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1 Introduction

Exploration of gauge theories and their phase diagrams continue to surprise us time and
again. In this paper, we will study gauge theories at non-zero density and temperature,
focusing on so-called Higgs phases. These phases can be described at weak coupling
(but non-perturbatively) as the condensation of a scalar operator which breaks the gauge
symmetry and gives a mass to (part of) the spectrum. As one important real-world example,
we mention QCD; at asymptotically large baryon density, the theory can be treated as
weakly coupled, and quark pairing can be shown to lead to a Higgs phase known as a color
superconductor (see [1] for a review). However, at more moderate densities, such as those
that might be realized in compact star cores, the coupling is no longer weak, and the precise
fate of the color superconducting state is unknown.

Holographic duality has been successfully used to describe various phenomena and
phases of strongly coupled gauge theories and one would expect it to be able to capture
the physics of Higgs phases as well. However, this has proven a challenging task; previous
attempts include bottom-up models describing it as global symmetry breaking [2–5], top-
down setups where the backreaction of the Higgsing is treated perturbatively [6], and a
special top-down realization where the finite-density ground state is supersymmetric [7].

Here we aim to improve on this situation by proposing a simple bottom-up scenario
which can describe a class of holographic Higgs phases. The novel aspect of our scenario,
which we detail in a specific case model, is the inclusion of explicit brane sources. This is
how gauge symmetry breaking can be realized in well-understood top-down models as we
now review.
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1.1 Top-down motivation

Consider the familiar case of N = 4 super-Yang-Mills (SYM), holographically dual to
type IIB string theory on AdS5 × S5. In the vacuum at zero temperature and vanishing
R-charge density, this theory has a large moduli space corresponding to diagonal expectation
values for the six adjoint scalar fields. In the gravity dual, this manifests through the
BPS property of parallel D3-branes allowing them to be distributed arbitrarily in the six
transverse directions at no cost in energy. While N coincident branes gives rise to an SU(N)
gauge theory,1 a generic distribution of them breaks this to U(1)N−1. Corresponding dual
geometries in the large-N limit can be constructed [8–10].

Hence, in the vacuum, the existence of the moduli space makes it easy to find a Higgs
phase in the theory.2 The question is now, how does this change when turning on a
temperature and, most importantly, an R-charge chemical potential?

At weak coupling, non-zero temperature gives a thermal mass to the massless scalars,
while the chemical potential gives a negative contribution. As discussed in [11–13], at low
temperatures and non-zero chemical potential this seems to lead to a fatal instability in the
theory, giving an effective potential which is unbounded from below. In the holographic dual
at strong coupling this picture was seemingly confirmed through a probe brane calculation:
in [14] it was noted that the effective action of a single D3-brane is also unbounded from
below in a black brane geometry corresponding to a finite-density deconfined state [15].

This was, however, re-examined in [16], which came to a somewhat different conclusion.
The black brane backgrounds in question rotate in the S5-part of the geometry, the angular
momentum being dual to the R-charge density of the field theory. While [14] assumed that
the D3-brane probe rotates at exactly the angular velocity of the event horizon, [16] instead
took the angular momentum of the brane to be constant, as required by the equations of
motion. It was then observed that there is a critical angular momentum for the brane to
signal an instability. Furthermore, even for supercritical values of the angular momentum,
the potential remains bounded from below, but now possessing a global minimum away
from the horizon. When the field theory lives in flat space, this minimum is infinitely far
away, at the boundary of AdS. Interestingly, however, when the field theory lives on a
sphere, so that the dual geometry is global AdS, the global minimum is at a finite position
in the holographic radial direction. In that case, it was argued that a (meta)stable Higgs
phase will result, in general with some fraction of the branes localized in the bulk and some
behind the horizon. If M out of the N branes nucleate in the bulk, the gauge symmetry
will be effectively broken as SU(N)→ SU(N −M)×U(1)M .

To determine exactly which is the final state of this instability for a given temperature
and chemical potential, one must take the backreaction of the nucleated branes into account.
This is a primary motivation that sparked our present work. As an initial step towards
constructing Higgs phases in the holographic dual of N = 4 SYM, we will consider a 5D
bottom-up model that captures its main features.

1The theory of N coincident D3-branes is actually U(N), but in the near horizon limit that gives the
holographic dual, the degrees of freedom of the diagonal Abelian group decouple.

