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Abstract—Long Short-Term Memory (LSTM) is a widely used
deep neural network architecture in sequence modelling and
temporal series forecasting. Although the main advantages that
LSTM provides in terms of predictive capacity, it is well known
in the literature that its performance in inference times and
resource consumption is very high, so its application to low-
resource environments is an issue. In this article, the performance
of a High-Level Synthesis (HLS) implementation of the LSTM
inference algorithm is analyzed. Two different LSTM imple-
mentations, decoupled-LSTM (d-LSTM) and coupled-LSTM (c-
LSTM) are compared on the ZCU104 evaluation board, which
contains a Xilinx® Zynq® UltraScale+™ MPSoC device, and
their performance and resource usage are evaluated for different
neural network models with varying complexity. The results show
that d-LSTM performs better than c-LSTM in terms of inference
time, but is more resource-intensive. Furthermore, the FPGA
implementation of LSTM outperforms other common devices like
GPUs and CPUs. The scalability of d-LSTM concerning sequence
length is also explored. A positive linear behaviour has been
observed in the two lighter models while in the heavier one, the
growth is higher than linear. The study highlights the advantages
of using FPGA for implementing LSTM inference algorithms,
and the importance of exploiting parallelism through libraries
like the Basic Linear Algebra Subprograms for optimizing
performance.

Index Terms—LSTM inference, FPGA, HLS

I. INTRODUCTION

Recurrent Neural Networks (RNNs) have become crucial in
numerous sequential tasks. Among RNN variants, the Long
Short-Term Memory (LSTM) has gained popularity due to
its capability to handle long-term dependencies and prevent
gradients from vanishing or exploding [1]. LSTMs have been
successfully used in various applications, such as image cap-
tioning, video-to-text, speech recognition, and machine trans-
lation, amongst others, [2]–[4]. Commonly, GPUs are used to
speed up the inference of LSTM models, however, their high
energy consumption, memory and computational demands
pose significant challenges for their deployment on embedded

systems. As a result, deploying these networks on power-
constrained embedded platforms is particularly challenging.
Field-Programmable Gate Arrays (FPGAs) are more effective
and efficient in exploiting parallelism without batching, result-
ing in superior energy efficiency. Therefore, it is necessary to
have custom hardware designed to accelerate LSTM inference
in low-cost, low-power devices.

LSTM implementation on FPGAs has been widely studied.
To minimize resource usage and increase execution speed,
different approaches have been used to run LSTM neural
networks on FPGAs. Several works use pruning techniques to
reduce the computational cost of LSTM networks, including
weight pruning, block-based sparsity, and bank-balanced spar-
sity. Works [5]–[7] utilize weight pruning, while [8] proposes
bank-balanced sparsity as a novel sparsity pattern that can
maintain model accuracy at a high sparsity level while still en-
abling an efficient FPGA implementation. Other techniques are
explored in [9]–[11]. In [9], authors focus on processing-in-
memory architectures using resistive random access memory
(ReRAM) crossbars. The work proposes the use of ReRAM-
based analogue approximate computing to conduct the LSTM-
specific element-wise computation and dot-product compu-
tation to reduce resources and improve efficiency. In [10]
authors propose a low resource utilization FPGA-based LSTM
network architecture that achieves low-power and high-speed
features through overlapping the timing of operations and
pipelining the datapath. Finally, [11] proposes a latency-hiding
hardware architecture based on column-wise matrix-vector
multiplication to eliminate data dependency and improve the
throughput of systems of RNN models.

In this study, High-Level Synthesis (HLS) will be used
to assess various implementations of LSTM inference algo-
rithms on FPGA. The evaluation criteria will include resource
consumption, execution time, and comparison to CPU and
GPU baselines. Additionally, the scalability of the optimal
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solution will be investigated. The following sections will be
organized as follows: Section II will present the different
implementations of the LSTM inference algorithm. Section III
will describe the implementation of the LSTM algorithm using
HLS for execution on FPGA. Finally, Section V will present
comparative results in terms of resource consumption and
execution time. Finally, the study will conclude with insights
and potential areas for future investigation in Section VI.

