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Abstract: Food safety and quality are the first steps in the food chain. This work reports a miniatur-
ized, low-cost, and easy-to-use near-infrared spectroscopy (NIRS) measurement system for alfalfa
quality control. This is a significant challenge for dairy farm technicians and producers who need
rapid and reliable knowledge of the forage quality on their farms. In most cases, the instrumentation
suitable for these specifications is expensive and difficult to operate. The core of the proposed NIR
spectroscopy measurement system is Texas Instruments’ NIRscan Nano evaluation module (EVM)
spectrometer. This module has a large sensing area and high resolution, suitable for forage samples.
To evaluate the feasibility of the prototype for analyzing agrifood samples, different ways of present-
ing the sample, intact or ground, were tested. The final objective of the research is not just to check
the efficiency of the proposed system. It is also to determine the characteristics of the measurement
system, and how to improve them for alfalfa quality control.

Keywords: agrifood quality control; digital micromirror device (DMD); forage; near-infrared
spectroscopy (NIRS)

1. Introduction

The nutritional value of animal feed is essential to quality, safe feed consumption,
and animal welfare [1]. In addition to this fact, and due to the great variability in the
raw materials used to feed animals, it is necessary to develop strategies focused on the
tight control of animal feed products. These should be combined with the research and
development of new, simple, economical, and robust methods for monitoring quality and
safety parameters [2,3].

Forage is one of the main feed products in animal husbandry and must, therefore, be
subject to safety and quality controls. Among the most important quality parameters for
forages, the following three can be highlighted [4]. The fiber content is mainly provided
by the fodder cell wall, and represents its carbohydrate. The mineral content (ash) gives
information about possible contamination with soil, and supplies micronutrients to the
diet. It also provides information on the quality of the forage. The third parameter is the
protein content, which is extremely important in animal production.

Several important books on NIR spectroscopy are currently available, but some of
them are not up to date. Ozaki et al. [5] report a new state-of-the-art textbook on NIR
spectroscopy, covering its principles, spectral analysis and data treatments, instrumentation,
and applications. In [6], Huck et al. review the fundamental principles of NIRS, and its
applicability, regulatory issues, advantages, and limitations in natural product research.

Near-infrared spectroscopy (NIRS) techniques have always been valued and used in
food analysis and quality control, due to the speed of analysis, the simplicity of sampling,
the non-invasive nature of the techniques, and the possibility of their being implemented
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in the production line. In this review [7], Shenk et al. introduce scientific and technical
reports using the NIRS to evaluate food, agriculture, and forest products.

In addition to the advantages of this technique, the possibility of developing minia-
turized NIR systems that are easy to use, and specialized in the quality control of the
raw forages used in animal feed, makes it possible to increase quality control (sampling).
Thus, Cherney et al. [8] evaluate several hand-held NIR instruments for the precision
and accuracy of the currently available calibrations for dry-matter and forage nutritive
value. Crocombe [9] outlines the technologies used in portable spectroscopy, and Beć
et al. [10] discuss the characteristics of miniaturized NIR sensors in comparison to benchtop
laboratory spectrometers.

The use of easy-to-use portable NIRS instrumentation minimizes time losses, because
nonspecialized personnel are able to analyse samples on site, and a real-time response is
achieved as soon as the analysis is carried out. These characteristics are some of those
required in precision farming [11].

Several miniaturized spectrophotometers have been developed and marketed in
the last decade, some of which are extremely small, light, and inexpensive. By allow-
ing measurements in the field, at the point of delivery, production, sale, purchase, and
use, these spectrometers transform NIRS technology. Table 1 lists some commercial
miniaturized NIRSs, and presents their main characteristics, as found on the websites of
the manufacturers.

Table 1. Main specifications of some commercial miniaturized NIRSs.

