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A B S T R A C T   

The calorific value of solid fuels, also referred to as the gross calorific value (GCV) or the higher heating value 
(HHV), is a crucial property for its use as a fuel in energy systems. The HHV of coal as a resource can be predicted 
by more effective algorithms that use schedule information in engineering, like ultimate analysis, enabling fast 
decisions about its use as fuel in energy systems. The goal of this research was to acquire a global artificial 
prediction model relied on an interesting algorithm, a nonlinear model termed multivariate adaptive regression 
splines (MARS), in addition to the grid search (GS) optimizer, for characterization of coal HHV (output variable) 
using constituents of coal ultimate analysis: carbon (C), nitrogen (N), oxygen (O), hydrogen (H) and sulphur (S) 
(5 specific input variables). Moreover, a multivariate linear regression (MLR) and a multilayer perceptron-type 
(MLP) artificial neural network (ANN) were adjusted to the observed data as well as known empirical correla-
tions for comparison purposes. The current investigation has produced two results. The MARS model is used to 
first demonstrate the significance (or strength) of each input variable on the coal HHV (output variable). Second, 
the most accurate predictor of the coal HHV was the MARS–relied approximation. In fact, using this method on 
coal testing samples resulted in a MARS regression with coefficients of determination and correlation coefficients 
for the coal HHV estimation of 0.9921 and 0.9960, respectively. The agreement between the data that were 
observed and those that were predicted using the GS/MARS–relied approximation proved that the latter had 
performed satisfactorily.   

1. Introduction 

Coal is one of the primary solid fuel most used and analyzed in the 
world for energy production [1,2]. Coal has a high carbon content and 
varying concentrations of other elements, primarily hydrogen, sulphur, 
oxygen, and nitrogen. During the Carboniferous and Cretaceous periods 
were formed most of the coal that is currently being mined. The 
decomposition of terrestrial plants as biomass that accumulate in 
shallow marshes, lagoons, or oceanic areas gives rise to coal. Progressive 
carbon enrichment occurs over time. Later, they could be covered with 
deposits of clay, which would help maintain the anaerobic conditions 
necessary for the carbonization process to continue from biomass [3,4]. 

There are numerous varieties of coal, which can be classified ac-
cording to characteristics such as: (1) moisture; (2) percentage in non- 
combustible mineral matter (ash); (3) the heating power; and (4) 
flammability, in connection with the percentage of volatile elements. 
Ultimate analysis is a chemical test that provides the mass fraction of 

each of the five elements that primarily make up all types of coal: carbon 
(C), nitrogen (N), oxygen (O), hydrogen (H) and sulphur (S). 

Due to the various types of plants from which they originate and, 
more importantly, the duration and circumstances (i.e., pressure and 
temperature of the carbonization process), there are four different types 
of coal, which are (see Fig. 1):  

• Peat: the most recent coal is this one. It is light in weight, soft, matte, 
and brown with visible plant remnants.  

• Lignite: it is dark-colored. It is a soft coal that dates (like peat) from 
periods after the Carboniferous, so the carbonization process has not 
completely taken place. It has a brittle shine and the appearance of 
burnt wood.  

• Bituminous coal: It is a tough, fully carbonized coal that is glossy 
black in color (from pearly gloss to bright and matte bands).  

• Anthracite: It is a hard coal (very compact and bright) with a 
pearlescent shine and a black color that is completely carbonized. 
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Coal is the most used and widely dispersed type of fossil fuel in the 
world, from resource to energy, which is a chemical storage of solar 
energy [3,5]. Coal-related businesses make a principal contribution to 
international trade. This fossil fuel is commercially extracted in more 
than 50 countries and is used industrially in more than 70 countries. 
Indeed, the world’s annual consumption of coal is approximately 5.8 
billion tons. The generation of electrical energy in thermal power plants 
consumes 75% of this world production. Due to the growing demand for 
energy, the amount of coal consumed is likely to roughly double by 2030 
[6]. 

The calorific value of coal determines its energy, so knowing the 
precise calorific value of coal is important for distinct requirements such 
as: (1) its classification; (2) the precise determination of its energy po-
tential; (3) encountering an area of productive use; and (4) its exact 
value in the commodity market. Furthermore, the coal’s heating value is 
a critical factor in the correct design and appropriate operation of coal- 
fired devices [7]. Experimental measurement of HHV from coal through 
the required devices is pricey and time consuming [8]. Therefore, 
obtaining and implementing a technique that allows the precise and 
rapid determination of HHV in coal would be highly desirable and would 
imply considerable savings compared to experimental tests in the lab-
oratory. To fix ideas, there are several previous investigations in the 
literature that build mathematical empirical correlations for the coal 
HHV foretelling from the elemental constituents of ultimate analyses 
[9–14]. However, new models to foretell the coal HHV are being 
developed using statistical machine learning techniques (MLT) in the 
last decade, which may be more accurate than the aforementioned 
empirical correlations and which also contribute to saving the costs of 
the usual experimental tests. 

Making tools and software that can carry out tasks that ordinarily 
require human intelligence is the focus of the broad field of study known 
as artificial intelligence. In this way, a subset of artificial intelligence 
known as machine learning (ML) uses algorithms to discover patterns 
and draw conclusions from data [6–8]. Making techniques for computer 
learning is the aim of machine learning. When an agent’s performance 
improves over time and with the aid of data, this is when learning is said 
to have occurred. In machine learning, data is analyzed by a computer, a 
model is built from the data, and the model is then employed as a world 
hypothesis and a tool to solve problems. The development and imple-
mentation of algorithms based on artificial intelligence (i.e. machine 

learning) represent significant advances in tackling multiparametric 
analysis for energy conversion through modeling engineering. The al-
gorithms and models are designed to identify patterns in data, learn 
from those patterns, and then use what they have learned to make 
predictions or take actions [7,8]. 

