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Abstract—This work proposes an online distributed control
architecture that utilizes dynamic optimal power flow (DOPF)
and time of use energy prices alongside state estimation and
linearized AC-power flow to ensure optimal and safe operation of
active distribution networks, where distributed energy resources
(DERs) are embedded. The DOPF problem is formulated as
Mixed-Integer Non-linear Programming (MINLP) to maximize
the net profit of an active distribution network assuming different
buying and selling time of use energy prices. After that the
DOPF formulation is relaxed to a non-linear programming
problem to be solved with off-the-shelf solvers like IPOPT. The
proposed framework is introduced showing how the algorithms
are distributed between the cloud and edge devices to allow online
control of distribution networks. Finally, the proposed control
architecture is validated using real data from a distribution grid
located in Spain.

Index Terms—distributed energy resources,energy stor-
age,optimal power flow, state estimation

I. INTRODUCTION

Conventionally, the electrical network was mainly managed
through optimal power flow (OPF) done by the transmission
system operator (TSO) [1]. Distribution grids were designed
on a “fit-and-forget” basis, which would hinder the progres-
sion towards electrification. However, generation centers are
shifting towards the distribution grid and the incorporation
of smart Distributed Energy Resources (DERs) like energy
storage systems (ESS) and manageable loads have created an
urgent need to also optimally operate the distribution grid [2].
Accordingly, optimal operation of the newly introduced DERs
in the distribution grid is crucial to allow electrification and
ensure grid flexibility.

OPF allows the grid operator to optimize a certain objective
function, while representing nodal power balance and the
network equations as constraints. Moreover, physical limits
imposed by the network components can be taken into account
like: voltage magnitude, branch power flow and generation
limits [1]. OPF for distribution networks was mainly explored
for optimal placement and sizing of capacitor banks to max-
imize the net savings from the DSO perspective [3], [4]. The
net savings function is formulated as the sum of the weighted
power losses, energy losses, cost of the fixed capacitors and
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cost of the switched capacitors. Accordingly, this problem
presents a Mixed-Integer Non-linear Programming (MINLP)
formulation of the OPF, since the decision variables of en-
abling a certain capacitor bank are binary.

Moreover, with the integration of energy storage devices,
the OPF problem became more complicated as the OPF has
to be run over a certain period where the profit is to be
maximized. Accordingly, the constraints of not overcharging
or over-discharging an ESS in the grid depend on the preceding
time steps. The OPF that is solved over several time steps is
called Dynamic Optimal Power Flow (DOPF) [5] or Multi-
Period Optimal Power Flow (MPOPF) [6], which is usually
solved using interior point algorithms. The general concept of
DOPF was introduced in [5] with a general formulation of
the problem, which was solved for different active networks
to show the importance of incorporating the time factor in
the OPF formulation. In [6], the authors present an efficient
interior point algorithm, called BELTISTOS, that is specially
designed for MPOPF problems achieving less convergence
time and lower memory footprint compared to other interior
point packages like IPOPT, KNITRO, and MIPS. A compre-
hensive survey was presented in [7], [8] reviewing the different
OPF formulations and ways to solve them.

Most of the literature focuses on formulating and solving the
OPF problem, but not on the real-time use of the OPF as a part
of the control architecture to operate the distribution grid. A
real-time control framework was developed in [9] to take into
account the temporal difference between the time of solving
the OPF problem and the actual time of executing the control
command. The control architecture relies on linearizing the
AC-OPF problem to solve it every control cycle. However, this
framework does not take into account the effect of preceding
control cycles in its OPF formulation which only guarantees an
optimized operation in one control cycle. Other formulations
have deviated from the OPF in managing DERs and chose to
just deal with behind-the-meter power balance like [10], [11].
Even though these formulations allow real-time operation, they
do not take into account the physical constraints imposed by
the distribution network.