II. LSTM INFERENCE ALGORITHM

LSTM is a type of neural network designed to overcome
the vanishing gradient problem commonly encountered in
traditional RNNs. This problem occurs when gradients become
very small or zero during back-propagation, making it difficult
for the network to learn long-term dependencies in the input
sequence {xt}t=1,...,T . LSTM addresses this issue by introduc-
ing memory cells and gates that control the flow of information
through the network [1]. The three main components of an
LSTM network are:

• Memory cell, ct: This is the core component of the
LSTM responsible for storing long-term information.

• Hidden state, ht: This is the output of the LSTM used to
make predictions or generate new data. The hidden state
is computed based on the current input, xt, the previous
hidden state, ht−1, and the current memory cell state, ct.

• Gates: There are three types of gates in LSTM that
control the flow of information in and out of the memory
cell. These gates modulate the previous hidden state, ht−1

and the current input data xt using a sigmoid function.
Their output is a number between 0 and 1 for each
element in the memory cell. These three gates are:

1) Forget gate, ft: This gate determines which infor-
mation to forget from the memory cell. A value of
0 means the information should be forgotten, and a
value of 1 means the information should be retained.

2) Input gate, it: This gate determines which new
information to add to the memory cell. A value of
0 means that the information should not be added,
and a value of 1 means that the information should
be added.

3) Output gate, ot: This gate determines which infor-
mation to output from the memory cell. The output
of this gate is then multiplied by the output of the
memory cell to produce the final output.

During the forward pass of the LSTM algorithm, the input
sequence is passed through the LSTM layer one element at a
time. At each time step, the input is fed into the three gates,
and their results are used to update the memory cell state. The
updated memory cell state is then passed through the output
gate to generate the hidden state, which is the output of the
LSTM layer at that time step. The LSTM inference algorithm

is commonly implemented as follows:

it = sigmoid
(
W (i) · xt + U (i) · ht−1 +B(i)

)
ft = sigmoid

(
W (f) · xt + U (f) · ht−1 +B(f)

)
c̃t = tanh

(
W (c) · xt + U (c) · ht−1 +B(c)

)
ot = sigmoid

(
W (o) · xt + U (o) · ht−1 +B(o)

)
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh (ct)

Where W (µ) ∈ RNfeatures×Ncells with µ = i, f, c, o are the
weights for each gate or memory cell. U (µ) ∈ RNcells×Ncells

are the hidden weights and B(µ) ∈ RNcells are the biases.
The operation ◦ is the Hadamard product, also known as the
element-wise product.

This implementation is named decoupled LSTM inference
(d-LSTM). It is decoupled because exists a tuple of weights{
W (µ), U (µ), B(µ)

}
for each gate or memory cell that can

be calculated independently. Since a decoupled version of
the LSTM inference exists, the coupled version can also be
implemented. Coupled LSTM inference (c-LSTM) is defined
as follows:

yt = W · xt + U · ht−1 +B

it = sigmoid (yt[0 : Ncells])

ft = sigmoid (yt[Ncells : 2Ncells])

c̃t = tanh (yt[2Ncells : 3Ncells])

ot = sigmoid (yt[3Ncells : 4Ncells])

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh (ct)

The c-LSTM inference utilizes an intermediate vector yt ∈
R4Ncells for calculating gates and memory cells. To achieve
this, non-overlapping slides of yt with dimension Ncells are
taken. This is denoted in expressions for it, ft, c̃t and ot
with yt[sinit : sfinal] where sinit is the initial element of
the slide and sfinal the final. The implementation involves
three tensors: W , U , and B. W (µ) ∈ RNfeatures×4Ncells ,
U (µ) ∈ RNcells×4Ncells and B(µ) ∈ R4Ncells . Tensors has
no superscripts because they are composed by concatenating
W (µ), U (µ), and B(µ) for each µ.

In d-LSTM, each gate and the memory cell are calculated
independently using a separate set of weights, which allows
for parallel computation. This means that the LSTM cells can
be calculated in parallel, which may result in faster inference
times. The c-LSTM algorithm utilizes an intermediate vector
yt to calculate the gates and memory cells, which allows
for efficient computation of all gates and cells in a single
matrix multiplication (MatMul). This approach can further
reduce the overall computational cost using efficient hardware
implementation of MatMul. In terms of memory storage, two
implementations use the same number of parameters.



