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RESUMEN (en espafiol)

Esta tesis trata sobre la teoria de conjuntos difusos, los cuales fueron propuestos por Zadeh en
1965. Los conjuntos difusos permiten dar grados de pertenencia a un conjunto, con un valor en
el intervalo [0, 1]. Abordar la imprecisién en problemas del mundo real es tal desafio que ha
llevado a que se creasen varias extensiones de conjuntos difusos, como los conjuntos difusos
hesitant, los conjuntos difusos intuicionistas y los conjuntos difusos intervalo-valorados. Estas
extensiones pueden resultar Utiles en situaciones donde las herramientas difusas clasicas no
son tan eficientes, por ejemplo, cuando no hay un procedimiento preciso para determinar los
grados de pertenencia. Debido a su potencial para diversas aplicaciones, estas extensiones
han llamado la atencion de muchos investigadores. En esta tesis, nos centramos en los
conjuntos difusos del tipo typical hesitant, que son un caso particular de conjuntos difusos
hesitant donde la funcién de pertenencia toma un namero finito de valores, y en los conjuntos
difusos intervalo-valorados, donde la funcién de pertenencia es un intervalo en cada valor.

Por otro lado, la convexidad es una herramienta matematica fundamental que resulta
conveniente estudiar en diferentes escenarios, como los conjuntos clasicos o nitidos y los
conjuntos difusos. Desde que Zadeh introdujo los conjuntos difusos, se han propuesto
diferentes definiciones de convexidad en la literatura para tratar con este tipo de conjuntos y
con sus extensiones.

De igual manera, la toma de decisiones ha sido un campo que ha captado la atencion de
muchos investigadores, como Bellman y Zadeh o Yager y Bason. Existen al menos tres
factores cruciales a considerar en un proceso de toma de decisiones: 1) una coleccion de
alternativas, 2) un conjunto de limitaciones en la eleccion dentro de multiples alternativas, y 3)
una funcion de utilidad que asocia la ganancia o pérdida resultante de elegir esa alternativa con
cada eleccion.

En situaciones “reales” puede resultar muy desafiante especificar la funcién objetivo y las
limitaciones con precisién. Segun Czogala y Zimmermann, los conjuntos difusos pueden ser
una herramienta muy Util para tratar con la imprecision.

Teniendo estos comentarios en cuenta, esta tesis se centra en la convexidad de los conjuntos
difusos y sus extensiones. Comenzamos con los conjuntos difusos hesitant y las funciones de
agregacion, que son funciones crecientes que combinan varias entradas para dar una salida y
que cumplen que, si las entradas son todas cero, la salida es 0 y lo mismo con 1. Proponemos
una definicibn adecuada de un conjunto difuso hesitant convexo basada en funciones de
agregacion y estudiamos cuando la interseccion de dos conjuntos convexos es también
convexa. Obtenemos resultados positivos con el minimo y el maximo. También hemos
demostrado que existen funciones entre el minimo y el maximo que verifican esa afirmacion.
Después de eso, sefialamos que el uso de la funcién de agregacién podria generar una falta de
informacion, por lo que presentamos una definicion adecuada de conjuntos difusos hesitant
convexos basada en érdenes admisibles, que son Ordenes totales que refinan el conocido
orden reticular. Nuestra propuesta de convexidad es compatible con los alfa-cortes, es decir, si
consideramos un conjunto difuso hesitant convexo, entonces sus alfa-cortes son conjuntos
clasicos convexos. También es compatible con el soporte (support) y el nacleo (core) de un
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conjunto difuso hesitant. Para evitar el uso de las funciones de agregacion, presentamos un
estudio de la interseccion de conjuntos difusos hesitant donde recuperamos el significado
clasico de la interseccién. Con esta definicién de interseccién y la definicion de convexidad,
obtenemos muy buenos resultados y proporcionamos una aplicacion en la toma de decisiones
con resultados interesantes al considerar objetivos y limitaciones difusas hesitant convexas.

En el caso de los conjuntos difusos intervalo-valorados, presentamos una definicion de
convexidad basada en o6rdenes de intervalos y estudiamos las propiedades de dicha
convexidad. Obtenemos un comportamiento positivo con los alfa-cortes, el soporte y el ndcleo
de un conjunto difuso intervalo-valorado. También analizamos la definicién de interseccion para
conjuntos difusos intervalo-valorados y proponemos otra que recupera el significado clasico de
la interseccion y es compatible con la convexidad definida. Es decir, la interseccién de dos
conjuntos convexos también es convexa. Finalmente, proporcionamos una aplicacion para
utilizar las teorias anteriores desarrolladas en procesos de toma de decisiones.

RESUMEN (en inglés)

This thesis discusses the concept of fuzzy sets, which were first proposed by Zadeh in 1965.
Fuzzy sets allow for degrees of membership within a set, with the membership value being in
the range of 0 to 1. Addressing imprecision in real-world problems has been a long-standing
research challenge, leading to various extensions of fuzzy sets such as hesitant fuzzy sets,
intuitionistic fuzzy sets, and interval-valued fuzzy sets. These extensions can prove useful in
situations where classical fuzzy tools are not as efficient, for example when there is no objective
procedure to determine crisp membership degrees. Due to their potential for various
applications, these extensions have drawn the attention of many researchers. In this thesis, we
focus on typical hesitant fuzzy sets, which are a particular case of hesitant fuzzy sets where the
membership function takes a finite number of values, and interval-valued fuzzy sets, where the
membership function is an interval for each value.

On the other hand, convexity is a fundamental mathematical technique that is useful in studying
different scenarios, including crisp sets and fuzzy sets. Since Zadeh introduced fuzzy sets,
different convexity types have been proposed in the literature to deal with this kind of sets and
its extensions.

At the same time, decision-making has been a field that catches the attention of many
researchers such as Bellman and Zadeh or Yager and Bason. There are at least three crucial
factors to consider in a decision-making process 1) a collection of alternatives, 2) a set of
limitations on the option within multiple alternatives, and 3) a utility function that associates the
gain or loss resulting from choosing that alternative with each choice.

It is very challenging to specify the objective function and the limitations precisely in many real-
world circumstances. According to Czogala and Zimmermann, fuzzy sets can be a very helpful
tool for dealing with imprecision.

Bearing this in mind, this thesis is focused on the convexity of fuzzy sets and its extensions. We
start with hesitant fuzzy sets and aggregation functions, which are increasing functions that
combine various inputs in order to give one output and fulfill that if the inputs are all zero the
output is 0 and the same with 1. We propose a proper definition of a convex hesitant fuzzy set
based on aggregation functions and study when the intersection of two convex sets is also
convex. We obtain positive results with the minimum and the maximum. We were also able to
prove that there exist functions between the minimum and the maximum that verify that
statement. After that, we point out that the use of the aggregation function could generate a lack
of information, so we introduce an appropriate definition of convex hesitant fuzzy sets based on
admissible orders, which are total orders that refine the well-known lattice order. Our proposal
of convexity is compatible with the level sets, that is, if we consider a convex hesitant fuzzy set,
then its level sets are convex crisp sets. It is also compatible with the support and core of a
hesitant fuzzy set. In order to avoid aggregation functions, we present a study of the intersection
of hesitant fuzzy sets where we recover the classical meaning of intersection. With this
definition of intersection and the definition of convexity, we obtain very good results and provide
an application in decision-making with interesting results when considering convex hesitant
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fuzzy goals and constraints.

In the case of interval-valued fuzzy sets, we introduce a definition of convexity based on
interval orders and study the properties of these convex sets. We obtain a positive behaviour
with the level sets, support and core of an interval-valued fuzzy set. We also analyse the
definition of intersection for interval-valued fuzzy sets and propose another one that recovers
the classical meaning of intersection and it is compatible with the convexity defined. That is, the
intersection of two convex sets is also convex. Finally, we provide an application for using the
previous theories developed in decision-making processes.

SR. PRESIDENTE DE LA COMISION ACADEMICA DEL PROGRAMA DE DOCTORADO
En Matematicas y Estadistica
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Introduction

In 1965, Zadeh [91] proposed the idea of a fuzzy set. The degree of membership of
any object to a set in fuzzy set theory is a value in the range [0, 1]. This idea is a very
useful instrument to explain human knowledge. Furthermore, Zadeh [92] suggested
the first extensions of these sets in 1973, indicating the necessity to develop this
theory.

One of the most used extensions is hesitant fuzzy sets, where the member-
ship takes values on the power set of [0, 1]. Numerous researchers rapidly became
interested in these sets and presented a variety of extensions and operators to com-
pute with these forms of information. Eventually, various applications were created
(14,150, 69].

Interval-valued fuzzy sets, where the values of the membership function are
subintervals of the interval [0, 1], are another interesting and very used extension
of fuzzy sets. There are lots of applications for this theory. For instance, it was
used in the medical diagnosis of thyroid disease [70]], image processing [36], ap-
proximate reasoning [10], interval-valued logic [63], medicine [4], clustering [67],
among others. Atanassov’s intuitionistic fuzzy sets are another frequently used ex-
tension of fuzzy sets and are equivalent to interval-valued fuzzy sets [20]. So work-
ing with interval-valued fuzzy sets and intuitionistic fuzzy sets is equivalent from
a mathematical perspective, nevertheless, these sets are different from one another
conceptually [74]], and we use them depending on the situation.

All of these extensions can be included within the type-2 fuzzy sets [93].
In type-2 fuzzy sets, the value of the membership function is itself a fuzzy set.

This extension catches the attention of several researchers, such as McCulloch and
Wagner[58], Wu and Mendel[81} [82]], Huidobro et al.[42], and others.
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2 Introduction

From another perspective, the idea of convexity is a fundamental mathematical
technique that may be applied to study a large range of scenarios. Different convex-
ity types have been discussed in the literature, initially to deal with crisp sets and
later for fuzzy sets and intuitionistic fuzzy sets. These concepts enable us to work
with any kind of set, whether it is crisp, fuzzy or intuitionistic [2} 21,145} 90]. In or-
der to do this to hesitant fuzzy sets, appropriate concepts for scenarios in which the
universe is not always a vector space will be introduced [55]] and also some methods
to order the hesitant fuzzy elements will be presented. In the case of interval-valued
fuzzy sets, we will also look for methods to order the intervals. Thus, we will
do a parallel study about the convexity for the case of interval-valued fuzzy sets,
where we will take into account the conclusions obtained for hesitant fuzzy sets.
Of course, an appropriate adaptation to this new environment should be done and
some different studies are required. It should be emphasized that convexity is one
of the most crucial factors in the study of the geometric properties of both classical
and fuzzy sets, as well as fuzzy multisets in particular, in addition to fuzzy sets in
general. It has grown more potent due to its usage in a variety of fields, including
optimization [353]], image processing [/5], robotics [S1] or geometry [47], among
others. One of the most relevant properties of convexity is that the intersection of
two sets is also convex. Hence, we will deal with convexity and its preservation
under the intersection.

Therefore, this thesis will deal with fuzzy sets, hesitant fuzzy sets and interval-
valued fuzzy sets. We think that when the situation manages a discontinuous piece
of information, hesitant fuzzy sets seem like a proper tool, while in the case of a
continuum model we could use interval-valued fuzzy sets.

At the same time, decision-making has been a field that catches the attention of
many researchers such as Bellman and Zadeh [8]], Naz and Akram [[60] or Yager and
Bason [89]. There are at least three crucial factors to consider in a decision-making

process:
1. acollection of alternatives
2. a set of limitations on the option within multiple alternatives

3. autility function that associates the gain or loss resulting from choosing that



alternative with each choice

It is very challenging to specify the objective function and the limitations precisely
in many real-world circumstances. Fuzzy sets can be a very helpful tool for dealing
with imprecision, according to Czogala and Zimmermann [17]].

Bearing this in mind, this work will be focused on convexity in fuzzy sets and

its extensions. The main objectives are the following:

* Propose an appropriate definition of convex hesitant fuzzy sets and convex

interval-valued fuzzy sets.

* Analyse the definition of intersection for hesitant fuzzy sets and interval-

valued fuzzy sets.

» Study properties of convexity hesitant fuzzy sets and interval-valued fuzzy

sets.

* Provide an application for using the previous theories in a decision making-

problem.

In the first chapter, we will review the definition of fuzzy sets and the basic
operations proposed by Zadeh in [91], and the ideas that correspond to the main
generalizations of fuzzy sets. In addition, we will also introduce some basic notions
about fuzzy convexity. In the second chapter, the main topic will be the convexity of
hesitant fuzzy sets. Taking into account the state of the art on this topic, we propose
two ways of defining convexity, one with aggregation functions and one without
them. In order to end the chapter, two applications are shown. In Chapter 3, we
study the convexity of interval-valued fuzzy sets and provide two applications, one
for decision-making and one for ranking theory. Finally, we finish this document

by showing its main conclusions.






Introducccion

En 1965, Zadeh [91] propuso la idea de un conjunto difuso o borroso. El grado de
pertenencia de cualquier objeto a un conjunto, en la teoria de conjuntos difusos, es
un valor dentro del rango [0, 1]. Esta idea es un instrumento muy (til para explicar
el razonamiento humano. Ademads, Zadeh [92] sugiri6 las primeras extensiones de

estos conjuntos en 1973, indicando la necesidad de desarrollar esta teoria.

Una de las extensiones mds utilizadas son los conjuntos difusos hesitant, donde
la funcién de pertenencia toma valores en el conjunto partes de [0, 1]. Muchos inves-
tigadores se interesaron rapidamente en estos conjuntos y presentaron una variedad

de extensiones y operadores. También se crearon varias aplicaciones [14, 50, 69].

Los conjuntos difusos intervalo-valorados, donde los valores de la funcién de
pertenencia son subintervalos del intervalo [0, 1], son otra extensién de los conjun-
tos difusos. Hay muchas aplicaciones con esta teoria. Por ejemplo, se usé en el
diagndstico médico de la enfermedad de la tiroides [70], procesamiento de imé-
genes [36]], razonamiento aproximado [10], 16gica de intervalos [63], medicina [4],
etc. Los conjuntos difusos intuicionistas de Atanassov son otra extension de los
conjuntos difusos que se usa con frecuencia y son equivalentes a los conjuntos di-
fusos intervalo-valorados [20]. Aunque trabajar con conjuntos difusos intervalo-
valorados y con conjuntos difusos intuicionistas de Atanassov es equivalente desde
una perspectiva matemadtica, estos conjuntos son diferentes entre si conceptualmente
[74], por lo que decidiremos con cual trabajar dependiendo del contexto en el que

estemos.

Todas estas extensiones se pueden incluir dentro de los conjuntos difusos de
tipo 2 [93]. En los conjuntos difusos de tipo 2, el valor de la funcién de pertenen-

cia es en si mismo un conjunto difuso. Esta extension capté el interés de muchos
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investigadores como McCulloch y Wagner[58]], Wu y Mendel[81} [82]], Huidobro et
al.[42]], entre otros.

Desde otra perspectiva, la idea de convexidad es una técnica matematica fun-
damental que se puede aplicar en una amplia gama de escenarios. En la literatura
se han discutido diferentes tipos de convexidad, inicialmente para tratar con con-
juntos clasicos (o nitidos) y luego para conjuntos difusos y conjuntos difusos intu-
icionistas. Estos conceptos nos permiten trabajar con cualquier tipo de conjunto,
ya sea nitido, difuso o intuicionistico [2, 21} 45]]. Para hacer esto con los conjuntos
difusos hesitant, se introducirdn conceptos apropiados para escenarios en los que el
universo no siempre es un espacio vectorial [55)]. También se presentardn algunos
métodos para ordenar los elementos difusos hesitant, lo cual nos permitird mane-
jar mejor la convexidad. En el caso de los conjuntos difusos intervalo-valorados,
también buscaremos métodos para ordenar los intervalos. Haremos en este caso un
estudio paralelo sobre la convexidad, donde tendremos en cuenta las conclusiones
que ya se hayan establecido para los conjuntos difusos hesitant. Por supuesto, la
adaptacion a este nuevo entorno requerird algunos estudios diferenciados. Cabe
destacar que la convexidad es uno de los factores mds cruciales en el estudio de las
propiedades geométricas de los conjuntos tanto cldsicos como difusos. Motivado
por este hecho, su uso ha crecido sustancialmente en muchos campos, incluyendo
la optimizacion [S3], el procesamiento de imagenes [75], la robdtica [S1] o la ge-
ometria [47], entre otros. En general, una de las propiedades mads relevantes es
que la interseccidon de dos conjuntos convexos es convexa. Por lo tanto, también

analizaremos el concepto de interseccion y su preservacioén por convexidad.

Asi, en esta tesis se hablard de conjuntos difusos, conjuntos difusos hesitant
y conjuntos difusos intervalo-valorados. Creemos que cuando la situacién maneja
informacion discreta, los conjuntos difusos hesitant son una herramienta adecuada,
mientras que en el caso de un modelo continuo seria méds adecuado el uso de los

conjuntos difusos intervalo-valorados.

Paralelamente, la toma de decisiones ha sido un campo que ha llamado la aten-
ciéon de muchos investigadores como Bellman y Zadeh [8], Naz y Akram [60] o
Yager y Bason [89]]. En un procedimiento de toma de decisiones hay al menos tres

componentes importantes a tener en cuenta:



1. un conjunto de alternativas,
2. un conjunto de restricciones,

3. una funcién de utilidad que cuantifica la ganancia o pérdida que surge de la

preferencia de esa alternativa con cada decision.

En muchas situaciones reales, es extremadamente dificil describir con precision la
funcién objetivo y las restricciones. Para lidiar con la imprecision, los conjuntos
difusos pueden ser una herramienta muy util [17]].

Teniendo estos comentarios en cuenta, este trabajo se centrard en la convexidad
de los conjuntos difusos y sus extensiones. Para ello, los objetivos principales son

los siguientes:

* Proponer una definicién apropiada de conjuntos difusos hesitant e intervalo-

valorados convexos.

* Analizar la definicién de interseccion para conjuntos difusos hesitant e intervalo-

valorados.

* Estudiar las propiedades de los conjuntos difusos hesitant e intervalo-valorados

convexos.

* Proporcionar una aplicacién para usar las teorias anteriores en un problema

de toma de decisiones.

En el primer capitulo, revisaremos la definicién de conjuntos difusos y las
operaciones bdsicas propuestas por Zadeh en [91]] y también las ideas que corre-
sponden a las principales extensiones de los conjuntos difusos. Ademads, intro-
duciremos algunas nociones bdsicas sobre la convexidad difusa. Para el segundo
capitulo, el tema principal serd la convexidad de los conjuntos difusos hesitant. Te-
niendo en cuenta lo que se ha hecho en la literatura, propondremos dos formas de
definir la convexidad, una con funciones de agregacién y otra sin ellas. Para fi-
nalizar el capitulo, se muestran dos aplicaciones. En el Capitulo 3, estudiamos la
convexidad de los conjuntos difusos intervalo-valorados y proponemos una apli-
cacion en la toma de decisiones y otra en rankings. Finalmente, cerraremos este

trabajo presentando las principales conclusiones del mismo.






Uvod

V roku 1965 Zadeh [91] zaviedol pojem fuzzy mnoZiny. Stupen prisluSnosti akého-
kol'vek objektu k mnoZine v tedrii fuzzy mnoZin je hodnota v intervale [0, 1]. Této
mysSlienka je vel'mi uZitoénym ndstrojom na popis niektorych aspektov I'udského
poznania. Okrem toho Zadeh [92] navrhol prvé rozsirenia tychto mnoZin v roku

1973, ¢o neskor rozvinuli d’als{ autori.

Jednym z najpouzivanejSich rozsireni su hesitant fuzzy mnoZiny, kde funkcia
prislu$nosti nadobida hodnoty na potenénej mnoZine intervalu [0, 1]. Mnohi autori
sa pomerne rychlo zacali zaujimat’ o tieto zobrazenia a predstavili r6zne rozsirenia
a operdtory na manipuldciu s tymito formami informécii. Nakoniec vznikli aj r6zne
aplikdacie [[14} 50, 69]].

Dal§fm rozsirenim fuzzy mnoZin si intervalovo hodnotové fuzzy mnoziny, kde
hodnoty funkcie prislu$nosti st podintervaly intervalu [0, 1]. Existuje vel’a aplikécii
tejto tedrie. Pouziva sa napriklad pri lekdrskej diagnostike ochorenia Stitnej zI'azy
[70], spracovani obrazu [36]], pribliZnom odvodzovani [[10], intervalovej logike [63],
medicine vo vSeobecnosti [4], atd’. Atanassovove intuicionistické fuzzy mnoZiny su
d’al$im Casto pouzivanym rozsirenim fuzzy mnoZin a su ekvivalentom intervalovo-
hodnotovych fuzzy mnozin [20]. Struktidry intervalovohodnotovych fuzzy mnozin a
Atanassovovych intuicionistickych fuzzy mnozin su teda z matematického hl’adiska
ekvivalentné, aviak tieto objekty sa navzdjom koncepcCne lisia [[/4], a teda ich pouZi-
vame v zdvislosti od kontextu.

VSsetky tieto roz§irenia moézu byt’ zahrnuté do kategdérie fuzzy mnoZin typu 2
[93]. Vo fuzzy mnoZinach typu 2 je samotnd hodnota funkcie prisluSnosti fuzzy

mnoZinou. Takymito roz§ireniami sa zaoberaju autori ako napriklad McCulloch a
Wagner [58]], Wu a Mendel[81, 82], Huidobro a kol. [42][58] a ini.
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Myslienka konvexnosti je zdkladnou matematickou technikou, ktord moZno
pouzit' na Stidium Sirokej Skdly problémov. V literatire sa diskutuje o r6znych
typoch konvexnosti, najprv pre ostré mnozinami a neskor fuzzy mnoZiny a intu-
icionistické fuzzy mnoZziny. Tieto koncepty ndm umoziuju pracovat’ s akymkol vek
druhom mnoZiny, ¢i uz sd to ostré, neostré alebo intuicionistické [2, 21, 45, 90].
Aby to bolo mozné urobit’ pre hesitant fuzzy set, budi zavedené vhodné kon-
cepty pre situdcie, v ktorych zdkladnd mnozina nie je vzdy vektorovym priestorom
[55], v tejto préci tieZ zavadzame niektoré metdédy na usporiadanie hesitant fuzzy
prvkov. V pripade IVES sa tiez zaoberdme sp6sobmi usporiadania intervalov. V
tejto suvislosti sa zaoberdme konvexnost'ou pre intervalovohodnotové zobrazenia,
pricom vyuZivame vysledky dosiahnuté pre hesitant fuzzy mnoZiny. Pochopitel'ne,
isté Upravy a odliSné pristupy su v tomto pripade nevyhnutné. Je potrebné zdoraznit’,
Ze konvexnost’ je jednym z najddlezitejSich faktorov pri Stidiu geometrickych vlast-
nosti klasickych a fuzzy mnozin, ako aj fuzzy multimnoZin. Tieto metddy ziskavaju
na vyzname vd’ aka pouZitiu v r6znych oblastiach, vratane optimalizacie [S3]], spra-
covania obrazu [75], robotiky [S1] alebo geometrie [47]. Jednou z podstatnych
vlastnosti konvexnosti je jej zachovdvanie pri prieniku. Preto sa v praci zaoberame
aj prienikmi a ich konvexnost’ ou.

Zékladnymi skimanymi objektami tejto prace su teda fuzzy mnoZiny, hesitant
fuzzy mnoZiny a intervalovo hodnotové fuzzy mnoziny. Nazddvame sa, Ze ked’ si
situdcia vyZaduje diskrétny priestor hodnot, hesitant fuzzy set sa javia ako spravny
ndstroj, zatial’ ¢o v pripade kontinua je vhodné pouzit’ IVES.

Rozhodovanie je oblast’ ou, ktord prit’ahuje pozornost’ mnohych vyskumnikov
ako Bellman a Zadeh [8]], Naz a Akram [60], Yager a Bason [89]]. Tri kI'iCové
faktory, ktoré je potrebné zvazit' v rozhodovacom procese, su: 1) stbor alternativ,
2) sibor obmedzeni moznosti v rdmci viacerych alternativ a 3) funkcia uZzito¢nosti,
ktord spdja zisk alebo stratu vyplyvajucu z vyberu tejto moznosti. Vo v§eobecnosti
je v redlnych situdcidch pomerne narocné presne Specifikovat’ cielovi funkciu a
obmedzenia. Fuzzy mnoZiny mézu byt podl'a Czogala a Zimmermann [[17] vel'mi
uzitonym ndstrojom na rieSenie problémov, ktoré vo svojom popise obsahju prvky
neurcitosti.

Vzhl'adom na to sa tato praca zameria na konvexnost’ v oblasti fuzzy mnoZin

a ich rozsireni, stanovili sme si nasledujice hlavné ciele:
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e Navrhnit' vhodnu definiciu konvexnosti pre hesitant fuzzy mnoZiny, ako aj

pre intervalovohodnotové fuzzy mnoZiny.

* Analyzovat’ existujuce definicie prieniku pre hesitant fuzzy mnoZiny a inter-

valovohodnotové fuzzy mnoZiny.

e Skumat’ vlastnosti konvexnych hesitant fuzzy mnozin a intervalovohodno-

tovych fuzzy mnoZzin.
* Prezentovat’ pouZitie predchadzajicich tedrii v rozhodovacom probléme.

V prvej kapitole zopakujeme definiciu fuzzy mnoziny a zdkladné operdcie pre
ne navrhnuté Zadehom v [91] a mySlienky, ktoré zodpovedaji hlavnym zovSeobec-
neniam fuzzy mnoZin. Okrem toho zavedieme aj niektoré zdkladné pojmy tykajice
sa fuzzy konvexnosti. V druhej kapitole je hlavnou témou konvexnost' hesitant
fuzzy mnozin. Uvedieme prehl'ad existujicich vysledkov a navrhneme spOsoby
definovania konvexnosti, ako pomocou agregacnych funkcii, tak aj bez ich pouzi-
tia. Na zdver kapitoly prezentujeme dve aplikdcie. Nakoniec v kapitole 3 Studu-
jeme konvexnost’ intervalovo hodnotovych fuzzy mnoZin a poskytujeme aplikaciu

v rozhodovacom procese a v klasifikacii.






Chapter 1
Fuzzy sets and generalizations

The fundamental ideas for fuzzy sets, as well as their key extensions, will be cov-
ered in this chapter because they are crucial to understanding this work. Thus, the
following sections are devoted to introducing the main concepts in this work and
establishing the considered notation.

1.1 Fuzzy sets

In an effort to expand on the traditional set theory, L. A. Zadeh developed the idea
of a fuzzy set [91]. Many authors have contributed to this notion since he first
proposed it. As a result of all of this research, there are numerous definitions of a
fuzzy set that are all equivalent in meaning. We first require an axiomatic reference
set or universe, which we will designate by the symbol X.

In [91]], the first definition was the following:

Definition 1.1 A fuzzy set (class) A in X is characterized by a membership (char-
acteristic) function U (x) which associates with each point in X a real number in
the interval [0, 1]; the value of s (x) at x represents the “grade of membership” of
xinA.

The motivation of Zadeh for this definition is that the closer p4(x) is to 1, the
larger x belongs to the class A.

13
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In this approach, several authors view the following as the typical definition of
a fuzzy set:

Definition 1.2 [2]|] Let X be a nonempty universe. A fuzzy set A on X is defined by
means of a map Uy : X — [0,1]. The map Uy is said the membership function (or
indicator) of A.

In the theory of fuzzy sets, a fuzzy set A is frequently represented [25] as:

A={{xpa(x)) : x e X}

where 14 : X — [0, 1] represents the membership function of A.

The concept is really well described by the previous definitions. Thus, the
set A and its membership function 4 can both be used to represent a fuzzy set.
Therefore, pi4(x) or A(x) indistinctly reflect the membership degree for a point x in
X in the literature. However, in this thesis we are going to use just the membership
representation. The fuzzy power set over X is the family of all fuzzy sets over X,
and it is identified by the symbol F (X) [68].

It should be emphasized that an ordinary set A, also known as a crisp set, can be
thought of as a specific instance of a fuzzy set if its membership function is defined

() 1 ifxeA
X)) =
Ha 0 ifxdA

as

Example 1.3 Let us show an example of fuzzy sets.
If X is the interval [3,4], the following sets are fuzzy sets:

1 ifxe(3,4)
0 ifxg(3,4)

ii) B is defined as ug(x) = x—3, Vx € [3,4]

i) Ais defined as [ (x) = {

After recalling the fuzzy set description, we can move on to defining some key
terms that are related to it, such as its fundamental operations. Although the mem-
bership function of a fuzzy set and a probability function when X is a countable set
(or a probability density function when X is a continuum) are similar, it should be
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noted that there are significant differences between these concepts. These differ-
ences will become clearer once the rules for combining membership functions and
their fundamental properties have been established. The idea of a fuzzy set is also
entirely nonstatistical in nature [91].

Now we recall some interesting concepts related to fuzzy sets. Let us start with
its support.

Definition 1.4 [24, 19]]] Let A be a fuzzy set in X. The support of A, denoted by
Supp(A), is defined as the crisp set

Supp(A) = {x € X : s (x) # 0}

The support could also be defined as Supp(A) = {x € X : ua(x) > 0}, since
Ua(x) € [0,1], Vx € X.

It is easy to see that Supp(A) = 0 if and only if ps(x) =0 Vx € X.

Another interesting concept in fuzzy set theory is the core of a fuzzy set.

Definition 1.5 [2419]1|] Let A be a fuzzy set in X. The core of A, denoted by Core(A),

is defined as the crisp set
Core(A) ={xe X :pa(x)=1}

It is also immediate that Core(A) = 0 if and only if ps(x) =0, Vx € X.
We now describe the condition under which a fuzzy set is a content in another
fuzzy set, i.e., whenever the first is a subset of the second.

Definition 1.6 [9]|] Let A and B be two fuzzy sets in X. A is contained in B, which
is denoted as A C B, if and only if ua(x) < ug(x) for any x € X. In symbols,

ACB <& pua(x) < pp(x), VxeX

When A C B and B C A we can consider that they are the same set. Thus, we
obtain the following definition.

Definition 1.7 [91]] Two fuzzy sets A and B in X are equal, denoted by A = B, if
and only if p(x) = pup(x), Vx € X.
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Before concluding this subsection, we introduce the fundamental operations
between fuzzy sets.

Definition 1.8 /68, [91] Let A be a fuzzy setin X.

* The standard complement of a A in X, which is denoted by A€, is defined as

the fuzzy set in X whose membership function is given by
Pac(x) =1—pa(x), VxeX

» The standard intersection of A and B in X, which is denoted by AN B, is the
fuzzy set of X defined by

Hanp(x) = min{pis (x), up(x)}, vxeX

* The standard union A and B in X, which is denoted by AU B, is the fuzzy set
of X defined by

Haup(x) = max{a(x), up(x)}, VxeX

Example 1.9 Let X be the unit interval [3,4]. Let A and B be the fuzzy sets consid-
ered in Example|[l.3]
The complement of these fuzzy sets are:

i) A€ defined as ac(x) = { 0 ifxe(3,4)

1 ifxg(3,4)
ii) BC is defined as ppc(x) =1— (x—3) =4 —x, Vx € [3,4]

Furthermore, it is clear that A £ B and B € A.
The intersection of A and B is the fuzzy set AN B defined as:

0 ifx=4

Hans () = { X ifx#4

It should be noted that the largest fuzzy set that is contained in both fuzzy sets
is the intersection of the two fuzzy sets.
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The union of A and B is the fuzzy set AU B defined as:

0 ifx=3

“AUB(X):{ 1 ifx#£3

With this classical interpretation, we can see that the smallest fuzzy set that

contains both is the union of two fuzzy sets.

