
Department of Electrical, Electronics,
Communications and Systems Engineering

Ph.D. Thesis

PhD Program in Energy and Process Control

“Mechatronic co-simulation and implementation of

control strategies to assure the stability of a small

footprint mobile robot system”

Aishe Toledo Fuentes
Born in El Espinal, Oaxaca, Mexico

Department of Electrical, Electronics,

Communications and Systems Engineering

Ph.D. Thesis dissertation

“Mechatronic co-simulation and implementation of

control strategies to assure the stability of a small

footprint mobile robot system”

A dissertation submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy in the PhD program in Energy and Process Control of the

University of Oviedo, with International Mention

Aishe Toledo Fuentes

Directors:
Prof. Dr.-Ing. Martin Kipfmüller

Karlsruhe University of Applied Sciences, Germany

Prof. Dr. Miguel Ángel José Prieto
University of Oviedo, Gijón, Spain

Royal Oak, United States of America, November 2022.

F
O

R
-M

A
T

-V
O

A
-0

1
0
 (

R
eg

.2
0
1
8
)

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Título de la Tesis
Español/Otro Idioma:
Co-simulación mecatrónica e implementación

de estrategias de control que aseguren la

estabilidad de un sistema robótico móvil

compacto

Inglés:
Mechatronic co-simulation and

implementation of control strategies to

assure the stability of a small footprint

mobile robot system

2.- Autor
Nombre:
Aishe Toledo Fuentes
Programa de Doctorado: Energía y Control de Procesos
Órgano responsable: Centro Internacional de Postgrado

RESUMEN (en español)

Los manipuladores móviles de estructura ligera ofrecen gran flexibilidad, agilidad y

maniobrabilidad, no obstante, tienden a volcarse, sobre todo durante procesos bruscos de

frenado.

El presente trabajo trata dos enfoques diferentes que ayudan a solucionar dicho problema de

inestabilidad, los cuales difieren entre sí en el tipo de sistema al que serán aplicados:

manipuladores móviles con sistema operativos de código cerrado o de código abierto,

respectivamente.

En el primer enfoque se describen tres estrategias de estabilización que compensan momentos

de inestabilidad con la ayuda de mecanismos de actuadores externos.

El primero de los mecanismos propuestos se compone de actuadores lineales en configuración

delta, integrados entre la plataforma móvil y el robot manipulador. En la estrategia de

estabilización "inclinación", el robot manipulador es inclinado en la dirección opuesta al

desplazamiento de la plataforma móvil antes de que comience el proceso de frenado, con el

fin de desplazar hacia atrás el centro de gravedad del robot manipulador. Por el contrario, la

estrategia de estabilización "conservación del momento angular" impulsa al robot

manipulador en la misma dirección del desplazamiento de la plataforma móvil durante el

proceso de frenado, generando momentos angulares de compensación.

El segundo mecanismo consigue un efecto similar, pero esta vez adoptando un estabilizador

giroscópico como actuador.

Para el dimensionamiento y evaluación de las tres estrategias de estabilización se ha

propuesto un entorno de co-simulaciones mecatrónicas, basados en modelos de simulación

multicuerpo (MBS). Para ello, se emplean resultados obtenidos de análisis modales

experimentales (EMA) de la plataforma móvil y el robot manipulador real para parametrizar y

validar sus modelos MBS, de forma que éstos reproduzcan su comportamiento dinámico real.

El principal reto del modelado MBS es estimar los coeficientes de rigidez y amortiguamiento de

los elementos de unión del sistema, necesarios para obtener los parámetros modales reales

deseados. El largo ajuste iterativo manual de dichos coeficientes fue mejorado mediante un

algoritmo de parametrización automatizado.

Este primer enfoque fue evaluado en un manipulador móvil real con sistema operativo de

código cerrado. El procedimiento presentado proporciona una de las primeras investigaciones

sobre el modelado completo de co-simulaciones mecatrónicas de manipuladores robóticos y

plataformas móviles: desde la identificación de sus parámetros modales mediante EMAs, hasta

su modelado y parametrización como sistemas MBS.

Las co-simulaciones mecatrónicas demostraron que las estrategias propuestas mejoran la

estabilidad del manipulador móvil, incluso cuando grandes aceleraciones y desaceleraciones

afectan al sistema. Cabe destacar que la técnica "inclinación" implica la predicción del perfil de

frenado, lo que dificulta su implementación en un bucle de control cerrado. Por otro lado, el

método basado en la “conservación del momento angular" puede integrarse en un bucle de
control cerrado, pero su impacto en la mejora de estabilidad del sistema ha sido menor. Por

último, el estabilizador giroscópico mostró gran potencial al generar la mayor compensación

contra las inestabilidades.

Aunque el presente estudio se implementó en robots particulares, ofrece una visión útil de la

metodología para otros sistemas complejos similares.

El segundo enfoque comprende la optimización del espacio de trabajo del manipulador móvil y

el reposicionamiento de las articulaciones del robot manipulador.

El valor de la estabilidad dinámica para la detección del vuelco se estimó mediante el método

Moment-Height Stability Measurement (MHS), que considera el efecto de las fuerzas internas

del robot manipulador y proporciona información sobre el grado de estabilidad.

Con el fin de restringir el volumen máximo en el que el manipulador móvil puede operar sin

riesgos de inestabilidad, el espacio de trabajo teórico del robot manipulador se optimizó en

base al valor de estabilidad. Adicionalmente, se concibió un algoritmo que reposiciona los

eslabones del robot manipulador cuando el valor de estabilidad está por debajo del valor

crítico definido. Dicho algoritmo determina la nueva configuración del robot manipulador

mediante un método de gradiente, también dependiente del valor de estabilidad.

Este enfoque se aplicó a un segundo manipulador móvil con sistema operativo de código

abierto. Los algoritmos se implementaron en el entorno ROS y se validaron en el sistema real.

Pruebas realizadas con el manipulador móvil (real y en simulaciones) indicaron que la

estrategia de estabilización es capaz de evitar su vuelco bajo diferentes escenarios.

Quizás el valor añadido más significativo de esta estrategia de estabilización respecto a

trabajos anteriores, es que se ejecuta en tiempo real y sin manipular el control de movimiento

de los robots, reduciendo así la complejidad para su implementación y aumentando su

flexibilidad como solución universal.

RESUMEN (en inglés)

Lightweight mobile manipulators offer great flexibility, agility and maneuverability, however,

they tend to tip over especially during abrupt braking processes.

This work describes two different approaches to deal with this instability problem, differing

from each other in the system on which they will be implemented: mobile manipulators with

closed-source or open-source operating systems, respectively.

The first approach presents three stabilization strategies that compensate instability moments

with the help of external actuator mechanisms.

The first of the proposed mechanisms consists of linear actuators in delta configuration,

integrated between the mobile platform and the robot manipulator. During the

"inclining/tilting" stabilization strategy, the robot manipulator is tilted in the opposite direction

of displacement of the mobile platform before the braking process starts, in order to shift back

the robot manipulator’s center of gravity. In contrast, the "conservation of angular
momentum" stabilization strategy impels the robot manipulator in the same direction of

displacement of the mobile platform during the braking process, thus, generating beneficial

angular moments.

The second mechanism attains a similar effect, but this time adopting a gyroscopic stabilizer as

external actuator.

For the dimensioning and evaluation of the three stabilization strategies, mechatronic co-

simulation’s environments based on multibody system (MBS) models have been proposed. In

this respect, results obtained from experimental modal analyses (EMA) of the real mobile

platform and robot manipulator are employed to parameterize and validate their MBS models,

so that they reproduce accurately their real dynamic behavior. The main challenge of modeling

the mobile manipulator as MBS is to estimate the stiffness and damping coefficients of its

joining elements, since they are essential to obtain the desired real modal parameters from

the EMAs. An automated parameterization algorithm improved the manual time-consuming

iterative adjustment of these coefficients.

The first approach was implemented and evaluated on a real mobile manipulator with closed-

source operating system. This procedure provides one of the first investigations on the entire

modeling of mechatronic co-simulations of robot manipulators and mobile platforms: from the

identification of their modal parameters by means of EMAs, to their modeling and

parameterization as MBS systems.

The mechatronic co-simulations demonstrated that the three stabilization strategies improved

the stability of the mobile manipulator, even when large accelerations and decelerations

affected the system. However, it should be denoted that the "Inclining/tilting" technique

implies the prediction of the braking profile of the mobile platform, which makes it difficult to

implement in a closed control loop. On the other hand, the method based on "conservation of

angular momentum" can be integrated in a closed control loop, but its impact on the

improvement of the system stability has been limited. Lastly, the gyroscopic stabilizer showed

great potential by generating the largest compensation against instabilities.

Although the present study was implemented on particular robots, it provides a useful insight

into the applied methodology for other similar mobile manipulators.

The second approach comprises the optimization of the mobile manipulator workspace and

the repositioning of the robot manipulator joints.

The dynamic stability value for the tip-over detection was estimated using the Moment-Height

Stability Measurement (MHS) method, which considers the effect of the internal forces of the

robot manipulator and provides information about its degree of stability.

In order to restrict the maximum volume in which the robot manipulator can operate without

risks of instability, its theoretical workspace was optimized based on the computed stability

value. Additionally, an algorithm repositions the links of the robot manipulator when the

stability value lies below a defined critical value. This algorithm determines the new

configuration of the robot manipulator using a gradient method, which is also dependent on

the stability value.

The approach was implemented in a second mobile manipulator with open-source operating

system. All algorithms were processed in ROS environment and validated on the real system.

Tests performed on the mobile manipulator (real and in simulations) indicated that the

stabilization strategy was able to avoid tip-over under different scenarios.

Perhaps the most significant added value of this stabilization strategy with respect to previous

work is its execution in real time and without manipulating the motion control of the robots,

thus reducing the complexity for its implementation and increasing its flexibility as a universal

solution.

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO
EN ___ ENERGÍA Y CONTROL DE PROCESOS ______________

 V

Acknowledgements

First and foremost, I would like to give special thanks to my husband, Tobias Jäger, for his
constant advice, unconditional support, patience and all the huge personal sacrifices he took in
order to make this aspiration a reality.

In particular, I want to thank my supervisors, Professor Martin Kipfmüller and Professor
Miguel Ángel José Prieto, for their invaluable continuous guidance, help and support. I wish to
extend my thanks to Marcel Mohr, Volker Portje, Stefanie Seemann, Maximilian Bryg, Thomas
Bertram, Tobias Bergmann, Franziska Kempf and each of the participants in this study,
professors, students and colleagues of the Karlsruhe University of Applied Science, who helped
me to arrive at this point.

I am also deeply grateful to Ekiñe Aristizabal Tolosa for her unfailing source of
encouragement and her constructive contributions to this thesis.

To my family.

Ndi xti bixhoze bida, Don Joel.

Abstract VII

Abstract

Mobile manipulators attain highly automated and flexible production facilities. They are
designed for handling objects with different weights and sizes efficiently, without endangering
production workers and machines. Their ideal requirements, such as having an optimal height
for good reachability, light weight for good dynamics and small footprint for profitability, lead
to one of their fundamental problems: mobile manipulators tend to tip over, most notably when
their mobile platform suddenly brakes/accelerates. The compensation of forces affecting the
system’s dynamics is therefore needed to avoid unwanted tip-over.

Standard mobile manipulators are comprised by robot manipulators mounted on relatively
bulky autonomous mobile platforms. They reach their driving stability through their own
weight, by employing a comparatively large footprint to passively keep its stable driving
behavior during their operation. However, mobile platforms with large footprint are associated
with high costs, because they demand additional space of the generally limited layout of the
production plant. Consequently, a cost-effective stable driving dynamic is best achieved with a
mobile manipulator that, regardless of its high system center of gravity, has a small footprint.
This idea led to the aim of the present research: assessing different stabilization strategies to
reduce the risk of tip-over of small footprint mobile manipulators.

Due to the fact that most of the robot manufacturers supply their products with restricted
access to their robot operating system, the first treated approach focused on upgrading those
systems with an external stabilization mechanism. The utilization of a mechanism conformed
by linear drives and another one based on the gyro effect were considered. The development
and evaluation of the stabilization strategies were carried out using multibody-system
simulations. During the development, the experimental determination of the system modal
parameters played an important role, since they enabled the creation of close-to-reality
simulation models.

The second approach focused on a tip-over detection and avoidance algorithm, designed
for those mobile manipulators equipped with an open-access robot operating system. A tip-over
detection algorithm based on the Moment Height Stability method was implemented to indicate
how stable/unstable the system is during its operation/configuration and, thus, to effectively
react against instability states. The theoretical workspace of the robot manipulator was also
realigned by a calculated critical workspace boundary surface based on the analysis of the
stability value. Then, in order to prevent a tip-over of the mobile manipulator during its
navigation in the space, a tip-over avoidance algorithm was developed in a close-to-reality
simulation environment. This algorithm repositioned the joints of the robot manipulator in real
time, adopting a conveniently computed configuration to compensate the instabilities detected
by the Moment Height Stability method. During the repositioning process, the initial orientation
of the robot Tool Center Point was maintained to avoid a work piece mishandle.

Both stabilization approaches presented in this thesis can contribute to effectively
accomplish a compact autonomous and stable mobile manipulator, capable of operating in real
production environments.

Table of contents IX

Table of contents

Abstract ... VII

Table of contents .. IX

List of symbols and abbreviations ... XIII

1 Introduction ... 19

2 Fundamentals .. 31

2.1 Experimental Modal Analysis (EMA) .. 31

2.2 Simulation Methods, Multibody–system Simulation (MBS) 39

2.3 Co-Simulation (MSC.ADAMS/View & Matlab/Simulink) 42

2.4 Robot Operating System (ROS) .. 43

2.5 Recursive Newton-Euler Algorithm (RNEA) ... 45

3 State-of-the-art .. 47

3.1 Stabilization approaches using external mechanisms ... 47

3.2 Detection of instability states .. 53

3.3 Tip-over prevention approaches employing the robot manipulator 59

4 Approach A: Stabilization strategies for mobile manipulators with limited access to

 the robot controller .. 65

4.1 Stabilization strategies employing tilting effect .. 65

4.1.1 Actuation mechanism .. 66

4.1.2 Stabilization via “Inclining/tilting” ... 67

4.1.3 Stabilization based on the “Conservation of angular momentum” 68

4.2 Stabilization strategy using the “Gyroscopic effect” .. 70

4.3 Methodology: Modeling a close-to-reality system of the mobile manipulator 72

4.3.1 Experimental Modal Analysis of mobile manipulators ... 73

4.3.2 Multibody-system model of mobile manipulators .. 74

4.3.2.1 Optimization of multibody-system model using a full automated algorithm 78

4.3.2.1.1 Conceptualization of the parametrization algorithm ... 79

4.3.2.1.2 Enhanced parametrization algorithm based on multiple-mass oscillators. 80

4.4 Development of stabilization strategies .. 90

4.4.1 Mechatronic co-simulations for the stabilization strategies 90

4.4.1.1 Mechatronic co-simulations of linear drives ... 93

4.4.1.2 Mechatronic co-simulations of gyroscope .. 97

X Table of contents

4.5 Implementation of stabilization strategies employing a testing system. 98

4.5.1 Experimental Modal Analyses of testing systems ... 100

4.5.1.1 EMA of the mobile platform ... 101

4.5.1.2 EMA of robot manipulator .. 104

4.5.2 Modeling the testing system as MBS .. 108

4.5.2.1 MBS of mobile platform ... 108

4.5.2.2 MBS of robot manipulator .. 113

4.5.2.3 Optimization of MBS of the robot manipulator using the parametrization

 algorithm ... 118

4.5.3 Mechatronic co-simulation of testing system .. 121

4.5.3.1 Solution stability analysis of solvers ... 121

4.5.3.2 General simulation statements and setups... 125

4.5.3.3 Mechatronic co-simulation of stabilization strategies employing linear drives...... 127

4.5.3.4 Mechatronic co-simulation of stabilization strategy using gyroscope 129

4.5.4 Validation of stabilization strategies employing testing system 131

4.5.4.1 Evaluation of stabilization strategy “Inclining/Tilting” employing testing system 131

4.5.4.2 Evaluation of stabilization strategy “Conservation of angular momentum” employing
 testing system .. 132

4.5.4.3 Evaluation of stabilization strategy “Gyroscope” employing testing system 134

4.5.5 Comparison of the stabilization strategies results ... 141

5 Approach B: Stabilization strategy for mobile manipulators with full access to the

 robot-controller .. 143

5.1 Stabilization strategy incorporated in the robot internal control system 143

5.2 Methodology: Modeling a close-to-reality system of the mobile manipulator 146

5.3 Development of stabilization strategy ... 148

5.3.1 Building a simulation setup in ROS environment ... 148

5.3.2 Stabilization strategy ... 149

5.3.2.1 Tip-over detection algorithm... 149

5.3.2.2 Tip-over avoidance algorithm ... 153

5.3.2.2.1 Workspace optimization.. 153

5.3.2.2.2 Repositioning of robot manipulator .. 157

5.4 Implementation of stabilization strategy employing a testing system 161

5.4.1 Modeling a close-to-reality mobile manipulator testing system 163

5.4.2 Tip-over detection algorithm ... 164

5.4.3 Tip-over avoidance algorithm ... 167

Table of contents XI

5.4.4 Validation of stabilization strategy employing testing system 171

5.4.4.1 Evaluation of the stabilization strategy by means of simulations 171

5.4.4.2 Evaluation of the stabilization strategy using the real mobile manipulator 176

6 Concluding assessment ... 181

7 Summary and outlook ... 183

7.1 Summary ... 183

7.2 Outlook .. 186

8 List of References .. 189

9 List of Figures ... 201

10 List of Tables ... 205

11 Annex .. 207

List of symbols and abbreviations XIII

List of symbols and abbreviations

Abbreviations

ADAMS Automatic Dynamic Analysis of Mechanical Systems
AGV Automated Guided Vehicles
AMR Autonomous Mobile Robots
BDF Backward Differentiation Formula
CAD Computer Aided Design
Co-bot Collaborative Robot

COG Center of gravity
CSS Continuous System Simulation
DAE Differential and Algebraic Equation
DAKOTA Design Analysis Kit for Optimization and Terascale Applications
DC Direct Current
DOF Degree(s) of Freedom
EMA Experimental Modal Analysis
FA Force Angle Stability Measurement
FE Finite Element
FEM Finite-Element-Method
FFT Fast Fourier Transformation
FRF Frecuency Response Function
HIL Hardware-in-the-loop
HMI Human-Machine Interface
HRI Human-Robot Interaction
IMU Inertial Measurement Unit
IT Information Technology
ITOMSC Tip-Over Moment Stability Criterion
MAC Modal Assurance Criterion
MATLAB MATrix LABoratory
MBD Model-Based Design
MBS Multibody-system Simulation
MHS Moment Height Stability method
MIRA Middleware for Robotic Applications
OMA Operational Modal Analysis
PD-Controller Proportional–Derivative controller
PI-Controller Proportional–Integral controller
PID-Controller Proportional–Integral–Derivative controller
RIA Robotic Industries Association
RMC Robot Main Control
RNEA Recursive Newton-Euler Algorithm
ROS Robotic Operating System
RViz ROS Visualization
SRP/CS Safety‐Related Parts of Controls Systems
STL STereoLithography
STRANDS Spatiotemporal Representations and Activities for Cognitive

Control in Long-Term Scenarios
TCP Tool Center Point
URDF Unified Robotic Description Format

XIV List of symbols and abbreviations

WOBSC Whole Body Operational Space
XML Extensible Markup Language
ZMP Zero Moment Point

Latin symbols

A Amplitude response

A1, B1 Constants (vibration engineering) a⃗ i rad/s2 Acceleration vector, i=1,2,3 âi Unit vector of acceleration in ℝ3, i=1,2,3 b⃗ i mm Vector from robot origin to linear drive i, i=1,2,3
Cobs Obstacle configuration space in ℝ3

COGx, COGy,

COGz
m Center of gravity in x,y,z

c, ci Damping coefficient
di m Lever arm with rotating point i, i=1,2,…,n

df m
Distance between the system COG and one of the front
wheels

e Error value in close control loops êi Unit vector for connecting lines of tilting edges i, i=1,2,…,n e⃗ i Tilting shape, i=right, left, front F⃗ N Force (general) F⃗ 0 N Force at equilibrium position F⃗ i, F⃗ j N Force vector, i=1,2,…,n F⃗ r N Reaction force F⃗ ex N External force vector F⃗ ee N Force acting on robot end effector F⃗ I N Inertial force F⃗ g N Gravitational force F⃗ FA N Force Angle Stability Measurement
F(ω) Frequency response input magnitude

rmax, rtheo, ropt, m Maximum, theoretical and optimized radius F⃗ iB N Reaction force vector, i=1,2,…,n F⃗ i* N Resulting total force regarding the tilting edge i, i=1,2,…,n
GC(s), GM(s) Transfer function in frequency domain

GC, GM Transfer function in time domain g⃗ x, g⃗ y, g⃗ z m/s2 Gravitacional vector in x,y,z
H1, H2 Estimators

Hmi Frequency response at measurement point i, i=1,2,…,n
Hie Frequency response at excitation point i, i=1,2,…,n

H(ω) Frequency response
hi m Height, i=1,2,…,n Ii kg·m2 6x6 Inertia matrix of joint i=1,2,…,n I vi N·m

Moment of inertial regarding the vertex i of the tilting
polygon, i=1,2,…,n

Im[…] Imaginary part of …
KM Motor gain constant

List of symbols and abbreviations XV

KC Controller gain constant
k, ki N·m, N·mm Stiffness coefficient
KI Integral gain
KP Proportional gain
KPI Proportional-Integral gain
KPD Proportional-Derivative gain
Ks Amplification gain L⃗ kg·m2/s Angular momentum l i m Distance vector, i=1,2,…,n l iB mm Vector that describes the trapezoidal threaded i, i=1,2,3 M⃗⃗⃗ i N·m Moment vector, i=1,2,…,n M⃗⃗⃗ A N·m Moment vector regarding the reference point A M⃗⃗⃗ S N·m Tilting moment M⃗⃗⃗ ee N·m Moment vector acting on robot manipulator end effector M⃗⃗⃗ ex N·m External moment vector M⃗⃗⃗ r N·m Reaction moment M⃗⃗⃗ I N·m Inertial moments M⃗⃗⃗ vi N·m

Moment regarding the vertex i of the tilting shape,

i=1,2,…,n M⃗⃗⃗ eq N·m Moment of equilibrium M⃗⃗⃗ p N·m Precession moment M⃗⃗⃗ c N·m Compensation moment from precession effect M⃗⃗⃗ d N·m Disturbance moment from precession effect M⃗⃗⃗ dyn N·m Moment obtained from dynamic analysis M⃗⃗⃗ Stat N·m Moment obtained from static analysis M⃗⃗⃗ i,T N·m Total moment acting on each tilting shape, i=1,2,3 M⃗⃗⃗ i,Basis N·m
Total moment generated by the mobile platform and acting
on each tilting shape, i=1,2,3 M⃗⃗⃗ 4 N·m Generated moment around the 4th joint of the manipulator

m, mi kg Mass, i=1,2,…,n
nmax min-1 Maximal motor speed nmotor min-1 Motor speed

n Number of degrees of freedom o⃗ i mm Vector to linear drive i with origin at the platform, i=1,2,3
P Point of division of subsystems

POrigin, PTarget Origin and target pose in ℝ3 p⃗ i m Position vector in ℝ3, i=1,2,…,n
pi, pc Point i or regarding the COG in ℝ3, i=1,2,…,n

OOrigin, PTarget Origin and target orientation in ℝ3
qi rad Robot manipulator joint variable, i=1,2,…,7

Re[…] Real part of … r I = [xi, yi, zi] m Position vector of body i COG
S Reference point for the calculation of tilting moment Si rad

Matrix for motion range of robot manipulator link i,

i=1,2,…,n S⃗ ex m Point of application of external forces

XVI List of symbols and abbreviations

TCP⃗⃗ ⃗⃗ ⃗⃗ ⃗mp m
Vector from the world coordinate system to the mobile
platform

T1 s 1st Time constant
T2 s 2nd Time constant
T∑ s Sum of time constants
TV s Controller derivative time
Tp s Period duration of step function response
TN s Controller reset time
ui m Position of linear drive i, i=1,2,3 v⃗ i m/s Velocity vector, i=1,2,…,n
x m Displacement
x0 m Initial displacement (at t=0)
xn Filter input variable regarding discrete time (n)
X Eigenvector matrix

x,x0,y,y0,z,z0 Coordinates in ℝ3 space x⃗ mp m Direction vector of the mobile platform
X(ω) Frequency response output magnitude Xλ(i),, Xj*i ,i Matrixes for coordinate transformations

yn, yn-1 Filter output variable regarding discrete time (n)

Greek symbols

α Stability value

αi-cm
Stability value of entire system COG regarding the tilting
axis i, i=1,2,3

αmax Current maximal stability value
αcm-critical Critical stability value

β rad Angle of 2nd joint of the manipulator
γ Coefficient (-1,…,+1)
γ2 Coherence
Δ Variation of a variable or function
θ rad, grad Angle
η Frequency ratio
ηF Filter coefficient
Θ kg·m2 Moment of inertia
λ Eigenvalue

λ(i) Parent of link current link I, i=0,1,2,…7
μ(i) Children of link current link I, i=0,1,2,…7
Ω 1/s Excitation frequency ς Damping ratio
σ Coefficient (-1,…,+1) Γ rad Angle for the position of the TCP relative to the mobile

platform. Υ rad Angle of 3rd joint of the manipulator Υ⃗⃗ i N·m Torque acting on link i, i=0,1,2,…,7 φ rad, grad Phase response φω rad, grad Phase of frequency response {φ⃗⃗ A}, {φ⃗⃗ X} Set of two vectors
ωt rad/s Angular velocity

List of symbols and abbreviations XVII

ω4 rad/s Angular velocity for 4th joint of the manipulator
ωg rad/s Angular velocity of rotary mass of gyroscope
ωp rad/s Angular velocity for precession of gyroscope

ω, ωi 1/s, Hz Eigenfrequency, i=1,2,…,n
ω0 1/s Undamped eigenfrequency for freely oscillating system
ωd 1/s Damped eigenfrequency ω̇ rad/s2 Angular acceleration ωp, ωg 1/s Tilting and rotary motor speed

Introduction 19

1 Introduction

Today, there are great drivers of worldwide technological progress and innovation which,
as transformation instruments, long-term revolutionize the world slowly but rather radically.
Since their impact on the global society covers several decades, they are considered the key
aspects for the economy and social vision for the future and their corresponding plan of action
[1].

Some well-known global scale emerging trends are personal health, renewed
environmentalism, mobility, globalization, connectivity, individualization, etc. Out of 12
current megatrends, the freedom of choice, ranked among the top 5 as particularly significant
for the companies in the near future, because they have mostly characterized their business
concern in the 2020s [2].

The individualization as a driver for the transformation refers to value systems,
consumption patterns and every day culture [1]. One of their indicators is the mass
customization: customers demand offers that fit to their personal preferences and individual
needs. In order to remain competitive in the future market, from a business point of view, it is
not enough just to identify the opportunities and potentials brought through those drivers, but
also their main challenges for the coming years. For the specific case of the mass customization,
the main challenge lies in a clear restructuring of the production processes in order to achieve
the objectives of the product individualization in a profitable way. This leads to the “batch size
1” in the manufacturing: custom-made and single-item production to the cost of a mass
production. Figure 1 shows how many companies already consider mass customization (“batch
size 1”) as a strategical topic for their transformation.

Figure 1 Is batch size 1 already an important topic for your company and your sector? (based on [3]).

20 Introduction

For the purpose of fabricating lucrative and affordable multi-variant up to batch size 1
products, extensive digitalization as well as automation of processes and production chains are
crucial. The most relevant automation technologies that enable faster manufacturing while
fulfilling the highly-individualized customer needs are the additive manufacturing and the
Fourth Industrial Revolution (or Industry 4.0) [4]. Despite the fact that the term “Industry 4.0”
derived from the national strategic initiative of the German government in 2011 for the high-
tech transformation of the industry, the vision behind has been adopted worldwide in the last
years: flexible and full automated industrial manufacturing [5]. Although many authors, such
as Mertens in 1995 [6], defined philosophically full automation as “concrete utopia, which is
considered as a simple guide without a full-on achievement of the goal”, some companies such
as Fanuc Ltd. have already proved the opposite: a full automated fabric that seemed totally
utopian became a reality thanks to the unattended continuous manufacturing system. The “light
out” fully automated plant in Oshino was able to operate in summer 2002 720 hrs. without any
interruptions [7]. The production of one thousand robots per month by means of full automated
optimized processes saved permanently time, material and human resources [8] and enabled the
company to achieve more cost effective production processes than its competitors. This full
automation´s success story shows that nothing is impossible, while the necessary resources and
strategies are forthcoming.

To ensure not only a fully automated production, but also individualized products,
manufacturing processes must be able to adapt themselves to new circumstances, e.g. technical
adjustments or near-term modifications regarding the batch size (number of units) determined
by customer requirements. Compared with the continuous flow production, which requires big
effort and investment for technical retrofits because it focuses on a certain product to achieve
cost-efficient high volumes at low type diversity [9], the flexibility provided by the Industry
4.0 enables a quick response to different specifications. Several relevant factors for this
flexibility are directly dependent on the properties of the machines deployed in the operations,
setup time, automation of technical processes, type diversity, etc.

A flexible production in the “factory of the future” demands for modular machine concepts.
Particularly, driverless transportation systems and robots based on AI technologies offer the
highest level of flexibility and increase the speed and efficiency for any desired and variable
adaptations or sequences due to changing requirements in the production lines, accompanied
by the simplification of a production expansion [10]. Therefore, the “factory of the future” not
only needs to be flexible but rather interconnected, integrated, adaptable and automated [11] to
be able to manage in a smart and optimized way all the processes behind. Thanks to the well-
advanced digitalization and 5G [12], the so-called “smart factory” can adopt autonomous
robots, driverless transportation systems and drones as well as smart sensors, cameras, IT-
systems and machine learning algorithms, which demand a large amount of data exchange and,
thus, real time information in order to let machines and devices interact with each other and
organize themselves [10]. In the “smart factory”, all machines and systems are mobile and
modular, the production volume can be increased at any time while running at full capacity in
order to achieve a cost-efficient flexibility. Goods are transported to assembly and production
equipment by Automated Guided Vehicles (AGVs), Autonomous Mobile Robots (AMRs),
mobile manipulators or drones. This is the most cost-effective way, the original planned
production line can be transformed for the manufacturing of new/short-term products with the
same equipment and the extension or cut back of the overall production.

An example of a such “smart factory” is the intelligent and interconnected factory
ARENA2036 conceived by researches of Fraunhofer IPA, university of Stuttgart and
representatives from high-tech companies as Daimler and Bosch [13–15]. This project aims at

Introduction 21

developing a decoupled, fully flexible and well-integrated production system by adopting
loosely linked production modules. Mobile robotics represents an important technology its
automation, because it makes the production versatile by providing flexibility and optimization
of process chains [16].

As a part of the area mobile vehicles, automated guided vehicle systems, well-known as
AGVs, are one of the most implemented technologies a few decades ago, especially to optimize
the material flow and to integrate diverse sub-processes in manufacturing operations. Although,
it is true that the nowadays widely used AGVs in logistic applications are individual and entirely
intelligent, they are unfortunately not autonomous [17]. On the other hand, the autonomous
mobile robots (AMRs) are able to navigate in a dynamic and constantly changing environment
with a higher level of understanding via sensors, blueprints, artificial intelligence, 3D or 2D
vision and more. AMRs are, compared to the traditional AGVs, which employ wires or magnets
to guide them along a narrowly predefined route, fully automated. With the proper controller
software, all AMRs can be bridged to a central traffic control interface, which manages the
navigation of the AMRs based on their current location, thus working together, interacting with
or around each other [11].

