
Remote Sensing Applications: Society and Environment 32 (2023) 101055

Available online 4 September 2023
2352-9385/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Assessing high resolution thermal monitoring of complex 
intertidal environments from space: The case of ECOSTRESS at 
Rias Baixas, NW Iberia 

Nicolas Weidberg a,b,*,1, Laura K. López Chiquillo b, Salvador Román b, 
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A B S T R A C T   

Currently, thermal sensors on satellites and other orbital platforms with high spatial resolution 
designed to monitor the oceans are often insufficient to assess the surface temperature of small 
bodies of water or within the coastal boundary layer. As the accuracy and sensitivity of remote 
sensing satellites improve, the demand for more accurate and up-to-date basic data sets for 
calibration increases. The quality of the thermal data collected by ECOSTRESS on the Interna
tional Space Station allows the characterization of thermal stress levels in coastal ecosystems with 
a high spatial resolution of 70 m and a return time from hours to 5 days. This study focused on the 
calibration of ECOSTRESS estimates with in situ surface temperature data from sensors installed at 
3 cm depth in the sediment on the intertidal muddy sandflats of three of the Rías Baixas in Galicia, 
NW Iberian Peninsula, from 2019 to 2021. A final number of 45 ECOSTRESS temperature images 
were analyzed. From these, 20% contained substantial georeferencing errors which had to be 
corrected manually with GIS software tools. We applied the Fourier’s law of Heat Conduction to 
derive surface estimates from loggers sub-surface measurements that could be directly compared 
with ECOSTRESS data. Overall, a good calibration which explained more than 80% of ECO
STRESS temperature estimates for the whole dataset was obtained, but with an intrinsic cold bias 
around 1.39 ◦C. When temperatures at a depth of 3 cm were used, the linear fit became worse and 
the negative bias increased to 1.49 ◦C. Closer inspection revealed that night measurements were 
responsible for this larger deviation, as ECOSTRESS estimates became much colder compared to 
within sediment measurements because of the combined effect of the instrument intrinsic bias 
and nocturnal surface cooling. The best calibration was obtained when surface estimates were 
calculated just for the nighttime, as the cold bias decreased to 0.93 ◦C. More importantly, during 
hot daytime conditions in emersion above 20 ◦C, ECOSTRESS data matched surface temperature 
estimates, probably because of a better performance of ECOSTRESS algorithm at dry surfaces with 
lower emissivity. Thus, during the most ecologically relevant periods when high temperatures 
could drive thermal stress in many commercially-important bivalve species, ECOSTRESS provides 
accurate surface estimates that can be used to derive sub surface temperatures at the depths at 
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which the different burrowing organisms live. We thus conclude that this instrument constitutes 
an important global tool to examine thermal stress at an unprecedented spatial scale for complex 
sea-land boundary systems.   

1. Introduction 

Global warming has accelerated in recent years, with a 1.2 ◦C increase since pre-industrial times by 2020 and a projected increment 
of 3 ◦C by the end of this century according to most plausible scenarios (Geiges et al., 2020, IPCC, 2022). Due to complex atmospheric 
and oceanic circulation patterns, this warming is neither uniform in space nor in time, with extreme weather events becoming more 
frequent at certain regions (Moon et al., 2022; Rousi et al., 2022). Such events constitute perturbations that, depending on their 
magnitude and frequency, could alter ecosystem succession and overall functioning (Sanz-Lazaro 2016; Maxwell et al., 2019; Lugo 
2020). From the perspective of the sustainability of human populations worldwide, the productivity of key ecoregions like coastal 
areas and temperate grasslands can be severely reduced if these systems reach critical tipping points at which they could shift to more 
unproductive stages (Bakun et al., 2015; Wu et al., 2021). Biodiversity losses can also occur, decreasing in turn the buffering effect that 
species richness can exert on potential public health risks like infectious diseases and the occurrence of biological invasions (Robinson 
et al., 2020; Baker et al., 2022; Mora et al., 2022). Sustainably managing ecosystems for their unique ecological and socio-economical 
functions requires a deep understanding of the main processes driving such changes. In this context, a proper high resolution char
acterization of thermal variability becomes crucial to determine the degree of change at multiple scales of biological organization, 
from individuals to ecosystems. 

The NASA Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was designed to provide small 
spatial scale thermal monitoring on a global scale. It was installed on the International Space Station on June 29, 2018. Since then 
ECOSTRESS has retrieved more than 350,000 high resolution scenes with a pixel dimension of 70*70 m and a total size of approxi
mately 400 × 400 km, globally between 52◦N and 52◦S with short revisiting times of hours to 5 days (Hook et al., 2020; Hulley et al., 
2021; Weidberg et al., 2021). Skin temperatures for water, land and vegetation surfaces have been derived from brightness temper
atures of 3 spectral bands since May 2019 (8.78, 10.49 and 12.09 μm) by using a temperature emissivity separation (TES) algorithm 
(Hook and Hulley, 2015). Overall, ECOSTRESS has been used to infer high spatial resolution thermal stress for crops, forests and 
human populations living in contrasting urban environments (Poulos et al., 2021; Richter et al., 2021; Li et al., 2022; Wu et al., 2022). 