Manufacturer Model Technology
Spectral

Resolution
(nm)

Spectral
Range (nm)

Size
(mm)

Prize
(USD)

Texas
Instruments

NIRscan Nano
EVM

Grating–MEMS
DMD 10 900–1700 58×62 × 36 1000

VIAVI
Solutions MicroNIR 1700 LVF–Linear 12–20 950–1650 50 × 45 14,500

Si-Ware
Systems NeoSpectra MEMS–FT 8–16 1250–1700 178 × 91 × 62 6950

Consumer
Physics SCiO X X 740–1070 67.7 × 40.02 ×

18.8 3395

Ocean Optics Flame NIR Grating ~10.0 970–1700 89.1 × 63.3 ×
34.4 9926

SouthNest
Technology nanoFTIR NIR MEMS

Michelson 6 1000–2600 143 × 49 × 28 X

Spectral
Engines NIRONE S1.7 Fabry–Pérot 13–17 1350–1550 25 × 25 × 17.5 8940

X: No information is provided on the manufacturer’s website.

This work evaluates the feasibility of a miniaturized and low-cost NIRS measurement
system for alfalfa quality control. The core of this system is a NIR spectrometer based on
the Texas Instruments NIRscan Nano evaluation module (EVM). It has a large sensing
area and high resolution to analyse forage samples. To evaluate the feasibility of the
prototype, different ways of presenting the sample, intact (raw) or ground, were studied.
This equipment has already been tested for use in liquid sample analysis [12], with a specific
cuvette for liquid samples. For this purpose, alfalfa samples were analysed. Alfalfa is one
of the main forages used to feed animals, due to its high biomass production, and protein
and fiber contents. In summary, this work contributes:

• to confirming the efficiency of the proposed NIRS measurement system;
• to identifying the qualities of the equipment; and
• to looking for aspects to improve and implement in the future.
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The remainder of this paper is organized as follows: Section 2 reports the materials
and methods for analysing dairy farm forage quality. Section 3 presents the results and
discussion. Finally, Section 4 contains conclusions and future works.

2. Materials and Methods
2.1. NIRscan Nano Evaluation Module

The core of the optoelectronic measurement system is the Texas Instruments NIRscan
Nano evaluation module (USD 1000 approx.) [13]. The block diagram of this module for
reflectance measurements is shown in Figure 1. A slit collects and concentrate diffuse
reflections, by illuminating samples at an angle that eliminates specular reflections. Light
passing through the slit is collimated, low-pass filtered, and then dispersed into its con-
stituent wavelengths via a reflective grating. Each wavelength is represented by a separate
image created by the focusing lens of the digital micromirror device (DMD).
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Figure 1. Block diagram and image (upper right corner) of the Texas Instruments DLP NIRscan
Nano EVM.

The DMD is controlled by the embedded processor, which turns only certain mirrors
on and off at certain times. The width of the DMD columns selected as “on” determines
the amount of light directed to the photodetector, as well as the resolution of the system.
The DMD columns selected as “off” divert unselected wavelengths away from the pho-
todetector’s optical path, to prevent interference. By doing this, they can achieve high
signal-to-noise ratios (SNRs). An array detector cannot take advantage of the adaptive
scanning techniques that can be performed using this type of architecture. Light energy is
collected and concentrated, by the collection lenses, onto the single-point InGaAs photode-
tector. Analog-to-digital converters (ADCs) convert photodetector signals to digital values
through transimpedance amplifiers.

2.2. NIRS Measurement System

The instrument sample window can be enlarged if raw samples with larger particle
sizes are analyzed. This will produce reproducible spectra. However, this is difficult
when measuring samples directly, as the sample window is very small (10 mm × 10 mm).
This problem was overcome through the attaching of a semicircular sample holder to
the spectrometer, as shown in Figure 2a. To ensure homogenous results for the sample,
10 measurements are made at each holder position. Figure 2b shows the microcontroller
(LOLIN ESP32, USD 10) attached to the spectrometer module that drives the servomotor
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(MG90S, USD 10). This servo motor is powered by a 3.7 V to DC–DC converter (Pololu
U1V0F5, USD 6). When the start button is pressed, the servo motor rotates, and stops
at different positions to take measurements. After rotating 180◦, the holder returns to
its original position, and waits for another measurement to take place. When the load
button is pressed, the servo motor rotates 90◦ to an intermediate position, making loading
and unloading easier. When neither of these two actions occur, the microcontroller enters
sleep mode.
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over the spectrometer module.

