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Abstract—Modern railway traction systems are often equipped
with anti-slip control strategies to comply with performance
and safety requirements. A certain amount of slip is needed
to increase the torque transferred by the traction motors onto
the rail. Commonly, constant slip control is used to limit the
slip velocity between the wheel and rail avoiding excessive
slippage and vehicle derailment. This is at the price of not fully
utilizing the train’s traction and braking capabilities. Finding
the slip at which maximum traction force occurs is challenging
due to the non-linear relationship between slip and wheel-
rail adhesion coefficient, as well as to its dependence on rail
and wheel conditions. Perturb and observe (P&O) and steepest
gradient (SG) methods have been reported for the Maximum
Adhesion Tracking (MAT) search. However, both methods exhibit
weaknesses. Two new MAT strategies are proposed in this paper
which overcome the limitations of existing methods, using Fuzzy
Logic Controller (FLC) and Particle Swarm Optimization (PSO)
respectively. Existing and proposed methods are first simulated
and further validated experimentally using a scaled roller rig
under identical conditions. The results show that the proposed
methods improve the traction capability with lower searching
time and oscillations compared to existing solutions. Tuning
complexity and computational requirements will also be shown
to be favorable to the proposed methods.

Index Terms—Maximum Adhesion Tracking, Anti-slip Con-
trol, Roller Rig, Electric Traction Drives, Railways

I. INTRODUCTION

TRANSPORTATION electrification has become more
dominant recently in the transport sector for reducing

greenhouse gas emissions and mitigating the effects of climate
change on the planet [1], [2]. Electric railways, amongst
other means of transportation, offer substantially better energy
efficiency, lower emissions, and lower operating costs [3].
Moreover, electric trains have a superior power-to-weight ratio
compared to trains powered by onboard fuel tanks. This allows
faster acceleration, higher power, and speed limits with less
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noise pollution production. Unfortunately, railway electrifi-
cation capital cost is the main disadvantage as it requires
new infrastructure including power supply stations, overhead
lines, signaling systems, interference protection circuits, etc
[4]. Therefore, optimized solutions for railway electrification
should be considered during the design and operation phases
to achieve the desired revenue [5], [6].

Optimized traction/braking force utilization is a key as-
pect of modern railway traction systems for multiple rea-
sons, including safety, performance, reliability, and energy
efficiency. Traction force is defined as the force developed
by the traction motor being transferred to the rail through
the train vehicle’s wheel to achieve the desired train speed.
Maximizing the traction force leads to more efficient and faster
acceleration/deceleration rates. This allows for achieving the
planned travel speed-distance profile precisely, avoiding trip
delays and reducing energy consumption. Therefore, the im-
plementation of control methods able to maximize the traction
force becomes crucial to traction system manufacturers and
train service providers.

The traction force that can be transferred to the rail will
be limited by the friction between the driven wheels and
the steel rail. The adhesion limit will depend on the normal
load and the friction coefficient of the contact point, also
known as the adhesion coefficient. Adhesion coefficient is
a non-linear function slip [7]. The slip/skid phenomenon
occurs when the traction force surpasses the adhesion limit
during traction/braking. Excessive slip or skid will result in an
increase in wheel wear and a reduction of the overall traction
performance. Therefore, many efforts have been devoted to
limiting the slip/skid between the wheel and the rail [8]–[10].
Both direct and indirect re-adhesion control methods have
been proposed to limit the slip within a predefined threshold
[11]–[14]. The main demerit of these traditional re-adhesion
methods is that the traction capability is not fully utilized.

Finding the slip velocity at which the maximum adhesion
occurs is a challenging task. This is due to the unpredictability
of the wheel-rail contact condition, and consequently the
difficulty of estimating the adhesion coefficient. In [15], Per-
turb and Observe (P&O) method similar to those used for
photovoltaic panels was applied for MAT. The slip controller
increases the slip velocity command gradually and the tractive
force is monitored and stored. If the maximum point is
overstepped, the slip velocity command is decreased to bring
the operating point back to the stable region. In [16] authors
propose to use the adhesion force derivative. The slip velocity
command is corrected according to the slope of the adhesion



curve, i.e., the slip command increases when the slope of
the curve is positive which means that the operating point
is in the stable region. If the slope of the adhesion curve is
negative, the operating point is in the unstable region and the
slip command should be decreased. The previous two methods
will be discussed in more detail and tested in this paper.

Several approaches have been proposed using Kalman Fil-
ters to avoid measurement noise and the computation of
derivatives used in [16]. However, these methods rely on
the mathematical model of the mechanical drive train and
require accurate parameter estimates [17]–[19]. The authors
in [20] proposed an adaptive sliding mode control to stabilize
wheel slip and improve traction performance but this method
requires accurate measurement of the adhesion force, which
is not easy to achieve in practice. Additionally, advanced slip
control techniques using model predictive control and adhesion
swarm intelligence can be found in [21]–[25]. Though these
methods show good adhesion performance, they either lack ex-
perimental validation [22]–[24] or suffer from implementation
complexity and high computational burden [21], [25].