Statistical machine learning-based prediction models have been used 
in the coal-related literature studies. Examples of such previous research 
coal HHV prediction models relied on statistical machine learning are 
known in the published literature and they include the use of the deci-
sion tree regression [15], adaptive neurofuzzy inference system [16], a 
multilayer perceptron jointly with genetic algorithms [17], and 
Gaussian process regression [18]. However, it has not yet been investi-
gated whether multivariate adaptive regression splines (MARS) can be 
used to forecast coal’s higher heating value (coal HHV). 

Ultimate analysis is a technique utilized to identify the elemental 
composition of coal, typically including carbon, hydrogen, oxygen, ni-
trogen and sulphur [10–12]. The data obtained from the elemental 
analysis of coal is critical to determine its chemical composition, and 
subsequently predict its characteristics, such as heating value and suit-
ability for practical applications. This information is also vital in eval-
uating the potential of energy conversion and environmental impact of 
coal by combustion, as it can assist in identifying the levels of green-
house gas emissions and other pollutants [11,12]. 

In general, understanding the characteristics and behavior of coal as 
a fuel depends heavily on ultimate analysis. This method requires 
burning a sample of the coal in an oxygen-rich environment, causing the 
elements in the sample to convert to their oxide forms. The resulting 
gases are then separated and analyzed using gas chromatography or 
mass spectrometry. In this way, the analytical procedure relies on the 
complete and instantaneous oxidation of the sample, which converts all 
compounds to combustion products. The resulting gases could then be 
selectively separated in a chromatographic column as a base procedure 
before being transported using a carrier gas through a reduction tube. 
Finally, a thermal conductivity detector that generates a signal pro-
portional to the concentration of each individual component in the 
mixture could be used to process the separated gases (see Fig. 2). 

Fig. 2 shows a flowchart of the procedure of coal ultimate analysis: 

Fig. 1. Main types of coal.  

Fig. 2. Illustrative process diagram of the experimental procedure.  
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1. Coal sampling: A representative sample of coal to be analyzed is 
taken. The sample is dried, pulverized, and sieved to obtain fine and 
homogeneous particles.  

2. Combustion: The sample is burned in a high-temperature furnace in 
an oxygen-rich atmosphere to convert the elements present in the 
sample into their corresponding oxides. The resulting gases are then 
transported through a reduction tube using a carrier gas, such as 
helium, and separated in a chromatographic column.  

3. Detection: The separated gases are then passed through a thermal 
conductivity detector, which produces a signal based on the relative 
amounts of each component in the mixture.  

4. Data analysis: The analysis results are used to determine the 
elemental composition of the coal and can be used to predict its 
properties and suitability for different applications. 

To the authors’ knowledge, the relevance of this method, which es-
timates the coal HHV from observed coal samples using the multivariate 
adaptive regression splines (MARS) approximation [19–24] and the 
optimizer known as Grid Search (GS) [25–28], has not been intended to 
be put before research at this time. In order to estimate the coal HHV 
output variable for the comparison purposes, a multivariate linear 
regression (MLR) [29–33] and a multilayer perceptron-type (MLP) 
[8,17,19,25] artificial neural network (ANN) were also fitted to the 
observed dataset. With the ability to handle nonlinearities and the 
presence of factor interactions, MARS is a nonparametric approximation 
that can be used to solve regression problems [19–24]. 

Preceding investigations have shown that MARS is a useful tool in 
many different fields, including informatics, medicine, and engineering 
[34–37]. Undoubtedly, the following are a few justifications for the 
usefulness of the proposed MARS approximation [20–24]: (1) compared 
to linear regression strategies, MARS approximations are easier to 
implement; (2) the same set of basis functions always comes out when 
the same initial dataset is used as the MARS approximation’s input; (3) it 
is fairly easy to comprehend and understand MARS approximations; (4) 
both categorical and continuous data can be handled by MARS; and (5) 
MARS approximations offer an explicit mathematical expression of the 
output dependent factor as a function of the input factors through the 
summation of basis functions (that is, hinge functions and products of 
two or more hinge functions). Because the majority of ML techniques 
function effectively like a black box, this last characteristic just 
mentioned is a critical distinction from other ML techniques (multilayer 
perceptron, etc.). 

The principal goal of the present study is to assess the use of various 
ML techniques to foretell the coal HHV from the chemical input factors 
of the ultimate analysis of various coal samples. These techniques 
include an optimised GS/MARS–relied model, a MLR–type approxima-
tion and a MLP-type approach. In order to successfully evaluate the coal 
HHV dependent variable, it has been investigated the actions of five 
input constituents, specifically carbon (C), nitrogen (N), oxygen (O), 
hydrogen (H), and sulphur (S) (see Fig. 2). 

The following is the order in which this original investigation is set 
up. First, the necessary tools and procedures for performing this inves-
tigation are specified. The results are presented and discussed in the 
second step. Next, the key conclusions derived from the results are then 
presented. 