Calibrations with in situ sensors in the field and intercomparisons with other widely used orbital platforms have been carried out to 
assess the quality of ECOSTRESS temperature measurements. In short, negative biases around − 1 ◦C occur for the ocean when 
ECOSTRESS extensive datasets were compared with the Visible Infrared Imaging Radiometer Suite VIIRS imagery (Weidberg et al., 
2021). Consistently, similar nocturnal cold biases were obtained at buoys off the coasts of Florida (Shi and Hu, 2021). In general, for 
land surfaces this bias is greatly reduced, although negative deviations occur at nighttime when comparing with in situ sensors at usual 
NASA calibration sites (Hulley et al., 2021). Although easy to analyse and correct, the fact that these temperature biases change when 
comparing day vs night, sea vs land, and in situ calibrations vs orbital intercomparisons reveals that several sources of error may be 
behind such deviations. 

The examination of ECOSTRESS measurements within complex environments with unique thermal and optical properties, like sea- 
land boundaries, becomes crucial to use this instrument as an effective global monitoring tool. Specifically, extensive soft sediment 
intertidal regions like muddy sandflats may be particularly difficult to characterise (Laignel et al., 2023). Sharp thermal contrasts are 
modulated by the daily entrainment of a thin layer of coastal waters with the high tide and the sediment desiccation driven by solar 
heating during low tide (Dyer et al., 2000; Befus et al., 2013). One such system is the Rias Baixas in the region of Galicia, which 
comprises a complex stretch of coastline formed by large estuaries at the NW corner of the Iberian Peninsula. Relatively cold and 
nutrient rich waters around 15 ◦C usually upwell at the open coast and entrain the rias, a process that happens all year round but is 
more persistent in spring/summer (Prego et al., 2007, Álvarez et al., 2009; Fernández et al., 2016). During daytime low tide aerial 
exposure, surface sediment temperatures can easily exceed 30 ◦C in summer, thus driving daily thermal contrasts of high magnitude 
(Leitao 2014; Domínguez et al., 2021; Román et al., 2022). The biological productivity of the Rias Baixas, especially at the intertidal 
muddy sandflats at their head end, sustains traditional coastal fisheries like those targeting several sedentary species such as bivalves 
(Fernández et al., 2016; Pascual-Fernández et al., 2020). Overall, more than 26,000 employments rely directly and indirectly on these 
coastal fisheries, which accounts for more than 60% of the total population working in the Galician fisheries (Villasante et al., 2021). 

In summary, the Rias Baixas region offers a challenging case of study for an ECOSTRESS calibration due to its large spring/summer 
thermal contrasts on sub-daily time scales and its persistent cloud cover in autumn/winter. On the other hand, it also offers a unique 
opportunity to assess ECOSTRESS thermal monitoring potential in a region with key intertidal sandflats that sustain large populations 
of coastal organisms with a high socioeconomic importance. In this study, we carry out an ECOSTRESS calibration on a regional scale 
by using a set of temperature loggers placed at different intertidal muddy sandflats across Rias Baixas. Our goals were 1) to obtain 
representative, high quality ECOSTRESS imagery for the period 2019–2021 for this region; 2) to calibrate this dataset with in situ and 
concurrent temperature measurements; 3) to evaluate the potential of ECOSTRESS to characterise the thermal conditions for com
mercial bivalve species within the sediment; 4) to infer differences in ECOSTRESS performance based on contrasting thermal con
ditions on tidal, daily and seasonal time scales. 
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2. Material and methods 

2.1. Temperature loggers 

Temperature loggers were placed in intertidal shellfish beds within the 3 main rias covering the whole latitudinal thermal gradient 
that characterizes the Rias Baixas region (Fig. 1). From North to South, Testal in the Ría de Noia, O Sarrido in the Ría de Arousa, and A 
Seca in the Ría de Pontevedra were selected (Fig. 1, Table 1). These devices, which provided measurements with a temporal resolution 
of 30 min (EnvLogger version 2.4, https://electricblue.eu/), were placed in PVC frames called sticks that were firmly buried vertically 
in the sediment. Every stick was attached by a short rope to a 30 cm long PVC tube with a signaling buoy in order to avoid potential 
accidents with small boats at high tide. A logger was attached to every stick at a depth below the sediment surface of 3 cm. Six sticks 
were deployed at each of the 3 sites selected, 2 sticks at each of the 3 intertidal levels (low, middle and high, Fig. 1) from October 2019 
to December 2021. However, temperature data were not available for the northern site in 2021 due to the loss of multiple sensors in the 
field. 

2.2. ECOSTRESS images processing 

A total of 104 ECOSTRESS images from 20 to 10–2019 to 5-12-2021 were retrieved from the NASA EarthData platform (Hook and 
Hulley, 2019) within a rectangular area comprising the NW Iberian coast (41◦58′05.4"N 9◦37′26.5"W - 43◦25′24.1"N 8◦00′24.6"W for 
the southwestern and northeastern corners, respectively). However, only 45 images were eventually selected for processing as the 
other 59 were discarded due to excessive cloud cover over the Rias Baixas region (Appendix A, Table 1). Specifically, geolocation 
(GEO), radiance (RAD), cloud mask (CLD) and temperature-emissivity (LSTE) files were downloaded for each image from the ECO
STRESS Land Surface Temperature and Emissivity Daily L2 Global 70m V001 collection. To reproject the images in UTM coordinates 
and visualise them in GIS software as GeoTIFFs, we used the ECOSTRESS_swath2grid.py script in Python (https://git.earthdata.nasa. 
gov/projects/LPDUR/repos/ecostress_swath2grid/browse). Then, temperature data were extracted for each individual image at the 
pixels corresponding to each logger location using the extraction tool in QGIS. Before data extraction, a total of 9 images had to be 
manually corrected due to geolocation problems by measuring the displacement distances from the coastline shapefile. These distances 
were always shorter than 5 km along the swath direction, mainly to the North East and South East (Appendix A Table 1). 

