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Abstract

This paper addresses the tasks of explaining and correcting
infeasible one machine sequencing problems with a limit on
the makespan. Concretely, the paper studies the computation
of high-level explanations and corrections, which are given
in terms of irreducible subsets of the set of jobs. To achieve
these goals, the paper shows that both tasks can be reduced
to the general framework of computing a minimal set over
a monotone predicate (MSMP). The reductions enable the
use of any general-purpose algorithm for solving MSMP,
and three well-known approaches are instantiated for the
two tasks. Furthermore, the paper details efficient schedul-
ing techniques aimed at enhancing the performance of the
proposed algorithms. The experimental results confirm that
the proposed approaches are efficient in practice, and that the
scheduling optimizations enable critical performance gains.

Introduction
One machine problems play an essential role in the area of
scheduling. Besides their many applications, they often act
as building blocks of other, more complex, problems. As a
consequence, progress in one machine scheduling has en-
abled the computation of accurate lower bounds, approxi-
mations or efficient filtering techniques (Adams, Balas, and
Zawack 1988; Brucker, Jurisch, and Sievers 1994; Laborie
2003) in a variety of scheduling domains.

This paper focuses on the classical problem of scheduling
a set of jobs on a unary resource (Carlier 1982), in which we
impose a limit on the makespan. Such constraint may appear
naturally in practice (e.g., a global deadline that must be met
in a project). However, if the limit is too tight, the problem
may become infeasible, i.e., no possible schedule may exist
for it. In this paper, we consider such infeasible problems.

The analysis of infeasibility has been widely studied in
the literature, especially in the fields of model-based diag-
nosis, constraint reasoning or Boolean satisfiability, e.g., see
the recent surveys (Marques-Silva and Mencı́a 2020; Gupta,
Genc, and O’Sullivan 2021). In this context, two central rea-
soning tasks arise: i) explaining the causes of infeasibility
and ii) correcting it by relaxing the problem to some ex-
tent. The former has been typically addressed by comput-
ing so-called minimal unsatisfiable subsets of constraints
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(MUSes), whereas the latter is usually tackled by computing
minimal correction subsets (MCSes), i.e., irreducible sets of
constraints whose removal renders feasibility, or their com-
plements maximal satisfiable subsets (MSSes).

To analyze infeasible one machine scheduling problems,
we adopt a job-based view, in which jobs can be removed
to achieve feasibility (Mencı́a, Mencı́a, and Varela 2021;
Rodler, Teppan, and Jannach 2021). This enables the def-
inition of high-level explanations and corrections, given in
terms of irreducible subsets of the set of jobs. From a user
perspective, jobs may be considered as the basic elements
the problem is made of, so job-based notions may be use-
ful in this respect. Besides, these may serve as a first step in
the computation of finer-grained notions in the analysis of
infeasible scheduling problems (Lauffer and Topku 2019).

In this setting, we focus on the tasks of computing a sin-
gle arbitrary explanation and a single correction. The im-
portance of efficiently solving these tasks should not be un-
derstated. Methods for extracting a single set are the core
of enumeration algorithms (Liffiton et al. 2016; Narodytska
et al. 2018; Bendı́k and Cerná 2020) which, in turn, are use-
ful to approximate optimization versions of the considered
tasks, i.e., finding the smallest explanations and corrections.

For this purpose, we first show that both tasks can be re-
duced to the general framework of computing a minimal set
over a monotone predicate (MSMP) (Marques-Silva, Jan-
ota, and Mencı́a 2017). These reductions allow for stat-
ing a number of properties of the explanations and correc-
tions studied in this paper, as well as using any general-
purpose algorithm for solving MSMP to compute them.
In particular, we instantiate three well-known approaches
for the two tasks: Deletion (Chinneck and Dravnieks 1991;
Bakker et al. 1993), QuickXplain (Junker 2004) and Pro-
gression (Marques-Silva, Janota, and Belov 2013). More im-
portantly, building on the large body of research in the anal-
ysis of inconsistency in other domains, we develop efficient
scheduling techniques aimed at improving performance.

The proposed approaches were implemented by interfac-
ing the constraint programming solver IBM ILOG CP Opti-
mizer (Laborie et al. 2018). The results from an extensive
experimental study indicate that both tasks are efficiently
solved. Furthermore, the results reveal that the optimizations
bring dramatic performance gains, what enables the methods
to cope with problem instances with thousands of jobs.
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Preliminaries
This section provides the necessary background and defini-
tions that will be used throughout.

One Machine Sequencing
We consider the classical One Machine Sequencing Problem
(OMSP) formulated in (Carlier 1982). It consists in schedul-
ing n jobs J = {1, ..., n} on a single machine. Each job i
is available at its release date ri ≥ 0, and has a duration
pi > 0 and a tail qi ≥ 0, indicating the amount of time the
job remains in the system after it has been processed.

A schedule S is an assignment of a starting time sti to
each job i satisfying the following constraints: i) Jobs cannot
start before their release dates, i.e., sti ≥ ri for all i ∈ J ;
ii) Only one job can be processed at a time: (sti + pi ≤
stj) ∨ (stj + pj ≤ sti) for all i 6= j ∈ J ; and iii) Jobs
cannot be preempted.