2. Materials and methods 

The equation created by Dulong or the use of a bomb calorimeter are 
currently the two most widely used techniques for determining the 
heating value of fuels [38]. In this way, based on empirical modeling and 
using experimental data from the composition of solid fuels (coal in our 
case), such as proximate or ultimate analyses, a number of mathematical 
equations and models have been developed [39]. To facilitate energy 
research based on statistical machine learning, more sophisticated 
models for fuels could be applied in this research environment. 

2.1. Experimental dataset 

The experimental ultimate analyses and their related higher heating 
values (HHVs) make up the coal dataset used in this investigation. The 
dataset employed for both the GS/MARS-based, MLR-based and MLP- 
based approaches is based on a few physico-chemical parameters. The 
data used in this study were obtained from laboratory analysis, based on 
previous studies in the field of ultimate analysis of coal [40], where a 
total selection of 318 values were processed consisting of 318 samples of 
coal and five variables: carbon content (C), oxygen content (O), 
hydrogen content (H), nitrogen content (N), sulphur content (S), and 
higher heating value (HHV) (see Appendix A). The ultimate analysis of 
coal has selected the key input factors for this study. Heating value of 
coals is a key property for the iron industry and efficiency of the coal- 
fired power plants. Advanced models based on statistical machine 
learning are necessary for evaluating energy performance and identi-
fying feasible alternatives for fuels to aid researchers in solid fuel 
characterization and management in an energy context [13,41–44]. 

When coal is used as a fuel for thermal applications, it is essential to 
calculate its heating value [45]. The heating value (HV), also known as 
the higher heating value (HHV), determines how much energy a fuel 
contains in a specific process. The maximum possible heat potential of a 
solid fuel is indicated by the HHV, which is typically expressed as a unit 
of energy per mass, frequently on a dry weight basis. Using an adiabatic 
bomb calorimeter to experimentally estimate HHV is expensive and not 
always practical [46]. Additionally, the ultimate analusis of coal can be 
an alternative to evaluate its physical and chemical properties. The 
weight percentages of carbon (C), oxygen (O), hydrogen (H), nitrogen 
(N), and sulphur (S) can all be calculated using elemental analysis [47]. 

A fuel’s comprehensive analysis and higher heating value give a 
thorough understanding of its combustion properties. To define and 
describe in detail the behavior of a specific coal as fuel, these parameters 
are required. Consequently, the model’s input variables are as follows on 
a dry basis (see Table 1):  

• Ultimate analysis:  
• Carbon (C): It is a portion of carbon that makes up the solid fuel’s 

atomic structure.  
• Hydrogen (H): Hydrogen content of the coal identified through 

elemental analysis. 

Table 1 
The coal physico-chemical input and output parameters employed in this study 
jointly with their means and standard deviations as well as their minimum and 
maximum values.  

Input 
variables 

Name of the 
parameter 

Mean Standard 
deviation 

Minimum 
value 

Maximum 
value 

Carbon 
content 
(wt%) 

C  78.64  2.73  72.72  83.72 

Hydrogen 
content 
(wt%) 

H  5.02  0.26  4.71  5.71 

Oxygen 
content 
(wt%) 

O  13.03  2.51  8.60  17.64 

Nitrogen 
content 
(wt%) 

N  1.30  0.16  0.99  1.63 

Sulfur 
content 
(wt%) 

S  1.70  0.51  0.53  2.52 

Output 
variable      

Coal higher 
heating 
value (MJ/ 
kg) 

HHV  30.92  1.63  26.50  34.63 

Note: wt% means weight percentage. 
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• Nitrogen (N): It is a portion of nitrogen that makes up the solid fuel’s 
atomic structure.  

• Oxygen (O): Oxygen content of the coal identified through elemental 
analysis.  

• Sulphur (S): Sulphur content of the coal identified through elemental 
analysis. 

Table 1 contains a list of the five independent physico-chemical input 
factors to the GS/MARS model. Additionally, the coal higher heating 
value (coal HHV) attained from samples of various types of coal is the 
dependent variable in this investigation. 

As an initial data analysis, a correlation matrix is calculated for all 
the variables that take part in the process. Fig. 3 shows graphically how 
close the two variables are on having a linear relationship with each 
other. Each variable in the table is correlated with each of the other 
variables. This allows us to see which pairs have the highest correlation. 

2.2. Multivariate adaptive regression splines (MARS) method 

The flexible nonparametric method known as multivariate adaptive 
regression splines (MARS) [19–25] enables the solution of regression 
problems. This approach generalizes both SL (stepwise linear) regression 
and CART decision trees [25,48] while overcoming their limits. Its main 
objective is to predict the values of a pleiad of independent input vari-
ables,X(n × p), for a continuous output (dependent) variable y(n × 1). 
The following expression describes the MARS method [19–25]: 

y = f (X)+ e (1)  

Here:  

• f: it consists of a sum of basis functions that depend on X, weighted 
together and;  

• e: it is the (n × 1) − dimensional error vector. 

The dependent variable and independent variables do not need to 
have an established functional relationship prior to using the MARS 
methodology. In a specific way, it can be expressed mathematically by a 
collection of piecewise polynomials of degree q (basis functions), where 
the coefficients are completely deduced from the whole regression 
(X, y). The MARS method is developed by fitting different intervals of the 

independent variables with basis functions. Undoubtedly, two-sided 
truncated power functions are the basis functions employed as splines 
in MARS. Their expressions are as follows [19–25]: 

[ − (x − t) ]q+=
{
(t − x)q if x < t

0 otherwise (2)  

[ + (x − t) ]q+=
{
(t − x)q if x ≥ t

0 otherwise (3)  

so that the degree of flatness of the resulting function estimate depends 
on the power q ( ≥ 0), which also determines the type of splines (linear, 
quadratic, or cubic). In this regard, if q = 1 conforms to linear splines 
(the area of this research), if q = 2 we have quadratic splines, if q = 3 
cubic splines and so on. As an illustration, Fig. 4 displays two splines in 
case of q = 1 located at the node (or knot) t = 3.5. 