2.3. Tidal height and day/night assignation 

To perform separate ECOSTRESS calibrations for emersion and immersion conditions, we had to infer the logger absolute heights 
with respect to the lowest low water level for each location so they could be compared with the tidal height time series. Thus, we first 
identified the times at which each logger was first submerged by the incoming tide on 18, 19 and 20 April 2022 at O Sarrido, A Seca and 
Testal, respectively. Then, we associated each of these times with the time series of water heights measured at the closest tide gauge 
with a temporal resolution of 1 min for O Sarrido and A Seca, at distances of 15.5 and 4 km, respectively (http://www. 
iocsealevelmonitoring.org/station.php?code=vil2)), while the MOHID model was used for Testal as no nearby tide gauge within 

Fig. 1. Map of the study region. Purple points on the large panel show the location of the tide gauges at Vilagarcía (north) and Marin (south). Squares indicate 
sampling locations. On the small panels, bluish, orange/red and grey/black points represent the temperature loggers placed at low, mid and high intertidal positions, 
respectively. Numbers besides these points refer to the individual loggers whose characteristics are displayed in Table 1. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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the same ria was available. (http://mandeo.meteogalicia.es/thredds/catalogos/MOHID/catalog.html). MOHID is a 3D modelling 
system that incorporates the main physical process within the coastal ocean on different nested spatial scales (Neves, 1985; Martins, 
1999). Then, MOHID data was regressed against heights at the closest tidal gauge to obtain an equation that allowed the calculation of 
heights right at Testal. The methodology is explained in greater detail in Román et al., (2023) b. Eventually, a height estimate was 
obtained for each sensor (Table 1) and compared with the corresponding water heights to assign the immersion or the emersion 
category for each time step. Given the quality and high spatiotemporal resolution of both MOHID and tide gauge measurements, we 
think that this method correctly splits the dataset in these two categories. Similarly, to perform separate calibrations for day and night 
periods, the sunpos and sunvector R functions (package insol, Corripio 2021) were applied to each GMT time step to assign the 
day/night condition to each individual measurement. Finally, the logger temperature time series were paired by time steps with 
ECOSTRESS temperatures using the R function data.table (Dowle and Srinivasan, 2021). 

2.4. Surface correction 

To derive surface temperatures that could be compared with ECOSTRESS skin temperatures from logger measurements at 3 cm, we 
applied Fourier’s law of Heat Conduction, which establishes a relationship between temperatures at different depths as follows.  

1) TS= (AS* (w*t-zs/d)*exp(-z1/d) – AL* (w*t-zl/d)*exp(-zl/d)) + TL 

Where TS is surface temperature, TL is logger temperature, AS is amplitude of the daily temperature cycle at the surface, AL is 
amplitude of the daily temperature cycle at loggers’ depth, w is 2π multiplied by the frequency of the temperature variation (24 h), zs is 
surface depth (we assume 0.1 cm), zl is logger depth (3 cm), d is damping depth (the depth at which the amplitude equals 1/e of AS), 
and t is time in seconds from sunrise calculated from the time at which each ECOSTRESS image was retrieved with the R package 
suncalc (Thieurmel and Elmarhraoui, 2022). We assumed a damping depth of 10.6 cm according to the measurements with sediments 
extracted from the same sites at Rias Baixas (Domínguez et al., 2021). Our vertical temperature profiles for stick 7 at A Seca with 
loggers at depths of 3, 8 and 13 cm also pointed to a damping depth around 10.6 cm. From Fourier’s law we obtained daily sinusoidal 
patterns in temperature lagged in time and with a shorter amplitude as depth increases as a result of the vertical propagation of the heat 
waves within sediment layers. Time series of AL values were approximated as the difference between maximum and minimum daily 
temperatures divided by 2 and averaged across all loggers within a site. Then we calculated AS as follows.  

2) AS = (AL/(exp(-zl/d)))*exp(-zs/10.6) 

This surface correction was applied to the whole dataset to compare ECOSTRESS skin temperature estimates with surface tem
peratures derived from logger data at 3 cm. On the other hand, we compared ECOSTRESS data with raw logger measurements at 3 cm 
to assess the potential of this orbital sensor to characterise within sediment temperatures. Then, to infer which data subsets showed the 
largest biases, the difference between ECOSTRESS and logger temperatures (ΔT) were plotted against time of the day for emersion and 
immersion. These patterns were all compared to the difference between TS and TL (ΔST) along a daily cycle calculated with mean daily 
amplitudes for all dates when ECOSTRESS images were retrieved. Thus, we could see if the temporal patterns in ECOSTRESS bias 
matched those caused by the deployment of loggers at 3 cm below sediment surface. 

2.5. Statistical analyses 

Linear regressions with logger temperature as the independent predictor and ECOSTRESS temperature as the dependent variable 
were performed for each of the 4 combinations between the immersion/emersion and day/night states. Temperature differentials 
consisting of subtracting logger temperatures from ECOSTRESS temperatures (ΔT) were also plotted against logger temperatures. To 

Table 1 
Temperature logger locations and tidal heights with respect to the lowest low water level.  