Different metrics can be used to assess the quality of
a schedule (Brucker and Knust 2006), and these are often
used as an objective to optimize. Carlier (1982) studied the
minimization of the makespan, defined for a schedule S as
Cmax(S) = maxi∈J (sti + pi + qi).

The decision version of the OMSP asks whether a sched-
ule S exists with Cmax(S) ≤ C, where C is a limit on the
makespan. If such schedule exists, the problem instance is
said feasible. Otherwise, if C is too low and such schedule
does not exist, the instance is said infeasible. This decision
problem is NP-complete (Garey and Johnson 1979).

Throughout, we will consider infeasible problem in-
stances. These will be denoted as a pair (J , C).
Example 1. Figure 1 shows an optimal schedule for a set of
jobs J = {1, 2, 3, 4} (ri, pi and qi are shown in the chart
for each job). The optimal makespan is 20 so, for any value
C < 20, the instance (J , C) is infeasible.

Job-based Explanations and Corrections
In this paper, we address the tasks of explaining and correct-
ing the infeasibility of OMSP instances. For this purpose,
we focus on the computation of high-level explanations and
corrections, defined in terms of irreducible subsets of the set
of jobs. Given an infeasible problem instance (J , C), the
following definitions apply:
Definition 1. (MISJ)M⊆ J is a minimal infeasible subset
of jobs (MISJ) if and only if (M, C) is infeasible and for all
M′ (M, (M′, C) is feasible.
Definition 2. (MCSJ) C ⊆ J is a minimal correction subset
of jobs (MCSJ) if and only if (J \ C, C) is feasible and for
all C′ ( C, (J \ C′, C) is infeasible.
Definition 3. (MFSJ) F ( J is a maximal feasible subset
of jobs (MFSJ) if and only if (F , C) is feasible and for all
F ( F ′ ⊆ J , (F ′, C) is infeasible.

These definitions are analogous to MUSes, MCSes and
MSSes respectively. An MISJ is a subset-minimal set of jobs
that cannot be scheduled within the makespan limit. On the
other hand, an MCSJ is an irreducible subset of jobs whose
removal enables to schedule the remaining jobs without ex-
ceeding the limit. The complement of an MCSJ is an MFSJ.
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Figure 1: Optimal schedule for J = {1, 2, 3, 4}
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Figure 2: Schedule for the MFSJ {1, 3, 4}

Example 2. Consider the infeasible instance (J , C), with
J as in Example 1 andC = 15. There are two MISJs: {1, 2}
and {2, 3} (these sets cannot be scheduled with a makespan
not exceeding 15). The MCSJs are {2} and {1, 3}, with the
MFSJs {1, 3, 4} and {2, 4} (for each of these sets there exists
a schedule with makespan not greater than 15). Figure 2
shows a schedule for the MFSJ {1, 3, 4}, with makespan 13.

The notions above can be generalized to a setting in which
the set of jobs is partitioned as J = {B,S}, where B are
background jobs, that always have to be scheduled, and S
are jobs that can be removed. In this context, MISJs and
MCSJs would be defined as irreducible subsets of S .

Minimal Sets over a Monotone Predicate (MSMP)
Several problems are instances of the unifying frame-
work of computing a minimal set over a monotone pred-
icate (MSMP), including problems related to the analysis
of inconsistency (Marques-Silva, Janota, and Belov 2013;
Marques-Silva, Janota, and Mencı́a 2017).

A predicate P : 2|R| → {0, 1}, defined over a reference
set R, is monotone iff whenever P(R0) holds, with R0 ⊆
R, then P(R1) holds as well, for allR0 ⊆ R1 ⊆ R.

Minimal sets over a monotone predicate exhibit a useful
property:M ⊆ R is a minimal set over a monotone predi-
cate P iff P(M) holds and, for all u ∈M, P(M\{u}) does
not hold. Thus, checking the minimality of a set requires a
worst-case linear number of predicate tests, in contrast to
testing all (exponentially many) subsets ofM.

Throughout, w.l.o.g. we will consider that the elements in
a set follow a fixed arbitrary order. We might use subscripts
to indicate subsets, expressing ranges indexed from 1 on: for
a set T = {u1, ...u|T |}, Ti..j = {ui, ..., uj}, with i ≤ j.

A variety of algorithms can be used to solve the MSMP
problem. Given a monotone predicate P and a reference set
R, these methods assume that P(R) holds, and they differ
in the way they search for so-called transition or necessary
elements, defined as follows:
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Algorithm 1: Deletion for MSMP
Input: P : Monotone predicate,R: Reference set
Output: M: Minimal set over P

1 M←R
2 foreach u ∈M do
3 if P(M\ {u}) then
4 M←M\ {u}
5 returnM

Algorithm 2: QuickXplain for MSMP
Input: P : Monotone predicate,R: Reference set
Output: M: Minimal set over P

1 M← QXRec(P , ∅, ∅,R)
2 returnM

3 Function QXRec (P , B, D, T )
Output: Minimal set over P w.r.t. B

4 if D 6= ∅ ∧ P(B) then return ∅
5 if |T | = 1 then return T
6 m← b |T |2 c
7 (T1, T2)← (T1..m, Tm+1..|T |)
8 M2 ← QXRec(P ,B ∪ T1, T1, T2)
9 M1 ← QXRec(P ,B ∪M2,M2, T1)

10 returnM1 ∪M2

Definition 4. Given U ⊆ R, t ∈ U is a transition element
for P iff P(U) holds and P(U \ {t}) does not hold.