As a result, the MARS approximation is a set of M basis func-
tion–based piecewise linear multivariate splines of a dependent variable 
that satisfy the following expression [19–25]: 

ŷ = f̂ M(x) = c0 +
∑M

m=1
cmBm(x) (4)  

Eq. (4) states the following:  

• ŷ: it is the output (dependent) variable foretold employing the MARS 
technique;  

• c0: is a constant factor (or coefficient) known as the intercept;  
• Bm(x): it is the m-th basis function; and  
• cm: it is the Bm(x) basis function’s corresponding coefficient. 

Moreover, MARS employs generalized cross-validation (GCV) to 
ascertain the basis functions that comprise the complete approximation 
[19–25]. Undoubtedly, the GCV is established as the number resulting 
from division between the mean squared residual error and a penali-
zation element. The penalty term is directly related to the complexity of 
the model. The GCV is expressed mathematically as follows 
[19–25,34–37]: 

GCV(M) =
1
n

∑n
i=1(yi − f̂ M(xi) )

2

(1 − C(M)/n )2 (5)  

so that: 

Fig. 3. Correlation matrix of the process variables: carbon content (C), 
hydrogen content (H), oxygen content (O), nitrogen content (N), sulphur con-
tent (S) and higher heating value (HHV) of coal. 

Fig. 4. Illustration of two linear hinge functions (also known as spline basis 
functions). The left spline (x < t, − (x − t)) is indicated by a dashed line, while 
the right spline (x > t, + (x − t)) is illustrated by the solid line. 
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• The complexity penalization term C(M) rises as the MARS model’s 
number of basis functions does. This factor has the form 
[19–25,34–37]: 

C(M) = (M + 1)+ d M (6)  

In a manner such that:  

• M represents the number of basis functions in Eq. (5); and  
• d is a penalty parameter defined by the model for each basis function. 

For the purpose of producing reliable results, the factors N-subsets 
(this criterion indicates the number of subsets of the model in which 
each variable is integrated) and RSS (residual sum of squares) must be 
used in addition to the GCV factor previously mentioned [19–25,34–37]. 

2.3. Multivariate linear regression (MLR) 

Multivariate linear regression (MLR) is a mathematical technique 
employed to build an approximate dependency relationship between a 
dependent variable Y, m independent variables Xi with m ∈ Z+ and a 
random term ε (stochastic error) [29–33]. This method is applicable in 
many situations in which the relationship between two or more vari-
ables is studied or behavior is predicted. In case a regression model 
cannot be applied to a study, it is said that there is no correlation be-
tween the variables studied. This MLR model can be expressed as the 
following hyperplane of parameters βi (called the coefficients of the 
multiple regression model) [29–33]: 

Y = β0 + β1X1 + β2X2 + ...+ βmXm + ε = β0 +
∑m

j=1
βjXj + ε (7)  

where:  

• Y is the dependent variable or response variable;  
• X1,X2, ...,Xm are the m independent and explanatory regressor 

variables;  
• β0, β1, β2, ..., βm serve as the MLR model’s parameters and gauge the 

explanatory variables’ impact on the regressor. The number of in-
dependent parameters to take into account in the regression is 
indicated by the term m, while the terms β0 and βi (i ≥ 1) are the 
intercept and constant terms, respectively, for each independent 
variable. 

The regression problem consists of choosing certain values for the 
unknown parameters βj, so that the equation is completely specified. 
This requires a set of observations or a sample from this model. In any i- 
th observation (with i = 1, 2, ..., m), the simultaneous behavior of the 
dependent variable and the explicit variables is recorded (random dis-
turbances are assumed to be unobservable). Suppose that we have a 
sample of size n given by 

{(
xij, yi

) }
with j = 1,2, ...,m where xij denotes 

the i-th observed value in the regressor Xj and yi denotes the i-th 
observation of Y, then the model takes the form [29–33]: 

ŷi = β0 +
∑m

j=1
βjxij + εi (8)  

where ŷi is the value of Y predicted by the MLR model, εi = yi − ŷ
i
́ is the 

error associated with the i-th measurement of the value Xj and follows 
the usual assumptions so that εi ∼ N

(
0, σ2) (zero mean, constant vari-

ance and equal to σ2, and Cov
(
εi, εj

)
= 0 if i ∕= j). To assess the model 

parameters, the method of least squares can be used, in this case, the 
squared error function is given by [29–33]: 

S(β0, β1, ..., βm) =
∑n

i=1
ε2

i =
∑n

i=1

(

yi − β0 −
∑m

j=1
βjxij

)2

(9)  

which we want to minimize. The least squares estimators denoted by β0,

β1, β2, ..., βm must satisfy [29–33]: 

∂S
∂βj

⃒
⃒
⃒
⃒ = 0 , ∀j = 0, 1, 2, ...,m (10)  

This system with m+1 equations can be written in matrix form as 
[29–33]: 

Y = Xβ+ ε (11)  

where Y ∈ R
n×1

, X ∈ R
n×(m+1)