OPF formulations to optimize the net profit in a distribution
network, taking into account different selling and buying
energy prices and self consumption of the generated or stored
energy, are lacking in the literature. However, the use of semi-



definite programming to solve certain OPF formulations for
radial distribution networks was presented in several publi-
cations [12] [13]. Measurements from across the distribution
network would be the main driver of any real-time control
architecture, yet it is known that measurements are never 100%
accurate but usually are accurate within a certain covariance.
State estimation helps grid operators to estimate the grid status
as accurate as possible, given a certain set of measurements
[14]. Combining OPF and state estimation to have a reliable
real-time control framework to manage DERs in distribution
grids is lacking in the literature. The contributions of this paper
addresses this gap in literature through three main points:

• A MINLP DOPF formulation to optimize the net profit
across a 24-h period for an active distribution grid that
takes into account the state of charge limits for ESS and
the opportunity cost of selling or buying the energy at
each control cycle.

• A relaxed DOPF formulation that converts the MINLP
problem to a non-linear programming problem, which
would facilitate solving the DOPF problem using off-the-
shelf solvers like IPOPT.

• An introduction of a real-time control framework for
active distribution networks that is distributed among the
cloud and edge devices allowing to combine the DOPF
formulation with real-time state estimation and real-time
DER set points alterations based on a linearized AC
power flow.

The proposed grid-control architecture is tested by simulating
the operation of a realistic 76-bus distribution grid [15].

II. DOPF FORMULATION

This section presents the DOPF formulation used to opti-
mize the net profit of an active distribution grid across a 24-h
period and the relaxation employed to facilitate the solution
using off-the-shelf solvers.

A. AC power flow formulation

The main constraints of an OPF problem are the power flow
equations. For a distribution network, the power flow equations
have to take into account the unbalanced nature of the distri-
bution grids. The main difference between balanced power
flow and its unbalanced counterpart is that each bus in the
distribution network would be treated as four different nodes
because of the unbalanced load. Accordingly, the power flow
formulation of the unbalanced power flow is similar to that
its balanced counterpart after properly constructing the Ybus

matrix. Each element of the Ybus matrix is generally a complex
number that is denoted as G+jB, where G is the conductance
and B is the susceptance. Voltages are represented as phasors,
thus each one given by two unknowns, voltage magnitude Vi

and its angle δi. The active and reactive power injected at each
node are given by (1) and (2) respectively. i is an index that
maps all the non-neutral nodes in the system.

Pi =

4Nbus∑
j=1

ViVj(Gij cos(δi − δj) +Bij sin(δi − δj) (1)

Qi =

4Nbus∑
j=1

ViVj(Gij sin(δi − δj)−Bij cos(δi − δj) (2)

For a 4-wire network, power injection at the neutral point, as
shown in (3) has to be considered. The fourth phase or wire
would be denoted as N and p denotes non-neutral phases.

Si = vp−N · i∗p = vp · i∗p + vN · i∗N = Sp + SN (3)

Accordingly, the active and reactive power injected to the
neutral wire in terms of voltage phasors are shown in (4) and
(5) respectively.

PNi
=

VNi

Vi
(−Pi cos(δNi − δi) +Qi sin(δNi − δi)) (4)

QNi
=

VNi

Vi
(−Pi sin(δNi

− δi)−Qi cos(δNi
− δi)) (5)

the power flow equations can be formulated as shown in (6)-
(7), where PSi and QSi are the scheduled active and reactive
power at node i.

fP = Pi + PNi
− PSi

= 0 (6)

fQ = Qi +QNi
−QSi

= 0 (7)

B. DER modelling

For this paper, two main DERs would be considered:
PV generators and energy storage systems. PV generation is
modelled as a function of irradiance which changes overtime,
as shown in (8).

PPV (t) = PVrating ∗ Irradiance(t) (8)

Energy storage systems, in contrast to PV arrays, can be
fully controlled up to their ratings and their injected power
does not directly depend on the environmental conditions.
Accordingly, energy storage elements can be considered as
flexibility agents in the distribution grid and can be modelled
also as a controllable power source. Since ESS can both inject
and absorb power to/from the grid, the ESS model should
include an element that can act as either a power source
or a power sink. The OPF solver should decide whether an
energy storage element injects or absorbs energy into the
grid, based on a given cost function. The limits on PESS

are that its absolute value should not exceed the rated value
of the ESS and that the energy stored in the energy storage
element complies with the minimum and maximum energy
limits (EESSmin

and EESSmax
, respectively), which are part

of the OPF constraints and expressed in (9) and (10).

|PESS | ≤ PESSrated
(9)

EESSmin ≤
∫

PESS · dt ≤ EESSmax (10)

The scheduled active power would be also denoted as PS ,
which is equal to the net power at each node taking into
account the DERs and the load, as shown in (11).