Despite all previous advancements, there is a lack of
literature dealing with the experimental validation of maxi-
mum traction force tracking techniques and their performance
evaluation under similar operating conditions. In addition,
the classical methods possess slow dynamic response for
peak searching capability and high steady-state error, which
increase the torque ripples on the traction machine. Therefore,
it is desirable to develop new MAT techniques capable of
enhancing the peak tracking capability and mitigating the
undesired stresses on the traction machine during the searching
process.

The contributions of this work can be summarized as
follows:

1) An overview of existing anti-slip control techniques
intended for maximum utilization of the available ad-
hesion.

2) A new technique based on knowledge-based Fuzzy
Logic Control (FLC) is proposed to enhance the dy-
namic performance of the classical peak search methods.

3) A new technique based on Particle Swarm Optimization
(PSO) for MAT is proposed and successfully imple-
mented for railways.

4) A simulation-based comparative study of existing and
proposed methods using MATLAB/Simulink.

5) Development and validation of a new simplified design
of a scaled roller rig for emulating the wheel-rail contact
dynamics, reproducing the slip phenomenon, and suit-
able therefore for the comparative analysis of anti-slip
control techniques in railways.

The structure of the article is summarized as follows:
section II includes an overview of the design and the overall
control scheme of the scaled roller rig with wheel-rail contact
emulator; section III summarizes the existing slip velocity
control methods considered for MAT applied in real trains;
section IV includes the two proposed MAT strategies; section
V includes an assessment and comparative analysis of all the
methods being considered; conclusions are finally discussed
in section VI.
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Fig. 1: Schematic representation of the proposed scaled roller
rig.

II. SYSTEM MODEL AND TEST BENCH DESCRIPTION

One of the limitations perceived during the review of the
state of the art was that the different methods were validated
using different platforms. This makes it extremely difficult
to perform a fair comparative analysis. To overcome this
limitation, all the methods considered in this paper will be
tested in the same test rig. System model as well as test rig
design and control are presented in this section.

A. Proposed wheel-rail contact emulator

Roller rigs combined with simulation verification are con-
venient replicas for evaluating control techniques of railway
traction drives during pre-service commissioning. Full-scale
or scaled roller rigs can be used for the purpose of pro-
ducing the same dynamics of the actual train moving on a
rail. Scaled roller rigs are preferred due to cost, size, and
manufacturing obstacles. However, special care must be taken
for the selection of the scaled parameters during the design
process to reproduce as precisely as possible the behavior of
the full-scale system. In this paper, Manchester Metropolitan
University (MMU) method is used [26]. In this approach,
the locomotive mass is considered to be equally distributed
amongst the wheels and the nominal linear wheel speed is
scaled by 1/5 factor [27]. The full design process and scaling
parameters of the scaled roller rig used in this paper can be
found in [28].

Fig. 1 shows a schematic representation of the scaled roller
rig where the smaller wheel represents one of the locomotive
wheels and the bigger wheel, referred to as the roller, repre-
sents the rail. Two induction motors (IMs) are used to drive
both wheels via a transmission belt system. The normal force
FN applied to the wheel is adjusted manually with a spring
system including a dynamometer for fine force tuning. The
test bench has a water-spraying nozzle to emulate wheel-rail
wet conditions.

Adhesion coefficient µ is defined in (1) as the ratio between
the adhesion force Fa being transferred from the wheel to
the roller and the normal force applied to the wheel FN .
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Fig. 2: Overall control scheme of proposed scaled roller rig for slip velocity control.

Adhesion is a non-linear function that depends on the slip
velocity between the wheel and roller, ambient factors such as
humidity and ambient temperature, and the surface condition
of the contact point [29]. The slip velocity is given by (2),
where ωmW

, ωmR
and rW , rR are the mechanical speed of

the induction motors (IM) in electrical units (rad/s) and the
radius of both wheel and roller respectively.

µ =
Fa

FN

(1)

vslip = vW − vR (2)

where vW = ωmW
· rW ; vR = ωmR

· rR

The adhesion torque (i.e., load torque) can be expressed
as the adhesion force exerted on the wheel multiplied by its
radius (3).

TW = Fa · rW = µ · FN · rW (3)

The electromagnetic torque developed by the wheel motor
Te W and transferred to the wheel TW via belt transmission
is given by (4) where Rg W is the wheel gear ratio.

Te W =
TW

Rg W
=

µ · FN · rW
Rg W

(4)

The same relation can be developed for the roller side where
Te R, and Rg R are the roller motor electromagnetic torque,
and roller gear ratio respectively.

Te R =
TR

Rg R
=

µ · FN · rR
Rg R

(5)

B. Proposed scaled roller rig overall control scheme

Wheel and roller motors are fed from three-phase inverters
which share the same dc link (see Fig. 2). The dc link is
fed from the grid by means of a diode rectifier. A commercial
drive using Rotor Field Oriented Control (RFOC) with an outer
speed control loop (see right side of Fig. 2) is used to control
the roller.