1 °

0.8 +

0.6 T

04 +

02 +

0

3 HauB

HAnB

Figure 1.1: Union and intersection of A and B.

In Figure[l. 1| the union of A and B is displayed in red, defined in Example

and the intersection in blue.

These fundamental operations can be found in the literature in a more general-
ized way. The goal is always to simply extend the fundamental operations for crisp
sets. The main generalization is the one based on t-norms for the intersection and
t-conorms for the union, which are particular cases of aggregation functions, con-
cepts which will be used several times in this document. Thus, all these definitions

are recalled here.

Definition 1.10 [6,59] Let <7 : |J,en|0, 1]" — [0, 1] such that
e 7(0,,0)=0,2/(1,",1) =1,
e o/(a)=aforallacl0,1],

» o/ is increasing in each variable,
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then < is an aggregation function.

Important examples of aggregation functions are the arithmetic mean, the geo-
metric mean, the median, the minimum, the maximum and the product. In general,
the four main classes of aggregation functions are averaging, conjunctive, disjunc-

tive and mixed (see [6]).

Definition 1.11 An aggregation function <7 has averaging behaviour or is an aver-
aging function if for every (ay,..., &) € [0,1]" it is bounded by min{a, ..., a,} <
(og,...,0,) <max{oy,...,0}.

Definition 1.12 An aggregation function <7/ has conjunctive behaviour or is a con-
Junctive aggregation function if for every (ay,...,a,) € [0,1]" it is bounded by
Ag(oy,...,0,) <min{ay,..., 0}

Definition 1.13 An aggregation function <7 has disjunctive behaviour or is a dis-
junctive aggregation function if for every (ay,..., ;) € [0,1]" it is bounded by
max{a,..., 0, < Z(a,...,0).

Definition 1.14 An aggregation function <f is mixed if it does not belong to any of
the above classes, i.e., it exhibits different types of behaviour on different parts of

the domain.

It is clear that the arithmetic mean, the geometric mean and the median are av-
eraging functions, the minimum and the product are conjunctive and the maximum

is disjunctive. An example of a mixed aggregation function (see [6]) could be:
n
[Te
_ i=1
n n
H o; + H(l - OCi)
i=1 i=1

When dealing with aggregation functions, some properties are very important

0

A (0,...,00) with the convention 0= 0.

for our purposes. In particular, we will focus on continuity and associativity.

Definition 1.15 [34] Let o7 be an aggregation function. </ is said to be:
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* Continuous if the corresponding n-ary function </ | [0,1]» IS continuous, for any
neN.

* Associative if its associated two-argument function < : [0,1]> — [0,1] is as-

sociative.

Consequently, the n-ary aggregation function can be constructed in a unique
way by iteratively applying 7| ;2 as

427][071]n(061,...,06n) = d’[071]2(%‘[07”2(.. .427|[071]2(061,(X2),(X3),...,Ocn).

Thus bivariate associative aggregation functions univocally define extended ag-
gregation functions. It is known that the product, minimum and maximum are as-
sociative aggregation functions while the arithmetic mean is not associative.

Triangular norms, or t-norms for short, and triangular conorms, or t-conorms,
are two distinct families of aggregation functions since it is possible to extend them

to U [0,1])" by their associativity. They appear to be generalizations of minimum

neN
and maximum, which are used to define the intersection and union of two fuzzy

sets, respectively.

Definition 1.16 /48] A map T : [0,1] x [0,1] — [0, 1] is said to be a t-norm if it

satisfies the following conditions:
o Associativity: T(T(ay,00),03) =T (o, T (0, 03)) forall oy, 0,03 € [0,1].
o Commutativity: T(ay,00) =T (0g,q;) for all oy, 0 € [0,1].
* Monotonicity: T(ay,03) < T(a, ) for all ay, o, 03 € [0,1] with oy < 0.
* Boundary condition: T(a,1) = a for all o € [0,1].
In a precisely analogous approach, a t-conorm is defined formally as follows:

Definition 1.17 [48] A map S : [0, 1] x [0,1] — [0, 1] is said to be a t-conorm if it is
associative, commmutative, increasing, increasing on each argument and it fulfills

the boundary condition:

S(a,0) = o forall a € [0, 1].
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Clearly, there is a way to connect these two ideas via duality. If T is a t-
norm, it can be used to create a t-conorm St : [0,1] x [0,1] — [0, 1] as follows:
Sr(o.f)=1-T(1—0o,1— ), for every a.p € [0,1]. We say that T and St are
dual or complementary.

Let us present several common t-norms and their dual t-conorms.

The minimum t-norm and the maximum t-conorm:

Ty(o.f) = min{o.f} and Sy (a.B) = max{a.B}

The product t-norm and the probabilistic sum t-conorm:

Tp(a.fp)=o-Band Sp(a.B)=a+p—o-p

The Lukasiewicz t-norm and t-conorm:

Tr(a.fp) =max{a+p —1,0} and Sy (a.f) = min{a+B,1}

The drastic t-norm and t-conorm:

min{ce.f} ifa=1lorf=1
Tp(o.p) =
p(a.p) { 0 otherwise
max{a.f} ifa=0o0rB=0
Sp(a.p) =
p(e-f) { 1 otherwise

Moreover, it is known that for any t-norm 7' we have that T'(a.8) < Ty (a.f)
and for any t-conorm S we have that S(a.3) > Sy(a.p) for every a.ff € [0,1].
Thus, given any t-norm 7 and any t-conorm S, the general intersection and

union of two fuzzy sets A and B could be defined, for any x,y € X, by tan,5(x) =
T (ua(x), up(x)) and pagp(x) = S(pa(x), up(x)), respectively.
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1.2 Generalizations of fuzzy sets

Fuzzy sets cover some uncertainty cases, however, membership grades are real num-
bers that cannot be always determined with complete accuracy. The use of exact real
numbers as membership grades seems to go against the basic idea of fuzziness in
many real-world situations where any assessment of membership grades is often
an approximation that entails some degree of arbitrariness. Numerous generalized
forms of fuzzy sets have been proposed in the literature as solutions to this issue.
Considering the two most significant generalizations of fuzzy sets — hesitant
fuzzy sets and interval-valued fuzzy sets — is the next step. The first one appears in
a natural way for instance in a realistic decision-making problem. When a group
of experts is tasked with evaluating candidate alternatives, it is common for them
to find some disagreements. Due to the differing opinions of the experts and the
difficulty in persuading each other, achieving a consensus can be challenging. In-
stead, it is immediate for them to arrive at a set of possible values. The second
one appears when the expert has a clear idea of a lower and an upper bound for the
membership degree, although he or she does not know which is the exact value of
that membership. It is clear that they are not as specific as fuzzy sets, but this lack of
specificity makes them more realistic in some applications and therefore more cred-
ible. The following subsections illustrate the similarities and distinctions between
these topics, as well as the main concepts related to them which are necessary for

the remaining chapters.

1.2.1 Hesitant fuzzy sets

Hesitant fuzzy sets were first presented by Torra in 2010 [[76]. Later, Xia and Xu
created a number of aggregation operators for uncertain fuzzy information [83]] and
used them with multi-criteria discrete-valued data [62]. This large family of sets, the
hesitant fuzzy sets, includes both intuitionistic fuzzy sets and interval-valued fuzzy
sets. The concept of hesitant fuzzy sets was first suggested by Grattan-Guinnes in
1976 [33]], although there have been a lot more studies on the subject since Torra
proposed his work in 2010. They were known as set-valued fuzzy sets at that time.

A hesitant fuzzy set A is defined by Torra [[76] in terms of a function /4 that,
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when applied to X, returns a subset of [0, 1].
We can find definitions like the following in the literature that are equivalent to

Torra’s original suggestion.

Definition 1.18 [68] Let X be the reference universe. A hesitant fuzzy set A over
X is characterised by a function hy : X — Z([0,1]), where Z(|0,1]) denotes the

power set of the interval [0, 1].

It is clear that hesitant fuzzy sets are thus an extension of fuzzy sets. The
corresponding membership function of a hesitant fuzzy set arrives in any subset
of [0, 1], but the membership function of a fuzzy set arrives on a single value in
[0,1]. Following Torra’s definition of hesitant fuzzy sets, Xia and Xiu [83] added

the mathematical description of a hesitant fuzzy set as follows:
A={(x,ha(x)):xeX}

where h4(x) is a set of some values in [0,1]. The family of all hesitant fuzzy sets
over the universe X will be denoted by HF S(X).

A particular sort of hesitant fuzzy set is a typical hesitant fuzzy set. There are
many definitions of this type of set in the literature. Here we present two definitions

that are equivalent.

Definition 1.19 [61] A typical hesitant fuzzy set A in the universe X is a hesitant
fuzzy set where for each x € X, ha(x) is a finite subset of [0, 1].

Other similar definitions for this concept were introduced by different authors.
Thus,

Definition 1.20 /5 169] Ler H = {S C [0, 1] : S is finite and S # 0}. A typical hes-
itant fuzzy set A in the universe X is given by A = {(x,hs(x)) : x € X}, where
/’lA X — H.

We will denote the family of all typical hesitant fuzzy sets over the universe X
by THFS(X). In order to use hesitant fuzzy sets properly it is advised to take into
account typical hesitant fuzzy sets (61, 69]. From now on, we will be using typical
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hesitant fuzzy set despite the fact we write just hesitant fuzzy set. Thus, a hesitant
fuzzy set will be by default an element in THFS(X). Each hy(x) € H is called a
typical hesitant fuzzy element.

About the notation, we will follow Definition so we will talk about a
hesitant fuzzy set A using its membership function 44. We will use #h4(x) as the
number of elements of the typical hesitant fuzzy element /4 (x) for any x in X and
we will denote by Oy and 1y the typical hesitant fuzzy elements {0} and {1},
respectively.

We are also considering that typical hesitant fuzzy elements are ordered in
an increasing way, i.e., if h4(x), x € X, is a typical hesitant fuzzy element where
#h(x) = n, then hy(x)! < hy(x)? < --- < hy(x)", where hy(x) is the ith compo-
nent of hi4(x). Some authors as Santos et al. [71] and Bedregal et al. [5] ignore
this statement an apply a function ¢ which is a increasing permutation such that
given Ky (x) with #h4(x) = n, then o(ha(x)) = {o(ha(x))',...,0(ha(x))"} with
6 (ha(0))! < 0 (ha(x)2 - < O (ax))".

The set of all unitary subsets of Z([0,1]) is called the set of diagonal or de-
generate elements of H and is denoted by &g = {h € H : #h = 1}. With these sets
we recover the idea of fuzzy values. We will denote by H" = {h € H : #h = n}.

Moreover, it is clear that H = U H™ with
neN

H™ = {(o4,...,00) € [0,1]": o < @t if i < j}.

Example 1.21 Let X = {0,0.5,1} be the referential. The following two sets are
examples of a typical hesitant fuzzy sets:

i) A={(0,{0.25,0.5}),(0.5,{0}),(1,{0.2,0.4,0.6,0.8})}

e

ii) B ={(x,hp(x)) : x € X} where hp(x) = {?x}

It is clear that B can be seen as a fuzzy set, but A is not.

A hesitant fuzzy set can also be obtained from a set of fuzzy sets:

Definition 1.22 [I69 [76]] Let M = {uy, 1, ..., Un} be a set of n membership func-

tions. The hesitant fuzzy set associated to M is the one given by the membership
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function hy : X — H" defined as follows:

ha(x) = J {n ()}

uem

It is interesting that this description fits decision-making so well when experts
need to evaluate a range of options. In this situation, M stands for the expert opin-
ions for each alternative, and Ay, for the opinions of the group of experts.

Since the typical hesitant fuzzy elements may have different cardinals, one
of the major problems of typical hesitant fuzzy elements is that there is no easy
way to compare them. We are going to discuss potential solutions to this issue in
this research. In order to avoid misunderstandings with orders on the real line or
for intervals, we will use the symbol “<J” to denote when a typical hesitant fuzzy

element is smaller than or equal to another one, and “<” when there is no equality.

Preorders for typical hesitant fuzzy elements based on score functions

For typical hesitant fuzzy sets, the membership value at any point in the referential
is a finite and nonempty subset of the interval [0, 1]. Thus, we have several values
associated with each point. A first approach for dealing with this multiple informa-
tion is to summarize it in just a value. This idea is considered several times when
we are working with hesitant fuzzy sets and it was done by means of the score func-
tions. As we can see in [27], they are in fact aggregation functions applied to the
elements in H. Thus, one of the most usual score functions is the arithmetic mean,
denoted as previously by .Z .

Thus, a first approach for comparing typical hesitant fuzzy elements when
given by Xia and Xu [83]] by using this score function. More precisely.

Definition 1.23 [83)] Let A be a typical hesitant fuzzy set in X. The arithmetic mean
score function for any typical hesitant fuzzy element hy(x) is defined as:

s(ha(x)) Z Y, Vx € X

A A

where #h4(x) denotes the cardinal of hy(x).
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If we consider hi4(x) = {ha(x)!,ha(x)?,... ha(x)"}, that is, if hs(x)" denotes
the component ith of /4 (x), it is clear that s is just the consequence of applying the

arithmetic mean to the components of /4 (x). That is,

s(ha(2)) =4y (2)) = 1 Y g

This is, in fact, the most typical score function. For this reason, sometimes it is just
called the score function.

This is also the reason why Xia and Xu, and later Rashid and Beg, use it to
define the following relations.

Definition 1.24 [|83] Let X be the referential, let A and B be two sets in THFS(X)
and let x be an element in X. It is said that the typical hesitant fuzzy element hy(x)

is s-lower than or equal to the typical hesitant fuzzy element hg(x), and it is denoted
by ha(x) < hg(x), if s(ha(x)) < s(hp(x)).

It is immediate that < is a preorder (reflexive and transitive) in H, but it is not
an order, since it is not symmetric.
They used this relation between typical hesitant fuzzy elements to define a

partial preorder for typical hesitant fuzzy sets.

Definition 1.25 /83 165]] Let X be the referential set and let A and B be two sets in
THFS(X). A is said to be lower than or equal to B w.r.t. the score function s if

s(ha(x)) < s(hp(x)), forallx € X

Due to its importance, a lot of score functions were proposed in the literature,
apart from the one considered in Definition Thus, Fahardinia [26] proposed
the score function:

8 (i)ha(x)’

n
Y. 8()
i=1
such that {0 (i) }] is an increasing positive-valued sequence of index i. It is common

to set {8(i)}" = {i}".

n

Snia(ha(x)) = =
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Xu and Xia [86]] introduce a class of hesitant fuzzy element ranking functions
based on the distance between the typical hesitant fuzzy element and the one with
the same cardinality but all the values equal to 1. There are two typical ranking

functions among others [28]], and they are

* the hesitant normalized Hamming distance score function, defined as
n
S (ha(x) = £ Y [ha(x)' = 1],
i=1
¢ the hesitant normalized Euclidean distance score function, defined as
d < A
Seux™ (ha(x)) = (% Y (ha(x) 1) >
i=1

Considering the same ideas, Xu and Xia also proposed in [87] some other

distance measures for ranking typical hesitant fuzzy elements such as:

* S (ha(x)) = max {|ha(x)'—1|}

1<i<n

 Su(ha(x)) = max {hao) ~ 1}

1<i<n

—d
* Sux (ha(x)) ¢
=1 1<i<n

% (2 a9 1]+ ax { [y~ 1”)

o St (ha(x))

5 i 2 i 2
%( %;‘hA(x) —1| +1r2?§)(n{‘hA<x) —1‘ })

It should be pointed out that for all of these ranking functions, as they are based
on distances, for two different typical hesitant fuzzy elements h4(x) and hp(x), if
S (ha(x)) > S5 (hp(x)), then iy (x) < hp(x). In fact, we could consider that 1 —d
is measuring the same as the score function and we are using the same criterium.

The similarity measure, correlation measure, or relative closeness measure can
be used in place of the distance measure to obtain the ranking order of typical hesi-
tant fuzzy elements and appear to provide different sorts of ranking systems.

Although the score function introduced in Definition [1.23]is the most typical,
Farhadinia [27] defined several score functions for rating typical hesitant fuzzy ele-

ments. Let us note that, in fact, they are just examples of the most usual aggregation
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function applied to the components of a typical hesitant fuzzy element. Thus, with
these examples, we will also show examples of aggregation functions and fix the

related notation about score functions.

The smallest score function:

1, ifha(x)'=1,Vie {1,... . #ha(x)}

0, otherwise

Sv(ha(x)) =

The greatest score function:

0, ifha(x)'=0,Vie{l,... . #ha(x)}
Sn(ha(x)) = _
1, otherwise

The geometric-mean score function:

Scm(ha(x))

[l
< ~
famb
S
=
~
NI

¢ The minimum score function:

SMin (hA(x)) = min {hA(x)l,hA(x)z, e ,hA(x)"}

¢ The maximum score function:

Smax (ha(x)) = max {ha (x)", ha(x)?,... ha(x)"}

* The product score function:

Sp(ha(x) = [ Tha(x)
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¢ The bounded sum score function:

Sps(ha(x)) = min{l, i;hA(x)’}

¢ The fractional score function:

with the convention 8 =0.

In all the cases, we may determine the order of the typical hesitant fuzzy el-
ements /4 (x) and hp(x) by using any Farhadinia’s scoring function, let us denote
them S, thus if S, (h4(x)) < Si (hp(x)), then hy(x) < hp(x).

The problem that appears using score functions is that we can have two dif-
ferent objects /14 (x) and hp(x) such that i (x) # hp(x), but satisfying S(h4(x)) =
S(hp(x)), which is a bit counter-intuitive as we can see in the following example.

Example 1.26 Let us consider two typical hesitant fuzzy elements hy(x) and hp(x)
defined as hy(x) ={0,0.2,0.8,1} and hp(x) ={0,0.1,0.9,1}. We have that,

© M (ha(x)) =0.5 =4 (hs(x))

Sttt (ha (x)) = 0.5 = Sl (h(x))

S (ha(x)) = 0.5 = S5 (hp(x))

Sy (ha(x)) = 0= Sy (ha(x))

Sa(ha(x)) =1=Sx(hp(x))

Smin(ha(x)) = 0= Spin(hp(x))

* Smax(ha(x)) =1 = Spax(hp(x))
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* Sps(ha(x)) =1 = Sps(hp(x))
b SF(hA(x)) =05= SF(hB(x))

Thus, using the score function to summarize the values of the membership
function is a procedure where a lot of information is lost. Therefore, it is not possi-
ble to obtain a symmetric relation based on these functions and so order on H. To
solve this problem, it is necessary to consider a new approach for ordering typical
hesitant fuzzy elements.

Partial orders for typical hesitant fuzzy elements

First of all, we would like to introduce the more natural way to rank or compare
typical hesitant fuzzy elements, which is the lattice order, also known as product

order:

Definition 1.27 Given ha(x) and hg(x) two elements in H"), ha(x) is said to be
lower than or equal to hg(x) w.r.t. the lattice order, and it is denoted by hy(x) <,
hg(x), if and only if ha(x)' < hp(x)' for any i € {1,2,...,n}, where ha(x)" is the
component ith of hy (x).

Although this order is a generalization of the usual order on R, it presents at least
two inconveniences. First, it is limited as the typical hesitant fuzzy elements must
have the same cardinality, and second, it is not a total order.

Bedregal et al. [5] pointed out that two procedures could be implemented to

compare two typical hesitant fuzzy elements with different cardinals:
* @-normalization, remove elements of the set having more elements,
* y-normalization, add elements to the set having fewer elements.

Other authors such as Fahardinia [26]], Xia [84] or Zhang [95] also considered
the y-normalization.

Bedregal et al. [5] defined the ¢-normalization by the function

(h k) . hA (x) if #hA (x) S k
PuLE = ha(x) without the first #44 (x) — k elements  otherwise
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where hy4(x) is a typical hesitant fuzzy element, k € N and #h4 (x) denotes the car-
dinality of /4 (x).

Example 1.28 If we consider the typical hesitant fuzzy elements ha(x) and hp(x)
given by ha(x) = {0.1,0.4,0.8} and hg(x) = {0.2,0.5,0.6,0.9}, we could apply the

¢-normalization in the following way. We obtain that
@(ha(x), #hp(x)) = @(ha(x),4) = ha(x)

(p(hB(x)v#hA(x)) = (P(hB(x)>3) = {0'570‘670'9}7
so it is clear that @(ha(x),#hp(x)) <o @(hp(x),#ha(x)).

Thus, when we consider @-normalization the comparison by means of the lat-
tice order is not restricted to typical hesitant fuzzy elements with the same cardinal-

ity. However, the second problem remains, since not all the elements are compara-
ble. For instance, if we consider he(x) = {0.1,0.2,0.3,0.9}, we have that

0 (ha (x), #he(x)) = {0.1,0.4,0.8}

@(he(x), #ha(x)) = {0.2,0.3,0.9}

and therefore we obtain that @(ha(x),#hc(x)) Dro @(hc(x),#ha(x)) and also that
@(hc(x), #ha(x)) ALo @(ha(x), #hc(x)).

Bedregal et al. [S]] only take into account this kind of @-normalization, where
hy (x) without #h4 (x) — k elements means we are considering {hy (x)*a()—k+1
By (x)#ha (x)}. Nevertheless, it is clear that there are more possible ways such as
removing the greatest elements instead of the lowest ones, but using the lattice order
we will always have the drawback of being a partial order.

On the other hand, the y-normalization is defined by the function

hA(x) if#hA(x) >k
ha(x) with k — #h4 (x) more elements  otherwise

I//(hA ()C) 5 k) = {

where h(x) is a typical hesitant fuzzy element and k € N.
In the literature it is possible to find two common y-normalizations which are
the following [30]:
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Let us consider two typical hesitant fuzzy elements /4 (x) and hg(x) with car-
dinalities [; and [, respectively, that is, /14 (x) = {ha(x)",ha(x)?, ..., ha(x)"'} and
() = [ () ()2, .. ().

* Optimistic: we add the maximum element, which means that we extend /4 (x)
L—I+1 times

t0 ha(x), = {ha(x)' g ()2, B () a (X))

* Pesimistic: we add the minimum element, which means that we extend /4 (x)
L—I,+1 times

t0 ha(x),. = {ha(x)!, ... ha () ha(x)2, ... ha(x))

Based on this idea, we can find the Xu and Xia’s order [[86] defined as:

ha(X),in [po he(x)  if L <D

ha(x) <xx hg(x) if and only if
(x) Ixx hp(x) y { ha(x) Spo hp(x),;  otherwise

Example 1.29 If we consider ha(x) and hg(x) defined in Example we could
apply the y-normalization in the following ways.

e The optimistic y-normalization of ha(x) is ha(x)max = {0.1,0.4,0.8,0.8} and
therefore we have to compare this element with hg(x) = {0.2,0.5,0.6,0.9}.

o Ifwe consider the pessimistic Yy-normalization, we have to compare hp (X)yin =

{0.1,0.1,0.4,0.8} and hg(x) = {0.2,0.5,0.6,0.9}.

It is clear, in both cases that these elements are not comparable.

Garmendia et al. [30] proposed a different way of normalization. First, we

should introduce the following operator:

Definition 1.30 Let hy (x) = {ha(x)",ha(x)?, ..., ha(x)'} be a typical hesitant fuzzy
element and r € N. We define

r times r times

~ N

ha(¥) ) = () ha @) ha () ()
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Keeping this in mind, Garmendia et al. [30]] defined the following order:

hA ()C) S]G /’ZB(X) if and only if hA ()C) (15,,,(/],12)) ﬁLo hB(X) <1cm(11,12))

0 I

where lem(1, 1) is the least common multiple of /; and /,.

Example 1.31 If we consider ha(x) and hg(x) defined in Example we could

try to compare them with the Garmendia et al. order. First, we should construct

/’LA (X) (lcm(lll,l2)> and hB (x) (lc‘171(11,12)>-

1 )

* ha(x)(4 ={0.1,0.1,0.1,0.1,0.4,0.4,0.4,0.4,0.8,0.8,0.8,0.8}
« hp(x)3=1{0.2,02,0.2,0.5,0.5,0.5,0.6,0.6,0.6,0.9,0.9,0.9}

And again we have the same drawback, these elements are not comparable with

the lattice order, since hy (x)%4) =0.1<02= hB(x)(l3) and hy (x)?4) =08>0.6=
9

hp(x) (3)-

Another approach also based on normalization was given by Zhang and Yang.

Definition 1.32 [94)] Let us consider two typical hesitant fuzzy elements ha(x) =
{ha(x)' ha(x)?,. .., ha(x)1'} and hg(x) = {hp(x)", hg(x)?, ..., hg(x)2}. The order
zy is defined as

ha(x)' < hg(x)' i=1,.....i ifhi<h

ha(x) <zy hp(x) if and only i . .
a(x) Sz ha(x) if Y f{ ha(x) =2 < hp(x)! i=1,...,,l» otherwise

Clearly, this order is a combination of the lattice order and the ¢-normalization. In
addition, this is also a partial order as we can see in the following example.

Example 1.33 If we consider again the elements in Examplem that is, ha(x) =
{0.1,0.4,0.8} and hg(x) ={0.2,0.5,0.6,0.9}, then |y =3 < Iy =4. Thus, ha(x) Lzy
hp(x) due to 0.8 £ 0.6 and hp(x) Lzy ha(x) because 0.5 £ 0.1. Therefore, ha(x)

and hg(x) are not comparable by means of the order <zy.
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Normalization seems to be a nice possible way in order to compare two typical
hesitant fuzzy elements. However, we could have some troubles as they is no way
to define total orders. In fact, some drawbacks even arise when having a total order
for same-cardinality elements. Thus, let us suppose that we have a total order <
on H", and that we have two typical hesitant fuzzy elements /4 (x) and hg(x) with
cardinalities #h4 (x) = m and #hp(x) = n. Let us suppose also that m < n. If we apply
@-normalization of hp(x), i.e., @(hp(x),#hs(x)), another problem arises, which is
how to compare hg(x) and @ (hp(x),#h4(x)) as if we compute the ¢@-normalization
of hp(x) we would obtain that hp(x) and @(hp(x),#hs(x)) should be representing

the same information.

Example 1.34 For instance, if we consider again the elements in Example
we have that hg(x) = {0.2,0.5,0.6,0.9} and its @-normalization with respect to
#ha(x) is @(hp(x),#hs(x)) = @(hp(x),3) = {0.5,0.6,0.9}. It is clear that these two
elements are not the same. However, ¢(hp(x),#ha(x)) is representing hg(x). Thus,

there is a loss of information which could be very significant.

In a similar way, we have the same problem with the y-normalization and the
method proposed by Garmendia et al. [30]].

Total orders for typical hesitant fuzzy sets

When we consider total orders, we usually obtain better results as they are a par-
ticular case of partial orders. So as we add more restrictions, it is usually easier to
obtain good theoretical results. Nevertheless, in practice, it is more difficult to ob-
tain an order where for given any /4 (x) and hp(x), we have to decide which one is
larger. One of the most employed techniques for dealing with total orders is the use
of admissible orders. The idea behind an admissible order is to consider a partial
order and make it linear. The usual partial order considered is the lattice order, just
taking into account that the only agreement among all of the proposed orders for
typical hesitant fuzzy elements is that they all refine the lattice order, which is the

natural order on R". More precisely,

Definition 1.35 [[79] Let (H(”), <) be an ordered set. The order < is called admis-
sible ifit is a linear order on H"™) and if it refines the lattice order (if ha (x) <r, hp(x)



34 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

then if ha(x) < hp(x)).

Appropriate mappings acting on the n elements of typical hesitant fuzzy ele-
ments can provide partial orders as well as admissible orders. Wang and Xu [79]

proposed the following definition:

Definition 1.36 [79] Let < be an admissible order on H™. The order < is called a
generated admissible order if there exist n continuous functions f; : H® — [0,1],i=
1,2,...,n, such that hy(x) < hg(x) if, and only if,

{f1(ha(x)), f2 (ha(x)) s fu (ha(x))} Drex {f1 (hB(x)), f2 (hB(x)),. ... fu (hB(x))}

for all hy(x),hp(x) € H™, where hy(x) lpex hp(x) if (ha(x) = hg(x))V[Fm >0
Vi <m, (ha(x)' = hp(x)') A (ha(x)" < hp(x)")]

In this sense, the n functions fi, f2,..., f, are called a generating n-tuple of the
order <.

Wang and Xu not only proposed some methods to obtain admissible orders for
hesitant fuzzy sets that have the same cardinal, but also characterised some results
of admissible orders.

Theorem 1.37 [79] Let < be an admissible order on H®™. Then it cannot be in-
duced by n — 1 continuous functions f; : [0,1]" — [0,1],i=1,2,...,n— 1.

Theorem 1.38 [[79] Ler f; : H"W — [0,1](i=1,2,...,n) be n continuous aggrega-
tion functions such that Why (x),hg(x) € H® f; (ha(x)) = fi (hg(x)) (i=1,2,...,n)
hold if and only if h(x) = hg(x). Define the relation < fi, fa, ..., f, on H® by

hA(x) ﬁfl Soreorf hB(x) & (hA(x) = hB()C)) V (hA()C> <A Fosiri h3<x)) ,

where ha(x) <y, f,.....5, ha(x) if and only if

(3m > 0)(Vi <m) (fi(ha(x)) = fi (ha(x))) A (fin(Ra(x)) < fin (hB(x)))-

Then <y, 1, ... 1, is an admissible order on M,
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Nevertheless, this method has the limitation that the cardinals of the typical
hesitant fuzzy elements should be the same. Now, we will recall another perspective

of admissible orders for typical hesitant fuzzy elements.

Definition 1.39 /56l] An order < on H is admissible if it refines the standard partial
order <ry defined by

ha(x) <gu hp(x) if and only if (ha(x) = Oy or (hg(x) = 1g) or
(#ha(x) = #hg(x) = n and hy(x)) < hg(x)") Vi € N,),

where Ny, = {1,2,...,k} be the subset of natural numbers.

It should be noticed that the admissible orders in Definition are different
from the admissible orders for typical hesitant fuzzy elements proposed in Defini-
tion[I.35] as they considered a total order for typical hesitant fuzzy element when
they are restricted to a cardinal n [57].

Now we present two admissible orders proposed by Matzenauer et al., which
will be very important along this document.

Theorem 1.40 [56|] The relations <j.x1 and <p..2 on H, are given, respectively,
as follows, for any typical hesitant fuzzy elements hp(x) and hg(x) with m = #h(x)
and n = #hp(x):

* ha(x) <pext hp(x) iff

die Nmin{m,n} : hA(X)i < hB(X)i and hA(x)j = hB(x)j,Vj <1
or m < n and ha(x)’ = hg(x)/,Vj € Ny,

° hA(X) Lex2 hB(X) l.ﬁ

3i € Niin{m,n} : ha(x)! < hg(x)' and hy(x)! = hg(x)/,Vj > i
orm < nand ha(x)! = hg(x)/,Vj € Ny;

are admissible orders.
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Example 1.41 Let us consider two typical hesitant fuzzy elements defined as hy(x) =
{0,0.2,0.8,1} and hg(x) = {0,0.1,0.9, 1}. Then if we consider these orders, we ob-
tain that

o hp(x) Qrext ha(x) as it exists 2 € {1,2,3,4} such that hg(x)> =0.1 < 0.2 =
ha(x)? and for all j < 2, i.e., for j = 1, we have that hg(x)' =0 = hy(x)'.

o ha(x) Arex2 hp(x) as it exists 3 € {1,2,3,4} such that hy(x)*> = 0.8 < 0.9 =
hp(x)? and for all j >3, i.e., for j = 4, we have that hy(x)* = 1 = hg(x)*.