2.3. Forage Samples

For this study, a calibration set of 57 samples of hay or dehydrated alfalfa collected
in the north of Spain was utilized. Approximately 200 g of alfalfa was collected during
the sampling procedure, to be analyzed using miniaturized NIRs. Prior to the collection
of the raw scans, the samples were homogenized. After that, the alfalfa samples were
milled, using a domestic spice mill (which is cheap and easy to use), and re-scanned in their
ground form. This type of mill does not allow mesh-size setting. The variability associated
with this factor appears in the collected spectra, and also in the chemometric results. This
is because all spectroscopic information is considered when developing calibrations.

When the NIR analysis was complete, the quality of the alfalfa samples, based on
animal feed requirements, was characterized, according to their nutritive value parameters.
This was done using laboratory reference procedures. A Van Soest analysis [14] was
performed on the neutral detergent fiber (NDF), a gravimetric analysis was conducted on
the mineral content (MC), and a Kjeldahl analysis was conducted on the crude protein (CP).
The CP and NDF are two of the critical parameters for classifying alfalfa quality. CP values
of 19% or higher, combined with crude fiber values of 29% or lower, are related to good
forage quality [15]. Table 2 summarizes the statistics for the nutritive parameters of all
the samples involved in this study. It includes the range and variability in each analyzed
parameter. Appendix A includes the individual values for each alfalfa sample included in
this study.
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Table 2. Statistics for the nutritive value of the alfalfa samples (N = 57).

Parameter (%) Mean Min. Max. SD

NDF 40.70 29.24 61.01 5.50
MC 10.64 8.47 13.71 0.91
CP 14.48 7.19 17.01 1.70

NDF: neutral detergent fiber; MC: mineral content; CP: crude protein.

2.4. Spectral Acquisition

Spectral acquisition requires a scan configuration (see Figure 3). Texas Instruments pro-
vides two different scan configurations within the "Factory” settings: “Column”
and “Hadamard”.
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Column scanning selects wavelengths one at a time. With Hadamard scanning, several
wavelengths are multiplexed at a time, and the wavelengths are decoded individually.
Hadamard scanning collects light, and offers a higher SNR, but it depends heavily on the
spectrum being measured, and on the measurement system [15]. Column analysis is more
effective for analyzing forage samples, because it is more accurate than other methods of
analysis, due to its reproducibility.

Before scan collection, one to five sections can be configured, depending on the type
of method (Column or Hadamard), the spectral range (the starting wavelength and ending
wavelength), the digital resolution (the wavelength points captured within the defined
spectral range) the exposure time (between 0.635 and 60.960 milliseconds), and the number
of scans per sample (in this work, 10 scans at 10 different points in the sample).

In this work, all samples were scanned in reflectance mode, using the measurement
system shown in Figure 2.
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In order to increase the sampling window and improve the spectroscopic information
for each sample, after the alfalfa samples were homogenized, each was divided into
three subsamples and scanned using miniaturized NIRs. Each spectrum is an average of
10 spectra, in a wavelength range between 901 and 1700 nm, with a non-linear path
wavelength between 2.9 and 3.9 nm. A total of 30 scans were collected for each alfalfa
sample. The precision of the collected spectrum for each sample or signal reproducibility
was evaluated for the raw and ground alfalfa. The statistic of the root-mean-square error
(RMSE) was calculated. Using (1), it is possible to calculate the RMSE for each sample
spectrum. Lower RMSE values are related to reproducible and repeatable spectra.