If the capabilities of an autonomous mobile platform and of a robot manipulator are
combined into an integrated system called mobile manipulator, an extremely flexible mobile
production module with extra benefits such as starting/stopping, loading/unloading machines
as well as the transport of work pieces all over the plant can be created (see Figure 2). This kind
of integrated systems helps the manufacturers to reach processes that go beyond the fixed
automation, where an industrial robot manipulator fixed on the floor can only reach the work
piece as far as its defined workspace limits allow for.

Figure 2 Integration of mobile manipulators (based on [18]).

Nevertheless, if the robot manipulator consists of a collaborative robot (the so-called co-
bot), all the advantages of the system outlined above are complemented with the qualification
to work alongside humans and, thus, physical supporting operators in the factory during the
performance of manual tasks.

In general, the acceptance of mobile manipulators is high. Manufacturers know that a high
level of automation, flexibility, smart manufacturing, smart maintenance and reconfigurable
systems result in a time and cost-efficient production system [19]. “The companies need
technology able to change along with the work environment”, reported Josh Cloer, Sales
Director at Mobile Industrial Robots, Inc., (MiR).

22 Introduction

Some notable projects related to the integration of manipulators mounted on mobile
platforms that have been implemented during the last few years are shown in the Table 1:

Table 1 Examples of robot manipulators mounted on mobile platforms.

Mobile Manipulator

Weight of

the mobile

platform

Weight of the

robot manipulator +

Payload

KMR iiwa by KUKA1

390 kg LBR iiwa 7 R800
=22.3 kg + 7 kg
=29.3 kg

IBR iiwa 14 R820
=29.5 kg + 14 kg
=43.5 kg

“Little helper” by Aalborg
University2

200 kg

Adept Viper s650
=30 kg + 5 kg
=35 kg
KUKA LBR iiwa 14
R820
=29.5 kg + 14 kg
=43.5 kg

RB-KAIROS+ MOBILE ROBOT
by Robotnik3

115 kg Universal Robot UR16
=33 kg + 16 kg
=49 kg

1 Picture source: [201].
2 Picture source: [18].
3 Picture source: [202].

Introduction 23

Table 1 (cont.) Examples of robot manipulators mounted on mobile platforms.

Mobile Manipulator

Weight of

the mobile

platform

Weight of the

robot manipulator +

Payload

MM-400 & PRBT by
Neobotix&Pliz4

70 kg PRBT by Pilz +
Payload
=19 kg + 6 kg
=25 kg

MuR205 by the Insitute of
Assembly Technology, Leibniz
University Hanover5

70 kg Universal robot UR5e
=20 kg + 5 kg
=25 kg

The advantages of those systems for a smart factory are already clearly identified:

 Their functional scopes are not attributable to a fixed location, resulting in an unlimited
workspace for the robot manipulator and, thus, in a wide range of applications.

 Free from unnecessary use of supporting systems such as loading and unloading stations,
conveyor technologies, etc. and therefore, in theory, more affordable than classic industrial
robot manipulators.

 Thanks to the human-robot-interaction by employing mobile manipulators, it is now
possible to increase the level of automation or to support the operator during complex
arduous physical activities.

 The robotic system is significantly more flexible for inaccuracies and deviations on the
environment. E.g., if an object is not directly accessible to the robot manipulator, the
mobile platform can navigate to a new favorable position and orientation in space.

However, despite their benefits, such systems still present some handicaps, which restrict

their unlimited use in production environments:

4 Picture source: [203].
5 Picture source: [204].

24 Introduction

 Challenging estimation of their flexibility and their limitations in order to quickly
introduce new and completely different tasks. Technically speaking, the adaptation of the
mobile manipulator and its tools to the working environment, which is constantly in
change, is still ambitious for some cases. For example, the suitable lighting for its vision
system should change depending on the current position of the mobile manipulator.

 Increasing standards/requirements for safety regarding human interaction and,
additionally, the already implemented technically feasible solutions are considerably
limited6.

 Over-proportional higher requirements with regards to the autonomous error handling in
comparison to the number of its operational tasks.

Furthermore, the fact that the robot manipulator is mounted on the mobile platform
sometimes hinders each other:
 The manipulator requires for a large and stable mobile platform in order to operate safely.

Nevertheless, the mobile platform should have a small size and be light weight to navigate
in an easy, dynamic and efficient manner.

 The mobile platform must drive fast to reach shorter cycle times. An important aspect to
be considered is to ensure not only accuracy for reaching the target position but also the
stability during the navigation in the space. Being unstable, the current position of the robot
manipulator and the mobile platform is less accurate and the path-planning algorithm
requires additional correction mechanisms, resulting in longer cycle times.

 To offer more possibilities for action and, thus, be more efficient, the mobile manipulator
comprises a large number of peripheral devices (e.g. vision systems, sonars, scanners, all-
in-one grippers, etc.). However, the integration of more embedded components leads to a
higher energy consumption and, consequently, to a lower battery duration. At best, the
total weight of the system (manipulator and mobile platform together) must be kept to a
minimum to increase the battery runtime of the integrated system.
Particularly these last three challenges lead to the design/development paradigm for mobile

manipulators: if the mobile platform is large, the whole system is stable but not dynamic and,
thus, not supplying optimum cycle times. Furthermore, especially turning maneuvers for large
mobile platforms can be complicated in plants with narrow lane width, resulting in worsening
cycle time. On the other hand, if the mobile platform has a small footprint, that means, it is
compact, the whole system is more dynamic but, of course, unstable. Then, if the mobile
platform is unstable, it represents a danger especially for humans, but also for machines and
equipment. This paradigm raises the question about how dynamic or rather how compact the
mobile platform can be to operate effectively, efficiently and stably.

The ideal solution would be to keep the mobile platform as compact as possible: the mobile
manipulator would operate and navigate dynamically; additionally, its radius of motion would
not be unnecessarily constrained, allowing short travelling times, and hence gaining a greater
energy efficiency for the whole system. The main problem by employing compact mobile

6 The Robotic Industries Association publishes continuously the R15.08 American National Standard for Industrial
Mobile Robots and Robot Systems – Safety Requirements published by (RIA) [205] as common guidelines which
comprises requirements for sensor systems, stability, physical and data interfaces, safety-related parts of the
control system (SRP/CS), safety behaviors including safety-related stops, and other aspects related to the safety of
people around the AMR [11].

Introduction 25

platforms for the integration is their instability. This is due to the fact that the whole system’s
center of gravity lies quite high, as a result of the light weight of the mobile platform in
comparison with the robot manipulator’s weight mounted on it.

This problematic does not arise in existing mobile manipulators, as those shown in
Table 1, because they involve a purely mechanical solution: the mobile platform’s weight,
compared with the robot manipulator’s weight, is much heavier, which drastically shifts the
whole system’s center of gravity towards the ground.

In particular, during an interaction between a mobile manipulator and a human, machines
or other mobile devices, the mobile manipulator must be able to suddenly accelerate and
abruptly stop as well as to keep stable while these disturbances are happening, otherwise, the
system could cause physical injury or material damage of expensive and unique devices while
trying to interact with each other. If a so-called co-bot is mounted on a compact mobile
platform, human injury must be avoided. Unintended tilting of the mobile manipulator during
Human-Robot-Interaction (HRI) cannot be tolerated. This engineering gap, which more
specifically, attempts to face the instability issue by compact mobile manipulators and, thus, to
guarantee security and safety operation by a HMI/HRI, can be solved by adopting a mechatronic
approach, instead of a purely mechanical one. The mechatronic concept may compensate all
instability moments affecting the whole mobile manipulator.

Compact and autonomous mobile platforms, with light weight and low volume, such as
those seen on Table 2, are already found in the market:

Table 2 Compact autonomous mobile platforms.

Mobile platform model Weight

OEM LD-60 & LD-90 by Omron7

62 kg

Freight100 Base by Fetch robotics8

68 kg

7 Picture source: [206].
8 Picture source: [207].

26 Introduction

Table 2 (cont.) Compact autonomous mobile platforms.

Mobile platform model Weight

Scitos G5 by MetraLabs9

60 kg

This implies that the idea proposed above about the development of compact mobile
manipulators is indeed possible, if the incurred instability concern could be solved by a
mechatronic approach, and not purely mechanical through a heavy weight.

It should be pointed out that for the development of a mechatronic concept to ensure the
stability of mobile manipulators during handling tasks, the size and weight of the robot
manipulator mounted on the mobile platform are limiting factors: definitely, the larger and
heavier the robot manipulator is, the more difficult its integration with a compact mobile
platform will be to become a compact mobile manipulator. Nevertheless, it can be argued that
the so-called compact industrial robot manipulators and co-bots currently available in the
market are the perfect candidates to allow for system integration, because they have a relatively
small weight (light and middle weight) related to the payload that their end effector could
handle. They seem to offer great potential for the development of compact mobile manipulators.
A summary of the weight-to-payload ratio of some of the compact industrial robot manipulators
and cobots within the common market is featured in Figure 3:

Figure 3 Weight-to-payload ratio of some compact industrial robot manipulators and co-bots.

9 Picture source: [208].

Introduction 27

The following configurations on Table 3 illustrate the integration of some already shown
compact robot manipulators or co-bots that could be mounted on a compact mobile platform:

Table 3 Weight ratio of some configurations for compact mobile manipulators.

Autonomous mobile platform

Compact robot manipulator/Co-bot*

OEM LD-60 &
LD-90 by

Omron
(62 kg*)

Freight100
Base by Fetch

robotics
(68 kg*)

Scitos G5 by
MetraLabs
(60 kg*)

KUKA KR6 R700 fivve 57.0 kg 1.08 1.19 1.05
KUKA KR10 R1100 fivve 63.0 kg 0.98 1.07 0.95
FANUC LR Mate 200iD/7H 24.0 kg 2.58 2.83 2.50
KUKA KR3 R540 28.0 kg 2.21 2.42 2.14
KUKA KR6 R700 sixx 58.0 kg 1.06 1.17 1.03
KUKA KR10 R900 sixx 64.0 kg 0.96 1.06 0.93
Universal Robot UR10 43.5 kg 1.42 1.56 1.37
Universal Robot UR16 49.1 kg 1.26 1.38 1.22
FANUC CR-14iA/L 69.0 kg 0.89 0.98 0.86
FANUC CRX-10iA 50.0 kg 1.24 1.36 1.20
Schunk LWA 4P 21.0 kg 2.95 3.23 2.85
KUKA LBR iiwa 7 R800 29.3 kg 2.11 2.32 2.04
KUKA LBR iiwa 14 R820 43.5 kg 1.42 1.56 1.37
Schunk LWA 4D 28.0 kg 2.21 2.42 2.14

* Manipulator weight + its maximum payload.

In Table 2, the ratio between the manipulator’s weight and the mobile platform’s weight
is lower than the ratio shown in Table 3.Table 1

Mobile manipulators demand reasonable moving speed to ensure effective task
performance. Nowadays, “An AMR can approach a person without the person being aware of
it,” says Carole Franklin, RIA Director of Standards Development. “We need to consider how
to reduce the risk of a person being injured by an AMR or its payload [11]”.

28 Introduction

Problem statement and aim of the presented study.

The constantly changing environment in the plant imposes big challenges on the dynamics
of compact mobile manipulators: they tend to tip over when the robot manipulator works under
heavy loads, when its position comprises specific critical arm configurations or as a
consequence of fast or abrupt movements induced by the mobile platform [20–22].

An important aftereffect of a tip-over, especially for differential wheeled mobile
manipulators, is the noncompliance between the calculated TCP (Tool Center Point) and its real
current value because it has been altered by the loss of contact between the drive wheels and
the ground during the tip-over. Even for mobile manipulators equipped with hydraulically
sprung undercarriage, a dramatic compression/expansion of its suspension during an abrupt
braking process can be counter-productive. Those circumstances cause inaccuracy for handling
or for avoiding collision with other objects that, according to the trajectory computations,
should be clear of the path.

Built on the premise that a system starts to tip over when applied forces generate a torque

large enough to initiate a rotational motion around a tilting edge, stability disturbance appears
when the sum of the tilting moments around one or more of the tilting edges is greater than the
sum of its stability moments around the same edge(s) [23]:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑ �⃗⃗� 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦∑ �⃗⃗� 𝑡𝑖𝑙𝑡𝑖𝑛𝑔 (1)

with,
Stability ≥1, the system is stable and balanced.
Stability =1, limit value to define a system as stable or not (the body is not yet tilted over).
Stability <1, system is unstable and tends to tip over.

The simplest approach to avoid tilting risks is to enlarge the ground area of the wheeled
system and/or to increase the weight of the system at its basis, shifting its center of mass further
to the ground. The drawbacks of those countermeasures are the requirement for bigger aisles,
which would directly increase the fixed costs of the plant. Moreover, they fail to address the
loss of mobility that is caused by the increase in weight and dimension.

For the specific case of mobile manipulators, both countermeasures are unsuitable due to
the fact that the mobile platform has a restricted payload and that the heavier the payload gets,
the less agile the system is (important for the estimation of cycle-time) and the shorter the
battery supply lasts. Therefore, the aim of this work is to introduce stabilization strategies for
small footprint mobile manipulators that compensate instability moments occurring during
navigation without restricting its mobility and dexterity. It addresses two approaches for solving
the lack of stability problem, depending on the type of mobile manipulator to deal with.

The first approach discusses the development of the stabilization strategies for such mobile

manipulators whose control system is closed-source. In this case, only the integration of
external actuators allows for the compensation of emerging tilting moments. The stabilization
strategies are developed within multibody-system (MBS) simulation environments. The
building of close-to-reality simulation models for the employed testing systems implies the
experimental determination of the real system dynamic behavior. The system modal parameters
serve as reference for the parametrization of the MBS models, which is usually carried out
through the iterative adjustment of their stiffness and damping values until the dynamic
behavior of the real system matches the simulation model. Due to the fact that this repetitive

Introduction 29

procedure is time-consuming, a parametrization algorithm is developed for fitting not only the
system natural frequencies, but also their mode shapes by means of statistical indicators. Then,
based on this dynamic simulation, the suitable actuators and its control can be developed by
means of co-simulations.

The second approach focuses on the development of a stabilization strategy that can be

adapted for all kind of compact-lightweight mobile manipulators, regardless of the model, size,
manufacturer, etc. The only restriction imposed for its use is that both, mobile platform and
robot manipulator, are operated with, e.g., the robotics middleware suite called Robot Operating
System (ROS) or a similar open source platform. An algorithm provides information about the
system stability state. Based on the computed stability value, the theoretical workspace of the
robot manipulator is optimized to a working space in which the mobile manipulator can operate
without causing instability. An additional algorithm compensates for the tilting moments
emerged during navigation by means of repositioning the arm of the robot manipulator. Both
algorithms are implemented and validated on the real testing system.

The following terms will be used throughout this document to refer to the different parts

of the systems under study: mobile platform as the mobile robot that navigates autonomously
around the environment; robot manipulator as the articulated robotic arm that manages the work
piece; and mobile manipulator as the system consisting of the robot manipulator mounted on
the mobile platform.

Fundamentals 31

2 Fundamentals

This current chapter contextualizes key theoretical concepts to provide background
information on the technical fields touched upon later in this work. The main themes covered
in this section are regarding the dynamic and mechatronic modeling of robotic systems,
including the theory corresponding to the Experimental Modal Analysis, Multibody-system
Simulations and coupled simulations (co-simulations). Additionally, a brief overview of the
most well-established robot operating system and a simple definition of the inverse dynamic
approach for robot manipulators are given, both employed for the development of the
stabilization algorithms.

2.1 Experimental Modal Analysis (EMA)

The implementation of control systems in robotics implies the good understanding of the
dynamic behavior of the system of interest, represented by its transfer function. In case the
mathematical function of the plant, i.e. its transfer function, is not familiar, a modal analysis
helps to identify the modal parameters that characterize the dynamics of the system, such as its
modal frequency, modal damping and modal shape. These modal parameters serve as the basis
for building the mathematical functions that are employed to model the transfer function of a
system in frequency range. Since this transfer function considers the system’s dynamical
properties, it enables the representation of a close-to-reality model of, e.g., a robotic system to
simulate the dynamical characteristics of its structure, or to predict the system’s response
against external factors.

The method behind the identification of the system’s modal parameters by means of modal
analysis is based on the principles of the mechanical oscillation theory, whose mathematical
statements are summarized employing the following simple example.

Every system that is able to oscillate can be described in terms of masses, dampers and
springs. One of the most simplified models to represent an oscillating element is the well-known
spring-damper-mass-system, the mass oscillator with a single degree of freedom (DOF) shown
in Figure 4.

Figure 4 Spring-damper-mass-system.

The method of superposition allows to describe complex systems as spring-damper-mass-
systems regardless of how many DOF the system has. A system with 𝑛-DOF can be described
by the superposition of 𝑛 spring-damper-mass-systems with a certain arrangement in the space.

32 Fundamentals

Thus, a complex system such as mobile manipulator can be modeled by means of multiple
masses, dampers and springs.

The equilibrium of forces of the system shown in Figure 4 is characterized by its equation
of motion, in time domain resulting in 𝑚 · �̈�(𝑡) + 𝑐 · �̇�(𝑡) + 𝑘 · 𝑥(𝑡) = 𝐹(𝑡). (2)

The modal parameters of a system describe the inner dynamic conditions of its structure
when it is not being affected by any forces. To obtain the system’s oscillation behavior at its
characteristic natural frequency, the system has to be considered as freely oscillating, i.e. the
system oscillates subject to its own internal forces after the initial excitation was applied. If it
is assumed that the applied force 𝐹(𝑡) is zero and the system is undamped, meaning that 𝑐 is
also zero, Eq. (2) turns into the following second-order homogenous differential equation: 𝑚 · �̈�(𝑡) + 𝑘 · 𝑥(𝑡) = 0. (3)

To solve this ordinary differential equation, the trial function in Eq. (4) replaces the terms 𝑥(𝑡) with 𝑥(𝑡) = 𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡). (4)

Using Eq. (4) into Eq. (3) , the following Eq. (5) is obtained (−𝑚 · 𝜔2 + 𝑘) · [𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡)] = 0. (5)

Since the displacement [𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡)] in a free oscillation does not
tend to be zero, in order to solve Eq. (5) at any point in time, the part (−𝑚 · 𝜔2 + 𝑘) should be
assumed to be zero, thus obtaining the angular frequency of an undamped free oscillating
system (𝜔0) as 𝜔0 = √𝑘𝑚. (6)

Coefficients 𝐴1 and 𝐵1 of Eq. (4) can be solved using some specific initial conditions. One
of them defines the displacement of the mass at t = 0 as 𝑥0 = 𝑥(𝑡 = 0). (7)

Using this initial condition into Eq. (4), coefficient 𝐴1 takes the value of 𝑥0. Then, applying the
first derivate to Eq. (4) �̇�(𝑡) = −𝐴1 · 𝜔 · sin(𝜔 · 𝑡) + 𝐵1 · ω · cos(𝜔 · 𝑡) (8)

and considering other initial condition, which implies the velocity of the mass at t = 0 as �̇�0 = �̇�(𝑡 = 0) (9)

we can replace it into Eq. (8) and solve it for coefficient 𝐵1: 𝐵1 = �̇�0𝜔0. (10)

Consequently, using the values for 𝐴1 and 𝐵1, the motion of the undamped freely
oscillating system in function of time can be described as 𝑥(𝑡) = 𝑥0 · cos(𝜔0 · 𝑡) + �̇�0𝜔0 · sin(𝜔0 · 𝑡). (11)

The amplitude and the phase of the oscillation can be also obtained using 𝐴1 and 𝐵1with

Fundamentals 33

𝐴 = √𝐴12 + 𝐵12 = √𝑥02 + (�̇�0𝜔0)2
 (12)

𝜑 = tan−1 (𝐵1𝐴1) = tan−1 (�̇�0𝑥0 · 𝜔0). (13)

Thus, Eq. (11) can be written as 𝑥(𝑡) = 𝐴 · cos(𝜔0 · 𝑡 − 𝜑) (14)

Eq. (14) represents a free and undamped oscillation that does not come to rest after
receiving an excitation as input. In the real world, all systems possess a certain damping
coefficient. They tend to stop to oscillate after a certain time, depending on its damping
coefficient 𝜁.

From Eq. (2) and built on a free (𝐹(𝑡)=0) but speed-proportional viscous damping (𝑐 ≠0)
oscillating system 𝑚 · �̈�(𝑡) + 𝑐 · �̇�(𝑡) + 𝑘 · 𝑥(𝑡) = 0 (15)

the following numerical solution for differential equations10 can be employed 𝑥(𝑡) = 𝐴 · 𝑒𝜆·𝑡 (16)

where 𝜆 represents the eigenvalue. Replacing Eq. (16)(15) into Eq. (15) 𝑚 · 𝜆2 + 𝑐 · 𝜆 + 𝑘 = 0. (17)

The solution of Eq. (17) provides the system eigenvalues as follows

𝜆1,2 = − 𝑐2 · 𝑚 ± √(𝑐2 · 𝑚)2 − 𝑘𝑚 . (18)

If the damping ratio is defined as 𝜍 = 𝑐2 · 𝜔0 · 𝑚 (19)

and using Eq. (6) for the eigenfrequency (𝜔0) in a free oscillating system, Eq. (18) can be
simplified as 𝜆1,2 = −𝜁 · 𝜔0 ± 𝑖𝜔0 · √1 − 𝜍2. (20)

The solution of Eq. (20) for damped freely oscillating system depends on the value of 𝜁.
Thanks to the particular solutions for differential equations, a system can be classified into the
three different oscillation behaviors shown in Table 4:

Table 4 Classification of oscillation behaviors depending on 𝜁.

ζ System oscillation behavior

=0 The system oscillates undamped with 𝜔0 as eigenfrequency
<1 The system has two complex conjugated eigenvalues
=1 The system has two real eigenvalues (aperiodic borderline case)
>1 The system does not present oscillations

10 For a detailed description about the oscillation differential equations and its solutions, see [209].

34 Fundamentals

In the real world, there is no system that possesses a damping ratio equal to zero. Most of
the existing systems possess a damping ratio 0 < 𝜍 <1, whose effect is observable e.g. via
friction.

On the other hand, if the system has a forced oscillation, i.e. a deterministic harmonic force 𝐹(𝑡) = 𝐹0 · cos(Ω · 𝑡) excites the system and continues to sustain the excited oscillation, the
vibrations are said to be forced, resulting in a system displacement 𝑥(𝑡). Replacing this into the
general Eq. (2), a homogenous and a partial component (𝑥 = 𝑥ℎ + 𝑥𝑝) are derived. The
homogenous component 𝑥ℎ can be estimated based on Eq. (20), using the logarithmic
decrement 𝛿 = 𝜍𝜔0 and the following damped natural frequency 𝜔𝑑 = 𝜔0 · (1 − 𝜍2)1/2. (21)

The corresponding eigenvalues is determined as 𝜆1,2 = −𝛿 ± 𝑖 · 𝜔𝑑 . (22)

Employing this value into the initial function Eq. (4), its real components can be obtained
as 𝑥(𝑡) = 𝑒−𝛿·𝑡 · [𝐴1 · cos(𝜔𝑑 · 𝑡) + 𝐵1 · sin(𝜔𝑑 · 𝑡)]. (23)

Similarly, by applying the above-mentioned initial conditions, coefficients 𝐴1 and 𝐵1 can
be calculated for the special solution of the differential equation as 𝑥(𝑡) = 𝑒−𝛿·𝑡 · [𝑥0 · cos(𝜔𝑑 · 𝑡) + �̇�0 + 𝛿 · 𝑥0𝜔𝑑 sin(𝜔𝑑 · 𝑡)]. (24)

Further, to determinate the partial component 𝑥𝑝, the following can be applied 𝑥𝑝 = 𝑋 · 𝑒𝑖·Ω·𝑡 (25) �̇�𝑝 = 𝑖 · Ω · 𝑋 · 𝑒𝑖·Ω·𝑡 (26) �̈�𝑝 = −Ω2 · 𝑋 · 𝑒𝑖·Ω·𝑡 (27)

where Ω represents the excitation frequency and 𝑋 its amplitude. Applying them into Eq. (2)
results in (−Ω2 · 𝑚 + 𝑖 · Ω · 𝑐 + 𝑘) · 𝑋 · 𝑒𝑖·Ω·𝑡 = 𝐹0 · cos(Ω · 𝑡). (28)

Then, knowing that 𝐹0 · cos(Ω · 𝑡) = 𝑅𝑒 [𝐹0 · 𝑒𝑖·Ω·𝑡] (29)

Eq. (28) can be simplified as (−Ω2 · 𝑚 + 𝑖 · Ω · 𝑐 + 𝑘) · 𝑋 = 𝐹0. (30)

As previously stated, a very useful approach to analyze and design control systems is to
represent the steady-state of the structure in frequency range by means of its frequency
response, also known as transfer function. Considering the representation of the system’s
dynamics in frequency range, the output spectrum 𝑋(𝜔) has to be related to the input spectrum 𝐹(𝜔) via the Frecuency Response Function (FRF) in order to constitute the system’s transfer
function. From a physical point of view, if a system, e.g., a robot manipulator, is excited with

Fundamentals 35

a sinusoidal wave of frequency 𝜔, it is expected that the system (the robot manipulator)
oscillates at the same frequency, as a response to the excitation. The FRF, 𝐻(𝜔), provides
information about the internal dynamic properties of the system as a function of the angular
frequency. 𝐻(𝜔) can be described as: 𝐻(𝜔) = 𝑋(𝜔)𝐹(𝜔). (31)

As a result, |𝐻𝜔| represents its amplitude. Thereby, the response amplitude is the input
amplitude |𝐹𝜔| multiplied by |𝐻𝜔|.

The FRF signal, between the excitation and the response, is shifted by the phase angle 𝜑𝜔
[24], estimated as follows 𝜑𝜔 = tan−1 (𝐼𝑚[𝐻(𝜔)]𝑅𝑒[𝐻(𝜔)]) . (32)

The relation of the output 𝑋(𝜔) regarding the input 𝐹(𝜔) is characterized in the so-called
modal analysis. A modal analysis can be classified into two different types according to the
nature of its execution:
 The Operational Modal Analysis, known as OMA, is based, as its name suggests, on purely

mathematical calculations using, among others, Finite Element Methods and MBS (see
next section).

 The Experimental Modal Analysis, known as EMA, is an experimental method to obtain
the oscillatory behavior of a body or system by measuring its response to a defined
excitation.
In this respect, unknown dynamical behaviors of real systems can be easily described by

means of its modal parameters (natural frequencies, mode shapes and damping coefficients)
through EMA. In this context, EMAs can be used to quantify the dynamic behavior of mobile
manipulators, needed for the building and validation of their simulation models used for the
development of the stabilization strategies examined within this work.

During an EMA, the magnitude and direction of the force applied to the structure to be
examined is measured at one or more points. Using these measurements together with the
information about the applied force, the structure transfer function, 𝐻(𝜔), can be calculated. If
more than one system response is measured at the same time, the evaluated frequency responses
are arranged into a matrix, following the principle illustrated in Eq. (33).

[𝑯(𝜔)] = [𝐻11 ⋯ 𝐻1𝑒⋮ ⋱ ⋮𝐻𝑚1 ⋯ 𝐻𝑚𝑒] (33)

where m corresponds to the measurement point and e, to the excitation.
If the system is excited with a frequency close to one of its natural frequencies, the system

amplifies its oscillation and, as a result, its response grows into a maximum because the
excitation frequency and its natural frequency are superimposed. Using a real-time analyzer
and mathematical software tools11, the transformation of the magnitudes from the time domain
into frequency domain can be performed by the Fast Fourier Transformation [25], also well
known as FFT. Then, the frequencies with a phase shift of 90° can be identified as a system
natural frequency. Finally, the best-fitted modal parameters can be estimated with the help of

11 For more information about the detailed signal processing, see [31,159].

36 Fundamentals

curve fitting algorithms, which use mathematical models to match fitted parameters with the
measured system modal parameters. The system’s damping ratios, on the other hand, may
contain great uncertainties from the EMA, because they cannot be determined so easily by the
curve fitting algorithm. One possibility to determine them is employing the 3-dB bandwidth
technique12.

Besides the natural frequencies, an important system characteristics are the real
eigenmodes, which are part of the complex eigenvalues of frequency responses. Those
eigenmodes can also be used to assess the quality of simulation models when compared to
measurements.

When comparing the eigenvectors from two different data sets, the Modal Assurance
Criterion (MAC) checks the orthogonality properties of the eigenvectors by means of the
normalized scalar product of the set of two vectors, {𝜑𝐴}𝑟 as test modal vector for mode r, and {𝜑𝑋}𝑞 as compatible analytical modal vector for mode q, as in Eq. (34) and Eq. (35), following

[26] 𝑀𝐴𝐶(𝑟, 𝑞) = |{𝜑𝐴}𝑟𝑇 · {𝜑𝑋}𝑞𝑇|2({𝜑𝐴}𝑟𝑇 · {𝜑𝐴}𝑟) ({𝜑𝑋}𝑞𝑇 · {𝜑𝑋}𝑞) (34)

or for complex eigenmodes {𝜓𝐴}𝑟 and {𝜓𝑋}𝑞, employing their respective complex conjugates {𝜓𝐴}𝑟∗ and {𝜓𝑋}𝑞∗ as

𝑀𝐴𝐶(𝑟, 𝑞) = |{𝜓𝐴}𝑟𝑇 · {𝜓𝑋}𝑞∗ |2({𝜓𝐴}𝑟𝑇 · {𝜓𝐴}𝑟∗) ({𝜓𝑋}𝑞𝑇 · {𝜓𝑋}𝑞∗). (35)

The correspondence between the two eigenvectors can be represented in a normalized
matrix or visualized graphically, as in Figure 5, whereby a correlation 1 means a perfect match
between the two modes.

Figure 5 Example of plot for a MAC with ideal correlations [26].

The closer the value lays to 0, the lower the match and the bigger the deviations between,
e.g., an eigenvector provided by simulations and another one gained during experimental sets.
A correlation bigger than 0.9 is considered as good. Values that do not exceed 0.5 have hardly
any correlation between the two vectors [27].

12 For more information about the 3 dB method, see [210].

Fundamentals 37

In fact, the correct selection of the excitation and measurement form is decisive to perform
an appropriate EMA. The excitation and measurement points are to be chosen so that the
experimental set is able to get all possible modal parameters of the system.

The excitation stimulus can be achieved by employing pressurized loudspeakers test

benches, flow loudspeakers test benches, impulse hammers, modal-shakers, shaker test
benches, etc.13 The most common excitation form is the impulse hammer because of its
reliability and simplicity, as well as its quick use and economical method [28]. Furthermore,
the impulse hammer does not affect the dynamical behavior of the system, since it is not solidly
coupled to the structure. At the moment the impulse hammer excites the structure, its internal
force sensors (quartz crystal [29]) are able to transform the applied force into an analog signal.
This analog signal contains all the information about the amplitude and phase from which the
excitation function is derived. Disturbances in the input signal, e.g., noise, can be filtered using
an H2 estimator [30,31], which assumes no noise on the output signal and, consequently, the
output measurements are accurate. Figure 6 presents the simple representation of the H2
estimator transfer function. Only the input signal (X) features noise (M).

Figure 6 H2 estimator function [32].

There is a risk of inaccuracy by using the impulse hammer, if the impact force applied by
the operator is irregular and inconsistent in magnitude, direction and spot location. In order to
reduce this risk, it is necessary to apply multiple hammer strokes to one set of measurement.

The impulse hammer tip is responsible for the frequency band for which the system will
be excited. Depending on the requirements and/or the system to be investigated, a broad
spectrum of the available frequency can be reached by adapting the hardness of the impulse
hammer tip [25]. Generally speaking, the higher the degree of hardness of the tip, the higher
the frequency range at which the structure excites. A proper tip can ensure that, e.g., a mobile
manipulator is excited in low frequencies, the needed/desired frequency band for the further
investigations.