Now we will discuss the case when we consider two typical hesitant fuzzy

elements with different cardinalities. Let us show the following example:

Example 1.42 Let us consider two typical hesitant fuzzy elements defined as ha (x) =
{0,0.2,0.8} and hg(x) ={0,0.2,0.8,1}. Then if we consider these orders, we ob-
tain that

o hp(x) Dpext hp(x) as #hy(x) = 3 < #hp(x) = 4 and hy(x)! = hp(x)/,Vj € N;.

o hg(x) Qpews hp(x) as #hy(x) = 3 < #hp(x) = 4 and hy(x)/ = hp(x)/,Vj € N3.

Once we have seen these two examples of admissible order, we will show a

method to generate admissible orders from an increasing function.

Theorem 1.43 [56] Let A* : H — [0, 1] be a function such that <7* is increasing
w.rt. <gp, " (0g) =0 and &/* (1g) = 1 and f* : H — R be a function such that:

IC: If f*(X) = f*(Y) then #X = #Y (injective-cardinality property)
is satisfied. The relation defined by

X =Y, or
x <l vy e @ (X) < a*(Y), or
o*(X)=/*(Y) and f*(X) < f*(Y),

is a total admissible order on H if, for each n € N, where <7, which is the restric-
tion of * to HM, is injective.
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De Miguel et al. proposed in [19] an algorithm for group decision-making
using n-dimensional fuzzy sets, admissible orders and OWA operators. It is possible
to use it in typical hesitant fuzzy sets but first we should normalize them.

Wang and Xu worked with linguistic term sets in [80] and proposed some total
orders for extended hesitant fuzzy sets, which are hesitant fuzzy sets that have been
normalized and have the same cardinal.

It is clear that any of the previous proposals for ordering typical hesitant fuzzy
elements will allow us to define a subsethood relation in THF S(X), as we will see
in detail in Chapter [2] In the remaining parts of this subsubsection we will review

other main operations for hesitant fuzzy sets.

Definition 1.44 /69, [76]] Let X be the universe and let A be a hesitant fuzzy set in X.
The standard complement, or just complement for short, of A in X, which is denoted

by AS, is the hesitant fuzzy set defined by the following membership function:

hae(x) = |J {1 -7(x)}

v€h

We would like to remind the reader that we are considering typical hesitant
fuzzy elements ordered in an increasing way, so after we apply Definition [[.44] we
will order the components of the typical hesitant fuzzy elements.

Example 1.45 Let X, A and B be the sets defined in Example The complement
of A and B are:

A¢ = {(0,{0.5,0.75}),(0.5,{1}),(1,{0.2,0.4,0.6,0.8})}

and B¢ with membership function:

e’
th(x):{l——}, VxeX
e
Logically, the intersection and union of two hesitant fuzzy sets were also de-
fined in the literature. Now, we will review the most standard definitions for these
concepts.



38 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

Definition 1.46 [69, 76l Let A and B be two hesitant fuzzy sets in X. The standard
intersection of A and B, which is denoted by AN B, is the hesitant fuzzy set in X
defined by

hang(x) = {h € (ha(x) Uhp(x)) : h < min{max{h(x)},max{hp(x)}}}

Example 1.47 Let X, A and B be again the sets defined in Example [I.21| The

standard intersection of A and B is obtained as follows:

o Since ha(0) = {0.25,0.5} and hg(0) = {1/e}, we have that ha(x) Uhp(0) =
{0.25,0.5,1/e} and min{max{%4(0)},max{hp(0)}} =min{0.5,1/e} =1/e.
Thus,

hang(0) = {h € {0.25,0.5,1/e} : h < min{0.5,1/e}} = {0.25,1/e}.
» Since ha(0.5) = {0} and hp(0.5) = {1/\/e}, then
hanp(0.5) = {h € {0,1/+/e} : h <min{0,1//e}} = {0}
» Since ha(1) = {0.2,0.4,0.6,0.8} and hp(x) = {1}, then

hans(1) = {h € {0.2,0.4,0.6,0.8,1} : 1 < min{0.8,1}} = {0.2,0.4,0.6,0.8}

Hence,
ANB=1{(0,{0.25,1/¢}),(0.5,{0}),(1,{0.2,0.4,0.6,0.8})}
These three hesitant fuzzy sets A, B and AN B are represented in Figure

On the other hand, De Miguel et al. [18] proposed the concept of meet-

convolution.

Definition 1.48 [/8] Let A and B be two hesitant fuzzy sets in X. The meet-convolution
of A and B, which is denoted by A Nyic B, is the hesitant fuzzy set in X defined by

hanyes(x) = sup{min{ha(u),hp(v)} : u,v € X,min{u,v} = x}
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Figure 1.2: Intersection of A and B.

Example 1.49 Let A, B and X be the sets defined in Example[1.21]

The meet-convolution of A and B is obtained as follows:

39

* For x =0, we have that han,,.5(0) = sup{min{hs(u),hg(v)} : min{u,v} =
0}. Thus, for instance, if u =0 and v = 0, we have that min{u,v} = 0 and we
should do the minimum between hy(u) = {0.25,0.5} and hg(v) = {1/e}. For

comparing these two sets, we will use the lexicographical order type 1 (see

Theorem[1.40).

Thus, we obtain the following:

u | v | min{u,v} | A(u) B(v) min{A(u),B(v)}
o [0 |o {0.25,0.5} {1/e} |{0.25,0.5}

0 [05]0 {0.25,0.5} (1/+/e} | {0.25,0.5}

o |1 |o {0.25,0.5} (1} {0.25,0.5}
05/0 |0 {0} {1/e} | {0}

1 o |o {0.2,0.4,0.6,0.8} | {1/e} | {0.2,0.4,0.6,0.8}

and therefore han,,.p(0) = {0.25,0.5}.

e For x = 0.5 we have that

and then han,,.5(0.5) = {0.2,0.4,0.6,0.8}.

* Finally, for x =1 we have that Thus, han,,.5(1) = {0.2,0.4,0.6,0.8}.



40 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

u | v | min{u,v} | A(u) B(v) min{A(u),B(v)}
050505 {0} {1//e} | {0}
051 |05 [0} m [0}
1 0505 10.2,0.4,0.6,0.8} | {1/+/e} | {0.2,0.4,0.6,0.8}
u | v | min{u,v} | A(u) B(v) | min{A(u),B(v)}
111 {0.2,0.4,0.6,0.8} | {1} | {0.2,0.4,0.6,0.8}

Hence, using the lexicographical order type 1, we have obtained that the inter-

section of A and B, ANyc B, is the hesitant fuzzy set:
{(0,{0.25,0.5}),(0.5,{0.2,0.4,0.6,0.8}),(1,{0.2,0.4,0.6,0.8}) }

We can find an illustration of this in Figure|l.3)

T 14 . 11+
0.8 + ° 0.8 + 0.8 + ° o
0.6 + ° 0.6 + ° 0.6 ° °
[ ]
L J
0.4 + ° 04 + 04 + ° °
[ ]
[ ]
021+ ° . 02 1 02 1 o o
T+ -+ -ttt
A B A Mmc B

Figure 1.3: Meet-convolution of A and B.

As we saw in the last example, this type of intersection appears to be rather
counter-intuitive. For instance, for the intermediate element of X, we have that
ha(0.5) = {0}, but the membership values for the intersection are clearly greater
than zero. Maybe for this reason, both definitions for the intersection, Definitions
[I.46] and [T.48] continue to be used. And the same happens for the union.

Definition 1.50 [69, [76l] Let X be the reference and let A and B be two hesitant
fuzzy sets in X. The standard union of A and B, which is denoted by AU B, is the
hesitant fuzzy set defined by

haung (x) = {h € (ha(x) Uhp(x)) : h > max{min{h4 (x)}, min{hp(x)}}}
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Example 1.51 Ler X, A and B be the sets defined in Example The standard
union of A and B is the hesitant fuzzy set obtained as follows:

haus(0) = {h € {0.25,0.5,1/e} : h > max{0.25,1/e}} = {1/e,0.5}

haup(0-5) = {h € {0,1/V/e} : h > max{0,1/V/e}} = {1/V/e}

haus(1) = {h € {0.2,0.4,0.6,0.8,1} : h > max{0.2,1}} = {1}

Consequently,

AUB = {{0,{1/e,0.5}),(0.5,{1//e}),(1,{1})}
This can be illustrated in Figure where we have A, B and their union.

1T 1+ ° 1+ °
0.8 + ° 0.8 + 0.8 +
0.6 + ° 0.6 + ° 0.6 + °
04 + ° 04 + 0.4 +

02 + o 02 + 02 +

A B AUB
Figure 1.4: Union of A and B.

On the other hand, De Miguel et al. [[18] proposed the concept of join-convolution.

Definition 1.52 [/8] Let A and B be two hesitant fuzzy sets in X. The join-convolution
of A and B, which is denoted by A Ujc B, is the hesitant fuzzy set in X defined by

hau,e(x) = sup{min{h (u), hg(v)} : u,v € X, max{u,v} = x}

Example 1.53 Let A, B and X be the sets defined in Example [[.21} and the join-
convolution of A and B is obtained as follows, considering again the lexicographical

order type 1.
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* For x =0 we have that hay,.g(0) = sup{min{A(u),B(v)} : max{u,v} = 0}.

Thus,
u | v | max{u,v} | A(u) B(v) | min{A(u),B(v)}
0/0]0 {0.25,0.5} | {1/e} | {0.25,0.5}

and then hy,.5(0) = {0.25,0.5}.

e For x = 0.5 we obtain that

u |v | max{u,v} | A(u) B(v) min{A(u),B(v)}
0 0505 {0.25,0.5} | {1/+/e} | {0.25,0.5}
050 |05 (0} (1/e} | {0}
050505 (0} (1//e} | {0}

Then (hau,(0.5) = {0.25,0.5}.

e For x =1 we have that

u | v | max{u,v} | A(u) B(v) min{A(u),B(v)}
o |1 |1 {0.25,0.5} {1} {0.25,0.5}
051 |1 {0} {1} {0}

1o |1 {0.2,0.4,0.6,0.8} | {1/e} | {0.2,0.4,0.6,0.8}
1 051 {0.2,0.4,0.6,0.8) | {1/v/e} | {0.2,0.4,0.6,0.8}
11 |1 {0.2,0.4,0.6,0.8} | {1} {0.2,0.4,0.6,0.8}
Thus , ha,es(1) = {0.25,0.5}.

As a result, using the lexicographical order type 1, we obtain that

AUyc B = {(0,{0.25,0.5}),(0.5,{0.25,0.5}), (1,{0.25,0.5})}

We can find an illustration of this union in Figure[l.5]

Here we have a similar situation as with the meet-convolution. As it is shown
in the previous example, this type of union looks again a bit counter-intuitive as we
can see for the membership function of the join-convolution at the point 1. For this
reason, we will consider, by default, the standard intersection and union of hesitant
fuzzy sets given at Definitions and

Finally, we will recall some definitions we will consider for the support and
core of a hesitant fuzzy set and we will conclude with some operations for hesitant
fuzzy elements which will be later needed.
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0.8 + ° 0.8 + 0.8 T
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° [ ] °
[ ]
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Figure 1.5: Meet-convolution of A and B.

Definition 1.54 [l65] Let A be a hesitant fuzzy set in X. The support of A, which is
denoted by Supp(A), is the crisp set

Supp(A) = {x € X : max{hy(x)} # 0}
And now we introduce the definition of core.

Definition 1.55 [l65)] Let A be a hesitant fuzzy set in X. The core of A, denoted by
Core(A), is the crisp set

Core(A) = {x € X : max{ha(x)} =1}

For concluding this introduction to hesitant fuzzy sets, we will introduce some
concepts for hesitant fuzzy elements which are similar to the sum and the scalar

product.
Definition 1.56 /65| 83] Let ha(x) and hg(x) be two hesitant fuzzy elements.
1. k®ha(x) = Uyep, (o {1 = (1= 1)*}.

2. h(x) @ hp(x) = Unieha(x), pehp(x {?’1 +Pp—-nnr}

1.2.2 Interval-valued fuzzy sets

In the previous section we introduce hesitant fuzzy sets, which can handle the un-
certainty provoked by several values. In the case of interval-valued fuzzy sets, we
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deal with the uncertainty generated by two values and all intermediate values. This
happens, for instance, when we are able to obtain a lower and upper bound for the
membership function, but we do have not precise information about the real value.
Interval-valued fuzzy sets were introduced independently by Zadeh [93], Grattan-
Guiness [33]], Jahn [44], and Sambuc [[70] in the seventies. In cases where traditional
fuzzy tools are unhelpful, such as when there is no objective method for choos-
ing crisp membership degrees, interval-valued fuzzy set can be helpful. Many re-
searchers have quickly been interested in these extensions as a result of their tremen-
dous potential for a variety of applications. Thus, for instance, Sambuc [/0] used
them in medical diagnosis in thyrodian pathology, Bustince and Burillo [10] and
Gozalczany [33] in approximate reasoning and Cornelis et al. [[16] and Turksen and
Zhong [77] in logic, among many others.

The definition of interval-valued fuzzy set we are considering is the following:

Definition 1.57 [7] An interval-valued fuzzy set A on X is a mapping A : X —

L([0,1]) such that A(x) = [A(x),A(x)], where L([0,1]) denotes the family of closed

intervals included in the unit interval [0, 1].

Thus, an interval-valued fuzzy set A is totally characterized by two mappings,
A and A, from X into [0,1] such that A < A. It could be represented as A =
{{x,]A(x),A(x)]) : x € X}, where A(x) and A(x) are the lower and upper bounds
of the membership interval and they satisfy that 0 < A(x) < A(x) < 1,Vx € X. The
collection of all the interval-valued fuzzy set in X is denoted by IVFS(X).
Naturally, a regular fuzzy set can be expressed as follows:

{(x, [ua(x), ma(x)]) - x € X}

and as a result, interval-valued fuzzy sets effectively generalize fuzzy sets.

Example 1.58 Let X be the interval [0,1]. The following sets are examples of an

interval-valued fuzzy set:

i) A={(x,0.25,0.5) :x € X}

X

i) B={(x,[B(x),B(x)]) : x € X} where B(x) = z and B(x) = %,for any x € X.
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In 1986, Atanassov [3]] proposed another extension of the notion of fuzzy set
called intuitionistic fuzzy set (IFS). So, in contrast to a fuzzy set,an intuitionis-
tic fuzzy set has associated two functions: a membership function and a non-
membership function. A point’s degree of set membership is represented by the
first function and its degree of set non-membership by the second. Let us recall

their definition.

Definition 1.59 [[7] An intuitionistic fuzzy set A in X is defined as A = {(x, s (x),
Va(x)) :x € X}, where s (x) and va(x) are the degrees of membership and nonmem-
bership of x in A, respectively. U (x) and V4 (x) must satisfy that i (x), va(x) € [0,1]
and 0 < pa(x) +va(x) < 1.

We will denoted the family of all intuitionistic fuzzy sets on X by IFS(X).

Atanassov [3]] asserted that his intuitionistic fuzzy sets are equivalent to interval-
valued fuzzy sets. Despite not solving the same issue, both are frequently utilized
in the literature. The option that best suits the circumstances is typically the one
that is picked [61]]. Since they are mathematically equal, we will not deal with
intuitionistic fuzzy sets and will use interval-valued fuzzy sets. However, from a
mathematical point of view, we can consider this equivalence to use any interesting
result for intuitionistic fuzzy sets.

By focusing on interval-valued fuzzy sets, we can take into consideration ei-
ther the epistemic interpretation or the ontic interpretation. The first one will be
the one that is chosen in our study. We, therefore, assume that inside the member-
ship interval of potential membership degrees, there is only one actual, real-valued
membership degree of an element, as it is shown in Figure[1.6]

Our proposal requires the preservation of convex interval-valued fuzzy sets un-
der intersection, which makes it crucial to first define the concept of the intersection
of two interval-valued fuzzy sets. However, to do this in a coherent manner, it is
necessary to define the inclusion between two interval-valued fuzzy sets beforehand.

Let us consider the following two interval-valued fuzzy sets in Figure It
seems only obvious that in order to determine whether or not B is included in A, we
must compare intervals.

In addition, we need a definition of the convexity coherent with the fuzzy set
definition. We also need to define and analyze the union, which will depend on
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Figure 1.6: Epistemic interpretation.
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Figure 1.7: Is B “included” in A?

the order between intervals that is taken into consideration, in order to explore the
features of the level sets of an interval-valued fuzzy set. To define the inclusion in
IVFS(X) and subsequently the union and intersection of interval-valued fuzzy set,

we must first examine various orderings of real intervals.

Orders in L([0,1])

There are several ways to compare intervals and here are the most common relations
presented in [37]. If @ = [a,a] and b = [b,b] are two intervals in L([0,1]), we say

that a 1s lower than or equal to b if:
e Interval dominance [29]: a <;pbifa<b

e Lattice order [32]: a <j, bifa<banda < b, which is induced by the usual
partial order in R?
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* Lexicographical order type 1 [[11]: @ <p.x1 bifa<bor(a=>banda < b)

» Lexicographical order type 2 [11]]: a =rex2 bifa < bor(a=banda<b)

a—a<b-b)
» Maximax order [72]]: a <pym bifa < b
e Maximin order [[73,[78]]: a Sy bifa <b

* Hurwicz order [43]]: a <o) bif a-a+(1—a)-a < a-b+(1—a)- b with
o< [0,1].

» Weak order [9]: a <y, bifa<b

These relations are connected in some cases. It is fairly obvious that if an
interval a w.r.t. the interval dominance is lower than or equal to b, then a is likewise
lower than or equal to b w.r.t. the lattice order. All of these implications, along with
a few others like them, are compiled in Figure [I.8]

]

4

A

r’ajLexlb‘ ’a '_<Lex2b‘ ’a =Xy b‘ ajH(a)bforanyaE[O,l]

Y Y Y

[aZumb| [a 2w b] |a =y b

™~

-

4

a=yob

Figure 1.8: Relations between the interval relations.

At first sight, taking into account their names and the considered relations, the
reader could think that these expressions are truly orders, but this is not true. As



48 CHAPTER 1. FUZZY SETS AND GENERALIZATIONS

we can see in Table [[.I| some of these ways to compare intervals are not orders
as they do not fulfill the order relation requirements (reflexivity, antisymmetry and
transitivity). However, we will refer to all of them as orders since this is the usual
name in the literature. In Table we claim whether they are total orders or not

and also we identify the case of some preorders which are not orders.

Reflexive Antisymmetric Transitive | Preorder | Order | Total Order

ID X 4 v X X X
Lo 4 4 v v v X
Lex; 4 4 v v v v
Lex 4 4 v v v 4
XY v v v v v v
Mm 4 X v v X X
MM 4 X v v X X
H(x) 4 X v v X X
wo v X X X X X

Table 1.1: Properties of the different relations.

After doing this short analysis, we can confidently assert that only the lexico-
graphical orders types 1 and 2 and the Xu and Yager order are total orders, being
the lattice order just a partial order.

With respect to total orders in L([0, 1]), in this work we are considering the

so-called admissible orders, whose definition we review here.

Definition 1.60 [[/ 1] An admissible order on L([0,1]), =4, is a binary relation on
L([0,1)) fulfilling:

e itis a total order

* it refines the lattice order, that is, for every a,b € L([0,1]), if a <1, b then
a =g b.

The ability to construct admissible orders using aggregation functions is an
important aspect to take into account [11]]. An aggregation function is defined on
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U [0,1). In particular, [0,1]? could be considered. There is a natural bijection

neN
between L([0,1]) and K([0,1]) = {(u,v) € [0,1]? | u < v} that links the interval [a, a]

to the point made by its endpoints in R?. Consequently, we can add together the
information presented as an interval using aggregation methods. Bustince et al. [[11]]

develop the following procedure to create admissible orders based on this concept.

Proposition 1.61 [1]] Let </, % be continuous aggregation functions, such that
for all (u,v), (W' ,V') € K([0,1]), the equalities < (u,v) = </ (u',V') and PB(u,v) =
B V') can only hold if (u,v) = (u',V'). Define the relation <. 5 on L([0,1]) by
a = » b if and only if

o (a,3) < (b,)

or

o (a,a) = </ (b,b) and B(a,a) < %(b,b)

Then = .  is an admissible order on L([0,1]).

A possible procedure of building admissible orders on L([0, 1]) is defining them
using the weighted mean which is a particular case of continuous aggregation func-
tion (see [L1]):

Ko(u,v)=(1—o) -u+oa-v, where a € [0,1]

This mapping can be used to represent the a-quantile of a probability distribu-
tion that is evenly distributed over the range [u,v]. In order to derive the admissible
order =g, k4, Which is denoted, for convenience, as =< g, we can apply Proposition
to the aggregation functions K¢ and K (see [37]).

The Xu and Yager order or the lexicographical orders type 1 and type 2 are
examples of these admissible orders. More precisely, =<7.x.1==0,1, 2rex2==1,0 and
=xy==pp forany B € (1/2,1] (see [L1]).

Inclusion

According to the fuzzy set theory, A is said to be contained in B if and only if its
membership function is smaller than or equal to that of B, where A,B € FS(X) (see
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[91]). Once we have orders on intervals we can suggest the following definition
of containment for interval-valued fuzzy sets, which goes further than the fuzzy set

definition.

Definition 1.62 [37] Let (L(]0,1]),=,) be the set of closed interval included in
[0,1]) and =<, an order on L([0,1]). Let A and B be any sets in IVFS(X), we say that
A is o-included in B, which is denoted by A C, B if, and only if,

A(x) 20 B(x),Vx e X

It is obvious that if <, is an order in L([0, 1]), hence C,, is an order in IVFS(X).
While <, may be a total order, C, is only a partial order.
Example 1.63 Consider the interval-valued fuzzy set A, B and C defined as in Fig-
ure

Membership

1 -
0.8 +
0.6
04 +
0 B X

Figure 1.9: Membership functions of A, B and C.

It is clear that A, B Cjp C and therefore they are ID-included in C w.r.t. any of
the considered orders. We also have A Cr, B, but A Z1p B. Thus, A is included in
B for any considered order except for the interval dominance. Finally, we can say
that B or C are not included in A for any order.

As we commented, the inherited relation in IVFS(X) is not a total order even
in case =, is a total order. Thus, if we consider the lexicographical order type
1 and the interval-valued fuzzy set in Figure [I.10, we have that A and B are not

comparable by means of this order.
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Figure 1.10: A and B are Cj - incomparable.

Thus, the inclusion for interval-valued fuzzy sets is based on orders on L([0, 1]).
We will take this into account to define in Chapter 3 the union and intersection of
elements in IVFS(X). However, some operations, as the complement, are indepen-

dent of the chosen order and we can consider them just now.

Complement

In the literature, a number of operations have been used for the idea of a complement

set. Now let us focus on one of the most fundamental.

Definition 1.64 /23] Let A be in IVFS(X). The complement of A, denoted by AS, is
defined by A°(x) = 1 —A(x) and A°(x) = 1 — A(x) for any x € X, that is,

A(x) = [1 -A(x), 1 - A(x)]

This idea can be made more inclusive by using a negation.

Definition 1.65 [31]] A function N : [0,1]" — [0, 1] is a negation if for all x € [0,1]"
there is N(0) = 1 and N(1) = 0 and N is decreasing.

Furthermore, N is a strong negation if N(N(x)) = x for every x € [0, 1]. Note
that every strong negation is strictly diminishing and continuous.

As a result, we define the complement with respect to N as follows:

AV (x) = [N(A(x)),N(A(x))]
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For all x in X, we will by default take into account the standard negation N (x) =
1 —x for any x € X.

Despite the existence of further fuzzy set extensions (see [61, 163, 68]]), for this
study we use only the ones that we have built in this chapter. In Figure we
show the connection between the different fuzzy set extensions. In this figure, we
can see that interval-valued fuzzy sets and typical hesitant fuzzy sets are particular
cases of hesitant fuzzy sets. Due to their importance, we will devote Chapter 3 to
the first ones and Chapter 2 to the second ones. At this point, we should recall that,

for simplicity, we are calling hesitant fuzzy sets for the typical hesitant fuzzy sets.

/ e \
Interval-valued Typical Hesitants
Fuzzy Sets Fuzzy Sets
\ Hesitants /

Fuzzy Sets

Figure 1.11: Extensions of fuzzy set.

Finally, as convexity is one of the main points of this thesis, we will recall some

concepts and results of convexity in fuzzy sets in the next section.

1.3 Convexity of fuzzy sets

As we said in the introduction, convexity is a relevant concept in many areas of
mathematics. In particular, convexity, as the fundamental theory in optimization re-
search, has naturally formed one of the most important areas in fuzzy mathematics.
This section introduces several concepts related to convexity.
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As a starting point, we should review the traditional notion of convexity of
ordinal sets. If X is a vector space, a crisp set A C X is called convex if Ax+ (1 —A4)y
belongs to A for every A € [0,1] and every x,y € A (see [21]). Obviously, this
idea differs from the convex function concept. To put it another way, a function
f:X — Ris called convex if and only if

fAx+(1=2)y) SAf(x)+(1=A)f(y), VA €0,1]

and it is said to be concave if — f is convex.

A possible way to define convexity in fuzzy set theory is the following.

Definition 1.66 [91|] Let X be a vector space. A fuzzy set A defined on X is convex,
if for each x,y € X, A € [0, 1] there is

Ha(Ax+ (1 =2)y) = Apa(x) + (1= A)ua(y)

With this definition, the membership function is a concave function, but it is
still called a convex set since it takes into account the ideas behind the classical
convexity. Thus, now, the membership function at the point Ax+ (1 —4)y is at least
a combination of the membership values on x and y. In fact, if x and y belong to
A, that is, if ua(x) = pa(y), then we have that g4 (Ax+ (1 —24)y) = 1 and therefore
Ax—+ (1 —A)y also belong to A.

A really relevant concept in convexity is an &-set or a level set. Let us introduce
its definition.

Definition 1.67 [91|] Let X be a referential and A a fuzzy set on X. Then the o-set
of A, denoted by Ag, is the crisp set defined as

Ag={xeX:ua(x) > a}
forany a € (0,1].

However, with this definition of a-set, Definition [I.66]of convexity has at least
two drawbacks:

1. When the universe X we are working on is not a vector space, such as a lattice-
valued fuzzy set, since the addition in the lattice is, in general, not defined,
we could find some problems.
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2. The behaviour of convexity is not as good as it should be. In other words, a
fuzzy set for which all its level sets are convex, may not be convex [65], as
we can see in Example[1.68]

Example 1.68 [2/|] Let X be R. Let A be the fuzzy set of X given by

pa(x) =

0.3 otherwise

{02 ifx <0

The level sets or o.-cuts of A are defined by the crisp sets Aqg = {x € X : ua(x) > a}
for any o € (0,1]. Thus,

R if o0 <0.2
Ag={ (0,0) if02<a<03
0 ifa>023

It is clear that all of them are convex subsets of the real line. However, the fuzzy set
A fails to be convex:
If A =0.5, x=-4 and y=2, we may notice that Ax+ (1 — 1)y = —1, so that

wa(Ax+(1—21)y) =0.2

whereas
Apia(x) + (1= 2)pa(y) = 0.25.

Zadeh tried to apply a general notion of convexity to fuzzy sets, when he pre-
sented the following idea of convex fuzzy sets. Initially, he considered that the ref-
erential was the Euclidean n-space R". However, we will consider the most general
definition, for any vector space.

Definition 1.69 [91|] Let X be a vector space.A fuzzy set A on X is convex if and

only if the sets Ay are convex for all . in the interval (0, 1].

In addition, Zadeh put up another, simpler concept that is equivalent to the first
one. Additionally, we can see that the traditional concept of convexity is still present
here.
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Definition 1.70 [9]|] Let X be a vector space. A fuzzy set A is convex if and only if

pa(Axy + (1= 2A)x2) > min{pa (x1), ta(x2) }

forall x;,x, € X and all A € [0,1].

Later, in 1992 Ammar [2] proposed the idea of calling quasi-convex to the
previous Zadeh’s definition of convexity.

According to this definition, L4 need not be a convex or concave function (see
[91]), although it also means that the membership degree for any intermediate point
is at least the membership degree for at the minimum one of the points x and y.
Therefore, this is again the idea behind the convexity of a set. We actually analyze
convexity as a convexity of sets, as we already mentioned. The fuzzy set on the left
is convex (in the fuzzy sense), as shown in Figure[[.12] but its membership function
is a convex function in some parts of the referential, but also a concave function in

other parts. Moreover, there is an example of a non-convex fuzzy set on the right.

convex fuzzy set non-convex
fuzzy set
o Ha(Ax £ (1= A)x2)
)

| L4 (x)

Figure 1.12: Convex and not convex fuzzy sets in R [91]]

It is immediate to check that Definitions and are equivalent.

Proposition 1.71 Let X be a vector space. A fuzzy set A is convex in the sense of
Definition if and only if the sets Ay are convex for all o in the interval (0, 1].

Proof: Let us suppose that the a-cuts are convex. Let x1,x; € X. If @ = min{ ua (x1),
ta(x2)}, Ag ={y € X : ua(y) > min{pa(x1),a(x2)}}. It is obvious that x,x; €
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Ag. As the a-cuts are convex, Ax; + (1 —A)xp € Ag. Thus, pa(Ax; + (1 —A)xp) >
o = min{pta (x1), ta(x2)}.

On the other hand, let A be a convex fuzzy set. For any o € (0,1] and any
x1,X%2 € Ag, we have that g (Ax; + (1 —2A)xp) > min{pa (x1), a(x2) } > min{c, a} =
a, since A is convex. Therefore, Ax; + (1 —A)x, € Ay and then A, is a crisp convex

set. [ ]

Thus, from now on, when we deal with the convexity of fuzzy sets we will use
Definition

The fact that the intersection of any two convex sets is also convex is a crucial
aspect of convexity.

Theorem 1.72 [91l] Let X be a vector space. Let A and B be two fuzzy sets on X. If

A and B are convex, then AN B is convex.

Zadeh provided a thorough analysis of the preservation of convexity. Here, we

shall review the findings that are most pertinent to our goals.

Definition 1.73 [91]] A fuzzy set A is bounded if and only if its o-sets Ay are
bounded for all @ € (0,1].

Lemma 1.74 [9]] Let A be a bounded fuzzy set and let M = sup{us(x) : x € X}
M will be referred to as the maximal grade in A. Then there is at least one point xg
at which M is essentially attained in the sense that, for each € > 0, every spherical

neighborhood of xy contains points in the set Q(€) = {x: ua(x) > M —g}.

Definition 1.75 [91|] Let X be a vector space. A fuzzy set A is strongly convex if
and only if for any two points x| and x, x| 7 x3, and any A in the open interval
(0,1)

ta(Ax1 4 (1= A)xz) > min{pta(x1), pa(x2) }

Working with convex fuzzy sets, it should be noted that the intersection of two
strongly convex sets is also strongly convex [91].
Some other properties of convexity are collected below.
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Theorem 1.76 [91]] Let X be a vector space, and let A be a fuzzy set on X. If A is

convex, then its core is a convex crisp set.

Corollary 1.77 [91] Let X be a vector space, and let A be a fuzzy set on X If. A is

strongly convex, then the point at which M is essentially attained is unique.

In 1987, Drewniak [22]] worked with Zadeh’s theory and achieved these results
with X = R".