, β ∈ R
(m+1)×1 and ε ∈ R

n×1. In matrix 
form, the squared error function S can be written as [29–33]: 

S(β) =
∑n

i=1
ε2

i = εT ε = (Y − Xβ)T
(Y − Xβ) (12)  

and Eq. (10) is reduced to the normal equations [29–33]: 

XT Xβ̂ = XT Y (13)  

Then, the least squares estimator is given by [29–33]: 

β̂ =
(
XT X

)− 1XT Y (14)  

So the final fitted multivariate linear regression model is given by 
[29–33]: 

ŷ = XT β̂ = β̂0 +
∑m

j=1
β̂jxj (15)  

2.4. Artificial neural network: Multilayer perceptron (MLP) 

The third machine learning technique employed in this paper for coal 
HHV estimation is the artificial neural network (ANN) termed multilayer 
perceptron (MLP). ANN is a processing algorithm modelled on the neural 
structure of the human brain. Neurons are computational units that can 
be used to determine relationships and patterns between inputs and 
outputs [17,19,25]. The MLP is an artificial neural network (ANN) 
comprising numerous layers, so that it has the capacity to find a solution 
to nonlinearly separable problems, which is the principal restriction of 
the simple perceptron. The MLP has three types of layers [17,19,25,42]: 

• Input layer: composed of those neurons that insert the input in-
stances in the artificial neural network. These types of neurons do not 
undergo any mathematical processing.  

• Hidden layers: composed of those neurons such that the inputs come 
from earlier layers and outputs are introduced to neurons from 
posterior layers.  

• Output layer: composed of neurons such that the output values 
conform to their outputs of the complete artificial neural network. 

Input nodes, that are part of the input layer, are connected with other 
nodes, the next layer, etcetera, up to reach the last layer, the output 
layer, which generates the hypothesis function. Hidden layers are 
composed of intermediate nodes located between input and output 
layers. The input characteristics are entered on the first layer (called the 
input layer). The intermediate nodes of the hidden layers use activation 
units to carry out some processing, using a matrix of weights, which 
direct the mapping from one layer j to the next layer j + 1. What makes 
MLP distinct is the nonlinear activation function (AF), performed by the 
specific neural networks activation units [19,25,42]. Backward propa-
gation (also known as backward propagation of the error or generalised 
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delta rule) is an algorithm used in the training of these artificial neural 
networks. For this reason, the multilayer perceptron is also known as a 
backpropagation artificial neural network. The function implemented 
by the network is f : X⊂R

n→Y⊂R
c, represented as [17,25,42]: 

f (x) (16)  

so that U represents the hidden variables space. Considering this ar-
chitecture [17,25,42], we have that:  

• ψ j(x) = ψ(wT
j x+ wj0): ψ represents the hidden layer AF; wj ∈ R

nis a 
parameter; and wj0 ∈ R is a threshold value. There are three types of 
AF: known as sigmoid, hyperbolic tangent and logistic AF, 
respectively.  

• ϕj(u) = ϕ(cT
j u+ cj0): ϕ is the AF of the neurons that make up the 

hidden layer; cj ∈ R
h are the weights; and cj0 ∈ R is the threshold. 

Generally, ϕ is the dichotomous function (or Heaviside function). 

To conclude, the MLP leads to the next function given by [17,25,42]: 

f (x) =
∑h

j=1
cjψ
(

wT
j x + wj0

)
+ c0 (17)  

2.5. The goodness–of–fit of this approach 

The coefficient of determination R2 is the primary goodness–of–fit 
statistic for the regression issue posed in this article [49,50]. It takes into 
account the following expressions if ti and yi, respectively, are the 
observed and predicted values [49,50]:  

• SSreg =
∑n

i=1
(
yi − t

)2: is the explained sum of squares.  

• SStot =
∑n

i=1(ti − t)2: the sample variance is directly correlated with 
this summation.  

• SSerr =
∑n

i=1
(
ti − yi

)2: it is termed as residual sum of squares. 

so that t is the average value of the experimental data given by: 

t =
1
n
∑n

i=1
ti (18)  

The coefficient of determination is then defined by the expression 
[49,50]: 

R2 ≡ 1 −
SSerr

SStot
(19)  

The discrepancy between experimental and predicted data gets smaller 
the closer the R2 statistic is to 1.0. Similarly, the mathematical expres-
sions for the other statistic used in this study (RMSE) is as follows 
[49,50]: 

RMSE ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ti − yi)

2

√

(20)  

Higher values of R2 are preferred, i.e. closer to 1 means better model 
performance and regression line fits the data well. Conversely, the lower 
the RMSE value is, the better the model performs. 

Moreover, the following hyperparameters are intensely employed in 
the MARS technique [19–25]:  

• Maximum number of basis functions (Maxfuncs): at the conclusion of 
the forward phase, it corresponds to the maximum number of terms.  

• Interactions: It reflects the strongest level of factor interaction.  
• Penalty parameter (d): It is equivalent to the Generalized Cross 

Validation (GCV) penalty per node (or knot) that is associated with 

Fig. 5. The GS/MARS–relied approximation’s process diagram.  
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the complexity of the MARS approximation in Eq. (5). Be aware that 
terms are penalized if d = 0, but not nodes. Of course, there is no 
penalty if d = − 1; the most common value of this parameter is d =

2. 

In order to successfully optimize its estimation using the coefficient 
of determination R2, various approximations have been built, specif-
ically the MARS–relied approach, the MLR–type approximation and 
MLP-type approach in this study. These approximations take the coal 
HHV as a dependent factor from the five other factors (input variables) 
of experimental coal samples [40]. 