On the other side, the wheel motor is fed from a custom
drive built to implement the different control strategies for
MAT functionality. The control scheme of the custom drive
contains the same structure as the roller commercial drive
except for the speed control block that is replaced by the slip
velocity control block (see the gray block on the left side of
Fig. 2). Further details are provided in Section V. The slip
velocity control block requires additional signals: reference
torque T ∗

e W , reference slip velocity v∗slip, and torque estimate
T̂e W . The signals involved depend on the MAT method being
used. In all cases, knowledge of roller speed is essential, which
implies that real train velocity should be known in the real
system.
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Fig. 3: Detailed slip velocity control block diagram. Slip
Control Mode Selection block is explained in Sections III and
IV.



For the following discussion and simulations, it is assumed
that the roller drive control is set to speed control mode
running with a constant speed. This is consistent with the case
of a train that has a very large inertia. Meanwhile, the wheel
drive operates with torque control; the slip velocity controller
remains disabled unless the actual slip surpasses the estab-
lished limit (see Fig. 3). The torque reference T ∗

e W is trans-
ferred to the wheel drive torque command, i.e, T ∗′′

e W = T ∗
e W

unless wheel slip is detected. In this case, the slip velocity
control is activated, and the torque command generated from
the slip speed controller is passed by the (Min) function, i.e.,
T ∗′′
e W = T ∗′

e W . Wheel speed reference ω∗
m W is obtained from

the slip velocity control block considering the gear ratio, i.e.
ω∗
m W =

Rg W

rW
· vW , where vW is the wheel linear speed in

m/s. A dynamic limiter is added for the slip speed controller
to avoid wind-up problems in the Propositional-Integral (PI)
controller when the slip speed control is not active [28].
Different slip control modes are discussed following.

III. OVERVIEW OF WHEEL-RAIL SLIP VELOCITY
CONTROL METHODS

This section reviews the slip velocity control methods
reported in the literature. Simulation results using the down-
scaled test rig are provided. Experimental results will be shown
in section V.

The slip velocity control mode in Fig. 3 can be selected
either with constant or variable slip velocity. Variable slip
mode can be based on train speed where the slip velocity
reference value is changing along the whole trip, and con-
tinuously adapting the slip velocity command to track the
maximum adhesion. The classification of the slip control mode
is summarized in Fig. 4, and the discussion of each method
is provided in the following subsection.

Slip Velocity Control Mode

Constant Slip Variable Slip

Based on Train 
Velocity

Maximum Adhesion 
Tracking (MAT)

Particle Swarm 
Optimization (PSO)
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Steepest 
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Existing Methods

Proposed Methods

Fig. 4: Classification of slip velocity control mode.

A. Constant slip velocity control

This method is the simplest solution for slip control, being
likely the most common choice for anti-slip protection in
railway applications [9]. In this control mode, slip velocity
reference v∗slip is added to the train velocity and sent to the
wheel speed controller as seen in Fig. 5. In this paper, it is
assumed that the train speed is measured. Methods to measure
or estimate the train’s linear speed can be found in [30]–[32].
Slip velocity reference is selected based on field tests and the
train’s driver experience, being generally in the range of ≈ 0.5
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Fig. 5: Constant slip velocity control command generation.

to 1.0 m/s [9]. Regardless of its simplicity, the main demerit of
this method is that it does not usually operate at the maximum
adhesion point.

Fig. 6(a) shows simulation results using this method. The
adhesion profiles used are shown in Fig. 6(b). A torque ramp
with a final value of 10 Nm is commanded. The adhesion is
lost when the actual torque reaches ≈ 5 Nm (see Fig. 6(a)-top).
Slip velocity control is then activated with a 1.0 m/s set point
(see third subplot in Fig. 6(a)). The response of slip control
to changes in the wheel-roller adhesion conditions is also
simulated as shown in Fig. 6. Constant slip velocity control
is seen to provide a good dynamic response, with deviations
from the target sleep corrected in ≈ 1 s, and not exceeding
≈ 0.2 m/s.

B. Variable slip velocity control with maximum adhesion
estimation

These methods are aimed to operate at the slip speed
providing maximum adhesion. This will require maximum
adhesion estimation. Subsections III-B1 and III-B2 discuss
methods already reported in the literature. Two new methods
will be proposed in Section IV

1) Perturb and Observe (P&O): In this method, the slip
velocity is indirectly controlled by perturbing the wheel ac-
celeration as seen in Fig. 7. The wheel velocity command v∗W
is obtained by integrating the wheel acceleration command
which is a combination of the current acceleration aW and a
constant value ∆a as given by (6) and (7). Selection of a0 or
a1 is based on Perturb and Observe (P&O) technique to track
the maximum torque [15], [33].

a0 = aW −∆a (6)
a1 = aW +∆a (7)

The operation of MAT strategy can be summarized as
follows:

• The acceleration of the traction motor wheel is initially
perturbed (e.g. increased). The developed torque during
this process is stored. The maximum torque value during
the perturbation period Tmax

e(k) is held and subtracted from
the current torque value obtaining ∆Te (see Maximum
Torque Search block in Fig. 7).