Theorem 1.78 [22]] Let A with py : R" — [0, 1] denote a fuzzy set in R” for a given

positive integer n.

(a) If A is a convex fuzzy set, then Supp(A) is a convex set.
(b) If A is a strongly convex fuzzy set, then Supp(A) = R".

New definitions are required if the universe X is not a vector space. We can
investigate the idea of a convex crisp set introduced by Llinares [55] in depth in
order to think of additional potential approaches to define the convexity of a fuzzy
set for any referential.

Definition 1.79 [2/] 55|] Let X be a nonempty set. A convex structure on X is a
map H : X x X x [0,1] — X that satisfies the following properties:

(i) H(x,y,A)=H(y,x,1—A), for every x,y € X and A € [0,1].
(ii) H(x,x,A) =x, for everyx € X and A € [0,1].
(iii) H(x,y,1) = x, for every x,y € X.

Definition 1.80 [2/]55]] A subset A of X is said to be convex with respect to H, or
H-convex for short, if H(x,y,A) € A, for all x,y € A and for all A € [0,1].

Due to Condition (ii) in Definition any set with a single element is H-
convex for any H.

If X is a vector space, it is immediate that any subset A of X is convex if and
only if it is H-convex with H(x,y,A) = Ax+ (1 — A)y.

We will show in the following example that there are H-convex sets that are

not convex.
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Example 1.81 [2]] Let us consider the map H : R x R x [0, 1] — R defined by:

ifA=1
ifA=0
ifAe€(0,1)andx=y
ifAe(0,1)andx#y

H(x,y,A) =

(@I

It is easy to check that H is a convex structure on R.
Then, it is clear that the set A = {0,0.3} is H-convex, but it is not convex
because for A = 0.5 and x = 0 and y = 0.3 we have that

Ax+(1-A)y=0.15¢A

As aresult, the idea of H-convex sets is a generalization of the idea of a convex
set.
Taking this fact into consideration, it only makes sense to formulate a new

definition for fuzzy convexity.

Definition 1.82 [2]|] Let X be the universe. Assume that X is equipped with a con-
vex structure through a map H : X x X x [0,1] — X. Then, a fuzzy set A of X (whose
membership function is U : X — [0,1]) is said to be an H-convex fuzzy set if for
every x,y € X and every A € [0, 1] it holds that s (H (x,y,A)) > min{ s (x), ua (y) }.

Convex fuzzy sets are clearly expanded by this definition. Hence, if X is a
vector space and H(x,y,A) = Ax+ (1 — 4)y, we have Definition [1.70] moreover,

there is a relationship between H-convex fuzzy sets and its a-cuts.

Proposition 1.83 [2]|] Let X be the universe and let H be a convex structure on X.

The following statements are equivalent:
(i) A is an H-convex fuzzy set,
(ii) any o-cut of A is an H-convex crisp set.

According to this argument, the H-convexity of a fuzzy set’s o-cuts defines
any H-convex fuzzy sets.



Chapter 2
Convexity of hesitant fuzzy sets

In this chapter, we are going to show two different proposals for defining the con-
vexity of a hesitant fuzzy set. The first one is based on aggregation functions [38],
whereas a totally different approach is considered in the second one. Both of them
are based on the revision done in the related literature, as can be seen in the follow-

ing section.

2.1 Overview of convexity of hesitant fuzzy sets

Several different approaches to the idea of convexity of hesitant fuzzy sets have
been considered in the literature. This chapter starts with the introduction of the
most relevant since this will be the starting point for the new proposal given here.

The first approach was given by Rasihd and Beg [65)]. An important step, in
this case, was to deal with the uncertainty associated with any membership degree.
Thus, they considered a-cuts as a good way to solve this problem. More precisely,
they started by suggesting a definition for the o-cuts of a hesitant fuzzy set based
on the score function which is, in fact, an aggregation function.

Definition 2.1 [65)] Let X be a universe, let A be a hesitant fuzzy set defined on X,
let s be the score function in THF S(X) and let & be a number in the interval (0, 1].
The crisp subset of X defined by

Ag={x€X:s(ha(x)) > a}

59



60 CHAPTER 2. CONVEXITY OF HESITANT FUZZY SETS

is said to be the o-cut (level set) of the hesitant fuzzy set A.
Hence, they defined convexity using the score function given in Definition[I.23]

Definition 2.2 [I65] Let (X,+,-) be a vector space and let s be the score function in
THFS(X). A hesitant fuzzy set A on the universe X is said to be convex if it holds,
forany x,y € X and any A € [0, 1], that

s(ha(Ax+(1=2)y)) = s(A O ha(x) © (1 =2) O ha(y))

where @ and © are the operations considered in Definition and — is the usual

subtraction in the real line.

Definition has at least two drawbacks:

1. It cannot be considered when the universe X is not a vector space since the

addition and scalar multiplication could be not defined.

2. It has not an appropriate behaviour with respect to the level sets, that is, it is
not cut-consistent. The reason is that even in the case that all the level sets of

a hesitant fuzzy set are convex, the set may be not convex.

Due to its importance, the second drawback is illustrated in a detailed way in
the following example.

Example 2.3 Let X be the real line with the usual addition and multiplication on
R. Let A be the hesitant fuzzy set on X given by

B {0.2,0.25,0,27}  ifx<0
X)) =
A {0.3,0.35,04}  otherwise

As 5({0.2,0.25,0,27}) = 0.24 and 5({0.3,0.35,0.4}) = 0.35, the o-cuts are:
.« [fO < o <0.24:

Ag={x€eX:s(ha(x)) > a} =R

« If0.24 < € <035

Ag = {x eX: S(hA(X)) > (X} = (Ovoo)
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« F035<a<1
Ag={xeX:s(hy(x)) > a} =0

Thus, it is clear that any level set of A is a convex set of the real line.

However, if we consider A = 0.5, x = —5 and y = 3 then we have that 0.5x +
(1—-0.5)y=—1. Thus,

ha(0.5x+ (1 —0.5)y) = h(—1) = {0.2,0.25,0,27}

and therefore
s(ha(0.5x+ (1 -0.5)y)) =0.24

On the other hand,
0.5® hy(x) ={0.1056,0.1340,0.1456 }

and
(1—-0.5)®ha(y) ={0.1633,0.1938,0.2254}
Hence 0.5 ® ha(x) ® (1 —0.5) © ha(y) = {0.2517,0.2789,0.3072, 0.2754, 0.3018,
0.3292,0.2852,0.3112,0.3382}. Thus,
SAOh(x)D(1—A4)Oha(y)) =0.2976

and therefore s(ha(0.5x+ (1 —0.5)y)) < s(A ©ha(x) ® (1 —A) © ha(y)) that is, A
is not a convex hesitant fuzzy set with respect to Definition [2.2]

As a result, the initial Rashid and Beg concept of convexity was changed by
themselves.

Definition 2.4 [l65] Let (X,+,-) be a vector space and let s be the score function
in THFS(X). A hesitant fuzzy set A on the universe X is said to be quasi-convex if
it holds, for any x,y € X and any A € [0, 1], that

s(ha(Ax+(1=24)y)) = min{s(ha(x)),s(ha(y))}

The quasi-convexity is cut-consistent, that is, this concept has the cutworthy
property, as follows from the following proposition.
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Proposition 2.5 [65] Let (X,+,-) be a vector space and let A be a hesitant fuzzy

set on THFS(X). The followings statements are equivalent:

1. A is a quasi-convex hesitant fuzzy set.

2. Any a-cut of A is a convex crisp set.

Thus, the second drawback of the initial definition is now solved. Moreover,

we can see that quasi-convexity is a generalization of convexity.

Theorem 2.6 [65] Let (X,+,-) be a vector space and let A be a hesitant fuzzy set
on THFS(X). If A is a convex hesitant fuzzy set, then A is a quasi-convex hesitant
fuzzy set.

According to this theory, every convex hesitant fuzzy set is also a quasi-convex
hesitant fuzzy set. The opposite, however, is not true. Due to Proposition [2.5]
Example [2.3] shows that A is a quasi-convex hesitant fuzzy set since the level sets
are convex sets of the real line. However, we could see in this example that it is not
a convex hesitant fuzzy set.

The second weakness in Definition[2.2]may also be solved if a convex structure
is used to extend the idea of convexity, even in the case it is not a vector space.

Definition 2.7 [65]] Let X be the universe. Let H be a convex structure on X. A

hesitant fuzzy set A in X is said to be an H-convex hesitant fuzzy set if for all x,y € X,
and A € [0,1] it holds that

s(ha(H (x,y,4))) = min{s(ha(x)),s(ha(y))}
This definition also fulfills the cutworthy approach, as it was proven in the next
proposition.

Proposition 2.8 [65] Let X be a universe and let H be a convex structure on X.

Then the following statements are equivalent:

1. A is an H-convex hesitant fuzzy set.

2. Any o-cut of A is an H-convex crisp set.

Rashid and Beg put up this theory in [65]], but it can be investigated in various
ways. We would get new results if we choose an aggregation function other than
the score. We will analyze this subject in the section that follows.
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2.2 Aggregation functions in convexity of hesitant

fuzzy sets

In the previous section, the different values of the membership function at any point
are summarized by means of the score function. This is, in fact, the arithmetic mean
of these values. Thus, along this section, a more general approach is considered,
based on aggregation functions. Of course, this proposal has to be coherent with
the previous studies and, in particular, to avoid the two drawbacks of some of them:
only vector spaces can be considered as referential and not cut-consistent.
Moreover, an extra property will be required. Thus, we are interested in a
definition that guarantees the convexity of the intersection of two convex hesitant
fuzzy sets. In this section, we will use Definition [I.46|proposed by Torra[76] for the
intersection of hesitant fuzzy sets. It is defined as the membership values in either
of the two sets for this point that are lower than or equal to the lowest of the two
maximums. Some partial results on this topic were published in [38] 41].
According to the traditional concept of convexity, we should take into account
that every intermediate point is actually a membership degree that must be at least as
high as the membership degree at which we are confident it is at the extreme points.
Nevertheless, as the membership value for hesitant fuzzy sets can be a collection of
values, we will aggregate them using an aggregation function before checking the

earlier requirement.

Definition 2.9 Let X be an ordered set, let A be a hesitant fuzzy set on X and let
< be an aggregation function. A is said to be <7 -convex, if for each x,y,z € X with
x <y < zitfollows that

o (ha(y)) = min{.e/ (ha(x)), < (ha(z)) }

It is clear that this definition only makes sense if the ordered set has at least
three ordered elements, so this is the case we will consider by default in this section.
In order to verify the cut-consistency of this definition, we need to consider a

concept of a-level set based on the same ideas.
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Definition 2.10 Let X be any referential, let A be a hesitant fuzzy set on X and let
</ be an aggregation function. For any a € (0, 1], we define the </ — a-level set of

A, or simply a-level set when there is no ambiguity, as follows:
AY —{xeX:a <o (hy(x)}

It is possible to find an equivalent between convex hesitant fuzzy sets and the

crisp convexity of the a-level sets as we show in the following result.

Proposition 2.11 Let X be a totally ordered set, let A be a hesitant fuzzy set on X
and let o/ be an aggregation function. A is a of -convex if and only if A'é‘f are convex
crisp sets for all a € (0,1].

Proof: Let us consider x,y,z € X such that x <y < z.

Ifx €AY and z € AY, then o < o7 (ha(x)) and & < o7 (hy(z)). Consequently,
as A is convex, we have min{.e/ (hs(x)), <7 (ha(z))} < <7 (ha(y)). For this reason,
a < .o (hy(y)) and so y € A% . Thus AZ is a convex crisp set.

On the other hand, we can take ¢ = min{.7 (ha(x)), <7 (ha(z))} € [0,1]. Then,
x,z€AZ. As A7 is a convex crisp set, we have that y € A? and so min{.o7 (h4(x)),
o (ha(2))} < (ha(v)). .

One of the advantages of a-cuts or level sets of fuzzy sets is that given some
particular level sets, we can construct one unique set from them. This allows us to
work with level sets instead of the original sets which could be easier depending
on the context. The main drawback of using Proposition 2.11]is that given some
a-level sets it is not possible to be sure about the set they came from. For instance,
if we are using the arithmetic mean .# as the aggregation function, X = {x} and
A= (x,{0,1}), B= (x,{0,0.5,1}) or C = (x,{0,0.1,0.2,0.8,0.9,1}), then A7/ =
BY = Va € (0,1], although they are clearly different sets. In Section [2.3| we
will define another kind of a-level set that would work properly with our purposes
of reconstruction of the set, but the considered here is the most coherent proposal for
the level set taking into account the ideas behind the concept of convexity managed
in this section.

The major goal of this part of our research is to examine how the .27 -convexity
of the intersection is affected by the aggregation function .<7. For the purposes of
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our study, we have divided it in some circumstances based on the characteristics of

the aggregation function <7, as follows:
1. o/ is lower than the minimum at some point
2. 4/ is greater than the maximum at some point
3. o/ is equal to the maximum or the minimum

4. o is between the maximum and the minimum but it is different from both

2.2.1 The case under the minimum

The first situation is when there exists at least one point (¢, ) € [0, 1] that fulfills
o (a,B) <min{a,B}.

It is well known that t-norms are aggregation functions such that T'(¢, ) <
min{a, B}, ¥(,B) € [0,1]*. Let us check the next case to verify if a concrete

t-norm (product t-norm) satisfies that convexity is conserved with the intersection.

Example 2.12 Let X = {x,y,z} be the referential with x <y < z and let Tp the
product t-norm, that is, Tp(a,B) = o - B,V B € [0, 1]. Let A and B be two hesitant
fuzzy set defined by:

ha(x) ={0.5},Vxe X

hB<x) - hB(Z> = {01’06}7 hB(y) = {027037 1}
Then the intersection is given by:

hang(x) = hanp(z) = {0.1,0.5}

and
har(y) ={0.2,0.3,0.5}

In Figure[2.1)we can see a graphical representation of A, B and ANB.

Let us check if hy and hp are Tp — convex:

Tp(ha(x)) = Tp(ha(y)) = Tp(ha(z)) = 0.5

Tp(hp(x)) = Tp(hp(z)) = 0.1-0.6 = 0.06
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0.6 + 0.6 T ] o 0.6 T
05 T o ° o 0.5 + 05 T o ° °

03 + 03 + ° 03 +
02 + 02 + ° 02 +
0.1 + 0.1 + ° ° 0.1 + ° .

Figure 2.1: Graphical representation of the 7p-intersection.

and
Tp(hp(y)) =0.2-0.3-1=0.06

by applying the associativity of the t-norm.
So, it is clear that A and B are Tp-convex.

However,
Tp(l’lAmB(x)) = TP(hAmB(Z)) =0.1-0.5=0.05

and
Tp(hang(y)) =0.2:0.3-0.5 =0.03

Thus,
Tp(har(y)) < min{Tp(hang(x)), Tp(hans(z))}

that is, AN B is not Tp-convex.

We have seen a negative behaviour for a specific t-norm and therefore we know
that the convexity is not preserved in general for any t-norm or for any aggregation
function when it is below the minimum. In fact, we can prove a general result for

any aggregation function taking a value below the minimum.

Proposition 2.13 Let X be an ordered set. If <7 is an aggregation function such
that there is at least one pair of mutually distinct elements (01, ) € [0,1]? for
which 7 (o, 0p) < min{ay,a}, then o/ does not preserve o -convexity for the

intersection.
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Proof: Let x,y,z be three elements in X such that x < y < z. If we denote by f the
value of .o (a1, ap) and we consider the hesitant fuzzy sets A and B defined by,

ha(x) = ha(z) = {a1, 00}, ha(y) ={B}

hg(x) = hp(y) = hp(z) = {min{oy, 0} }

It is immediate to prove that both A and B are .o/ -convex.

On the other hand, their intersection is the hesitant fuzzy set defined by

hang(x) = hanp(z) = {min{ou, a2 }}, hans(y) = {B}
Then
A (harg(y)) = B < min{< (harp(x)), & (hanp(2))} =
min{min{oy,a },min{a;,x}} =min{a;, 0}

Thus, the intersection is not .o7-convex and therefore, it is possible to find a
counterexample for any aggregation function lower than the minimum at least at

one point. [

This proof could be illustrated in Figure [2.2] where we suppose that o) < 0.

14 14 14
o + () () o0 + o +
a + ° ° ap + ° ° ° a + ° °
B T o B T B T .
_ _ _
X y 4 X y 4 X y Z
A is o/ -convex B is <7 -convex AN B is not .7 -convex

Figure 2.2: Graphical representation of the general counterexample considered at
the proof of Proposition @
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Corollary 2.14 Let X be an ordered set. If </ is a conjunctive aggregation different

from the minimum, then <7 does not preserve <f -convexity for the intersection.

Hence, any t-norm other than the minimum is not a suitable option for defining

the convexity when using Definition [2.9]

2.2.2 The case over the maximum

Then, we examined what occurs when there exists a point (&, 8) € [0, 1] such that
o (a,B) > max{a,p}.

Once more, we begin with a particular example, to study if the convexity is
properly preserved for the intersection, at least for a particular case of aggregation
functions fulfilling this property. In particular, we are going to consider the case of
t-conorms since any t-conorm S is known to be an aggregation function that satisfies
the condition that S(o, B) > max{«, B}, V(a, B) € [0, 1]>.

Example 2.15 Let X = {x,y,z} be the referential with x <y < z and the Lukasiewicz

t-conorm:

St(a,B) = min{a+ 8,1}, Va,Be[0,1].

Let A and B be two hesitant fuzzy set defined as follows

ha(x) = {0.1,0.8},¥x € X

hp(x) = {O. - |)56—‘,0.9—%} VxeX

Thus the intersection is

hang(x) = hang(z) = {0.1,0.6,0.7}

and
hAﬂB(y) = {O 1 y 08}

A, B and AN B are graphically represented in Figure[2.3]
Thus,

Se(ha(x)) = Sp(ha(y)) = SL(ha(z)) = 0.9
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0.9+ 0.9+ o 0.9+
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Figure 2.3: Two Sz-convex hesitant fuzzy sets whose intersection is not Sy -convex.

SL(hB(X)) = SL(hB(Z)) = min{0.6+0.7, 1} =1

and

Sr(hp(y)) = min{0.8+0.9,1} =1

Then, it is clear that A and B are S;-convex. Nevertheless, AN B is not Sy -convex,

since
SL(hAmB(x)) = SL<hAﬂB(Z)) = mln{mln{Ol +0.6, 1} +0.7, 1} =1

and
Sr(hang(y)) = min{0.84+0.1,1} = 0.9

We know now that there is at least an aggregation function assuming a value
over the maximum such that the convexity is not preserved for the intersection. This
is the case of the Lukasievicz t-conorm.

At this point, we also check the behaviour of another important t-conorm dif-
ferent from the maximum, which is called the product t-conorm or probabilistic

sum.

Example 2.16 Let us consider again that X = {x,y,z} withx <y < z. Let A and B
be two hesitant fuzzy sets considered in Example [2.15] where the intersection of A

and B was also obtained. If we consider the product t-conorm

Sp(a,B)=a+p—a-B, VYoa,B€][0,1]
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we have that A and B are Sp — convex, since:
Sp(ha(x)) =Sp(ha(y)) = Sp(ha(z)) =0.84+0.1-0.8-0.1 =0.82

Sp(hp(x)) = Sp(hp(z)) =0.6+0.7—0.6-0.7 = 0.88

and
Sp(hp(y)) =0.84+0.9—-0.8-0.9=10.98
On the contrary, AN B is not Sp — convex, since
Sp(hanp(x)) =Sp(0.14+0.6—0.1-0.6,0.7) = Sp(0.64,0.7) = 0.892,
and
Sp(hans(z)) = Sp(hanp(x)) = 0.892,
but

Sp(hars(y)) = 0.14+0.8—0.1-0.8 = 0.82.

These two counterexamples allow us to confirm that the required property is
not fulfilled for the most important t-conorms different from the maximum. In fact,
we will prove in the next result that the answer is negative for any aggregation
function assuming at least one value over the maximum. For this purpose, we will

generalize the previous counterexamples.

Proposition 2.17 Let X be an ordered set. If <7 is an aggregation function such that
there exists (at1,0) € [0,1)? such that o7 (0, 0) > max{ay, 0p}, then </ does not

preserve o -convexity for the intersection.

Proof: Let x,y,z be three elements in X such that x < y < z and let us denote by
B the value o/ (0, o). If we consider two hesitant fuzzy sets A and B defined as
follows:

ha(x) = ha(z) = {o1, 0}, ha(y) = {B}

hg(x) = hp(y) = hp(z) = {max{a, a0} }
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It is easy to check that both A and B are .<7-convex. Their intersection is the
hesitant fuzzy set determined by the membership function:

hang(x) = harp(z) = {1, 0}, hanp(y) = {max{a;, a }}

A, B and their intersection are represented in Figure [2.4{ for the case o < .

14+ 14 14+
B ° B B
[25) ° ° [2%) ° ° ° [2%) ° L] °
[o%} ° ° o o] + ° °
X Y Z X y Z X Yy z
A B ANB

Figure 2.4: Graphical representation of A, B and AN B.

Then
%(hAmB(y)) = d(max{ocl R 062}) = max{a1 , 062},

A (harp(x)) = o (0u,00) =

and
A (hanp(z)) = o (hanp(x)) = B.

Thus, the intersection A N B is not .« -convex as

o ((ha Nhp)(y)) = max{en, 00} < B = min{/ (hanp(x)), < (hans(2))}-

Corollary 2.18 Let X be an ordered set. If <7 is a disjunctive aggregation different

from the maximum, then <7 does not preserve <f -convexity for the intersection.

Consequently, any t-conorm other than the maximum is not a suitable option

for defining the convexity when using Definition [2.9]
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2.2.3 The case of the maximum and minimum

From the previous subsections we know that the convexity is not preserved under
intersections if it is based on an aggregation function assuming a value above the
maximum or below the minimum. Thus, we will focus on the case of aggregation
functions between these two maps, that is, the case of average functions. We will
start by studying the two extreme cases. In both we will obtain a positive behaviour.
In fact, the case of the maximum was already studied by Janis et al. [46] in 2018,
being this paper the starting point for these general studies.

Proposition 2.19 [46|] Let X be an ordered set and let A and B be two hesitant fuzzy
sets on X. If A and B are max-convex, then AN B is also a max-convex hesitant fuzzy

set.

The remaining case of the minimum was not studied previously, but it is also

possible to prove its good behaviour with respect to this property.

Proposition 2.20 Let X be an ordered set and let A and B be two hesitant fuzzy sets

on X. If A and B are min-convex, then AN B is also a min-convex hesitant fuzzy set.

Proof: Let A and B be two min-convex hesitant fuzzy sets on X. Let x,y,z € X such
that x < y < z. Due to the definition of intersection it is clear that:

min{(hang(x)} = min{ha(x),hp(x)},Vx € X
As hy is min-convex, we have that
min{hy (y)} > min{min{hy (x)}, min{Aa(z)}} = min{hx (x),ha(z) }
and the same happens for B,
min{Ap(y)} > min{min{hp(x)}, min{/(z)}} = min{hp(x),hp(z)}
Thus, for AN B, we have that
min{ (hang(y)} = min{ha(y), hs(y)} >

min{min{/4 (x),h4(z)},min{hp(x),hp(z)}} =
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min{min{/x(x),hp(x)},min{h4(z),hp(z)}} =

min{min{Aanpg(x)},min{hsnp(z)}}

and therefore, we have proven that A N B is min-convex. n

2.2.4 Averaging functions different from maximum and mini-

mum

Until now we have completely studied and characterized the behaviour of any ag-
gregation function which is conjunctive, disjunctive or mixed with respect to the
preservation of the convexity under intersections. The remaining case is the case
of the averaging functions different from maximum and minimum. Thus, we need
to study the aggregation functions that are neither min{x,y} nor max{x,y} but fall
between those two values.

We will divide our study into two parts. The case when the averaging function
is strictly increasing and the case when it is just increasing. For the first one, we
will obtain a general result. However, for the second one, there is no a common

behaviour.

The strict increasing case

We start by assuming that the aggregation functions are strictly monotonic func-
tions.

The arithmetic mean is a well-known example of a strictly increasing aggre-
gation function. Using the arithmetic mean as our aggregation function, let us just
look at an example.

Example 2.21 Let us consider that our domain would be {x,y,z} with x <y < z.
Let A be the arithmetic mean. This, in the unit square,
_a+p

A(a,B) = > Va,B e |0,1]
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Let A and B be two hesitant fuzzy sets on X defined as follows:
ha(x) = ha(z) ={0.4}, ha(y) ={0.2,0.6}
hg(x) = hg(y) = hg(z) = {0.4}
It is clear that the membership function of the intersection is

hang(x) = hanp(z) = {0.4}

and
harp(y) = {0.2,0.4}
The three sets are represented in Figure

14 14 14

0.6 + ° 0.6 + 0.6 +
04 T ° ° 04 + ° ° L] 04 + ° ° .

02 + ° 02 + 02 + °

Figure 2.5: A, B and their intersection.

One the one hand, we have that
M (ha(x)) = A (ha(y)) = A (ha(z)) = 0.4
M (hg(x)) = A (hg(z)) = 4 (hp(y)) = 0.4
and therefore A and B are .# -convex. However,

«///(hAﬂB(X)) = ,///(hAmB(Z)) =04

and
04402

2

%(hAﬂB(y)) = 0.3

that is, AN B is not M -convex.
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Therefore, we are aware that convexity is not being preserved for the intersec-
tion by the arithmetic mean. Moreover, we can prove that this negative answer can

be obtained in general for any strictly increasing aggregation function.

Proposition 2.22 Let X be an ordered set. If <f is a strictly monotonic aggregation

function, then </ does not preserve of -convexity under intersection.

Proof: We are considering that min{a, 0 } < o7 (o, 00) <max{o, 00}, Vo, a €
[0,1]. Since .« is strictly, then .2/ cannot be equal to the maximum. Then there ex-
ists o, 0 € [0, 1] such that o7 (0, 0p) < max{a;, o }. This implies that o} #
(otherwise the previous inequality is an equality since .7 is between minimum and
maximum). If we consider f = o/ (ay, ), then B < max{a;,a}. Thus, if we
consider x,y,z € X with x < y < z and we define the hesitant fuzzy sets A and B as
follows:

ha(x) = ha(z) = {B}, ha(y) = {on, a2}

hg(x) = h(y) = hp(z) = {B}
we have that both A and B are .o7-convex. Their intersection is the hesitant fuzzy
set defined by

hanp(x) = hanp(z) = {B}. hans(y) = {B,min{on, 00 }}
These sets are illustrated in Figure [2.6] where we have supposed, without loss
of generality, that o < 5.
Although A and B are 7 -convex, we have that

o (hang(y)) = o/ (min{a, 00}, B) < &7 (min{oy, an }, max{a;,0n})

since .¢7 is strictly increasing and 8 < max{a, 0 }.
Thus,

A (har(y)) < (0, 02) = B = min{ hanp(x)), & (han(z) }

so, the intersection A N B is not .27 -convex. n



76 CHAPTER 2. CONVEXITY OF HESITANT FUZZY SETS

1 1 1
o + ° o 4 o 4
B A ° ) B+ ° ) ° B+ ° ° °
a4 ° a4 a4 °
X y 4 ;c ;7 ; X y 4
A B ANB

Figure 2.6: Graphical representation of A, B and their intersection.

The non-strict increasing case

Until now, we have been able to obtain general results for all the cases of aggre-
gation functions considered. Thus, in most of them the convexity is not preserved
for the intersection, but for any conjunctive, disjunctive, mixed, strictly increasing
averaging aggregation function, the maximum and the minimum, we know when
convexity is preserved and when it is not. In the remaining case, the case of averag-
ing functions different from maximum and minimum which are not strictly mono-
tonic, there is no a general behaviour. Thus, we can obtain functions preserving the
convexity and functions that do not preserve it.

In order to obtain these examples, we will use the following result, which will
allow us to define the averaging function from a map on [0, 1]? and extend it by its
associativity.

Proposition 2.23 If <7 is an associative averaging function, then there exists (|, 0 €
[0, 1] with o 75 oy such that;z/(al , 062) = min{ocl , 062} or $2/(061 , (Xz) = max{a1 , (Xz}.

Proof: If there exists a1, o € [0, 1] with @ # o such that o7 (@, o) = min{a;, @ }
the proof is finished. Otherwise, it has to be .« (ay, @) > min{;, o} for any

o, 0 € [0,1] with o) # . Let’s suppose o < 0, if we denote by B = .o/ (o, ap),

we have that o < 8 and

(o, B) = o (on, o (on,00)) = o (o (o, 00),B) = </ (ou,00) = B
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Thus, <7 (a4, ) = max{oy, B} and therefore the proof is concluded. n

Thus, if &7 is associative and it is between minimum and maximum, it has to be
equal to max or min in at least one point, that is, it is not possible that min{o, B } <

We will use the previous result to obtain more examples where the convexity

is not preserved the convexity for the intersection, apart from the arithmetic mean.

Example 2.24 For the aggregation function generated by </, which is a combina-

tion between min{x,y} and max{x,y}, where:

max{@,p}  ifa+p> 1
min{a,p}  fa+B <1
if we consider X = {x,y,z} withx <y < z and the hesitant fuzzy set A and B defined

as:!

,@{l(a’ﬁ) :{

ha(x) = ha(z) ={0.4},  ha(y) ={0.2,1}
hp(x) = hp(y) = hp(z) = {0.4}
then the intersection is
hang(x) = hanp(z) = {0.4}

and

hAﬂB()’) = {02,04}
We can see A, B and AN B in Figure[2.7]

Since
' (ha(x)) = " (ha(2) = 0.4, ' (ha(y)) =1

o' (hg(x)) = " (hp(z)) = " (hp(y)) = 0.4
we have that A and B are </ '-convex. However, AN B is not </ -convex, since

o (harp(x)) = o' (han(2)) = 0.4

and
/N (hang(y)) = min{0.2,0.4} = 0.2
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04 + [ ° 04 + ° ° [ 04 + ° ° °
02 + o 02 + 02 + [
X y Z X y Z Py y 4
A B ANB

Figure 2.7: Counterexample for .o7!.

Thus, the averaging function generated by <7 is not strictly increasing and it

does not preserve the convexity for the intersection.

Example 2.25 If we consider the aggregation function generated by:

1 foa+p =2
o o,B)=1{ 05 ifl<oa+p <2
min{o, B} fa+p<I

we have that the hesitant fuzzy sets A and B considered at the previous example are

also < *-convex:
A (ha(x)) = 7 (ha(z)) = 0.4, *(ha(y)) =0.5

7 (hp(x) = 7 (h(2)) = 7 (ha(y)) = 0.4

but again it does not preserve the convexity for the intersection, since AN B is not

o *-convex:
A *(hacp(x)) = o (harp(2)) = 0.4
and

o/ *(hgnp(y)) = min{0.2,0.4} = 0.2

Example 2.26 Finally, if we consider:
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min{a,B} ifa,f <050roa,f>0.5

0.5 otherwise

%3(06,[3)2{

the aggregation function generated by <> is an averaging function non-strictly
increasing. Moreover, if we consider X = {x,y,z} withx <y < z and the two typical
hesitant fuzzy set A and B over X, defined as follows:

hA (X) = hA(Z) = {05}7 hA(y) = {03707}
hp(x) = hp(y) = h(z) = {0.5}
we obtain that the intersection is given by
hAmB(x) = hAﬂB(Z) = {05}

and

hAﬂB()’) = {03,05}
A, B and AN B are illustrated in Figure[2.8

14 14 14

0.7 T ° 0.7 0.7

05 o ° 0.5 o ° ° 0.5 L] ° °

Figure 2.8: Counterexample for 27> (x,y).