The execution of EMA using an impulse hammer is suitable if the system to be examined
is expected to present linearity. If nonlinear behavior is expected in the structure under
investigation, a linear approximation of the system, or part of it, should be carried out [31].
Therefore, when expecting nonlinear system’s behavior, a sinusoidal excitation with large
amplitude is recommended, e.g., using electrodynamic shakers.

On the other hand, the corresponding response signal can be measured by sensors such as
accelerometers, velocity and position transducers, microphones, laser vibrometers, etc. [29].
The advantage of adopting accelerometers as measurement unit for mobile manipulators is that
they do not affect the dynamical behavior of the structure since their mass, in comparison with
the system to be investigated, is extremely small and they are not fixed connected to the

13 For detailed information about the characteristic of each test benches, see [211].

HX

M

Y

Y = H(X − M)

38 Fundamentals

structure. Thus, when selecting an accelerometer, its mass, its stiffness and its damping ratio
should be carefully examined in order to discard any influence on the system’s behavior: the
accelerometer mass is of the utmost importance because it could lead to a shift of those natural
frequencies that are located in the lower frequency band. A large ratio between the
accelerometer´s and the structure´s mass should be therefore avoided.

Accelerometers are often attached to the structure with a thin layer of wax. Wax as a
fastening medium also exhibits high internal damping, which might reduce the usability of the
accelerometers at high-frequencies. Moreover, the accelerometers should be mounted on
surfaces as rigid as possible, avoiding vibrating parts such as metal sheets or thin plastic parts
if the oscillation behavior of the complete structure, and not just a specific system part, is to be
recorded.

Ideally, the measurement sets should be carried out in a vibration-isolated foundation and
environment, otherwise, the measurement results can also be strongly affected. The possible
presence of noise in the input can be excluded using an H1 estimator [30,31]. In comparison
with an H2 estimator, the H1 estimator assumes that there is no noise N in the input, i.e. all the
noise is assumed to be in the output (see Figure 7).

Figure 7 H1 estimator function [32].

An H1 estimator has the same value as an H2 estimator only when both their assumptions
are fitted: there is no noise at the input when computing H1, and there is no noise at the output
when computing H2. If these premises do not match, H1 and H2 are not equal.

The H1 and H2 estimators can also help to estimate the quality of the excitations and the
measurements using γ2, which is defined as 𝛾2 = 𝐻1𝐻2 …0 ≤ 𝛾2 ≤ 1 (36)

whereby a coherence γ2 equal to zero indicates that the input and/or output signals consist
entirely of noise, meaning a lack in quality for the experimental set and, thus, an unacceptable
transfer function of the real system. On the other hand, an experimental set with coherence γ2

equal to one would represent a result without disturbances. The literature (e.g., [24]) suggests
a coherence γ2 equal or higher to 0.9 for a proper analysis.

Given the above considerations with regard to the MAC and coherence coefficients, it can
be guaranteed that the modal parameters of a real system obtained by an EMA are accurate
enough to derive a system model that provides a very realistic representation of the real system.
As a result, this model can be employed in the design and implementation of control strategies:
if the control algorithms work properly in the close-to-reality model, they will also behave
properly in the real system.

Fundamentals 39

2.2 Simulation Methods, Multibody–system Simulation (MBS)

Due to the high prototyping and tests cost for complex structures, simulation models have
a vital role in the development of new systems. The modeling process can be implemented
based on the approach developed by [33] for machine tools with parallel kinematics: first, the
mechanical components of the system are represented in one model and its electrical drives and
controls are then integrated in further modeling steps.

A mechanical system can be described as a set of bodies with mass affected by forces

acting on them. The study of the dynamic behavior of mobile manipulators can be carried out
with modern widely used multibody-system modeling methods, comprised by the Finite-
Element-Method (FEM), Continuous System Simulations (CSS) or Multibody-system
Simulations (MBS). They main distinction lies in its target nature: FEM provides a detailed
investigation of the system structural behavior, mainly employing elastic body’s principles;
CSS is the most precise method to describe the mass and elasticity distribution of elastic bodies
with simple geometry; and MBS is employed for existing or planned systems with a large
number of rigid parts that interact with each other in a complex manner.

FEM is mainly used for the strength calculation of components and vibrational modeling,
since it considers all system bodies as deformable. For the system modeling using FEM, a finite
amount of single elements with defined physical characteristics is generated for each body,
consisting of thousands of DOFs. The joining elements for the singles components are built by
nodes with an own coordinate system each. Thus, by defining the DOF of each individual node,
the system´s oscillation can be defined. All together, the finite single elements and the nodes,
comprise the so-called mesh, which contains the body material properties, such as the Young's
modulus and density. Then, a variety of algorithms can be used to compute the interaction
between the individual finite elements and, thus, build a close-to-reality system behavior. As a
consequence, FEM is also able to determine the system´s frequency response. However, since
FEM focuses on the structural behavior rather than the dynamic behavior (in time domain) of a
system, its main disadvantage is the very long computational time due to the large amount of
DOF the models contain, even by relative simple models. In this respect, FEM is mainly
employed for modeling parts in which stress-strain response or the deformation analysis takes
place [34]. An example of application is the estimation of the stiffness coefficients (deformation
against a predefined force) of a gearbox of a joint robot manipulator.

On the other hand, CSS studies a system behavior by means of differential-algebraic
equation models in which only one of all its attributes is studied over time. Due to its implied
difficulty, they are well suited for elementary models (beam shaped cantilever) in which
stochastic is not expected. In CSS, a fraction of the continuous matter in a compartment is
transferred during a small time-step. They mostly contain continuous state variables that change
continuously (and not discrete) over time [35].

Finally, MBS is suitable for the development of mechatronic systems [36] for aviation,
spacecraft, rail vehicles, machines and robotics. A multibody-system is a set of rigid or elastic
bodies connected by kinematic or physical linking elements that help to reproduce the dynamic
behavior of more complex mechanical structures, such as robot manipulators. A kinematic
connecting element defines geometrical constraints between two bodies by specifying how they
can move in relation to each other. They correspond to the classic joint types such as revolute
joint, planar joint, cylindrical joint, spherical joint or universal joint [36]. In addition to these
purely geometric constraints, physical and basically massless linking elements complete the
multibody-system modeling process by assigning spring stiffness’s and damping coefficients

40 Fundamentals

to the joining elements, being the responsible for the force transmission between the two bodies.
In this way, the motion DOF of rigid massed-bodies can be defined geometrically or via the
forces and torques affecting the bodies. In order to obtain a close-to-reality MBS model, the
parameters that might have the major influence on the dynamic behavior of the real system
should be determined. In the case of a robot manipulator, these are represented by masses,
center of gravity vectors and the six elements of the inertia tensors [37] as well as the stiffness
and damping parameters of the individual joints.

Table 5 presents a good comparison of these three modeling techniques.

Table 5 Comparison of modeling methods (Source: Kreuzer et al. ([38]).

Modeling
Multibody-system

Simulations

Continuous

System

Simulations

Finite Elements

Method

Body Rigid Elastic Elastic

Geometry Complex Easy Complex

Good level of

detail for

deformation

Restricted Available Restricted

Forces/Torques Discrete Steady increments Discrete

Suitability for

control design
Good

After reduction of
complexity

After reduction of
complexity

Since the aim of the present study is to design stabilization strategies (and not to inspect
the system mechanical structure), MBS is suggested as the most suitable method [39].

The accuracy of a MBS depends on the model complexity, the reliability of the system

parameters and the quality of the numerical solution [40]. The selection of the degree of detail
depends on the nature of the system and the problem as well as on the capacity of the
computational analysis.

Since real systems can be represented by rigid or elastic multibody-system models, there
are several possible levels of abstraction when modeling a MBS. In principle, modeling a
joining element using geometrical constrains (without deformation) means low computing
performance and time. In contrast, system joining elements modeled as deformable or non-
deformable element each has its pros and cons: the use of deformable joining elements
reproduces a close-to-reality behavior but causes considerable difficulties for the numerical
solution; however, the use of non-deformable joining elements between rigid bodies only limits
the motion of the rigid body(ies) [40]. The forces and torques acting/ reacting on the rigid bodies
can be then transmitted through additional massless springs, damping or contact elements.

The theoretical approach for the dynamics of rigid bodies is based on equations of

motion14, e.g. the Newton-Euler approach, the Lagrange approach, etc. [41]. Nevertheless,
modeling a system employing rigid bodies (without deformation) implies also a simplification

14 For a detailed description about the physical principles of the multibody dynamic refer to [36].

Fundamentals 41

of the reality, which could lead to discrepancy regarding the dynamics of the investigated
system behavior or, in a worst case, to the model not representing any characteristics of the real
system.

If a system is modeled employing elastics bodies, it replicates large body deformations,
but implies great computing power. The simplest method to model an elastic structural element
is the uniform local distribution of mass and elasticity on point-masses interlinked by massless
springs, the so-called Lumped Mass Systems [38], generated in a FE-Mesh with thousands of
DOFs. One of the biggest problems and limitations of the MBS modeling with elastic
components is the determination of their corresponding spring constants, essential to represent
the body properties. This is not a simple procedure and implies a good understanding of the
expected system’s motion behavior [38]. Additionally, the higher the system DOF, the more
complex its mathematical description and, thus, the MBS dynamic calculation.

A reasonable compromise to create a close-to-reality system and to relatively easily model
mobile manipulators without needing a high computer performance is the well-known hybrid
MBS model. It combines rigid bodies with deformable bodies in the same model: the uncritical
components (e.g. robot manipulator links) can be modeled as rigid bodies, while the critical
deformable components (e.g. gearboxes) can be described by elastic bodies.

With regard to MBS modeling and simulation tools, the MSC.Software ADAMS/View

(Automatic Dynamic Analysis of Mechanical Systems) is the most commonly used to perform
kinematic, kinetic and dynamic analyses. MSC.ADAMS/View allows users to model complex
mechanical systems, to simulate the dynamics of moving parts and to evaluate the results of the
interaction of all defined system components, including motion, structures, actuation and
controls (emerging forces, positions, velocities and accelerations) [42]. For motion analysis, all
components can be connected via joints and can be loaded with forces and torques. In addition,
MSC.ADAMS/View offers the possibility to measure translational as well as rotational
movements, velocities, accelerations and forces in all spatial directions, important during the
implementation of control algorithms by means of simulations. Furthermore, bearing stiffness
and damping coefficients can be defined as physical joints to simulate forces and torques on
rotational or translational bearings.

Some of the benefits of modeling mobile manipulators as multibody-systems in
MSC.ADAMS/View15 are:
 The use of robust numerical methods to solve dynamic and nonlinear problems. Clearances

and frictions between parts as well as simple or complex contact problems that emerged
during the navigation of, e.g., mobile platforms, can be computed by its fundamental
numerical methods, including static, kinematic, dynamic, linearization and frequency
analysis, being the latter the interesting in this work.

 A variety of libraries are accessible to replicate the same environment and constraints the
real system experiences, as well as to set up the simulation requirements. Thereby, the
electrical drivers of a robot manipulator together with their rotational velocity or linear
displacement and their action/reaction forces can be reproduced using the available control
library.

 CAD models can be imported directly into its user interface, helping the preparation of the
mechanical system of the robots.

15 For more information about ADAMS and its diverse libraries, tools as well as examples, please refer to [212–
214].

42 Fundamentals

 Its postprocessor provides many visual capabilities for the parametrization of the model,
the evaluation of simulation results or their validation against test data through animations
and diagrams.

 The plug-in solution ADAMS/Control helps to export the MBS models into black-boxes,
in order to couple them with simulation environments for control algorithms, e.g.,
Matlab/Simulink. This supports the development and verification of control systems in a
close-to-reality and cost-effective simulation environment [42].
Generally speaking, MSC.ADAMS/View supports the quick creation and test of

mechatronic systems such as mobile manipulators. Thanks to its simulation environments, new
developments require less time and cost that would be required to build and test a real prototype
[43].

2.3 Co-Simulation (MSC.ADAMS/View & Matlab/Simulink)

The development of the stabilization strategies presented in this work involves the
mechatronic representation of the mobile manipulator, comprised by models of the dynamic
behavior of its structure, its control and actuation. As previously mentioned, MBS tools offer a
suitable environment for modeling the mechanical part. However, the development of the
required control loops are subject to many limitations. A long-established mechatronic
simulation tool to solve specific problems on the field of control engineering and mechatronics
is the software package Matlab/Simulink.

MATrix LABoratory (Matlab) serves as a high-level language and interactive environment

for numerical computation, visualization and programming. Matlab supports the acquisition,
analysis and visualization of data, the development of algorithms as well as the creation of
models and applications [44]. It provides mathematical functions for linear algebra, statistics,
Fourier analysis, filtering, optimization, numerical integration and solving ordinary differential
equations as well as numerical computation methods for analyzing data, developing algorithms
and creating models [45]. By combining their packages (libraries) resources, it is possible to
build complex programs and applications.

One of the most important add-on programs of Matlab is the toolbox extension Simulink.
It provides a graphical development environment for simulation and Model-Based Design
(MBD) of linear and nonlinear systems [46], relevant in control design. Its Control System
Toolbox is very useful, mainly for the analysis, design and optimization of linear control
systems, particularly for the optimization of controllers and sensors [47]. Simulink also supports
the rapid prototyping using Hardware-in-the-loop (HIL) and Software-in-the-loop (SIL)
techniques [48], being the perfect choice for modeling the stabilization strategy controls.

Splitting a system into subsystems in accordance with the suitable software environment

for each discipline facilitates the process of design of the stabilization strategies. The use of
coupled simulations, the so-called co-simulations, allow the integration of these loosely and
independently software environments, being concerned about the discrete synchronization and
interaction of the sub-simulations. Table 6 displays some applications of co-simulations in the
robotic field.

Fundamentals 43

Table 6 Examples of applications that employ co-simulations (based on [41]).

Example of

control design

Employing MBS

(MSC.ADAMS/View)
↔

Employing

MATLAB/Simulink

Control

development of an

industrial robot

manipulator

Dynamics of the robot
manipulator

C
o
-S

im
u

la
ti

o
n

Feedback for control loop
containing joint angles,
motor speed and current

Joint angles, motor speed/acc. Motor drive torque
Control

development of a

robot manipulator

with elastic arms

Dynamics of the robot
manipulator arm and its elastic
deformations

Feedback for control loop
containing joint angles,
motor speed and current

Joint angles, motor speed/acc. Motor drive torque
Control

development of a

DC-Servomotor

Torque calculation, rotor
angle/speed/acceleration

Speed and current control
loops

Considering the particular case of mobile manipulators, its mechanical structure can be
modeled as a MBS model and the necessary control loops can be implemented in
Matlab/Simulink environment. Therefore, a co-simulation can be performed in order to make
them interact, coordinating two separate software programs (e.g., ADAMS/View and
Matlab/Simulink). Due to the fact that one software program requires the information delivered
by the other and so on, all relevant information has to be exchanged reciprocally in real-time.

2.4 Robot Operating System (ROS)

In the second part of this work, a stabilization method that directly makes use of the path
planning of the mobile manipulators is investigated. An easy accessible robot framework to
assist the development and implementation of algorithms to control the robot motion over time
is essential.

One of the most well-known frameworks for robot applications is the Robotic Operating
System (so-called ROS). Much of ROS´s popularity is due to its modular building design
principle to create complex and robust behaviors of robotic systems [49].

ROS is characterized by peer-to-peer networking architecture that enables a secure and
high-performance communication between all subscribers (e.g., drivers) of the same network.

All ROS functionalities are distributed in a large number of small tools that solve simple
tasks, i.e., for the execution of one complex ROS function such as navigation, several ROS
tools are involved (odometers, sensor streams, pose and velocity commands, safety using
cameras or scanners, etc.). The developed algorithm is implemented in ROS standalone libraries
with no dependencies on hardware, offering the reuse of the developed code for other
components or for solving different problem statements [50]. The source code in ROS interacts
via the console.

ROS is fully supported by Linux operating system. The algorithms, their corresponding
interpreted/compiled code and relevant data necessary for the execution of the programs [51]
are contained in packages and located within a workspace that comprises the folder structure of
a ROS project [52]. Packages also include the executable files, scripts and launch-files needed
for the implementation of the complex functions.

A single ROS executable program performing a task is represented by a node, i.e. the whole
project possesses one node for each required task. Usually, a robot control system is comprised
by many active nodes, which exchange information with each other in order to accomplish a

44 Fundamentals

function. As an example for a mobile platform, one node performs the localization in space;
using the information delivered by this node, another node performs the path planning to reach
the target point on the map; then, a third node controls the wheel drive motors for the
displacement with the velocity and acceleration the path planning node calculates. Thereby, the
entire ROS program consists of a large number of several nodes, which interact/exchange
information with each other.

Nodes can publish or subscribe to other nodes via topics [52], the data bus used for the
information exchange being the channel for the message flow between two nodes. Thus, nodes
can receive messages from other nodes if they subscribe to the respective topic [52]. Similarly,
messages from nodes are available to other nodes via published topics.

The ROS master establishes the communication between all nodes that participate in a
network. It helps nodes to find each other and to ensure the exchange of information and the
supply of services. Nevertheless, once two or more nodes are connected to each other, they can
communicate in a direct way without any intervention of the master. In other words, the master
only manages the nodes to publish or subscribe on a defined topic.

The node graph assists the visual representation of all nodes and their corresponding
messages and topics.

The following additional plugins facilitated the handling of the robot control developed in
this work and its simulation environment:
 The robot models can be built within realistic scenarios and environments using the tool

Gazebo. In this way, the developed algorithms can be virtually verified in advance before
they are implemented on the real robot. For the implementation on Gazebo, the robot
geometry is read via the special file in Unified Robotic Description Format (URDF).
Furthermore, sensors like accelerometers, scanners or cameras can be also implemented
into the Gazebo environment [53]. In order to achieve a close-to-reality model, not only
static but also dynamic conditions as gravity force, magnetic field, wind, external
disturbances, unknown objects, etc. can be considered.

 RViz as powerful widely used tool for close-to-reality and real-time cognition of robotic
systems, in which the perception of the robot such as scans, camera images, point clouds
or directions can be read out and displayed graphically.

 MoveIt! is a motion planning framework to program robots in a fast and agile way [49],
including a wide range of algorithms for motion and path planning. In addition, MoveIt!
helps to analyze and calculate vision perception, forward/inverse kinematics [54],
navigation as well as control operations. Specific controllers can be assigned to the
individual joints and groups and self-collision matrixes can be defined to avoid collisions
during the robot trajectory. MoveIt! also visualizes graphically the robot movement and its
effects on the simulation model allowing a risk free implementation of the same planned
movement on the real robot.

Altogether, RViz and MoveIt! as control tool and Gazebo as virtual world, assist the

development of the stabilization strategies presented in the second part of this work (see
Chapter 5) in a close-to-reality virtual environment. The big advantage of their use is the risk-
free verification of the developed functionalities in real-time, thus saving time and money. After
a successful verification phase in the ROS virtual environment, the control algorithms can be
implemented directly on the real robot without requiring major further adaptations.

Fundamentals 45

2.5 Recursive Newton-Euler Algorithm (RNEA)

If the position and orientation of each coordinate system attached to all bodies of the
kinematic chain of a robot manipulator are clearly identified, it is possible to determine not only
the location of all bodies in the space, but also the location and orientation of the Tool Center
Point (TCP) regarding, e.g., the world coordinate system. On the other hand, if the location and
orientation of the TCP in a defined space is provided, the location and orientation of all parts
of the kinematic chain can be estimated in order to get the configuration they need to reach the
given TCP, by means of the so-called inverse kinematics.

Moreover, the Recursive Newton-Euler Algorithm (so-called RNEA) method by
Featherstone [55] estimates the inverse dynamics of a rigid-body system required for the
evaluation of the stability state of the mobile manipulator.

All 6D spatial vectors and matrixes employed in the RNEA, such as position (𝑺𝑖), joint

velocity (𝑣 𝑖) and acceleration (𝑎 𝑖), as well as inertia (𝑰𝑖), forces (𝐹) and reaction forces (𝐹 𝑖𝐵)
caused by each joint of the robot manipulator, can be described regarding its body fixed
coordinate system. The velocity of a certain link 𝑖 is calculated by the sum of the velocity of its
parent link 𝜆(𝑖) and the velocity of the joint 𝑖 that connects both links as follows 𝑣 𝑖 = 𝑿𝜆(𝑖) · 𝑣 𝜆(𝑖) + 𝑺𝑖 · �̇� 𝑖𝑖 (37)

with 𝑣 𝜆(𝑖) Parent link 6D velocity vector, 𝑺𝑖 6 x n-DOF matrix for the movement space of joint 𝑖, �̇� 𝑖 n-DOF vector for joint 𝑖 velocity, with the same dimension as the joint 𝑖 DOF, 𝑿𝑖 𝜆(𝑖) Matrixes for the coordinate transformation of the parent link 𝜆(𝑖) regarding the child

link 𝑖 coordinate system. For detailed information about coordinate transformation
matrixes see [56].

Considering the basis of a mobile manipulator as fixed, its velocity can be denoted as 𝑣0 = 0.
Based on Eq. (37), the acceleration of the same link 𝑖 can also be estimated by applying its
derivate with respect to time, where the derivate of 𝑺𝑖 is performed related to the body
coordinate system 𝑎 𝑖 = 𝑿𝜆(𝑖) · 𝑎 𝜆(𝑖) + 𝑺𝑖 · 𝑞𝑖⃗⃗⃗ ̈ + 𝑺𝑖̇𝑖 · 𝑞𝑖⃗⃗⃗ ̇ + 𝑣 𝑖 × 𝑺𝑖 · 𝑞𝑖⃗⃗⃗ ̇ (38)

with 𝑎 𝜆(𝑖) Parent link 6D acceleration vector, 𝑞𝑖⃗⃗⃗ ̈ 6D vector for joint 𝑖 acceleration.

Considering the basis of a mobile manipulator as fixed, its acceleration can be denoted as 𝑎 0 = −𝑎 𝑔𝑟𝑎𝑣𝑖𝑡𝑦. (39)

Similar to Eq. (37) and (38), the forces and torques acting on a link 𝐹 𝑖𝐵 as a result of
accelerations, can be estimated by combining the equations for linear and rotational motion of
rigid bodies given by Newton and Euler, as follows: 𝐹 𝑖𝐵 = 𝑰𝑖 · 𝑎 𝑖 + 𝑣 𝑖 × 𝑰𝑖 ·∗ 𝑣 𝑖 (40)

with

46 Fundamentals
 𝑰𝑖 6 x 6 inertial matrix (mass and moment of inertia of the link 𝑖), × ∗ represents a special form for the Cartesian cross product [56].

Based on the last equation, the external forces and torques, 𝐹 𝑖, affecting the joint can be
calculated by 𝐹 𝑖 = 𝐹 𝑖𝐵 − 𝑿𝑖 0∗ · 𝐹 𝑖𝑥 + ∑ 𝑿𝑗∗ · 𝐹 𝑗𝑖𝑗∈𝜇(𝑖) (41)

with 𝐹 𝑖𝑥 known external forces and torques affecting the joint 𝑖, and described regarding the
world coordinate system. For this reason, the coordinate transformations matrices 𝑿𝑖 0∗ are needed. In case, the external forces and torques are defined regarding the 𝑂𝑖,
no coordinate transformations are needed and this part of the equation can be omitted. 𝜇(𝑖) all children of link 𝑖, 𝐹 𝑗 forces and torques generated by the children 𝜇(𝑖) affecting the parent link 𝑖, 𝑿𝑗∗𝑖 matrices for the coordinate transformation of the force vectors.

Similarly, the vector of torques for the joint 𝑖 can be estimated as 𝜏 𝑖 = 𝑺𝑖𝑇𝐹 𝑖.

Employing the RNEA for the calculation of the robot inverse dynamics, all forces and
torques acting on each joint of the robot manipulator can be computed if the system geometry
and the parameters regarding the kinematics and motions are known over time. This enables
the estimation of the forces and moments generated by the robot manipulator that affect the
mobile platform across their physical connection point(s), and which could induce a tip-over of
the entire system.

State-of-the-art 47

3 State-of-the-art

The current chapter provides an overview of the most common methods that have been
developed by different researchers to assess the stability problem of mobile systems. The first
part presents those approaches that compensate for disturbing/destabilizing forces and moments
by employing external mechanisms. The subsequent sections introduce a number of studies that
comprise other kind of stabilization strategies, namely those that do not employ any external
stabilization mechanism, but rather the manipulator itself, to guarantee the system stability.

3.1 Stabilization approaches using external mechanisms

Several institutes [57] and companies [58] are currently working on lightweight mobile
platforms. Although this form of robotic solution avoids the potential risk of losing their
stability while the mobile platform moves through the plant, they are limited by their restricted
payload in contrast with previous large systems introduced in Chapter 1. The demand for
handling higher payloads implies the use of big robot manipulators (with higher center of
gravity) mounted on large-footprint and/or heavier mobile platforms to prevent the robot
manipulators from tipping over [59], as the examples shown in Figure 8.

Figure 8 Two representative models of mobile manipulators (left: KUKA KMR iiwa [60],

right: OMRON TM-manipulators with LD-mobile platforms [61]).

Likewise, large-footprint platforms are directly associated with more workspace required,
and thus higher costs for the plant surface area. There is, therefore, a definite need to develop a
mobile manipulator comprised by a high payload robot manipulator on a small-footprint
autonomous mobile platform.

Numerous studies have attempted to develop mechanisms and algorithms to guarantee the

stability of mobile platforms and mobile manipulators.
The first systematic studies about mobile platforms equipped with an external stabilization

mechanism was reported by Graf and Dillmann [62–64] in 1997 and 1999. They attempted to
compensate accelerations and decelerations of mobile transport systems using the concept of a
six degree-of-freedom (DOF) Stewart-platform mounted on a wheeled vehicle. An example of
application of the principle introduced by Graf and Dillmann [62–64] is shown in Figure 9.

48 State-of-the-art

Figure 9 Compensation of linear accelerations by means of a Stewart-platform ([65] based on [63]).

This motion is implemented by the superposition of accelerations generated by a Washout-
Filter16 and the so-called g-tilt effect [64]. The Washout filter calculates valid positions and
orientations for the upper plate of the Stewart-platform by means of the double integration of
the angular and linear acceleration of the mobile platform. Moreover, the g-tilt effect utilizes
the gravity force to generate continuing accelerations in horizontal directions. The washout
filter acts as limiter for the g-tilt and executes a tilt so slowly that this movement produces only
an insignificant rotatory acceleration of the upper plate of the Stewart-platform. Both
accelerations are outlined by the curves in Figure 10, with acceleration by movement for the
Washout-filter effect and acceleration by angle for the g-tilt effect.

Figure 10 Compound motion generation [63].

Using inverse kinematics, the position controller determines the stroke length of the 6
linear actuators of the Stewart-platform that have to be controlled to compensate disturbing
accelerations on the mobile system. The complete control algorithm is represented graphically
in Figure 11.

16 Detailed information about the filter is described in [63] and [215].

State-of-the-art 49

Figure 11 Stewart platform controlling architecture [66].

Besides the complex design, this concept was originally developed especially for the
transportation of liquids in small containers, i.e. for smaller weights than for standard industrial
robot manipulators. The main disadvantage of the concept presented by Graf and Dillmann [62–
64] is that large sized components for the 6-DOF-platform are required to achieve only small
compensations, which would seriously limit the use of small footprint wheeled systems.
Adopting this approach for industrial robot manipulators mounted on mobile platforms would
imply the use of very larger sized lineal positioning elements which displace the robot
manipulator center of mass higher (decreasing stability) and demands a much bigger footprint
area of the wheeled system suitable to mount the Stewart-platform. Further researches [67–69]
include the application of this approach.

Another similar approach is the well-known two-wheel inverse pendulum principle mostly

employed for the balanced locomotion of two-wheel robots, as shown in Figure 12.

Figure 12 Ideal two wheeled inverted pendulum system [70].

With a reasonable design and robust control techniques, many concepts have been already
successfully implemented for person transporter purposes [71–76]. Figure 13 gives an overview
of the controllers that have been investigated for two-wheeled robots.

50 State-of-the-art

Figure 13 Outline of most-used controllers for two-wheeled robots [71].

An extension to the standard stabilization functionality of the two-wheeled inverse
pendulum is the mechanism adopted to self-tilt-up without any driver's intervention, as
described in [77]. To achieve a self-tilting balancing, a precession motion is achieved via a
flywheel mounted inside the vehicle. The flywheel and the body of the vehicle are forced to
move around a fixed point. This motion generates a synchronous moment that tilts the body
into the upright position. A prototype of this mechanism is shown in Figure 14.

Figure 14 Concept of flywheel as stabilization mechanism for two-wheeled inverse pendulum [77].

State-of-the-art 51

The dynamics of those systems have been significantly enhanced by further studies [78–
80]: In addition to the typical pitching, yawing and straight motions, the two-wheeled vehicle
is integrated with an auxiliary mechanical tilting mechanism composed by a ball screw spindle
that allows rolling and vertical motions (see Figure 15).

Figure 15 Mechanism to achieve lateral stability for two-wheeled vehicles [80].

The tilt control of the auxiliary balancing mechanism that compensates the centrifugal
acceleration of the two-wheeled vehicle is carried out by the control concept illustrated in
Figure 16. In order to determine the angle of inclination required to compensate the centrifugal
forces occurring in the transverse direction, the force equilibrium and moment equilibrium
conditions must be established as a function of the angle of inclination.

Figure 16 Control concept for the auxiliary balancing mechanism of two-wheeled vehicles [80].

Zhao et al. [81] as well as Acar and Murakami [82], have attempted to implement the
system comprised by the three DOF manipulator mounted on the two-wheeled mobile platform

52 State-of-the-art

displayed in Figure 17. They applied the inverted pendulum principle to model the robot
system’s dynamics. In the model, the robot center of gravity (COG), an important parameter to
keep the system stable, varies depending on the displacements, velocities and acceleration of
the mobile platform, as well as on the weight and height of the robot manipulator.

Figure 17 Prototype of 3-DOF manipulator mounted on a two-wheeled vehicle [82].

The design approaches developed at the Institute for Cognitive Systems at the Technical
University of Munich [83] as well as at the Korea Institute of Science and Technology [84] and
at the Fraunhofer Institute of Optronics in Karlsruhe [85] consist of two-arm humanoid upper
bodies mounted on Segway devices to allow them be moved. In Figure 18, the robot
manipulator’s body of the MAHRU-M [84] is mounted on a “Compact Omni-directional
Mobile Platform”.

Figure 18 Mobile humanoid robot MAHRU-M [84].

Both systems, the three DOF mobile manipulator and the two-arm humanoid mounted on
two-wheeled vehicles, are not suitable for application purposes in industrial environments due
to their lack of DOFs and their high cost and complexity, respectively.

Another potential approach for external stabilization, apart from tilting, revealed the use

of gyroscopes, similar to the technic presented for the two-wheeled inverse pendulum with
integrated flywheel abovementioned. Early examples of research into gyroscope mechanisms
and its successful implementation include the today´s predominant use to reduce roll on ships,
to control the airplanes automatic pilot, as well as missiles, satellites (Figure 19 [86]) and high-
degree stabilization capabilities of camera systems.

State-of-the-art 53

Figure 19 Schematic representation of satellite orientation by a control moment gyroscope [86].

Research into the gyroscopic effect and its benefits has a long history. Arnold and Mauder
[87] demonstrated that the use of a gyroscope as stabilizer is particularly promising because of
the immense torques it can exert under precession, and its rapid response capacity. In 1959 and
1960 respectively, Novoselov [88] and Matrosov [89] described in detail the forces and torques
acting during the gyroscope effect. Most recent researches, as in [90], attempt to evaluate the
impact of perturbations and how the gyroscope can manage them by implementing new torque
control algorithms based on continuous high-order sliding mode [86].