2Technically it is a Coulomb phase because an Abelian subgroup remains unbroken, but all the non-
Abelian components become massive, so we will adopt a less rigorous but more physical terminology and
refer to these phases as Higgsed.
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In more detail, we will include explicit 3-brane sources, which capture all the relevant
features of the full top-down construction. This approach has two benefits. First, it is
somewhat simpler to treat, since we do not need to detail how the internal geometry is
affected. At any rate, one can consistently truncate the ten-dimensional geometry and would
presumably end up with a setup very similar to the case at hand. Second, it emphasizes
the generality of the phenomena we study; this scenario can likely be implemented in a
variety of holographic settings. In fact, in addition to extending our case study to the
dual of N = 4 SYM, it is worth pointing out that other top-down theories, such as the
Klebanov-Witten gauge theory [17], share similar brane nucleation instabilities [18–20] and
will likely therefore also have Higgs phases. We thus believe that our program will provide
valuable lessons on understanding the properties of Higgs phases of strongly coupled gauge
theories in general.

The rest of the paper is organized as follows. Section 2 introduces and further motivates
our setup: a five-dimensional gravity theory with a one-form gauge field (holographically
dual to a conserved current), a four-form gauge field, and 3-branes which carry charge under
both the one-form and four-form fields. In section 3 we use Israel junction conditions to
find static solutions with 3-brane sources forming a thin domain wall, or a shell, localized
in the holographic radial coordinate. Section 4 provides a study of the thermodynamics
of these shell solutions and the resulting phase diagram, including the phase transition
between shell solutions and regular AdS-Reissner-Nordström (AdS-RN). We conclude and
discuss future directions in section 5. In appendix A we review parts of the probe D3-brane
computations from [16, 21] which motivates our approach.

2 Bottom-up gravity model

We aim to construct the simplest possible holographic model that could capture the physics
of a finite-density Higgs phase. We thus start from a 5D gravitational theory with a negative
cosmological constant and a gauge field, with two-form field strength F2 = dA1, which will
be dual to a conserved current. To this workhorse of applied holography we add a five-form
field strength F5 = dC4, giving the following bulk action:

Sbulk = 1
2κ2

∫
d5x
√
−g
(
R+ 12

L2−L
2F 2

2 −
1

2·5!F
2
5

)
+ 1

4!

∫
d5x∂µ1

(√
−gFµ1...µ5Cµ2...µ5

)
.

(2.1)
Here, R is the Ricci scalar, L is the radius of curvature, and κ2 = 8πG5 with G5 the Newton
constant in five dimensions.

The addition of F5 is motivated by string theory constructions where the rank of the
group is linked to the flux of the form potential. This potential couples to the color branes
that source the geometry and eventually determines the radius of curvature. If the field
theory is in a Higgs phase, we expect the effective rank to change as we move from the UV
(near the AdS boundary) to the IR (deep inside the AdS bulk). This then indicates that
we should allow the effective AdS radius to vary. The five-form field strength makes this
possible, as described by Brown and Teitelboim [22, 23]. In the absence of sources, the
equations of motion set it equal to

Fµ1...µ5 = f
√
−g εµ1...µ5 , (2.2)
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with f a constant. Substituting this back into the bulk action gives

Sbulk = 1
2κ2

∫
d5x
√
−g

(
R+ 12

L2 −
1
2f

2 − L2F 2
2

)
, (2.3)

so we see that the flux of F5 shifts the effective cosmological constant to3

Λ = − 6
L2
eff

= − 6
L2 + 1

4f
2 . (2.4)

We will identify the cosmological constant in the absence of fluxes as the value that
corresponds to the un-Higgsed phase, which should thus be the value at the AdS boundary.
We therefore impose the condition that the flux vanishes at the boundary. Moving to the
interior from the boundary can result to a non-vanishing flux which reduces the magnitude
of the effective cosmological constant. The maximum magnitude for the flux f = ±fmax,
corresponding to a completely Higgsed phase, is the one that makes the effective cosmological
constant vanishing

fmax = 2
√

6
L

. (2.5)

In order to describe the change in the flux through the geometry we furthermore add
3-branes to our theory, with an action given by

Sbrane = −T3

∫
d4ξ
√
− detP [g] + µ3

∫
P [C4] +

∫
P [A1] ∧ J3 . (2.6)

The total action is then S = Sbulk + Sbrane. The branes are codimension-one and thus
act as domain walls in our 5D spacetime. Their action is clearly inspired by the action
of a D3-brane in string theory: the first term is of the standard Dirac-Born-Infeld (DBI)
form, with T3 the tension and P [g] the pullback of the 5D metric gµν . The second term is
a standard Wess-Zumino (WZ) coupling to the potential of the five-form F5 = dC4, with
charge µ3. This means that the flux of F5, and the effective cosmological constant, will
change upon crossing a 3-brane domain wall. The difference in fluxes between the two sides
of the wall is