On the one hand, we have that
A (ha(x)) = 7 (ha(2) = 0.5, &*(ha(y)) = 0.5

o/ (hp(x)) = o (hp(2)) = < (hp(y)) = 0.5
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so that A and B are <73-convex. However, AN B is not </ >-convex, since
2 (harp(x)) = > (harp(2)) = 0.5

and

3 (hang(y)) = min{0.3,0.5} = 0.3

And again, it does not preserve the convexity of the intersection.

At this point, after all these negative examples, we could think that it is possible
to prove a general result about the no-preservation of the convexity for this kind of
aggregation function. However, this is not true, since there are functions in this
family preserving the convexity for the intersection. One of them is shown in the
following result.

Proposition 2.27 Let X be an ordered set. If we consider the map

max{a,B} ifo,B €[0,0.5]
o*(a,B) =< min{a,f} ifa,B € (0.5,1]

0.5 otherwise

then it is possible to generate from it an averaging function different from the maxi-
mum and the minimum, non-strictly increasing and such the intersection of any two

/' *-convex hesitant fuzzy sets is a o/ *-convex hesitant fuzzy set.

Proof: The map .7* is illustrated at Figure

It is clear from this representation that <7 is increasing but not strictly. Apart
from that, from its definition, we have that .27#(0,0) = max{0,0} and .27*(1,1) =
min{1,1}. Moreover, this mapping is a nullnorm (see [12]) and it is known that
nullnorms are associative. So, it can be in a natural way extended to a mapping
/% :U,[0,1]" — [0, 1], which is also an aggregation function.

By definition it is clear that min{x} < .&7*(x) < max{x} for any x € U,[0, 1]".
Furthermore, <74(0.7,0.2) = 0.5, so it is also clear that .&7* is different from the
minimum or the maximum.

Finally, we will show that .27*-convexity is preserved by intersections.

Let us suppose that X is an ordered set. Let A and B be «7*-convex hesitant
fuzzy sets. Let x,y,z € X such thatx <y < z.

The proof will be divided into three cases:
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0.5 min

0.5

max 0.5

0.5 1

Figure 2.9: Graphical representation of .74,

1. The case &*(hanp(y)) > 0.5.

(a)

(b)

If o7*(hanp(x)) < 0.5 or &*(hanp(z)) < 0.5 then
min{./*(hang(x)), * (harng(z))} < 0.5 < *(hars(y))

and therefore the condition to be AN B «7*-convex is fulfilled in this

case.

If &7*(harp(x)) > 0.5 and &7*(hanp(z)) > 0.5 then, by the definition of
Ad*, *(hanp(x)) = min{hanp(x)} and &7*(hanp(z)) = min{hsnp(2)}
and considering the definition of the intersection (Definition , we
have that 0.5 < .o7*(hanp(x)) = min{hsrp(x)} = min{h4 (x), hp(x)} and
that 0.5 < .@*(hanp(z)) = min{hanp(z)} = min{h4(z),hp(2)}.

Then,

min{/* (har(x)), & (hars(2))} = min{ha (x), hp(x), ha(2), hp(2)} =

min{min{min{A4 (x) },min{%4(z) } },min{min{Ap(x)},min{Ap(z) } } }.

As we noticed that 0.5 < min{/y4 (x), hp(x)} and 0.5 < min{ha(z),hp(2)},
by definition of .74, we have that

*(ha(x)) = min{ha(x)}  @*(ha(z)) = min{ha ()}
/*(hp(x)) = min{hp(x)} o/*(hp(z)) = min{hs(2)}
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Then,
min{&7*(harp(x)), * (hanp(2))} =

min{min{/*(ha(x)), &7* (ha(2))}, min{7* (hp(x)), /* (hp(2))} }.
But, by the .o7*-convexity of A and B we have that

min{o* (harp(x)), 7 (hane(2))} < min{e/*(ha(v)), &/ (hp(v))}

On the other hand, &7*(hanp(y)) > 0.5, we also have that .o7* (hanp(y)) =
min{hanp(y)} = min{ha(y), p(y)} = min{min{h (y)},min{hg(y)} } =
min{</*(ha(y)), 2/ (hp(v))}-

Thus, we have proven that

min{.«/*(hang(x)), 4274(hAmB(Z))} < o *(harp(y))-

2. If *(hanp(y)) < 0.5, then &*(harp(y)) = max{hanp(y)}.

By the definition of the intersection, we have max{/sng(y)} = max{h4(y)}
or max{hanp(y)} = max{hp(y)}. Suppose we have the first case (the proof
for the second case it totally analogous). Since max{h4(y)} < 0.5, then
/*(ha(y)) = max{hy(y)}. By applying that A is a .&7*-convex hesitant fuzzy
set, we have o7*(hy(x)) < 4 (ha(y)) or @Z*(hp(z)) < @*(ha(y)). Let us
consider that we have the first case (again the second case is analogous).
Thus, .7*(hs(x)) < 0.5 and then .&7*(hy(x)) = max{hs(x)} < 0.5. By con-
sidering again the definition of the intersection, we see that max{hsnp(x)} <
max{/4(x)} < 0.5 and therefore .27 (hpnp(x)) = max{hsp(x)}. Now, if we
join the above inequalities and equalities, we have:

o *(hanp(x)) = max{hanp(x)} < max{ha(x)} = *(ha(x)) <

/4 (ha(v)) = max{hanp(y)} = * (hans(v)

and then

4 (harp(v)) = min{ 7 (harp(x)), /* (harp(2))}.
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3. The case o7*(hanp(y)) = 0.5.

If o7*(hanp(x)) < 0.5 or @*(harp(z)) < 0.5, then the proof is trivial. Thus,
we will consider that @/ (hanp(x)) > 0.5 and 7*(hanp(z)) > 0.5. In that

*(hang(x)) = min{hsnp(x)} = min{hs(x),hp(x)} > 0.5
and

*(hang(z)) = min{hsnp(z)} = min{ha(z),hp(z)} > 0.5
Then

min{/4 (x) },min{h4(z) },min{hp(x)}, min{Ap(z)} > 0.5
and therefore .27*(h (x)) = min{A4(x)} > 0.5 and similarly we prove that
A (ha(2)), *(hg(x)), *(hg(z)) > 0.5.

As A and B are o/*-convex, then &7*(ha(y)) > 0.5 and o7*(hg(y)) > 0.5.
Then, min{A4(y),hp(y)} > 0.5 and therefore <74 (hanp(y)) = min{hanp(y)} >
0.5 which is a contradiction, so we can assure that .27*(hsnp(x)) < 0.5 or
2/*(hanp(z)) < 0.5 and therefore

A (har(y)) = 0.5 > min{7* (harp(x)), o/* (han(2))}.

Thus, we have proven that AN B is .o7*-convex. [

Note that in fact any nullnorm and its extensions could be used in the previous
demonstration.

As all four cases are studied, we know the behaviour of the different aggre-
gation functions with respect to the preservation of convexity under intersections.
Now we can say that only minimum, maximum and some specific aggregation func-

tions between them are appropriate to define convexity for hesitant fuzzy sets.
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2.3 Convexity of hesitant fuzzy sets without using ag-

gregation functions

In this section we show the second approach of convexity for hesitant fuzzy sets.
The problem when using aggregation functions is that one can find one result com-
ing from different inputs. This is a clear summarization of the information which
allows identifying any membership value with a number. Thus, any element in

|J[0,1]" is mapped into an element in [0, 1] and we have to deal with numbers in

neN
the real line, where we have a lot of known good properties. However, as we com-

mented previously, this is an important lack of information. We will try to solve
this problem by considering a different approach for the convexity of hesitant fuzzy
sets. Now we will deal with the original membership function and no fusion of the

values will be done. Thus, we have to manage elements in |_J [0,1]" and we have

neN
to order them since it is an essential step when working with convexity. Therefore,

the orders in H considered in Section will be essential in this approach.

2.3.1 Operations for hesitant fuzzy sets based on orders in [H

It is clear that we are now considering a different point of view for dealing with
hesitant fuzzy sets. Taking into account this, we can use this approach as well as the
considered orders to redefine the main operations. More precisely, we will propose
a new definition of the intersection and union of hesitant fuzzy sets and define the
idea of level sets. For the study of convexity, the intersection and level sets of
hesitant fuzzy sets are crucial concepts, and the union is required to understand the

idea of a level set.

Intersection

First, we would like to recall the classical notion of intersection. For crisp sets, the
intersection of two sets A and B is the largest set contained in A and B. Thus, the
intersection is closely related to the content between sets and a definition for this
operation for hesitant fuzzy sets is required. Taking into account that if us and up
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are fuzzy sets then pi4 is contained in g if and only if us(x) < up(x) for all x € X,
it is clear that we can follow a similar reasoning for the case of hesitant fuzzy sets

based on orders for typical hesitant fuzzy elements. Thus,

Definition 2.28 Let A and B be two hesitant fuzzy sets in X. Let us consider an
order <, in H. It is said that A is o-content in B, and it is denoted by A C,, B, if and
only if A(x) <, B(x) for any x € X.

It is immediate to prove that C, is an order in THFS(X), which is not a total
order, even in the case <, so is. It is also clear that Definition [.46| proposed by
Torra does not fulfill, in general, that it is the largest set contained in A and B. Then

we propose the following definition.

Definition 2.29 Let A and B be two hesitant fuzzy sets in X. Let us consider an
order 4, in H. The o-intersection of A and B, which is denoted by A N, B, is the

largest hesitant fuzzy sets o-contained in A and B.

Under this definition, we tried to collect the main ideas for the intersection of
classical sets. An equivalent definition is obtained from the following proposition
in the case the order is total. It is in general more useful for practical cases.

Proposition 2.30 Let <, be a total order on H. For any A,B € THFS(X), the o-
intersection of A and B is the hesitant fuzzy set whose membership function assumes
the value min,{ha(x),hp(x)}, for any x € X, where min, denotes the minimum w.r.t.
the order <,,.

Proof: If we denote by H the hesitant fuzzy set with this membership function, it is
clear that
hA(x) if hA(x) ﬁo h3<x),
]’lH (x) = .
hB(x) if h3<x) ﬂo hA(x).

This set is obviously a hesitant fuzzy set. Thus, we know that hy(x) = ha(x) if
ha(x) <, hp(x) and hy(x) = hp(x) if hp(x) <, ha(x). The fact that Ay (x) <, ha(x)
and hy(x) <, hp(x) for each x € X is true since <, is transitive. Therefore H C, A
and H C, B.
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Additionally, if we take into account a set C € THFS(X) with C C, A and
C C, B, thus for each x € X, since there are no incomparable items under <,, we

get two possibilities:
a) If ha(x) <, hp(x), then hy(x) = ha(x). But, he(x) <y ha(x) = hy(x).
b) If hp(x) <y ha(x), then hy(x) = hp(x). But, he(x) <, hp(x) = hg(x).
So, for both cases, we arrive at the conclusion that hc(x) <, hy(x) and thus C C, H.

As aresult, H is the largest hesitant fuzzy set which is o-included in A and B

and that implies it is their o-intersection. [

Example 2.31 Let A, B and X be the sets defined in Example[I.21|and let us con-
sider the lexicographical order type 1.

The <j.y1-intersection of A and B is obtained as follows:

* Forx=0, we have that hyr,,,5(0) = ming .. {h4(0),hp(0)} = minge {{0.25,
0.5},{1/e}} = {0.25,0.5} as it exists i € {1} such that h4(0)! < hp(0)'.

* Forx=0.5, we have that han,,,5(0.5) = mingex{h4(0.5),hp(0.5)} = min{{0},
{1/Ve}} ={0}.

* Forx =1, we have that han,, (1) = minzey{ha(1),hp(1)} = ming., {{0.2,
0.4,0.6,0.8}, {1}} = {0.2,0.4,0.6,0.8).
Hence,

ANLex1 B = {(0,{0.25,0.5}),(0.5,{0}),(1,{0.2,0.4,0.6,0.8})}

It is represented in Figure and it is clear that it is different that the inter-

sections obtained in Examples and

Lexicographical orders are particular examples of admissible orders, which
are total orders refining the lattice order. It should be noticed that we ask for a total
order because if we use a partial order, the intersection can not be properly defined

as we can see in the following example.
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Figure 2.10: Lex1-intersection of A and B.

Example 2.32 Let us consider that X = {x} and the hesitant fuzzy sets A and B in
X are defined by A = {(x,{0,0.2,0.8,1})} and B={(x,{0,0.1,0.9,1}) }.

If we use the minimum score function, then Syin(ha(0)) =0 = Sy (hp(0)) and
therefore ha(x) <pyin hp(x) and hg(x) <pmin ha(x), but ha(x) # hg(x). Thus, as the
relation <, is just a preorder, and therefore it is not symmetric, we can not decide
which one is bigger so the intersection could be any of them and it is not properly
defined.

In fact, the problem could remain when the relation is an order, but it is not a
total order. For instance, if we consider the lattice order <y, taking into account
the definition of intersection given in Definition[2.29 we know that, in this example,
ha(x) and hg(x) are not comparable and therefore, we cannot obtain the minimum
of both elements. It could be possible to consider the infimum instead of the mini-
mum, in this case it would be hc(x) = {0,0.1,0.8,1}, however, we can not always
assure the existence of the infimum as we need a lower bounded set to guarantee it.
This happens in this case, since the lattice order generates a lattice. Really this is

the reason for the name given to this order.

Union

If the lowest set that includes both sets is the definition of the union of two sets,
then there is again a different interpretation of the union for each order we use in
THFS(X). As the union would be a useful tool for the following item, we can
thus do a research similar to the one given for the intersection. It is also clear that
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Definition [I.50] proposed by Torra does not fulfill in general that it is the smallest
set containing A and B. Then we propose the following definition of the union.

Definition 2.33 Ler A,B € THFS(X) and let <, be an order in H. We define the
o-union of A and B, denoted by AU, B, as the smallest hesitant fuzzy set such that A

and B are o-contained in it.
In an analogous way to the intersection, we will only consider total orders.

Proposition 2.34 Let <, be a total order on H. For any A,B € THFS(X), the o-
union of A and B is the hesitant fuzzy set whose membership function, at any point
x € X, is max,{ha(x),hp(x)}, for any x € X, where max, denotes the maximum

w.r.t. the order <,,.

Proof: If we consider

hB(x) if hA(x) S]() hB(x),

hi (x) = maxo{ha (x), ha(x)} :{ ha(x) if hp(x) <, ha(x).

it is clear that this is the membership function of a hesitant fuzzy set H, since <, is
a total order and it is clear that H is well-defined, since h4(x) <, hp(x) or hp(x) <,
ha(x), for all x € X.

By definition, it is obvious that A C, H and B C, H.

Lastly, if we assume that there exists a hesitant fuzzy set C € THFS(X) such
that A C, C and B C,, C, then hs(x) <, hc(x) and hg(x) <, he(x), for all x € X. By
the transitivity of <J,, it is immediate that iy (x) <, hc(x) and therefore H C, C.
Thus, H is the smallest hesitant fuzzy set o-containing A and B. ]

Example 2.35 In Figure 2.11] it is possible to find the Lex1-union of the hesitant
fuzzy sets considered in Example[1.21]

Level sets of hesitant fuzzy sets

An a-cut or a level set is one of the most crucial ideas in fuzzy sets, according to
Klir [49]. In this section, we provide an appropriate definition of a level set for hes-
itant fuzzy set taking into account the criterion of avoiding the loss of information
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Figure 2.11: Lex1-union of A and B.

by fusing the values of the membership function, since the ones considered in the
previous chapter were based on that idea and, therefore, are not appropriate in this

case.

Definition 2.36 Ler <, be an order on H. For any A € THFS(X) and for any
a € H, we define the o-level sets of A w.r.t. the order <, as follows:

Ay ={xeX:a <, hs(x)}

It is indeed remarkable that if we employ a different order, we would get dif-

ferent level sets because the definition varies depending on the order we choose.
Example 2.37 Let X = {x,y,z}. Let us consider A € HFS(X) defined as:

A={{(x,{0.3)),(5,10.5,0.6}), (z,{0.4,0.7,0.81)}

We have calculated some level sets of this set for different orders in Table[2.1]

Order \ Level (@) | {03} {05,06) {0.4,0.7,0.8} {0.4,0.6)
Lexicographical type 1 | {x,y,z} {y} {y,z} {y,z}
Lexicographical type 2 | {x,y,z} {2} {z} {2}

Table 2.1: Level sets for different orders.
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Based on this example, we can notice there could be some relations between

level sets.

Proposition 2.38 If < and <, are orders in H such that a <| b implies a <, b,
then for any A € THFS(X) and any o € H we have thatA(lx C A%x.

Proof: Since AL, = {x € X : o <y hy(x)} and A2, = {x € X : @ <y ha(x)}, it is
immediate that A}, C A2, o

Let us take a quick look at some of the characteristics that these level sets
satisfy for a fixed order.

Proposition 2.39 Let <, be an order on H. For any A,B € THFS(X) and any
o, B € H, we have that:

i) Ifa <, B, thenA% C AY,

ii) AC, B A, C By, for any o € H.

iii) (AN, B)% C A9 NBY. Moreover, if <, is a total order, then (AN, B)Y, =
A% MBS,

iv) A% UBY, C, (AU, B)%. Therfore, if 4, is a total order, then A%, UB%, = (AU,
B)Y.

Proof: Let us consider A,B€ THFS(X) and o, 3 € H.

i) If o <, B, then it is immediate by definition that A% C AY, since <, is transi-

tive.

ii) If A C, B then hs(x) <, hp(x),¥x € X. Thus, if o <, ha(x), since <, is
transitive, then a <, hp(x) and so Ay ={x € X :a I, hy(x)} C{xe X :
o <, hp(x)} = BY,.
On the other hand, for any x € X, if we use the inclusion for the level sets, we
obtain that x € AZA ) since <, is reflexive, and therefore x € BZA ()" This is

equivalent to saying that 4 (x) <, hp(x). As we have this result for all x € X,
this means that A C, B.
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iii) Since AN, B C, A and AN, B C, B, by applying ii), we have that (AN, B)9, C
A9 and (AN, B)Y, C BY and then (AN, B)% C A% NBY,.

On the other hand, if x € A% N BY, then a <, ha(x) and o <, hp(x). Thus,
if we consider a total order, from Proposition we obtain that hisnp(x) =
hA(x) or hAmB(x) = hB(x) and so o <, hAmB(x).

iv) AsAC,AU,Band B C, AU, B, by applying ii), we obtain that A9, C, (AU,
B)¢ and By, C, (AU, B)%,. Thus, Ay, UBY, C, (AU, B)%,.

On the other hand, for any x € X we obtain that 24, g(x) = hp(x) or hay,p(x) =
hg(x), by applying Proposition as <, is a total order. Therefore, if
x € (AU, B)%, then a <, haup(y) and then o <, ha(x) or a <, hg(x). Then,
x € AL UBg,.

In fuzzy sets theory, Decomposition Theorems [49] are known for allowing to
represent a fuzzy set through its ¢-cuts, so we would like to adapt this for hesitant

fuzzy sets. Before giving a general result, we will present it in an example.

Example 2.40 Let X = {x,y,z}. We will consider the hesitant fuzzy set A defined

in Example and the lexicographical order type 1, where the level sets were

A%(e))g} = {xy2h A%ﬁ,o.xo.s} = {y,z} and and A%S?Csl,o.e} = {z}.

If we choose the proper elements, the level sets of the hesitant fuzzy set can be

used to represent it. Now, we will obtain a hesitant fuzzy set %fXIA based on these

level sets whose membership function at any x € X is:

oo+ (3) a ifxc ALl
Lex1 4 (X) =
A Oy otherwise.

With this procedure, we are hesitant fuzzifying the level sets, that is, we begin
with level sets (crisp sets) and then we obtain hesitant fuzzy sets.
Thus,
h%(e)x?}}A (t) — {03},Vl E X
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{0.4,0.7,0.8} ift € {y,z},
hLexl A(t) - .
{0.4,0.7,0.8} Oy ift =x,
and
0.5,0.6 ft =
. A(t) _ { ) } lf e
{0506} Oy ift € {x,y}.

It is immediate that the Lex1 — union of these hesitant fuzzy sets is the original
set A. That is,

Lexl Lexl Lex1
A =103 AULex1 {0.4,0.7,0.8)A ULex1 {050.6)4
Based on this idea, we propose the following theorem:

Theorem 2.41 (Decomposition Theorem) Let <, be a total order in H with least
element 07;. For every A € THFS(X), we have that

A= U, A
acH

where U, denotes the o — union and ,°A(x) = o if x € Ay, °A(x) = 0y if x ¢ AL,

Proof: Let A be any set in THF S(X). For any x € X, we have that hs (x) = € H.

Then, hy(x) = g’A (x) and therefore h4(x) <, U, ,°A(x), by the definition of U,,.
ocH

On the other hand, as <, is a total order, for any x in X, there exists a B, € H
such that U, 4°A(x) = g?A(x).
acH *

By the definition of ﬁXOA (x), we get two possible cases:

o If x ¢ A% , then ;A (x) = 0f <o ha ().

p
* If x € A% , then Bx <, ha(x) and so B"A(x) = Bx <o ha(x).
So by the symmetry of the order <,,, we obtain that 14 (x) = U, ,°A(x). =
acH

Instead of using the hesitant fuzzy set, this theorem enables us to operate with
level sets.

We will consider it in the next corollary because it is remarkable that multiple
elements could produce the same level set. If we take into account that A(A) is the
set of all elements that indicate various level sets of A, then there is an equivalent
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relation in X. As aresult, the following result is a simplified version of the preceding
one in which just one element is taken from each class in A(A). It means that
instead of taking H, we consider A(A). For instance, in Example AA) =
{{0.3},{0.4,0.7,0.8},{0.5,0.6} }.

Corollary 2.42 Let <, be a total order in H with least element 0F. For every
A € THFS(X), we have that

A= U, A
acA(A)
This is how a hesitant fuzzy set is represented without using the same level set twice.

The proof is straight from the Decomposition Theorem.

2.3.2 Convexity of hesitant fuzzy sets

In previous section we considered that a hesitant fuzzy set A on X is o7 -convex if
for each x < y < zin X there is 7 (ha(y)) > min{.e/ (ha(x)), < (ha(z))} where <7
is an aggregation function. With this definition Huidobro et al. [38]] were able to
characterize the cases when the convexity of two typical hesitant fuzzy sets through
intersections is preserved. However, as two different typical hesitant fuzzy elements
could have the same value for a given aggregation function while being different
sets, we think this definition is not proper and we propose the following one that can
achieve better results and we do not reduce the information about the membership

values of the hesitant fuzzy sets.

Definition 2.43 Let X be an ordered set and let <, be a total order on H. A hesitant
fuzzy set A is o-convex if min,{hs(x),ha(z)} <, ha(y) for any x,y,z € X such that
x<y<z

In a similar way, we can also define strict convexity.

Definition 2.44 Let X be an ordered set and let <, be a total order on H. A hesitant
fuzzy set strictly A is o-convex if ming{ha (x),ha(z) } <o ha(y), for any x,y,z € X such
thatx <y < z.
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Definition [2.43]is accurate, because, as the following result proves, there is an
equivalence between the convexity for a given hesitant fuzzy set and the convexity
of its level sets.

Proposition 2.45 Let X be an ordered vector space, let A € THFS(X) and let <,
be a total order in H. A is an o-convex typical hesitant fuzzy set if and only if A,

are convex crisp sets for all oo € H.

Proof: Let us consider x,y,z € X such that x <y < z.

For any o € Hl, if x € A% and z € A%, thus o <, hg(x) and o <, hg(z). There-
fore, since A is convex, we have min,{h(x),n4(z)} <o ha(y). By the transitivity
of <y, o0 I, ha(y) or o <, ha(y) and so y € AY. This is true, in particular, for the
case y = Ax+ (1 —A)z with 4 € [0, 1]. Thus A9, is a convex crisp set.

On the other hand, since <, is a total order, we can consider o = min,{/4(x),
ha(z)} € H. Then, x,z € A%. As A9 is a convex crisp set, we have that y € A9 and
so miny {4 (x), ha(2)} <o ha(y). "

As we saw in Subsection |1.2.1] admissible orders are a particular case of total
orders, so they could be a good option for dealing with convexity.

Admissible orders will also be very important for the preservation of the con-
vexity for the support and the core of a hesitant fuzzy set. For the support, we could
consider the usual proposal given in Definition But also we could think on a
natural way to define the support of a hesitant fuzzy set, which is also coherent with
the ideas for support for fuzzy sets (Definition[I.4). In fact, we will prove that both
definitions are equivalent when we manage admissible orders in H. More precisely,

Proposition 2.46 Let A be a hesitant fuzzy set in X and <, an admissible order on
H. We have that

Supp(A) ={x € X : ha(x) # Oy }

Proof: For any x in X, we have that x € Supp(A) if, and only if, max{/4(x)} # 0.
As O = {0} and any element in H is a finite subset of [0, 1], this is equivalent to
say that hi4 (x) # O. "
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Thus, we can generalize the definition of support to any order with a least

element, as follows:

Definition 2.47 Let A be a hesitant fuzzy set in X and <, an order on H with least
element 07;. The support of A is defined as

Supp®(A) = {x € X : ha(x) # O}
In the case of admissible orders on Hl, we have that the least element is O and
therefore Definition [I.54] and Definition are equivalent, as we have proven in

Proposition [2.46]
Also, the definition of convexity fits well with this general idea of support of a

hesitant fuzzy set as we can see in the following result.

Proposition 2.48 Let us consider the ordered vector space X, let <, be a total
order on H with least element 03 and A € THFS(X). If A is an o-convex hesitant
fuzzy set, then the support of A is a convex crisp set.

Proof: Let A be an o-convex hesitant fuzzy set. For any x,z € Supp?(A) ={x € X :
ha(x) # 0%} and any A € [0, 1], we have the following cases:

» if x =z, then Ax+ (1 —A)z = x and it is then clear that Ax+ (1 —A)z €
Supp®(A).

 if x < z,then x < Ax+ (1 —A)z < z. Moreover, as A is an o-convex hesitant
fuzzy set, we have that

miny{hs(x),h4(z)} <o ha(Ax+ (1 —1)z)
and as 0f; is the least element, /14 (x) # 0f; and ha(z) # 07, we obtain that
ha(Ax+ (1 —A)z) # 0%, that is, Ax+ (1 —A)z € Supp®(A).
* the case z < x is totally analogous to the previous case.

Therefore, Supp®(A) is a crisp convex set. n

Not only with the support but also convexity works with the core of a hesitant
fuzzy set. Let us start by considering an appropriate definition of core for hesi-
tant fuzzy sets. Again, we will consider the original ideas of core of a fuzzy set
(Definition [1.5). Thus,
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Definition 2.49 Let A be a hesitant fuzzy set in X and an order <, on H with great-
est element 19;. The core of A, which is denoted by Core®(A), is the crisp set

Core’(A) ={x € X : ha(x) = 13}

Nevertheless, even in the case of admissible orders, this definition is not equiv-
alent to the one given at Definition [I.55] as we show in the next example.

Example 2.50 Let us consider X = {x}, any admissible order on H and the hesitant
fuzzy set A defined by ha(x) = {0.5,1}. If we consider Definition the core of
A is X, since max{hs(x)} = 1. However, for Definition the core of A is the
empty set, since {0.5,1} # {1} and {1} is the greatest element of the order.

In the following result we show that the core is compatible with the definition

of convexity.

Proposition 2.51 Let us consider the ordered vector space X, the total order <, on
H with greatest element 13 and A € THFS(X). If A is an o-convex hesitant fuzzy

set, then the core of A w.r.t. this order is a convex crisp set.

Proof: Let us suppose that Core’(A) is not a convex crisp set. That is, there exists
y=Ax+(1—-2A)z€ X with A € (0,1) such that y & Core’(A) for x,z € Core’(A).
Then hy(y) # 1. As 17, is the greatest element, 4 (y) <, 17 = min, {ha(x),ha(2)},
which is a contradiction, since A is an o-convex hesitant fuzzy set. Thus, Core®(A)

is a crisp convex set. L]

An interesting property of convexity is being preserved when intersections, i.e.,

the intersection of two convex hesitant fuzzy sets is also convex.

Proposition 2.52 Let X be an ordered set and let <, a total order on H. If A,B €
THFS(X) are o-convex (resp. strictly o-convex) and AN, B # 0, then AN, B is also

o-convex (resp. strictly o-convex).

Proof: Letx, y, zin X withx <y < z.

If ha(y) <, hp(y), by Proposition we have that han g(y) = ha(y). Since
A is o-convex (resp. strictly o-convex), hg(x) <, ha(y) (resp. ha(x) <, ha(y)) or
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ha(z) <o ha(y) (resp. ha(z) <o ha(y)). But by the definition of the intersection for
this order we have that i g(x) <, ha(x) and han,5(z) <o hp(z). By the transitivity,
han,B(x) Do ha(y) = han,s(y) (resp. han,s(x) <o ha(y) = han,B(Y)) or han,s(z) Jo
ha(y) = han,B(y) (resp. han,B(z) <o ha(y) = han,B(y)).

The case hp(y) <, ha(y) is totally analogous. Therefore, AN, B is o-convex
(resp. strictly o-convex). [

If we consider the objectives and restrictions in a decision-making process as
typical hesitant fuzzy sets, this theorem is crucial. They will also be convex at their
intersection if they are convex. When the choice is a convex hesitant fuzzy set, we

can use the following theorem to get some interesting optimization results.

Theorem 2.53 Let X be an infinite ordered set. Let <, be a total order on H with

a least element.

i) If A is an o-convex hesitant fuzzy set over X and x* € Supp’(A) is a strict local

maximizer of hy, then it is also a global maximizer of hy over Supp®(A).

ii) If A is a strictly o-convex hesitant fuzzy set over X and x* € Supp®(A) is a

local maximizer of ha, then it is also a global maximizer of hy over Supp?(A).

Proof: Suppose that x* € Supp®(A).

If x* a strict local maximizer of sy, this means that there exists a neighborhood
Y such that for all x € Y, we have that A (x) <, hi4 (x¥).

Let us suppose that there exists X' € Supp?(A), different from x*, such that
ha(x*) <, ha(xX'). Tt is clear that X’ € Y because otherwise x* would not be a strict
local maximizer.

Let us consider y € Y such that x’ < y < x* or x* < y < x. If we suppose that
A is o-convex, we have that hg (x") <, ha(y) or ha(x*) <, ha(y). Then, if we take y
close enough to x*, that is, y € Y and y # x*, that contradicts /4 (y) <, ha (x*).

On the other hand, if x* is just a local maximizer of /14, then there is a neighbor-
hood Y where hu(y) <, ha(x*),Vy € Y. Let us assume that there exists x’ a global
maximizer such that 4 (x*) <, ha(x’). If we consider that A is strictly o-convex,
we get ha(x*) <, ha(X) <o ha(y) or ha(x*) <o ha(y), s0 ha(x*) <, ha(y) for all the
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points y between x” and x*. If we pick y close enough to x*, that is y € Y, there is a

contradiction. -

Finally, we will study the set of the points at which the membership function

attains its maximum.

Theorem 2.54 Let X be an ordered set. Let <, be a total order on H with least

element. Let A be an o-convex hesitant fuzzy set over the ordered set X.

i)

ii)

The set of points at which hy attains its global maximum over its support is a

convex crisp set.