III. HLS IMPLEMENTATION OF LSTM ON FPGA

Currently, FPGA technology is becoming increasingly im-
portant in the development of applications where specific
system performance must be maintained. As a result, it is
increasingly common to find Machine Learning solutions
implemented with FPGA. The leading manufacturer of FPGAs
is AMD® Xilinx®, which has evolved these devices into
Zynq® architectures [12]. These consist of a combination of a
processing system (PS) composed of several dedicated ARM®

processors such as APU (Application Processing Unit), RPU
(Real-Time Processing Unit), and GPU (Graphic Processing
Unit), external memory (DDR), interconnection peripherals,
and programmable logic (PL) or FPGA, all on the same chip.
The advantage of using these devices, besides their low power
consumption and high data rate is the ability to exploit the
reconfigurability of the PL. The PL of an FPGA is composed
of various resources that include configurable logic blocks
(CLB), interconnect resources, digital signal processing (DSP)
and block random-access memory (BRAM). Each CLB con-
sists of multiple Slices. Slices can be configured to implement
combinatorial and sequential logic circuits using flip-flops (FF)
and lookup tables (LUT).

Conventional hardware description languages (HDL) such
as Verilog or Very High-Speed Integrated Circuit HDL
(VHDL) are not ideal for implementing complex algorithms,
especially in fields like Machine Learning. High-Level Syn-
thesis (HLS) tools offer a solution to this problem by allowing
algorithm description in high-level programming languages
such as C/C++, which can then be synthesized into a low-
level HDL language for programming the PL. However, non-
synthesizable data and logic structures in high-level code
must be analyzed and rewritten to be implemented on PL.
Also, exploiting FPGA architecture parallelism requires using
programming paradigms like Producer-Consumer, Streaming
Data, and Pipeline [13].

Xilinx® provides the Vitis™ development platform for pro-
gramming HLS modules. Utilizing HLS in this environment
comes with an additional benefit: the ability to employ libraries
called Vitis Accelerated Libraries [14]. One of these libraries
is Vitis Basic Linear Algebra Subroutines (BLAS), an FPGA-
enhanced version of the standard BLAS library [15]. This
library delivers a considerable advantage by enabling func-
tion optimization for performance through the adjustment of
parallelism levels in its operations. To activate this feature,
the LogParEntries parameter of the methods must be non-
zero. This parameter is calculated as log2 (ParEntries),
where ParEntries represents the number of entries processed
concurrently. Note that ParEntries must be a power of 2 to
fully benefit from this capability. Certain BLAS methods are
valuable for the development of a highly paralleled LSTM
Cell, which includes:

• GEMV: perform a generalized MatMul plus another
vector. The general formula is:

GEMV (α, β,M, x, y) = αM · x+ βy

Where α, β are constants, M is a two-dimensional matrix
and x, y are vectors. Particularly with α = 1 and β = 1, it
can be used to compute MatMul plus Bias on both LSTM
implementations. For this special case, GEMV will be
denoted as GEMV (M,x, y).

• AXPY: perform a generalized summation of two vectors:

AXPY (α, x, y) = αx+ y

Particularly with α = 1, it can be used to compute vector
addition in the LSTM cell state. For this special case,
AXPY will be denoted as AXPY (x, y).

• AXPY*: is a modified version of AXPY to perform a
generalized element-wise product of two vectors:

AXPY ∗ (α, x, y) = αx ◦ y

Particularly with α = 1, it can be used to compute
Hadamard product in LSTM cell state and hidden vec-
tor. For this special case, AXPY* will be denoted as
AXPY ∗ (x, y).