∆f = 2κ2µ3 . (2.7)

Therefore, from (2.4), the change in the cosmological constant is

∆Λ = κ2µ3f̄ , (2.8)

where f̄ is the average value f̄ = (f1 + f2)/2.
Note that, while in a top-down scenario, the entirety of the cosmological constant is

typically due to the branes, in our bottom-up framework we allow ourselves to set its “bare”
value (corresponding to L) as we see fit. Moreover, we are free to set the value of the
five-form flux near the AdS boundary, as a boundary condition. In a top-down realization,
these will be related.

The third term in (2.6) does not appear in the standard D-brane action; it introduces
a coupling to the 5D gauge field A1 (with F2 = dA1) through a worldvolume three-form

3The boundary term in (2.1) was chosen such that the Einstein equations agree with this value.
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J3, which must be closed, dJ3 = 0, to respect gauge invariance (at least up to boundary
terms which do not enter into our analysis). The Hodge dual one-form J1 = ?J3 can then
be thought of as a conserved charge current which the 3-branes carry on their worldvolume.
The idea that the 3-branes should couple to P [A1] in this way is again motivated by
top-down computations in, e.g., the dual of N = 4 SYM at non-zero density. While the
fundamental D-brane action does not have such a coupling, it was seen in [16, 21] that
a similar term is effectively induced through the embedding in the dual spinning black
brane geometry. As we review in the appendix, this follows from the fact that for the brane
to nucleate, it needs some non-zero angular momentum; the angular momentum in turn
couples to off-diagonal components of the metric which, upon reduction to five dimensions,
act as the gauge field(s) dual to the R-charge current. The physical picture to have in mind
is that larger charge densities lead to a repulsion between the branes, which will lead to
them separating and thus Higgsing the dual theory.

We expect that such a picture will continue to hold true in many other top-down
instances of holography, possibly with modified couplings between the gauge field and the
branes. Thus, this setup can lead to interesting possibilities for holographic model building
with the ability to adapt both the bulk as well as the brane actions to describe the physics
of interest.

2.1 Regular black hole solutions

In the absence of 3-branes, the five-form flux can be set to zero, and our theory has standard
AdS-RN charged black hole solutions,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
3 (2.9)

with

f(r) = r2

L2 + 1− m

r2 + q2

r4 , (2.10)

and with dΩ2
3 being the metric of a unit three-sphere. The event horizon radius can be

defined as the largest root of f(rH) = 0. The existence of an event horizon imposes a
bound on the parameters, which can be written in the form |q| ≥ qext(m) with qext(m) a
fairly complicated function which we will not reproduce here; if this inequality is saturated,
the black hole is extremal. Note, however, that if the theory admits a supersymmetric
embedding, such extremal black holes are not BPS [24].

The corresponding one-form gauge field, which we require to approach zero at the
horizon, is

A1 =
√

3q
2L

(
1
r2
H

− 1
r2

)
dt . (2.11)

All of the solutions we study will asymptote to global AdS, so the dual field theory lives on
a three-sphere, whose radius is (for now) set to equal L.
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3 Thin-shell solutions

The model introduced in the previous section can in principle be solved for arbitrary
distributions of 3-branes in the holographic radial direction. Here, we will focus on a simple
special case, by assuming that

(i) the nucleated branes are tightly distributed around a certain radius, meaning we can
approximate them by a thin shell partitioning the 5D spacetime into an interior and
an exterior, and

(ii) that all the branes have nucleated, meaning that the interior spacetime of the shell is
completely sourceless, a flat Minkowski.

The resulting geometry is analogous to the vacuum Coulomb-branch solution studied in [8],
where N D3-branes are distributed in an SO(6)-symmetric shell with a flat interior.