RMSE = 106 ×
√

∑ D2

n
; D = ya − yb (1)

ya = log 1/R to λ for the average spectrum resulting from averaging a number of scans, and
R is reflectance.
yb = log 1/R to λ for the average spectrum resulting from averaging b number of scans
n = number of spectral data

2.5. Spectral Data Processing

To establish a calibration model to quantify alfalfa nutritive parameters, different
chemometric strategies were assayed. The software Unscrambler X version 10.4 was em-
ployed to find the linear correlation between the NIRS spectra and nutritive parameters.
This software takes NIRS spectra and transforms them into a matrix with X and Y variables,
defined as the wavelength and reflectance. To detect potential spectral outliers, a principal
component analysis was performed on the calibration set, before regression models were
constructed using partial least squares (PLSs) [16]. An optimal number of PLSs factors is
determined using the Unscrambler X software version 10.4 package, based on the minimum
residual variance and 20 segments. Different spectrum mathematical pretreatment strate-
gies were used for NDF, MC, and CP quantification. These approaches were performed
using both the full range of equipment, from 900 to 1700 nm, and a reduced one, from 900
to 1600 nm.

To establish a successful model, a combination of pretreatments, including scatter
correction with the standard normal variate (SNV), and the first and second Savitzky–Golay
derivatives (SG), were tested in this study. Six possible pre-treatments were developed for
three parameters, studying two possible wavelength ranges, for both the raw and milled
samples. A total of 72 mathematical pre-treatments were assayed.

For the evaluation and selection of the most suitable chemometric model, the fol-
lowing statistics were calculated: the coefficient of determination for calibration (R2, see
Equation (2)), and the standard error of calibration (SEC, see Equation (3)) [17].

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

yi are the reference values obtained in the laboratory, ŷi is the prediction of the model, and
n represents the number of samples used in the calibration set.

SEC =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

This parameter provides an average of the typical uncertainty for future sample
prediction based on the ŷi and yi values for the ith sample.

For each parameter evaluated, the best mathematical pre-treatment was selected for the
raw and ground NIR sample analysis. The criteria for the selection of these pre-treatments
were based on the lowest values of calibration standard error (SEC), as well as the values
closest to one for the calibration determination coefficients (R2) [18].
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3. Results and Discussion

For an NIRS procedure to be understood, the characterization of the spectrum data
obtained using the NIRscan Nano prototype is essential. Figure 4 shows the raw and SNV
spectra, plus the first Savitzky–Golay derivative spectra of the alfalfa samples included in
the calibration procedure. Within the NIR wavelength range of the NIRscan Nano prototype,
we can identify some characteristic bands of forages. According to the bibliography, those
bands observed at 1166 nm are related to the protein content of the samples [18], and those
observed at around 1350 nm are related to the fiber content [19]. Additionally, around
1400 nm, there is a band that can give information about the moisture content because, at
that wavelength, OH bond overtone vibrations are observed [20]. In Figures 4 and 5, a
rectangle highlights all the cited wavelengths, and the referenced respective parameters.
Hence, in Figure 4b, which is an extended area between 1650 and 1700 nm of Figure 4a,
we can observe that some of the collected spectra show a noisy signal at the end of the
collected spectra. This noisy wavelength range, as shown in Figure 4c, can be minimized
after scattering correction (SNV) is applied, along with other mathematical pretreatments,
such as derivatives.
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Figure 4. Spectra of the whole samples: (a) raw spectra; (b) extended area from 1650 to 1700 nm;
(c) standard normal variate + first Savitzky–Golay derivative pretreatment.
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Figure 5. Spectra of the ground samples: (a) raw spectra; (b) extended area from 1650 to 1700 nm;
(c) standard normal variate + first Savitzky–Golay derivative pretreatment.

To evaluate the effect of the sample pretreatment on the spectral data set, ground
samples were scanned using NIRscan Nano. Figure 5a shows the spectral data set. As can
be seen, no differences in the representative bands are observed. Moreover, the extended
wavelength range (1650–1700 nm; see Figures 4b and 5b) shows that, after milling the
sample pre-treatment, the noisy wavelength range disappears. These data confirm that
the spectral quality depends on the sampling procedure (raw or ground). This distorted
wavelength range is due to the huge and non-homogeneous particle size of the alfalfa
samples. It is worthy of mention that, after the application of mathematical pretreat-
ments, no differences were observed in the collected spectra of the alfalfa samples (see
Figures 4c and 5c).