If A is strictly o-convex, hy attains its global maximum over Supp®(A) at no
more than one point if X is uncountable or no more than two points if X is

finite or countable.

Proof: We consider that A is an o-convex hesitant fuzzy set over X

i)

Let us suppose that « is the typical hesitant fuzzy element where /4 attains
its maximum value. If we construct the level set of A associated to o w.r.t.
the order <,, it is a convex crisp set by Proposition [2.39]as A is an o-convex
hesitant fuzzy set, and it coincides with the set of points at which /4 attains

its global maximum over Supp?(A).

Let us assume that x*, x" € Supp®(A) are two different global maximizers, that
is, ha(x) <p ha(x*) = ha(x') for all x € X. Let us suppose that x* < x* (the
case x* < x' is totally analogous).

If there exists y € X such that X’ < y < x* (this always happens in the uncount-
able case), since A is strictly convex, then hg (x*) = ha(x) <, ha(y), and that
contradicts the fact that there are two global maximizers and so the of points
at which /4 attains its global maximum over Supp®(A) has no more than one

point.

If X is countable or finite and the maximizers are consecutive (otherwise we
are at the previous case), i4 only has, at most, two global maximizers. Oth-

erwise, if it has three consecutive maximizers, which are denoted by x*, x’
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and x”, with x* < x' < x”, then hy(x*) = hpa(x") <, ha(X') by the strictly o-
convexity of A, but this is a contradiction with the fact that x* and x” are

global maximizers. [

Thus, in the finite case, we could have two consecutive global maximizers,
since we could have two points such that there is no other point between them, as
we can see at the following example.

Example 2.55 It should be noticed that if we consider X = {x1,x2,x3,x4} with x; <
Xy < x3 < x4}, the lexicographical order type 1 on H and the hesitant fuzzy set
A ={(x1,{0.3}), (x2,{0.6}), (x3,{0.6}),(x4,{0.3})}, A is strictly convex but it has
two maximum points that are together. If instead of two, there are three points,
B = {(x1,{0.6}), (x2,{0.6}), (x3,{0.6}), (x4,{0.3})}, then B is not strictly convex
as hp(x2) Apex min{hg(x;),hp(x3)}.

Theorems [2.53] and [2.54] can be applied to any admissible order <, since it
refines the standard partial order <gy and therefore (IH, <,) is a bounded lattice.

2.3.3 Decision-making based on hesitant fuzzy sets

Theories regarding using fuzzy sets in decision-making can be found in the litera-
ture. Bellman and Zadeh [8]], for instance, worked to demonstrate how a choice can
be thought of as a collection of objectives and restrictions with symmetry between
them. Using this method, we can treat objectives and restrictions as if they were
symmetrically related notions joined together by the conjunction “and”.

It is assumed in fuzzy set theory that each element’s level of membership in a
set is known. Unfortunately, there are instances in real life where the membership
function is not completely understood. This happens very frequently in decision-
making, when any expert can provide a value for the membership function. With
this in mind, hesitant fuzzy sets are a strong and useful tool for expressing uncertain
information, as it allows the membership degree of an element to a set represented
by multiple alternative values in [0,1] (see [60]).
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In this work, we will employ the Bellman and Zadeh methodology [8], which
states that the choice D would be the intersection of all the hesitant fuzzy constraints
and goals if we were to treat the constraints and the goals as hesitant fuzzy set over
the set of alternatives, X.

A decision, in the sense of Yager and Basson [89], is the place at which all
objectives and restrictions meet. So we could reach the following definition by
using this concept as a guide.

Definition 2.56 Let X = {x1,...,x,} be the set of alternatives, G1,...,G), be the set
of goals that can be expressed as hesitant fuzzy sets on the space of alternatives, and
Ci,...,Cy, be the set of constraints that can also be expressed as hesitant fuzzy sets
on the space of alternatives. Let <, be an order on H. The goals and constraints
then combine to form a decision D,, which is a hesitant fuzzy set resulting from the

intersection of the goals and the constraints, that is,
D, = G]ﬂg,...ﬂngﬂgcl No...NyChy.

For any x € X, the interpretation of D(x) might be the extent to which the
alternative x satisfies the objectives and constraints. We must choose the best option
before the decision has been made.

Since the intersection is actually an o-intersection, it follows immediately from
this definition that D directly depends on the chosen order <, in H. As a result,
depending on the sequence we use, the decision D, built as the intersection of the
goals and restrictions, would alter.

In order to a better understanding, let us show the following example.

Example 2.57 A big company has to decide a new country to expand their facilities
between one of three locations x1, x and x3. They would like to choose a place that
reduces the cost of real estate, G, and is near stores, Ci. Let X = {x1,x2,x3}. In
this case, there is a committee of experts that evaluates several aspects, so hesitant
fuzzy set could be a good option to model it. Let us assume that the membership

grades of the hesitant fuzzy goal G is

G = {(x1,{0.4,0.8,0.8}), (x2,{0.6,0.8,1}), (x3,{0.6,0.7,0.8})}



2.3. CONVEXITY OF HFSS WITHOUT USING AGGREGATIONS 101

where they measure the electricity, the rent and the water prize; and the membership

function of the hesitant fuzzy constraint C is
Cy = {(x1,{0.5,0.6,0.7}), (x2,{0.9,0.6,1}), (x3,{0.6,0.9,0.9}) }

where they take into account the difficulty of getting workforce, the machinery and

the salaries. In this case, we have to reorder this constraint as
¢ = {<X1, {05706707}>7 <X2, {065 097 1}>7 <)C3, {06709709}>}

If we consider lexicographical order type 1, the membership values of the hes-

itant fuzzy decision Dy .y are:
Dpex1 = {(x1,{0.4,0.8,0.8}), (x»,{0.6,0.8,1}), (x3,{0.6,0.7,0.8}) }

and the optimal decision would be x;, due to the fact that it is the alternative with
the highest possible value of Dy x| in terms of the lexicographical order type 1. Nev-
ertheless, if we employ lexical order type 2, the membership degrees of the hesitant

fuzzy decision Dy .y are:
Drev» = {(x1,{0.5,0.6,0.7}), (x2,{0.6,0.8,1}), (x3,{0.6,0.7,0.8}) }
but in this case the optimal decision does not change and it is still to x».

Once we have seen this easy example, we would like to point out how important
is the chosen order on H.

In a hesitant fuzzy decision, similar to the one above, all the objectives and
restrictions are hesitant fuzzy sets over exactly the same set of alternatives, however
this can occasionally change. We can prevent this circumstance by employing the

extension principle.

Definition 2.58 (Extension principle) Ler (H, <,) be a complete lattice. Any func-
tion f : X — Y produces a functions f: THFS(X) — THFS(Y) such that, for any

A€ THFS(X), f(A) is the hesitant fuzzy set in Y whose membership function is:

hyay(y) = sup, ha(x),Vy €Y
xly=£(x)

where sup, means the supremum w.r.t. the order <,
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When there is not ambiguity, f could also be denoted as f.
With this technique, the situation where the hesitant fuzzy constraints or goals
are defined in different spaces can be mapped into exactly the same universe.

Let us show in the following example how this methodology works.

Example 2.59 Continuing Example but there is now another space Y denot-
ing the set of previous works done in that countries, Y = {y1,y2,y3,v4}. The infor-
mation about these former works is the following: y, and y, were made in x1, y3
was done in xp and y4 was performed jointly in x; and x3.

Using this data, we create the following function:
f:Y—=X

characterized by f(y1) = x1, f(y2) = x1, f(y3) = x2 and f(ys) = x3.
Additionally, we are aware of a fuzzy restriction over Y that evaluates the sig-

nificance of each work described by the cost to carry it out and the success they had:

Y = {(y1,{0.6,0.8}), (y2,{0.7,0.9}), (v3, {0.75,0.8}), (v4,{0.5,0.9})}. It is rep-
resented as Cg to emphasize that it is a hesitant fuzzy set over the space Y. Applying

the extension principle now will allow us to have all of the objectives and constraints
represented as hesitant fuzzy sets over the same domain. In this situation, we will
employ lexicographical order type 1. For xi, hf(cg)(xl) = SUPy |~ £(y) hC%/ (y) =
sup{hczy (y1 ),hc2y (y2)} = sup{{0.6,0.8},{0.7,0.9}} = {0.7,0.9}. In a similar way,
hf(czy)(xz) = {0.75,0.8} and hf(czy)(x3) ={0.5,0.9}.

As a consequence,
F(CY) = {(x1,{0.7,0.9}), (x2,{0.75,0.8}), (x3,{0.5,0.9})}
Eventually, the decision is
Dot = G Niext Ct Niext f(C5)
where the membership values are now:
Dj . = {(x1,{0.4,0.8,0.8}), (x2,{0.6,0.8,1}), (x3,{0.5,0.9})}

Thus, the optimal decision is x;.
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There are circumstances where a decision parameter is dependent on another
domain. Yager and Basson [89] proposed the idea of fuzzy conditional sets to be
capable of dealing with such circumstances. With these concepts in mind, we arrive

at the subsequent definition:

Definition 2.60 Let X andY be two crisp sets and let (H, <,) be a complete lattice.
If we have a family of hesitant fuzzy sets on X given by {Aly € THFS(X):y €Y}
and B € THFS(Y), we can obtain a new hesitant fuzzy set on X by combining the
information given by Aly for any y € Y and B. This set will be denoted by A|g and
its membership function is:

hy |y (x) = sup, min, {hp(y), ha)y(x) }
yeyY

We can see how to apply these ideas in our practical example.

Example 2.61 Let us add more details to Example The company is required
to minimize the cost of moving experienced workers and basic machinery to the
new office. They would focus on the distance from the main office to the new one.
Let Z = {Near(N),Med(M),Far(F)}. This restriction is set by the hesitant fuzzy
set B> = {(N,{0.8}),(M,{0.5}),(F,{0.3})}. The following conditioned typical
hesitant fuzzy sets describe how the options and distance to the main office are

related.:
C§]N = {(x1,{0.6,0.6}), (x2,{0.6,0.7}), (x3,{0.5,0.8}) }

C§|M = {(x1,{0.6,0.7}),(x2,{0.4,0.7}), (x3,{0.7,0.9}) }
CY|F = {(x1,{0.3,0.5}), (x2,{0.4,0.4}), (x3,{0.3,0.4})}
Then, we can construct the typical hesitant fuzzy sets C§ |pz. Thus, for x| we
obtain that

hex|,, (1) = SUPL ey Mingext {hp:(2), hex | (x1)}-
. €2

As
minLexl{th(N),hC§|N(x1)} = minge, {{0.8},{0.6,0.6}} = {0.6,0.6}
ming et {gz (M), Ay (11)} = minzext {{0.5},{0.6,0.7}} = {0.5}
minLexl{th(F),hcé(‘F(xl)} = minLexl{{O.3}, {0.3,0.5}} = {0.3}
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we obtain that

hex), () = supp. {{0.6,0.6},{0.5},{03}} = {0.6,0.6}

With an analogous process, we can calculate the constraint for x, and x3 so

that we get the hesitant fuzzy set Cgf |pz:
C§(|Bz = {(x1,{0.6,0.6}), (x»,{0.6,0.7}), (x3,{0.5,0.8}) }

As a result, the decision is the hesitant fuzzy set Dzexl = G Nex1 C1 Niexl
F(CYYNLex1 CF | gz described by:

DY, ={(x1,{0.4,0.8,0.8}), (x2,{0.6,0.7}), (x3,{0.5,0.8})}

Thus, x; is again the optimal decision.

If we now combine Proposition and Theorem [2.54] with the decision-

making theory, we could achieve some good results:

Corollary 2.62 Let X be an ordered set. Let 1, be an order on H, let Gy,...,G,
be the hesitant fuzzy goals, Cy,...,C, the hesitant fuzzy constraints, and D =
GiN,...NG,NCN,...NCy, be the resulting decision.

* [fthe hesitant fuzzy goals and the hesitant fuzzy constraints are o-convex hes-
itant fuzzy set, then the resulting decision D is an o-convex hesitant fuzzy set
and the set of maximizing decisions of the hesitant fuzzy set D is a convex

crisp set.

 [If the hesitant fuzzy goals and the hesitant fuzzy constraints are strictly o-
convex hesitant fuzzy set, then the resulting decision D is a strictly o-convex
hesitant fuzzy set and the cardinality of the set of maximizing decisions is at

most two.

Let us sum up the decision-making problem of Example 2.61]in the following

example.
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Example 2.63 We will summarize the hesitant goal and constraints of the previous

examples:
G = {(x1,{0.4,0.8,0.8}), (x2,{0.6,0.8,1}), (x3,{0.6,0.7,0.8})}
C1 = {(x1,{0.5,0.6,0.7}), (x2,{0.6,0.9,1}), (x3,{0.6,0.9,0.9})}

F(CY) = {(x1,{0.7,0.9}), (x2,{0.75,0.8}), (x3,{0.5,0.9})}

CX |5z = {(x1,{0.6,0.6}), (x2,{0.6,0.7}), (x3,{0.5,0.8})}

If we assume that x| < xo < x3 and consider the lexicographical order type 1,
then we obtain that G, Cy, f (Cg ) and C§ |pz are strictly convex hesitant fuzzy set,
so the decision Dy, is also a convex hesitant fuzzy set w.r.t. the same order. It is

immediate to check it as
DZexl = {(x1,{0.4,0.8,0.8}), (x2,{0.6,0.7}), (x3,{0.5,0.8}) }

Then we can affirm that x; is a global maximizer, following the ideas considered in

Corollary[2.62]

It is clear that the choice of the order on H is an essential step for this method.
This is clearly shown at the following example.

Example 2.64 Considering the same hesitant fuzzy set for the goal and constraints
from the Examples [2.57] [2.59 and [2.61} we have obtained that the chosen optimal

decision is x», since

DY, ={(x1,{0.4,0.8,0.8}), (x2,{0.6,0.7}), (x3,{0.5,0.8})}

It is clear from the notation used for the decision set that it depends on the order
considered on H. In that case, the considered order was the lexicographical order
type 1. This is also important for obtaining the sets f(CY) and C5 |gz, since the
supremum and minimum are considered. Thus, if we consider the lexicographical

order type 2, we obtain that
D} ,» = {(x1,{0.5,0.6,0.7}), (x2,{0.6,0.7}), (x3,{0.6,0.7,0.8}) }.

Thus, Dy .y is not only convex but also strictly convex, so it is possible to assure

that the unique optimal decision is x3.
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2.3.4 Ranking method based on hesitant fuzzy sets

In this section we propose a ranking method for hesitant fuzzy sets. The first step
is to model it like the decision-making procedure explained in the previous section.
Once we have constructed the decision D, we have to order their components, i.e.,
we should decide which hesitant fuzzy element is the largest. That element would
be the first one, then we delete it and we do the same until we have no more ele-
ments. When two or more elements have the same value we have to decide on one
randomly.

In order to achieve a better understanding, we are going to show some practical

cases. Let us present this example where the data was extracted from [52].

Example 2.65 In Taiwan, marketing has faced a hard task because of the high-
speed railroad development. More airlines are making an effort to attract customers
by lowering prices, particularly since the worldwide economic crisis in 2008. How-
ever, they soon realised that this is a lose-lose situation and that the one essential
component to surviving in this extremely competitive home market is quality of ser-
vice. The Civil Aviation Administration of Taiwan (CAAT) is interested in finding
out which national airline in Taiwan provides the best customer service. In order to
study the four main national airlines, UNI Air, Transasia, Mandarin and Daily Air;
the CAAT sets up a committee. Four key criteria are provided to assess these four
domestic airlines. These four criteria are the booking and ticket service (Cy), the
check-in and boarding process (Cy), the cabin service (C3) and the responsiveness
of the company (Cy). The data is presented in Table [2.2)

C (8] Cs Cy
UNI Air | {0.6,0.7,09} | {0.6,08} |{0.3,0.6,0.9} | {0.4,0.5,0.9}
Transasia | {0.7,0.8,0.9} | {0.5,0.8,0.9} | {0.4,0.8} |{0.5,0.6,0.7}
Mandarin | {0.5,0.6,0.8} | {0.6,0.7,0.9} | {0.3,0.50.7} | {0.5,0.7)
Daily Air | {0.6,0.9} {0.7,09} | {0.2,0.40.7} | {0.4,0.5}

Now we should transform this into a decision-making problem and then com-

pute the intersection of the criteria. If we consider lexicographical order type 1,

Table 2.2: Hesitant fuzzy decision matrix.
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then

UNI Air

Transasia

Mandarin

107

Daily Air

CiNGCNC3NCy

{0.3,0.6,0.9}

{0.4,0.8}

{0.3,0.5,0.7}

{0.2,0.4,0.7}

So therefore, our ranking with lexicographical order type 1 is
Transasia > UNIAir > Mandarin > DailyAir
as
{0.2,0.4,0.7} <pex1 {0.3,0.5,0.7} <pex1 {0.3,0.6,0.9} <izex1 {0.4,0.8}.

On the other hand, if we consider the lexicographical order type 2, we obtain
that
UNI Air
{0.4,0.5,0.9}

Daily Air
{0.2,0.4,0.7}

Mandarin
{0.3,0.5,0.7}

Transasia
{0.5,0.6,0.7}

CiNGNC3NCy

and the ranking is UNI Air > Transasia > Mandarin > Daily Air.
Finally, let us show another example where the data was extracted from [1].

Example 2.66 In the academic world, there are several methods to provide metarank-
ings of universities. In this example, various data given by the Academic Ranking of
World Universities (Shanghai Ranking, henceforth Sh) by [15], QS World Univer-
sity Rankings (henceforth QS) by [54|], and Times Higher Education World Univer-
sity Rankings (henceforth THE) by [66|]. These organizations use a unique scoring
system, with a maximum score of 100 assigned to each university. Although the
experts are well renowned for their overall rankings of top institutions worldwide,
they also provide rankings of universities by specialty. Alcantud et al. [I] de-
velop five fields that are appropriate to the classification methods used by the three
experts which are Arts and Humanities (AH), Life Sciences and Medicine (LM), En-
gineering and Technology (ET), Natural Science and Mathematics (SCI) and Social
Sciences (SOC).

The data is presented in Table

Now we should transform this data into hesitant fuzzy sets dividing by 100 and
grouping by fields. This is in Table

Then we have to obtain the intersection using lexicographical order type 1.
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University AH(THE) | AH(QS) | LM(THE) | LM(SH) | LM(QS) | ET(THE) | ET(SH) | ET(QS) | SCATHE) | SCI(SH) | SCI(QS) | SOC(THE) | SOC(SH) | SOC(QS)
Stanford 87.1 86.8 87.6 69.4 91.2 91.9 92.1 933 89.9 914 92.5 93.6 80.1 89.2
Harvard 86.1 89.7 91.3 100 98.2 - 65.1 85.7 90.2 100 92.3 91.9 100 96.3
Oxford 84.4 99.1 91.1 60.9 92.3 87.6 64.4 86.1 87.3 723 90.4 93.5 59.9 942

Cambridge 83.9 93.5 88.5 75.6 91.8 88.8 74.8 90.5 88.8 922 97.0 87.5 59.4 91.2

California, Berkeley 81.4 87.2 81.6 58.0 85.6 90.6 86.8 90.2 89.9 96.3 93.4 86.9 79.6 87.3

Princeton 81.2 86.5 425 24.8 74.1 89.5 71.1 81.6 91.0 93.7 89.2 91.1 76.4 84.4

Yale 81.2 89.0 83.7 62.4 88.6 49.1 752 83.6 65.2 84.3 90.0 72.8 87.4

Table 2.3: Collected data.

University AH LM ET SCI Nele
Stanford (0.868,0.871} | {0.694,0.876,0.912} | {0.919,0.921,0.933} | {0.899,0.914, 0.925} | {0.801, 0.892, 0.936}
Harvard {0.861,0.897} |  {0.913,0.982, 1} {0.651, 0.857} {0.902, 0.923, 1} {0.919, 0.963, 1}
Oxford {0.844,0.991} | {0.609,0.911,0.923} | {0.644,0.861, 0.876} | {0.723, 0.873,0.904} | {0.599, 0.935, 0.942}

Cambridge {0.839, 0.935} | {0.756, 0.885,0.918} | {0.748, 0.888,0.905} | {0.888,0.922,0.97} | {0.594,0.875,0.912}

California, Berkeley | {0.814,0.872} | {0.580,0.816,0.856} | {0.868,0.902,0.906} | {0.899,0.934,0.963} | {0.796, 0.869, 0.873}
Princeton {0.812, 0.865} | {0.248,0.425,0.741} | {0.711, 0.816, 0.895} | {0.892,0.910, 0.937} | {0.764, 0.844,0.911}
Yale {0.812, 0.89} {0.624, 0.837, 0.886} {0.491, 0.752} {0.652, 0.836, 0.843} | {0.728, 0.874, 0.900}
Table 2.4: Hesitant Fuzzy Data.
University AHNox 1 LM Lo 1 ET N o1 SCINL o1 SOC
Stanford {0.694,0.876, 0.912)
Harvard [0.651, 0.857}
Oxford {0.599, 0.935, 0.942)
Cambridge {0.594, 0.875, 0.912)
California, Berkeley {0.580, 0.816, 0.856}
Princeton {0.248, 0.425, 0.741})
Yale [0.491, 0.752}

So therefore, our ranking with lexicographical order type 1 is:

Stanford > Harvard > Oxford > Cambridge > California, Berkeley > Yale >
Princeton.

On the other hand, if we consider the lexicographical order type 2, we obtain
that
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University AHN Lo LM 1o ET N1 ox2SCINL 2 SOC
Stanford {0.868, 0.871)
Harvard {0.651, 0.857}
Oxford {0.644, 0.861, 0.876}
Cambridge {0.748,0.888,0.905}
California, Berkeley [0.580, 0.816, 0.856)
Princeton {0.248, 0.425, 0.741})
Yale {0.491, 0.752)

And the ranking w.r.t. the lexicographical order type 2 is:

Cambridge > Stanford > Oxford > Harvard > California, Berkeley > Yale

> Princeton.






Chapter 3

Convexity of interval-valued fuzzy
sets

The other extension of fuzzy sets where we are interested in studying convexity is
the case of the interval-valued fuzzy sets. Unfortunately, we could not find reason-
able results about this topic in the literature. However, there are several interesting
papers devoted to the study of the convexity of intuitionistic fuzzy sets. Thus, we
will start this chapter by providing a review of them, since they could be the starting
point for our purposes, taking into account the mathematical equivalence between
interval-valued fuzzy sets and intuitionistic fuzzy sets, which was already com-
mented in Chapter 1. Taking these studies into account, we will later present our

proposal, which was published in 37,139, 140]].

3.1 Overview of convexity of intuitionistic fuzzy sets

For dealing with the convexity of intuitionistic fuzzy sets, it is essential to manage

the concept of a-cut. Thus, we will start by recalling this definition.

Definition 3.1 [2]]] Let A = {(x, ua(x),va(x)) : x € X } be an intuitionistic fuzzy set
on a referential X and let & be a real number in the interval (0,1]. The o-cut of A
is the crisp set denoted by Ay and defined by

Ag={xeX:us(x) > aand vs(x) <1—0ot}

111
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As we can see in the following proposition, there is a redundant condition in

the previous definition.

Proposition 3.2 [2]] Let A = {(x, ua(x),va(x)) : x € X} be an intuitionistic fuzzy
set on a referential X and let o be a real number in the interval (0,1]. The a-cut of

A is equal to the o-cut of the fuzzy set whose membership function is U, that is,
Ag={xeX:us(x) > o}

This fuzzy set defined by means of the membership function of an intuitionistic
fuzzy set A will be denoted by A*. It is clear that it is also possible to associate
another fuzzy set AV such that AY (x) = 1 — v4(x),Vx € X.

Now that ox-cuts have been established, we may utilize them to determine when

an intuitionistic fuzzy set is convex.

Definition 3.3 [2]|]] Let X be a vector space. An intuitionistic fuzzy set A on X is

said to be convex if its cuts Ay are convex subsets of X for all o € (0,1].

Since the convexity of the o-cuts is equivalent to the convexity of the sets, it is

obvious that the idea of convexity in fuzzy sets is extended.

Corollary 3.4 [21] Let A be an intuitionistic fuzzy set on the vector space X. The

following statements are equivalent:
(i) A is a convex intuitionistic fuzzy set,
(ii) A" is a quasi-convex fuzzy set.

Thus, the convexity of an intuitionistic fuzzy set is independent of the non-
membership function associated with it. This is a natural consequence of Definition
and Proposition

This corollary makes it easier to prove that the intersection of two convex intu-

itionistic fuzzy sets is convex too.

Proposition 3.5 Let us consider the vector space X. If A and B are convex intu-

itionistic fuzzy sets on X, then AN B is also convex, where

ANB = {{x,min{ps (x), up(x)},max{va(x),vp(x)}) :x € X}.



3.1. OVERVIEW OF CONVEXITY OF INTUITIONISTIC FUZZY SETS 113

Proof: Let us consider A,B € IFS(X). If we suppose that A and B are convex
intuitionistic fuzzy sets, then 4 and pp are the membership functions of two quasi-
convex fuzzy sets. If we denote them by A* and B*, respectively, we have that
A" N B*. The membership function of A¥ N B* coincides with usnp by definition
of the intersection of two intuitionistic fuzzy sets. Thus, t4p is the membership
function of a quasi-convex fuzzy set. Hence, AN B is a convex intuitionistic fuzzy

set. [ ]

The concept of quasi-convex intuitionistic fuzzy set was first described in [85]].

Definition 3.6 /21, 85] Let X be a vector space. An intuitionistic fuzzy set A is said

to be quasi-convex if

pa(Ax+ (1= 2)y) > min{pa (x), ua(y)}
Va(Ax+(1=2)y) < max{va(x),va(y)}
forallx,y € X and A € [0,1].

In [21]] the following result was demonstrated:

Proposition 3.7 [2]]] Let X be a vector space and let A be an intuitionistic fuzzy

set on X. The following statements are equivalent:
(i) A is a quasi-convex intuitionistic fuzzy set.
(ii) The o-cuts of the fuzzy sets A* and A are convex, for any a € (0, 1].

Thus, we have obtained that A is a quasi-convex intuitionistic fuzzy set if, and
only if, the associated fuzzy sets A* and AV are quasi-convex.
It is also clear that convexity and quasi-convexity are related, but they are not

equivalent. The next proposition demonstrates how one implies the other.

Proposition 3.8 [2]]] Let X be a vector space. Let A be an intuitionistic fuzzy set on

X. If A is quasi-convex, then it is also convex. The converse is not true in general.

To show that the opposite is not true in general, it is possible to consider the
example below.
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Example 3.9 [2]|] If we consider the intuitionistic fuzzy set A on R with the follow-

ing membership and non-membership functions:

0.5 ifxell,2]
0 otherwise

pa(x) = va(x) = {

we have that

[1,2]  ifae(0,0.5]

Aa:{x:HA(x)ZaandVA(x)Sl_a}:{(b ifoce (0.5,1]

It is clear that each Ag is convex for any o € (0,1]. Therefore A is a convex
intuitionistic fuzzy set.
However, the 0.7-cut of A is not a convex crisp set, since (AY)p7 = (—eo, 1)U

(2,00), and hence, A is not a quasi-convex intuitionistic fuzzy set.

Additional generalizations of convexity of intuitionistic fuzzy set can be intro-

duced when the universe X is not a vector space, as shown below.

Definition 3.10 [2/]] Let A be an intuitionistic fuzzy set defined on a universe X.
Let H: X x X x[0,1] = X be a convex structure on X.

(i) The intuitionistic fuzzy set A is said to inherit a convex structure from H, if
for every a € (0, 1] the restriction of H to Ag X Ag, X [0, 1] takes values in the

Agq. That is, each o-cut Ay has also a convex structure induced by H.
(ii) The intuitionistic fuzzy set A is said to be convex with respect to H, if

Ha(H (x,y,A)) = min{ i (x), a(y) } and va(H(x,y,A)) < max{va(x),va(y)}
hold for all x,y € X and A € [0,1].

Additionally, the relationship between an intuitionistic fuzzy set that is convex
with regard to H and its ¢-cuts can be generalized.

Proposition 3.11 [2]|] Let A be an intuitionistic fuzzy set defined on a universe X.
Let H: X x X x [0,1] — X define a convex structure on X. The following statements

are equivalent:
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(i) The intuitionistic fuzzy set A is convex with respect to H.

(ii) The restriction of H to each of the a.-cuts of the fuzzy sets A* and AV defines

a convex structure on the corresponding a-cut, for any o € (0, 1].

A summary of these results can be seen in Figure

Prop{3.8
A quasi-convex IFS oPEd] A convex IFS

Prop[3.7] Cor[34]

Trivial

(A*)q, (AY) o convex crisp sets (AH)q convex crisp set

Trivial Trivial
U v 5 Trivial U 5
(AM) g, (AY) o H-convex crisp sets ——f (A )y H-convex crisp set
Prop[3.1T] Prop[3.2]

Def[3.10]
A convex w.r.t. H Ay H-conxex

Figure 3.1: Relationships between convexity for intuitionistic fuzzy sets (IFSs) and

the associated fuzzy sets.

3.2 Operations for interval-valued fuzzy sets

We will consider the previous studies about intuitionistic fuzzy sets and their cor-
respondence with the interval-valued fuzzy sets as the starting point to analyze the
convexity in the second case. Taking also into account that interval-valued fuzzy
sets and (typical) hesitant fuzzy sets could be seen as two examples of the same
family of generalized fuzzy sets, we will also consider the obtained results in Chap-
ter 2, as well as the conclusions obtained there.

Thus, to study the convexity of interval-valued fuzzy sets, we will begin by
analyzing the intersection and union of interval-valued fuzzy sets and defining level

sets for interval-valued fuzzy sets.
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3.2.1 Intersection

In the literature for classical sets, the intersection of two sets is described as the
largest set that is contained in both sets. We will use again this idea to describe the
intersection of two interval-valued fuzzy sets, so we have a different definition of
intersection for each of the considered orders because, as we have seen, the order
that is selected is important.

Definition 3.12 /37, 139, 40] Let A, B be interval-valued fuzzy sets in X and let
(L([0,1]),=,) be a lattice. We define the o-intersection of A and B, denoted by
ANy B, as the greatest interval-valued fuzzy set such that AN,B C, Aand AN, B C,
B.

It is clear from this definition that the selection of the order totally determines
the concept of intersection. Only in some particular cases, the obtained sets are

related, as we can see in the following proposition.

Proposition 3.13 Let (L([0,1]),=<,,) and (L(]0,1]),=,,) be two lattice. If a =,, b
implies that a =,, b, for all a,b € L([0,1]), then we have that AN, B C,, ANy, B
forany A,B € IVFS(X).

Proof: By definition AN, B C,, A and AN, B C,, B. By the relation between the
orders and Definition @, we can assure that AN, B C,, A and AN,, B C,, B.
Finally, by definition A N,, B is the greatest interval-valued fuzzy set 02-included in
A and B and therefore AN,, B C,, ANy, B. u

Thus, we can use the previous result to take into account the relations among
the different orders given in Figure [I.8] At that moment, we were considering rela-
tions usually called orders in the literature, but some of them were not really orders.
However, they were frequently used to compare two intervals and the previous def-
inition of intersection could be extended for those cases. Hence, first of all, we will
analyze these cases and we will classify them in accordance with their behaviour
with respect to the intersection. For the first group (interval dominance and lattice
order), partial relations are taken into consideration, which define the intersection
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as a unique set; for the second group (admissible orders, particularly the lexico-
graphical orders and the Xu and Yager order), the intersection will once again be
defined uniquely, since these are total orders; and finally, for the third group (max-
imin, maximax, Hurwicz, and weak orders), the intersection is not properly defined,
since it is not a unique interval-valued fuzzy set.