Whenever a transition element t ∈ U is found, it holds
that tmust belong to all minimal sets over P contained in U ,
so it is deemed to belong to the minimal set being computed.

In this paper, we instantiate three of such algorithms for
computing MISJs and MCSJs of infeasible OMSP instances.

Deletion Arguably, the simplest approach is Dele-
tion (Chinneck and Dravnieks 1991; Bakker et al. 1993),
shown in Algorithm 1. First, the setM is initialized with all
the elements in R. Then, for each u ∈ M, it tests whether
the predicate still holds after dropping u. If it does, u is dis-
carded (notice thatM\{u} contains a minimal set over P ).
Otherwise, u is a transition element, so it is kept inM. Upon
termination,M is a minimal set over P . This algorithm re-
quires O(m) predicate tests, with m = |R|.
QuickXplain QuickXplain (Junker 2004) is a divide-and-
conquer approach. It is based on the following principle: Let
{T1, T2} be a partition of R,M2 ⊆ T2 a minimal set such
that P(T1 ∪ M2) holds (i.e., a minimal subset of T2 that
together with T1 makes P hold), andM1 ⊆ T1 a minimal
set such that P(M2 ∪M1) holds (i.e., a minimal subset of
T1 that together withM2 makes P hold). Then,M1 ∪M2

is a minimal set over P .
Following this principle, the reference set is partitioned

into two sets T1 and T2, which are then recursively simpli-
fied, using T1 as a reference for simplifying T2 and then us-
ing the resultingM2 as a reference for simplifying T1. Al-
gorithm 2 shows its pseudocode. It relies on an invocation to

Algorithm 3: Progression for MSMP
Input: P : Monotone predicate,R: Reference set
Output: M: Minimal set over P

1 (M, T , ν)← (∅,R, 1)
2 while T 6= ∅ do
3 ν ← min(ν, |T |)
4 if P(M∪ (T \ T1..ν)) then
5 (T , ν)← (T \ T1..ν , 2× ν)
6 else
7 j ← BinSearch(P ,M, T , ν)
8 (M, T , ν)← (M∪ Tj..j , T \ Tj..j , 1)
9 returnM

10 Function BinSearch(P ,M, T , ν)
Output: r: Index of transition element

11 (l, r)← (0, ν)
12 while l < r − 1 do
13 m← b l+r2 c
14 if P(M∪ (T \ T1..m)) then
15 l← m
16 else
17 r ← m
18 return r

the procedure QXRec(P,B,D, T ), which recursively com-
putes a minimal set T ′ ⊆ T such that P(B ∪ T ′) holds. In
each invocation, P(B∪T ) holds, and the set D contains the
latest elements added to B. If D 6= ∅ and P(B) holds, the
empty set is returned, meaning that B = B ∪ D contains a
minimal set over P . Otherwise, if T = {t} then t is a transi-
tion element, which is returned; if |T | > 1, the set T is split
and two recursive calls are made.

QuickXplain requires worst-case O(k + k log(mk )) pred-
icate tests, where m = |R| and k is the size of the largest
minimal set over P . So it is more efficient when k is small.

Progression Alternatively, Progression (Marques-Silva,
Janota, and Belov 2013) looks for each transition element
following an exponential search approach.

It is shown in Algorithm 3. It manages two setsM and T ,
as well as an integer ν initialized to value 1. InitiallyM = ∅,
and this set will grow until eventually representing a mini-
mal set over P . This set is included in all the predicate tests.
The set T , initialized with all the elements in R, contains
the elements unknown to belong or not to the minimal set
being computed. Iteratively, until T = ∅, the algorithm tests
whether the predicate still holds after dropping the first ν el-
ements of T (i.e., T1..ν). If it does,M∪ Tν+1..|T | contains
a minimal set over P , so the elements in T1..ν are discarded
and the value of ν is doubled. Otherwise, T1..ν contains a
transition element, which is identified by means of a binary
search procedure. After it is found, it is moved toM and the
value of ν is reset to 1.

Progression requires a worst-caseO(k log(1+ m
k )) num-

ber of predicate tests, with m and k defined as before. As
QuickXplain, it is expected to be more efficient when k is
small. A similar algorithm was proposed in (Laborie 2014).
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Reasoning about Infeasible OMS Problems
This section reduces the computation of MISJs and MCSJs
to the MSMP framework. The reductions enable to state a
number of properties and to use a variety of algorithms.

Reductions to MSMP
The following monotonicity results will be used throughout:
Proposition 1. Let (F , C) be a feasible problem instance.
Then, (F ′, C) is feasible for all F ′ ⊆ F .