As observed in Figures 4 and 5, between 1600 and 1700 nm, the absorbance increases,
and the SNR is lower than in other ranges. It is because the intensity measured at the
detector is proportional to the number of DMD mirrors positioned to reflect the incident
illumination towards it. As the number of pixels changes, the measured intensity is affected
as well, resulting in an increase in noise levels.

Once the spectra were evaluated, the precision of the subsampling procedure for each
scanned sample (raw and ground alfalfa) was evaluated [21]. Five samples were randomly
selected from the 57 analysed. The RMS value was calculated for both the intact and ground
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samples with the two ranges proposed (901–1700 nm and 901–1600 nm). The results are
shown in Table 3.

Table 3. The root-mean-square error (RMS) values for the paired subsamples of the same
scanned sample.

901–1700 nm 901–1600 nm

Sample Raw Ground Raw Ground

1 60,529 27,209 43,283 14,560
2 58,378 23,853 33,386 10,886
3 54,190 20,057 34,085 7029
4 54,854 30,655 36,262 17,678
5 48,472 33,325 34,239 21,939

Once the values have been calculated, two clear trends can be observed. As ex-
pected, the RMS values obtained for the intact samples (raw) are higher than those ob-
tained for the ground ones. These results could be due to heterogeneity in the raw alfalfa.
The difference was also significant when the entire spectrum was compared or the last
100 nm was suppressed. Table 3 shows that the RMS values ranging from 900 to 1600 nm
are lower than the full range of values. These results highlight the influence of the sampling
procedure on the spectrum data precision.

After characterizing the spectral signal, the next step was to develop a calibration
model. To attempt calibration, it is necessary to build a data matrix including nutritive
values (the NDF, MC, and CP) and spectral data. After that, prior to the carrying out of
calibrations, as mentioned in the Material and Methods section, different mathematical
pre-treatments were applied, for the three parameters, to the raw and ground samples,
both for the full range and the reduced range. Partial-least-square regression is used to
establish the correlation between the spectra and the assayed parameters.

Table 4 summarizes the NIRS models’ calibration statistics to quantify the NDF. As
can be seen in Table 4, the R2 values are higher and the SEC values are lower in the chemo-
metric models developed with the reduced wavelength range than in those developed
using the full one. In relation to the variability in the results depending on the mathemat-
ical pretreatment, it is important to note that the SNV plus the second Savitzky–Golay
derivative reached the best calibration statistics for the raw and ground samples. Previous
authors [22], after evaluating different commercial portable NIRS instruments to analyze
ground forages, obtained R2 values for the NDF ranging between 0.95 and 0.71, depending
on the instrumentation employed. Regarding the SEC values, their results were between
2.85 and 1.21. It is not possible to obtain SEC values lower than 1, because the standard
error of the laboratory (SEL) for this parameter is higher than 1.3 [22].

Table 4. Calibration statistics of NIR multivariate models for neutral detergent fiber quantification.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.898 1.554 0.883 1.670
2 4 4 SG 0.784 2.184 0.786 2.289

SNV 1 4 4SG 0.911 1.392 0.791 2.187
1 4 4 SG SNV 0.840 1.910 0.145 1.398
SNV 2 4 4SG 0.955 1.066 0.514 3.155
2 4 4 SG SNV 0.726 2.558 0.540 3.238
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Table 4. Cont.