PSi
= −PDi

+ PPVi
+ PESSi

(11)



C. MINLP DOPF formulation

Since the objective is to optimize the net profit of the active
distribution network across a 24-h period, the cost function has
to take into account different buying and selling energy prices
that are a function of time fBuy(t) and fSell(t) respectively.
The net profit, which is the objective function, across the day
of a distribution network can be calculated as shown in (12),
where δSelli(t) and δBuyi(t) are boolean variables that specify
whether each node is selling or buying energy at each time
instant. It is important to note here that the time step taken is
1 hour.

f(x) =

3NPQbuses∑
i=1

24∑
t=1

PSi
(t) · δSelli(t) · fSell(t) ·∆t

+PSi
(t) · δBuyi

(t) · fBuy(t) ·∆t

(12)

The complete formulation of the MINLP DOPF problem is
shown in (13), assuming that the voltage magnitude is allowed
to deviate by 10% from the base voltage (Vbase).

max
V,δ,PESS

f(x)

s.t. (6), (7), (9), (10)
0.9Vbase ≤ |Vi| ≤ 1.1Vbase

|Iij | ≤ Iijrated

(13)

D. DOPF relaxation

As previously introduced in section II-C, the OPF formu-
lation to optimize the net profit for a distribution network
with high DER penetration is a MINLP, which means that
solving the problem usually takes a long time, convergence is
not guaranteed and also global optimality is not guaranteed.
Accordingly, a relaxation to the objective function can be
employed to eliminate the need for binary variables. The
relaxation employed makes sure to penalize the objective
function when the node starts to buy energy and reward the
objective function when the node sells energy. In addition to
that, it has to capture the change of price across the day.
Consequently, the two price curves would be combined into
one price curve through a weighted difference scheme that is
governed by the expression (14).

fcomb(t) = a · fSelling(t)− b · fBuying(t) (14)

However, the value of the objective function using the com-
bined price curve does not reflect the actual net profit of
the network, but this can be easily determined through post
processing. This relaxation would slightly change the OPF
formulation, easing the solving while guarantying global op-
timality and convergence [16]. The relaxed OPF formulation
is shown in (15).

max
V,δ,PESS

3NPQbuses∑
i=1

24∑
t=1

PSi(t) · fcomb(t) ·∆t

s.t. (6), (7), (9), (10)
0.9Vbase ≤ |Vi| ≤ 1.1Vbase

|Iij | ≤ Iijrated

(15)

It is important to remark that a duality between both formu-
lations was not mathematically established, but simulations
have showed that the relaxed problem converges to a minimum
point of net profit.

III. ONLINE DISTRIBUTED CONTROL ARCHITECTURE

The proposed control architecture is distributed between
the cloud and edge devices, where the more computationally
expensive day-ahead DOPF problem is solved on the cloud
to produce the power set points for each of the DERs. The
DOPF problem is solved based on day-ahead generation, load
and price predictions. The day-ahead power set points and the
predicted system states (voltage magnitudes and angles) are
sent to the edge device. In the edge, a real-time state estimation
problem is solved based on the augmented Weighted Least-
Square (WLS) method [12] to estimate the current grid state
based on the available measurements. After that, the difference
between the predicted system states and the actual estimated
states is used to compute a small-signal disturbance in the DER
power set point through a linearized form of the AC power
flow. These perturbations are tested to ensure that there are no
constraint violations, and the resulting modified set points are
sent to the DERs.

The linearized AC power flow is presented as a Newton-
Raphson linearization by calculating the jacobian of the system
based on the Ybus and the current operating point, as shown
in (16), where Jp is the jacobian of the electrical grid based
on the current operation point, ∆P is the perturbation in
the scheduled power and ∆X is the difference between the
predicted states and the estimated states.