Proof. There is a schedule S for the jobs in F with
Cmax(S) ≤ C. Given the jobs F ′ ⊆ F , build a schedule
S′ setting their starting times as in S. Then, Cmax(S′) ≤
Cmax(S) ≤ C, and thus (F ′, C) is feasible.

Proposition 2. Let (I, C) be an infeasible problem in-
stance. Then, (I ′, C) is infeasible for all I ⊆ I ′.

Proof. Suppose there exists a set I ′, with I ⊆ I ′, such
that (I ′, C) is feasible. By Proposition 1, for all I ′′ ⊆ I ′,
(I ′′, C) is feasible, including (I, C). A contradiction.

Remark 1. The proofs above focus on the makespan, but
could be easily adapted to show that the monotonicity re-
sults hold for many other regular metrics (non-decreasing
with the completion times). Examples are total completion
time or maximum/total lateness/tardiness (if due dates are
considered). However, these may not hold for other regular,
e.g., average completion time, or non-regular metrics.

What follows holds for any setting in which the mono-
tonicity properties proven above hold. We now reduce the
computation of MISJs and MCSJs to MSMP. In both cases
we define a predicate, show it is monotone and that any min-
imal set over it is an MISJ or an MCSJ respectively.
Proposition 3. Given an infeasible problem (J , C), com-
puting an MISJ of J is an instance of MSMP.

Proof. Define PISJ(W, C) , ¬Feasible(W, C), with
W ⊆ R andR , J .
Monotonicity: Let I ⊆ R be such that PISJ(I, C) holds, i.e.,
(I, C) is infeasible. By Proposition 2, for all I ⊆ I ′ ⊆ R,
(I ′, C) is infeasible, so PISJ(I ′, C) holds.
Correctness: Let I be a minimal set for which PISJ(I, C)
holds, i.e., (I, C) is infeasible. Since I is minimal, for all
I ′ ( I, PISJ(I ′, C) does not hold, i.e., (I ′, C) is feasible.
Thus, by Definition 1, I is an MISJ.

Proposition 4. Given an infeasible problem (J , C), com-
puting an MCSJ of J is an instance of MSMP.

Proof. Define PCSJ(W, C) , Feasible(R\W, C), with
W ⊆ R andR , J .
Monotonicity: Let C ⊆ R be such that PCSJ(C, C) holds,
i.e., (J \ C, C) is feasible. By Proposition 1, for all C ⊆
C′ ⊆ R, (J \ C′, C) is feasible (note that J \ C′ ⊆ J \ C),
so PCSJ(C′, C) holds.
Correctness: Let C be a minimal set for which PCSJ(C, C)
holds, i.e., (J \ C, C) is feasible. Since C is minimal, for all
C′ ( C, PCSJ(J \ C′, C) does not hold, i.e., (J \ C′, C) is
infeasible. Thus, by Definition 2, C is an MCSJ.

Algorithm 4: Deletion for MISJ extraction
Input: J : Set of jobs, C: Makespan limit
Output: I: MISJ of J

1 I ← J
2 foreach u ∈ I do
3 if not isFeasible(I \ {u}, C) then
4 I ← I \ {u}
5 return I

Algorithm 5: Linear Search for MCSJ extraction
Input: J : Set of jobs, C: Makespan limit
Output: MCSJ of J

1 (F ,U)← (∅,J )
2 while U 6= ∅ do
3 Pick a job j ∈ U
4 U ← U \ {j}
5 if isFeasible(F ∪ {j}, C) then
6 F ← F ∪ {j}
7 return J \ F

By these reductions, both kinds of sets exhibit a property
previously mentioned. I ⊆ J is an MISJ iff (I, C) is infea-
sible and for all u ∈ I, (I\{u}, C) is feasible. Analogously,
C ⊆ J is an MCSJ iff (J \C, C) is feasible and for all u ∈ C,
(J \ (C \ {u}), C) is infeasible.

Besides, PISJ and PCSJ (defined in the proofs) are dual
predicates: the former tests the infeasibility of a set, whereas
the latter tests the feasibility of the complement of the set.
As a result, a relationship can be established – see Theo-
rem 1 in (Marques-Silva, Janota, and Mencı́a 2017) – which
is well-known to hold between MUSes and MCSes of in-
consistent systems (Reiter 1987; Birnbaum and Lozinskii
2003): Every MISJ is a minimal hitting set of all MCSJs,
and vice versa. This enables to use minimal hitting set dual-
ity algorithms to enumerate both kinds of sets, e.g., (Liffiton
and Sakallah 2008; Liffiton et al. 2016).

Computing one MISJ / MCSJ
Any general-purpose MSMP algorithm can be used to com-
pute an MISJ or an MCSJ of a given infeasible problem
(J , C), by just using the corresponding predicate and the
set of jobs J as reference set. To test the predicates we need
a decision procedure, that we name isFeasible(J , C),
which determines if the instance (J , C) is feasible or not.