Site Logger Latitude Longitude Height (m) 

Testal 1 42◦47′24.9"N 8◦55′14.1"W 0.867 
2 42◦47′24.9"N 8◦55′14.1"W 0.867 
3 42◦47′24.7"N 8◦55′13.6"W 0.926 
4 42◦47′24.7"N 8◦55′13.6"W 0.926 
5 42◦47′20.1"N 8◦55′09.0"W 1.622 
6 42◦47′20.9"N 8◦55′08.1"W 1.622 

O Sarrido 13 42◦30′07.5"N 8◦49′27.1"W 1.345 
14 42◦30′07.2"N 8◦49′27.3"W 1.345 
15 42◦30′03.6"N 8◦49′21.3"W 1.627 
16 42◦30′04.2"N 8◦49′22.0"W 1.568 
17 42◦30′04.2"N 8◦49′15.7"W 1.727 
18 42◦30′04.9"N 8◦49′16.9"W 1.727 

A Seca 7 42◦26′00.8"N 8◦41′41.6"W 1.053 
8 42◦26′00.8"N 8◦41′41.2"W 1.053 
9 42◦26′07.7"N 8◦41′27.2"W 2.401 
10 42◦26′08.1"N 8◦41′28.3"W 2.317 
11 42◦26′09.9"N 8◦41′20.1"W 2.358 
12 42◦26′10.1"N 8◦41′20.7"W 2.256  
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assess the goodness of fit of these calibrations R2, residual standard error (RSE), regression slope and mean ΔT estimates were obtained 
and evaluated. These procedures were carried out for surface temperatures derived from logger measurements; for raw logger data at 3 
cm; and for the combination of both surface and 3 cm temperatures showing the best fits and smallest biases with respect to 

Fig. 2. Temperature time series from in situ loggers for A) Testal, B) O Sarrido and C) A Seca. Grey lines show the thermal envelope for each site taking into account all 
loggers, while the dark lines show mean temperatures for each time step across all loggers at each site. Inverted triangles show the dates at which ECOSTRESS scenes 
used for the calibration were retrieved. Red and blue triangles point to those retrieval dates showing maximum and minimum thermal amplitudes, respectively, for 
each site. Red and blue numbers show those values in ◦C, while mean amplitudes for all ECOSTRESS retrievals at each site are shown in green. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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ECOSTRESS. 
In addition, to infer potential significant differences in ECOSTRESS calibrations due to the influence of tidal and light conditions, 

we followed the stepwise statistical procedure described in Engqvist (2005) and applied in Baldanzi et al. (2015) designed to disen
tangle the effects of covariates, factors and their interactions on a given target variable. First, a homogeneity of slopes model was 
performed with ECOSTRESS temperature as the dependent variable, surface temperature derived from logger measurements as the 
independent covariate and state with 4 levels (emersion and day; emersion and night; immersion and day; immersion and night) as 
factor. If the interaction between logger temperature and state was significant, then a separate slopes model was applied to analyse 
how temperature slopes change with state. If the interaction was not significant, then an analysis of covariance (ANCOVA) was carried 
out to assess properly the individual effect of logger temperature and state on ECOSTRESS temperature. Functions in the R packages 
tidyverse, ggpubr, rstatix, lsmeans and broom were used for these analyses (Lenth, 2016; Wickham et al., 2019; Kassambara, 2020, 2021; 
Robinson et al., 2022). These procedures were carried out for surface temperatures derived from logger measurements; for raw logger 
data at 3 cm; and for the combination of both surface and 3 cm temperatures showing the best fits and smallest biases with respect to 
ECOSTRESS. 

3. Results 

3.1. Logger temperature time series 

Along the time series the seasonal thermal cycle typical of temperate regions was apparent, especially in O Sarrido and A Seca 
where two years of data were available. Although shorter, the time series for the northernmost site at Testal indicated a colder 
temperature regime, as sediment temperatures rarely exceeded 25 ◦C (Fig. 2A). Accordingly, minimum winter sediment temperatures 
in January 2020 of 5 ◦C were lower than those at the other two sites. Maximum sediment temperatures exceeding 40 ◦C were reached 
at the upper intertidal in A Seca between 25-5–2020 and 15-6-2020 (Fig. 2C). At O Sarrido, the summer of 2020 was warmer than 
summer 2021, reaching 33 ◦C compared to 30 ◦C in June 2021 (Fig. 2B). 

The ECOSTRESS image dataset provided a good temporal coverage along the logger time series, although skewed towards the 
summer periods of 2020 and 2021 as expected due to the seasonal reduction in cloud cover (Fig. 2). Logger thermal amplitudes for the 
dates when ECOSTRESS scenes were obtained ranged between 0.4 ◦C at Testal to 6.48 ◦C at O Sarrido. Overall, much smaller thermal 
amplitudes were observed at the northernmost site of Testal (Fig. 2). Mean logger thermal amplitude across all sites was 2.93 ◦C, which 
resulted in a thermal amplitude of 3.85 ◦C at the surface with ECOSTRESS according to Fourier’s law. 