Raw alfalfa

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.756 2.749 0.598 2.830
2 4 4 SG 0.842 2.258 0.623 3.371

SNV 1 4 4SG 0.761 2.694 0.043 5.383
1 4 4 SG SNV 0.796 2.421 0.510 3.946
SNV 2 4 4SG 0.892 1.861 0.540 3.803
2 4 4 SG SNV 0.730 2.860 0.524 3.321

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

Table 5 summarizes the calibration statistics for the CP. Most mathematical treatments
reach R2 values lower than 0.5 for raw alfalfa samples. This could be related to the
heterogeneity in alfalfa forage, with two clearly different parts, the leaf and the stem. The
leaf is the part of the plant that contains a protein fraction. However, it is important to
remark that using the reduced range, the spectrum mathematical pretreatment of the SNV
for the scatter correction, and the second Savitzky–Golay derivative (the same mathematical
pretreatment as for the NDF), R2 values of 0.885, with an SEC of 0.377, were achieved. A
typical SEL for reference CP analysis is around 0.210 [22].

Table 5. Calibration statistics of NIR multivariate models for crude protein quantification.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.742 0.510 0.884 0.428
2 4 4 SG 0.262 0.911 0.608 1.262

SNV 1 4 4SG 0.307 1.314 0.156 1.524
1 4 4 SG SNV 0.678 0.842 0.257 1.378
SNV 2 4 4SG 0.885 0.377 0.345 0.855
2 4 4 SG SNV 0.328 0.812 0.318 1.368

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.671 0.986 0.706 0.927
2 4 4 SG 0.906 0.530 0.290 1.014

SNV 1 4 4SG 0.773 0.816 0.790 0.650
1 4 4 SG SNV 0.734 0.882 0.723 0.651
SNV 2 4 4SG 0.862 0.660 0.216 1.145
2 4 4 SG SNV 0.820 0.746 0.179 1.433

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

Based on the ground samples, and a reduced range (901–1600 nm), the developed
models showed statistics around 0.7 or higher, with SEC values between 0.530 and 0.986.
Considering these results, it is worth mentioning that, even though the homogeneity in the
ground samples gives better calibration statistics, NIRscan Nano reached acceptable values
when scanning the raw samples.
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Feeding animals with minerals is a common practice; however, if there is an abnormal
mineral content, there is a high probability of contamination with soil, which is not desirable
in animal feeding systems. To quantify the MC in alfalfa forages, 24 different calibration
models have been developed, assaying different mathematical pretreatments of spectrum
data. The statistics of the proposed PLS models are shown in Table 6. As stated before, the
reduced range gave better calibration statistics than the full one. Comparing mathematical
pretreatments, the scatter correction applied after the derivatization procedure increased
the R2 values, and reduced the SEC. The highest R2 and the lowest SEC values were
0.861/0.219 and 0.867/0.318 for the raw and ground samples, respectively.

Table 6. The calibration statistics of the mineral content multivariate models.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.524 0.503 0.211 0.572
2 4 4 SG 0.619 0.492 0.129 0.861

SNV 1 4 4SG 0.783 0.374 0.734 0.464
1 4 4 SG SNV 0.502 0.579 0.312 0.491
SNV 2 4 4SG 0.675 0.409 0.679 0.434
2 4 4 SG SNV 0.861 0.219 0.687 0.444

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.650 0.530 0.652 0.506
2 4 4 SG 0.770 0.435 0.243 0.819

SNV 1 4 4SG 0.570 0.586 0.670 0.519
1 4 4 SG SNV 0.867 0.318 0.347 0.723
SNV 2 4 4SG 0.604 0.566 0.591 0.579
2 4 4 SG SNV 0.781 0.424 0.301 0.625

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

These NDF, CP, and MC calibration model statistics, obtained using the NIRS mea-
surement system, are like those acquired via commercial portable instruments, using a
wavelength range like that evaluated in this work [22,23]. The SEC values are in accor-
dance with laboratory results, and the effect of the sampling procedure has been studied
comparatively in this work. As a summary of the obtained results, Table 7 selects the best
models obtained for each sampling procedure (raw or ground alfalfa) and parameter. As
can be seen, the second derivative is the best of the assayed pretreatments that provide
satisfactory results for the nutritive value quantification.

Table 7. Statistical analysis of alfalfa nutritive values (N = 57).