∆P = Jp∆X (16)

The complete control architecture is illustrated by Fig. 1. In
order to normalize the angle difference, expression (17) based
on the dot product is used.

cos(∆δ) =
a · b
|a||b|

(17)

IV. CASE STUDY

Fig. 2 shows the 76-bus 4-wire LV distribution network used
in this study [13]. This network has 54 different single-phase
customers, which means that 18 of the 76 buses are load
buses with 3 customers each. All load buses are monitored
by smart meters. The data regarding the active and reactive
power demand and network topology was made available in
[17]. The sample time of the loading data is 1 second for a
total period of 24 hours, which means that there are 86400
different data points available for this network. These data
points were averaged to obtain a 1-h sample dataset. The grid
was modelled in openDSS [18] using the Python interface to
extract the needed data like the grid measurements and the
Ybus matrix. On the other hand, the relaxed DOPF formulation
was modelled using Pyomo [19] and IPOPT [20] was used to
solve the relaxed DOPF problem.
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Fig. 1. Proposed real-time control architecture for active distribution grids

A. DOPF solution for the base case

For the day-ahead DOPF solution, the irradiance was as-
sumed to be perfectly sinusoidal starting from 8 a.m. until 8
p.m. While the price curves were extracted from the eSios
API [21], the buying and selling curves are shown in Fig. 3.
Furthermore, the DOPF model was fed day-ahead active and
reactive power predictions. The solution of the DOPF problem
is shown in Fig. 4 presenting the state of charge (SOC) of
the ESS at selected buses along the loading profiles at the
same buses with the weighted difference curve. As shown, the
weighted difference curve is always positive so it penalizes
buying energy from the grid (negative power) and awards
selling energy to the grid (positive power) and it includes the
dynamics exhibited by both curves. As expected, the algorithm
prompts the ESS to store energy when the buying price is
lower than the peak in the morning to prevent buying energy
at peak time. During PV peak, the ESS charges to use the
energy at night when the buying prices are high and also
selling energy does not produce a high revenue due to the
low selling prices.
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Fig. 2. 76-bus 4-wire LV distribution network
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B. Test cases for the proposed control architecture

Deviations from the predicted load profiles (base case) were
introduced to test the proposed control framework. Three
different test cases were developed: a −5% deviation from the
predicted profile, a 5% deviation from the predicted profile
and a random Gaussian distributed load profile that has the
prediction as its average but with a standard deviation of 5%.
Fig. 5 shows the net savings across a 24-h period for the three
test cases alongside the base case. The net savings are almost
the same when using the proposed control architecture with
the base case as the prediction compared to the case of 100%
accurate prediction.

Table. I shows a summary for a one year simulation that was
setup to test the economic performance of the proposed control
architecture. As shown, the control architecture with DER
introduction into the distribution grid has achieved savings in
the electrical energy cost of 85.86%. A complete financial
analysis should be done with payback period and capital cost
consideration when designing the ESS and PV systems for
the distribution grid, but this analysis is an indication of the
economic competitiveness of the proposed architecture.
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TABLE I
SUMMARY OF THE FINANCIAL PERFORMANCE FOR A 1-YEAR

Without DER With DER
Energy cost(e) Energy cost(e) Net savings(e) % Saved

98,550 13,973 84,613 85.86%

V. CONCLUSION

This paper presents an online distributed control architecture
that can be used for optimal operation of active distribution
networks. Firstly, a MINLP DOPF formulation is introduced
by formulating the constraints and a cost function that models
the net profit of the whole distribution grid across a 24-
h period. Secondly, the MINLP problem is relaxed to a
non-linear programming problem to solve the problem using
off-the-shelf optimizers like IPOPT. A duality between both
problems is not mathematically established, but simulations
have shown that the relaxed problem converges to a global
optimum of the net profit function. After that, an online control
architecture distributed between the cloud and edge devices is
presented. The proposed architecture solves the computation-
ally expensive DOPF based on day-ahead predictions on the
cloud, then utilizes state estimation and online measurements
to estimate the grid state on the edge devices and sends
real-time DER set points accordingly. The proposed control
architecture is then tested on a 76-bus realistic distribution
grid to evaluate the DOPF solution and the effectiveness of
the proposed architecture. The results of the different test cases
show that the proposed controllers achieve net savings for the

grid while allowing the integration of DERs. In future works,
it is important to conduct further analysis to test the proposed
architecture under different load profiles and grid architectures.
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