3.2. Daily variability of bias 

Theoretical temperature differences between the surface calculated with the Fourier’s law and loggers’ depth at 3 cm followed a 
daily pattern with maximum and minimum values at midday and midnight, respectively, around 1.5 and − 1.5 ◦C (Fig. 3A). This 
pattern arose because of the time lag in the diffusion of heat and the lower amplitude (2.93 ◦C versus 3.85 ◦C) of temperature time 
series at 3 cm compared to surface estimates. 

ECOSTRESS imagery for the study area between 2019 and 2021 showed a good temporal coverage on sub-daily time scales 
(Fig. 3B). ΔT estimates in relation to time of the day followed LOESS fits, which peaked at midday and around 16:00 for the emersion 

Fig. 3. A) Temperatures at the surface layer (0.1 cm, dark line) and at loggers’ depth within the sediment (3 cm, red line) as a function of time of the day. The green 
line represents the surface – 3 cm thermal difference. These theoretical profiles were inferred from the Fourier’s law with 20 ◦C as mean temperature and 3.85 and 
2.93 ◦C as mean amplitudes for the surface and at a depth of 3 cm, respectively. These amplitudes were calculated across all sites for all ECOSTRESS retrieval dates. B) 
Thermal differentials between ECOSTRESS and loggers as a function of time of the day. Red and blue lines show LOESS fits for emersion and immersion, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and immersion datasets, respectively, reaching almost zero bias values at those times. On the other hand, the largest average negative 
biases of approximately − 5 ◦C was reached around midnight regardless of exposure to air. 

Overall, the ECOSTRESS bias daily variability was consistent with that driven by loggers’ position within the sediment as inferred 
from Fourier’s law, as both follow a synchronised sinusoidal pattern. However, ΔT estimates were clearly skewed to lower values 
during the night, while Fourier’s law temperature differences were symmetric around 0. 

3.3. MOHID correction and loggers heights 

We obtained a highly significant power law fit between water height measurements at the Vilagarcia tide station and MOHID water 
level forecasts with the following equation.  

3) MOHID sea level height Testal = 0.5442 + 0.4001*(Tide gauge Vilagarcía 1.5104) 

With R2 = 0.936, (Appendix A Fig. 1, Román et al., 2023 b). Testal was found to be the site with the lowest heights, and A Seca 
presented the highest locations (Table 1). 

3.4. Evaluation 

The calibration between ECOSTRESS estimates and surface estimates derived from logger data presented a high R2 above 80% and 
a negative bias of − 1.39 ◦C (Table 2, Fig. 4). If the raw logger measurements were considered instead of the surface derived values, 
then biases increased to − 1.49 ◦C and the goodness of fit decreased to 73.9% (Table 2, Figs. 4, Fig. 5). According to the regression line, 
this cold bias reversed when logger temperatures exceeded 25 ◦C (Fig. 5A). This temperature dependent bias switch was largely driven 
by the emersion-day dataset (Fig. 5E). The largest bias reduction (− 0.93 ◦C) was obtained when the surface correction was only 
applied to nighttime data while keeping the 3 cm logger measurements for the daytime dataset. The goodness of fit of this last cali
bration remained above 80% (Table 2, Fig. 4 E, F). 

Very good fits explaining greater than 70% of the variability were found when splitting the dataset into the 4 combinations of day- 
night and emersion-immersion conditions, especially for emersion during the day (Table 2). However, night calibrations exhibited a 
much larger cold bias of − 3 ◦C compared with day calibrations that presented mean ΔTs between − 0.3 and + 0.6 ◦C (Table 2). 
Negative biases were reduced from − 3 ◦C to values around − 2 ◦C when applying the surface correction for the nighttime subsets (Im & 
N, Em & N) (Table 2). Nighttime data in between 15 and 20 ◦C fell along the 1:1 line only when they were surface corrected, while they 
fell clearly below it when the correction was not applied (Fig. 5). On the other hand, negative biases appeared for the daytime subsets 

Table 2 
Calibrations for the whole dataset (all), emersion during the night (Em&N), emersion during the day (Em&D), immersion during the night (Im&N), and 
immersion during the day (Im&D). Variance explained (R2), residual standard error (RSE) and mean temperature differentials (mean ΔT) are shown. 
Values in cursive stand for the calibrations performed with corrected surface temperatures following the Fourier’s law. For the whole dataset, the values 
for the calibration with the nocturnal surface correction are shown in cursive, while those for the calibration with the overall surface correction are shown 
in red cursive. 
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when surface estimates were used, especially in emersion (from +0.6 ◦C to − 1.23 ◦C, Table 2). Nevertheless, surface estimates for 
extreme warm conditions within the emersion-daytime dataset above 20 ◦C fell closer to the 1:1 line. The goodness of fit remained 
almost the same after applying the surface correction for each subset (Table 2). 

Individual ΔT values clearly differed between day and night, with negative values during the night for both emersion and im
mersion conditions and more positive values, although close to 0, during much of the day (Fig. 4B, D, F, Fig. 5D, F). The somewhat 
positive bias (+0.6 ◦C) occurred during the daytime in emersion as expected. On the other hand, nighttime negative biases were 
reduced and were closer to 0 when surface temperatures were used (Fig. 4B and F), while daytime biases became more negative 
(Fig. 4B). 