3.2 Detection of instability states

In order to avoid a tip-over of the mobile manipulator, it is necessary to first detect all
instability states. This far, several techniques have been developed to analyze the dynamical
tilting stability of mobile manipulators. The study proposed by Ghasempoor and Sepehri [91]
calculates the system energy level with respect to the tilting axes. On the other hand, Li [92]
suggested the evaluation of the support forces between the wheels and the ground. A significant
analysis and discussion on the subject was presented by Papadopoulos and Rey [20,93,94], the
so-called Force Angle stability measure (FA), which inspects the vector between the system
resulting total force (measured by an Inertial Measurement Unit) and the normal vector of each

tilting axis. The reaction force vector 𝐹 r and the normal vectors of the tilting axes 𝑇1 and 𝑇2
build the angles 𝜃1 and 𝜃2 shown in Figure 20 (for manageability, the schema illustrates only

the components i=1 in a 2-DOF system). The length of the vectors ‖𝑑 1‖ and ‖𝑑 2‖ describes
the distances between the resulting force line of action and the contact point between the wheels
and the ground.

H

M
RW

M
Z

Y

Y

Z

Control Moment Gyroscopes

54 State-of-the-art

Figure 20 Planar Force-Angle stability Measure [95].

The Force-Angle stability measure is defined as 𝛼 = 𝜃𝑖 ∙ ‖𝑑 𝑖‖ ∙ ‖𝐹 𝑟‖. (42)

If α contains a negative value, if the total reaction force points outside 𝜃𝑖 or if the COG
points outside the tilting shape (comprised by the wheels), the system starts to tilt over.

Defining the connecting line between the system tilting axes 𝑒 𝑖 as 𝑒 𝑖 = 𝑝 𝑖+1 − 𝑝 𝑖 𝑖={1,2, … , 𝑛 − 1} (43)

where n is the amount of contact points and 𝑝 𝑖 is the position vector between these contact
points with the ground, using as reference frame the coordinate system located at the system

COG. By employing the normalized vector �̂� = 𝑒 ‖𝑒 ‖, the normal vector of the tilting axes 𝑇𝑖 that

passes to the COG is characterized by �⃗� 𝑖 = (1 − �̂�𝑖 · �̂�𝑖𝑇)(𝑝 𝑖+1 − 𝑝 𝑐) (44)

with 𝑝𝑐 as the instantaneous position vector of the system COG and 1 as the 3𝑥3 Identity
matrix. Then, the total reaction force of the system acting on the COG is calculated as follows 𝐹 𝑟 = ∑𝐹 𝑔 + ∑𝐹 𝑒𝑒 + ∑𝐹 𝑠 + ∑𝐹 𝑑 − ∑𝐹 𝐼 (45)

with 𝐹 𝑔for gravitational force, 𝐹 𝑒𝑒 for the forces transmitted by the end effector to the system

(e.g. payload), 𝐹 𝑠 for the reaction forces of the vehicle support system, 𝐹 𝑑 for external forces

(eg. disturbances) and 𝐹 𝐼 for the inertia forces. In addition to the forces, the resulting moment
generated around the COG is determined as �⃗⃗� 𝑟 = ∑�⃗⃗� 𝑒𝑒 + ∑�⃗⃗� 𝑑 − ∑�⃗⃗� 𝐼 (46)

which comprises both external and internal moments caused by 𝐹 𝑒𝑒 and 𝐹 𝑑 as well as 𝐹 𝐼 and

their corresponding cantilever. For a given tilting axis �̂�𝑖, only the components of 𝐹 𝑟 and �⃗⃗� 𝑟
that act about �̂�𝑖 are substantial for the calculation: 𝐹 𝑖 = (1 − �̂�𝑖 · �̂�𝑖𝑇) · 𝐹 𝑟 (47)

𝜃1 𝜃2 𝑇2𝑇1

𝐹𝑟

𝑥𝑦 𝑝𝑐

𝑑1

𝑑2

State-of-the-art 55
 �⃗⃗� 𝑖 = (�̂�𝑖 · �̂�𝑖𝑇) · �⃗⃗� 𝑟 . (48)

In order to estimate the angle 𝜃𝑖 for the FA stability measure according to the vector 𝐹 𝑖
related to each tip-over axis normal �̂�𝑖, the moment �⃗⃗� 𝑖 must be replaced by the equivalent force

couple of 𝐹 𝑖. Thus, the force 𝐹 𝑖 intersects the tilting axis 𝑖, forming a cantilever to the normal
vector of the tilting axis as follows 𝐹 𝑖 = �̂�𝑖 × �⃗⃗� 𝑖‖�⃗� 𝑖‖ (49)

whereby, the normalized vector for the normal vector of the tilting axis is �̂� = �⃗� ‖�⃗� ‖. (50)

Thus, the resulting force 𝐹 𝐹𝐴 regarding the 𝑖 tilting axis of the system is 𝐹 𝐹𝐴 = 𝐹 𝑖 + �̂�𝑖 × �⃗⃗� 𝑖‖�⃗� 𝑖‖ (51)

In order to determine the tilting stability coefficient, the distances between the force and
the ground contact point must be calculated 𝑑 𝑖 = −�⃗� 𝑖 + (𝑇𝑖𝑒 ∙ 𝐹 ̂𝐹𝐴) · 𝐹 ̂𝐹𝐴 (52)

as well as the angle between the force and the normal vector to the tilting axis as 𝜃𝑖 = 𝜎𝑖 · cos−1(𝐹 ̂𝐹𝐴 · �̂�𝑖) (53)

whereby, the normalized vector for the resulting force 𝐹 𝐹𝐴 is 𝐹 ̂𝐹𝐴 = 𝐹 𝐹𝐴‖𝐹 𝐹𝐴‖ (54)

and 𝜎𝑖 represents the proper sign for 𝜃𝑖, which adopts a positive value if the projection of the

cross-product of the force vector 𝐹 ̂𝐹𝐴 and the normal vector of the tip-over axis �̂�𝑖 is positive,

i.e. in this case the 𝐹 ̂𝐹𝐴 points inside the defined tilting edge17: 𝜎𝑖 = {+1 (𝐹 ̂𝐹𝐴 × �̂�𝑖) > 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (55)

Finally, the tilting stability is obtained with 𝛼 = min (𝜃𝑖 ∙ ‖𝑑 𝑖‖ ∙ ‖𝐹 𝐹𝐴‖) (56)

Therefore, 𝛼 = { > 0 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒 < 0 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒. (57)

The result of FA is a binary value, distinguishing between stable and unstable, but lacking
a statement about the degree of risk.

17 Only applicable if the direction of the tip-over axis is the same as the stabilizing moment vector.

56 State-of-the-art

Another relevant approach is the estimation of the stability by the so-called Zero Moment
Point (ZMP), which was first established by Vukobratovic et al. [96] and implemented by
Sugano, Huang and Kato [97,98]. ZMP assumes a system is stable if the sum of all moments
acting on the system is equal to zero. It calculates a stability value by means of one point
(marked as ZMP in Figure 21), which is located on the mobile platform supporting surface and
represents the location where the sum of all resultant moment should be zero.

Figure 21 Stable regions determined by the ZMP [95].

All moments are derived from gravitational forces and linear accelerations as well as from
external forces and moments that affect the system. Internal forces generated by the joints and
their movements, and external forces produced by the acceleration of the mobile platform [99]
are also considered. A predefined stable region helps to estimate if the system, depending on
its ZMP, can be considered stable or not.

In the specific case of the mobile manipulator, this region corresponds to the inner surface
of the wheels polygon. For the calculation, the bodies that comprise the system are considered
as point masses with an own coordinate system. The acceleration of any point located in the
multibody-system may be calculated and modified by applying d'Alembert’s strategy, in order
to obtain the x- and y-coordinate of the ZMP as follows: 𝑥𝑍𝑀𝑃 = ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) · 𝑥𝑖 − ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑥) · 𝑧𝑖 + ∑𝑀𝑒𝑥𝑦 + ∑(𝑆𝑒𝑧 · 𝐹𝑒𝑥𝑥 − 𝑆𝑒𝑥𝑥 · 𝐹𝑒𝑥𝑧) ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) − ∑𝐹𝑒𝑥𝑧

(58)

𝑦𝑍𝑀𝑃 = ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) · 𝑦𝑖 − ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑦) · 𝑧𝑖 + ∑𝑀𝑒𝑥𝑥 + ∑(𝑆𝑒𝑥𝑦 · 𝐹𝑒𝑥𝑧 − 𝑆𝑒𝑥𝑧 · 𝐹𝑒𝑥𝑦) ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) − ∑𝐹𝑒𝑥𝑧
(59)

with 𝑚𝑖 for the mass of body 𝑖, 𝑟 𝑖 for the position vector of body COG 𝑖 ([𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]), �⃗⃗� 𝑒𝑥

([𝑀𝑒𝑥𝑥, 𝑀𝑒𝑥𝑥 , 𝑀𝑒𝑥𝑧]) and 𝐹 𝑒𝑥 ([𝐹𝑒𝑥𝑥 , 𝐹𝑒𝑥𝑦 , 𝐹𝑒𝑥𝑧]) for external moments and forces affecting the

system, and 𝑆 𝑒𝑥 ([𝑆𝑒𝑥𝑥, 𝑆𝑒𝑥𝑦, 𝑆𝑒𝑥𝑧]) for the point of application of these external forces. The
coordinate z is located on the surface of support; for this reason, its value does not need to be
calculated.

A stable region has to be defined to estimate if a system can be considered stable or not.
Similar to the FA method, if the positions 𝑥𝑍𝑀𝑃 and 𝑦𝑍𝑀𝑃 calculated by ZMP are situated inside
the defined region, the mobile manipulator can be considered as stable; otherwise, if the
resultant ZMP lies outside this region, the mobile manipulator is unstable. In general, the
farthest away from an edge of the region to the ZMP resultant, the more stable against tip over
the mobile manipulator is regarding this edge. According to this, it is possible to define

State-of-the-art 57
 𝛼𝑖 = 𝑑𝑖𝑟𝑚𝑎𝑥 (60)

with 𝛼𝑖 being the stability criterion regarding the edge 𝑖 of the stability region, 𝑑𝑖 as the smallest
distance and 𝑟𝑚𝑎𝑥 for the longest distance between the ZMP resultant and the edge 𝑖 of the
stability region, as shown in Figure 21.

The ZMP strategy was originally developed for humanoid robots, whose COG does not
change significantly. Moreover, this method considers only mass points, ignoring the bodies
inertia moment. Both situations could lead to handicaps in its use for mobile manipulators.

The main disadvantage of the above methods is that they did not consider parameters
produced by the system dynamics. A method that takes into account this aspect is the Moment
Height Stability method (so-called MHS) introduced by Moosavian and Alipour [99–101] for
the computation of the moments acting on each tilting axis of the system. The MHS is also a
moment-based method which considers, in addition to the internal and external forces (as ZMP
does), the body moments of inertia in the stability calculation. In a highly simplified way, the
MHS method calculates the total torque acting on each of the individual tip-over edges of the
system and, additionally, emphasizes them with inertia values and with the overall COG height.
For the estimation of a stability value by means of MHS, the system should first be split into
the two parts that are physically connected, as the example illustrated in Figure 22.

Figure 22 Separation of whole system into two subsystems, since the MHS measure is computed

on the part which produces mobility (the mobile platform) [101].

This method serves to kinematically and dynamically analyse the two main bodies
separately:
 For the manipulator, joint positions, joint angular velocities and joint angular accelerations

over time need to be determined. All forces and moments acting on the mobile platform
across the connexion point can be estimated by means of inverse dynamic method (RNEA).

 For the mobile platform, similar to the already described Force-Angle stability measure
method, a unit vector 𝑒�̂� is defined for each tilting edge. Given 𝑝 𝑖, 𝑝 𝑖+1, …, 𝑝 𝑛−1 as the
vector for the contact points of the mobile platform with the ground (wheels), with respect
to the coordinate frame formed by the point where the robot manipulator is attached to the
mobile platform, the unit vectors can be calculated as follows

FR1

τ1

-R1

-τ1

58 State-of-the-art
 �̂�𝑖 = 𝑝 𝑖+1− 𝑝 𝑖‖𝑝 𝑖+1− 𝑝 𝑖‖ , respectively �̂�𝑛 = 𝑝 1− 𝑝 𝑛‖𝑝 1− 𝑝 𝑛‖. (61)

In addition, the resultant moments around a vertex have to be calculated and projected to
the unit vectors that conform the tilting polygon. The resultant moment is comprised of all
forces and moments acting over the connection point (caused by the robot manipulator) as well
as of all forces and moments acting on the COG of the mobile platform (inertial and
gravitational forces, etc.), �⃗⃗� 𝑣𝑖 = −𝑝 𝑖 × 𝐹 𝑟 + �⃗⃗� 𝑟

(62) 𝑀𝑖 = �⃗⃗� 𝑣𝑖 ∙ 𝑒�̂�. (63)

The dynamic stability value 𝛼𝑖 related to the 𝑖 edge can be estimated by considering the
mass moment of inertia of the mobile platform regarding the 𝑖 edge, 𝐼𝑣𝑖: 𝛼𝑖 = (𝐼𝑣𝑖)𝜎𝑖 ∙ 𝑀𝑖 (64)

Employing 𝜎𝑖 = {+1 𝑓𝑜𝑟 𝑀𝑖 > 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (65)

The MHS is defined as the critical value (smallest dynamic stability 𝛼) regarding an edge
of polygon 𝑖, indicating thus the critical tilt edge 𝛼 = min(𝛼𝑖) (66)

which must be interpreted as 𝛼 > 0 System is stable 𝛼 = 0 System is critically stable 𝛼 < 0 System tends to tip over the edge 𝑖.

The MHS method also provided information about the system stability in relation to all

possible tip-over edges. By continuously calculating and monitoring the stability value of each
edge during the operation of the mobile manipulator, it is possible to determine the risk of
tipping over and, if applicable, which edge is most likely to be affected.

The effectiveness of the last three mentioned methods were already evaluated and

compared by other researchers. The authors in [101] confirmed that the ZMP method differs
substantially from the other two methods because of the fact that the ZMP does not directly
consider the inertial moment of the bodies and the height of the COG. Furthermore, the FA
method requires much more computing power. In turn, the MHS demands much lower
computing power and considers the system to be dynamic. Roan et al. in [102] carried out
comparisons by using a real mobile manipulator whose COG location was fixed during the
whole set, obtaining similar results to those in [101].

In summary, it has been shown from this review that the MHS technique appears to be the

most suitable of these methods to detect instability conditions in mobile manipulators.

State-of-the-art 59

3.3 Tip-over prevention approaches employing the robot manipulator

Generally speaking, there are two basic approaches currently being adopted in research to
solve the problem of tip-over avoidance for the mobile manipulators:
1. either the traveling speed of the mobile platform is reduced/suited or,
2. the robot manipulator takes another position/orientation.

The combination of both approaches is also possible [20,22,103].

Perhaps the best-known studies include those carried out by Rey et al. [20], who proposed

a strategy based on the FA for the tilting detection in such a way that, in case an instability is
detected by FA, the mobile manipulator assumes a predefined categorized safe position
[20,104]; the major disadvantage of this method, however, is that the executed motion planning
task must be completely aborted for the reposition, leading to big delays during the operation
time. He [105] estimated the stabilization by the so-called contact force method, which employs
the contact force between the mobile platform wheels and the ground to trigger a repositioning
of the robot manipulator (see Figure 23). The new manipulator’s joint arrangement depends on
the system COG and its speed, adopting the position in which the contact force is the same at
all contact points (wheels).

Figure 23 Ramp crossover with tip-over avoidance algorithm of He [105].

60 State-of-the-art

The limitation of this approach is the measurement of the contact forces between the
wheels and the ground, which implies the use of additional sensors and its integration on the
wheels. Hatano and Obara [106] employed a highly simplified mobile manipulator consisting
of single link with mass. As soon as an instability is detected by means of ZMP, the manipulator
is moved to a predefined position, generating a force acting against the tilting moment. This
principle is displayed in Figure 24.

Figure 24 Stabilization principle of single link mass by Hatano and Obara [106].

Ding et al. [22] algorithm detected risk of tip-over by means of Improved Tip-Over
Moment Stability Criterion (ITOMSC). It defined the position and orientation the robot
manipulator’s joints should adopt or the speed the mobile platform should assume to
accomplish the calculated optimum tilting moment for the current state of the mobile
manipulator. The simplified algorithm is represented in Figure 25.

Once again, the mobile manipulator aborts its original motion planning task, standing still
during the stabilization and resuming it after the system is considered stable. The new
position/orientation for the robot manipulator’s joint does not have to be part of the original
trajectory path.

State-of-the-art 61

Figure 25 Tip-over prediction and avoidance algorithm by Ding et al. [22].

For nomenclature, refer to [22].

The algorithm presented by Huang and Sugano [103] (shown in Figure 26) calculates an
unadjusted optimal trajectory before the mobile platform starts moving. This algorithm inspects
which points of the whole trajectory do not fulfill the ZMP criteria and recalculates these critical
points as often as necessary until the criterion is fulfilled for each point. Only then, the mobile
manipulator is ready to operate.

62 State-of-the-art

Figure 26 Algorithm of motion planing for maintaining stability by Huang and Sugano [103].

In theory, a tilting risk by means of ZMP will be never detected during a task execution, if
the mobile manipulator follows the optimized pre-calculated path. This approach enormously
manipulates the motion and path planning of the robot manipulator and, perhaps, the most
serious disadvantage of this method is that it cannot react to unexpected behaviors (e.g., abrupt
braking maneuvers).

Furuno, Yamamoto and Mohri [107] also implemented a similar method based on the ZMP
for tilting detection and a predefined stable trajectory path, which adjusts beforehand the
position of the robot manipulator and the movement of the mobile platform. The same
limitations apply to this approach.

State-of-the-art 63

Kim et al. [108] suggested a real-time null-space motion approach, which is only
applicable to robot manipulators with kinematic redundancy.

A different real-time method is proposed by Li and Liu [109,110] as well as by Alipour et
al. [104], who implemented a fuzzy logic to get non-numerical statements, which depends on
the joint positions, velocities and accelerations. Alipour et al. [104] triggered the fuzzy logic
algorithm according to the information delivered by the MHS for the tip-over detection, as can
be seen in Figure 27, whereas Li and Liu [109,110] rely upon the contact forces between the
wheels and the ground.

Figure 27 Fuzzy logic tip-over avoidance planner proposed by Alipour et al. [104].

For nomenclature, refer to [104].

So far, however, the mentioned approaches ignore either the real time aspect, in order to
react against unexpected abrupt braking maneuvers, the numerical statements (and not just
Boolean) in order to detect the degree of tip-over risk or the simplicity of its measurement and
calculation methods. Therefore, there is a clear need for a stabilization strategy that covers all
these aspects.

64 State-of-the-art

This work offers insights into two different stabilization approaches: Approach A, as an
external stabilization method that integrates additional actuators onto the mobile manipulator
for the compensation of instability torques; and an Approach B, as an incorporated stabilization
method in which the mobile manipulator independently brings itself into a stable state.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 65

4 Approach A: Stabilization strategies for

mobile manipulators with limited access

to the robot controller

This work describes two different approaches to deal with the instability problem affecting
small-footprint mobile manipulators, differing from each other in the system to which they will
be implemented: mobile manipulators with closed-source or open-source operating systems,
respectively.

The first approach, A, focuses on the design and development of stabilization strategies
based on external mechanisms. Their purpose is to ensure the tilting stability of mobile
manipulators at standstill or during normal plant operation, regardless of the robot
manipulator’s and mobile platform’s controllers. If an external actuator system is used for the
compensation of instability moments, an affordable mobile manipulator can be built by simply
integrating currently available robot manipulators at the plant onto small footprint mobile
platforms. The particular importance of this approach lies in the possible use of low-cost robot
manipulators or the re-use of already existing robots/equipment, since its implementation does
not require for access or alteration of the robot controllers.

The main challenge the stabilization approach faces is to guarantee for the stability of the
mobile manipulator during its operation, even when the mobile platform abruptly starts or stops.
In other words, the stabilization mechanisms should be self-adaptive to react to any external
influences and, consequently not to affect the human safety in the working areas [111]. Their
adequate control strategy should ensure the equilibrium of dynamical forces affecting the
system balance in every moment.

4.1 Stabilization strategies employing tilting effect

The first part addressed in approach A analyzes techniques to compensate accelerations
affecting the mobile manipulator’s stability based on the g-tilt method, using a principle similar
to that of the Stewart-platform presented by Graf and Dillmann [62,64,66]. Following the
findings reported during the development of the Stewart-platform [62,64,66], it is a fact that
external forces affecting a mobile system are mainly caused by sudden and unpredictable
accelerations and decelerations of the mobile platforms. The mechanism proposed by Graf and
Dillmann [62,64,66] reaches the compensation of these accelerations by implementing a
translational displacement of its upper plate, while the inclination of the payload increases (see
Section 3.1). Considering that the translation displacement effect only procures short
acceleration impulses, longer lasting accelerations cannot be implemented due to the limited
the Stewart-platform’s workspace [63]. Moreover, if only the gravity force effect (g-tilt) is
taken into account, a compensation of braking processes could be achieved by shifting the
system’s center of gravity (COG).

Therefore, the stabilization strategies presented below propose the use of a distinct
mechanism, in which only the g-tilt effect is carried out by independent linear actuators, while
the robot manipulator’s weight is supported by a universal joint placed on the upper plate of the
mobile platform. It is worth emphasizing that the stabilization strategies, thereby, do not involve
any active motion of the robot manipulator or the mobile platform itself.

66 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

4.1.1 Actuation mechanism

In order to compensate accelerations and decelerations affecting the mobile manipulator,
the stabilization mechanism shown in Figure 28 consisting in trapezoidal screw drives mounted
on the mobile platform in a delta configuration has been proposed.

Figure 28 Linear actuators as external stabilization mechanism for a robot manipulator

mounted on a small footprint mobile platform.

The central column mounted on the mobile platform is a universal joint that connects both
subsystems, supports most of the robot manipulator’s weight and allows motion in 2 degrees of
freedom (DOFs). Each of the ball screw spindles mounted in delta configuration can execute a
linear motion. Their motors are fixed to the upper plate by additional universal joints, as
illustrated in Figure 29.

Figure 29 Linear drives mechanism designed for the stabilization strategy via tilting effect.

In order to quantify the influence of the accelerations acting on a mobile manipulator, the
entire system can be simplified in a two-mass system and analyzed in a two-dimensional space.
The acceleration at which the entire system starts to tip-over regarding the front wheels can be

estimated by employing the moments generated during the equilibrium of forces (�⃗⃗� 𝑒𝑞=0).

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 67

Figure 30 Free body diagram of mobile manipulator at home position (following [112]).

According to the schematic diagram in Figure 30, the moment of equilibrium �⃗⃗� 𝑒𝑞 can be
calculated as follows �⃗⃗� 𝑒𝑞 = �⃗⃗� 𝑆 = − 𝑚𝑀𝑃 · 𝑔 · 𝑙2 − 𝑚𝑅 · 𝑔 · 𝑙1 + 𝑚𝑀𝑃 · 𝑎 · 𝑙4 + 𝑚𝑅 · 𝑎 · 𝑙3 = 0 (67)

whereby, 𝑚𝑀𝑃 and 𝑚𝑅 are the mass of the subsystems conformed by the mobile platform (MP)
and by the robot manipulator (R), respectively; 𝑙1 and 𝑙2 are the horizontal distance between
the tilting point S and the 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡 and the 𝐶𝑂𝐺𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚, respectively; 𝑙3 and 𝑙4 are the

vertical distances between the tilting point S and the 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡 and the 𝐶𝑂𝐺𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚,
respectively; 𝑎 is the linear acceleration emerged by the acceleration/braking process performed
by the mobile platform, and 𝑔 is the gravitational force.

Based on Eq. (67), the acceleration at which the mobile manipulator tips over around point
S is given by 𝑎 = 𝑔(𝑚𝑀𝑃 · 𝑙2 + 𝑚𝑅 · 𝑙1)𝑚𝑀𝑃 · 𝑙4 + 𝑚𝑅 · 𝑙3 . (68)

4.1.2 Stabilization via “Inclining/tilting”

By tilting the robot manipulator in a controlled manner backwards (opposite to the
direction of travel of the mobile platform) before the braking process, the robot manipulator
COG is shifted to the back-support wheels. During the braking process of the mobile platform,
this stabilization strategy exploits the deceleration of the mobile platform itself to compensate
the destabilizing forces affecting the entire mobile manipulator and, thus, preventing the system
from tipping over. With the robot manipulator tilted backwards, the resulting torque caused by
the deceleration of the mobile platform points forwards.

Figure 31 illustrates this idea, whereby 𝜔𝑡 is the tilting velocity of the robot manipulator’s
COG.

68 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 31 Description of the inclining/tilting method [113].

In order to reach a positive effect, the tilt (position 2 in Figure 31) must take place before
the mobile platform starts to brake. For this, sensor signals, e.g., from widely used laser
scanners on the mobile platforms, can be employed as activation flag for the tilting motion:
they reveal that a braking process will be initiated by the mobile platform in the near future.

The acceleration of the mobile platform might serve as input for the control loop of the
stabilization strategy, which should calculate the inclination angle of the upper plate of the
actuation mechanism needed to compensate presented instability moments.

The outcomes of the implementation of this stabilization strategy employing a testing
system are presented in Section 4.5.4.1.

4.1.3 Stabilization based on the “Conservation of angular momentum”

The previous stabilization strategy (through shifting the robot manipulator’s COG) cannot
be performed during the braking process as there is a counteracting effect, which, however,
could also be used for the stabilization: the angular acceleration of the robot manipulator
generated during the inclination also affects the degree of stability of the whole system. Due to
the conservation of angular momentum, a deceleration of the mobile platform produces a
resulting external torque on the overall system that causes a change in angular velocity (angular
acceleration). This leads to the idea of generating an angular momentum forwards, opposite to
the direction of the angular momentum caused by the deceleration, in order to generate a
moment that counteracts the destabilizing moment produced during the braking process.

As a result, in contrast to the previous strategy, the robot manipulator is now impelled
forwards (in the direction of travel) during a braking process, as described in Figure 32. For this
purpose, the robot manipulator has to be carefully tilted backwards when the mobile platform
is traveling straight ahead, before the braking process occurs so that when the mobile platform
starts to brake, the robot manipulator can be impelled forwards.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 69

Figure 32 Description of the conservartion of angular momentum method [113].

The required angular acceleration �⃗⃗̇� 𝑡 can be estimated based on the diagram given in
Figure 33,

Figure 33 Free body diagram of the testing system at equilibrium position (following [112]).

The moment equilibrium (∑�⃗⃗� 𝑆 = �⃗⃗� 𝑒𝑞 = 0) of the Figure 33, results in 𝐹 𝑑 · 𝑙6 + 𝑚𝑀𝑃 · 𝑎 · 𝑙4 + 𝑚𝑅 · 𝑎 · 𝑙3 − 𝑚𝑀𝑃 · 𝑔 · 𝑙2 − 𝑚𝑅 · 𝑔 · 𝑙1 − 𝐹 𝑑 · 𝑙5 = 0 (69)

whereby, additional to the already specified nomenclature from Figure 30, 𝜔𝑡̇ corresponds to
the angular acceleration of the robot manipulator, 𝑙𝑑 is the lever arm between the coupled forces 𝐹 𝑑 that create the angular motion of the robot manipulator and 𝑙𝑡 is the distance between the

pivot 𝑃 and 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡. Force 𝐹 𝑑 can be estimated after rearranging Eq. (72) as follows

70 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

 𝐹 𝑑 = −𝑎 · (𝑚𝑀𝑃 · 𝑙4 + 𝑚𝑅 · 𝑙3) + 𝑔 · (𝑚𝑀𝑃 · 𝑙2 + 𝑚𝑅 · 𝑙1)(𝑙6 − 𝑙5) (70)

that corresponds to the force applied by the linear drives. Then, the moment about pivot 𝑃
(cardan joint) can be determined with �⃗⃗� 𝑃 = 𝐹 𝑑 · 𝑙𝑑. (71)

The angular momentum theorem for the robot manipulator can be expressed with M⃗⃗⃗ 𝑃 = Θ𝑃 · �⃗⃗̇� 𝑡 (72)

with Θ𝑃 as the moment of inertia of the robot manipulator with respect to the point 𝑃. Thus, the
angular acceleration required to compensate instabilities can be calculated with �⃗⃗̇� 𝑡 = �⃗⃗� 𝑃Θ𝑃 . (73)

Similar to the “inclining/tilting” strategy, the acceleration of the mobile platform might
serves as input for the control of the stabilization strategy. The outcomes of this stabilization
strategy employing a testing system are presented in Section 4.5.4.2.

4.2 Stabilization strategy using the “Gyroscopic effect”

Data collected during the investigation of the effect of conservation of angular momentum
suggested a gyroscope stabilizer as further actuation mechanism to achieve greater moments
generated by its precession motion [71,114]. This effect is exploited in technical applications
such as stabilization techniques, among other things [115]. Achieving stabilization using
gyroscopic effects is a state-of-the-art technique, e.g., in the field of cannon tanks or ships to
compensate the effect of the waves [116]. While the gyro stabilizer is considered as a long-
established technology, no research has been found that surveyed its application in the stability
problem of mobile manipulators.

By accelerating or decelerating the rotating mass of the gyroscopic stabilizer and/or
changing the direction of the axis of its angular motion, a moment perpendicular to the axis of
rotation is generated [78–80]. As a result, this moment can be used to stabilize the mobile
manipulator by mounting the mechanism on the mobile platform. This concept is illustrated in
Figure 34. Hence, if the axis of rotation of the mass turns, a torque is applied at the point on the
mobile platform that is perpendicular to the axis of rotation.

Figure 34 Gyroscope mechanism on mobile manipulator.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 71

Some of the advantages of the gyro mechanism are the generation of high torques with

small sized components and its easy control. The accurate design and sizing of the gyro
stabilizer as well as its control system are crucial for its effectiveness.

The gyroscope given in Figure 35 rotates around its own axis, generating an angular

momentum �⃗� parallel to its rotation axis. If force 𝐹 acts on the rotating mass, a moment �⃗⃗� 𝑝 is

produced, implying also a change in angular momentum over time (�⃗⃗� 𝑝=𝑑�⃗� /𝑑𝑡) and pointing in

the same direction of the change of the angular momentum 𝑑�⃗� . This direction of change is
defined by the angle 𝑑𝜑.

Figure 35 Gyroscopic principle (following [117]).

The angular velocity of the gyroscope rotational axis during this change in direction, 𝑑𝜑𝑑𝑡 ,

can be calculated using the formula 𝜔𝑝 = 𝑑𝜑𝑑𝑡 = 𝑀𝑝𝐿 = 𝑀𝑝Θ𝑧𝑧 ∙ 𝜔𝑔 (74)

with Θ𝑧𝑧 being the moment of inertia of the gyroscope and �⃗⃗� 𝑔 its mass angular velocity. The

generated torque can be then estimated by the precession moment �⃗⃗� 𝑝 as �⃗⃗� 𝑝 = �⃗⃗� 𝑝 × �⃗� = �⃗⃗� 𝑝 × (Θ𝑧𝑧 ∙ �⃗⃗� 𝑔). (75)

Hence, the design parameters the gyroscope should have to achieve a desired precession

moment (�⃗⃗� 𝑝) is determined by its tilting speed (�⃗⃗� 𝑝), the rotation speed of the gyro-mass (�⃗⃗� 𝑔),
and the mass moment of inertia (Θ𝑧𝑧), as described by Eq. (75)Error! Reference source not

found., and can be estimated using the following general rule: the higher the rotational speed
of the gyroscope-mass (𝜔𝑔), the lower the inclination speed (𝜔𝑝) needed to achieve the desired

torque. A DC motor can accelerate the mass to a constant angular velocity (𝜔𝑔). Then, if the
gyroscope is additionally tilted (𝜔𝑝) by a second DC motor, the gyroscope generates a

precession force (𝐹 𝑝), resulting in a moment (�⃗⃗� 𝑝) that can be used to stabilize the whole system
against instabilities.