• ∆Te is sent to the Search Logic Decision block, which
will choose between a0 and a1 using a binary output
signal Sm(k). The search logic task is to adapt the
operating point either by increasing or decreasing the
acceleration command based on the current load torque
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Fig. 6: Constant slip velocity control (simulation): (a) transient
response. 1- From top to bottom: Wheel torque command,
limited torque, estimated torque; 2- wheel and roller speeds;
3- slip command and actual slip; 4- estimated and actual
adhesion; (b) adhesion profiles. 1⃝ P1 : t < 7 s; 2⃝
P2 : 7 s< t < 11 s; 3⃝ P3 : t > 11 s.

compared to the maximum stored value during perturba-
tion. If ∆Te > Tthreshold, then the current torque T ∗′′

e W

is moving apart from the peak of the adhesion curve thus
the search logic block output Sm = 0 to decelerate the
wheel and bring the operating point back to the peak of
the curve (see Signal Adaptation block in Fig. 7).

• A reset signal generated in the Search Logic in Fig. 7
is used to reset the counter in the Maximum Torque
Search block which handles the perturbation period. Con-
sequently, the operating point is expected to be alternating
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Fig. 7: Perturb and Observe (P&O) slip velocity control mode
block diagram.

around the peak of the adhesion curve with no need for
additional speed measurement, i.e. train velocity.

The main drawback of this method is that it creates ad-
ditional ripples in the machine torque, which depend on
the perturbation period. This might contribute to undesired
oscillations in the mechanical drive train torsional elements
[34].

Fig. 8 shows the simulation results of the roller rig emulator
using P&O method slip velocity control. Operating conditions
are the same as in Fig. 6. Significant excursions around the
peak of the adhesion curve are observed in Fig. 8(b), especially
for the case of P1 which corresponds to the highest adhesion
level, i.e. dry condition. Also, it is found that the P&O method
has a slow dynamic response while searching for the peak.
Finally, peak searching capability becomes more challenging
with flat adhesion curves like P2 and P3 (see Fig. 8(b)).

2) Steepest Gradient: This approach takes advantage of
the non-linear behavior of the adhesion-slip characteristic
curve to track the maximum adhesion. As already known,
the adhesion-slip characteristic is divided into two regions
as shown in Fig. 9(a): 1) micro-slip (stable) region, where
the adhesion coefficient µ increases with the slip velocity
vslip till reaches its maximum value; 2) macro-slip (unstable),
where any increase in slip velocity will decrease the adhesion
coefficient and would drive the traction system to instability.

Defining the increments of the adhesion coefficient and slip
velocity as (9) and (10) respectively, the slope of the adhesion-
slip curve is given by (11).

v∗slip(k) = vslip(k−1) + α ·Kvslip(k) (8)

∆µ̂(k) = µ̂(k) − µ̂(k−1) (9)
∆vslip(k) = vslip(k) − vslip(k−1) (10)

Kvslip(k) =
∆µ̂(k)

∆vslip(k)
(11)

The slope Kvslip(k) is positive in the micro-slip region, and
negative in the macro-slip region, being zero at the peak of
the adhesion-slip curve [see Fig. 9(a)]. Hence, tracking the
maximum adhesion in the steepest gradient method would be
naturally done by adding the current gradient of the adhesion-
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Fig. 8: Variable slip velocity control using Perturb and Observe
(P&O) (simulation): (a) transient response; (b) adhesion pro-
files. 1⃝ P1 : t < 7 s; 2⃝ P2 : 7 s< t < 11 s; 3⃝ P3 : t > 11 s.

slip curve to the previous slip velocity as shown in (8). Gain
α in (8) is an adaptation constant.

According to (8), if the operating point is in the micro-slip
region, the adhesion-slip gradient Kvslip(k) is positive and the
slip velocity command is increased. Contrarily, if the operating
point falls in the macro-slip region, the gradient added is
negative, and the slip velocity command is decreased. Once
the maximum adhesion is reached, the adhesion-slip gradient
is zero and no change is applied to the slip velocity. The block
diagram of the steepest gradient method is shown in Fig. 9(b).
As the adhesion coefficient µ in an actual locomotive cannot
be measured, estimation is required. A disturbance observer is
commonly used for adhesion estimation using (12).
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Fig. 9: Steepest Gradient slip velocity control mode. (a)
adhesion-slip curve and involved incremental variables; (b)
Block diagram.

µ̂ = T̂l W
Rg W

FN · rW
(12)

T̂l W can be estimated from (13), where βm and Jm are
the viscus friction and inertia of the traction wheel motor,
respectively.

T̂l W = T̂e W − βmωm W − Jmω̇m W (13)

To avoid the pure derivative in (13), a low pass filter can
be used instead (14).

T̂l W (s) = T̂e W (s) − ωm W (s)

[
βm W + Jms

(
1

τs+ 1

)]
(14)

Two low-pass filters are used to attenuate the measurement
noise in the slip velocity signal and the estimated adhesion
coefficient prior to the discrete differentiation realized by D(z)
blocks.