As an example, Algorithm 4 shows the Deletion approach
for computing an MISJ. To compute an MCSJ, it suffices
to replace the condition in line 3 to test the feasibility of
the complementary set of jobs. However, when applied to
repairing inconsistency, Deletion is usually presented differ-
ently, and named Linear Search (LS) (Bailey and Stuckey
2005). It is shown in Algorithm 5. LS keeps the sets F ,
an under-approximation of an MFSJ, and U with jobs to be
tested. Iteratively, until U = ∅, it removes a job j ∈ U and
tests if (F ∪ {j}, C) is feasible. If it is, F is extended with
j. On termination, F is an MFSJ and so J \ F is an MCSJ.
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Optimizations
To improve performance, we build on a number of tech-
niques originally proposed for computing MUSes and MC-
Ses of unsatisfiable propositional formulas. These are aimed
at reducing the number of feasibility tests by using informa-
tion given by the underlying solver. This section shows how
to efficiently lift these methods to the scheduling domain and
proposes new ones to avoid expensive feasibility tests.

Building Blocks
The following procedures will be used as building blocks to
enhance the extraction of both MISJs and MCSJs.

Fitting jobs into schedules Throughout, we assume that
the decision procedure returns a witness (i.e., a schedule),
whenever it is invoked on a feasible instance. An invocation
will be represented as (res, S) ← isFeasible(F , C),
with res a Boolean indicating the feasibility of (F , C) and
S a schedule for the jobs in F when the instance is feasible.

Given such a schedule S, we describe an incomplete pro-
cedure to determine whether a job j /∈ F can be sched-
uled, so that efficiently proving (F ∪ {j}, C) feasible. The
proposed method follows an insertion-based approach, that
looks for a position (w.r.t. the order of the jobs in S) in which
j could be placed while satisfying all the constraints.

We assume that S will be given as an assignment of a
starting time to each job in F . This assignment induces a se-
quence (total order) of the jobs σ = (σ1, σ2, ..., σ|F|), where
stσi < stσj for all i < j. Obtaining σ from S can be done
in O(|F| × log |F|), since only sorting is necessary.

Then, a left-shifted schedule Lσ can be obtained inO(|σ|)
by traversing σ and scheduling the jobs as early as pos-
sible. As a result, Cmax(Lσ) ≤ C. To this aim, we use
a procedure ComputeSchedule(σ): the first job σ1 is
scheduled at its release date, i.e., stσ1 = rσ1 , whereas
stσi = max(rσi , stσ(i−1)

+ pσ(i−1)
) for i > 1. In ad-

dition, this procedure computes the latest possible starting
time lstσi to which each job could be delayed (possibly de-
laying the next jobs in σ too) with makespan not exceed-
ing C. This is done by traversing σ in reverse: for the last
job σ|σ|, lstσ|σ| = C − qσ|σ| − pσ|σ| and, for i < |σ|,
lstσi = min(C − qσi − pσi , lstσ(i+1)

− pσi).
Now, we can efficiently check whether a job j /∈ F

can be inserted into σ, resulting in a sequence σ′ =
(σ1, ..., σ(i−1), j, σi, ..., σ|σ|) such that Lσ′ ≤ C. By using
the sti and lsti values, this operation can be performed with-
out building Lσ′ . We define a procedure Fits(j, σ, C), that
returns the first position in which j could be inserted (or 0 if
no such position is found). After computing a schedule from
σ, this procedure iterates from position 1 to |σ|+1. At the i-
th iteration, it checks whether j can be inserted right before
σi. To this aim, it computes a tentative starting time for j as
st′j = max(rj , stσ(i−1)

+ pσ(i−1)
) (when i = 1, st′j = rj).

If st′j + pj + qj ≤ C and st′j + pj ≤ lstσi (the second con-
dition is not tested for i = |σ|+ 1), it returns the position i.
Otherwise, the next position is tested. If eventually no posi-
tion is found, the value 0 is returned, indicating that the job
j cannot be inserted into σ. This process runs in O(|σ|).

Lower bounds Given a set of jobs J , a simple lower
bound on the optimal makespan is given by SLB(J ) =
minj∈J rj+

∑
j∈J pj+minj∈J qj . A more accurate lower

bound can be computed as LB(J ) = maxJ ′⊆J SLB(J ′),
by considering all subsets J ′ ⊆ J . It is well-known that
LB(J ) can be computed in O(n log n), with n = |J |,
by relaxing the non-preemption constraints and computing
a so-called Jackson’s Preemptive Schedule (JPS) (Carlier
1982). In the JPS, jobs are preemptively scheduled by non-
increasing tails, breaking ties arbitrarily. The makespan of
such schedule equals LB(J ).

Lower bounds can be used to improve the efficiency of
both MISJ and MCSJ extraction. Given an instance (W, C),
if LB(W) > C, then it is declared infeasible, avoiding an
invocation to the (expensive) decision procedure.

Boosting MISJ Extraction
During the computation of an MISJ for an infeasible in-
stance (J , C), the set of jobs is implicitly partitioned as
J = {I,D, T }, where I contains jobs included into the
MISJ under construction, D are the jobs that have been dis-
carded, and T contains jobs still unknown to belong or not
to the MISJ. The invariant that (I ∪ T ) is infeasible holds.

If at a given step, for a job t ∈ T , (I ∪ T \ {t}, C) is fea-
sible, then it holds that t must belong to all MISJs contained
in I ∪ T . In this case, t is a transition job.