With this configuration, the five-form flux in the interior of the geometry can be taken
to be f = −fmax in (2.5), while the flux outside vanishes. This implies that N times
∆f in (2.7) equals fmax, which fixes the relation between the number of branes and the
asymptotic AdS radius

L =
√

6
Nκ2µ3

. (3.1)

Let us momentarily assume that our model corresponds to a dimensional reduction of a
ten-dimensional string construction with a geometry asymptotically AdS5 ×M5, and that
the domain walls actually correspond to D3-branes. In this case

κ2 = κ2
10

Vol(M5) , κ2
10 = 1

2(2π)7g2
s(α′)4 , µ3 = g3

(2π)3gs(α′)2 , (3.2)

where g3 takes into account that the normalization of the five-form in the reduced theory
might be different from the normalization in ten dimensions. The volume of the internal
space is expected to have a size of the same order as the AdS radius, so that Vol(M5) = v5L

5.
Together with (3.1) this leads to relations of the form

L4/(α′)2 = 4π4

v5

√
2
3g3gsN ,

L8

G10
= 4π2

3v2
5
g2

3N
2 , (3.3)

which is similar to what is found in the ten-dimensional theory. For instance, one can
recover the same expressions as the AdS5 × S5 dual to N = 4 super Yang-Mills by setting
v5 = π3/3 and g3 = 1/

√
6.

While we believe that on a generic point of the phase diagram only a fraction of all
the branes will nucleate, it seems plausible that there would exist regions where all, or
almost all, branes nucleate, motivating assumption (ii). Assumption (i) can be motivated
as follows: in the top-down treatment of [16], it was argued that the N D3-branes will
tend to share the total charge (in that case, angular momentum) equally. From the probe
computations in that paper, one then concludes that they all prefer to localize around the
same radius.

Assumption (i) lets us treat the problem using Israel junction conditions [25]; on each
side of the shell, the solution will be of the general AdS-RN form discussed in the previous
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section, but the parameters m, q, and Leff will differ on the two sides. We use +/− to
denote quantities on the outside/inside of the shell. Then, by assumption (ii), inside the
shell we take f−(r) = 1. Outside we allow for a general blackening function f+(r) = f(r);
we take as boundary condition that the flux f is zero, allowing us to replace Leff with L.
The shell hypersurface will be parameterized by the angular coordinates (ψ, θ, φ) on the
spacetime three-sphere it wraps, together with the time coordinate of the inner, flat solution
t− ≡ τ . The shell will be localized in the radial direction at r± = R±.

The first junction condition states that the induced metric on the shell should be the
same when approached from both directions. With said parametrization, it becomes

ds2
B = habdξ

adξb = −(dt−)2 + (R−)2dΩ2
3 = −f(R+)(dt+)2 + (R+)2dΩ2

3 . (3.4)

Equality of the spatial part of this metric means that the radial coordinate of the shell is
the same in both the coordinates of the interior and exterior solution, R+ = R− ≡ R. The
time coordinate, however, has a discontinuity on the shell,

√
f(R)t+ = t−.

The second junction condition is

K+
ab −K

−
ab = −κ2

(
Tab −

1
3T

c
c hab

)
, (3.5)

where Kab is the extrinsic curvature and Tab is the shell stress tensor. The extrinsic curvature
can be computed using

Kab = −nµ

(
∂2Xµ

∂ξa∂ξb
+ Γµνλ

∂Xν

∂ξa
∂Xλ

∂ξb

)
, (3.6)

where nµ is the unit normal of the shell, Xµ is the embedding of the shell, and Γµνλ are the
Christoffel symbols. For the exterior AdS-RN geometry, this gives the result

Kτ
τ = f ′(R)

2
√
f(R)

, Kψ
ψ = Kθ

θ = Kφ
φ =

√
f(R)
R

, (3.7)

while the results for the interior flat geometry are the same with f(R) = 1.
Since the shell is supposed to consist of N 3-branes, the shell stress tensor can be

computed from the variation of (2.6) with respect to the induced metric. Only the DBI-term
contributes to this variation, giving a worldvolume cosmological constant,

Tab = − 2√
−h

δSbrane
δhab

= −NT3hab . (3.8)

To proceed we must choose a value for the tension T3 of our 3-branes. We do this
by, again, mimicking the top-down probe computation of [16]; from the effective potential
therein one finds that the D3-brane tension is critical, meaning that the effective worldvolume
cosmological constant which receives contributions from T3 as well as from the embedding
is zero.4 This corresponds to a tension

T3 = 3
κ2NL

=
√

3
2 µ3 , (3.9)

4For a more detailed discussion of this see [21], or [26] in a Randall-Sundrum setting (where the critical
tension differs from here by a factor of 2).