Regarding the homogeneity of slopes model, it revealed a significant state: temperature interaction, thus pointing to a shift in slope 
depending on light conditions and air exposure (Table 3). The separate slopes model with the interaction as the unique source of 
variation yielded the same result (Table 3). These results held when surface corrections were applied to the whole dataset or just to the 
nighttime subsets (Table 3). Pairwise slope comparisons showed that within the day and the night datasets, the slopes did not change 
significantly between immersion and emersion (Table 4, Figure 4). However, between the day and night datasets, slopes were always 
different regardless of the emersion/immersion condition (Table 4, Fig. 4). The same pattern was observed when surface estimates 
were used just for the nighttime subsets (Table 4). However, when the surface correction was applied to the whole dataset, day-night 
differences in slope for emersion disappeared. Also, differences in slope between the emersion & daytime and the immersion & 
nighttime subsets became non-significant (Table 4). 

4. Discussion 

4.1. Cloud cover limitations and geolocation errors 

ECOSTRESS provides a thermal characterization of both land surfaces and water bodies within the infrared band with the highest 
spatial resolution available at the moment (70*70m, Fisher et al., 2020). Thus, ECOSTRESS imagery can be used to determine coastal 
thermal patterns at regions that cannot be properly characterised by usual oceanographic satellites (Weidberg et al., 2021). In this 
study, we show that ECOSTRESS can be very useful in areas like the Rias Baixas region (NW Iberian Peninsula), where the intricate 

Fig. 4. Calibrations between logger and ECOSTRESS temperatures for the 4 states with their respective regression lines and the 1:1 line in black. Surface temperatures, 
logger temperatures at 3 cm and surface temperature only for nighttime were used in panels A, C and E, respectively. ECOSTRESS temperature differentials for the 
surface temperatures, for the logger temperatures at 3 cm and for surface temperature only for nighttime are shown in panels B, D and F, respectively. Horizontal 
dashed lines and vertical lines in panels B, D and F represent null thermal differentials and a logger temperature threshold of 20 ◦C, respectively. 
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coastal topography with extensive shallow areas driven by extreme tidal forcing supposes a severe limitation for other observational 
orbital platforms. However, given its geographical location right within the eastward track of Atlantic low pressure systems (Naranjo 
and Perez-Muñuzuri 2006), persistent cloud cover above Rias Baixas was the main factor limiting the number of images available for 
analysis, with more than 42% of ECOSTRESS scenes discarded for this reason. 

Additionally, there were evident geolocation errors in 20% of the images. Shi and Hu (2021) found similar geographic displace
ments that were corrected with the use of Landsat base-maps and geometric corrections based on topographic landmarks. Most likely, 
these inaccuracies are due to the intrinsic uncertainties of the ISS orbit with frequent changes in altitude (Fisher et al., 2020) and 
human activity inside the station. Also, geolocation depends upon a fixed reference land-water boundary, yet in Galicia there are large 
tidal flats, so the land-water boundary changes by km depend upon the state of the tide unless identifiable rocky headlands are used 
exclusively for geolocation. In addition, the fact that the image displacement direction matches the ISS swath direction (Northwest to 
Southeast, or Southwest to Northeast, Appendix A Table 1) points to a delay in processing and acquiring the image as a potential source 
of the error, a problem already described in previous high resolution sensors on the ISS (Dou et al., 2013). Geolocation errors can also 
appear in satellite imagery like in the Cross-track Infrared Sounder (CrIS) mounted on the Suomi National Polar-orbiting Partnership 
(SNPP) platform. In this case, changing geolocation parameters in time are the source of displacement errors in the order of few kms 
(up to 4.7 km, Gong et al., 2018), that are substantially larger than those we have observed with ECOSTRESS. Nevertheless, such errors 
can be easily mitigated with automatic and simplified correction procedures (Wang et al., 2017). 

4.2. Surface calibration 

Overall, ECOSTRESS measurements presented a negative bias of − 1.39 ◦C with respect to surface estimates derived from in situ 
temperature loggers at Rias Baixas (Table 2, Fig. 3). This result is in agreement with previous global calibrations like the intercom
parison performed against N20-VIIRS SST data at different seas all over the world, which yielded a − 1.01 ◦C bias (Weidberg et al., 
2021). The source of the bias was attributed to the limitations of the ECOSTRESS TES algorithm to derive temperatures from emissivity 

Fig. 5. Calibrations between logger and ECOSTRESS temperatures. Raw temperatures (A, C, E) and thermal differentials (B, D, F) are shown for the whole dataset (A, 
B), immersion (C, D) and emersion (E, F). Red and blue lines show linear regression fits for day and night, respectively, while the 1:1 line is shown in black. Horizontal 
dashed lines and vertical lines in panels B, D and F represent null thermal differentials and a logger temperature threshold of 20 ◦C, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Table 3 
Results for the homogeneity and separate slopes models. The values for the analyses with the nocturnal surface correction are shown 
in cursive, while those for the analyses with the overall surface correction are shown in red cursive. 

Table 4 
Post-hoc contrasts for the slopes across all states. The values for the analyses with the nocturnal surface correction are shown in 
cursive, while those for the analyses with the overall surface correction are shown in red cursive. 
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estimates that were too low and inaccurate for graybodies with high emissivity like water and vegetation (Weidberg et al., 2021). In 
fact, the global calibration performed by Hulley et al. (2021) with in situ radiometer measurements and modelled estimates in both 
water and land surfaces yielded similar results. They estimated a cold bias of − 0.75 ◦C that was slightly larger at night (around − 1 ◦C). 
We observed similar but larger negative temperature differentials with logger corrected surface temperatures during nighttime 
(around − 2 ◦C, Table 2). 