Consider a schedule S for (I∪T \{t}, C) and a job j ∈ T
with j 6= t. If from S we can obtain a schedule S′, with
Cmax(S

′) ≤ C, for the instance (I∪T \{j}, C), that would
be a proof that j is also a transition job. Such a schedule
S′ can be efficiently searched for. First, from S we get the
induced sequence of jobs σ, and define the new sequence
σ′ = σ \ {j}. Then, if Fits(t, σ′, C) returns a position
greater than 0, the job t can be inserted in the schedule Lσ′ ,
thus proving that j is a transition job as well, i.e., (I ∪ T \
{j}, C) is feasible. The process can be done for all j ∈ T .

This method is inspired in the model rotation tech-
nique (Belov, Lynce, and Marques-Silva 2012; Wieringa
2012) proposed for speeding up the computation of MUSes
of unsatisfiable propositional formulas. We call it job rota-
tion. It is shown in Algorithm 6. Each transition job discov-
ered is added to the setN , which is returned. This procedure
runs in O(n2), with n = |I ∪ T |.

An enhanced version of the Deletion algorithm, exploiting
both lower bounds and job rotation, is shown in Algorithm 7.
If at an iteration LB(I∪T \{t}) > C, the job t is discarded,
saving a call to the decision procedure. Besides, after identi-
fying a transition job, job rotation is issued to discover new
transition jobs N ⊆ T , which are moved from T to I.

Regarding QuickXplain, lower bounds can be easily in-
tegrated as well. However, due to its recursive nature (see
Algorithm 2), the application of job rotation is restricted to
the elements in the set T (which, in this case, is local to the
invocation) after having identified a transition job in the pre-
vious call to the recursive algorithm. Progression does not
suffer from this limitation. In this case, a transition job is
identified after the binary search (see Algorithm 3), and job
rotation can be applied over the whole (global) set T .
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Algorithm 6: Procedure JobRotation
Input: I, T : Sets of jobs, t: Transition job, S:

Schedule for I ∪ T \ {t}, C: Limit
Output: N : Discovered transition jobs

1 (σ,N )← (GetSequence(S), ∅)
2 foreach j ∈ T do
3 σ′ ← σ \ {j}
4 if Fits(t, σ′, C) then N ← N ∪ {j}
5 return N

Algorithm 7: Enhanced Deletion (MISJ extraction)
Input: J : Set of jobs, C: Makespan limit
Output: I: MISJ of J

1 (I, T )← (∅,J )
2 while T 6= ∅ do
3 Pick a job t ∈ T
4 T ← T \ {t}
5 if LB(I ∪ T ) > C then continue
6 (res, S)← isFeasible(I ∪ T , C)
7 if res then // t transition job
8 N ← JobRotation(I, T , t, S, C)
9 (I, T )← (I ∪ N ∪ {t}, T \ N )

10 return I

Boosting MCSJ Extraction
The solutions computed by the decision procedure can be
used to speed up the computation of minimal corrections of
inconsistent systems (Nöhrer, Biere, and Egyed 2012).

Similarly as before, in the computation of an MCSJ the
set of jobs J is implicitly partitioned as J = {F , C,U},
where F is a feasible subset, C contains jobs in the MCSJ,
and U are jobs unknown to belong to the MCSJ or not.

After testing a feasible instance (F ∪ U ′, C), with U ′ ⊆
U , the jobs in U ′ are moved toF . Given a schedule S to such
instance, if it can be extended to a schedule S′ that includes
a job j ∈ U\U ′, then (F∪{j}, C) would be proved feasible.

We can look for such schedule efficiently: we first ob-
tain the sequence σ induced by S, and invoke the procedure
Fits(j, σ, C), which returns a position i. If i > 0, we build
a new sequence σ′ by inserting the job j at the i-th position
in σ. The left-shifted schedule Lσ′ proves (F ∪{j}, C) fea-
sible without an invocation to the decision procedure. This
process can be performed for all the jobs in a set U by it-
eratively extending the schedule, as shown in Algorithm 8.
The algorithm returns a set of jobs that can be added to the
feasible set F . It runs in O(n2), with n = |F ∪ U|.

Algorithm 9 shows an enhanced version of Linear Search
for computing an MCSJ. Before invoking the decision pro-
cedure on the instance (F ∪ {j}, C), it discards the job j if
the lower bound exceeds C (eventually, j will be included in
the MCSJ). In addition, after a feasible invocation it tries to
extend the computed schedule with jobs in U .

Both optimizations can be also integrated into QuickX-
plain and Progression. In these cases, it suffices to keep a
global set F with the under-approximation of the MFSJ. Af-

Algorithm 8: Procedure ExtendSchedule
Input: F , U : Sets, S: Schedule for F , C: Limit
Output: N : Jobs to add to F

1 (σ,N )← (GetSequence(S), ∅)
2 foreach j ∈ U do
3 i← Fits(j, σ, C)
4 if i > 0 then
5 σ ← InsertJobAtPos(j, i, σ)
6 N ← N ∪ {j}
7 return N

Algorithm 9: Enhanced LS (MCSJ extraction)
Input: J : Set of jobs, C: Makespan limit
Output: MCSJ of J

1 (F ,U)← (∅,J )
2 while U 6= ∅ do
3 Pick a job j ∈ U
4 U ← U \ {j}
5 if LB(F ∪ {j}) > C then continue
6 (res, S)← isFeasible(F ∪ {j}, C)
7 if res then
8 F ← F ∪ {j}
9 N ← ExtendSchedule(F ,U , S, C)

10 (F ,U)← (F ∪N ,U \ N )
11 return J \ F

ter a feasible call to the decision procedure, the schedule is
used to extend F with jobs contained in the target set T (see
Algorithms 2 and 3), which are then removed from this set.