Perhaps the most serious disadvantage of the gyro effect is its undesirable inherently side
effect of the disturbance torque generated by the precession motion. The components of the

resulting precession torque are the compensation torque �⃗⃗� 𝑐 and the disturbance torque �⃗⃗� 𝑑. 𝑀𝑝 = √‖�⃗⃗� 𝑐‖2 + ‖�⃗⃗� 𝑑‖2 . (76)

72 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

This disturbance moment (�⃗⃗� 𝑑) makes the system rotate around its own horizontal axis,

whose magnitude depends on the angle of deflection: given a precision moment �⃗⃗� 𝑝, the

compensation moment (�⃗⃗� 𝑐) becomes smaller with increasing angle of deflection (>90°), while

the disturbance moment (�⃗⃗� 𝑑) becomes larger. Therefore, an important consideration for the
mechatronic co-simulations to carry out is that only the horizontal portion of the precession

moment �⃗⃗� 𝑝, i.e. the compensation torque �⃗⃗� 𝑐, acts on the mobile manipulator to compensate
the destabilization.

4.3 Methodology: Modeling a close-to-reality system of the mobile

manipulator

The use of real technical systems to conduct investigations in the field is, in most cases,
very expensive and time-consuming [40]. Therefore, simulation models that reproduce the
behavior of a real system accurately can be employed to carry out investigations that cannot be
performed on the real unit for economic and time reasons [41].

Due to the fact that a prototype of a mobile manipulator, including the abovementioned
external actuators, would imply large investment of capital and time, a computer-generated
environment can be implemented for the development of the three proposed stabilization
strategies by means of mechatronic co-simulations. They permit real-time actuation and
measurement required for the closed-loop control of the stabilization strategies.

For that purpose, the dynamic behavior of the robotic systems can be described as
multibody-system (MBS) models using software tools such as MSC.ADAMS/View. The
modeling process of both, the robot manipulator and the mobile platform, as MBS can be
derived from the procedure used in [118–120]: as a first step, the dynamic properties (mode
shapes and natural frequencies) of each real subsystems are identified separately by means of
experimental modal analyses (EMAs). Subsequently, CAD-Models of each robotic system are
exported and adapted to build them as MBS models. The obtained experimental findings from
the EMA are compared with the results produced by the MBS simulations. By adjusting the
modal parameters of the simulation models, the dynamic behavior of the real system is
replicated, resulting in a close-to-reality MBS models of the mobile manipulator.

The physical reproduction of the real structure of the mobile manipulator in a MBS model
allows for the testing of stabilization strategies using diverse scenarios without the real system
being available. The accuracy and reliability of such models depends on how well the
simulation correlates with the real system behavior.

In order to accomplish the described approach A, the control loop of the external actuation

mechanism (including controllers and drivers) needs to interact with the mechanical model of
the mobile manipulator (MBS model) by means of mechatronic co-simulations. As illustrated
in Figure 36, mechatronic simulations enable a group of system components, such as
mechanical, electrical, software and control, interact together in order to build an integral
system model [121]. The prefix “co” is added to the term mechatronic simulation when each of
these stand-alone simulations (performed in different software tools) are joined into one single
simulation environment.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 73

Figure 36 Principle of co-simulation of mechatronic systems (following [122]).

Despite the fact that the EMA and the MBS are well-known methods, especially in the
automotive industry, there is a surprising lack of literature describing those methods applied in
robotic systems [123]. For this purpose, the following sections describe how the EMA and the
MBS methods have to be adapted for their used on modeling robot manipulators and mobile
platforms. Furthermore, this study may be the first comprehensive assessment of performing an
EMA carried out for a mobile platform.

4.3.1 Experimental Modal Analysis of mobile manipulators

The dynamic behavior of mechanical systems can be experimentally estimated by means
of EMAs. They consist in externally exciting a real mechanical system and measuring the
oscillations caused in response to the applied stimulus. The system response function describes
the relation between its excitation and response (e.g., force/acceleration) and serves to validate
the MBS models, required to perform accurate mechatronic co-simulations.

The necessary equipment to perform EMAs includes a real-time analyzer, piezoelectric 3D
accelerometers, vibration mats and impulse hammers with their associated impact tips, as
illustrated in Figure 37.

Figure 37 Test arrangement for the experimental modal analyses.

The election of suitable excitation and measurement spots are relevant aspects that have to
be considered during the experimental set-up of an EMA. The challenge lies in choosing the

74 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

appropriate excitation and measurement spots on the structure, without having previous precise
knowledge about the dynamic behavior of the real systems.

The risk of ignoring some natural frequencies and mode shapes during EMAs can be
significantly reduced if the excitation points are placed non orthogonal to the chosen
measurement points. The designation of the measurement points as a first step is therefore
suggested. It is also recommended that all directions of the system’s motions are excited to
ensure that all desired eigenmodes are fully identified in the relevant frequency range. Since
the connecting elements of the robot manipulator and the mobile platform are relatively
elastic/flexible compared to their bodies, a frequency range up to 500 Hz can be defined for
their EMAs [118].

Additionally, the EMAs should be determined in different configurations of the structure
in order to corroborate their dynamic linear behavior.

4.3.2 Multibody-system model of mobile manipulators

On the basis of the system response function (transfer function) of robot manipulators and
mobile platforms, close-to-reality mechanical models of their real structure can be built as MBS
following the modeling hybrid approach previously mentioned in Section 2.2. The mobile
manipulators can be modeled with a low level of detail to get good computing performance, but
they must be complex enough to guarantee that the reproduction of the real dynamic behavior
is not affected by excluding some elements in the model. In other words, the MBS models must
contain just the necessary components to describe the dynamic behavior of the real mobile
platform and the robot manipulator. Parameters such as masses and moments of inertia are
crucial for modeling the MBS simulation models and have to be determined.

For the model simplification, bodies that are firmly connected to each other and elements

with the same material can be merged into one or more main bodies. In case different material
properties are presented in a merged group, their averaged density and their COG can be
combined into a single body parameter. Furthermore, screws, screw nuts, washers and slot nuts
can be removed and replaced by fix joints.

An additional measure to simplify the models implies that the structure of most of the robot
manipulators and mobile platforms has considerably uncritical deformation in comparison with
their joints. Elastic deformations of the bodies themselves are less critical for the structural
components and, therefore, might not be considered in the simulations. As a result, their bodies
can be modeled as rigid bodies.

To interlink the individual rigid bodies that form the robot’s structures, kinematic joints or
physical connections (spring-damper systems so-called bushings) have to be located at the
articulation point between two rigid bodies. They are assumed to be mass-free with only the
constraint forces acting on their respective links. Each bushing had to allow the real DOF of the
connecting element i.e. that for the robot manipulator, a bushing would allow only one
rotational DOF for emulating the robot manipulator axis. Figure 38 and Figure 39 show
examples of arrangements of the joint elements for a mobile platform and a robot manipulator,
respectively.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 75

Figure 38 Graphical topology of a basic wheel suspension mechanism of a mobile platform.

Figure 39 Graphical topology of the elastic joint elements for a robot manipulator.

76 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

In every bushing, both translational and rotational constraints and applied forces and

torques have to be replicated by introducing stiffness and damping values for each available
DOF. It is assumed that the stiffness of the bodies is significantly greater than the stiffness of
its joints, being the responsible of reproducing the first natural frequencies of the robots (based
on [124]). In consequence, the interaction between the rigid bodies and the entire set of bushings
defines the system oscillation behavior: Force and moments that are applied to the bodies by
the bushing or acted from the bodies to the bushings, are comprised by a six components

constraint (𝐹 𝑥, 𝐹 𝑦, 𝐹 𝑧, �⃗⃗� 𝑥, �⃗⃗� 𝑦, �⃗⃗� 𝑧), whose stiffness and damping values had to be adjusted. A
good best practice for the adjustment of the model’s stiffness coefficients is to first estimate
them by using finite element analysis (FEM) or, e.g., for the stiffness of bearings, by using
manufacturer’s catalogues.

The contact connections between the ground and the wheels of the mobile manipulator can

be considered as Coulomb’s friction contacts, since the wheels should slide as in the real mobile
platform. Here, the mass of the wheels, which is firmly connected to the ground by a spring,
slides in the earth's gravitational field over a plane (ground) with a coefficient of friction μf.
The significant feature of a Coulomb’s friction contact is that the frictional force always acts
against the movement of the mass [125]. Thus, as soon as the spring force is smaller than the
friction force, the movement of the mass stops.

The concrete values for the stiffness and damping parameters of the contacts between the
ground and the individual wheels are usually unknown and difficult to estimate. Large values
in the simulation give small positional inaccuracy, but on the other hand, lead to long simulation
time [41]. Referring to the statement of Glöckler [41], a reasonable simulation time with a good
accuracy can be guaranteed if these values are empirically set high enough, without letting the
simulation time increase excessively.

The MBS models must describe the first natural frequencies and mode shapes of the real

systems to ensure a suitable design of the control algorithms for the stabilization strategies. For
this, the stiffness and damping values of the bushings in the MBS simulation models have to be
parametrized. The natural frequencies and mode shapes from the EMAs served as a reference
for the model parametrization.

For an objective comparison between the modal parameters collected from the EMA and
those obtained from the MBS, the model can be provided with small massless bodies at the
positions the accelerometers are attached on the real system during the EMA. During the modal
simulations, each modal shape of the corresponding natural frequency has to exhibit the same
oscillation as in the real system, i.e. the obtained natural frequencies and mode shapes can be
compared with the experimental findings from the EMA [40].

In order for the simulation to reproduce similar dynamic behaviours with sufficient
accuracy, the stiffness and damping parameters of the elastic joints have to be iteratively
adjusted by increasing or decreasing their values one at a time. Their adjusted values are subject
to the natural frequencies and mode shapes generated during the corresponding simulation. If
the modal parameters of the MBS model correspond to the modal parameters obtained
experimentally, the MBS model is ready to be employed for the mechatronic co-simulations
[40]. In this respect, the model of the mobile manipulator might be close enough to reality to
allow a subsequent application in the development of the stabilizing algorithms.

The described MBS modeling process is summarized in Figure 40.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 77

Figure 40 Iteration procedure for the MBS-modeling of a real system.

78 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

4.3.2.1 Optimization of multibody-system model using a full automated algorithm

The degree of correlation between a real system and its corresponding MBS model can be
influenced accordingly to the following statements:
 The system dynamics is described by its modal parameters, comprised by the natural

frequencies and mode shapes as well as their reciprocal damping ratio. They are unique for
each system.

 The amount of natural frequencies resembles the amount of DOF of the system.
 Each identified natural frequency belongs to a certain modal shape.
 The mode shapes represent only amplitude ratios, not the absolute amounts of the

deflections.

With increasing model complexity, the adjustment process of the modal parameters of a
MBS model is difficult or even impossible to implement manually. In order to facilitate this
adjustment process and, at the same time, increase the quality and reliability of the system’s
dynamic behavior in the simulation models, a computer-aided parametrization method is
implemented to minimize the numerical deviation between the experimental and the simulative
modal parameters. For the implementation of the computer-aided parametrization method, the
open source software DAKOTA (Design Analysis Kit for Optimization and Terascale
Applications) is adopted. It provides a variety of algorithms for different applications, e.g., for
the parameter study, statistical analysis, design of experiments, quantification of uncertainties,
calibration and optimization of complex physical systems [126,127].

The adopted fundamental correlation is an entirely quantitative comparison of the

determined modal parameters, described by the system natural frequencies and the Modal
Assurance Criterion (MAC). The goal of the parameter identification is to ensure that the
experimentally determined values, natural frequencies and mode shapes of the real system,
match the simulation accurately. If it is assumed that the mass distribution as well as the mass
moments of inertia of the models sufficiently represent the reality, only the stiffness and
damping coefficients of the joint elements (bushings) need to be parametrized.

Hence, the developed algorithm in DAKOTA extracts the modal parameters calculated by
the solver of the MBS software tools, in this specific case MCS.ADAMS/View, and verifies if
the termination criterion (correlation with the modal parameters from EMA) is fulfilled during
the last iteration. If so, the algorithm finishes the parametrization, otherwise, it starts a new
simulation iteration with new adapted parameters.

The selection of the proper numerical method for the optimization algorithm depends on

the nature of the problem under consideration. For the optimization of modal parameters in
MBS models, the two following elemental approaches can be adopted:
 Gradient-based methods. They use gradients to minimize error with regard to a target

function value, until the error cannot decrease further (local minimum) or until a defined
termination criterion has been reached. A gradient-based method always converges at the
same optimum employing the same initial values.

 Heuristic methods. They are based on plausibility or analogy considerations that can only
be substantiated experimentally. The best known methods are the so-called evolutionary
approaches, in particular, the genetic algorithms as a mathematical imitation of the
biological mechanisms occurring during the evolution processes in the nature. The

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 79

hereditary information of each individual forms its distinctive parameters and is changed
by random combinations and random alterations of the information (mutation). By
changing the “genetic” information, an adaptation from generation to generation (from
iteration to iteration) takes place. Like the natural selection process, only the fittest
individuals (parameter sets) of each generation (iteration) survive. The iteration process
remains running until a defined termination criterion is reached. The environmental
conditions are decisive for the selection, given by search space boundaries and restrictions.
Due to their stochastic character, evolutionary algorithms are able to find both, local
(suboptimal combinations) and global optimum.

The nl2sol algorithm of DAKOTA [128] is a gradient-method algorithm that focus on
finding local minimum within specified lower and upper bounds [129]. Its termination criterion
is defined by tolerance ranges. Moreover, the coliny_ea algorithm (from the SCOLIB package
[130]) is an evolutionary algorithm, particularly suitable for such systems whose initial
parameters cannot be predicted or are situated within a wide parameter scope. Both algorithms
are employed by the conceived automated parametrization method, introduced in the following
sections.

4.3.2.1.1 Conceptualization of the parametrization algorithm

In the parametrization algorithm, an interaction between DAKOTA and the MBS model
of the system to be characterized takes place, in which the MBS model operates as a black box
system for DAKOTA. During an iteration step, DAKOTA specifies initial parameters, which
are automatically read into the MBS model. Then, the MBS software tool performs a modal
simulation. The simulation results with this set of parameters are then processed and transferred
again to DAKOTA. After each iteration, the results are evaluated by DAKOTA and, if the
termination criterion is not fulfilled, a new set parameters is output to the MBS model. This
iteration loop runs until the defined termination criterion is met.

The following steps are compulsory to perform the parameterization of the MBS models

employing the developed parametrization algorithm:
1. Conduct modal analyses (EMA) to determine the modal parameters of the real system.
2. Process the modal parameters by means of a mode transformation.
3. Prepare the MBS simulation model (with unknown/uncertain parameters) in

MSC.Adams/View, considering the same positions and orientations the measuring spots
had during the performed EMA.

4. Select the numerical method for the parametrization (gradient-based or evolutionary).
5. Setup interface in DAKOTA.
6. Specify the parameter set (stiffness and damping coefficients).
7. Arrange the data exchange between DAKOTA and MBS model (preprocessor and

postprocessor), in which the measured modal parameters need to be provided as reference
for parametrization algorithm.

8. Adapt the MBS model solver script (for MSC.Adams/View, the *.cmd file) with the
parameter set.

9. Start the parametrization. DAKOTA triggers the simulation of the MBS model with the
predefined parameter set. Then, DAKOTA reads out and processes the simulation results

80 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

from the set. It evaluates the correlation and, if necessary, specifies a new parameter set.
The identification is aborted by DAKOTA when the termination criterion is reached.

All mechanisms customized for their use in the MSC.Adams/View environment that are

involved in the parametrization procedure are described in Figure 41.

Figure 41 Functions/file interactions of the algorithm implemented in DAKOTA (following [131]).

4.3.2.1.2 Enhanced parametrization algorithm based on multiple-mass oscillators.

The further development of the elemental parameter identification mechanism provided by
DAKOTA has its basis in the behavior of the two-mass oscillator shown in Figure 42.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 81

Figure 42 Two-mass oscillator.

Since the system has two DOF, two natural frequencies are expected. The masses of the
adopted system were identical, being 0.358 kg each. The stiffness of the employed springs was
analytically calculated based on experimentally measured elongations, being 0.49 N/mm for all
three. Considering these masses and stiffness values, the system natural frequencies and mode
shapes can be calculated according to the Lagrangian equations of the second kind [132],
resulting in 5.9 Hz and 10.2 Hz for the specific two-mass oscillator employed, as summarized
in Table 7.

Table 7 Modal parameters of the two-mass oscillator anallytically obtained (following [133]).
The amplitudes of the eigenvectors are normalized.

Natural
frequency

Graphical representation of
mode shapes

5.9 Hz

10.2 Hz

A simple MBS model of the two-mass oscillator (including its physical quantities) has to
be built, as the one shown in Figure 43.

Figure 43 MBS model of the employed two-mass oscillator ([133]).

m1 m2

1

-1

x

m1 m2

1

-1

x

82 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

The acquired natural frequencies can be adopted as target reference values for the

parameter identification. The first parametrization attempt of the adopted two-mass oscillator
using the gradient-based algorithm required 26 iteration steps to ascertain the stiffness
coefficients presented in Table 8.

Table 8 Stiffness coefficients calculated by the first version of

the parametrization algorithm in DAKOTA (following [133]).

Stiffness (N/mm)
𝒌𝟏 𝒌𝟐 𝒌𝟑

0.433 0.467 0.433

Table 9 exemplifies the natural frequencies and mode shapes obtained from the modal
simulations in MSC.Adams/View for the employed two-mass oscillator.

Table 9 Modal parameters for the two-mass oscillator: The system at rest is shown in black; the

magenta blocks illustrate the masses at their maximum deflection during the oscillation process [133].

Natural frequency Mode shapes
5.53 Hz

Both masses oscillate in phase

9.83 Hz

The oscillate phase is shifted 180°

Although in the MBS simulation no big deviations were presented regarding the natural
frequencies and the mode shapes (f1=5.53 Hz and f2=9.83 Hz), the stiffness coefficients
calculated by the algorithm differ from the analytically determined spring stiffness of
0.49 N/mm by up to 11.5%.

In order to improve the robustness of the parameter identification, the two-mass oscillator
was extended to the system in Figure 44, comprised by 5 masses and 6 springs.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 83

Figure 44 Five-mass oscillator (m1=5 kg, m2=4 kg, m3=3 kg, m4=2 kg, m5=1 kg,

k1=6 N/mm, k2=5 N/mm, k3=4 N/mm, k4=3 N/mm, k5=2 N/mm, k1=1 N/mm).

For the first trial, the lower and upper limits for the spring´s stiffness in the parametrization
algorithm was set to 0.1 N·mm and 9 N·mm. Using these boundary limits, DAKOTA
determined the natural frequencies and stiffness coefficients shown in Table 10:

Table 10 Natural frequencies and sitffness coefficients for the five-mass oscillator

obtained by the parametrization algorithm (following [133]).

 Natural frequencies (in Hz) Stiffness coefficients (in N/mm)
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6

Analytical value 3.8 8.1 11.3 13.9 16.1 11.0 9.0 7.0 5.0 3.0 1.0
Determined by
DAKOTA

3.8 8.1 11.3 13.9 16.1 10.2 6.7 5.2 5.5 4.0 1.7

Despite the fact that all natural frequencies matched the experimental values (see
Table 10), the stiffness coefficients still differ significantly from the analytical results. This
suggests that, for complex structures with many bodies and joint elements, only considering the
natural frequencies as reference for the termination criteria is not sufficient for parameter
identification.

For this reason, the eigenvectors are integrated in the evaluation process
(PostProcessor.py): the Modal Assurance Criterion (MAC) calculates the angles between the
simulated (MBS) and experimentally (EMA) determined eigenvectors. Then, MAC checks the
orthogonality properties of the two vectors [134], which indicates the degree of compliance and
linear dependence of the two complex eigenvectors. Hence, the mode shapes can be not only
qualitative but also quantitatively evaluated.

Merely equal modes from the EMA and from the MBS can be compared with each other.

Therefore, only the diagonal values of the MAC matrix (see Section 2.1) need to be computed

84 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

and the calibration.dat file has to be extended with the amount of modes to be expected, each
of them with the set point 1.0.

It is important to mention that the location of the measurement points in the MBS model
has a significant influence in the parameter identification based on MAC; thus, the real positions
of each individual accelerometer used during EMAs must match the measurement points
attached in the simulation model.

The diagram in Figure 45 shows the MAC of the last parameter identification for the five-
mass oscillator, without considering the eigenvectors as additional reference for the
parametrization algorithm.

Figure 45 MAC results without mode matching [135].

A new parameter identification under the same conditions, but with the implemented MAC
as termination criteria was carried out. Although the computed stiffness coefficients exhibited
large deviations (see Table 11), the mode shapes presented a better match (see Figure 46).

Table 11 Natural frequencies and stiffness coefficients obtained by the algorithm

with implemented mode matching (following [135]).

 Natural frequencies (in Hz) Stiffness coefficient (in N/mm)
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6

Analytical value 3.79 8.12 11.34 13.97 16.10 11 9 7 5 3 1
Determined by
DAKOTA

3.66 8.10 11.34 14.01 16.08 7.5 6.0 6.4 6.5 3.5 2.0

Figure 46 MAC results with mode matching [135].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 85

It is presumed that gradient-based algorithm always converges to about the same local

minimum optimum due to the restricted preselected boundary limits. Therefore, in order to scan
a wider parameter range, the evolutionary optimization algorithm was implemented. As a result,
the elements of the MAC matrix represent the good correlation exhibited in Figure 47, Table
12 and Table 13.

Figure 47 MAC results with mode matching and employing evolutionary algorithm [135].

Table 12 Natural frequencies and stiffness coefficientes obtained by the algorithm with implemented

mode matching and employing evolutionary algorithm (following [135]).

 Natural frequencies (in Hz) Stiffness coefficient (in N/mm)
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6

Analytical value 3.8 8.1 11.3 13.9 16.1 11.0 9.0 7.0 5.0 3.0 1.0
Determined by
DAKOTA

4.0 8.0 11.3 13.9 16.0 9.2 8.8 7.5 4.0 2.7 2.2

86 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 13 Graphical representation of the eigenmodes of the five-mass oscillator obtained by the

parametrization algorithm [133]. The blue lines represent the eigenmodes derivated from the

parametrization algorithm and cover the (non visible in the graphical representation) lines for the

eigenmodes obtained analitically, proving their congruence.

Eigenmode Graphical representation of modal shape

1st

2nd

3rd

4th

5th

In order to verify the effectiveness of the developed algorithm, a parameter identification
was performed on a simplified 3 DOF mechanism, comparable with a robot manipulator, in
which oscillations in all spatial directions took place. The initial upper and lower bounds for
the estimation of its stiffness coefficients were set as in Table 14:

m1 m2

1

-1

x

m3 m4 m5

m1 m2

1

-1

x

m3 m4 m5

m1 m2

1

-1

x

m3 m4 m5

m1
m2

1

-1

x

m3 m4

m5

m1
m2

1

-1

x

m3 m4

m5

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 87

Table 14 Lower and upper bound for the stiffness estimation of the 3 DOF mechanism

(following [135]).

Stiffness Lower bound Upper bound 𝑘1 (in N/m) 0.1 100.0 𝑘2 (in N/m) 10.0 2500.0 𝑘3 (in N/m) 1.0 300.0

Its experimentally determined natural frequencies and stiffness coefficients, shown in
Table 15, served as termination criterion for the parametrization.

Table 15 Natural frequencies and stiffness coefficient of the 3 DOF mechanism (following [135]).

Natural frequency Stiffness coefficient 𝜔1 𝜔2 𝜔3 𝑘1 𝑘2 𝑘3
8.9 Hz 33.8 Hz 407.8 Hz 74.0 N/m 1094.1 N/m 165.2 N/m

The parameter identification was performed employing both, gradient-based and
evolutionary algorithm. The results from each of the parameter identifications are shown in
Table 16.

Table 16 Comparison between the gradient-based algorithm and

the evolutionary algorithm (following [135]).

Identification with

gradient-based algorithm

Identification with

evolutionary algorithm 𝜔1 8.8 Hz 8.8 Hz 𝜔2 33.8 Hz 34.1 Hz 𝜔3 407.9 Hz 407.5 Hz 𝑘1 74.0 N/m 70.0 N/m 𝑘2 1094.1 N/m 1177.2 N/m 𝑘3 165.0 N/m 164.8 N/m

MAC

Employing the gradient-based algorithm (nl2sol), the largest discrepancy obtained for the
natural frecuencies and for the stiffness coefficients was 1.1% and 0.12%, respectively,
considering them as highly accurate. The identification with the evolutionary algorithm has
provided a maximal discrepancy of 0.6% for the natural frequencies and 7.6% for the stiffness
coefficients.

The better results exhibited by the gradient-based method is primarily due to the
satisfactory definition of the upper and lower boundaries for the computation. Nevertheless,

88 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

accurate outcomes would not have been easily reached, if these initial boundary limits had not
be predicted beforehand. For such cases, an initial parametrization by means of the evolutionary
algorithm is suggested to be performed firstly to estimate the interval of the parameter
boundaries that can be employed as upper and lower limits for a second parameter identification
using the gradient-based algorithm.

Accordingly to observations, the parametrization algorithm is further developed with:

 A combination of global and local optimization methods can be implemented for searching
for the optimal parameter set. The evolutionary algorithm delivers several parameter sets
with good global optimum. Based on these parameter sets, the correlation rate is increased
with the local gradient-based method.

 Implementing weights and penalty functions to focus on certain reference values for a
better correlation, allowing specific parameters to strongly dominate at the expense of the
others. Additionally, a penalty function acts in the parametrization algorithm as soon as
the requested constraints are violated.

 Parametrization of stiffness and damping coefficients separately. The restricted knowledge
about damping parameters, mostly present as friction, makes its estimation difficult. Due
to the fact that the damping coefficients usually have less influence on the modal
parameters than the stiffness, the parametrization algorithm only considers the stiffness
parameters in a first stage. However, by omitting the damping parameters, the MBS models
provide purely real eigenmodes. For an adequate correlation between the EMA and the
MBS results, it is necessary that both, the experimental and simulated natural frequencies
and modes, are also purely real. To achieve this, the method of Fuellekrug [136] for mode
transformation converts complex eigenmodes to real eigenmodes. Then, in a second stage,
only the damping parameters are adjusted and the already computed stiffness remains
unchanged. An outstanding problem during the transformation of complex eigenvectors is
the condition that the amount of accelerometers should be equal to the amount of mode
shapes, but usually the amount of accelerometers used during the EMAs is much higher
than the amount of the determined mode shapes. By means of a modal truncation [137],
the eigenvectors need to be truncated in order not to have to reduce the amount of
measurement points.

The parametrization algorithm that includes the listed considerations was tested using the
simple oscillating system shown in Figure 48.

Figure 48 Testing system for further development [131].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 89

Its inherent modal parameters obtained by means of EMAs are presented in Table 17.

Table 17 Modal parameters of the testing system acquired by EMAs (following [131]).

 1st mode 2nd mode 3rd mode

Natural frequency 4.44 Hz 6.58 Hz 29.41 Hz
Damping ratio 4.00 % 1.10 % 0.36 %

Mode shape

The MBS model of this system comprised the eight massless blue dummy bodies shown
in Table 18, which were arranged accordingly to the real measuring points used during the
EMA.

Table 18 MBS model of the testing system [131].

Undamped system Damped system

At the beginning of the parametrization, the system was considered as undamped, taking
into account only its three spring stiffness. With the help of the evolutionary algorithm, the limit
value 2100 N/m was estimated for all spring’s boundary constraints, employing it for the second
attempt via gradient-based method.

The determined parameter set for its stiffness coefficients, its natural frequencies and the
MAC correlation of all its eigenmodes are illustrated in Table 19.

90 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 19 Modal parameters obtained by the enhanced parametrization algorithm (following [131]).

 Stiffness (N/m)

 𝑘1=2778.4 𝑘2=2948.1 𝑘=2389.0
 Natural frequency (Hz)

 1st mode 2nd mode 3rd mode
EMA 4.4 6.6 29.4
MBS 4.4 6.6 29.4
MAC 1.0 1.0 1.0

Consequently, its three damping parameters were estimated. Since the damping parameters
of the springs were completely unknown, their boundary limits were chosen relatively amply.
The result from this parametrization is displayed in Table 20.

Table 20 Damping coefficientes obtained during second run (following [131]).

 Damping coefficients

 EMA MBS

1st mode 4.0 % 4.0 %
2nd mode 1.1 % 1.1 %
3rd mode 0.4 % 0.4 %

In conclusion, the parametrization method generates applicable and realistic results, if the
reference values from the real system are experimentally accurately obtained and if the modeled
MBS system is capable of reproducing the required same physical behavior.

The scripts implemented for the parametrization algorithm are presented in Annex A.1.

4.4 Development of stabilization strategies

In order to speed up the design and testing phase of the stabilization strategies, mechatronic
co-simulations between the, to be developed, closed-loop controls (Matlab/Simulink) and the
MBS model (built in MSC.ADAMS/View) are performed.

4.4.1 Mechatronic co-simulations for the stabilization strategies

To integrate the MBS model with the block diagrams (control systems) from
Matlab/Simulink, the parameters to be controlled in the MBS model are defined as inputs and
outputs variables. These variables read data from the MBS model during the simulation cycle,
e.g., forces and torques generated in the robot manipulator joints, and also feed data back into
the model, e.g., forces/moments applied by an actuator. This continuous data exchange enables
a parallel, coupled simulation of mechanical and electrical/electronic components.

Figure 49 shows this principle: The closed-loop control of the external actuators in
Matlab/Simulink sends the control signals to each of virtual actuators built in MBS model.
Then, the MBS model returns measurements from virtual sensors to the feedback loops, such
as force, angle, speed, acceleration, etc., at certain time intervals.

The representation of the emergency braking behavior of the mobile manipulator is

indispensable for the good functioning of the proposed stabilization strategies. Therefore, a
theoretical braking process of the mobile platform needs to be modeled as its trajectory in the
MBS environment.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 91

Figure 49 Co-simulation between the developed stabilization strategies (in Matlab/Simulink) and the

mobile manipulator as a multibody-system (in MSC.ADAMS/View).

The procedure to perform the mechatronic co-simulations can be summarized as follows:
1. Define the inputs (from Matlab/Simulink) and outputs (sent to Matlab/Simulink) in the

MBS model (MSC.ADAMS/View), such as forces, torques, position, speed, etc. The
inputs defined in MSC.ADAMS/View should correspond to the outputs defined in
Matlab/Simulink and reciprocal.

2. Export the transfer function from the MBS model of mobile manipulator (so-called
ADAMS-Plant) and import it into Matlab/Simulink.

3. The simulation in Matlab/Simulink starts the interaction with the MBS model of the mobile
manipulator by triggering the ADAMS solver. The inputs and outputs between both
software platforms transfer the needed information during the simulation: The MBS model
in MSC.ADAM/View acts according to the inputs sent by the control algorithm in
Matlab/Simulink and this, in turn, reacts according to the feedback measured in the MBS
model.

4. The evaluation of results can be done in both, Matlab/Simulink and MCS.ADAMS/View.

In order to guarantee reliable outcomes from the dynamic simulations triggered during the
mechatronic co-simulations, a suitable solver able to find a dynamic solution for particular
states of the model has to be chosen.

MBS software tools offer multiple numerical methods to solver the ordinary differential
equations that describe the continuous state of dynamic systems. Two elementary types of
solvers defined by the stiffness, as an efficiency concern, are available for dynamic simulations
in ADAMS/Solver:
 "Stiff" algorithms use implicit backward differentiation methods (BDF) to solve

differential and algebraic equations (so-called DAEs).
 "Non-Stiff" algorithms employ explicit formulations for solving common equations.

ADAMS/Solver provides four stiff integrators and a single non-stiff integrator. Following
the statement presented by Shampine and Thompson [138], since the available non-stiff
integrator did not converge on a solution during preliminary simulations, the problem may be
stiff and stiff solvers should be employed, because they are designed for stiff solutions.