Additionally, as previously mentioned, the MARS approximation 
heavily depends on the MARS hyperparameters: maximum number of 
hinge functions (Maxfuncs); and ultimately, the degree of variable 
interaction. Grid search (GS), also known as parameter sweeping [25–28], 
is the common method of implementing hyperparameter optimization. 
It is simply a thorough manual search through a predetermined subset of 
the parameter space using that statistical machine learning algorithm. 

In fact, the dataset is split into two sets: 80% of the data are used in 
the training set, and the remaining 20% are used in the testing set. In this 
way, the training collection is used to build the GS/MARS model. It uses 
a 10-fold cross-validation method to calibrate the parameters of the 
MARS model using the GS algorithm for this purpose [51,52]. When the 
optimal parameters were identified, the complete training dataset was 
used to build the model. Following that, it goes on to make predictions 
for the components of the testing set using this model. These predictions 
are contrasted with the observed values, and the model’s goodness-of-fit 
is assessed. The process diagram for the GS/MARS–relied approximation 
used in this investigation is now illustrated in Fig. 5. 

Additionally, cross-validation is also frequently used in this context 
to find the true coefficient of determination (R2) [49,50]. Undoubtedly, 
a total 10-fold cross-validation method was employed in this investi-
gation in order to evaluate the predictive capacity of the GS/ 
MARS–relied approximation [51,52]. To achieve this, regression 
modeling using the MARS approximation has been implemented using 
the earth package from the R project [53,54]. Table 2 illustrates the 
variation intervals of the solution space used in this study. 

For the purpose of optimizing the MARS parameters, the GS opti-
mizer is appropriate. In this sense, the GS is able to determine the 
optimal Maxfuncs and Interactions parameters by means of the evalu-
ation of differences of the cross-validation mistake in every iteration. 
The variation space is two-dimensional (one dimension per each 
parameter). Besides, in this investigation, the root mean square error 
(RMSE) serves as the objective function or principal fitness factor 
[49,50]. 

3. Results and discussion 

Table 3 lists the optimal hyperparameters for the coal HHV’s fitted 
MARS–relied approximation as determined by the GS optimizer. 

Table 4 lists the principal basis functions and their coefficients ci for 
the best–fitted GS/MARS-relied approximation for the coal HHV. Keep 
in mind that a hinge function is given by the expression: 

h(x) =
{

x if x > 0
0 if x ≤ 0

}

(19)  

Overall, the MARS technique is a type of nonparametric regression 
approach and can be considered as a generalization of linear methods. It 
uses a weighted summation of the hinge functions described above to 
automatically model the presence of nonlinearities as well as in-
teractions between input variables [19–24]. 

Additionally, and in contrast, a multivariate linear regression (MLR) 
model and a multilayer perceptron (MLP) model have also been fitted to 
the observed dataset together with several empirical correlations [9–14] 
related to the coal HHV output factor too. 

Next, Fig. 6 illustrates the first-order and second-order terms of the 
GS/MARS approach. This chart permits the understanding of the re-
lationships among the distinct input variables entailed in this approxi-
mation. Using the previous chart, Coal higher heating value (Coal HHV) 
(Y-axis) as a function of Carbon content (X-axis) is represented in Fig. 6 
(a), holding constant the four remaining input factors. In similar way, 
Fig. 6(b) and 6(c) show the Coal HHV (Y-axis) as a function of Oxygen 
content (X-axis) and Sulphur content (X-axis), holding constant the 
leftover four input variables, respectively. On the other hand, Fig. 6(d) 
illustrate the coal HHV (Z-axis) versus Carbon content (X-axis) and Ni-
trogen content (Y-axis), while the other variables remain constant. 
Analogously, Fig. 6(e-i) illustrate the coal HHV (Z-axis) as a function of 
the Carbon (X-axis) and Sulphur (Y-axis) contents, Hydrogen (X-axis) 
and Oxygen (Y-axis) contents, Oxygen (X-axis) and Nitrogen (Y-axis) 
contents, Oxygen (X-axis) and Sulphur (Y-axis) contents, and Nitrogen 
(X-axis) and Sulphur (Y-axis) contents, respectively. 

The coal higher heating value (HHV) according to the MLR-type 
model based on the constituents of ultimate analysis (in mass percent-
age) is given by: 

HHV(MJ/kg) = − 0.35 .C+ 3.38 .H − 0.67 .O+ 3.35 .N+ 1.12 .S+ 43.93
(20)  

Table 5 exposes some of the most used empirical formulas in the liter-
ature to determine the coal higher heating value (HHV), also based on 
the constituents of ultimate analysis in mass percentage. It seems 

Table 2 
Intervals of variation of the two parameters of the GS/MARS–based approach 
fitted in this research.  

MARS hyperparameters Lower limit Upper limit 

Maximum number of basis functions (MaxFuncs) 3 100 
Interactions 1 4  

Table 3 
The best–fitted GS/MARS approximation’s optimal hyper-
parameters for the coal higher heating value (HHV) 
prediction.  

Hyperparameters Optimal values 

MaxFuncs 18 
Interactions 2  

Table 4 
Enumeration of hinge functions and its coefficients ci of the best–fitted GS/ 
MARS–relied approach for the coal HHV prediction.  