– 7 –



J
H
E
P
0
8
(
2
0
2
3
)
1
8
6

where we have used (3.1) in the last equality. Inserting the extrinsic curvature for the flat
and AdS-RN spacetimes, we now obtain two independent equations,

− f ′(R)
2
√
f(R)

= 1
L

and
√
f(R)− 1 = −R

L
, (3.10)

coming from the time-time and the space-space components of (3.5), respectively. These
equations are solved by

m = 5R3

L
and q = ±

√
3R5

L
, (3.11)

provided 0 ≤ R ≤ L. We thus have a one-parameter family of static shell solutions.
bluePhrased differently, for a given m (total energy) the shell must sit at a specific radius R,
and carry a specific total charge q (related to the three-form J3), to be static. If eq. (3.11)
is not satisfied, the shell will feel a force in the radial direction.

It turns out that the solution (3.11) corresponds to an over-extremal black hole. In
figure 1 this is visualized by plotting the charge of the shell solution minus the extremal
charge, as a function of mass (in units of L). The charge is seen to be over-extremal
everywhere except at m = 0 (no black hole) and at m/L2 = 5, corresponding to R = L; at
this special point the exterior AdS-RN geometry in the shell solution becomes extremal,
with the shell position coinciding with the horizon. Everywhere else, the exterior geometry
of the shell solutions has a naked singularity; however, when the region interior to the shell
is replaced by flat space, the singularity is excised, and our shell solutions are thus regular
everywhere. This is somewhat reminiscent of other stringy resolutions of singularities such
as the enhançon [27]. In fact, it has been argued in a top-down setting [28] that certain
solutions with naked singularities can be relevant thermodynamic phases, which can even
be preferred in some parts of the phase diagram (that reference focused on the canonical
ensemble). If our shell solutions can be uplifted to such top-down settings, it is plausible
that they can replace such naked singularities in the phase diagram.

The fact that the exterior solution typically has a naked singularity means that the
shell will never risk falling into a horizon. Thus we can also consider the limit R→ 0; we
see that this also brings m and q to zero, meaning that the exterior geometry, which is now
all there is, approaches thermal AdS.

4 Thermodynamics and phase diagram

Before studying the thermodynamics of the shell solutions, we review the thermodynamics
of the regular AdS-RN solutions. This can be obtained by standard methods and is found
in many references, see for instance [24].

Note that up to now, we have worked in units in which the 3-sphere radius on which the
field theory is defined has been set equal to Leff. In this section, we will allow for an arbitrary
radius ρ. This is accomplished by rescaling the coordinates r → (ρ/L)r, t→ (L/ρ)t with a
simultaneous rescaling of the parameters m→ ρ4

L4m, q → ρ3

L3 q. At large r the metric now

– 8 –
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Figure 1. The difference between the charge of the shell solution (3.11) and the extremal charge
qext as a function of mass, in units of L.

assumes the canonical AdS form

ds2 → − r
2

L2dt
2 + L2

r2 dr
2 + ρ2

L2 r
2dΩ2

3 . (4.1)

For shell solutions, we only rescale the coordinates of the exterior AdS-RN solution (so
after the rescaling, the radial coordinate is no longer continuous at the shell). The volume
of the three-sphere on which the field theory lives is then V = 2π2ρ3. The stress tensor can
be determined by evaluating the Brown-York tensor at the AdS-RN boundary with the
standard counterterms. The resulting energy E and pressure P are

E = 3V P = 3π2ρ3

κ2L3 m. (4.2)

The entropy is given by the horizon area, and the temperature is obtained by imposing
regularity near the horizon in imaginary time:

S = 4π3ρ3

κ2L3 r
3
H , T = f ′(r = rH)

4π . (4.3)

Finally, the conserved charge and the chemical potential are

Q = 4
√

3π2ρ3

κ2L2 q , µ =
√

3q
2Lr2

H

. (4.4)

These expressions can be seen to obey the first law of thermodynamics, dE = TdS +
µdQ − PdV . The free energy can be computed (in the grand canonical ensemble) as
Ω = E − TS − µQ.

– 9 –
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4.1 Thermodynamics of shell solutions

The thermodynamics for our shell solutions is obtained by similar methods. In particular,
the expressions for energy, pressure, and charge density are the same as above, with the
parameters m, q, and L being those of the exterior AdS-RN solution.

The shell solutions are flat inside, and in the absence of a horizon have vanishing
entropy to leading order in the large-N expansion. For the same reason, the temperature of
a particular shell solution is unconstrained and can be chosen at will.