92 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

In order to select the suitable stiff solver in MSC.ADAMS/View that guarantees the

computing state of the model during dynamic simulations, a solution stability analysis has to
be carried out using the three stiff integrators WSTIFF, GSTIFF and BDF CONSTANT, whose
properties are shortly summarized in Table 21.

Table 21 Stiff integrators and its main properties [139].

Integrator Properties

GSTIFF
Standard integrator.
Backward Differentiation Formulas.
Uses fix coefficients for predictions and corrections.

WSTIFF
Backward Differentiation Formulas.
Uses variable coefficients for predictions and corrections.

CONSTANT_BDF

Backward Differentiation Formulas.
Uses fix coefficients for predictions and corrections.
Its accuracy is defined by its maximal allowed increment.
Each step is calculated by a non-local integration error.
FORTRAN as programming language.

A deeper insight into the implicit solution methods of these stiff integrators can be find in
[140] and [141].

Each integrator is characterized by indexes, which are defined as the number of times a
differential-algebraic equation must be differentiated to get a system into an ordinary
differential equations [142]:
 Index-3 (I3) is fast and ensures that the solution satisfies all modeled boundary conditions.

However, integration errors are only monitored for movements of the system, and not for
the calculation of velocities. Its convergence (Jacobian matrix) can be very limited when
using small step sizes.

 Stabilized index18-2 (SI2), in conjunction with the integrators GSTIFF or CONSTANT
BDF, takes into account the boundary conditions of equations of motion in the solution.
Furthermore, the SI2 integrator monitors the integration error of velocity variables, leading
to accurate results in the simulations. The convergence value remains stable at small step
sizes, which increases the robustness of the corrector at small step sizes.

 Stabilized index18-1 (SI1), in conjunction with the integrators GSTIFF, WSTIFF or
CONSTANT BDF, also takes into account the boundary conditions of equations of motion
in the solution. In addition, as SI2, it monitors integration errors on Lagrange multipliers
in the system. Its robustness is typically very similar to that of the SI2 index.

Based on solution stability analyses, a solver can be considered as accurate only if there
are no differences between the simulation results from employing the same solver with the same
index, by reducing its error tolerance. Therefore, a comparison of simulation outcomes using
different error tolerances can determine if the numerical results comprise a good approximation
for a true solution [143]. The implementation of a solution stability analysis for simulatios in
the context of this work is outlined in Section 4.5.31.

18 Reduction of the initial index-3, which is consider the most robust integrator but at the same time the most
challeging for the numerical solution of the differential-algebraic equation [142].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 93

Moreover, the mechatronic co-simulations of the stabilization strategies require that virtual

actuators and their corresponding control are modeled in Matlab/Simulink. In order to
implement a reliable and accurate control system for the stabilization strategies, a closed-loop
control is needed.

The most relevant closed-loop control algorithms include cascade control, conditional
feedback and state control [144]. The cascade control is the best suited for electric drive systems
because their commonly complex systems to be controlled can be divided into smaller
subsystems. It consists of a superordinate, slow outer control loop and, at least, one inner
subordinate. The inner fast control loops promote the agile behavior of the control system, while
the outer control loop only has to compensate residual dynamics, i.e. the inner control loops
react against disturbances as if they were the only control loop presented.

Typically, the cascade control design starts with the inner control loop(s). Then, based on
the behavior of this (these) inner control loop(s), the outer control loop is conceived.

The model of the DC motors (actuators) can be represented in the cascade control as black
box models. They can be modeled with a transfer function of first-order lag (PT1) or second-
order lag (PT2), with damping factor greater than one as in [145], with: 𝐺𝑀(𝑠) = 𝐾(𝑇1 · 𝑠 + 1) (77)

for first-order systems, and 𝐺𝑀(𝑠) = 𝐾(𝑇1 · 𝑠 + 1)(𝑇2 · 𝑠 + 1) (78)

for second-order systems. In Eq. (77) and Eq. (78), K represents the process gain, T1 and T2 are
the time constants for the first and second order lag, respectively.

The actuators (DC motors) should react optimally to dynamic changes in the system. PI-,

PD- and PID-controllers can be implemented to approach a target value abruptly. The transfer
function of a PID-controller, 𝐺𝐶(𝑠), can be expressed as follows: 𝐺𝐶(𝑠) = 𝐾𝑃𝐼𝐷 · (1 + 1𝑇𝑁 · 𝑠 + 𝑇𝑉 · 𝑠) (79)

where 𝐾𝑃𝐼𝐷 represents the controller gain, 𝑇𝑁 is the reset time of the integral component of the
controller and 𝑇𝑉 is the controller derivative time. The selection of the suitable controller
depends on the nature of the system dynamics.

4.4.1.1 Mechatronic co-simulations of linear drives

The orientation, the upper plate of the stabilization mechanism should adopt to compensate
moments, is achieved through specific stroke lengths of the three linear drives proposed in
Section 4.1.1. These required stroke lengths can be determined by its inverse kinematics [77].

94 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 50 Vectors for the estimation of the inverse kinematics (following [146]).

For the calculation, the inverse kinematics approach for Stewart-platforms presented by
Gattringer [146] is applied for the stabilization mechanism in Figure 50: point C symbolizes
the location of the end effector (cardan joint); the constant that represents the distance between

the two local coordinate systems R and B (one for each plate) is defined as 𝑑 (in this case, this
distance remains constant); vectors 𝑜 𝑖 are required to describe each of the cardan joints located

on the lower plate and vectors �⃗� 𝑖 for the cardan joints located on the upper plate, relative to the
local coordinate systems B and R, respectively; the green vector describes the stroke of the

trapezoidal threaded rods, 𝑙 𝐵 𝑖 , which can be calculated via the vector chain as follows: 𝑙 𝐵 𝑖 = 𝑑 𝐵 𝐶 + 𝐴𝐶𝑎𝑟𝑑𝑎𝑛𝑇 · �⃗� 𝑅 𝑖 − 𝑜 𝐵 𝑖 (80)

with the superscript 𝐵 and 𝑅 as origin of the local coordinate systems for the vectors and 𝐴𝐶𝑎𝑟𝑑𝑎𝑛𝑇 as the coordinate transformation via Cardan angles (see [146]).
The magnitude of the vector, being equivalent to the stroke length of the trapezoidal rod,

is estimated with 𝑙𝑖 = √(𝑙 𝐵 𝑖)𝑇 · 𝑙 𝐵 𝑖 . (81)

Eq. (81) is implemented in Matlab/Simulink as inverse kinematic function. Both rotation
angles of the upper plate of the stabilization mechanism are defined as its input parameters;
further data such as distances between the coordinate systems, between the cardan joints and
the local coordinate systems, etc., have also be custom-built into the function.

The resulting torque, velocity and displacement of the lineal drives, generated by the

closed-loop control is implemented in the MBS model by means of variables operating on the
respective actuators during the co-simulations. Forces and torques, angle and linear
displacements as well as velocities and accelerations are measured/computed over time in the
MBS model and sent as output signals to the closed-loop control of the actuation system. All
these signals serve as real-time reference values that allow the control model to calculate the
deviation and, thus, react in real-time against instabilities.

Additionally, each of the translational motion of the lineal drives is declared as input
variable and the angle of the upper plate of the stabilization mechanism as output. Moreover, a
jerk limitation in form of a low-pass filter with critical damping is required to avoid big

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 95

oscillations and to ensure a linear system behavior. Thus, the angle of the upper plate is pre-
processed by the filter and, then, passed on to the inverse kinematics as a set point.

The entire concept is illustrated in Figure 51 and given in Annex A.2.

96 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 51 Co-simulation of g-tilt control with the MBS of the mobile manipulator.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 97

4.4.1.2 Mechatronic co-simulations of gyroscope

The MBS model of the gyro mechanism must perform two different motions: the mass
rotates around the vertical axis, and additionally, it is tilted around the horizontal axis (see
Figure 52 Rotary and tilting motors of the gyro mechanism.Figure 52).

Figure 52 Rotary and tilting motors of the gyro mechanism.

For this purpose, a control algorithm for each motor has to be implemented in
Matlab/Simulink. The mass rotational speed must remain constant during the simulations. This
greatly simplifies the general control concept, since this rotational speed is set initially to the
target value by a simple speed control and no changes are needed to be carried out afterwards.
Therefore, only the tilting motion has to be controlled depending on the required deflection
angle by means of a closed-loop position control.

Additionally, the control concept of the gyro mechanism detects accelerations and
decelerations produced by the mobile platform, against which the gyroscope should
automatically generate the compensation torque.

Figure 53 Schema of the co-simulation for the gyroscope.

Similar to the mechatronic co-simulations for the stabilization strategies in Section 4.4.1.1,
while the motions of the gyro mechanism are implemented in the MBS model in
MSC.ADAMS/View, the simulation of its control loop is carried out in Matlab/Simulink,
establishing together the mechatronic co-simulation represented in Figure 53.

98 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

4.5 Implementation of stabilization strategies employing a testing system.

The following sections deal with the implementation of the stabilization strategies
previously introduced (Section 4.4.1 and Section 4.4.2) employing a testing system, with the
aim of demonstrating their effectiveness.

The adopted testing system consisted of the robot manipulator Mitsubishi RV-3AL
mounted on the non-holonomic mobile platform Scitos X3 by MetraLabs, shown in Figure 54.

Figure 54 Mitsubishi RV-3AL (left) and MetraLabs

Scitos X3 (right) as testing system for further analyses.

Although the robot manipulator does not represent the latest state-of-the-art in the robotic
field, its weight and dimensions contribute to reproduce worst-cases scenarios, the approach
should deal with. The robot manipulator is 660 mm high, 300 mm wide and weighs 60 kg.

Besides this, the Scitos X3 is 442.54 mm high, 470 mm wide and 710 mm long, with a
mass of 58 kg and a maximum payload of 100 kg. The mobile platform is equipped with front
and rear laser scanners that help to move safely in its environment: when an object or a person
is detected in the field of one of the laser scanners, a speed reduction and a braking process is
initiated to react in advance [147]. An abrupt braking process is performed only when the object
is detected closer than 2 m radius.

The diagrams in Figure 55 displays the acceleration and braking process of the mobile

platform according to the manufacturer. With an acceleration of 300 mm/s2, its maximum speed
(1000 mm/s) is reached in 3.67 s. When the mobile platform abruptly brakes, a maximum
negative acceleration of 1000 mm/s2 occurs during 0.16 s. A speed reduction, from 1000 mm/s
to 200 mm/s, is automatically performed by the mobile platform when an object or person is
detected within the outer warning field.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 99

Figure 55 Emergency brake and normal brake of the mobile platform.

In order to detect a braking process based on the provided profile (Figure 55), an Inertial
Measurement Unit (so-called IMU) was attached to the mobile platform. Figure 56 exemplifies
the location of the IMU with respect to the mobile platform.

Figure 56 Schematic sketch of the mobile platform and the IMU mounting location [148].

Since the purpose of the IMU is to measure accelerations caused by the navigation of the
mobile platform, the sensor can be arbitrarily placed on a horizontal surface plane of the mobile
platform. However, it is recommended to mount the IMU in a surface where the least possible
system vibrations can be perceived.

In the case of the testing system, the sensor axes were correlated with the vector that
describes the platform motion and, additionally, follows this convention:
 “Roll axis”, in which the mobile platform and the sensor both indicated a forward motion.

Its measurements went from 0° to ±180°.
 “Pitch axis”, perpendicular to the surface, which indicated the inertia of the system during

linear movements. The measurements went from 0° to ±90° and, then, again to 0°.
 “Yaw axis”, displayed the changes regarding the direction and orientation of the mobile

manipulator. The measurements went from 0° to 360°.

100 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

The IMU included a 3D accelerometer, a 3D gyroscope and a 3D magnetometer [149] to

measure:
 with the accelerometer, translational motion such as displacement, velocity, acceleration,

jerk.
 with the gyroscope, rotational motion such as angular displacement, angular velocity,

angular acceleration.
 with the magnetometer, the earth’s magnetic field, which helped to estimate all the above

mentioned parameters with a higher accuracy.
An evaluation of the range and accuracy of the measures acquired by the IMU was

preliminary carried out: the mobile manipulator was tilted so that the mobile platform came
into contact with the ground. It was observed that the sensor was able to detect all kind of
alterations, even those caused by minuscule movements.

4.5.1 Experimental Modal Analyses of testing systems

The dynamic behavior of both, the adopted robot manipulator and the adopted mobile
platform, were experimentally investigated in order to adjust and validate, as a next step, their
corresponding MBS simulation models. This technique ensures a close-to-reality environment
for the implementation of the proposed stabilization strategies by means of mechatronic co-
simulations.

The EMAs presented in this section contribute to a deeper insight into the complete
modeling process of robot manipulators and mobile platforms, lacking in the literature.

For the EMAs of both systems, the OR36 real-time analyzer (24-bit A/D converter

integrated) by OROS was employed as acquisition instrument. The data processing was
performed in Oros Modal19 and NVGate multi-analyses20 software.

Although the analysis was carried out in a frequency range from 0 Hz to 800 Hz, the most
important frequencies for both systems were expected within a low frequency range, under
500 Hz.

The excitation and measuring devices for the experimental sets (see Table 22), i.e. the
impulse hammer, tip and hammer head as well as accelerometers, were the same for all tests.

Table 22 Excitation and measurement devices.

Excitation stimulus Measurement unit
Impulse hammer Dytran 5800B2
Impulse hammer Dytran 5805A

1D-Accelerometers Dytran 3225F1
3D-Accelerometers Dytran 3023A1

Their relevant parameters for the corresponding set up were chosen as shown in Table 23.

19 https://www.oros.com/products/structural-dynamics/modal-analysis/
20 https://www.oros.com/products/general-noise-and-vibration/software-platform-nvgate/

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 101

Table 23 Configuration parameters for the experimental modal analyses.

Parameter

Value

(for robot manipulator

and mobile platform sets)

Measured Response Frequency range 800 Hz
Impulse hammers – Tip Soft impact tip
Impulse hammer (Dytran 5800B2 with 0.22 lb head
weight) – Sensitivity, ±10%

100 mV/lbf

Impulse hammer (Dytran 5805A with 1 lb head weight)
– Sensitivity, ±10%

1.0 mV/lbf

Accelerometer (Dytran 3225F1) – Sensitivity, ±10% 10 mV/G
Accelerometer (Dytran 3023A1) – Sensitivity,-10/+15% 10 mV/G

Aspects considered in this study, such as geometry, amount of measuring and excitation

points as well as their corresponding arrangement in the structure of the robot manipulator and
mobile platform, will help other researchers to experimentally analyze comparable mobile
platforms and robot manipulators.

4.5.1.1 EMA of the mobile platform

First of all, the structure of the mobile platform was examined in order to select suitable
excitation spots for the impulse hammer and measurement spots for the accelerometers, in such
a way that all natural frequencies, natural modes and the natural damping will be covered by
the experimental investigation.

Three excitation points (see green dots in Figure 57) were selected in order to guarantee
for the application of stimulus in all coordinates of the Cartesian space. The 25 measuring points
were placed on the rigid aluminum profiles and near to the screw joints, to ensure a good
reproduction of the system oscillation and not to emulate the vibration of each single element.

All these spots built the basis for the geometry into the processing software OROS Modal
and helped to graphically display the resulting mode shapes of the mobile platform (see
Figure 58).

Figure 57 CAD model of the mobile

platform and its measurement points.

Figure 58 Representation of the mobile platform in OROS Modal

(based on the points in Figure 57).

Each excitation stimuli was applied 5 times in the same spot, in the direction shown in
Figure 59 (green arrows).

102 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 59 Excitation (green) and measurement (red) spots for the mobile platform.

Although the most important frequencies were expected within a low frequency range, two
different sets were performed in order to check the repeatability of the EMAs and to delimit the
frequency range in which the dynamic behavior of the mobile platform will be more precisely
described: the first experimental set covered the frequency range from 0 Hz to 800 Hz to capture
all natural frequencies and all eigenmodes as far as possible; the second experimental set
examined the frequency range from 0 Hz to 100 Hz, to accurately identify the first fundamental
natural frequencies and mode shapes.

The results of the EMAs for the mobile platform are shown in Table 24. An overlapping

method [150] allowed to identify its first eight natural frequencies under 100 Hz: The first, third
and fourth natural frequencies (7 Hz, 21 Hz and 28 Hz) appeared in all tests. Following the
overlapping method, the remaining values were obtained at 10 Hz, 54 Hz, 62 Hz, 75 Hz and 81
Hz, which were visible in no more than two different directions of excitation.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 103

Table 24 Identification of the Scitos X3 natural frequencies by means of overlaping method.

The mode shapes corresponding to the first five natural frequencies are graphically
represented in the Table 25.

Table 25 Mode shapes and natural frequencies of the mobile platform obtained from the EMAs.

Natural

freq.
𝝎𝟏=7.8 Hz 𝝎𝟐=10.3 Hz 𝝎𝟑=21.4 Hz 𝝎𝟒=28.0 Hz 𝝎𝟓=54.0 Hz

Mobile
platform
mode
shapes

Position of

excitation

1st ≈ 8 Hz 2nd ≈ 10 Hz 3rd ≈ 21 Hz 4th ≈ 28 Hz 5th ≈ 52 Hz 6th ≈ 62 Hz 7th ≈ 75 Hz 8th ≈ 85 Hz

1st ≈ 8 Hz 3rd ≈ 22 Hz 4th ≈ 29 Hz 7th ≈ 75 Hz 8th ≈ 81 Hz

1st ≈ 8 Hz 3rd ≈ 22 Hz 4th ≈ 29 Hz 5th ≈ 54 Hz 6th ≈ 62 Hz 8th ≈ 81 Hz

Identified natural frequencies

IH #3
Direction -Z

IH #1
Direction +X

IH #2
Direction +Y

104 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

The grey lines in the geometry represent the initial state of the structure, the red lines the

maximum amplitude attained, the yellow lines the proportionately smaller amplitudes and the
blue lines the smallest one.

Experimental set no. 1 and experimental set no. 2 showed the same result for the frequency
range up to 100 Hz: the first mode shape (7.8 Hz) from Table 25 consisted in a rotation of the
platform about the Z-axis (yaw). The second mode shape (10.3 Hz) showed a translational
movement in X-direction. The third one (21.4 Hz) exhibited a petty rotation around the Y-axis
(roll) and another around the X-axis (pitch). The fourth and fifth mode shapes (28 Hz and 54
Hz) displayed a slightly tilting around the Y-axis (roll) and the X-axis (pitch), respectively. All
axes are related to the light blue coordinate system.

4.5.1.2 EMA of robot manipulator

A similar procedure was performed for the robot manipulator with regard to the described
analyses of the mobile platform.

The natural frequencies and mode shapes of the robot manipulator were determined for
three different positions: home, fully extended arm in upright configuration and fully extended
arm in horizontal configuration; all of them with and without energized motors. The described
experimental set is illustrated in Figure 60.

Figure 60 Scheme of the performed experimental modal analyses for the robot manipulator.

The results for all three different positions were comparable to each other. For this reason
and for practical purposes, only the EMA of the robot manipulator carried out in Home
configuration is presented below.

During the EMAs, two individual sets were performed: The first experimental set covered
a frequency range from 0 Hz to 800 Hz, in order to capture all natural frequencies and,
especially, all eigenmodes as far as possible. The second experimental set examined the
frequency range from 0 Hz to 100 Hz to accurately classify these first fundamental natural
frequencies and mode shapes.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 105

Similar to the mobile platform, the excitation and measurement spots were chosen so that

an appropriate identification of the modal parameters took place (see red and green dots in
Figure 61). The simplification of the robot manipulator geometry in OROS Modal, shown in
Figure 62, resulted in 3 excitation points and 20 measurement points.

Figure 61 CAD model of robot manipulator

and its measurement points [151].

Figure 62 Representation of the main parts of the robot

manipulator in OROS Modal 2 [151].

Each excitation stimuli was applied 5 times in the same spot, in the direction shown in
Figure 63 (green arrows).

Figure 63 Excitation (green) and measurement (red) spots for the robot manipulator.

Table 26 presents the results obtained from the EMAs of the robot manipulator.

From Table 27, it can be observed that the first three natural frequencies (11 Hz, 21 Hz
and 28 Hz) were found within all directions of excitation. Moreover, the natural frequency at
72 Hz and 87 Hz were only found in two separately excitation points.

106 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 26 First natural frequencies of the robot manipulator obtained from the EMAs.

Position of

excitation

1st ≈ 12 Hz 2nd ≈ 21 Hz 3rd ≈ 29 Hz

1st ≈ 11 Hz 2nd ≈ 21 Hz 3rd ≈ 28 Hz 4th ≈ 72 Hz

1st ≈ 11 Hz 2nd ≈ 21 Hz 3rd ≈ 27 Hz 5th ≈ 87 Hz

IH #3
Direction -Z

IH #1
Direction +X

IH #2
Direction +Y

Identified natural frequencies

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 107

Table 27 Mode shapes of the robot manipulator obtained from the EMAs.

Natural

frequencies

and mode

shapes

ω1=11.0 Hz ω2=21.0 Hz ω3=28.0 Hz ω4=72 Hz ω5=87 Hz

EMA
Robot
manipulator

Closer inspection of Table 27 shows that the first mode shape (at 11 Hz) was represented
by a pitching movement (around the X-axis) generated by the elbow, the forearm and the end
effector; the second and third mode shapes (21 Hz and 28 Hz) affected only the lightest four
components, causing a slightly rolling movement around the Z-axis and a rotation around the
X-axis (pitching) in the elbow, forearm, hand and end effector; the fourth mode shape (72 Hz)
produced a deflection on the left arm; and finally, the fifth modal shape (87 Hz) also exhibited
a slightly pitching movement (rotation around X-axis) but just starting in the hand and
continuing with the end effector.

The next step was to examine the influence of the robot manipulator’s electric drives and

their control on the previously acquired modal parameters. Typically, self-locking transmission
gears are located between the electric drives and the links of a robot manipulator. These gears
could induce additional vibrations that have not been identified during the last measurement.
For this reason, further sets of EMAs were performed with the robot manipulator brakes
released and compared with the outcomes of the previous EMAs, which were performed with
the motors switched off. Table 28 summarizes the first natural frequencies of the robot
manipulator in home position with the motors switched on and off.

Table 28 Natural frequencies of the robot manipulator in home position with

its servomotor’s brakes released and enganged.

Home position

Se
t Motor

on/off

Natural frequency (Hz) 𝜔1 𝜔2 𝜔3

1 11 21 29

 11 21 29

2
 13 21 28

 13 21 28

3
 11 21 28

 11 21 28

4
 11 21 28

 11 21 28

No significant changes of the robot manipulator system’s dynamic behavior were observed
between the two scenarios. It is therefore deduced that the state of the servomotors has no

108 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

influence on the oscillation behavior of the robot manipulator due to the self-locking gears
installed in the transmissions.

4.5.2 Modeling the testing system as MBS

The MBS simulation model of the mobile platform and the robot manipulator should
reproduce the essential dynamics of the real system. The results of their EMAs, in terms of
natural frequencies and mode shapes, allow a reliable modeling procedure for the mobile
manipulator as multibody-system.

Complementary to the EMAs exemplified previously, all the aspects considered in the
following section will help other researchers to model comparable mobile platforms and robot
manipulators as MBS.

4.5.2.1 MBS of mobile platform

The modeling process of the MBS of the mobile platform was based on the analysis of its
system’s dynamic behavior according to the information obtained from its EMAs.

First, the inertial parameters of the components that constitute its structure were estimated
with all the information about geometries and materials contained in its 3D CAD model. Then,
this 3D volume model was exported into MSC.Adams/View.

The most significant assembly for the modeling was the middle central profile shown in

Figure 64, on which the drive wheels and the engines are suspended via an upper swing arm, a
damper and a lower articulated strut. Due to the DOFs emerging by the connections of the
individual elements, this assembly is largely responsible for the oscillation behavior in the lower
frequency range of the entire mobile platform.

Figure 64 Drive wheels and engines assembly of the mobile platform.

Figure 65 presents a clear overview of the kinematics of the individual elements of the
wheel suspension and the associated elements of the mobile platform.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 109

Figure 65 Wheel suspension mechanism of the mobile platform.

The MBS model contained low level of detail to get good computing performance, without
affecting the reproduction of the real dynamic behavior by the exclusion of structural elements.
The motors and their holders, the wheels and bearings holder as well as the individual
components of the swing arms, the drive shafts and struts were combined into main rigid bodies.
The remaining joint elements were classified based on their kinematic (geometrical relation)
and their physical force properties (e.g. torsion springs) acting between two or more links [152].

Between the cylinder and the piston of the dampers, a linear spring that allowed motion
along the center axis of the damper was defined. To constrain the forces affecting the main
bodies, virtual massless elastic joints were implemented. Figure 66 illustrated this scheme for
one of the two identical wheel suspension mechanisms of the mobile plaftorm.

Figure 66 Graphical topology of the implemented joint elements for

the wheel suspension mechanism of the mobile platform.

With help of bushings and springs, all translational and rotational DOFs were described by
means of the stiffness and damping assignments shown in Table 29 for their translational
coefficients and in Table 30 for their corresponding rotational coefficients.

110 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 29 Adjusted translational stiffness and damping coefficients for the mobile platform.

Joint elements
Translational stiffness
coefficients (N/mm)

Translational damping
coefficients (N·s/mm)

x y z x y z
Bushing #1
Swing arm < > Al-profile

30.0 10000.0 400.0 0.01 0.01 0.01

Bushing #2
Swing arm < > Al-profile

40.0 10000.0 400.0 0.01 0.01 0.01

Bushing #3
Swing arm < > Al-profile

30.0 10000.0 400.0 0.01 0.01 0.01

Bushing #4
Swing arm < > Al-profile

40.0 10000.0 400.0 0.01 0.01 0.01

Bushing #1
Swing arm < > DC Motor

150.0 10000.0 400.0 0.01 0.01 0.01

Bushing #2
Swing arm < > DC Motor

250.0 10000.0 400.0 0.01 0.01 0.01

Bushing #3
Swing arm < > DC Motor

250.0 10000.0 400.0 0.01 0.01 0.01

Bushing #4
Swing arm < > DC Motor

150.0 10000.0 400.0 0.01 0.01 0.01

Bushing #1
Rigid strut < > Al-profile

40.0 10000.0 400.0 0.01 0.01 0.01

Bushing #2
Rigid strut < > Al-profile

40.0 10000.0 400.0 0.01 0.01 0.01

Bushing #1
Rigid strut < > DC Motor

100.0 10000.0 400.0 0.01 0.01 0.01

Bushing #2
Rigid strut < > DC Motor

100.0 10000.0 400.0 0.01 0.01 0.01

Spring #1&2
Cylinder < > Piston

- - 600.0 - - 0.01

Bushing #1&2
Piston < > DC Motor

1000.0 1.0×106 600.0 0.01 0.01 0.01

Table 30 Adjusted rotational stiffness and damping coefficients for the mobile platform.

Joint elements
Rotational stiffness

coefficients (N·mm/deg)
Rotational damping

coefficients (N·mm·s/deg)
x y z x y z

Bushing #1
Swing arm < > Al-profile

5.72×105 2864.8 14323.9 0.6 0.6 0.6

Bushing #2
Swing arm < > Al-profile

5.72×105 5729.6 14323.9 0.6 0.6 0.6

Bushing #3
Swing arm < > Al-profile

5.72×105 2864.8 14323.9 0.6 0.6 0.6

Bushing #4
Swing arm < > Al-profile

5.72×105 5729.6 14323.9 0.6 0.6 0.6

Bushing #1
Swing arm < > DC Motor

5.72×105 5729.6 14323.9 0.6 0.6 0.6

Bushing #2
Swing arm < > DC Motor

5.72×105 2864.8 14323.9 0.6 0.6 0.6

Bushing #3
Swing arm < > DC Motor

5.72×105 2864.8 14323.9 0.6 0.6 0.6

Bushing #4
Swing arm < > DC Motor

5.72×105 5729.6 14323.9 0.6 0.6 0.6

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 111

Table 30 (cont.) Adjusted rotational stiffness and damping coefficients for the mobile platform.

Joint elements
Rotational stiffness

coefficients (N·mm/deg)
Rotational damping

coefficients (N·mm·s/deg)
x y z x y z

Bushing #1
Rigid strut < > Al-profile

5.72×105 2864.8 45836.6 0.6 0.6 0.6

Bushing #2
Rigid strut < > Al-profile

5.72×105 2864.8 45836.6 0.6 0.6 0.6

Bushing #1
Rigid strut < > DC Motor

5.72×105 5729.6 28647.9 0.6 0.6 0.6

Bushing #1
Rigid strut < > DC Motor

5.72×105 5729.6 28647.9 0.6 0.6 0.6

Spring #1&2
Cylinder < > Piston

- - 28647.9 - - 0.6

Bushing #1&2
Piston < > DC Motor

5.72×105 5729.6 28647.9 0.6 0.6 0.6

A representation of the model of the mobile manipulator as MBS in MSC.Adams/View is
shown in Figure 67.

Figure 67 MBS model of mobile platform.

The parameters of the implemented ground contact forces were empirically adjusted.
Particular attention was paid to the stiffness and damping values, since a performed sensitivity
analysis exhibited that these values affected the most the impact behavior between the ground
and the wheels of the mobile platform. Beginning with the stiffness and damping going towards
+∞ [153], their values were iteratively decreased to guarantee that no convergence errors and
no large vibrations occurred during the simulations. All remaining parameters were empirically
tuned based on the values suggested by the simulation software, as displayed in Table 31 [154].

112 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 31 Settings for the Coulomb’s friction contact constraints between the wheels and the ground.

Parameter for contact constraint Value

Contact type Point to plane
Normal force Impact

Stiffness 1.0 ×104 N/mm
Force exponent 1.5

Damping 500.0 N·s/mm
Penetration depth 1.0 ×10-2 mm

Friction force Coulomb
Coulomb friction On
Static coefficient 0.76

Dynamic coefficient 0.8
Stiction transition vel. 100.0 mm/s
Friction transition vel. 1000.0 mm/s

All along the iterative manual adjustment of the stiffness and damping coefficients of the

bushings and springs implemented in the MBS model, the visualization of the mode shapes in
the simulations served as helpful qualitative analysis to identify which specific joint element
had to be modified and how much.

Table 32 shows the derived natural frequencies and mode shapes for the mobile platform.
The red traces in the illustrations represent the mode shapes in an overstated manner.

Table 32 Modal parameters of the mobile platform obtained from MBS simulations [151].

Natural freq. and

modal shapes
ω1=8.9 Hz ω2=13.0 Hz ω3=21.5 Hz

MBS Mobile platform

The graphic in Figure 68 presents the calculation of the MBS reliability related to the EMA,
using the “three-sigma limit” method [155]. The natural frequencies from EMA are represented
by the black solid line. It can be seen that the first modal frequency of the MBS (red solid line)
was not kept within the calculated limits (black and green dashed lines) as opposed to the second
and third values, which were in the tolerated area.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 113

Figure 68 Correlation between EMA- and MSB-mobile platform using 3-sigma limits [151].

The deviation of the first natural frequency, about 15%, could have been caused by the
model simplification procedure enforced during modeling the mobile platform. Another
uncertainty existed with respect to the global damping parameters determined from the EMAs,
which in practice cannot be directly applied in MSC.Adams/View. However, according to
[156,157], the model can be considered as satisfactory for the purpose of simulating the braking
process of the mobile manipulator, since it will be integrated in a closed-loop control system to
enhance robustness against small disturbances in the process.

4.5.2.2 MBS of robot manipulator

The modeling process of the six-axis robot manipulator in MSC.Adams/View was very
similar to the procedure presented for the mobile platform, but with a main difference: its
available CAD model just contained information merely related to sizes and geometries, but
not to aspects about materials, weight, center of mass or moment of inertia, which play a crucial
role in the modeling process.