4.3. Nighttime effects 

On top of the cold bias due to the performance of the ECOSTRESS TES algorithm, we found clear evidences of temperature de
viations due to the mismatch between measurements of skin temperatures and the ones we collected with our loggers at depths of 3 cm 
within the sediment. The combined effect of the algorithm related bias and the deviations derived from heat propagation effects within 
the sediment resulted in a greater negative bias for the night than for day when the raw temperature measurements of the loggers at 
depths of 3 cm were used for the calibration (Table 2, Figs. 4, Fig. 5). This pattern occurs because the negative algorithm intrinsic bias 
adds on to surface cooling during the night. Thus, when we applied the surface correction just for the nighttime subsets, then the 
overall goodness of fit increased and the bias decreased (Table 2, Figs. 4, Fig. 5). 

In agreement with this mismatch caused by the position of the loggers, we observed that the daily pattern of variability in ΔT 
mirrored the temperature differences expected by Fourier’s law, with a surface cooling with respect to temperatures within the 
sediment at midnight (Fig. 3). Similarly, negative SST deviations were found mainly during the night between ECOSTRESS and bulk 
measurements at 2 m depth off the coast of southern Florida and they were attributed to nighttime surface cooling (Shi and Hu, 2021). 
These effects are compensated during the day as a thermocline usually develops due to surface heating (Minnett, 2003). Note that the 
calibrations, including this study, with in situ sensors measuring bulk temperatures rather than skin temperatures show a much marked 
nighttime negative bias whether in water or in intertidal surfaces (Shi and Hu, 2021), while the intercomparison with VIIRS N-20 does 
not (Weidberg et al., 2021). Most likely, the lack of this marked nighttime negative bias shows that both orbital platforms are capturing 
the nocturnal surface cooling within the skin layer. In fact, data retrieval and processing for VIIRS N-20 incorporates a specific split 
window nighttime algorithm (Minnett et al., 2020). 

4.4. Daytime effects 

Conversely, the combination of both the intrinsic ECOSTRESS negative bias and the heat propagation effects within the sediment 
resulted in a smaller negative bias for the day when logger raw temperature measurements were considered (Table 2, Figs. 4, Fig. 5). 
This pattern occurs because the negative algorithm intrinsic bias compensates surface overheating during the day and, consequently, 
brings surface estimates closer to cooler temperatures 3 cm within the sediment. Thus, when the surface correction was applied to the 
whole dataset, surface daytime temperatures increased because of overheating and therefore a negative bias with respect to colder 
ECOSTRESS estimates affected by the algorithm limitations appeared (Table 2, Figs. 4, Fig. 5). In other words, because of their intrinsic 
cold bias, ECOSTRESS measurements were a better predictor of temperatures at 3 cm within the sediment than at the surface in 
daytime, although this rule may not hold during extreme hot conditions in emersion. 

4.5. Emersion vs immersion 

Our calibrations showed that, within the daytime and nighttime categories, the immersion and emersion datasets presented similar 
negatives biases, RSE and slopes (Table 2, Table 4, Figs. 4, Fig. 5). Although a priori land surfaces present very different optical and 
thermal properties, in the case of intertidal sand flats such as those of the inner part of Rias Baixas such differences could be masked by 
the nature of their sediment and vegetation. Overall, wet sediments and vegetation could blur the differences in surface emissivity 
between emersion and immersion. The size spectrum of the sediment grains in these systems is modulated by riverine and tidal 
currents, bathymetric profile and wave dynamics (Méndez and Vilas, 2005). In the inner part of the Rias Baixas very fine muddy 
sediments with high water content prevail (Vilas, 2002). In addition, our temperature logger sites were located within or very close to 
meadows of the seagrass Zostera noltei (Hornemann, 1832), an intertidal species common along the southern and western European 
coasts (Green and Short 2003). Moreover, the larger subtidal species Zostera marina (Linnaeus 1753) with wider and longer leaves was 
present in the intertidal of O Sarrido (personal observations). These plants favour the retention of water and suspended particles 
(Wilkie et al., 2012). Besides, vegetation presents a very high emissivity around 0.99, which matches that of water (Rubio et al., 1997). 
Thus, the thermal properties of the surfaces where temperatures were retrieved by ECOSTRESS might not be expected to change 
between emersion and immersion. 

Nevertheless, when loggers registered temperatures higher than 20 ◦C during emersion in daytime, ECOSTRESS biases became 
positive (Fig. 4D, F, Fig. 5). Most of these measurements corresponded to summertime dry sediment conditions, when Z. noltei water 
content decreases, especially during pervasive heat waves, and sediment water content reaches its minimum (Allen 1987; Zipperle 
et al., 2009). Thus, for these particular measurements the negative intrinsic algorithm bias may not apply as surface emissivity may be 
lower and in turn the TES algorithm performance should be better. Consistently, the smallest biases quite close to 0 have been found in 
extremely dry, hot regions like the Gobabel desert (Hulley et al., 2021). Therefore, positive biases with respect to temperatures within 
the sediment caused by surface overheating are no longer compensated by the intrinsic ECOSTRESS negative bias for these hot summer 
daytime emersion periods. Accordingly, when the surface correction was used for the emersion-daytime data, measurements above 
20 ◦C were better aligned with the 1:1 line, while the slope of the linear regression decreased and became more similar to the trends of 
the other subsets (Figure. 4A, B, Table 4). 
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4.6. Consequences for ecological monitoring in shellfish beds 

