možné aplikácie. Konkrétne, pre hesitant fuzzy
množiny:

• Uviedli sme definíciu konvexnej hesitant fuzzy množiny spôsobom, ktorý je
v súlade s konvenčným chápaním konvexnosti a je založený na agregačných
funkciách.

• Zistili sme, že konvexnost’ hesitant fuzzy množín je zachovaná pri prieniku,
ked’ ako agregačné funkcie použijeme minimum a maximum.

• Charakterizovali sme správanie akejkol’vek agregačnej funkcie vzhl’adom na
zachovanie konvexnosti prieniku vo všetkých prípadoch, kedy je to možné.

• Okrem vytvorenej teórie konvexnosti hesitant fuzzy množín pomocou agre-
gačných funkcií sme použili odlišný prístup v prípadoch, kde použitie agre-
gačných funkcií zlyháva. Tu využívame úplnú informáciu z funkcie prís-
lušnosti. Za týmto účelom zavádzame niektoré operácie pre hesitant fuzzy
množiny, ako napríklad zjednotenie, prienik a rezy, aby sme zachovali ob-
vyklý koncept týchto operácií založený na prípustných usporiadaniach, čo sú
úplné usporiadannia rozširujúce zväzové usporiadanie.

• Aplikujeme konvexnost’ na optimalizačné alebo rozhodovacie problémy a
vyvíjame novú metódu ohodnocovnia analyzovaním konvexnosti v literatúre
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a navrhnutím vhodnej definície, ktorá je kompatibilná s prienikom.

V d’alšom uvádzame výsledky, ktoré sme získali pre intervalovohodnotové
fuzzy množiny:

• Navrhujeme definíciu prieniku intervalovohodnotových fuzzy množín. Pre-
tože relácia inklúzie závisí od zvolenej definície, existuje viacero možných
prienikov. Nie je prekvapujúce, že nie všetky obvykle používané usporiada-
nia intervalov sú vhodné na definovanie prieniku, napriek tomu, že uspori-
adanie vo zväze generuje prienik, ktorý je v súlade so štandardnou definíciou.
Zdá sa však, že na tento účel sú vhodnejšie prípustné usporiadania.

• Podobným spôsobom zavedieme zjednotenie a hladiny pre intervalovohodno-
tovú fuzzy množinu, ktoré sú v súlade s prípustnými usporiadaniami. Navrhli
sme správnu definíciu konvexnosti, ktorá je zachovaná pri prienku.

• Dokazujeme dekompozičnú vetu pre intervalovohodnotové fuzzy množiny,
ktorá umožňuje charakterizovat’ ich prostredníctvom ich hladín.

• Navrhujeme definíciu konvexnosti pre intervalovohodnotové fuzzy množiny,
ktorá je kompatibilná s vlastnost’ami rezov, založenú na usporiadaní inter-
valov.

• Uvádzame spôsob použitia konvexných intervalovohodnotovných fuzzy množín
v úlohách optimalizácie alebo rozhodovania.
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