Naively, the chemical potential is unconstrained in a similar way. It is dual to the
asymptotic value of At; for regular AdS-RN solutions, the gauge field should be set to zero
on the horizon, but in the absence of a horizon it can be shifted by an arbitrary constant.
However, we argue that there must be a relationship between the chemical potential and
the shell position, in order to satisfy the first law in the presence of a non-trivial charge
density. (It is clear that, for non-zero dQ, the first law cannot be satisfied for arbitrary µ.)
This requirement gives

µs =
√

3q
2LR2 = 3

2L

√
R

ρ
, (4.5)

which means that the shell is forced to sit at the radius where the gauge field vanishes. The
same result can be found by considering an inside geometry with a black hole of mass m̃
and taking the limit m̃→ 0.

With these relations, we again find (by construction) that the first law is satisfied, and
we can compute the free energy of our shell solutions, with the simple result

Ωs = −3π2ρ2R3

κ2L3 = −64π2L3ρ5µ6

243κ2 . (4.6)

Recall that the shell solutions only existed for R ≤ L, or R ≤ L2/ρ in the rescaled units
used in this section. This corresponds to chemical potentials ρµ ≤ 3/2. The point R = L2/ρ,
ρµ = 3/2 is also the sole special point discussed in the previous section where the blackening
function f(r) has a (double) zero and the shell sits at the position of the extremal horizon.

It might seem surprising that our proposed Higgs phase exists only below a certain
value of the chemical potential. However, note that we have restricted ourselves to studying
a particularly simple version of the Higgs phase, with all branes having nucleated, leaving
an empty interior. If one allows for more general interiors, describing partial nucleation
with black holes inside the shell, it is plausible that one will find solutions at larger densities
as well.

4.2 Phase diagram

In the absence of the shell solutions, there are two standard geometries, AdS-RN and
thermal AdS. Thermal AdS has trivial thermodynamics at leading order in the large-N
expansion, with zero energy, entropy, and charge density (we are subtracting off the Casimir
energy throughout). The results for AdS-RN were covered above. It can be shown that for
small temperatures and chemical potentials, in units of the three-sphere radius, no black
hole solutions exist and thermal AdS is the prevailing phase, while at larger temperatures
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Figure 2. Free energy of the shell solutions (blue curve) and AdS-RN (black curves) as a function
of T at fixed µ, in units of the three-sphere radius ρ. The chemical potentials are (clockwise from
the top left) ρµ = (0, 0.5, 1, 1.5). For small chemical potentials (upper plots) there are two branches
of black hole solutions (upper branch corresponding to the thermodynamically subdominant small
BH solutions). Above ρµ = 1.5 (bottom left) no shell solution exists.

and/or chemical potentials, AdS-RN dominates. At µ = 0, this corresponds to the famous
Hawking-Page transition [29]. Note that there are two branches of black hole solutions; in
the grand canonical ensemble which we focus on here, only one of these (the “large black
holes”) are relevant for the phase diagram. In the canonical or microcanonical ensemble,
the small black hole phases can dominate over the large ones, leading to an interesting
interpretation on the phase structure of the dual field theory [24, 30–32].

Turning to the shell solutions, we note that their free energy is always of order N2

and negative for non-zero µ, hence they will always dominate over thermal AdS (in the
limit µ→ 0 the shell solutions reduce to thermal AdS, as previously discussed). Comparing
their free energy with that of AdS-RN we arrive at figure 2. We observe a first order phase
transition with the shells being dominant at lower temperatures. The critical temperature
approaches zero as ρµ approaches 3/2. Note that at chemical potentials below ρµ =

√
3/2

there are two branches of black hole solutions; the branch with higher free energy corresponds
to black holes with smaller radii which are thermodynamically subdominant.

The resulting phase diagram is shown in figure 3. The shell solutions are preferred in
the blue region, AdS-RN is preferred in the white region, and the orange curve indicates
where the phase transition to thermal AdS would be in the absence of the shell solutions.
We note that the line of phase transitions between the shell solutions and AdS-RN follows
the orange curve closely at small µ; it can be shown that it asymptotes to the orange curve
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Figure 3. The phase diagram, with temperature T and chemical potential µ in units of the
three-sphere radius ρ. The white region shows where the normal, deconfined plasma described by
AdS-RN dominates. The blue region denotes where the shell solution dominates. The orange curve
denotes where the phase transition between AdS-RN and thermal AdS would be in the absence of
the shell solution.

from above, with their difference going as µ6. This agrees with what was stated earlier; in
the limit µs → 0 (equivalent to R→ 0), the shell solutions approach thermal AdS.