Bi Definition ci 

B1 1  28.2331 
B2 h(82.8032 − C) − 0.8113 
B3 h(C − 82.8032) − 0.7817 
B4 h(16.6561 − O) 1.3316 
B5 h(O − 16.6561) − 1.2716 
B6 h(1.0816 − S) 6.3654 
B7 h(82.8032 − C)× h(N − 1.4157) − 10.6495 
B8 h(82.8032 − C)× h(1.4157 − N) 2.3591 
B9 h(82.8032 − C)× h(N − 1.1681) 3.8865 
B10 h(82.8032 − C)× h(S − 2.2016) 0.9884 
B11 h(82.8032 − C)× h(2.2016 − S) 0.4329 
B12 h(5.357 − H)× h(16.6561 − O) − 0.8697 
B13 h(H − 5.357)× h(16.6561 − O) 0.4725 
B14 h(16.6561 − O)× h(N − 1.2975) 5.6533 
B15 h(16.6561 − O)× h(1.2975 − N) 0.9829 
B16 h(16.6561 − O)× h(2.3062 − S) − 1.2755 
B17 h(1.1787 − N)× h(S − 1.0816) − 10.3962 
B18 h(N − 1.1787)× h(S − 1.0816) − 6.5343  
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important to indicate that the selected models for comparison are of 
general use in the bibliography for solid fuels characterization and 
model validation. Particularly, it has to mention Channiwala’s and 
Parikh’s works, which obtain a general equation for fuels [2]. 

Table 6 gives the determination and correlation coefficients for the 
GS/MARS–relied approximation, MLR-type model, MLP-type model and 
empirical correlations [9–14] for the coal HHV output factor applied to 
the testing data, each in order. 

The best–fitted MARS approximation has a coefficient of determi-
nation R2 of 0.9921 and a correlation coefficient of 0.9960 for the coal 

Fig. 6. Graphical drawing of the first-order and second-order terms that form the GS/MARS approximation for the Coal HHV: (a) Carbon content first-order term; (b) 
Oxygen content first-order term; (c) Sulphur content first-order term; (d) Carbon content and Nitrogen content term of the second order; (e) Carbon content and 
Sulphur content term of the second order; (f) Hydrogen content and Oxygen content term of the second order; (g) Oxygen content and Nitrogen content term of the 
second order; (h) Oxygen content and Sulphur content term of the second order; and (i) Nitrogen content and Sulphur content term of the second order. 

Table 5 
Coal HHV prediction empirical correlations based on the constituents of ultimate 
analysis [9–14].  

Authors Model equation 

Channiwala and Parikh (2002)  
[9] 

HHV(MJ/kg)=(1.0632 + 1.486•10-3)•[(C/3) +
H•(O–S)/8] (E1)  

Channiwala and Parikh (2002)  
[9] 

HHV(MJ/kg) = 0.3403•C + 1.2432•H- 
0.0628•N–0.0984•O + 0.1909•S (E2)  

Channiwala and Parikh (2002)  
[9] 

HHV(MJ/kg)=(0.0152•H + 0.9875)•[(C/3) +
H–O– (S/8)] (E3)  

Channiwala and Parikh (2002)  
[9] 

HHV(MJ/kg) = 0.3391•C +
1.4357•H+0.0931•S–0.1237•O  
(E4) 

Mason and Gandhi (1983) [10]; 
Selvig and Wilson (1945)  
[11] 

HHV(MJ/kg) = 0.336•C + 1.418•H–(0.153– 
0.00072•O)•O + 0.0941•S (E5)  

Given et al. (1986) [12] HHV(MJ/kg) = 0.336•C + 1.418•H-0.145•O +
0.0941•S (E6) 

Chelgani (2021) [13] HHV(MJ/kg) = − 0.110 + 0.385•C (E7)  

Matin and Chelgani (2016)  
[14] 

HHV(MJ/kg) = − 4.542 + 0.431•C + 0.283•S +
0.367•H + 0.645•N (E8) 

Note: Specific ranges of validation for C, H, O, N and S are 0.00–92.25, 
0.43–25.15, 0.00–50.00, 0.00–5.60 and 0.00–94.08, respectively, based on 
Ref. [2,9–14]. 

Table 6 
Coefficients of determination (R2), correlation coefficients (r) and root-mean- 
square errors (RMSE) for the GS/MARS–based approximation, MLP approach 
and MLR approach fitted in conjunction with several empirical correlations 
[9–14] fitted in this investigation to the coal HHV variable applied to the testing 
data.  

Model R2 r RMSE 

GS/MARS  0.9921  0.9960  0.1626 
MLP  0.9345  0.9667  0.3669 
MLR  0.8683  0.9319  0.6926 
E1  0.3633  0.6028  4.9905 
E2  0.3955  0.6288  1.6737 
E3  0.5025  0.7089  11.8547 
E4  0.4119  0.6418  1.9688 
E5  0.4158  0.6449  1.6044 
E6  0.4209  0.6488  1.5915 
E7  0.1682  0.4101  1.9189 
E8  0.2032  0.4508  2.1738  
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HHV factor, each in order, as stated in these most recent statistical es-
timates, choosing this best model for estimating the dependent variable 
(coal HHV factor) in various types of coal. Thus, these outcomes show a 
reliable goodness–of–fit, or an appropriate agreement between the 
experimental data and MARS approximation. 

As an additional result of these estimations, Table 7 and Fig. 7 show, 
each in order, the relevance order for the five input factors predicting 
the coal HHV (output dependent factor) in the form of a Pareto chart 

[49,50] for this complex research. Hence, as stated in the MARS model, 
the input variable carbon content (C) is the most important variable in 
predicting the coal HHV output variable, followed by oxygen content 
(O), hydrogen content (H), sulphur content (S), and nitrogen content 
(N). 