Using these BLAS methods, LSTM inference implementa-
tion can be rewritten to be implemented in HLS. In the case
of d-LSTM:

it = sigmoid
(
GEMV

(
W (i), xt, GEMV

(
U (i), ht−1, B

(i)
)))

ft = sigmoid
(
GEMV

(
W (f), xt, GEMV

(
U (f), ht−1, B

(f)
)))

c̃t = tanh
(
GEMV

(
W (c), xt, GEMV

(
U (c), ht−1, B

(c)
)))

ot = sigmoid
(
GEMV

(
W (o), xt, GEMV

(
U (o), ht−1, B

(o)
)))

ct = AXPY (AXPY ∗ (ft, ct−1) , AXPY ∗ (it, c̃t))

ht = AXPY ∗ (ot, tanh (ct))

And for c-LSTM:

yt = GEMV (W,xt, GEMV (U, ht−1, B))

it = sigmoid (yt[0 : Ncells])

ft = sigmoid (yt[Ncells : 2Ncells])

c̃t = tanh (yt[2Ncells : 3Ncells])

ot = sigmoid (yt[3Ncells : 4Ncells])

ct = AXPY (AXPY ∗ (ft, ct−1) , AXPY ∗ (it, c̃t))

ht = AXPY ∗ (ot, tanh (ct))

Where sigmoid and tanh are HLS functions of the Vitis
Math library. GEMV, AXPY and AXPY* methods could
be paralleled with a power of two ParEntries. For a full
parallelization, this parameter must be equal to the size entry
vector x for GEMV, AXPY and AXPY*. This means in LSTM
inference that both Nfeatures and Ncells must be power-of-
two numbers. Mostly, Ncells can be chosen in order to satisfy
this requirement. For Nfeatures is more difficult because it
depends on the data available to feed the model. The Neural
Networks proposed in Section IV will fulfil these parallelism
conditions. The main difference between d-LSTM and c-
LSTM is the number of GEMV operations. d-LSTM has 8
GEMVs and c-LSTM has 2 GEMVs that are four times larger



than d-LSTM ones. It is important to notice that if GEMV in d-
LSTM has a power-of-two ParEntries the corresponding c-
LSTM will have it too. These differences will be tested during
the experimentation and results will be exposed in Section V.

IV. MATERIALS AND METHODS

In this section, different hardware and LSTM neural net-
works will be exposed to perform the experiments. The
hardware used to test the LSTM implementation was the
ZCU104 evaluation board which contains a Xilinx® Zynq®

UltraScale+™ MPSoC device. In particular, this device has a
PL with 460.8k FF, 230.4k LUT, 408 BRAM and 1 728 DSP.
Both d-LSTM and c-LSTM will be implemented in ZCU104
and a performance-resource comparison will be exposed in
Section V. To demonstrate the advantage of FPGA imple-
mentation of LSTM in terms of performance, experimentation
over GPUs and CPU will be exposed. The GPUs used were
NVIDIA A30 and NVIDIA GeForce GTX 1650. The CPU
used was Intel i7-9750H. On these commonly used devices,
only d-LSTM will be executed because is the implementation
available on the TensorFlow package.

To perform the experimentation over different LSTM in-
ferences different Neural Networks will be executed. Will
be three LSTM-Neural Networks with increasing complexity.
Their specifications can be shown in Table I. Notice that the
main difference between them is the increasing number of
LSTM layers with a different number of cells. The topology
and input shape of LSTM layers is chosen to be a power of
two in order to exploit the BLAS parallelism.

TABLE I
LSTM NEURAL NETWORKS DESCRIPTION

Specifications LSTM 1 LSTM 2 LSTM 3
LSTM Layers 2 3 4
Dense Layers 2 2 2

LSTM Topology [32, 64] [32, 64, 128] [32, 64, 128, 32]
Dense Topology [32, 1] [32, 1] [32, 1]

Input shape 4 4 4
Sequence length 16 16 16

Parameters 31 681 132 545 150 081

V. RESULTS AND DISCUSSION

In this section, performance and resource comparison be-
tween the inference of d-LSTM and c-LSTM in the ZCU104
evaluation board will be exposed. Also, a latency comparison
between the FPGA implementation of LSTM and another
device like GPU and CPU will be shown. Finally, scalability in
sequence length will be explored for the best implementation.
The inference latency for d-LSTM and c-LSTM in ZCU104
can be shown in Table II. It can be seen that for all LSTM
examples in Table I d-LSTM performs better than c-LSTM.