Let us start by expressing the intersection using lattice order (Lo) or interval
dominance (/D).

Proposition 3.14 [37, 40] Let A, B be sets in IVFS(X). Then, for any x € X, we

have that
ANpB(x) = min{A(x),B(x)}

ANpoB(x) = [min{A(x),B(x)},min{A(x),B(x)}]

Proof:
We start with the case of the interval dominance:
For any value x in X, it is clear that min{A(x),B(x)} is a number in [0, 1] and

therefore an element in L([0,1]). Thus, if we consider the fuzzy set I defined as

I(x) = min{A(x),B(x)} for any x € X, or equivalently the interval-valued fuzzy set

defined as /(x) = [min{A(x), B(x)}, min{A(x), B(x)}] for any x € X, we have that

I(x) = min{A(x),B(x)} <A(x) and I(x) < B(x). Thus, I(x) =;p A(x) and I(x) =</p
B(x) for any x € X and therefore I Cjp A and_lg p B.

Apart from that, if we consider a set C € IVFS(X) such that C C;p A and
C Cyp B, then C(x) < A(x) and C(x) < B(x). So, C(x) < min{A(x),B(x)} = I(x),
thatis, C Cyp 1. - o

Thus, the fuzzy set [ is the greatest interval-valued set that is /D-included in

both sets and therefore it is the intersection of them.
Now, for the lattice order:
It is immediate that [min{A(x),B(x)},min{A(x),B(x)}] € L([0, 1]) for any x €

X. Thus, we can define an interval-valued fuzzy set I as follows: /(x) = [min{A(x),

B(x)},min{A(x), B(x)}] for all x € X. Then, we have that I(x) = min{A(x), B(x)} <

A(x) and I(x) = min{A(x),B(x)} <A(x). Thus, I(x) <1, A(x) and therefore I C, A.

Similarly, we can prove that I Cy,, B.
Finally, if we consider a set C € IVFS(X) such that C C;, A and C Cy, B,
then C(x) <A(x) and C(x) < B(x). Therefore, C(x) < min{A(x),B(x)} = I(x). Itis
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analogous to prove that C(x) < min{A(x),B(x)} = I(x) and then C Cp, I.
Thus, the interval-valued fuzzy set I is the greatest, w.r.t. the lattice order,

interval-valued such that it is Lo-included in A and B and therefore, by definition, /

is the Lo-intersection of them. ]

The reader may be cognizant now that the expression obtained for the lattice or-
der is the intersection that is taken into account the most frequently in the literature,
whereas the intersection of two interval-valued fuzzy sets using interval dominance
is just a fuzzy set.

The intersection is found as a result of the following general result for total
orders in the case of the lexicographical orders and the Xu and Yager order, which

are particular cases of admissible order.

Proposition 3.15 /37, 40] Let <, be a total order on L([0,1]). For any A,B €
IVFS(X), the o-intersection of A and B is the interval-valued fuzzy set defined by:

AN, B(x) = { Ax) ifA(x) ioB(x),

B(x) if B(x) <, A(x).

Proof: It is clear that the set defined in the statement is an interval-valued fuzzy set.
Let us denote it by 1. We have that /(x) = A(x) if A(x) <, B(x) and I(x) = B(x) if
B(x) <, A(x). Since =, is transitive, we have that I(x) <, A(x) and I(x) <, B(x)
forany x € X. Thus,/ C,Aand I C, B.

Moreover, if we consider a set C € IVFS(X) such that C C, A and C C,, B, then
for any x € X, as under =<, there are no incomparable elements, we have two cases:

a) If A(x) <, B(x), then I(x) = A(x). But, C(x) <, A(x) = I(x).
b) If B(x) <, A(x), then I(x) = B(x). But, C(x) <, B(x) = I(x).

Thus, in both cases we obtain that C(x) =<, I(x) and therefore C C, I.
Therefore I is the greatest interval-valued fuzzy set o-included in A and B and,

by definition, it is their o-intersection. n

This result is fulfilled for any total order, so for any admissible order. In par-
ticular, if we consider the admissible order <, 5 obtained in Proposition[T.61} we
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have that
A if A(x) < % B
Amgj%B(X) _ (.X') 1 (X) o B (X),
’ B(x) if B(x) 2o 2 A(x),
Thus, we can use it in the particular cases of the lexicographical orders and the Xu

and Yager order, where now we know that:
 Lexicographical order type 1:

A()C) ifA(X) =Lexl B()C),
B(x) if B(x) <rex1 A(%).

ANLexl B(X) = {

* Lexicographical order type 2:

A(x)  ifA(x) <12 B(x),

ANLe B(x) :{ B(x) if B(x) <ren A(x).

* Xu and Yager order:

A(X) ifA(x) jXY B(X),

ANy B(x) = { B(x) if B(x) =xy A(x).

As we can see, a unique intersection can be obtained using interval dominance,
lattice order, or any of the admissible orders. Unfortunately, as we can see from the
results below, not all of the relations taken into consideration in Subsection [1.2.2

have the same behaviour.

Proposition 3.16 [37 39] Let A, B be sets in IVFS(X). Then, for any x € X, we
have that

* Maximin order: ANy, B(x) = [min{A(x),B(x)},v| where v can be any num-

ber in the interval [min{A(x),B(x)},1].

* Maximax order: ANy B(x) = [u, min{A(x),B(x)}| where u can be any num-

B(x)}).

u, = %] where k = min{o - A(x) + (1 —

—a
(x )} and u is any number in the interval

ber in the interval [0, min{A(x )

* Hurwicz order: ANp(q) B(x) =
a)-fﬁ,a Blx)+(1-a)-
rnax{O 1 %) 1 k]
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the interval [0,min{A(x),B(x)

» Weak order: ANy, B(x) = [u,v] where u and v could be any number in
| and v can be any number in the interval
[min{A(x), B(x)},1].

Proof: It is obvious to check that this set is a part of A and B in the first two cases
(Mm and MM), and it is the largest element of IV FS(X) that satisfies this property.

For the Hurwicz order, the intersection is well-defined, since u > 0, u < kl%oix'”
if and only if u < k and this is true by definition and, finally, kl%oix’” < 1if and only if
u> %{a) and this is true by definition too. Moreover, since au+ (1 — @) kf_“&” =
k, we have that the defined set is H (o )-included in A and B. Furthermore, if we take

any other set C such that C Cy(4) A and C Cp(q) B, thus, for any x € X, aC(x) +

(1—0)C(x)<k=o0u+(l—a) kl%"gc”. Hence, there is not an interval-valued fuzzy

sets H(o)-included in A and B which is not contained in the set defined in the

statement.

For the weak order, since u < min{A(x), B(x)}, then [u,v] <,,, A(x) and [u,v] <,
B(x) and any other set C such that C C,,, A and C C,,, B fulfils that C(x) < A(x)

and C(x) < B(x), that is, C(x) < min{A(x),B(x)} < v.

Hence, from Proposition [3.16] it is clear that the intersection is not always
clearly defined since there is not a unique set fulfilling the required conditions,
but an infinite collection of sets. Apart from that, it is also remarkable that the
intersection of two interval-valued fuzzy sets for interval dominance is merely a
fuzzy set (see Table [3.1)).

By using the following examples, we may explain the earlier remarks.

Example 3.17 Let us consider the case X = {x} and the interval-valued fuzzy set A
and B defined by A(x) = [0.4,0.8] and B(x) = [0.2,0.9]. Then, the intersection for
the last four relations in Table [3.1)is shown in Table 3.2 and illustrated in Figure
[3.2] where non-uniqueness is clearly evidenced.

If we consider the relations where the intersection is unique, we obtain the
results in Table[3.3l

We can see again in this table that the intersection is just a fuzzy set for the

case of the interval dominance. These examples are graphically represented in

Figure|3.3]
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Is the Is the
Interval order intersection intersection
unique? a proper IVES?

Interval dominance v X
Lattice order v v
Lex. order type 1 v v
Lex. order type 2 4 v

Xu and Yager order v v
Maximin order X

Maximax order X

Hurwicz order X

Weak order X

Table 3.1: Behaviour of the intersection.

AﬂMMB(x> AﬂMmB(X) AﬂH(l/z)B(X) AﬂwoB(X)
[u,0.8] [0.2,v] [u, 1.1 —u] [u, V]
ue[0,0.8] | ve[0.2,1] | u€0.1,0.55] | u €[0,0.8]

v e [0.8,1]

121

Table 3.2: Intersection for the maximin, maximax, Hurwicz and weak relations.

Although this is not always the case, in this example both the Xu and Yager

order and the type 1 lexicographical order provide the same intersection. For in-

stance, if we consider C an interval-valued fuzzy set such that C(x) = [0.4,0.5], we

have that B =1¢y1 C and C <xy B and therefore BN, C =B # BNxy C =C.

This example also makes it very evident that the intersection depends on the

order that is taken into account. From now on, we will consider the relations where

the intersection is uniquely specified.
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ANym B
,

+
0.9
0.8 OI (] L QI

06 T
04 1 I
02 + 0o

A B ANy B ANwo B

Figure 3.2: Not unique intersections of A and B.

ANppB | ANpB | ANpex1 B | ANpex2B | ANxy B
0.2 [0.2, 08] [0.2, 09] [0.4, 08] [0.2, 09]

Table 3.3: Intersection for interval dominance, lattice order and some well-known
admissible orders.

3.2.2 Union

If the smallest set that includes two sets is an essential characteristic of the union
of two sets, then there is also a different definition of union for each order that we
are considering in L([0, 1]).Since the union would be a useful tool for the following
section, we can do a study similar to the one for the intersection.

Definition 3.18 [39] Let A, B be sets in IVFS(X) and let (L([0,1]),=,) be a lattice.
We define the o-union of A and B, denoted by AU, B, as the smallest interval-valued
fuzzy set such that A C, AU, B and B C, AU, B.

As a result of the previous studies, we will only take into account the relations

where the intersection is unique and we will study the union using a similar scheme.

Proposition 3.19 [39] Let A, B be sets in IVFS(X). Then, for any x € X we have:

* AUip B(x) = max{A(x),B(x)}.

* AU, B(x) = [max{A(x),B(x)}, max{A(x),B(x)}].
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AN, B ANLe2 B

09 +
0.8 T

0.6 +
04 +

02 + o

A B ANmpB ANrex1 B ANxy B

Figure 3.3: Intersection of A and B by different relations.

Proof: Interval dominance (ID): we should prove that A C ;pA Ujp B and B C
1pA Ujp B and that if there is another interval-valued fuzzy set containing both of
them, then the union is contained in it. It is immediate that A C ;pA U;p B and

B C ;pA Ujp B by definition. Let us suppose there is an interval-valued fuzzy set

C fulfilling A C ;pC and B C jpC. If A C ;pC, then A(x) < C(x). If B C ;pC, thus

B(x) < C(x). If AUp B(x) = max{A(x),B(x)}, then max{A(x),B(x)} < C(x) and

AUppB C pC.

Lattice order (Lo): let us check that this union is well defined. It is immediate
from the definition that, A C ;,AUr, B and B C 1,A U, B. If we suppose that there
exists an interval-valued fuzzy set C € IVFS(X), C(x) = [C(x),C(x)], such that

AC,Cand BC [,C. If A C [,C, then A(x) < C(x) and A(x) < C(x). If BC 1,C,

thus B(x) < C(x) and B(x) < C(x). Then AU, B C 1,C. "

As with the intersection, the interval dominance is just a fuzzy set because the
membership function assumes only one point at any element of the referential.
Once again, the lattice order provides the union that is typically taken into account

in the literature.

When it comes to total orders, we have the following:

Proposition 3.20 [39] Let <, be a total order on L([0, 1]). Forany A,B € IVFS(X),
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the o-union of A and B is the interval-valued fuzzy set defined by:

B(x) ifA(x) <, B(x),
o

AU”B(X):{A()C) if B(x) <o A(x).

Proof: Let us make sure that this union is well-defined. It follows that <, is a total
order, it is evident that A U, B can be defined for any x € X, as A(x) <, B(x) or
B(x) =, A(x).

By definition, it is immediate that A C AU, B and BC AU, B.

We assume that there is an interval-valued fuzzy set C € IVFS(X) such that
A C, Cand B C, C, thus, by the transitivity of <,, A(x) <, C(x) and B(x) <, C(x),
for any x € X. Hence, by definition, it is clear that A U, B(x) <, C(x) and therefore
AU,BC,C. [

Therefore, for the admissible order considered in Proposition [I.61] we obtain

that
B if A(x) < B
Ao Bl — { B TPA) =0y BL)
/ AR) i) <y Al),
and, in particular:
* Lexicographical order type 1:

B(x) if A(x) =ren B(x),

AULen B(x) :{ A(x) if B(x) Zgext A(%).

* Lexicographical order type 2:

B(x) ifA(X> =Lex2 B(X),

AL Blx) = { AQ) i B(x) Zpen A().

* Xu and Yager order:

B(x) ifA(x) jXY B(X),

AUyxy B(x) = { A(x) if B(x) <xy A(x).

For a better understanding of this operation, we provide an example.
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AUppB | AUoB | AUy B | AUreo B | AUxy B
0.9 [0.4,0.9] [0.4,0.8] [0.2,0.9] [0.4,0.8]

Table 3.4: Union for the lattice order, the lexicographical orders and the Xu and

Yager order.

09 +
0.8 T

06 T
04 T

02 + o

A B AUppB AU, B AUrey1 B AU B AUxy B

Figure 3.4: Union of A and B by different orders.

Example 3.21 Under the same conditions of Example the union for the dif-
ferent orders is calculated in Table 3.4

This is depicted graphically in Figurd3.4}

In this instance, for the lattice order, A and B are not comparable, nevertheless,
BCrex1 A, A Crep Band B Cxy A. Thus, it is logical that AUr, B # A and AU, B #
B, AUpex1 B=A, AUreo B= B and AUxy B = A. It is once again clear that the
order used to specify the inclusion operation in IVFS(X) had a significant impact.

It would seem that the union is closely tied to this idea.

As in the intersection, if we use the lexicographical order type 1 or the Xu
and Yager order we obtain the same interval-valued fuzzy set but, in general, this
is not true. For instance, if we consider C an interval-valued fuzzy set such that
C(x) = [0.5,0.6], we have that A <11 C and C <xy A and therefore AU C =
C#AUxyC=A.
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3.2.3 Level sets

An o-cut or a level set is one of the most crucial ideas in fuzzy sets, according to
Klir [49]. We provide a reasonable definition of a level set for interval-valued fuzzy

sets in this section.

Definition 3.22 [40] Let <, be an order on L(]0,1]). For any A € IVFS(X) and
for any [o, B] € L(]0,1]), we define the [, B]-level sets of A w.r.t. the order <, as

follows:
A[Oocﬁ] = {x €eXx: [(Xaﬁ] jOA(x)}

In [64]], Ramik and Vlach have considered the definition for level sets of intu-
itionistic fuzzy sets given in Definition 3.1} The mathematical connection between
interval-valued fuzzy sets and intuitionistic fuzzy sets leads to equivalence to the
previous proposal, for the particular case of the lattice order and f = 1 — a¢. Thus,
we can consider that Definition [3.22]is in some sense a generalization of Definition

It is evident that we would get various level sets if we used different orders,
because the definition depends on the order we use.

Example 3.23 Let X = {x,y,z} be the referential. If we consider the interval-
valued fuzzy sets A on X defined as A = {(x,[0.1,0.7]), (y,[0.2,0.8]), (z,[0.4,0.5]) },

we have computed some level sets for different orders in Table [3.5)

Order A.1,07 Aj0208 An405 Aj03,046
Lattice order {x,y} {»} {z} 0
Lexicographical type 1 | {x,y,z}  {v,z} {z} {z}
Lexicographical type 2 | {x,y} {y} {eyzp {xy}
Xu and Yager {xyzh  {v} {2} o}

Table 3.5: Level sets for different orders and levels.

We can notice from this example that some level sets are included in others.
This is a direct consequence of the relationship between these orders.
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Proposition 3.24 [40] If <| and =, are orders in L([0, 1]) such that a < b implies
a <o b, then for any A € IVFS(X) and any o, B] € L([0, 1]) we have thatA[la g €

2
Alapy
Proof By definition, A/ ] = ={xeX:[o,B] 1A} C{xeX [a,B] 22 A(x)} =

[a,m'

The level sets of A obtained using lattice order are included in the level sets
acquired using the lexicographical order type 1, type 2, or the Xu and Yager order,
as in Example[3.23]

Let us just take a quick look at some of the characteristics that these level sets

satisfy.

Proposition 3.25 [40] Let <, be an order on L(]0,1]). For any A,B € IVFS(X)
and any [, B],]y, 0] € L([0,1]), we have that:

i) If [, B] =0 [7,96], then A?, 5 € Ay g

ii) AC, B @Afa,ﬁ] - Bfaﬁ]for any o, B] € L([0,1]).

C A?

(o) B,

wp) If 2o is a total order; then (AN, B)?

iii) (A Mo By gy
NB{ gy

fop) =

Al
V) Afep Y Blap <
(Ao Bl g

Proof: Let us consider A,B € IVFS(X) and [o, B],[y, 6] € L([0,1]).

Co (AUp B){, a1 If 2, is a total order; then Al p VB

(o, B]" C¥i

i) If [o, B] =<, [7, 8], then it is immediate by definition that Al 5 S Ay p) Since

=<, 1S transitive.

ii) If A C, B then A(x) <, B(x),Vx € X. Thus, if [a, B] <, A(x), since =, is

transitive, then [a,B] <, B(x) and so Alup = {xeX:|a,B] <, Ax)} C
xeX:lo,B] 2o Bx)} = Baﬁ]
On the contrary, for any x € X, if we apply the inclusion for the A(x)-level
sets, we have that x € Ag () since =, is reflexive, and therefore x € Bg )" This
is equivalent to say that A(x) <, B(x). As we have proven it for any x € X we
have that A C, B.
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iii) Since AN, B C, A and AN, B C, B, by applying ii), we have that (AN,

B)faﬁ} C Af, gy and (AN, )[ o.p] S Bio p and therefore (AOOB)[ g SAL g

BO

(o, B]°
On the other hand, if x € A7, g N Bf, g, then [, B] <o A(x) and [o, B] =,
B(x). As we are using a total order, from Proposition we have that AN

oB(x) = A(x) or AN ,B(x) = B(x) and so [, B] <, AN ,B(x).

iv) Since A C, AU, B and B C, AU, B, by applying ii), we have that A[ B]

(AU, B )[aﬁ} andBme o (AU,B )[ o8 Then, A[OamUBfam o (AU,B )[ B

Conversely, for any x € X we have that AU, B(x) = B(x) or AU, B(x) = B(x),
by applying Proposition [3.20} since =<, is a total order. Thus, if x € (AU,
)fa g then [a, B] <o AU,B(x) and therefore [, ] <, A(x) or [, B] =<,

B(x). Then, x € A? . UB/

[, B] = e, B

In fuzzy sets theory, we can represent a fuzzy set by its ¢-cuts through the
Decompositions Theorems (see [49])), so the next task we consider is adapting these
results of fuzzy sets into interval-valued fuzzy sets. Thus, we will try to identify
an interval-valued fuzzy set through its level sets. First of all, we will do it in an
example, where we can explain in detail the considered notation and then we will

prove a general result.

Example 3.26 Let X = {x,y,z} be the referential. If we consider the interval-
valued fuzzy set A defined in Example [3.23] and the lexicographical order type 1.

Then the level sets are

Lexl Lex1 Lexl
A[owim {x,3.2}, A[oeé,o.g]:{yjz} and Aowftos {z}

If we choose proper intervals, the interval-valued fuzzy set can be represented by its

level sets. Let us use the following characteristic functions to define the level sets:
Lex1
Agton =1 {+1-{}+1-{z} = {xy2}

Al g =0-f+ 1)+ 1 {2} = [na)
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and
Aﬁfﬁo.s] =0+ 0-{yp 14z} = i}

Now, we are going to obtain interval-valued fuzzy set based on these level sets
defined as follows:

; ALexl
Lexst 4 1o B]. ALexl _ [0, B]  ifx e ARy,
o] (Pl Ala { [0,0] otherwise.

With this operation, we are interval-valued fuzzifying the level sets, that is, we
start from level sets (crisp sets) and we get interval-valued fuzzy set.
Then,
Lex1

Lex1 _ [02708] ift S {y;Z},
[o.z,o.S}A(f) = { 0,0] ift=x,

and

Lexl _ ] [04,05] Fr=z,
0405A4(1) = { 0,0)  ift e {xy}

In accordance with the previous notation, if we find a fixed interval in any of the
level set functions, it indicates that the element belongs to that level set, as shown

in the following example:
Ledt A(x) =10.1,0.7], L= _A(y)=1[0.1,0.7] and L' _A(z)=10.1,0.7]
[0.1,0.7] LY 01,0720 Y- [0.1,0.7] Y-

305A0) =[02,0.8] and {3 gA(x) =1[0.2,0.8]
Tho5A() = [0.4,0.5]

It is clear that the Lex1 — union of these interval-valued fuzzy set is the original

set A. That is,

_ Lexl Lexl Lexl
A =107107AULex1 [02,0.8)A ULexl (74,054

On the basis of this concept, we put forward the following theorem:
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Theorem 3.27 (Decomposition Theorem) [40] Let <, be a total order in L([0, 1])
with least element 0,. For every A € IVFS(X), we have that

A= U, oA
i pleL(o.n) P

where U, denotes the o —union and (, g A(x) =], Bl ifxe A, p and 0, otherwise.

Proof: Let A be any set in IVFS(X). For any x € X, we have that A(x) = [y, 0] €

L([0,1]). Thus,A(x):h,(ﬁA(x) and therefore A(x) =<, Uo o [%A( x), by the
7 (o, BIEL([0,1])
definition of U,,.

Conversely, since =, is a total order, we have that Uy o E]A(x) =
[o,BleL([0,1])

e, 1A (x) for some [, {] € L([0,1]).

By the definition of e C] A(x), we have two cases:
o Ifx ¢ A([)&C]’ then [&C]A(x) =0, <, A(x).
o Ifxe A[O&C], then [, 8] <, A(x) and so [EﬁA(x) = [e,{] <, A(x).

Then, by the symmetry of <,, we have that A(x) = Uo @ E}A(x). "
[a.BleL([0.1])

This theorem allows us to work with level sets instead of the interval-valued
fuzzy set, but not all the operations hold.

For example, the standard complement for interval-valued fuzzy set is not cut-
worthy, that is,

(A) T p) 7 (AT )

as we can see in the following example.

Example 3.28 Under the same conditions of Example [3.23| and considering Defi-
nition[1.64} we have that

A ={(x,0.1,0.7)), (,[0.2,0.8](, (z,[0.4,0.5])}

A° = {(x,[0.3,0.9]), (y,[0.2,0.8]), (z,[0.5,0.6])}

If we consider again the lexicographical order type 1 and the level [0.3,0.9],

we obtain that (Ac)ﬁf)glog} ={t€X:[0.3,0.9] Zfex1 A(1)} = {x,2}.
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On the other hand, Aﬁ%}o.% = {z} and then

(Aﬁ)e.g}og})c ={x,y} # (Ac)ﬁ)e.);og]

It is interesting that different intervals could generate the same level set, so
we are going to take it into account in the next corollary. If we consider A(A) =
{A(x) : x € X'}, there is an equivalent relation in L([0, 1]) because A(A) is the set of
all intervals that represent different level sets of A. So the next result is a version
of the first one where we only take one interval from each equivalent class in A(A).
That is, instead of considering L([0,1]), we would use A(A). In Example
A(A) ={[0.1,0.7],]0.2,0.8],]0.4,0.5] }.

Corollary 3.29 [40] Let =, be a total order in L([0,1]) with least element 0,,. For
every A € IVFS(X),
A= U 1A
apleam) P

This is how interval-valued fuzzy sets are represented without using the same level
set twice. The proof is a consequence of the previous Decomposition Theorem.

It is clear that we can apply these results for admissible orders, since they are
total orders and as they refine the lattice order, we have that [0, 0] is the least element.

Really, by the same reason, we also know that [1, 1] is the greatest element.

3.2.4 Convexity of interval-valued fuzzy sets

Taking into consideration the comments from the previous section, we do not con-
sider all the relations introduced in Subsection[I.2.2] As we could see, the intersec-
tion based on the maximax, the maximin, the Hurwicz or the weak order does not
work well and the interval dominance is not really an order. For the remaining inter-
sections, we will determine whether the intersection of two convex interval-valued
fuzzy set is a convex set as well for any order in L([0, 1]).

In the literature, there are some approaches to convex interval-valued functions
as [13]]. Nevertheless, Cao [[13]] is not dealing with interval-valued fuzzy set, so we
will consider the following definition of convexity that does not have the problem
of defining the addition for interval-valued fuzzy set. We have also taking into
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account the problems on summarizing the membership values shown in Section
[2.2] Thus, this proposal is, in some way, the result of all the previous studies.

Definition 3.30 [37] Let X be an ordered set and let <, be an order in L(]0,1]).
An interval-valued fuzzy set A on X is said to be o-convex, if for each x <y < z in

X the following inequalities are fulfilled:
A(x) 2o A(y) or A(z) 2o A(y)

This definition is based on the usual idea of convexity. It is easy to prove that
if we consider a convex fuzzy set as an interval-valued fuzzy set, it is convex w.r.t.
the previous definition. In addition, this definition has as particular cases the usual
definition of convexity of crisp sets and fuzzy sets.

When X is a totally ordered set, the previous definition of convexity is equiva-

lent to check
min{A(x),A(z)} <, A(y)

If we work with partial orders, it may happen that A(x) is not related to A(z), so this
is the reason for considering A(x) <, A(y) or A(z) <, A(y) in previous definition.
Basis on this idea, Huidobro et al. [39} 40] introduce the concept of strictly

convex interval-valued fuzzy set.

Definition 3.31 Let X be an ordered set and let <, be an order on L([0,1]). An
interval-valued fuzzy set A on X is said to be strictly o-convex, if for each x <y < z
in X the following inequalities are fulfilled:

A(x) <o A(y) or A(z) <o A(Y)
which means that
A(x) 2o A(y) and A(x) #A(y)  or  A(z) 2o A(y) and A(z) #A(y)

Definition @ is accurate because, as the following result proves, there is an

equal relationship between convexity and the convexity of the level sets.

Proposition 3.32 [39 40] Let X be a ordered set and let <, be an order in L([0, 1)).
Let A be an interval-valued fuzzy set on X. If A is o-convex, then Afa p| @re convex
crisp sets for all [a, B] € L(]0,1]). The converse is true if < is a total order.
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Proof: Let us consider x,y,z € X such that x < y < z.

If x € A7, gy and z € A7, g, then [a, B] 2o A(x) and [a, B] =, A(z). Moreover,
as A is convex, we have A(x) <, A(y) or A(z) <, A(y). By the transitivity of =<,,
[a,B] <o A(y)or[at, B] <o A(y) and soy € Al p)- Thus AT, g is a convex crisp set.

Conversely, since =<, is a total order, we can consider ¢ = min,{A(x),A(z)} €
L([0,1]). Then, x,z € A2. Since A? is a convex crisp set, then y € A2 and so

min, {A(x), A(2)} =0 A(Y). .

Crisp sets and interval-valued fuzzy set are related to the idea of a level set. If
we deal with the specific orders that were taken into consideration in the previous
sections, we find that Lo-convexity implies Lex1-convexity, Lex2-convexity, and
XY -convexity.

As in the case of hesitant fuzzy sets, we show in the next result that the defini-
tion of convexity also fits well with the definition of support of an interval-valued
fuzzy set. First of all, we will propose a definition for the support of an interval-

valued fuzzy set, based on how the support of fuzzy sets is defined.

Definition 3.33 Let A be an interval-valued fuzzy set in X and let <, be an order on
(L([0, 1]) with least element 0,. The o-support of A, which is denoted by Supp®(A),
is the crisp set

Supp®(A) = {x € X : A(x)# 0}

Proposition 3.34 Let X be a vector space and an order =<, in L([0,1]) with least
element 0,. If A is an o-convex interval-valued fuzzy set on X, then the o-support of

A is a convex crisp set.

Proof: Let A be a o-convex interval-valued fuzzy set. For any x,z € Supp®(A) and
any A € (0,1), if we consider y = Ax+ (1 — 1)z, by the o-convexity of A, we have
that A(x) <, A(y) or A(z) <, A(y). On the other hand, as x,z € Supp’(A), we have
that A(x) # 0, and A(z) # 0,. Since 0, is the least element, then A(y) # 0, and
therefore y € Supp?(A), so Supp®(A) is a crisp convex set. m

In a similar way, we will also introduce the idea of core and prove that it works
well with convexity.
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Definition 3.35 Let A be an interval-valued fuzzy set in X and let <, be an order
on L([0,1]) with greatest element 1,. The core of A, which is denoted by Core°(A),
is the crisp set

Core’(A) ={xe X :A(x) =1,}

Proposition 3.36 Let us consider the universe X, an order <, on L(]0,1]) with
greatest element 1, and A € IVFS(X). If A is an o-convex interval-valued fuzzy set,

then the core of A is a convex crisp set.

Proof: If x,z € Core®(A), then A(x) =1, and A(z) = 1,. Thus, for any A € [0, 1],
we have thaty = Ax+ (1 —A)z € X and A(x) <, A(y) or A(z) <, A(y). Since 1, is
the greatest element, we have that A(y) = 1,, that is, Ax+ (1 — A1)z € Core®(A) and

therefore, Core’(A) is a crisp convex set. "

Finally, we would like to study the significant attribute of convexity preserva-
tion under intersections. Unfortunately, as we will see at the following example, it
is not possible to obtain a general result for any order.

Example 3.37 Let X = {x,y,z} with x <y < z. If we consider the interval-valued
fuzzy sets A and B defined as follows:

A= {{x,00.1,0.7]), (»,[0.2,0.8]), (z,[0.3,0.5]) }

B = {(x,[0.1,0.7]), (y,[0.4,0.6)), (z,[0.3,0.5])}

and we consider the lattice order, we obtain that,
A NLo B = {<x7 [01707]>7 <y7 [02706]>7 <Za [03705]>}

Then A is Lo-convex, since [0.1,0.7] <, [0.2,0.8] and B is Lo-convex since
[0.3,0.5] <1, [0.4,0.6]. However, AN, B is not Lo-convex since [0.2,0.6] is not
related with [0.1,0.7] or [0.3,0.5] by means of the order relation <p,.

We have reached a general, favorable outcome for total orders, which is re-
flected in the statement below.
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Proposition 3.38 /39, 40] Let X be an ordered set and let <, a total order on
L([0,1]). IfA,B € IVFS(X) are o-convex (resp. strictly o-convex) , then AN, B is

also o-convex (resp. strictly o-convex).

Proof: Let x, y, z be three elements in X withx <y < z.

If A(y) =, B(y), by Proposition we have that AN, B(y) = A(y). Since A
is 0-convex (resp. strictly o-convex), A(x) =<, A(y) (resp. A(x) <, A(y)) or A(z) =<,
A(y) (resp. A(z) <, A(y)). But by the definition of the intersection for this order we
have that AN, B(x) <, A(x) and AN, B(z) <, B(z). By the transitivity, AN, B(x) <,
A(y) = AN, B(y) (resp. ANy, B(x) <, A(y) =AN,B(y)) or AN, B(z) <, A(y) =
ANy B(y) (resp. ANy B(z) <, A(y) =AM, B(y)).