Experimental Results
A series of experiments was conducted to assess the perfor-
mance of the proposed algorithms.

We implemented a prototype1 in C++, interfacing the con-
straint programming solver IBM ILOG CP Optimizer (La-
borie et al. 2018), used by the algorithms as the decision pro-
cedure. A feasibility test on (J , C) is modeled by using an
interval variable (IloIntervalVar) for each job and en-
forcing a global IloNoOverlap constraint between them.
In addition, the makespan is represented by an IloMax ex-
pression, enforced not to exceed C. The invocations were
run using one worker and default parameters.

The experiments were performed over 600 infeasible in-
stances, generated as follows: First, different sets of jobs
J were built using a process described in (Carlier 1982).
Given n and a value k, each job i ∈ {1, ..., n} is as-
signed the integers pi ∈ U(1, 50), ri ∈ U(0, n × k)
and qi ∈ U(0, n × k), where U denotes a uniform dis-
tribution. Five such sets of jobs were built for each pair
(n, k), with n ∈ {100, 250, 500, 1000, 2500, 5000, 7500,
10000, 12500, 15000} and k ∈ {1, 2, 5}. Then, the opti-
mal makespan C∗ was computed for each of them, and we
built 5 infeasible instances (J , C) by setting C to a fraction

1Available at https://github.com/carlosmencia/erioms.git
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Avg. Time (s) Avg. #Calls

Method #Sol. All Easy Solved Easy

CR1 219 2361.0 159.5 - -
CR2 244 2222.3 131.3 - -
Del 297 1955.2 65.8 1352.9 462.8
QX 297 2026.3 118.0 810.5 557.8
Prog 302 1922.2 66.2 440.4 293.7
EDel 560 540.8 0.7 5.5 4.5
EQX 342 1764.4 28.4 257.3 145.6

EProg 532 726.2 1.0 10.8 8.7

Table 1: Summary of results for MISJ extraction

r ∈ {0.1, 0.25, 0.5, 0.75, 0.9} of C∗. Some small values of
r led to instances containing jobs j with stj + pj + qj > C.
These were removed as, in these cases, the MISJ {j} can be
extracted in linear time. In all, there are 600 instances, with
60 of each size. Regarding r, there are 50 instances with
r = 0.1, 100 with r = 0.25 and 150 with the other values.

The experiments were run on a Linux cluster (Intel Xeon
2.26 GHz), with a time limit of 1 hour for each instance.

MISJ Extraction
We analyze the results obtained by Deletion, QuickXplain
and Progression in both their basic (Del, QX, Prog) and
enhanced (EDel, EQX, EProg) versions. We also consider
CP Optimizer’s Conflict Refiner functionality, that identi-
fies minimal infeasible subsets of constraints. To compute an
MISJ using the model described above, we activated the op-
tion ConflictRefinerOnVariables. This approach
is named CR1. An alternative, referred to as CR2, models
the jobs as optional activities, enforcing their presence with
an IloPresenceOf constraint. Such constraints included
in a minimal conflict represent an MISJ.

The results are summarized in Table 1. For each method,
it reports the number of instances solved by the time limit
(i.e., an MISJ was computed), the average running time over
all instances (taking 3600s for the unsolved ones) and over
212 easy instances solved by all methods. It also shows the
average number of calls to the decision procedure for the
instances solved by the method and for the easy ones. More-
over, Figure 3 depicts the running times of the algorithms. In
this plot, for a given method, the point (x, y) indicates that
x instances are solved in no more than y seconds.

The basic versions of the algorithms clearly outperform
CR1 and CR2. Surprisingly, these basic algorithms obtain
similar results. QX and Prog reduce the number of calls
(w.r.t. Del), but this does not translate into significant per-
formance gains. We have observed that infeasible instances
are usually solved by the decision procedure faster than fea-
sible ones (often more than 10 times faster). In the computa-
tion of an MISJ, QX and Prog aim at reducing the number
of infeasible calls, what explains these results. For example,
for the easy instances, on average Del performs 275.2 fea-
sible and 187.6 infeasible calls, whereas Prog makes 280.4
and 13.3, but infeasible calls take much shorter time. The

0 100 200 300 400 500 600
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

EDel

EProg

EQX

Prog

Del

QX

CR2

CR1

Figure 3: MISJ extraction: Running times

0 100 200 300 400 500 600
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

EDel

Del+JR

Del+LB

Del

Figure 4: MISJ extraction: Versions of Deletion

enhanced algorithms perform much better. For EProg and
EDel the improvement is dramatic, what allows them to
solve several instances with 15000 jobs (25 and 36 respec-
tively, while Prog and Del solve 5 and 0). EQX lays behind
(due to the limitations of job rotation in this algorithm), but
it clearly outperforms QX.