Simulation results for this method are shown in Fig. 10. Due
to the differentiation of signals used to estimate the adhesion
slope ∆ ˆµ(k)

∆vslip(k)
, Steepest Gradient (SG) method suffers from

high oscillations attempting to keep the operating point at the
peak of the adhesion-slip curve [see Fig. 10(a)]. This becomes
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Fig. 10: Variable slip velocity control using Steepest Gradient
method (simulation): (a) transient response; (b) adhesion pro-
files. 1⃝ P1 : t < 7 s; 2⃝ P2 : 7 s< t < 11 s; 3⃝ P3 : t > 11 s.

obvious for the adhesion profiles with higher slopes like P1

as the resulting slope correction signal Kvslip(k) increases
dramatically for the next step of the slip velocity command.
Contrarily, with lower adhesion slopes such as P2 and P3, the
correction signal moderately increases with the assumption of
using constant correction factor α. However, it can be noticed
in this method that the operating points are closer to the peak
of the adhesion-slip curves for all the profiles. However, the
peak searching space is still high [see Fig. 10(b)].

IV. PROPOSED MAT TECHNIQUES FOR RAILWAYS

As discussed in subsection III-B, operation with variable
slip will require estimation of maximum adhesion. Two new

methods are proposed and assessed in this section, based on
knowledge-based Fuzzy Logic Control and Particle Swarm
Optimization respectively.

A. Proposed MAT Using Fuzzy Logic Control

Fuzzy Logic Control (FLC) is a knowledge-based control
technique that uses linguistic rules designed for complex,
uncertain, and non-linear systems without requiring mathe-
matical models and/or parameter estimation [35], [36]. FLC
was first introduced for anti-lock braking systems (ABS) in
railway traction applications to prevent wheel skid on the rail,
resulting in high braking performance and consequently lower
braking distance compared to conventional PID controller
[37]–[40]. Later, FLC concept has been extended for wheel
slip prevention and speed profile tracking in electric trains
[41]–[44]. The use of FLC for MAT is developed following.

The proposed block diagram is shown in Fig. 11. It uses
the same slip command adaptation concept of the Steepest
Gradient method for tracking the peak of the adhesion curve
[see Fig. 9(a)]. However, the change in the slip command
v∗slip(k) is adapted and generated automatically by the FLC
block that uses the available torque and slip velocity signals
which are available in the drive control scheme. From (4),
it can be seen that the estimated wheel motor torque is
proportional to the adhesion coefficient µ as the normal force
FN , the radius of the wheel rW and the gear ratio RgW are
already known. Thus the load torque estimation T̂l W using
the disturbance observer in Fig. 9(b) is not required anymore
and the FLC rules can be applied to the estimated motor torque
T̂e W which is used for the drive torque control as shown in
Fig. 2.

The procedure for the proposed MAT using FLC is summa-
rized in Fig. 12 including the flowchart shown in Fig. 12(b).

Like the conventional FLC structure, the FLC block of
the proposed method (see Fig. 11) contains the input fuzzi-
fication, the fuzzy interface, and the output defuzzification
respectively as seen in 13(a). The fuzzification block consists
of two membership functions that create the linguistic rules
of the input variables, i.e. the ∆T̂e(k) and ∆vslip(k). Then,
the fuzzy interface correlates the linguistic rules with the
knowledge base for maximum adhesion-slip curve tracking.
Finally, the fuzzified output rules are transformed back to
real numbers using the defuzzification membership function.
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Fig. 11: Proposed MAT using Fuzzy Logic Control (FLC)
block diagram.
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Fig. 12: Proposed MAT using FLC procedure. (a) Adhesion-
slip curve strategy; (b) Flowchart representation.
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Fig. 13: Fuzzy Logic Control (FLC) scheme. (a) Basic FLC
structure; (b) Input/Output Membership functions and Rules
base for the proposed MAT-FLC.

The rules used in 13(b) are denoted for: NB is Negative
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Fig. 14: MAT using the proposed MAT-FLC (simulation): (a)
transient response; (b) adhesion profiles. 1⃝ P1 : t < 7 s; 2⃝
P2 : 7 s< t < 11 s; 3⃝ P3 : t > 11 s.

Big; NS is Negative small; Z is zero; PS is Positive Small,
and PB is Positive Big. The choice of the input and output
parameters (x2, x1 & y2, y1) will depend on field tests and
trains’ driver expertise. In this paper, the input parameters
are assigned as x2 = 15 Nm, x1 = x2/2 = 7.5 Nm for
torque increment, x2 = 1.0 m/s, x1 = x2/2 = 0.5 m/s
for slip velocity increment, and the output parameters are
y2 = 0.5 m/s, y1 = y2/2 = 0.25 m/s for the updated slip
velocity command.

Simulation results of the proposed MAT-FLC method are
shown in Fig. 14. The improved dynamic response and reduced
oscillations are readily visible comparing Fig. 14(a) with Fig.
8(a) and 10(a). The maximum adhesion of µ̂ = 0.45 for P1



is achieved in < 1s. The searching space is also decreased as
observed comparing Fig. 14(b) with Fig. 8(b) and 10(b).

For adhesion profiles P1 and P2, MAT-FLC was able to
find the maximum adhesion-slip point. However, for P3, the
maximum adhesion found by the algorithm was ≈ 12%
smaller than the optimal value, with an error of ≈ −40%
in the estimated optimal slip velocity. This error can be
minimized by modifying the membership functions and rules
used in the FLC. Thus, adaptive tuning of FLC for multiple
adhesion profiles to track the peak of the adhesion curve is
needed. Implementing adaptive tuning algorithms increases
the complexity of the proposed MAT-FLC [45]–[49]. A new
approach for MAT estimation that overcomes this problem is
proposed in the next subsection.