Along the inner parts of Rias Baixas, several bivalve species of commercial interest inhabit the muddy and sandy intertidal sedi
ments, including the native clams Ruditapes decussatus (Linnaeus 1758), Venerupis corrugata (Gmelin 1791), the introduced Ruditapes 
philippinarum (Adams and Reeve, 1850), and the cockle Cerastoderma edule (Linnaeus 1758) (Fernández et al., 2016; Pascual-Fernández 
et al., 2020). Their fishery brings in 50 million € per year in first sales (https://www.pescadegalicia.gal/gl/estatisticas). These species 
display different ranges of thermal tolerance and burrowing behaviours in response to summertime heatwaves (Domínguez et al., 
2021). On one end of the spectrum, V. corrugata with their narrower thermal range and cockles with their limited ability to burrow (up 
to 2 cm), are more affected by thermal stress. On the other end of the spectrum, the introduced R. philippinarum, with a much wider 
thermal range, and R. decussatus, that can burrow up to depths of 13 cm in the sediment, are more able to resist increased thermal stress 
(Verdelhos et al., 2015; Macho et al., 2016; Domínguez et al., 2021; Román et al., 2022, 2023 a). 

Another coastal shellfisheries with extensive intertidal flats subjected to thermal stress that can be potentially monitored with 
ECOSTRESS are that of the European oyster Ostrea edulis (Linnaeus 1758) and the Pacific oyster Magallana gigas (Thunberg 1793) along 
the Atlantic coasts of France. In fact, oyster leases in Arcachon Bay are of the same spatial scale than ECOSTRESS pixels, thus allowing a 
proper individual thermal characterization of every management unit in this fishery (Wethey et al., 2022). Although oysters can 
apparently resist and perform well up to air temperatures of 30 ◦C (Dutertre et al., 2010; Eymann et al., 2020) even when they belong 
to epifauna, high temperatures are known to drive pervasive diseases in M. gigas that in turn have led to large mortality events 
(Goulletquer et al., 1998). In general, the effects of increased temperatures on intertidal bivalves do not scale linearly from the in
dividual to the population level, which complicates predictions on their biological fitness in the mesoscale (Thomas and Bacher, 2018). 
Nevertheless, warming trends forced by anthropogenic greenhouse effects along European coasts of around 0.025 ◦C/year (Lima and 
Wethey, 2012; Varela et al., 2022) can potentially affect even the more resistant species (Castro-Olivares et al., 2022). In particular, 
atmospheric heat waves over Western Europe have increased in number and magnitude triggered by the anomalous jet stream cir
culation forced by global warming (Rousi et al., 2022). 

4.7. Conclusions 

To correctly use ECOSTRESS for the characterization of thermal stress for these shellfish species, we have to consider the cali
brations performed for those data subsets that overpassed critical warm temperatures beyond 20 ◦C or even 30 ◦C. Thus, nighttime 
calibrations with their large negative bias are of little importance for ecological monitoring at these habitats. On the other hand, 
daytime calibrations, specifically in emersion, are critical as they reach those thermal thresholds (Figs. 4 and 5). Then, as the bias 
reached its minimum around 0.5 ◦C in daytime during emersion when temperatures at 3 cm within the sediment were used (Table 2), 
we could infer that ECOSTRESS provides reliable, straightforward temperature measurements at the habitat depth of many soft bottom 
intertidal species within the subsurface layer. However, specifically for those critical measurements above 20 ◦C, the positive bias with 
respect to loggers at depths of 3 cm became much larger (Fig. 4D,F, Fig. 5F), probably because of a reduction of surface emissivity of 
dryer, less vegetated surfaces during emersion in summertime that is translated to a better performance of the TES algorithm. 
Therefore, for these periods of high thermal stress, we recommend to use ECOSTRESS datasets as a good proxy of surface temperatures. 
Then, these temperatures can be used directly to evaluate thermal stress for those species inhabiting the surface like oysters, or they 
can be used to derive within sediment temperatures at those depths where different clam species live by applying Fourier’s law. Used 
properly, ECOSTRESS becomes a very valuable tool to appropriately track the occurrence of heat wave episodes and extreme hot 
summers over large coastal areas with high spatial resolution for different shellfish species. 

CRediT author statement 

Nicolas Weidberg: Methodology, Conceptualization, Formal analysis, Data Curation, Investigation, Writing-original draft, Super
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Dutertre, M., Beninger, P.G., Barillé, L., Papin, M., Haure, J., 2010. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, 

on the French Atlantic coast. Mar. Environ. Res. 69 (1), 1–9. https://doi.org/10.1016/j.marenvres.2009.07.002. 
Dyer, K.R., Christie, M.C., Wright, E.W., 2000. The classification of intertidal mudflats. Continent. Shelf Res. 20, 1039–1060. 
Engqvist, L., 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 

967–971. 
Eymann, C., Götze, S., Bock, C., Guderley, H., Knoll, A.H., Lannig, G., Sokolova, I.M., Aberhan, M., Pörtner, H.O., 2020. Thermal performance of the European flat 
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IPCC, 2022. In: Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., 
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