5 Discussion

In this paper we have proposed a simple holographic bottom-up model for finite-density
Higgs phases akin to color superconductivity in QCD. Motivated by top-down considerations,
explicit brane sources played an important role; the Higgs phase is characterized by the
appearance — or nucleation — of branes in the bulk of the gravity solution, outside possible
event horizons.

We moreover considered a simple class of novel solutions to our model, describing a
thin shell of branes partitioning spacetime into an interior and an exterior; we assumed a
“fully nucleated” state, meaning the interior is source free and thus flat, while the exterior is
described by an AdS-RN geometry. Using the Israel junction conditions we found a family
of static shells, studied their thermodynamic properties, and verified that they obey the first
law of thermodynamics. We compared their free energy (in the grand canonical ensemble)
to that of the standard AdS-RN solution, as well as thermal AdS, and found that there
exists a region at small T and µ where the shell solution dominates. This region (blue in
figure 3) completely overwhelms the thermal AdS, but is also the preferred phase over the
AdS-RN for slightly larger chemical potentials. The phase transition between AdS-RN and
the shell solutions is everywhere first order.
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Let us examine the state corresponding to the simple “shell phase” solutions in some
more detail. The free energy of the corresponding state scales as N2, thus it is unlike the
“confined” thermal AdS phase, which has zero free energy at this order.5 To probe the
nature of the state in more detail could be exposed by loop operators. While we have been
studying field theory on a three-sphere, we can borrow some intuition from a field theory in
flat space. Wilson and ’t Hooft loops can be computed from the actions of fundamental or
D-strings, respectively. In [33], the expected behavior of these operators in a Higgs phase
was discussed, using a probe D3-brane as an example. If our model could be embedded
in a top-down construction, with our 3-branes uplifted to true D3-branes, we thus expect
the same behavior, in particular, an area law for the ’t Hooft loop (at least when the
radius of the three-sphere is very large). However, we refrain from doing the detailed
computation, since it would be sensitive to details of the top-down embedding which we
have not established, and which might even be different for different possible embeddings.
(The fact that our model might admit several possible top-down completions is, as was
argued in the introduction, one of its strengths.)

Another class of probes of the properties of Higgs phases are two-point functions of
gauge-invariant operators. Known supergravity solutions dual to the N = 4 SYM Coulomb
branch predict a gapped spectrum with the exception of a massless mode corresponding to
the dilaton of the spontaneously broken conformal invariance [9, 34]. One might expect to
find similar results for the shell solutions.

The fully nucleated solution is a simple special case of more general shell solutions,
where the interior of the shell would be an AdS-RN geometry with arbitrary values for m, q,
and L. Then, one might anticipate to find several possible shell solutions at various points
in the phase diagram and one must minimize the free energy to find which one is preferred.
Even more generally, one should allow for an arbitrary distribution of 3-branes along the
holographic radial dimension, which might lead to solutions with even lower free energies.
Relatedly, we also hope to address more general questions of stability of these solutions,
as well as a more detailed look at their physics, including the computation of correlation
functions and loop operators. In addition, from a gravitational vantage point, since the
shells take over parts of the phase diagram at vanishing temperature, they could play a
role in addressing the fate of the weak gravity conjecture [35, 36]; see [19, 37, 38] for some
recent discussions in the holographic context.

We expect that it will be possible to find exact, top-down embeddings of our setup, with
only minor modifications in, e.g., the dual of N = 4 SYM at non-zero R-charge density. One
must then deal with the complication of the extra internal dimensions. However, in the most
symmetric cases, such as when the three chemical potentials of N = 4 SYM are set equal,
one can perhaps smear the nucleated branes over the internal manifold, thus recovering
something close to the effective five-dimensional setup studied here. Here previous top-down
results such as [21, 39] will likely be useful.

One of our motivations for studying finite-density Higgs phases is to model dense
nuclear matter. As mentioned in the introduction, the cores of compact stars may hold
nuclear matter in such phases, potentially offering experimental access through astrophysical

5We have in mind here “kinematic confinement” which forbids physical colorful states on the sphere, i.e.,
Gauss law disallowing charged states on compact space.
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observations. We hope that a better understanding of Higgs phases in holography will offer
qualitative insights into the QCD phase diagram, as well as ideas on how to implement them
in more realistic phenomenological models [40, 41]. With this in mind, it is particularly
important to study thermodynamics and transport properties of these solutions, since they
can be related to astrophysical observables [42].