B. Proposed MAT Using Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based
stochastic optimization algorithm inspired by the movement
of organisms such as flocks of birds or schools of fish [50].
PSO concept has roots in artificial life and evolutionary
computation, intended for optimizing non-linear functions
[51], [52]. PSO algorithm is simple, computationally efficient,
and effective in solving a variety of problems for different
applications [45], [53]. Maximum Power Point Tracking using
Particle swarm optimization (MPPT-PSO) is considered one of
the most popular evolutionary optimization algorithms in solar
Photo-Voltaic (PV) systems due to its high tracking speed,
ability to operate under different environmental conditions, and
fast computational capability [54]–[59].

The PSO algorithm contains a swarm of individuals (par-
ticles) at random positions, where each particle represents a
possible solution to the problem under investigation. To find
the optimal solution, all particles follow a similar behavior,
e.g., the position of any particle is influenced by the best
particle in the neighborhood (pbest) as well as the best solution
found by all the particles in the entire population (gbest). The
best solution here is referred to the solution which satisfies
the selected criterion (fitness function), e.g., to find the global
minimum, the global maximum, etc. The particle position
adjustment can be represented mathematically as (16) and (15),
where xi

(k+1) and ui
(k+1) represent the current position and

velocity of particle i respectively; w is an inertia weighting
parameter; c1 and c2 are acceleration coefficients; r1 and r2
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Fig. 15: Proposed MAT using Particle Swarm Optimization
(PSO) block diagram.
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Fig. 16: Procedure of the proposed minimum search using Par-
ticle Swarm Optimization (PSO). (a) Particle initialization; (b)
Particle movements towards the global best particle after one
iteration; (c) Particle swarming towards the global minimum
value; (d) Particle final positions at the minimum value where
the objective function is achieved.

are random numbers between 0 to 1; pibest is the best solution
of particle i in the previous iteration k, gbest is the best solution



of all particles in the previous iteration k.

ui
(k+1) = wui

(k) + c1r1(p
i
best − xi

(k)) + c2r2(gbest − xi
(k))

(15)

xi
(k+1) = xi

(k) + ui
(k+1) (16)

As in MAT-FLC, the proposed MAT technique using PSO
(MAT-PSO) algorithm uses the increments of wheel motor
torque ∆T̂e(k) and slip velocity ∆vslip(k) to locate the current
operating point on the adhesion-slip curve. The output slip
velocity reference signal v∗slip(k) is then adjusted as seen
in Fig. 15. In the proposed method, the PSO algorithm is
designed to search for the minimum absolute value of the
adhesion-slip curve slope [see Fig. 16], as ∆T̂e(k)

∆vslip(k)
≈ 0 occurs

only at the peak of the adhesion-slip curve.
The flow chart of the proposed MAT-PSO method is shown

in Fig. 17. Four particles (Np = 4) were found adequate to
achieve fast search speed with a computational effort suitable
for real-time implementation. The algorithm starts with an
initial guess of the positions of the particles (i.e. slip velocities)
[see Fig. 16(a)], local best particle position pbest, and global
best particle position gbest [see Fig. 16(b)]. The slope of the
adhesion-slip curve is first calculated for each particle and
then the fitness function is evaluated individually, where the
minimum value is considered to be the local best particle pbest,
and its initial value is updated. The new pbest value is assigned
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Fig. 17: Flowchart of proposed Particle Swarm Optimization
(PSO) for minimum search.
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Fig. 18: Simulation results: Proposed MAT using Particle
Swarm Optimization (PSO) (MAT-PSO).

to be the new global best particle gbest which other particles
should follow for the next iteration. The pbest and gbest will
be varying while searching for the value that satisfies the
fitness function [see particle 2 in Fig. 16(c)]. Afterward, the
output slip velocity v∗slip(k) is set to be equal to the global best
particle position vgbestslip(k) [see Fig. 16(d)]. Finally, the output
slip velocity reference v∗slip(k) will be held constant until the
reset function is activated. This occurs when the change in
the wheel motor torque and the slip velocity exceeds a certain
limit chosen based on the dynamics of the applied system.
This situation refers to a change in the adhesion level due to
changes in the track condition such as wet, ice, contaminants,
etc.

For practical purposes and safety concerns in railways, it is



important to note that the particle inertia weighting parameter
w and the acceleration coefficients r1 and r2 in (15) should be
≤ 1.0. Four particles have been chosen as they allow to cover a
wide range of slip velocities in the adhesion-slip characteristics
curve with reduced search time.

From Fig. 14 and Fig. 18, it is observed that MAT-PSO
has a slightly slower response compared to MAT-FLC. This is
due to the re-initialization of particles’ positions and random
movement when the reset function is activated [see third
subplot in Fig. 18(a)]. On the other hand, PSO algorithm
shows a superior steady-state performance for obtaining the
correct slip velocity command value at which the peak of the
adhesion curve occurs. This can be noticed for P3 where it
reaches to v∗slip = 0.41 m/s while the theoretical peak occurs
at v∗slip = 0.45 m/s [see Fig. 18(b)].