Parameter Sampling Mathematical
Pretreatment

Range
(nm) R2 SEC

NDF
Raw SNV 2 4 4 SG 900–1600 0.955 1.066

Ground SNV 2 4 4 SG 900–1600 0.892 1.861

CP
Raw SNV 2 4 4 SG 900–1600 0.885 0.377

Ground 2 4 4 SG 900–1600 0.906 0.530
MC Raw 2 4 4 SG SNV 900–1600 0.861 0.219

Ground 1 4 4 SG SNV 900–1600 0.867 0.318
N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay Derivative; SNV: standard normal variate; R2: coefficient of determination for calibration,
SEC: standard error of calibration; NDF: neutral detergent fiber; MC: mineral content; CP: crude protein.
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4. Conclusions and Future Work

In this work, heterogeneous forage (alfalfa) has been selected as a model to evaluate
the precision of instrumental measures (spectra collected), and the effects of sampling
presentation (raw or ground), on calibration statistics. The results have revealed that homo-
geneous forage samples (those milled) allow us to achieve better calibration models than
those scanned in their raw form (heterogeneous). However, for all sampling procedures, it
has been possible to obtain satisfactory calibration to quantify the nutritive parameters.

Through the proposed instrumentation, users can evaluate the forage quality, increase
sampling without incurring costs, and obtain results in real time. This is done by avoiding
delays related to carrying samples from the farm to the laboratory. Furthermore, this
instrument does not require specialized training.

In the future, with the use of internet of things (IoT) tools, data can be sent to the cloud
for processing. In this way, they would be accessible from any device. Thanks to storage
and processing in the cloud, data are accessible from any site with internet access. This
allows the use of data in decisions.
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Appendix A

Alfalfa
Sample Code

Mineral Content
Crude
Protein

Neutral Detergent
Fiber

1 11.41 13.69 48.42
2 13.71 12.12 52.30
3 10.80 14.68 40.53
4 10.46 15.06 39.69
5 12.04 14.05 42.10
6 9.96 13.59 43.37
7 10.83 7.19 61.01
8 9.55 13.18 43.82
9 10.65 14.20 40.02
10 11.09 15.17 38.52
11 9.92 16.53 32.17
12 12.16 17.01 38.92
13 9.44 13.35 46.84
14 11.26 15.98 34.66
15 9.98 16.27 36.25
16 9.58 13.88 43.68
17 10.61 13.78 43.17
18 11.52 15.90 37.41
19 10.24 14.49 42.38
20 10.54 14.22 41.76
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Alfalfa
Sample Code

Mineral Content
Crude
Protein

Neutral Detergent
Fiber

21 10.86 13.28 43.66
22 11.42 16.28 37.79
23 10.78 16.83 39.99
24 10.88 14.01 42.53
25 10.61 14.56 40.62
26 10.27 14.35 42.58
27 10.42 12.74 47.38
28 11.41 15.89 37.76
29 9.41 10.53 51.14
30 10.47 14.23 42.64
31 10.77 16.86 35.55
32 11.32 14.17 42.64
33 10.04 14.64 29.24
34 11.14 13.76 43.73
35 10.49 15.50 37.09
36 10.87 14.23 40.99
37 10.51 14.96 40.71
38 9.39 13.69 39.99
39 11.57 14.67 44.27
40 11.47 13.28 36.94
41 10.08 13.95 45.79
42 11.33 14.28 39.69
43 11.45 16.35 35.44
44 11.48 14.91 39.50
45 8.49 16.43 44.22
46 9.89 16.69 40.03
47 9.22 13.60 45.70
48 8.47 14.17 31.49
49 10.95 16.65 31.44
50 9.40 13.87 35.89
51 11.15 15.85 36.56
52 11.86 16.42 33.51
53 10.56 14.50 39.19
54 10.79 14.69 36.60
55 10.46 14.40 36.64
56 10.35 10.82 47.84
57 10.67 15.13 36.26

Average 10.64 14.48 40.70
Maximum 13.71 17.01 61.01
Minimum 8.47 7.19 29.24

Standard Deviation 0.91 1.70 5.50
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