The case B(y) <, A(y) is totally analogous. "

To continue, we arrive at the following conclusion by applying Proposition(3.38
to the situation of admissible order, and in particular the lexicographical orders and

the Xu and Yager order.

Corollary 3.39 [39 40] If =, is an admissible order; then o-convexity (resp. strictly

o-convexity) is preserved under intersections.

Finally, we will give some optimization-related conclusions that will be helpful

for the following section.

Theorem 3.40 /39 40] Let <, be an order on L([0,1]) with least element. Let

A be an interval-valued fuzzy set over an ordered set X. Let x* be an element in
Supp®(A). If

i) Ais o-convex and x* is a strict local maximizer of the membership function of

A
or

ii) A is strictly o-convex and x* is a local maximizer of the membership function
of A

then x* is also a global maximizer of the membership function of A over Supp’(A).
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Proof: Suppose that x* € Supp’(A) is a strict local maximizer. It means that there
exists a neighborhood Y such that for all x € Y, there is A(x) <, A(x").

Let us suppose that there exists X' € Supp?(A), different from x*, such that
A(x*) <, A(X).

By convexity, we have that A(x") <, A(y) or A(x*) <, A(y), forall y € Supp?(A)
such that X' < y < x* or x* <y < x'. Then, if we take y close enough to x*, that is,
y € Y and y # x*, that contradicts A(y) <, A(x¥).

If A is strictly o-convex, but x* is just a local maximizer, this means that there
exists a neighborhood Y where A(x) <, A(x*) for any x € Y. Let us suppose that x*
is not a global maximizer, then there exists x' € Supp®(A) such that A(x*) <, A(x').
By the strictly o-convexity of A, we have that A(x') <, A(y) or A(x*) <, A(y) for
any element y between x* and x’. If we choose y close enough to x*, thatis y € Y,

there is a contradiction since x* is a local maximizer. ]

We also analyse the set where the membership function attains its maximum.

Theorem 3.41 Let <, be an order on L([0,1]) with a least element. Let A be an

o-convex interval-valued fuzzy set over an ordered set X.

i) The set of points at which A attains its global maximum over its support is a

convex crisp set.

ii) If A is strictly o-convex, A attains its global maximum over Supp’(A) at no
more than one point if X is uncountable or no more than two points if X is

finite or countable.

Proof: Let’s suppose that A is an o-convex interval-valued fuzzy set over an ordered
set X.

i) Letus suppose that [a, ] is the maximum value for the membership function
of A. If we build the level set associated with [c, 3] following Proposition
[3.32] it is a convex crisp set as A is a o-convex interval-valued fuzzy set. This
level set is, in fact, the set of point at which A attains its global maximum.
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ii) Let us suppose that x*,x' € Supp®(A) are two global maximizers, that is
A(x) <, A(x*) = A(X') for all x € X. We will assume that X' < x*. The other

case is totally analogous.

If X is countable, there exists y € X such that x’ < y < x*. Since A is strictly o-
convex, then A(x") <, A(y) or A(x*) <, A(y), and that contradicts the fact that
they are global maximizers and so the set of points at which the membership
function of A attains its global maximum over Supp’(A) has no more than

one point.

If X is countable or finite and we have three global maximizers, x*, x’ and
x”, they have to be consecutive. Otherwise, we are in a case similar to the
previous one and a contradiction arises. Let us suppose that x* < x' < x”,
then A(x*) = A(x") <, A(X') by the strictly o-convexity of A, but this is a
contradiction with the fact that x* and x” are global maximizers. =

Previous results can be applied to any admissible order, since (L([0,1]),=<,) is
then a bounded lattice with least element 0, = [0, 0] and greatest element 1, = [1,1],

taking into account that any admissible order refines the lattice order.

3.2.5 Decision-making based on interval-valued fuzzy sets

In this section, we offer a solution to a problem involving decision-making. This
proposal has been introduced by Huidobro et al. in [39]]. We also take into account
here the comments given at the beginning of the Subsection [2.3.3] Again we have
an approximate knowledge of the membership function. However, in this case, the
available information about it is an interval where the value is included.

Utilizing Bellman and Zadeh method [8]], the decision D would now be the
intersection of the interval-valued fuzzy constraints and objectives if the constraints
and the goals were thought of as interval-valued fuzzy set over the set of alternatives,
X.

So according to Yager and Basson [89], a choice is created by intersecting all
the goals and constraints. In light of this concept, Huidobro et al. suggested the
definition below.
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Definition 3.42 [3940] Let X = {x1,,...,x,} be the set of alternatives, Gi,,...G,
be the set of goals that can be expressed as interval-valued fuzzy sets on the space
of alternatives, and C1,...,Cy, be the set of constraints that can also be expressed
as interval-valued fuzzy sets on the space of alternatives. Let <, be an order on
L([0,1]). The goals and constraints then combine to form a decision D,, which
is an interval-valued fuzzy set resulting from the intersection of the goals and the
constraints. Thus, D, = G1Mg,...Mo Gp My C1 Ny ... Ny Cpy.

For any x € X, the meaning of D,(x) could refer to how well the alternative x
validates the objectives and restrictions. After making a choice, we must choose the
best alternative.

Since the intersection is actually an o-intersection, it follows that D, depends
on the chosen order <, in L(]0, 1]) right away. As a result, depending on the se-
quence we are examining, the decision D,, which is the intersection of all the goals
and constraints, would vary. When there is no ambiguity, D, could be denoted just
as D.

Let us show an example.

Example 3.43 A person has to choose to locate a new plant in one of three loca-
tions x1, xp and x3. He wants to select a location that minimizes real estate cost,
G, and is located near supplies, Cy. Let X = {x1,xp,x3}. This is a similar case
as the one considered in Example but in this case the information about any
membership value is just an lower and an upper bound for his value. Thus, the ap-
propriate sets to deal with this problem would be interval-valued fuzzy sets. Let’s

suppose that the membership functions of the goal G is
G = {(x1,[0.2,0.7]), (x2,[0.6,0.7]), (x3,[0.4,0.8]) }

and the membership function of the interval-valued fuzzy constraint C is
C; = {(x1,[0.5,0.6]), (x2,[0.5,0.9]), (x3,[0.3,0.9]) }.

If we consider lexicographical order type 1, we emphasize the lower endpoint
of the interval. Then the membership functions of the interval-valued fuzzy decision
Dipey1 is:

Dypex1 = {(x1,[0.2,0.7]), (x2,[0.5,0.9]), (x3,]0.3,0.9]) }
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and the optimal decision would be x;, since it is the alternative with a maximum
value of Dy .1 with respect to the lexicographical order type 1.
However, if we use lexicographical order type 2, then he membership functions

of the interval-valued fuzzy decision Dy, is:
Dyevr = {(x1,[0.5,0.6]), (x2,[0.6,0.7]), (x3,[0.4,0.8]) }

and the optimal decision changes to x3.

Following this simple illustration, it is demonstrated how crucial it is to choose
the order on L([0,1]) correctly. It is clear that this correctness depends on any
particular problem.

There are instances where the goals and constraints are defined in a different
set of alternatives than they are in the previous example, which uses interval-valued
fuzzy sets over the same collection of alternatives. We can keep clear of this cir-

cumstance if we apply the extension principle.

Definition 3.44 (Extension principle) /39 40] Letr (L([0,1]),=,) be a complete
lattice. Any given function f : X — Y induces two functions, f : IVFS(X) —
IVFS(Y) and f~' : IVFS(Y) — IVFS(X), which are defined by

[f(A)](y) = sup, A(x)
xly=f(x)

for all A € IVFS(X), where sup, denotes the supremum using the order <, and
[f~1(B)](x) = B(f(x)) forall BE€ IVFS(Y).

With this procedure, when the interval-valued fuzzy constraints or goals are
defined in different spaces, they can be mapped into the same space. When we
have an n-ary function which maps X; x X; x --- x X, to Y, we would assume that if
AEIVFS(X; xXo X -+ X Xp), then A(x1,x2,...,%,) =A(x1)NpA(x2) Mo+ - Mo A(xy).

Let us show it by the following example.

Example 3.45 Suppose the same conditions as in Example but now there is

another space Y meaning a set of former works developed by the potential financial
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directors, Y ={y1,y2,v3,v4}. We have some information about these former works:
y1 and y, were made by x1, y3 was supervised by x, and y4 was produced by x3.

With this information we construct the following mapping:
f:Y—=X

defined by f(y1) =x1, f(y2) =x1, f(y3) =x2 and f(y4) = x3.

We also know a fuzzy constraint over Y that measures the impact of each one
of works defined by: C¥ = {(y1,]0.4,0.65]), (y2,[0.7,0.9]), (y3,[0.7,1]), {v4,[0.6,
0.9])}. It is denoted as CY in order to point out that it is an interval-valued fuzzy set
over the space Y. Now we should apply the extension principle to have all the goals
and constraints as interval-valued fuzzy sets over the same space. To apply the
extension principle we should first decide which order are we taking into account,
in this case, we would use lexicographical order type 1. Thus, for xi,

[F(C€)](x1) = sup, C3(y)=sup{C3(1),C3(y2)} =[0.7,0.9].
yer=£() o
Analogously, [f(C2)](x2) = [0.7,1] and [f(C2)](x3) = [0.6,0.9].
Consequently, f(CY) = {(x1,]0.7,0.9]), (x2,[0.7,1]), (x3,[0.6,0.9]) }.

Finally, the decision is D}, ; = GNex1 C1 Niext f (Cg ), that is, the membership

/

degrees for the different alternatives in D},

| are:
Dy, = {(x1,[0.2,0.7]), {(x2,[0.5,0.9]), {x3,[0.3,0.9]) }
Thus, the optimal decision is still x;.

Taking into account again the concept of conditional set, introduced in the
fuzzy case by Yager and Basson [89]], we provide the following definition, which
was first considered in [39, 40].

Definition 3.46 Let X and Y be two crisp sets and let (L([0,1]),=,) be a complete
lattice. If we have a family of interval-valued fuzzy sets on X given by {A|, €
IVFS(X):y€eY}and B € IVFS(Y), we can obtain a new interval-valued fuzzy set
on X by combining the information given by A|, for any y € Y and B. This set will
be denoted by A|p and its membership function is:

Alp(x) = sup, miny{B(y),Al,(x)}
yey
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We can see how this conditional information is considered by means of the

previous example.

Example 3.47 Suppose the same conditions of Example The company is
forced to minimize the facility of employing workers. They would concentrate on
the distance to the main office. Let Z = {Near(N),Med(M),Far(F)}. This con-

strain is given by the interval-valued fuzzy set
B? = {(N,[0.85,1]),(M,[0.4,0.7]), (F,[0.15,0.35]) }.

The relation between the alternatives and the proximity to the main office is given

by the following conditioned interval-valued fuzzy sets:
C¥ v = {(x1,[0.7,0.8]), (x2,[0.5,0.6]), (x3,[0.3,0.9])},

C¥la = {(x1,]0.5,0.6]), (x2,[0.55,0.7)), (x3,[0.6,0.9))}
CX|r = {(x1,[0.35,0.7]), (x2,[0.4,0.65)), (x3,[0.35,0.7]) }.

Thus, we can construct the interval-valued fuzzy set facility of hiring workers.

For x, C§ |BZ (xl) = SUP7ex1 mingex {BZ(Z),C%( |Z(-x1)} = SUP7ex1 {minLexl {BZ(N)a
€2

C§ v (x1) }, {minzex {B*(M),C5 [p(x1) }, {mingexi {B*(F),C5 [r(x1)}} =
sup;..; {[0.7,0.8],[0.4,0.7],0.15,0.35]} = [0.7,0.8].

We have to repeat the same procedure for x, and x3 and we obtain that
Cf|pz(x2) = [0.5,0.6] and C5|gz(x3) =[0.4,0.7].
Then, we have that the interval-valued fuzzy set C§ |pz is given by
C¥|pz = {(x1,[0.7,0.8]), (x2,[0.5,0.6]), (x3,[0.4,0.7]) }.

Finally, the decision is D} ,.; = G NLex1 C1 Niexl f(Cg) NLexl C?]Bz, that is, the
decision if the interval-valued fuzzy set D}, | defined as:

D}, = {(x1,[0.2,0.7]), (x2,[0.5,0.6]), {(x3,{0.3,0.9]) }.

Thus, x; is again the optimal decision.
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It is time to combine a decision-making problem with Proposition [3.38] and
Theorem 3.411

Corollary 3.48 [39 40] Let <, be a total order on L(|0, 1]) with least element, let
G1,...,Gp be the interval-valued fuzzy goals, Ci,...,Cy, the interval-valued fuzzy
constraints, and D = G N...NG,NC1N...NCy, be the resulting decision.

 [fthe interval-valued fuzzy goals and constraints are o-convex interval-valued
fuzzy set, then the resulting decision D is an o-convex interval-valued fuzzy
set and the set of maximizing decisions of the interval-valued fuzzy set D is a

convex crisp set.

* [fthe interval-valued fuzzy goals and constraints are strictly o-convex interval-
valued fuzzy set, then the resulting decision D is a strictly o-convex interval-
valued fuzzy set and the cardinal of the set of maximizing decisions of D is no

more than two.

Let us summarize the decision-making problem of Example in the follow-

ing example.

Example 3.49 In the previous examples we consider one interval-valued fuzzy goal
G = {(x1,[0.2,0.7]), (x2,[0.6,0.7]), (x3,[0.4,0.8]) }

and three interval-valued fuzzy constraints
Cy = {(x1,[0.5,0.6]), (x»,[0.5,0.9]), (x3,[0.3,0.9]) }

f(Cy) ={{x1,[0.7,0.9]), (x2,[0.7,1]), (x3,[0.6,0.9]) }
Xz = {(x1,]0.7,0.8]), (x2,[0.5,0.6]), (x5, [0.4,0.7])}

If we suppose x1 < xa < x3, it is clear that G, Cy, f(CY) and C{|pz are strictly
convex interval-valued fuzzy set with respect to the lexicographical order type 1, so
the decision D} ,,

is easy to check it, since

| is also a convex interval-valued fuzzy set w.r.t. the same order. It

Dl = {(x1,[0.2,0.7]), (x2,[0.5,0.6]), (x3,[0.3,0.9]) }
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We can apply the previous result to assert that x, is a global maximizer.
We can also find an illustration of the goal and constraints for x1, x, and x3 in
Figures 3.5 3.6land 3.7} respectively. The importance of the choice of the order is

clearly shown in these figures.

Ci(x1)  Cflpz(x1) Df o (x1)

o] |
os | ! !

02 +

Gx)  f(CY)(x1) DY g1 (x1) Dyy (x1)

Figure 3.5: Visualization of examples (x;)

Ci(x2) C§ |z (x2) D ;{(',\2 (x2)
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0.7 +
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s | ! ! ! !

Gln)  f(G)(x) Df o1 (x2) Dyy (x2)

Figure 3.6: Visualization of examples (x;)

We demonstrate what occurs when we choose lexicographical order type 2 in

the following example because switching the order could also be interesting.

Example 3.50 Using the same interval-valued fuzzy sets for the goal and con-

straints from the previous examples but using the lexicographical order type 2 in-
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Ci(xs)  Cfpz(x3) DYy (x3)
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G(xs)  f(G3)(x3) Dl (x3) Dyy (x3)

Figure 3.7: Visualization of examples (x3)

stead of type 1, the decision-making problem is
G = {(x1,[0.2,0.7]), (x2,[0.6,0.7]), (x3,[0.4,0.8]) }

Cy = {(x1,[0.5,0.6]), (x2,[0.5,0.9]), (x3,[0.3,0.9]) }

£(CY) = {(x1,[0.7,0.9]), (x2,[0.7,1]), (x3,[0.6,0.9]) }

and
Cf\Bz = {(x1,[0.7,0.8]), (x,[0.4,0.7]), (x3,[0.3,0.9]) }

It should be noticed that there are changes in the constraint C¥| gz because we used
lexicographical order type 2 and it affects the supremum and the minimum.

We can also see that D}, , is a Lex2-convex interval-valued fuzzy set, as
D} ,.» = {{x1,[0.5,0.6]), (x2,[0.4,0.7]), {x3,[0.4,0.8]) }

Thus, D}, is not only convex but strictly Lex2-convex, so we can assure that x3
is the optimal decision. This happens even in the case C§ |pz is not a Lex2-convex

interval-valued fuzzy set.

3.2.6 Ranking method based on interval-valued fuzzy sets

In this section, we follow similar steps to the case of hesitant fuzzy sets presented in
Subsection[2.3.4] We will introduce a ranking method for interval-valued fuzzy sets.
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Once we have shown how to model the decision-making problems in the previous
section, the method is almost done. We must obtain the decision D and order their
components. We keep the largest element as the first element of the ranking and
delete it from the others. We iterate this process until there are no elements on the
list. In case two or more elements have the same value we must decide on one
randomly.

For the sake of clarity, we introduce here a pair of practical cases.

Example 3.51 Let us consider a situation similar to the one described in Example
[2.65] Thus, we have the four national airlines: UNI Air, Transasia, Mandarin and
Daily Air, and the four criteria: the booking and ticket service (Cy), the check-in
and boarding process (C»), the cabin service (C3) and the responsiveness of the
company (Cy). In this case, we can consider that the experts only propose a lower
bound and an upper bound for the different membership values. Thus, we will deal
with interval-valued fuzzy sets. The data is shown in Table 3.6}

C G G Cy
UNI Air | [0.6,0.9] | [0.6,0.8] | [0.3,0.9] | [0.4,0.9]
Transasia | [0.7,0.9] | [0.5,0.9] | [0.4,0.8] | [0.5,0.7]
Mandarin | [0.5,0.8] | [0.6,0.9] | [0.3,0.7] | [0.5,0.7]
Daily Air | [0.6,0.9] | [0.7,0.9] | [0.2,0.7] | [0.4,0.5]

Table 3.6: Interval-valued fuzzy decision matrix.

Now we should transform this into a decision-making problem and then com-
pute the intersection of the criteria. If we consider lexicographical order type 1,

then we obtain the results given in Table[3.7]

UNI Air
[0.3,0.9]

Mandarin
[0.3,0.7]

Transasia
[0.4,0.8]

Daily Air
[0.2,0.7]

Cl MLex1 CZ MLex1 C3 MLext C4

Table 3.7: Lex1-intersection of the criteria.

So therefore, our ranking with lexicographical order type 1 is

Transasia > UNIAir > Mandarin > DailyAir
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as

[0.2,0.7] Zrex1 [0.3,0.7] <rex1 [0.3,0.9] <fex1 [0.4,0.8].
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On the other hand, if we consider the lexicographical order type 2, the inter-

section is clearly different, as we can see in Table 3.8}

UNI Air

Transasia

Mandarin

Daily Air

C1 NLex2 CoNpex2 C3 Npex2 Ca

[0.6,0.8]

[0.5,0.7]

[0.3,0.7]

[0.4,0.5]

Table 3.8: Lex2-intersection of the criteria.

And the ranking using the lexicographical order type 2 is

UNIAir > Transasia > Mandarin > DailyAir.

Example 3.52 In we consider now a similar scenario to the Example but
again with a piece of information given by means of intervals. Thus, we have seven
universities: Stanford, Harvard, Oxford, Cambridge, California-Berkeley, Prince-
ton and Yale. We also have five fields: Arts and Humanities (AH), Life Sciences and
Medicine (LM), Engineering and Technology (ET), Natural Science and Mathemat-
ics (SCI) and Social Sciences (SOC).

The data is the was presented in Table

University AH LM ET SCI SOC
Stanford [0.868, 0.871] | [0.694,0.912] | [0.919, 0.933] | [0.899, 0.925] | [0.801, 0.936]
Harvard [0.861 ,0.897] [0.913, 1] [0.651, 0.857] [0.902, 1] [0.919, 1]
Oxford [0.844, 0.991] | [0.609, 0.923] | [0.644, 0.876] | [0.723, 0.904] | [0.599, 0.942]

Cambridge [0.839, 0.935] | [ 0.756, 0.918] | [0.748,0.905] | [0.888,0.97] | [0.594, 0.912]

California, Berkeley | [0.814,0.872] | [0.580, 0.856] | [0.868, 0.906] | [0.899, 0.963] | [ 0.796, 0.873]

Princeton [0.812, 0.865] | [0.248,0.741] | [0.711,0.895] | [0.892, 0.937] | [0.764, 0.911]

Yale [0.812,0.89] | [0.624, 0.886] | [0.491, 0.752] | [0.652, 0.843] | [0.728, 0.900]

Table 3.9: Interval-valued Fuzzy Data.

Then we have to obtain the intersection using the Xu and Yager order, which is
shown in Table

So, therefore, our ranking with the Xu and Yager order is:
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University AH Nxy LM Nxy ET Nxy SCI Nxy SOC
Stanford [0.694, 0.912]
Harvard [0.651, 0.857]
Oxford [0.644, 0.876]
Cambridge [0.594, 0.912]
California, Berkeley [0.580, 0.856]
Princeton [0.248, 0.741]
Yale [0.491, 0.752]

Table 3.10: XY -intersection.

Stanford > Oxford > Harvard > Cambridge > California, Berkeley
> Yale > Princeton.

It is clear, that this ranking could be different if we consider a different order
to manage the information. Thus, for the lexicographical order type 1, the ranking

remains equal for the last positions, but we obtain that:
Stanford > Harvard > Oxford > Cambridge

and for the lexicographical order type 2, these first positions are:
Cambridge > Stanford > Oxford > Harvard

These differences are the clear consequence of the different points of view con-

sidered by the chosen orders.

Despite the fact we obtain the same results as in the hesitant case, this is not
always fulfilled as we can see in the following example.

Example 3.53 Let us consider X = {x,x2,x3} and the following hesitant fuzzy

set:

A = {{x1,{0.1,0.6,0.7}), (x2,{0.2,0.7}), (x3,{0.2,0.6,0.8})}
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If we transform this hesitant fuzzy set into an interval-valued fuzzy set A’ by
using the minimum and maximum values for defining the extremes of the interval,

we would obtain the following interval-valued fuzzy set:
A= {<x17 [01707]>7 <X2, [02707]>7 <X3, [02708]>}

It is easy to check that, if we use lexicographical order 2 we could obtain
different maximums. In the case of the typical hesitant fuzzy set the maximum is
attained in x», while in the interval-valued case is in x3.

Also with this example, we showed that the loss of information when consider-

ing just the minimum and the maximum could affect the final maximizer.



Conclusions

In this thesis we have done a deep study of the convexity for two of the most used

extensions of the fuzzy sets. In all the cases we have tried to keep the original ideas

for crisp and fuzzy sets. However, as we have more degree of uncertainty, this also

increases the difficulty of the related studies. Apart from theoretical studies, some

possible applications have also been shown. More precisely, about hesitant fuzzy

sets:

First, we have presented a definition of convex hesitant fuzzy sets in a way
that is consistent with the conventional understanding of convexity and is
based on aggregation functions.

We have found that the convexity of hesitant fuzzy sets is conserved under
intersections when we employ as an aggregation function the minimum and

the maximum.

We have characterized the behaviour of any aggregation function with respect
to the preservation of the convexity under intersections in all the cases that it
is possible.

Once we created the theory about the convexity of hesitant fuzzy sets using
aggregation functions, we have considered a different approach for the cases
the use of aggregation functions fails. This is done by considering all the
original information given at the membership function. For this reason, we
need to propose some operations on hesitant fuzzy sets, such as the intersec-
tion, union and level sets, to restore the traditional concept of these operations
based on admissible orders, which are total orders that improve the lattice or-
der.
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* We apply convexity to optimization or decision-making problems and develop
a novel ranking method by analyzing the convexity found in the literature and

proposing an appropriate definition that is compatible with the intersection.

In addition, we conclude here the results we obtain for interval-valued fuzzy

sets:

* In this thesis we propose a definition for the intersection of interval-valued
fuzzy sets. Because the inclusion relation changes with the chosen order,
there are multiple definitions of intersection. It should come as no surprise
that not all of the usually considered relations to order the intervals are suit-
able for defining the intersection, despite the fact that the lattice order gener-
ates a definition of the intersection that is consistent with the standard defi-
nition found in the literature. However, it appears that admissible orders are

better suited for our purposes.

* In a similar way, we introduce the union and level sets for interval-valued
fuzzy sets and they work well with admissible orders. We look at some in-
teresting properties and proposed a proper definition of convexity, which is

preserved through intersections.

* Moreover, we prove a decomposition theorem for interval-valued fuzzy sets

in order to characterize them through their level sets.

* We also presented a natural cutworthy property-satisfying definition of con-
vexity of interval-valued fuzzy set, based on an order relation between inter-

vals.

* Finally, we present a strategy for applying convexity and interval-valued fuzzy

sets to optimization or decision-making issues.



Conclusiones

En esta tesis hemos realizado un estudio en profundidad sobre la convexidad de
dos de las extensiones mds utilizadas de los conjuntos difusos. En todos los casos
hemos tratado de mantener las ideas originales para conjuntos nitidos y difusos. Sin
embargo, como tenemos un grado de incertidumbre mayor, esto hace que aumente
la dificultad de los estudios realizados. Ademas de un analisis tedrico, también se
han mostrado algunas posibles aplicaciones. Mds precisamente, sobre conjuntos
difusos hesitant:

* Hemos presentado una definicién de conjunto difuso hesitant convexo que
es coherente con las ideas cldsicas de convexidad y que estd basada en las

funciones de agregacion.

* Hemos concluido que se preserva la convexidad para la intersecion de con-
juntos difusos hesitant cuando la funcién de agregacion que se utiliza es el

minimo o el maximo.

* Hemos caracterizado el comportamiento de cualquier funcién de agregacién
respecto a la conservacion de la convexidad bajo intersecciones en todos en

los casos que esto es posible.

* Concluimos la teoria sobre la convexidad de los conjuntos difusos hesitant
usando funciones de agregacion, poniendo de manifiesto sus debilidades y
dando una alternativa, en la que se considera toda la informacién original
contenida en la funcién de pertenencia. Motivado por esto, hemos definido
algunas operaciones sobre conjuntos difusos hesitant, como son la intersec-

cion, la unién y alfa-cortes, con el objetivo de recuperar el concepto tradi-
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cional de estas operaciones basadas en 6rdenes admisibles, que son 6rdenes

totales que mejoran el orden reticular.

* Aplicamos la convexidad a problemas de optimizacién o toma de decisiones
y desarrollamos un método de ranking novedoso analizando la convexidad
encontrada en la literatura y proponiendo una definicién apropiada que sea

compatible con la interseccion.

Ademads, para los conjuntos difusos intervalo-valorados, hemos obtenido lo

siguiente:

* Proponemos una definicion para la interseccion de conjuntos difusos intervalo-
valorados. Debido a que la relacién de inclusién cambia con el orden elegido,
existen multiples definiciones de interseccion. No deberia sorprender que no
todas las relaciones habitualmente consideradas para ordenar intervalos sean
adecuados para definir la interseccidn, a pesar de que el orden reticular genera
una definicion de la interseccion que es consistente con la definicidn estandar
encontrada en la literatura. Sin embargo, parece que los 6rdenes admisibles

son los més adecuados para nuestros propdsitos en este campo.

* De manera similar, presentamos los conjuntos de nivel y la unién para con-
juntos difusos intervalo-valorados, las cuales tienen buenas propiedades si se
trabaja con 6rdenes admisibles. Con todo lo anterior, proposimos una defini-

cién adecuada de convexidad, que se preserva por intersecciones.

* Ademads, demostramos un teorema de descomposicion para conjuntos difusos
intervalo-valorados, que nos permite caracterizarlos a través de sus conjuntos

de nivel o alfa-cortes.

* También presentamos una definiciéon de convexidad para conjuntos difusos
intervalo-valorados que satisface la propiedad de conservacién por alfa-cortes,

basada en una relacion de orden entre intervalos.

* Finalmente, presentamos un método para aplicar la convexidad y los con-
juntos difusos intervalo-valorados a problemas de optimizacién o toma de

decisiones.



Zavery

V tejto préaci sme podrobne skimali konvexnost’ pre dve z najpouzivanejSich rozsireni
fuzzy mnozin. Vo vsetkych pripadoch sme sa snazili zachovat’ pdvodné koncepty
zauzivané pre ostré a fuzzy mnoZziny. Ked’Ze v skumanych Strukturach je vysSia
miera neistoty, zvySuje to aj ndrocnost’ suvisiaceho vyskumu. Okrem teoretickych
vysledkov sme ukdzali aj niektoré mozné aplikédcie. Konkrétne, pre hesitant fuzzy

mnoziny:

* Uviedli sme definiciu konvexnej hesitant fuzzy mnoZiny sposobom, ktory je
v stlade s konvenénym chdpanim konvexnosti a je zaloZeny na agregacnych

funkciach.

* Zistili sme, Ze konvexnost’ hesitant fuzzy mnoZin je zachovana pri prieniku,

ked’ ako agregacné funkcie pouZijeme minimum a maximum.

 Charakterizovali sme spravanie akejkol vek agregacnej funkcie vzhl’adom na
zachovanie konvexnosti prieniku vo vSetkych pripadoch, kedy je to mozné.

* Okrem vytvorenej tedrie konvexnosti hesitant fuzzy mnoZin pomocou agre-
gacnych funkcii sme pouzili odliSny pristup v pripadoch, kde pouZitie agre-
gacnych funkcii zlyhdva. Tu vyuZivame uplnu informéciu z funkcie pris-
luSnosti. Za tymto tcelom zavddzame niektoré operdcie pre hesitant fuzzy
mnoZiny, ako napriklad zjednotenie, prienik a rezy, aby sme zachovali ob-
vykly koncept tychto operécii zaloZeny na pripustnych usporiadaniach, ¢o su

uplné usporiadannia rozsirujice zvizové usporiadanie.

» Aplikujeme konvexnost' na optimalizacné alebo rozhodovacie problémy a

vyvijame novi metédu ohodnocovnia analyzovanim konvexnosti v literatdre
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a navrhnutim vhodnej definicie, ktora je kompatibilna s prienikom.

V d’alSom uvddzame vysledky, ktoré sme ziskali pre intervalovohodnotové

fuzzy mnoZziny:

* Navrhujeme definiciu prieniku intervalovohodnotovych fuzzy mnoZin. Pre-
toZe reldcia inkluzie zavisi od zvolenej definicie, existuje viacero moZnych
prienikov. Nie je prekvapujuce, Ze nie vSetky obvykle pouzivané usporiada-
nia intervalov si vhodné na definovanie prieniku, napriek tomu, Ze uspori-
adanie vo zvize generuje prienik, ktory je v silade so Standardnou definiciou.

Zda sa vsak, Ze na tento tcel st vhodnejSie pripustné usporiadania.

* Podobnym spdsobom zavedieme zjednotenie a hladiny pre intervalovohodno-
tovu fuzzy mnoZzinu, ktoré su v stlade s pripustnymi usporiadaniami. Navrhli

sme spravnu definiciu konvexnosti, ktord je zachovana pri prienku.

* Dokazujeme dekompozi¢nu vetu pre intervalovohodnotové fuzzy mnozZiny,

ktord umoziuje charakterizovat’ ich prostrednictvom ich hladin.

* Navrhujeme definiciu konvexnosti pre intervalovohodnotové fuzzy mnozZiny,
ktord je kompatibilnd s vlastnost’ami rezov, zaloZenu na usporiadani inter-

valov.

» Uvdadzame sposob pouZzitia konvexnych intervalovohodnotovnych fuzzy mnozin

v dlohdch optimalizicie alebo rozhodovania.
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