In Table III resources of d-LSTM and c-LSTM are detailed.
Higher resource usage implies higher energy consumption
and smaller LSTM-Neural Networks implementations. These
results show that d-LSTM is more resource-hungry than c-
LSTM. d-LSTM uses more DSP, BRAM and FF than c-
LSTM for all implementations but c-LSTM uses more LUT

TABLE II
LSTM INFERENCE LATENCY IN ZCU104

d-LSTM (ms) c-LSTM (ms)
LSTM 1 0.562 1.399
LSTM 2 1.402 2.630
LSTM 3 2.641 6.474

than d-LSTM. BRAM and LUT resources could be used as
memory storage in FPGA. As both implementations have
the same number of parameters to be stored in memory, c-
LSTM is using more BRAM and d-LSTM is using more LUT.
To compare the HLS implementation of LSTM in ZCU104

TABLE III
LSTM RESOURCE USAGE IN ZCU104

LSTM DSP BRAM LUT FF
LSTM 1 d-LSTM 1 070 105 121 592 212 645

c-LSTM 776 76 149 811 80 013
LSTM 2 d-LSTM 1 329 164 157 644 265 305

c-LSTM 1 063 123 197 512 107 450
LSTM 3 d-LSTM 1 413 391 228 184 373 723

c-LSTM 1 253 179 230 242 128 190

concerning other devices, inference latency of FPGA, GPU
and CPU technologies are plotted in Fig. 1. These results show
that HLS implementation of LSTM in ZCU104 is on average
12.7 times faster than in GPU A30, 19.5 times faster than
GPU 1950 and 14.5 times faster than CPU i7-9750H.

Fig. 1. Inference latency in milliseconds of d-LSTM, c-LSTM executed in
ZCU104 and d-LSTM executed on GPU A30, GPU 1650 and CPU i7-9750H.
The comparison between devices has been done for the three LSTM models
detailed in Table I.

The HLS implementation of d-LSTM has better perfor-
mance than c-LSTM by using more FPGA resources. The
comparison has been done with a constant sequence length
of 16 timesteps. To check the scalability of the best-in-
performance implementation concerning the sequence length,
execution with 8, 16 and 32 timesteps have been performed on
ZCU104. The d-LSTM inference of models in Table I for 8,
16 and 32 timesteps are plotted in Fig. 2. The resource usage
remains the same for each model independent of the number
of time steps. For LSTM 1 R2 = 0.986, R2 = 0.999 for
LSTM 2 and R2 = 0.943 for LSTM 3. This means that for
lower-complexity models the behaviour of d-LSTM inference



latency is linear with the number of time steps. This is not the
case with the higher complexity model and further research is
needed to explain this behaviour.

Fig. 2. Inference latency in milliseconds of d-LSTM executed in ZCU104
with 8, 16 and 32 timesteps for the three LSTM models detailed in Table I.

VI. CONCLUSION AND FUTURE WORK

This article explores two LSTM inference implementations:
d-LSTM and c-LSTM. A comparison in terms of performance
and resource utilization on FPGA is realized. The HLS im-
plementation of LSTM inference in FPGA is compared with
other commonly used devices such as GPU and CPU. Three
LSTM-Neural Networks with increasing complexity are used
to perform the experiments. The FPGA used for testing was
Zynq UltraScale+ MPSoC ZCU104 dev-board, while NVIDIA
A30 and NVIDIA GeForce GTX 1650 GPUs and Intel i7-
9750H CPU were used for comparison. The results show that
d-LSTM outperforms c-LSTM for all tested models in terms of
inference latency. However, d-LSTM is more resource-hungry
than c-LSTM, with the former using more DSP, BRAM and
FF and the latter using more LUT. The HLS implementation
of d-LSTM on ZCU104 is on average 12.7 times faster than
in GPU A30, 19.5 times faster than GPU 1950 and 14.5 times
faster than CPU i7-9750H. Finally, for d-LSTM, the inference
latency has a linear behaviour by the number of timesteps for
lower complexity models and a non-linear behaviour for the
highest complexity model.

Overall, the study suggests that the HLS implementation of
d-LSTM on FPGA is an efficient option for LSTM inference
and can outperform other commonly used devices. It highlights
the importance of considering both performance and resource
utilization when selecting an LSTM implementation. Future
work arising from this work is oriented towards understanding
the nonlinear behaviour of latency in d-LSTM inference for
high-complexity models.
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