Finally, let us spell out a feasible and captivating extension of the shell construction.
In principle, it could be possible to have flux inside the shells exceeding the value quoted
in (2.5). A natural interpretation then is that there is some anti-3-brane charge in the
interior of the shell that is screened by the 3-branes at the shell. In this case the cosmological
constant would be positive in the interior and the spacetime would become de Sitter. This
scenario would serve as a simple anchor for studies of quantum gravity in de Sitter spacetime
using holography, along the lines of the dS2 inside AdS2 ‘centaur geometry’ proposed in [43].
Extending the centaur geometry to higher dimensional geometries has proved to be a difficult
task [44], however, so it would be particularly interesting to have access to a tractable
toy model.
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A D3-brane probe in a spinning black brane background

Many of the choices of the five-dimensional bottom-up model are motivated by earlier
top-down computations in [16]. Here we will review the basic results from this model
following the above and [15]. The geometry describing the spinning black branes — dual to
N = 4 SYM at non-zero R-charge density — has the metric

ds2
10 = ds2

5 + L2
3∑
i=1

[
dσ2

i + σ2
i

(
dφi + L−1A

)2
]
, (A.1)

where L is the radius of curvature, Xi are scalar fields, and σi satisfy
∑
i σ

2
i = 1. Note that

the theory in general admits three independent angular momenta (dual to the R-charges);
here we set them all equal.

The type IIB superstring equations of motion admit a charged black hole solution
described by

ds2
5 = −H(r)−2f(r)dt2 +H(r)

[
dr2

f(r) + r2dΩ2
3

]
, (A.2)
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with the functions

f(r) = 1− m

r2 +
(
r

L

)2
H(r) , H(r) = 1 + q2

r2 . (A.3)

The location of the largest root of f(r) defines the horizon radius rH . The one-form A — a
gauge field from the five-dimensional point of view — can be written as

A = q

r2
H + q2

√
r2
H + q2 + r4

H

L2H(rH)3

(
1− r2

H + q2

r2 + q2

)
dt . (A.4)

There is also a four-form Ramond-Ramond potential C4 = (C4)t dt ∧ ε3 +
∑
i(C4)φi

dφi ∧ ε3,
with

(C4)t = 1
L

[
(r2 + q2)2 − (r2

H + q2)2
]

and (C4)φi
= L2q

√
r2
H + q2 + r4

H

L2 h(rH)3 σ2
i .

(A.5)
We can now probe this geometry with a D3-brane; the relevant action is

SD3 = SDBI + SWZ = −T3

∫
d4ξ
√
− detP [G] + T3

∫
P [C4] , (A.6)

with the same notation as in section 2, except that the DBI-term now contains the 10D
metric Gµν . We allow the brane to move in the temporal, radial and the three angular
directions φi (with equal angular velocity due to the equality of the background angular
momenta). It is useful to define Gtφ =

∑
iGtφi

, Gφφ =
∑
iGφiφi

, and (C4)φ =
∑
i(C4)φi

.
Then, we can write the ten-velocity of the brane as

Ẋ = Ṫ (τ)∂t + Ṙ(τ)∂r +
3∑
i=1

Φ̇(τ)∂φi
, (A.7)

with a dot denoting a τ -derivative, whose square

ẊµẊ
µ = −GttṪ 2 +GrrṘ

2 + 2GtφΦ̇Ṫ +GφφΦ̇2 (A.8)

equals −1 if τ is taken to be proper time. This makes the metric and pullback of the
gauge field

ds2
4 = −ẊµẊ

µdτ2 + (R2 + q2)dΩ2
3 (A.9)

P [C4] =
[
(C4)tṪ + (C4)φΦ̇

]
dt ∧ ε3 , (A.10)

where ε3 is the volume element of dΩ2
3, and χi are the spatial coordinates of the brane. The

action for a probe brane becomes

SD3 =
∫
dτ ∧ ε3 LD3 = −T3

∫
dτ ∧ ε3

{
(R2 + q2)3/2

√
−ẊµẊµ − (C4)tṪ − (C4)φΦ̇

}
.

(A.11)
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The action is independent of Φ (only depending on its derivative), leading to a conserved
angular momentum J . Legendre transforming to substitute angular velocity for angular
momentum gives

LJD3 =LD3−Φ̇J ∝−(C4)t−
J

L
At+

√√√√−(Z6+ J2
C

Gφφ

)(
Gtt−

G2
tφ

Gφφ
+GzzZ ′2

)
, (A.12)

where we have used the fact that Gtφ ∼ At. The similarity to our proposed 3-brane
action (2.6) is now clear, in particular the term coupling the brane to the one-form A.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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