Fig. 19 summarizes the main characteristics and expected
performance of the methods being considered. Constant slip
velocity control is seen to provide excellent results in al-
most all the aspects being evaluated, but this is at the price
of no MAT searching capability. This control mode would
be beneficial for rail tracks with known adhesion charac-
teristics. Unfortunately, this knowledge is not available in
practice. The shortcomings of the constant slip method are
overcome using the proposed MAT-PSO, but at the cost of
implementation complexity and difficult tuning. The proposed
MAT-FLC shows a moderate performance, providing some
of the advantages of MAT-PSO but with less computational
effort. MAT-P&O and MAT-SG show similar performance
regarding tracking capability and simplicity. However, MAT-
SG shows the worst performance regarding signal smoothness
and steady-state response.

Computational Simplicity

MAT Searching

Capability

Steady-state ResponseSignal Smoothness

Parameters Tunning

Easiness

Constant Slip MAT-P&O MAT-SG MAT-FLC MAT-PSO

Fig. 19: Comparison of slip velocity control methods.

V. EXPERIMENTAL VALIDATION

In this section, all methods discussed in section III and
the proposed ones in section IV are validated and evaluated
experimentally.

A. Test Bench Setup

The proposed scaled roller rig described in subsection II-A
is used for emulating the wheel-rail contact dynamics. The
roller rig test bench is shown in Fig. 20(a) and its parameters

are given in table I where inertia is calculated in wheel and
roller motor reference frame respectively [28]. The roller rig
load is adjusted by a spring system attached to a dynamometer
for load force measurements which applies extra force on the
wheel as seen in Fig. 20(a). Additionally, a water spraying
system is included for evaluation of the control strategies when
the wheel-roller surface becomes wet.

TABLE I: Scaled roller rig parameters

System Parameter Wheel Roller Unit

Wheel and Roller
Radius 0.125 0.25 m
Force 843 843 N

Torque 105.3 210.7 Nm
Transmission Gear ratio 90/24 192/26 -

Traction Motor

Rating 4 5.5 kW
Power 1.78 1.78 kW
Torque 28.1 28.5 Nm
Speed 604.8 595.5 rpm

Encoder Resolution 500 500 ppr
Inverter Rating 4 15 kW

Motor-Wheel Inertia 0.002 0.007 kgm2

Two four-pole induction motors of 4 kW and 5.5 kW
are used for wheel and roller respectively (see Fig. 20(a)).
The induction motors are driven by two drives, both using
rotor field-oriented control (RFOC) (see Fig. 20(b)) [60],
[61]. A commercial VACON NXP00385 Danfoss drive is
used in speed control mode to keep the roller motor speed
constant. A custom drive is used to feed the wheel motor.
All the methods discussed in this paper are implemented in
a TMDSCNCD28335 digital signal processor used to control
the custom drive III and IV.

B. Methodology

The methods discussed in Sections III and IV were tested
and validated in the test bench. For each method, the experi-
ments were realized under dry and wet operating conditions.
This is the normal procedure in field tests. Wet tests were
done by spraying water with a flow rate of 140 ml/min. The
experiments were conducted at a room temperature of 20-25
◦C.

For each test, the following sequence is followed:

1) Experiments always start with a dry wheel-roller contact
point. The roller speed controller is enabled and set
to 60 rpm and is kept constant during the rest of the
experiment. This would correspond to the train running
freely. This assumption is valid for the case of very high
inertia systems such as a train.

2) At t ≈ 5 s the wheel torque controller is activated and
a torque of 10 Nm is commanded; the torque command
gradient is set to 5 Nm/s. The wheel will start slipping
if the commanded torque surpasses the adhesion level,
which will depend on the wheel-roller contact condition.
If this happens, the slip velocity controller will be
activated either for limiting slip velocity or controlling
it for tracking the maximum adhesion level.

3) At t ≈ 35 s the water spraying system is turned on, the
wheel-roller adhesion reducing.



Wheel Motor Encoder Wheel Motor

Belt 

Transmission

Roller Motor

Roller Motor 

Encoder

Roller

Wheel

Adjustable 

Load

Dynamometer

Water Tank

Water Spray 

Nozzle

(a)

Custom 

Drive

Commercial 

Drive

Main Power 

Supply Circuit

Control Board 

&

Input/ Output 

Interface

Emergency 

Button

Water Spraying System

Control Button

DC Bus 

Voltmeter

(b)

Three-Phase IGBT 

Power Module

Three-Phase 

Input Source 

DC Bus

Three-Phase 

Modulated Output

Three-Phase 

Diode Rectifier

Main Contactor

DC Bus 

Charging/

Discharging 

Circuit

Gate Drive 

Unit

Gate Drive DC Power Supply  

Snubber 

Capacitor

(c)

Fig. 20: Overview of the experimental setup: (a) roller rig test bench; (b) Electrical circuit and motor drives; (c) Custom drive
elements.

4) At t ≈ 65 s the wheel torque command is set to zero
till the end of the experiment.

The measured data is post-processed using MATLAB to ob-
tain the traction motor torque T̂e W , wheel-roller slip velocity
between the wheel and the roller Vslip, and estimated adhesion
coefficient µ.