The bigger and heavier bodies of the robot manipulator mainly affect its dynamic behavior.
For this reason, a material identification was carried out to estimate their relevant center of mass
and moment of inertia and, thus, the density of the materials in the outer structure by performing
some simple non-destructive tests. These material specifications were introduced into the 3D
CAD model of the robot manipulator and were adjusted to match up the weight specified by
the robot manufacturer. Then, this detailed model was exported into MSC.Adams/View.

Analogous to the mobile platform, the robot manipulator components with the higher mass
and inertial moment were abstracted and merged into primary elements: Basis, shoulder, right
arm, left arm, elbow, forearm, hand and end-effector. They were also modeled as rigid bodies
for the same reason as the mobile platform: these main bodies did not present relevant
deformations in comparison to their elastic joint elements. In the same way, each of these 8
basic elements were joined using three-dimensional massless bushings, at the place where in
the real system massed gearboxes were located. The implemented bushings with respect to the
main bodies of the robot manipulator are illustrated in red in Figure 69.

114 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 69 6-DOF-limited bushings in the multibody-system simulation of robot manipulator.

The inherent stiffness and damping parameters of these joining elements enable the
dynamic oscillation of the robot manipulator. Likewise the mobile platform (see Section
4.5.2.1), the experimental outcomes from the EMA of the robot manipulator served as reference
for the iterative adjustment of the stiffness and damping parameters in the MBS simulation
model. The final values for each of the implemented bushings are presented in Table 33.

Table 33 Adjusted stiffness and damping coefficientes for the bushings of the MBS robot manipulator.

Parameter x-coordinate y-coordinate z-coordinate

Bushing at “Base-Shoulder”
Translational Stiffness (N/mm) 2.4×106 2.4×106 2.5×106

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 4.6×109 4.6×108 4.6×108

Damping (N·mm·s/deg) 5.73 5.73 5.73
Bushing at “Shoulder-Upper arm left”

Translational Stiffness (N/mm) 2.1×104 2.0×104 2.5×104
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3

Rotational Stiffness (N·mm/deg) 5.0×105 9.0×106 5.0×105
Damping (N·mm·s/deg) 5.73 5.73 5.73

Bushing at “Shoulder-Upper arm right”
Translational Stiffness (N/mm) 2.1×104 2.0×104 2.5×104

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 5.0×105 9.0×106 5.0×105

Damping (N·mm·s/deg) 5.73 5.73 5.73
Bushing at “Upper arm left-Elbow”

Translational Stiffness (N/mm) 6.76×103 2.00×104 3.43×103
Damping (N·mm·s) 1.00×10-3 1.00×10-3 1.00×10-3

Rotational Stiffness (N·mm/deg) 4.50×105 1.00×105 1.50×106
Damping (N·mm·s/deg) 5.73 5.73 5.73

Bushing at “Upper arm right-Elbow”
Translational Stiffness (N/mm) 6.8×103 2.0×104 3.43×103

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 4.5×105 1.0×105 1.5×106

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Elbow-Forearm”

Translational Stiffness (N/mm) 2.3×104 1.3×104 1.2×104
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3

Rotational Stiffness (N·mm/deg) 2.9×106 5.7×106 5.2×106
Damping (N·mm·s/deg) 5.7 5.7 5.7

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 115

Table 33 (cont.) Adjusted stiffness and damping coefficients for the bushings of the MBS robot

manipulator.

Bushing at “Forearm -Hand left”
Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Forearm -Hand right”

Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3

Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106
Damping (N·mm·s/deg) 5.7 5.7 5.7

Bushing at “Hand-Finger”
Translational Stiffness (N/mm) 5.4×103 5.1×103 4.0×103

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 1.2×107 5.7×107 1.7×106

Damping (N·mm·s/deg) 5.7 5.7 5.7

Table 34 displays with red traces the representation of the mode shapes. Higher frequency
ranges were not considered, since only the oscillations where the main bodies move relative to
each other are particularly relevant for the dynamic behavior of the robot manipulator in the
mechatronic co-simulations.

Table 34 Modal parameters of robot manipulator obtained from the MBS simulations [151].

Natural

freq.
𝜔1=13.0 Hz 𝜔2=22.5 Hz 𝜔3=27.2 Hz 𝜔4=68.3 Hz 𝜔5=88.9 Hz

Mode

shapes

The MBS of the robot manipulator presented a good fitting of its natural frequencies. As
can be seen from the graphic for “three-sigma limits” calculation [155] in Figure 70, the second
natural frequency was slightly outside of the tolerance margin. However, the maximal deviation
between this MBS and the EMA resulted about 10.6%, which is considered sufficient in this
type of study [33,156].

116 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 70 Correlation between EMA- and MSB-robot manipulator using 3-sigma limits [151].

The deviations between the MBS- and the EMA- results could be caused, on the one hand,
by the model simplification carried out to decrease the complexity of the systems (e.g., rigid
bodies were used to avoid large computational calculations). On the other hand, parametric
uncertainties could be induced by lack of material homogeneity, tolerances in the geometry,
unknown clearances between the robot manipulator elements, etc., having non-ideal real
conditions for the MBS model.

It is important to emphasize that the premises for MBS modeling presented in this study

were based on the nature of the dynamics of 6 DOF robot manipulators and mobile platforms
with non-holonomic drive, both not exhibiting significant deformation of its mechanical
structure. Table 35 provides an overview of these premises and their corresponding limitations
for practical use in further systems.

Table 35 Premises applicable purely to 6 DOF robot manipulators and mobile platforms

with non-holonomic drive and without significant deformations.

Adopted premise for modeling the
robot manipulators and mobile

platforms as MBS systems
Limitations/Remarks

Modeling the structure as rigid bodies. Avoid if it is intended to study the deformation of
the structure. In this case, the implementation of
flexible bodies is crucial during modeling the
system.

Merging multiple solid bodies to create
a single-bodied part.

Use only if the motion of the main bodies relative
to each other (and not its interaction) is of interest.

Merging bodies with different material
properties.

By combining the bodies’ density, center of gravity
and moment of inertia into a single flexible body,
local material-dependent deformations will not be
reproduced.

Removing and replacing screws, screw
nuts, washers and slot nuts by fix joints.

Avoid if the weight difference of these elements
with respect to the rest of the bodies of the system
is too small as themselves to affect the dynamic
behavior of the system.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 117

Table 35 (cont.) Premises applicable purely to 6 DOF robot manipulators and mobile platforms

with non-holonomic drive and without significant deformations.

Adopted premise for modeling the
robot manipulators and mobile

platforms as MBS systems
Limitations/Remarks

Considering only natural frequencies
and the mode shapes found in low
frequency ranges.

Applicable only, if the oscillations generated by the
interaction between the main bodies are
particularly relevant for the dynamic behavior of
robots, which is expected to be detected in the low
frequency range. Higher frequency ranges have to
be examined if it is intended to study the vibration
of the structure.

Assuming that the stiffness of the robot
manipulator bodies are significantly
greater than the stiffness of its revolute
joints.

Applicable only, if the structure does not present
significant deformations or if the behavior of the
revolute joint shows high friction indices.

Adjusting only the stiffness and
damping coefficients for the friction
contacts between the ground and the
wheels.

Applicable only, if the impact behavior between the
bodies or the evaluation of contact forces are
irrelevant during the simulations.

Implementing the stiffness between
two body centers of gravity using a
spring-damper model.

This implies that the stiffness of the bearings itself
is incorporated in the stiffness value of the joining
elements. Avoid if it is proposed to analyze the
action and reaction region of the structure where
the joint is situated.

The use of these premises in systems, whose structure and/or dynamic behavior is not
comparable with the robotic systems adopted in this work could lead to incorrect results and,
thus, to a model that does not resemble the reality.

By contrast, the following criteria can be implemented in other different types of robot

manipulators and mobile platforms:
 Interlink individual rigid bodies using physical connections (e.g. bushings) to build the

system’s kinematic chain.
 In order to constrain translational and rotational forces affecting the main bodies, virtually

massless elastic joints with 6 DOF (e.g. bushings) can be implemented. By only adjusting
the stiffness and damping coefficients of each of its DOF, the translational and rotational
forces affecting the bodies can be reproduced in an accurate manner.

 If the mass of a joint element is already considered in the mass of the adjacent rigid bodies,
its corresponding kinematic joint or physical connection in the MBS model can be
considered as mass-free.

 In order to obtain accurate mode shapes in the simulation models, equip the MBS model
with dummy massless bodies to represent the exact location of the accelerometers
employed in the EMAs.

Further information about the general multibody approach for dynamic systems can be

found in [124,158].

118 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

4.5.2.3 Optimization of MBS of the robot manipulator using the parametrization algorithm

Since the robot manipulator is the subsystem that will be driven by the stabilization
mechanism and due to its high center of gravity, its dynamic behavior plays an important role
during the development of the stabilization strategy. It must be ensured that the MBS model of
the robot manipulator describes the real system more accurately, with a maximum deviation of
about 5% between the natural frequencies and mode shapes obtained by means of EMAs and
the MBS simulations.

Therefore, the parametrization algorithm introduced in Section 4.3.2.1 re-estimated the
stiffness and damping parameters of the bushings modeled in the MBS. For this purpose, the
dynamic behavior of the real robot manipulator had to be reanalyzed experimentally via EMA,
but this time including the following aspects:
 The base of the robot manipulator was firmly screwed to a steel plate, which in turn was

fixed to the ground.
 In order to better identify the robot manipulator’s oscillation behavior, more one-

dimensional accelerometers had to be attached to the structure; only in this way, all spatial
directions could be registered.

 The system was excited at the forearm, upper arm and elbow in the frequency range up to
500 Hz. A too strong excitation could cause a non-linear system behavior [159].

For the following identification processes, only the first four natural frequencies and their
corresponding eigenmodes were used as reference values, since the global eigenmodes from
the EMAs (see Section 4.5.1.2) showed that the main oscillations were caused by the upper
links. Therefore, only the four bushings located on the upper links were parametrized first. The
forearm and elbow were merged to one rigid body, eliminating their associated bushings.

The MBS model was complemented with dummies, located where the accelerometers were
attached to the individual bodies of the real system. The MBS model of the robot manipulator
adapted for its adjustment employing the parametrization algorithm is displayed in Figure 71.

Figure 71 MBS model for robot manipulator suited for the DAKOTA algorithm [131].

The first parametrization was performed by means of the evolutionary algorithm, set with
relatively wide outer boundaries. Then, using the gradient-based method, the parameter
identification set a higher weight for the eigenmodes than for the natural frequencies, in order
to attempt a good MAC correlation. The results of the parametrization procedures are shown in
Table 36.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 119

Table 36 Modal parameters for the robot manipulator computed by

the parametrization algorithms (following [131]).

 1st mode 2nd mode 3rd mode 4th mode

EMA 11.6 Hz 14.6 Hz 21.2 Hz 27.0 Hz
First estimation with

evolutionary

algorithm

11.1 Hz 15.3 Hz 20.2 Hz 28.6 Hz

Deviation 4.0 % 5.0 % 4.5 % 5.7 %
MAC 0.7 0.5 0.9 0.7
Subsequent

identification with a

gradient-based

algorithm

11.7 Hz 15.0 Hz 20.6 Hz 26.9 Hz

Deviation 1.0 % 2.7 % 2.8 % 1.0 %
MAC 0.9 0.8 0.8 0.8

The values in bold in Table 37 are the parameters corresponding to the four bushings of the
robot manipulator that were parametrized by the algorithms.

Table 37 Stiffness and damping coefficientes for the bushings of the MBS robot manipulator computed

by the parametrization procedures (values in bold).

Parameter x-coordinate y-coordinate z-coordinate

Bushing at “Base-Shoulder”
Translational Stiffness (N/mm) 2.4×106 2.4×106 2.5×106

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 4.6×109 4.6×108 4.6×108

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Shoulder-Upper arm left”

Translational Stiffness (N/mm) 5.0×103 4.4×104 5.0×103

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 8.7×105 1.4×106 0.0

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Shoulder-Upper arm right”

Translational Stiffness (N/mm) 570.0 6.5×103 4.8×105

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 3.6×105 5.5×105 3.0×106

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Upper arm left-Elbow”

Translational Stiffness (N/mm) 123.1 238.7 1.6×103

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 8.7×105 1.3×104 1.6×104

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Upper arm right-Elbow”

Translational Stiffness (N/mm) 831.7 6.4×103 9.0×103

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 2.0×106 2.3×105 2.8×105

Damping (N·mm·s/deg) 5.7 5.7 5.7

120 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Table 37 (cont.) Stiffness and damping coefficientes for the bushings of the MBS robot manipulator

computed by the parametrization procedures (values in bold).

Bushing at “Elbow-Forearm”
Translational Stiffness (N/mm) 2.3×104 1.3×104 1.2×104

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 2.7×106 5.7×106 5.2×106

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Forearm -Hand left”

Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3

Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106
Damping (N·mm·s/deg) 5.7 5.7 5.7

Bushing at “Forearm -Hand right”
Translational Stiffness (N/mm) 1.7×104 2.0×104 1.7×104

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3
Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106

Damping (N·mm·s/deg) 5.7 5.7 5.7
Bushing at “Hand-Finger”

Translational Stiffness (N/mm) 5.4×103 5.1×103 4.0×103
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3

Rotational Stiffness (N·mm/deg) 1.2×107 5.7×107 1.7×106
Damping (N·mm·s/deg) 5.7 5.7 5.7

The developed algorithm can be employed for the parameterization of stiffness and
damping coefficients of any robot manipulator that has been modeled under the criteria
presented in Section 4.5.2.2. In case, the MBS model of the robot manipulator is not built in the
simulation tool MSC.Adams/View, the interface between DAKOTA and MSC.Adams/View,
described by, e.g., the script run_adams.acf and the file simmodell.adm, need to be adapted.

Once both MBS systems, the mobile platform and the robot manipulator, were successfully
adjusted, they were unified into a single model for the mobile manipulator. This new MBS
system has to be integrated with the actuation mechanisms, the linear drives (Figure 72) and
the gyro stabilizer (Figure 73), whose task is the dynamic compensation of external forces to
assure the system stability and, thus, to prevent the mobile manipulator from tip over by abrupt
acceleration and deceleration events.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 121

Figure 72 Linear actuators as external stabilization mechanism for the testing system comprised by

the robot manipulator mounted on a small footprint mobile platform.

Figure 73 Gyroscope as external stabilization mechanism for the testing system comprised by the

robot manipulator mounted on a small footprint mobile platform.

4.5.3 Mechatronic co-simulation of testing system

The effectiveness of the three stabilization strategies proposed in approach A (referred to
as “inclining/tilting”, “conservation of angular momentum” and “gyroscopic effect”) is
assessed by implementing series of mechatronic co-simulations, which perform critical braking
profiles for the mobile platform. The following sections present an overview of the proceedings
carried out particularly for the testing system.

4.5.3.1 Solution stability analysis of solvers

The required solution stability analysis for the in MSC.Adams/View available solvers (see
Section 4.4) were carried out using the MBS model of the mobile manipulator, capable to
represent a dynamic critical state of the system due to the oscillations generated by the spring
suspension located in the drive wheels.

122 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

During mechatronic co-simulations, each stand-alone sub-simulator exchanges its output

variables at a certain communication interval. The sub-simulators consider their inputs as
constant over the integration time of each communication time step, although in reality their
values vary continuously. As a result, large comminucation intervals can lead to errors in the
numeric estimations and affect the simulation accuracy. In this work, the communication
interval was defined following the technique for the sampling time estimation in control
engineering, which states that the sampling time must be at least ten times higher than the
smallest time constant presented in the control system [160]. Hence, considering the time
constants of the control systems obtained in Section 4.5.3.3 and Section 4.5.3.4, the data
transmission interval for all mechatronic co-simulations was set to 0.001 s.

Three different error tolerances were considered into the solution stability analysis. The

stability of the integrators (and their corresponding tolerances) was evaluated regarding the
linear acceleration the mobile platform adopted during the MBS simulations. Their
corresponding outcomes are outlined in the Table 38, Table 39 and Table 40, respectively:

 Integrator GSTIFF with index I3 and with index SI2:

Table 38 Comparison of different indexes and tolerances for integrator GSTIFF (following [112]).

Tolerance Index I3

1×10-3

1×10-5

1×10-2

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 123

Table 38 (cont.) Comparison of different indexes and tolerances for integrator GSTIFF ([112]).

Index SI2

1×10-3

1×10-5

1×10-2

The results with the different error tolerances made the GSTIFF integrator with index-3
(I3) or with index-2 (SI2) unsuitable for the simulation, since the output signals for each index
(I3 or SI2) do not exhibit the same course among the different tolerances.

 Integrator WSTIFF with index I3 (only available):

Table 39 Comparison of different tolerances for integrator WSTIFF with Index-I3 (following [112]).
Tolerance Index I3

1×10-3

1×10-5

1×10-2

124 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Here, as with the GSTIFF integrator, the acceleration did not produce equivalent results

for the graduated tolerance values. Thus, this integrator was also unsuitable for the simulations.

 BDF CONSTANT integrator with an index I3 (top) and an index SI2 (bottom):

Table 40 Comparison of different tolerances for integrator BDF constant (following [112]).

Tolerance Index I3

1×10-3

1×10-5

1×10-2

Index SI2

1×10-3

1×10-5

1×10-2

As illustrated in Table 38, the results for all tolerance values showed only minimal
differences between the acceleration graphs. Therefore, the BDF CONSTANT integrator is

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 125

considered as the suitable solver to achieve the best approximation for the dynamic multibody
simulation of the particular system. The faster responses were obtained with the I3 index and
with an error tolerance of 1×10-3, which were employed for the further co-simulations.

4.5.3.2 General simulation statements and setups

Figure 74 shows how the force on the front support wheels of the mobile platform increases
depending on the applied braking deceleration: the mass of the entire system, before the
disequilibrium occurs, is distributed among the six wheels. If the back-support wheels lift-off,
then only the drive wheels and the front wheels support the whole system weight (indicated
with the white line in the graphic on Figure 74). And, if the drive wheels lift additionally, the
entire weight is held only by the front wheels, pointed out with the black line in the graphic on
Figure 74.

Figure 74 Braking force influence on the front support wheels as a function of the

travelling deceleration and the tilt angle generated by the linear actuators [113].

Figure 74 reveals that if the robot manipulator has no tilt angle and no stabilization strategy,
the system tips over at a deceleration of 1.4 m/s2. If the robot manipulator adopts its equilibrium
position (COG aligned with the axis of the universal joint at approx. 11.86°), a deceleration of
2 m/s2 causes both rear support wheels to lift off.

The mobile platform is accelerated until it reaches a maximal velocity, particular for each

scenario to be tested; then, the mobile platform travels with a constant linear velocity for a short
time to ensure a stable steady state before the braking process starts; after that, the platform
brakes abruptly.

The mechatronic co-simulations of both strategies “Inclining/Tilting” and “Conservation
of angular momentum” employed the same velocity curve for the mobile manipulator during
the simulations. To demand a particularly difficult testing scenario, two braking processes were
carried out for all simulations, with a deceleration of 2 m/s2 and with 2.1 m/s2, respectively, in
order to make the linear drives act in its technical extremes twice, for consecutive periods.
These braking processes are presented in Figure 75.

126 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

Figure 75 Braking processes implemented for the linear drives strategy simulations [112].

On the other hand, due to the simplicity of the gyro mechanism and its control, more
extensive and diverse braking processes were implemented during the mechatronic co-
simulations. The acceleration and deceleration slopes were based on the simple profile provided
by the manufacturer (curves shown in Figure 76), being adapted depending on the scenarios to
be tested.

Figure 76 Braking process which served as the basis profile for the gyro stabilizer simulations [112].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 127

4.5.3.3 Mechatronic co-simulation of stabilization strategies employing linear drives

For the mechatronic co-simulations of the external mechanism, the Linear Drive SFL with
DC-Motor [161] was adopted. Using the information supplied by the manufacturer ([161,162])
and benchtop measurements on the real motor together with simple data fitting following the
approach in [163], the motor was identified as a second-order system which, according to
Eq. (78), resulted in 𝐺𝑀(𝑠) = 489(0.01337𝑠 + 1)(0.01025𝑠 + 1). (82)

Taking into account the gear transmission ratio of 1:10 [164], the motor transfer function
can expressed as 𝐺𝑀(𝑠) = 48.9(0.01337𝑠 + 1)(0.01025𝑠 + 1). (83)

Since the system does not contain an I-component, PI-controllers can be used to reach
stationary accuracy for the speed control loop (inner control loop) [165]. By employing only P
and PD components, a permanent control deviation would be observed in the system [166]. The
time constant for the required PI controller for the speed control loop was estimated with the
rules according to Kuhn [167,168], since the system dynamic behavior (transfer function) was
available from the experimental setups. ∑𝑇 = 𝑇1 + 𝑇2 (84) ∑𝑇 was obtained by searching the point where the areas 𝐴1 and 𝐴2 of the step response graph
are equal. As in Figure 77, the resulting sum of the time constants for the case considered is ∑𝑇 = 0.02 𝑠.

Figure 77 Empirical estimation of the motor time constant [112].

Then, the controller gain 𝐾𝑐 and the reset time 𝑇𝑁 were estimated employing the equations for
setting rules of a PI controller according to Kuhn [160], as follows 𝐾𝑐 = 1𝐾𝑠 = 148.9 = 0.02045 (85)

where 𝐾𝑠 is the gain factor of the controlled system. 𝑇𝑁 = 0,7 · ∑𝑇 = 0.7 · 0.02362 = 0.01653. (86)

128 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

For a PI controller, the proportional factor, 𝐾𝑃, can be considered the same as the controller

gain, 𝐾𝑃 = 𝐾𝑐 = 0.02045 (87)

and the integral factor, 𝐾𝐼, can be then obtained with 𝐾𝐼 = 𝐾𝑃𝑇𝑁 = 0.020450.01653 = 1.23685 (88) 𝐾𝐼𝐾𝑃 = 1.236850.02045 = 60.48143. (89)

By employing these parameters, the step response reached its target value after 0.132 s and
had an overshoot of 3.8%. Based on a root locus analysis, the proportional gain KP was
minimally increased from 0.02045 to 0.02192 and, thus KI to 1.3257. After that, the pole of the
PI controller migrated to -54.3 1/s. As a result, the step response reached the target velocity
value after 0.117 s with 5% overshoot.

After the velocity control loop (inner controller) had been prepared, the position controller
(outer control loop) was designed. The steady-state accuracy of the position control loop was
already ensured, since the velocity must be integrated to get positioning values. Thus, if the
system did not overshoot at all, a P controller could be employed to ensure that the position is
approached accurately. With a proportional gain KP of 15.582, its step response took 0.367 s
until the stationary target value was reached and showed no overshoot, representing a proper
controlling behavior.

A comprehensive review of the design of the control system implemented for the particular
case of the testing system lies beyond the scope of this study. The designed control is illustrated
in Annex A.3.

Finally, the so-called motions were implemented for the drive wheels to reproduce the
acceleration and braking process of the mobile platform.

The corresponding assignment of signals for the mechatronic co-simulations are indicated
in Table 41.

Table 41 Inputs/outputs for mechatronic co-simulations of the linear drives´stabilization strategies.

Input signals for MBS
(MSC.Adams/View)

Output signals from MBS
(MSC.Adams/View)

 Stroke position of linear
drive 1

 Stroke position of linear
drive 2

 Stroke position of linear
drive 3

 Angle of upper plate of
stabilization mechanism

 Linear travel velocity of
mobile platform

 Acceleration of linear drive 1
 Acceleration of linear drive 2
 Acceleration of linear drive 3
 Global X-acceleration of mobile platform
 Global Y-acceleration of mobile platform
 Global Z-acceleration of mobile platform
 Force between ground and left support wheel back
 Force between ground and right support wheel back
 Force between ground and left drive wheel
 Force between ground and right drive wheel
 Force between ground and left support wheel back
 Force between ground and right support wheel back

Output signals from Controls
(Matlab/Simulink)

Input signal for Controls
(Matlab/Simulink)

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 129

4.5.3.4 Mechatronic co-simulation of stabilization strategy using gyroscope

First, estimations about the effectiveness of the gyroscopic system as stabilization strategy
were carried out using Eq. (67) in order to proceed with its detailed design. Starting with a
maximal deceleration during the braking process (𝑎) of −1 m/s2, a compensation torque (𝑀𝑐)
of approx. −40 N·m had to be applied by the gyroscope to the whole system to achieve a
stabilization during the standard braking process.

First, a very simplified model of a gyroscope was built as MBS system in order to estimate
the design parameters required to compensate the estimated torque. The rotational speed (𝜔𝑔)
of the mass was implemented in MSC.Adams/View by a motion on the upper axis of rotation.
The tilting speed (𝜔𝑝) of the mass was imposed as two motions on the lateral axes of rotation.

After the first analytical and simulative estimations were performed, a gyro stabilizer
consisting in a mass with a moment of inertia of 𝐼=1414.1 kg∙mm2 and a fix rotational speed of 𝑛motor=5000 min-1 was designed, so that the required compensation torque to stabilize the mobile
manipulator was achieved. The final model consisted of the mass (with its associated moment
of inertia), the cage, the supports and the motors (gears) is displayed in Figure 78.

Figure 78 Designed gyroscope for the further analyses.

Two light weight servo motors with high positioning accuracy, [169] for the rotary motor
and [170] for the tilting motor, were selected. Their corresponding control algorithms had to be
implemented in Matlab/Simulink. The mass rotational speed could be initially set to the target
value by a simple speed control. The precession moment should be controlled depending on the
required deflection angle of the tilting motor by means of a position control.

Since not all motor parameters were provided by the manufacturers, the step response of
both, the tilting motor and the rotary motor, were experimentally determined. The rotary motor
was identified as first-order system and the tilting motor as first-order system with an additional
integration element [171]. Both motors were modeled as black box in Matlab/Simulink
according to Eq. (77) as follows 𝐺𝑇𝑀(𝑠) = 4.63(0.063 · 𝑠 + 1) (90)

for the tilting motor, and 𝐺𝑅𝑀(𝑠) = 523.6(22 · 𝑠 + 1) (91)

130 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

for the rotary motor.

Due to the fact the experimental determination of the controlled system showed that the

tilting motor itself contained an I-component, a PD-controller was implemented. Its controller
design parameters were established according to the Tietze-Schenk tuning method [172,173],
in which the derivative time 𝑇𝑉 of a PD-controller is determined by 𝑇𝑉 = 𝑇𝑝2 · 𝜋 (92)

using the measured period duration of the step function response, 𝑇𝑝=0.099 s, and according to
Eq. (92), 𝑇𝑉 resulted in 0.015 s. The value for the corresponding proportional-derivative gain,
KPD, after the controller setting was 0.0225.

For the rotary motor, a PI-controller was designed. Its reset time, 𝑇𝑁 , was estimated as
22 s and its proportional-integral gain, KPI, as 7.15×10-4.

A comprehensive review of the design of the control systems implemented for the
particular case of the testing system lies beyond the scope of this study. Their corresponding
block diagrams can be seen in Annex A.4.

The maximum torque generated by the gyroscope as well as the angular position and

velocity of its tilting motion were set as the evaluation parameters for the motor closed-loop
controls.

The input and output parameters implemented for the mechatronic co-simulations are
described in Table 42.

Table 42 Signal assignment for the mechatronic co-simulations of the stabilization strategy

employing the gyro effect.

Input signals for MBS
(MSC.Adams/View)

Output signals from MBS
(MSC.Adams/View)

 Position of tilting motor
 Rotational speed of tilting motor
 Rotational speed for rotary motor
 Linear travel velocity of mobile

platform

 Tilting angle of gyroscope
 Tilting speed of gyroscope
 Rotational speed of rotary motor
 Generated torque measured in the upper

plate of the mobile platform
 Force between ground and left support

wheel back
 Force between ground and right support

wheel back
 Force between ground and left drive wheel
 Force between ground and right drive wheel
 Force between ground and left support

wheel back
 Force between ground and right support

wheel back
Output signals from Controls

(Matlab/Simulink)
Input signal for Controls

(Matlab/Simulink)

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 131

4.5.4 Validation of stabilization strategies employing testing system

To ensure an accurate comparison between the validation scenarios, the contact forces and
distances between the ground and each wheel of the mobile platform were used as evaluation
criterion during the mechatronic co-simulations: contact forces greater than 0 N or distances
equal to 0 mm mean that the mobile manipulator is not tipped-over. In other words, the higher
the contact force distributed across all the wheels, the more stable the robotic system is.

4.5.4.1 Evaluation of stabilization strategy “Inclining/Tilting” employing testing system

For the stabilization strategy “Inclining/Tilting”, the mobile platform has been accelerated
until its maximum velocity (yellow area in Figure 79), followed by a short traveling path with
constant speed (green area in Figure 79). Immediately after the IMU-measurements in the MBS
model revealed that the system achieved a stable steady state, the mobile platform braked to
stop the system abruptly (red area in Figure 79). Just before the mobile platform braked, the
robot manipulator was tilted backwards. Tilting the robot manipulator backward shifts its COG
to the back, which keeps the system more stable while braking. Figure 79 shows the robot
manipulator over time, during acceleration and braking of the mobile platform (yellow curve in
the graph).

Figure 79 Inclination/tilting of the manipulator during braking process [148].

Simulations without the stabilization strategy demonstrated that during the accelerations
of 2 m/s2 and 2.1 m/s2, the rear support wheels lifted off the ground, lacking of any ground
contact forces. In comparison, the stabilization strategy revealed that even a deceleration about

132 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

2.1 m/s2 did not exhibit instabilities if the mobile manipulator was tilted approx. −4° before the
brake occurred. In this scenario, the contact force between the back support wheels and the
ground was 42.6 N, as displayed in Figure 80.

Figure 80 Contact force measured with the “inclining/tilting” stabilization strategy [112].

Nevertheless, the drawback of this strategy is that the countermeasure has to be done prior
to the braking operation. In fact, the exact value of the braking deceleration cannot be easily
known beforehand and, thus, the angle set point the robot manipulator should have adopted
before the brake occurs is unknown. In that regard, the stabilization strategy is only applicable
if the mobile manipulator is equipped with warning field devices, such as safety laser scanners,
which help to estimate the eventual braking acceleration based on the current velocity of the
mobile platform when an object has been detected.

Furthermore, there will always be a superposition of the impulse with the effect shown in
the next section.

4.5.4.2 Evaluation of stabilization strategy “Conservation of angular momentum”

employing testing system

During the braking process of the mobile platform, the robot manipulator´s COG was
turned from the equilibrium position in the direction of travel of the mobile platform (opposite
to the last explained concept), as represented in the diagram in Figure 81. As a result, the angular
acceleration of the robot manipulator counteracted the braking acceleration of the mobile
platform following the principle of conservation of angular momentum. After the braking
process was finished, the robot manipulators´ COG was returned to the equilibrium position.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 133

Figure 81 Conservation of angular momentum of the manipulator during braking process.

Based on [148].

In order to objectively compare the effectiveness of this strategy with the strategy
“inclining/tilting”, the same traveling profile for linear drives from Section 4.5.4.1 was used,
but with opposite sign because the robot manipulator is now impelled in the direction of travel
of the mobile platform.

The outcomes of the stabilization strategy based on the conservation of angular momentum
are shown in Figure 82.

Figure 82 Contact force measured with the “conservation of angular momentum”

stabilization strategy [112].

It can be observed that effect of the stabilization strategy is critical and needs to be
enhanced at some point in the braking profile with an additional short angular momentum. In
practice, this technique is more suitable when braking process appear unforeseen, or when the
robot manipulator is already tilted to the back.

134 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

4.5.4.3 Evaluation of stabilization strategy “Gyroscope” employing testing system

The yellow curve in Figure 83 illustrates an example of a basic braking process
implemented for the mechatronic co-simulations with the gyro stabilizer and its corresponding
moment of action. The mass of the gyro stabilizer acquired a rotational speed of 5000 min-1 by
the beginning of the simulations (t=0, blue area in Figure 83). While accelerating the mobile
manipulator, the mass of the gyroscope was tilted counterclockwise by 0.78 rad (Figure 83-
yellow) and, during its deceleration, the gyroscope was returned to its starting position (0°),
tilting it by −0.78 rad (Figure 83-red).