The use of solid fuels as the coal requires knowledge of their base 
composition, i.e. ultimate analysis, and their thermal features, i.e. HHV. 
Ultimate analysis reveals the percentage of carbon (C), hydrogen (H), 
oxygen (O), nitrogen (N), and sulphur (S). Traditionally, (C), (H), and 
(O) can be used to determine HHV, while (N) and (S) provide a reference 
of the limitations of the energy management due to environmental 
impact and fuel conversion [55]. According to the ranking order in the 
GS/MARS-relied approximation, (C) is the primary element in the list for 
reporting HHV in the proposed model due to its direct contribution to 
the release of energy during combustion. The next elements in the 
ranking are (O) and (H) for measuring combustion characteristics and 
fuel quality. The significance of (C) and (H) for solid fuel was empha-
sized by Dulong, who proposed a models linking these variables [38]. 
(N) is the least important input variable. However, its effect of the last 

Table 7 
Input variables’ order of relevance in the best–fitted GS/MARS–based approach 
for the coal HHV as stated in criterion GCV.  

Input variable Nsubsets GCV RSS 

Carbon content (C) 15  100.0  100.0 
Oxygen content (O) 14  16.8  21.3 
Hydrogen content (H) 13  6.3  11.4 
Sulphur content (S) 12  1.9  7.8 
Nitrogen content (N) 10  1.7  7.3  

Fig. 7. Pareto chart of input variables: order of relevance for the input variables employed in the best–fitted GS/MARS–relied approach for the coal HHV foretelling 
as stated in GCV criterion. 

Fig. 8. Observed and predicted values of the coal HHV for the test set using: Channiwala and Parikh (E3) empirical correlation; MLR-type model; MLP-type model; 
and GS/MARS model. 
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both, i.e. (N) and (S), could be inferred in indirect mode by defect as part 
of the total composition of coal in the numerical approach. In this sense, 
the potential existence of theoretical models for HHV of solid fuels with 
strong relationships to (C), which show an effect with (H) and (O), 
among other ultimate composition elements, were highlighted by Bou-
manchar et al. (2019) [55]. The characterization of the solid fuel in 
relation with the heating value allows the implementation for thermal 
and power applications of energy systems [56,57]. 

In conclusion, this research successfully enables the estimation of the 
coal HHV output factor using the GS/MARS–relied approximation in 
agreement with the real observed values. Indisputable, Fig. 8 illustrates 
the comparison of experimental and foretold coal HHV values using the 
best empirical correlation (Channiwala and Parikh (E3) empirical cor-
relation), MLR approach, MLP-type artificial neural network and GS/ 
MARS-relied approximation. Therefore, with the purpose of achieving 
the best approximation for this regression problem, it is essential to use a 
MARS approach. These results unequivocally support the crucial sta-
tistical standard of ‘goodness of fit’ (R2), demonstrating that the GS/ 
MARS–relied approximation provides the best fit. 

4. Conclusions 

The key conclusions of this study can be summed up by comparing 
the numerical and experimental results as follows:  

• Firstly, in order to determine the coal HHV factor, it is necessary to 
solve a difficult heat transfer problem that takes into account the 
three different types of heat transmission: conduction, convection, 
and radiation. The resolution of partial differential equations (EDPs) 
is implied by the ensuing complete model. In reality, numerical 
techniques are needed to solve these EDPs (such as the finite element 
method, the finite differences method, etc.), and some additional 
heuristic approximations result in solutions that are very different 
from one another. As a result, the discovery of new MLT–based 
analysis techniques is highly significant. In particular, the GS/ 
MARS–relied approximation used in this study is a suitable option to 
evaluate the HHV variable in various types of coal with enough 
precision. Indeed, it was confirmed that the coal HHV can be exactly 
calculated in the fuel industry using a GS/MARS–relied approxima-
tion using testing data (20% experimental data not used for training), 
since a coefficient of determination with a value of 0.9921 is 
obtained.  

• Secondly, due to the fact that MARS approximations produce an 
explicit mathematical expression of the coal HHV from the input 
variables as a summation of basis functions (hinge functions and the 
product of two or more functions of this kind), the MARS approach 
can be configured into a low-cost microcontroller-based device to 
achieve a reliable forecasting performance of coal HHV (fuel auto-
mation applications).  

• Thirdly, it is possible to arrange the input variables used in the 
foretelling of the coal HHV in order of their significance. One of the 
main findings of this investigation is this. In this way, the Carbon 
content (C) could be considered the most significant predictor of the 
coal HHV output variable, followed by the contents of O, H, S and N, 
each in order.  

• Finally, in future research, for the definition of hybrid models based 
on both proximate and/or ultimate analyses, the ideas presented 
here are very general and could, in theory, be broadened to include 
more independent variables. 

To sum up, this GS/MARS approach could be successfully applied to 
other types of coals with similar or distinct origins, but it is essential to 
always consider the distinctive qualities of each deposit and basin. 
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Paulino José García–Nieto: Writing – original draft, Software, 
Validation, Data curation, Conceptualization, Methodology, Validation, 
Formal analysis, Visualization, Investigation, Supervision, Writing – 
review & editing. Esperanza García–Gonzalo: Writing – review & 
editing, Writing – original draft, Validation, Software, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization. José 
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