C. Results and Discussion

The experimental measurements are used to validate the
performance of the proposed MAT algorithms. Also, to assess
the effect of changing adhesion conditions, on the overall
performance of the addressed maximum adhesion tracking
strategies. Finally, a comparative analysis is carried out be-
tween the existing and proposed MAT methods.

Overall, experimental results for all methods are in good
agreement with the simulation results obtained in Sections
III and IV. However, torque and speed oscillations in the
experiments are seen to be lower than in simulation (see
Fig. 8(a) & 10(a) vs. 21(b) & 21(c)). Contrary to simulation
results, changes from dry to wet conditions of the contact point
do not occur instantaneously in the test bench. This would
explain some of the differences observed between simulation
and experimental results.

For the constant slip control method (see Fig. 21(a) and
22(a)), the achieved steady-state adhesion coefficient for dry
and wet conditions are µ̂ ≈ 0.5 and µ̂ ≈ 0.15 respectively.
These values increase to µ̂ ≈ 0.6 and µ̂ ≈ 0.25 for all MAT
methods considered in this paper (see Fig. 21(b) to Fig. 21(e)
and Fig. 22(b) to Fig. 22(e)). As expected, all the methods
track the peak of the adhesion curve both in dry and wet
conditions. An increase in slip velocity (vslip ≈ 0.45 m/s) is
noticed while peak searching in wet condition (see Fig. 21(c)
t = 45 s to t = 65 s) with MAT-SG due to the continuous
increment of (∆v∗slip(k)) term in the slip velocity command
in the case of flat adhesion curves aiming to find the maximum
peak. This doesn’t occur with MAT-PO as the search logic
alternate between the increment/decrement of the slip velocity
command.

The two proposed methods MAT-FLC and MAT-PSO show
a similar response as seen in Fig. 21(d) and Fig. 21(e), as
well as Fig. 22(d) and 22(e). However, for MAT-FLC the slip
velocity command is kept at the same value (vslip ≈ 0.2 m/s)
for both adhesion conditions while for MAT-PSO slip velocity
is slightly differs as (vslip ≈ 0.3 m/s) and (vslip ≈ 0.35 m/s)
in dry and wet conditions respectively. The difference in the
performance of FLC and PSO algorithms is negligible and can
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Fig. 21: Experimental results. Response in the time domain: (a) constant slip velocity; (b) MAT-P&O; (c) MAT-SG; (d) Proposed
MAT-FLC; and (e) Proposed MAT-PSO.

be only noticed in the search space of the adhesion-slip curves,
but noting the relevant differences in the implementation
complexity. Therefore, the proposed MAT methods achieve
the same adhesion level (≈ 20% higher than the constant slip
method) with less slip velocity in steady-state compared to
existing methods.

Additionally, it is noted that MAT-PSO achieves completes
the peak search in the dry condition in t ≈ 2 s, which
is the fastest response among all the methods. MAT-FLC
achieves the maximum adhesion level faster (t ≈ 11 s) in
wet conditions, which is the fastest response among all the
methods. MAT-SG is found to be the slowest peak searching

method for both dry and wet tests with t ≈ 5 s, and t ≈ 25 s
respectively (see Fig. 23(a)).

The produced wheel motor torque ripples have been eval-
uated as it is a crucial issue in traction applications as it
produces unwanted stress on the traction chain. As expected,
MAT-P&O and MAT-SG methods have high ripples due to
the added perturbation during peak searching. MAT-PSO has
a 5% lower torque ripple compared to MAT-FLC in both dry
and wet tests.
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Fig. 22: Experimental results. Adhesion-slip trajectory: (a) constant slip velocity; (b) MAT-P&O; (c) MAT-SG; (d) Proposed
MAT-FLC; and (e) Proposed MAT-PSO.
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Fig. 23: Experimental Results: Maximum Adhesion Tracking Methods (MAT) comparison for (a) Peak searching time; (b)
Torque ripple.

VI. CONCLUSION

Operating at maximum adhesion coefficient in railway trac-
tion is not straightforward due to the non-linear and unpre-
dictable nature of wheel-rail contact.

Two new Maximum Adhesion Tracking (MAT) methods
using Fuzzy Logic Control (MAT-FLC) and Particle Swarm
Optimization (MAT-PSO) have been proposed in this paper.
The main contributions of these methods are: 1) they don’t
require any adhesion coefficient estimation like classical ones
and depend only on the available drive torque and slip ve-
locity signals; 2) reduce the implementation complexity and
avoid the parameter dependency of the adhesion estimators;
3) introduce and validate experimentally for the first time
an artificial-intelligence-based algorithm (PSO) for maximum
adhesion searching in railways.

Existing and proposed slip velocity control strategies have
been simulated and validated experimentally under identical
operating conditions where the wheel-rail contact point has
been emulated using a scaled roller rig.

It has been shown that the proposed methods have supe-
rior performance regarding the required searching time (60%
less), steady-state response, and torque ripples (20% lower)
compared to the classical MAT methods. In addition, the
proposed MAT-FLC and MAT-PSO methods provide similar
performance finding the maximum adhesion point under dry
and wet wheel-roller conditions with stable slip velocity value
at steady-state, the implementation of MAT-FLC being sim-
pler.
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