Figure 4 shows the effect of each optimization in Dele-
tion. Del+LB only exploits lower bounds, whereas Del+JR
only uses job rotation. The main responsible for the effi-
ciency gains is job rotation, but combining both techniques
(EDel) results in a remarkable improvement.

MCSJ Extraction
We evaluate the basic and enhanced versions of Linear
Search (LS and ELS respectively) as well as those of Quick-
Xplain and Progression for computing an MCSJ.

Table 2 reports a summary of the results (in this case there
are 363 easy instances solved by all the methods). Running
times are shown in Figure 5. The basic methods perform
better than they did for MISJ extraction, and there are sub-
stantial differences among them. In this case, QX and Prog
successfully avoid (expensive) feasible calls, what results
in a clear advantage over LS. The proposed optimizations
are very effective, enabling the algorithms to solve more in-
stances with very few calls to the decision procedure. Re-
markably, EQX solves all the instances in the benchmark set.

Figure 6 assesses the effect of each optimization in Quick-
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Avg. Time (s) Avg. #Calls

Method #Sol. All Easy Solved Easy

LS 363 1575.8 254.2 2125.0 2125.0
QX 542 785.1 49.4 4249.4 2791.7

Prog 550 678.3 24.2 2176.5 1413.9
ELS 592 225.6 2.2 3.1 2.6
EQX 600 145.9 6.7 2.5 2.2

EProg 591 243.7 2.4 3.3 2.7

Table 2: Summary of results for MCSJ extraction

Xplain. QX+LB only exploits lower bounds and QX+ES tries
to extend schedules obtained after feasible calls. Each of the
techniques alone brings significant improvements, and their
combination results in the best-performing approach.

It is worth mentioning that, for both tasks, the instances
tend to get harder with both size and increasing values of
r. This is not surprising, as more (and potentially harder)
feasibility tests may be necessary as size grows. Besides,
higher values of r may result in the existence of larger MISJs
and MFSJs (smaller MCSJs), what affects performance.

Related Work
In the scheduling literature, infeasible problems have at-
tracted a considerable interest. In this respect, most works
focused on scheduling as many jobs as possible under the
given hard constraints, and that is related to computing an
MFSJ (resp. MCSJ) of the largest (resp. smallest) size.

This task was studied in different settings. For in-
stance, Della Croce, Gupta, and Tadei (2000) investigate
the problem in the context of flow shop scheduling with a
common due date. Barbulescu et al. (2004) address over-
subscribed satellite scheduling problems with multiple re-
sources by means of genetic algorithms and local search.
Liao et al. (2019) use MaxSAT solvers to tackle over-loaded
real-time systems with a unary resource. Recently, Mencı́a,
Mencı́a, and Varela (2021) studied the problem in the
context of job shop scheduling with a constraint on the
makespan, and proposed a genetic algorithm that approxi-
mates MFSJs by using an incomplete version of the Lin-
ear Search algorithm. The same problem was considered
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in (Rodler, Teppan, and Jannach 2021), where it was solved
by computing random MFSJs with a variant of QuickX-
plain. This work identified the relationship between MFSJs
and MSMP, and proposed a reduction similar to the one we
showed for one machine scheduling. This approach invokes
a solver as a black-box, without using optimizations.

Our work is also related to the growing area of explain-
ability in scheduling. In this respect, the closest work we can
mention is the framework proposed by Lauffer and Topku
(2019) for explaining infeasible RCPSP-like problems. Ex-
planations with different levels of detail are computed by
enumerating MUSes of an SMT encoding. One of such ex-
planations is defined in terms of the tasks in the problem,
what is related to the notion of MISJs studied herein. Other
works include the tool developed by Agrawal, Yelamanchili,
and Chien (2020) for explaining why certain activities were
not scheduled in the context of NASA’s Mars Rover mis-
sions, or the use of abstract argumentation to explain why
a schedule is feasible or efficient (Cyras, Lee, and Letsios
2021). Besides, Pozanco et al. (2022) use MILP to explain
why a user preference was not met in an optimal schedule.
Korikov and Beck (2021) proposed a framework based on
inverse constraint programming for computing counterfac-
tual explanations about optimal solutions, and used this ap-
proach in a one machine problem with due dates. Such ex-
planations share some similarities with MCSJs. Investigat-
ing this relationship seems interesting for the future.

Conclusions
This paper studies the tasks of explaining and correcting in-
feasible one machine scheduling problems with a limit on
the makespan. We have shown that the analysis of such in-
feasible problems can be reduced to problems of finding
minimal subsets over monotone predicates. In turn, this en-
ables a large number of well-known algorithms to be used
for this purpose. Furthermore, we have identified a num-
ber of optimizations which can be exploited with any of
these algorithms. The experimental results demonstrate that
the proposed optimizations, integrated on several algorithms
for reasoning about infeasibility, yield critical performance
gains in practice, resulting in a large number of problem in-
stances solved within the allowed running times.
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