Figure 83 Gyroscopic stabilizer action during braking process [148].

During the acceleration and braking process of the mobile platform, the speed of the tilting
motor was set to 𝜔𝑝=0.60 rad/s. The gyro stabilizer was able to generate the precession torque

(𝑀𝑝) of approx. 60 N·m, shown in Figure 84. The first peak in Figure 84 indicates the
inclination of the flywheel mass of the gyroscope at +0.78 rad. The second and higher peak
illustrates when the flywheel mass tilts to the opposite side, at -0.78 rad. The asymmetry of the
curves is inferred by an unbalanced mass distribution due to the rotary motor attached to the
flywheel mass.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 135

Figure 84 Torque achieved by the simple gyroscope model [148].

In order to assess the effectiveness of the proposed gyroscope stabilizer, diverse scenarios
were implemented by means of mechatronic co-simulations. For each of the scenarios
introduced in the following pages, the basic braking process shown in Figure 76 was adapted
to produce the intended acceleration and deceleration behavior of the mobile platform. The
measured distance between the ground and the shaft axis of the rear wheels (37 mm) served as
reference for the evaluation of the gyroscopic effect, since it represents the state when all the
wheels of the mobile platform have physical contact with the ground. If this distance increases
above the reference (37 mm), a tip-over of the mobile manipulator is detected during the braking
process.

For the purpose of analysis, the mechatronic co-simulations were first carried out without

the activation of the gyro stabilizer, in order to identify the events at which the mobile
manipulator experienced instabilities. Then, further mechatronic co-simulations under the same
circumstances were performed with the activated gyro stabilizer.

136 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

 Scenario 1 and scenario 2 performed a braking process from 1.1 m/s (scenario 1) or rather

from 1.2 m/s (scenario 2) to 0 m/s within 1.0 s to evaluate how small changes in the
deceleration of the mobile platform affect the performance of the gyroscope. Without the
stabilization mechanism, these decelerations produced a significantly larger lift-off of the
rear wheels from the ground (>25 mm) compared to each other.
The co-simulations exhibited a complete compensation of the instabilities by tilting the
gyroscope 0.78 rad in 1.3 s for both scenarios, as shown in Figure 85 (top) and Figure 85
(bottom), respectively.

Figure 85 Results from scenario 1 (top) and scenario 2 (bottom) [174].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 137

 Scenario 3 examined the minimum angle the gyroscope needs to compensate the braking

process of scenario 2 (1.2 m/s to 0 m/s). For this purpose, the target value for the tilting
angle of the gyroscope was increased iteratively, starting from 0.17 rad, until the lift-off of
the rear wheels of the mobile platform was completely prevented.
Figure 86 compares the results from the co-simulations with the different tested tilting
angles. It can be seen that with a tilting angle of 0.33 rad, the mobile platform had physical
contact with the ground throughout the entire braking process.

Figure 86 Results from scenario 3 [174].

138 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

 Scenario 4 investigated the minimal time span at which the mobile manipulator can

completely stopped without suffering any instabilities if the gyro stabilizer is positioned at
0.78 rad in 1.3 s during the braking process.
The simulations showed that the minimum possible braking time the mobile platform could
induce from a velocity of 1.0 m/s to 0 m/s was 0.8 s. Likewise, if the mobile platform
traveled at a speed of 1.2 m/s, the minimum possible braking time was 0.9 s. Both
corresponding results are shown in Figure 87.

Figure 87 Results from scenario 4 for a braking process from 1 m/s to 0 m/s (top) and

from 1.2 m/s to 0 m/s (bottom) [174].

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 139

 Scenario 5 aimed to evaluate the effectiveness of the gyro stabilizer under three directly

successive extreme accelerations (from 0 m/s to 1.2 m/s within 1 s) and braking (from 1.2
m/s to 0 m/s within 1 s) processes.
Figure 88 illustrates how the gyroscope ensured the stability of the mobile manipulator for
all of them and even no instabilities occurred during turning back the gyroscope to its initial
state after each deceleration (no peaks in green curve).

Figure 88 Results from scenario 5 [174].

140 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

 Scenario 6 simulated the same conditions as scenario 2 (deceleration in 1 s from 1.2 m/s

to 0 m/s), but this time, the robot manipulator adopted two worst-case positions: its arm
was vertical and horizontal aligned, thus shifting the system’s COG to be affected by the
worst-case deceleration profile.
As illustrated in Figure 89, the gyro stabilizer was also able to compensate instabilities for
both worst-case positions of the robot manipulator.

Figure 89 Results from scenario 6 for the horizontal worst case position (top) and

the vertical worst case position (bottom) [174].

All these scenarios demonstrated that the designed gyro stabilizer can be adopted as a
capable stabilization mechanism for the testing system mobile manipulator.

Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller 141

4.5.5 Comparison of the stabilization strategies results

The outcomes of the stabilization strategies that employ linear drives as external
stabilization mechanism are summarized in Table 43. With respect to the “conservation of
angular momentum” method, the maximum measured contact force between the wheels of the
mobile platform and the ground dropped to 12.4 N. Moreover, for the strategy
“inclining/tilting”, the ground contact force only dropped to 53.1 N, by employing the same
braking profile of −2.0 m/s2. This results in a difference of 40.7 N for the compensation of
instabilities.

Using as deceleration profile −2.1 m/s2, the ground contact force measured during the co-
simulations for the strategy “conservation of angular momentum” went down to 3.6 N and can,
thus, be defined as unsuitable for this case. On the other hand, co-simulations for the strategy
“inclining/tilting” indicated that the ground contact force only dropped to 42.6 N all along the
braking process, resulting in a difference of 39.6 N generated force between the two mentioned
strategies.

Table 43 Comparison of the simulations for the stabilization strategies

using the linear drives mechanism.

Stabilization strategy
Maximum measured

ground contact force

Max. braking deceleration
of mobile platform

−2 m/s2 −2.1 m/s2

Inclining/Tilting 53.1 N 42.6 N
Conservation of angular
momentum

12.4 N 3.6 N

The main advantage of the strategy “inclining/tilting” is that higher contact forces between
the wheels of the mobile platform and the ground were reached in comparison to the strategy
based on the “conservation of angular momentum” principle. However, in order to obtain a
positive effect for the strategy “inclining/tilting”, the linear drives should shift the robot
manipulator’s COG before the braking process starts. However, thanks to the laser scanners
mounted on the employed mobile platform, the stabilization strategy could be able to react prior
to a deceleration. If an object was detected in a critical area in front of the mobile manipulator,
the robot manipulator would be tilted backwards immediately.

During the stabilization strategy based on the “conservation of angular momentum”
principle, the linear drives tilted the robot manipulator in the direction of travel of the mobile
platform to compensate on time a braking process. It was possible to react on time depending
on the acceleration signal of the mobile platform and, thus, generate the required angular
acceleration for the compensation.

For an adequate compensation of instability moments regardless of the strategy, it is
important to mention that the braking process of the mobile platform should last no longer than
the counteracting angular acceleration applied to the robot manipulator.

Moreover, the described effects suggested the implementation of a gyro stabilizer as

further stabilization strategy. Mechatronic co-simulations demonstrated that the gyro
mechanism was able to compensate instability states at the right moment when the mobile
platform decelerates, explained by its short reaction time and its big impact to the system

142 Approach A: Stabilization strategies for
mobile manipulators with limited access to the robot controller

stability. In comparison to the “inclining/tilting” strategy, the gyro stabilizer did not depend on
a prediction mechanism that prior estimates the mobile platform braking profile.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 143

5 Approach B: Stabilization strategy for

mobile manipulators with full access to

the robot controller

The stabilization strategies described in Chapter 4 require an additional external
mechanism to compensate instabilities, either through linear drives or a gyroscope, since they
focus on mobile manipulators that have closed-source operating systems.

The second approach introduced in Chapter 5, uses the mobile manipulator itself as
stability actuator, detecting instabilities and performing the countermeasures to prevent tip-over
even in changing environments.

An important aspect considered in this approach B, is the fact that the mobile manipulator
should independently detect instabilities and independently trigger the countermeasures to
prevent the tip over. The strategy to avoid tipping over has to be designed in such a way that
the mobile manipulator experiences the least possible loss of time for the overall task. The
following sections provide details on the proposed concept, its development and validation
employing a robot manipulator testing system.

5.1 Stabilization strategy incorporated in the robot internal control system

The dynamic effects emerged from the robot manipulator and/or mobile platform motions
may lead the overall system to become unstable and start to tip over under the following
scenarios:

1) Instabilities can occur when the mobile platform is immobile and the robot manipulator is
moving. In other words, the target position is approached only by using the robot
manipulator.

Figure 90 Tilting moment for mobile manipulator in scenario 1.

144 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

The moment 𝑀𝑆, which is formed around the tilting edge marked by 𝑆 in Figure 90, results

primarily from the location of the total 𝐹 𝐶𝑂𝐺. Employing distance 𝑑1, the force 𝐹 𝐶𝑂𝐺, or the
total mass 𝑚𝑡𝑜𝑡𝑎𝑙 with the acceleration due to gravity 𝑔 , the moment 𝑀𝑆 can be calculated
as 𝑀𝑆 = −‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 = −𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑔 ‖ · 𝑑1. (93)

Changing the robot manipulator’s arm position affects the overall center of gravity (COG)
and, as a result, the lever arm in relation to the tilt edge S is shifted. In this case, the robot
manipulator starts to tip over when the distance to the tilting axis 𝑑1 becomes smaller than

zero and, thus, the direction of rotation of 𝐹 𝐶𝑂𝐺 changes.

2) Instabilities can also occur when the mobile platform and the robot manipulator move
simultaneously, e.g., if the Tool Center Point (TCP) is outside the available workspace and
the mobile platform receives the signal to move to a predetermined location. If the robot
manipulator has assumed an unfavorable position during the braking and acceleration
process of the mobile platform, a tip-over also occurs. This is because the acceleration or
deceleration results in forces that affect the overall system. However, as shown in

Figure 91, in addition to the force 𝐹 𝐶𝑂𝐺 and the lever arm 𝑑1, the force 𝐹 = 𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑎 ‖
needs to be taken into account.

Figure 91 Tilting moment for mobile manipulator in scenario 2.

This force is originated from the total mass of the system 𝑚𝑡𝑜𝑡𝑎𝑙 and the applied
acceleration 𝑎 , and generates a moment with the lever arm 𝑑2 𝑀𝑆 = −‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 + ‖𝐹 ‖ · 𝑑2 = −𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑔 ‖ · 𝑑1 + 𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑎 ‖ · 𝑑2. (94)

In this case, instabilities can occur if the stand moment 𝑀𝑆 describes that ‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 is

smaller than the moment generated by ‖𝐹 ‖ · 𝑑2.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 145

With focus on increasing ‖𝐹 𝐶𝑂𝐺‖ · 𝑑1, a mechanical approach (adding mass or extending

the footprint of the mobile platform) cannot be pursued as a solution for mobile manipulators
because a higher overall mass negatively impacts on battery life and additional supports limit
its mobility.

Therefore, for scenario 1 where the mobile platform stands still while the robot manipulator
is moving, a concept consisting of an optimization of the theoretical workspace of the robot
manipulator is proposed to avoid a tip-over of the mobile manipulator. In addition, the
configuration space of the robot manipulator must be adapted so that its joints and links do not
move beyond the limits of the optimized working space. For the optimized workspace, it is
important to cover a volume as large as possible so that the robot manipulator has maximum
room to move.

In scenario 2, the mobile platform moves to a defined position if the given target
coordinates for the robot manipulator’s TCP is located outside the optimized workspace (from
scenario 1). The robot manipulator could either move at the same time or remains in its position
while the mobile platform moves through space. Here, a repositioning of the robot
manipulator’s arm should act as stabilization approach, when an instability is detected. In the
proposed algorithm, the robot manipulator retracts into a safe area while maintaining the
orientation of the TCP as follows:
1. The algorithm waits for the target position/orientation.
2. After receiving the target point, it is checked whether this point is situated inside or outside

the optimized workspace (from scenario 1).
3. If the target point is located within the optimized workspace, the path is calculated directly

and the robot manipulator moves to this target position.
4. In case the target point is outside the optimized workspace, the mobile platform moves

near to the target point. During the displacement if the system is in a critical state, the
repositioning of the arm of the robot manipulator is initialized. The repositioning procedure
is to be executed as a loop, until the mobile manipulator exhibits a stable state.

5. As soon as the mobile platform stops, the robot manipulator can move to the target
position, which should be located inside the optimized workspace.

The entire concept is represented in a simplified way in the flow chart in Figure 92.

146 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 92 General description of the algorithm corresponding to the approach B (following [175]).

The central goal of this part of the work is to develop and implement the stabilization
strategy shown in Figure 92 based on a ROS framework, and empirically demonstrate its
effectiveness on a real autonomous mobile manipulator using the proposed countermeasures
against tip-over.

5.2 Methodology: Modeling a close-to-reality system of the mobile

manipulator

This second approach is also developed in a simulative environment. But this time, ROS
modeling and simulation tools are employed instead of MBS models, since a further interaction
between the robot control and path planning is needed. Regardless of this technical distinctness,
the model of the mobile manipulator needs to be close-to-reality, in order to ensure that the
performance of the proposed strategy is also reflected in the real system.

In comparison with the modeling procedure employed for approach A, the model of the
mobile manipulator is not set up regarding its modal criterion, but rather its geometrical and
inertial parameters. This assumption is carried out because the system itself is arranged as
closed-loop control and, thus, its current states are instantly well-known, i.e. unexpected
behaviors can be detected all the time.

In order to analyze the performance of the stabilization strategy under different conditions

before it is implemented in the real world, the algorithms are developed and evaluated by means
of simulations in ROS environments.

The real mobile manipulator can be represented in the simulation tool Gazebo, which is
based on a robot description that visualizes the mobile manipulator in a virtual environment.
For this, the ROS package gazebo_ros_pkgs provides the necessary interfaces to simulate the
mobile manipulator in Gazebo, implementing ROS messages and services in real time with the
virtual robot [176]. The mobile manipulator description is contained in the so-called URDF

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 147

files (Unified Robot Description Format) as XML-format. The URDF files also includes
information about individual components and their geometry, the joints/connections between
components and their constraints, the alignment of individual components as well as material,
physical and collision properties that support the visualization of each component. For the
simulation model of the mobile manipulator, it is very important that the dynamical parameters
and general information contained in the URDF-file fits properly the real system regarding the
geometry, bodies mass, inertia tensor, COG vector and its kinematic chain.

The geometry of the mobile platform and the robot manipulator as a complete CAD volume
model is required for its robot definition. It is crucial to simplify the model while keeping its
nominal weight and its theoretical COG. In particular, the dimensions and the material volume
that are located far away from axes of rotation, have to be mapped realistically, since these have
the greatest influence on the inertia tensor [177]. Small electrical components (circuit boards,
cables, etc.) as well as mechanical fastening elements might not be taken into consideration.

All components of the mobile manipulator can be modeled as rigid bodies because
deformations during the simulations are not expected. One important aspect to consider during
the modeling of the mobile platform is the friction coefficient, which should avoid occasional
slipping of the wheels, as in the real world.

Both robot definitions (robot manipulator and mobile platform) need to be assembled into
an entire module. In a separate URDF-file, a 6 degrees of freedom (DOF) massless joint has to
be attached at the point that represents the spot at which both subsystem are connected to each
other. This point, P in Figure 93, helps to represent the components of the forces and moments
acting to and deriving from both subsystems, the mobile platform and the robot manipulator.

Figure 93 Representation of 6 DOF massless joint implemented in a URDF-file.

In addition, since the mobile platform should move relative to the world (global) coordinate
system, a virtual planar joint between the world and the mobile manipulator has to be added in
MoveIt! to describe this motion constraint.

RViz as 3D representation of the robotic system, MoveIt! (configured to work with
ControlIt! [178]) as control tool and Gazebo as virtual world, assist the development of the
algorithms in a close-to-reality virtual environment. They provide the same functionalities of a
real mobile manipulator, mostly the data transfer for the differential drives (servo motors) and
the navigation sensors (e.g., laser scanners [52]).

148 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

5.3 Development of stabilization strategy

The first step consists in determining whether the target position of the Tool Center Point
(TCP) could be reached just by moving the robot manipulator arm. For this, the algorithm
estimates the current TCP position and orientation of the robot manipulator in its world
coordinate system (fixed on the mobile platform) and the current position and orientation of the
mobile platform, with respect to its dynamic workspace. Then, the robot manipulator’s inverse
kinematics is computed to verify if the target TCP position can be reached by the robot
manipulator links. If so, the robot manipulator is controlled to reach the target.

If not, it means that the target TCP position is located outside the current robot manipulator
workspace, and that the mobile platform has to move in the direction of the target TCP. The
vectors with respect to the mobile platform driving plane to the target TCP position, which is
located outside the workspace, is computed and assigned as displacement set point for the
mobile platform. In this case, moving both individual subsystems simultaneously would be the
most effective way to reach the target TCP position as fast as possible.

The general principal limitation is that large forces and torques generated by certain
configurations/motions of the robot manipulator and/or by accelerations of the mobile platform
tend to overturn the whole robotic system. Therefore, no matter which behavior is adopted to
reach the target position, the compensation of the generated forces and moments by the
stabilization strategy is indispensable.

5.3.1 Building a simulation setup in ROS environment

Section 2.4 provided a brief overview of the basic concepts of the Robot Operating System
(ROS), which facilitates the understanding of the paragraphs below.

To operate in the simulation environment, Gazebo has to be started and immediately be
followed by RViz via MoveIt!. Afterwards, the communication link between Gazebo and
MoveIt! has to be established. Then, the following steps need to be executed:
1. Load a predefined map for the world space in Gazebo and RViz.
2. Define the TCP target position in the space.
3. If required, the mobile platform moves towards the TCP target position using the ROS

package move_scitos.
4. The robot manipulator is then approached to the TCP target position by MoveIt! using the

ROS package move_arm.

Both ROS packages, move_scitos for the motion of the mobile platform and move_arm for

the motion of the robot manipulator, are included into a superordinate package called tcp_goal.
This logic is enclosed in the main function that incorporates the data about the current position
and orientation of the mobile manipulator. Based on the target TCP position, the algorithm
establishes autonomously, if the target position is located inside the workspace of the robot
manipulator and, thus, can be reached without needing to move the mobile platform. On the
other hand, it calculates how much the mobile platform must be relocated in space. Hence,
depending on the current and the target TCP position/orientation, the main program calls the
corresponding functions to move the mobile platform, if necessary. Then, the main program
waits until the target position/orientation for the mobile platform has been reached. Once it
happens, the main program calls the function to move the robot manipulator, thus reaching the
end target TCP position.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 149

The computer unit must be able to manage all processes in parallel as a multitasking

system. To fulfil this requirement, the Whole Body Operational Space Control (WBOSC)[178]
is implemented. This algorithm allows to control multiple tasks of the mobile manipulator at
the same time by defining restrictions and particular priorities to each task. WBOSC is also
implemented in ROS via ControlIt! It simultaneously gets the information sent by the sensors
from each rotational joint and computes the motion path.

The main problem of the described motion logic is that the tilting stability of the mobile

manipulator is not guaranteed for all points located in the robot manipulator theoretical
workspace and for scenarios when the mobile platform moves. To avoid human beings and
machines dangerous situations, algorithms for the autonomous tilting detection and avoidance
have been developed.

5.3.2 Stabilization strategy

The entire algorithm for the stabilization strategy is divided into two main parts: The first
section addresses the problematic regarding the tip-over detection and then, the second part,
examines the tip-over avoidance query.

5.3.2.1 Tip-over detection algorithm

Generally speaking, a mobile manipulator tends to tip over its tip-over axis. A tip-over axis
is described by the outer edge of its footprint. Depending on the shape of the footprint, the
mobile manipulator could tip over the different axes that correspond to the outer edge of its
footprint.

The tilting shape of a mobile manipulator is defined by linking the connecting lines of the
contact points between the wheels of the mobile platform and the ground. Thus, for a mobile
platform with three wheels, the triangle sides constitute the tilting stability axes for the mobile
manipulator. Each of these axes is represented with a unit vector, as shown in Figure 94. Their
direction corresponds to the shape of a closed chain.

Figure 94 Tilting shape and mobile platform COG (following [95]).

The technique Force Angle stability measure (FA), seen in Section 3.2, served as a starting
point for the implementation of the tip-over detection algorithm. Since the position of the
mobile manipulator’s COG changes depending on the configuration of the robot manipulator,
the COG of the overall system has to be continuously calculated by the ROS package
robot_kinetics_pkgs [179]. In order to detect if the mobile manipulator is prone to tip-over, the

150 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

algorithm computes all forces acting on the robot manipulator at any point of time. The resulting
vector intersects the plane on which the tilting shape lies. Then, the distance between the
projection of the intersection point and the tilting axes are determined. If the intersection point
is situated outside the tilting shape (Figure 94), the mobile manipulator has a risk to tip-over.

The sensitivity of this algorithm can be adjusted by increasing or decreasing the offset that
describes the distance between the COG and the footprint, as shown in Figure 95. The greater
the offset, the more sensitive the tip-over detection because the resulting force vector points
outside the footprint earlier.

Figure 95 FA point of intersection (red) between resulting force and footprint (following [148]).

The Force-Angle stability measure monitors the angle between the resulting force and the
mobile manipulator tip-over axes, but only examines magnitude and direction of the total
acceleration measured by sensors located on the mobile platform. Additionally, the stability
state is represented as a binary value, distinguishing between stable and unstable, but no
statement is made about the degree of risk.

Consequently, this approach is enriched by employing the Moment Height Stability (MHS)
method, introduced in Section 3.2, which not only considers the forces measured by Inertial
Measurement Units (IMU) situated on the mobile platform, but also contemplates the internal
forces emerged during the robot manipulator’s motion.

In order to implement the MHS technique, the mobile manipulator model (including mass,

COG and inertia tensor) in combination with the motions of the robot manipulator (position,
velocity and acceleration of all joints) is employed to determine the inverse dynamics of the
system by applying the recursive Newton-Euler algorithm (RNEA) of R. Featherstone [55],
seen in Section 2.5. The inverse dynamics is the foundation of the dynamic tip-over detection
using the MHS technique, since its components represent how the robot manipulator affects the
mobile platform in terms of the forces (including inertial) and torques generated only by the
robot manipulator’s motion itself. The RNEA algorithm adopted to solve the inverse dynamics
in this study was already implemented by R. Smits [180,181] in ROS, based on the R.
Featherstone statements.

To this effect, the ROS topic joint_states provides the current joint positions and joint
angular velocities of the robot manipulator. The joint angular accelerations are not directly

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 151

available from the topic, but they are implemented as an extra ROS node, which continuously
calculates them by using the backward-difference approximation (only the current and last
value for the angular velocity are available). The topic joint_state_acceleration publishes then
all the information regarding each joint required for the inverse dynamics.

As a first step, the velocity and acceleration of all robot manipulator’s links, beginning
from the basis to the end effector (TCP), as well as the emerging forces and torques that induced
those accelerations are estimated. Subsequent, all forces and torques transferred from the parent
link to the child link across the kinematic chain are also computed by combining equations for
the linear and rotational motion of rigid bodies given by Newton and Euler [55]. Besides, an
IMU has to deliver information about the 3D-linear acceleration of the moving mobile platform
and the vector of the gravitational acceleration regarding the mobile platform, since the
acceleration/deceleration generated during the starting off/braking process is crucial for the
estimation of a stability value.

Based on the outcomes of the inverse dynamics (RNEA) as well as the measurements from
the IMU and the location of the COG related to the mobile coordinate system, the dynamic
stability can be estimated by means of the MHS method following these steps:
1. The system has to be first split into the two parts that are physically connected by the point

P, as represented in Figure 96: the mobile platform and the robot manipulator. The

components of 𝐹 and �⃗⃗� represent how the robot manipulator affects the mobile platform
when the robot manipulator moves.

Figure 96 Connection point P of the mobile platform with the robot manipulator [148].

2. The acceleration values acting on point P has to be estimated and represented in the
coordinate system of the mobile platform.

3. The joint forces acting on point P are also computed by means of inverse dynamics
(RNEA) and correspondingly projected to the mobile platform coordinate system.
Additionally, all inertial forces caused by the linear acceleration of the mobile platform
acting on its COG has to be considered into the algorithm.

4. The tilting shape is defined, as in the FA method.
5. From the sum of the forces affecting the system, a total moment Mi,T is calculated for each

vertex of tilting shape by the cross product between the resultant force FM generated by the
robot manipulator and the (inverted) connection vectors of the tilting shape 𝑒 𝑠𝑖𝑑𝑒, adding
the resulting moments of the articulations Md. Figure 97 assists the formulation of the
corresponding equations.

152 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 97 Vectors for the projected torque calculation. �⃗⃗� 1,𝑇 = (𝑒 𝑟𝑖𝑔ℎ𝑡 × 𝐹 𝑀) + �⃗⃗� 𝑑

(95) �⃗⃗� 2,𝑇 = (𝑒 𝑙𝑒𝑓𝑡 × 𝐹 𝑀) + �⃗⃗� 𝑑

(96) �⃗⃗� 3,𝑇 = (𝑒 𝑓𝑟𝑜𝑛𝑡 × 𝐹 𝑀) + �⃗⃗� 𝑑. (97)

In addition, all moments acting on the COG of the mobile platform have to be estimated
by the cross product between the force and the corresponding lever arm as follows �⃗⃗� 1,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑟𝑖𝑔ℎ𝑡 × 𝐹 𝐵𝑎𝑠𝑒)

(98) �⃗⃗� 2,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑙𝑒𝑓𝑡 × 𝐹 𝐵𝑎𝑠𝑒)

(99) �⃗⃗� 3,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑓𝑟𝑜𝑛𝑡 × 𝐹 𝐵𝑎𝑠𝑒). (100)

The total moment regarding each tilting edge is calculated as the addition of both moments: �⃗⃗� 𝑣1 = �⃗⃗� 1,𝑇 + �⃗⃗� 1,𝐵𝑎𝑠𝑖𝑠

(101) �⃗⃗� 𝑣2 = �⃗⃗� 2,𝑇 + �⃗⃗� 2,𝐵𝑎𝑠𝑖𝑠

(102) �⃗⃗� 𝑣3 = �⃗⃗� 3,𝑇 + �⃗⃗� 3,𝐵𝑎𝑠𝑖𝑠. (103)

6. These resulting moments �⃗⃗� 𝑣𝑖 have to be projected on the respective tilting axis by means
of scalar product between them and the vectors of the tilting shape. Given 𝑝1⃗⃗ ⃗, 𝑝2⃗⃗⃗⃗ … 𝑝𝑛⃗⃗⃗⃗ as
contact points of the mobile platform with the ground (wheels), the unit vectors can be
calculated as follows �⃗⃗� 𝑖 = �⃗⃗� 𝑣𝑖 ∙ 𝑒�̂� (104)

with 𝑒�̂� = 𝑝 𝑖+1 − 𝑝 𝑖‖𝑝 𝑖+1 − 𝑝 𝑖‖. (105)

The resultant moment �⃗⃗� 𝑖 comprises all forces and moments acting on P (caused by the
robot manipulator) as well as all forces and moments acting on the COG of the mobile
platform (caused by inertias, linear accelerations/decelerations from starting off and
braking process, gravitational forces, etc.).

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 153

7. Considering that positive moments faced inside the unit vectors of the tilting shape, positive

moments mean that the sum of all stability moments regarding an edge is bigger than the
sum of all the tilting moments. The dynamical stability value 𝛼𝑖 relating to the same 𝑖 edge,
for which the moment is calculated, can be then computed with help of the mass moment
of inertia of the mobile manipulator regarding the 𝑖 edge, 𝐼𝑣𝑖. 𝛼𝑖 = (𝐼𝑣𝑖)𝜎𝑖 ∙ 𝑀𝑖 (106)

where 𝜎𝑖 = {+1 𝑓𝑜𝑟 𝑀𝑖 > 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (107)

The MHS coefficient is defined as the critical value (smallest dynamical stability value for 𝛼) regarding an edge 𝑖 of the tilting shape. In other words, the smallest value of 𝛼𝑖 regarding an
edge represents the edge with the most critical stability state. 𝛼 = min(𝛼𝑖) can thus be
interpreted as: 𝛼>0 System is stable 𝛼=0 System is critically stable 𝛼<0 System tends to tip over edge 𝑖
 𝛼𝑖 reacts very sensitively to the height of the system COG, i.e. under the same conditions,
a higher position of the COG leads to an increased level of vulnerability for the system stability
against tilting over. Therefore, the MHS equation is complemented as follows 𝛼𝑖−𝑐𝑚 = (ℎ𝐶𝑂𝐺)𝜆 · min(𝛼𝑖) (108)

being 𝜆 = {−1 𝑓𝑜𝑟 min(𝛼𝑖) > 0+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (109)

The continuous computation of the stability value 𝛼𝑖−𝑐𝑚 during the mobile manipulator
operation allows the detection of tip over risks and its critical tilting edge. The stability value
based on the MHS method is the basis for triggering the tilting avoidance countermeasures.

5.3.2.2 Tip-over avoidance algorithm

Once the tip-over detection algorithm is able to identify a possible overturn of the mobile
manipulator, it is decisive to actively react against these instabilities by means of a tip-over
avoidance algorithm.

A reduction of the traveling speed of the mobile platform can contribute to prevent a
system tip-over, however, it involves significant cycle time loss. Shifting the system COG,
whereby the robot manipulator takes another configuration/position, is probably the best and
most efficient method to avoid a tip-over of the mobile manipulator. Therefore, in case unstable
states are detected while the mobile platform is moving, a repositioning of the robot
manipulator’s arm takes place.

A prerequisite for tip-over avoidance procedure is that the initial orientation of the robot
manipulator’s TCP remains unchanged during the repositioning process.

5.3.2.2.1 Workspace optimization

The reachable workspace of a robot manipulator describes all points in the space that its
end-effector can reach in at least one of its orientations within its mechanical configurations.

154 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

On the other hand, the dexterous workspace is the subset of the reachable space in which the
end-effector is able to reach the points with all its possible orientations [182–184].

The workspace of a stationary robot manipulator is perfectly known and delimited by its
own kinematics. In contrast, the workspace of a mobile manipulator is infinitely large, variable
and restricted by walls and other barriers. Mobile manipulators have a global and a local
workspace: the local workspace is situated directly around the robot manipulator and describes
all points that can be reached by its end-effector without having to move the mobile platform;
the global workspace is characterized by the space the end-effector can reach when the mobile
platform also moves [183,185].

Besides that, the configuration space (so-called C-Space) contains all possible poses
restricted by the joint properties, in which each of its single point defines a unique configuration
of the robot manipulator kinematic chain [183]. The dimension of the configuration space
corresponds to the minimum number of parameters needed to specify a pose of the robot
manipulator (its degree of freedom [186]). Moreover, all joint positions that are impermissible
within the configuration space are represented by the collision (obstacle) space Cobs. The so-
called free space is, then, the difference of the collision space and the configuration space.

The proposed stabilization algorithm implements all these workspaces in ROS as follows:
 The reachable workspace of the robot manipulator has to be stored in the general robot

description.
 The robot manipulator´s configuration space, including its permissible joint range, are

defined as variable on the robot description. The joint movements can be set up using the
MoveIt! wizard.

 The configuration space has to be constrained with collision matrixes, so that no collisions
with the own robot manipulator’s links occur [187].

 Obstacles in the workspace are included to simulate the items that normally exist in a real
environment. They are taken into account during the motion planning [188].

 Based on the defined configuration and collision space, a collision-free path is created. A
comprehensive selection of algorithms for the motion planning can move the joints within
this free space employing MoveIt! Because of its high success rate and its fast computation,
the solver RRT (rapidly-exploring random tree) is implemented to search for a collision-
free path within the configuration space in this approach [189, 190].

In order to implement the workspace optimization (illustrated with the green area in
Figure 98-b), the entire theoretical workspace (illustrated with the orange area in Figure 98-a)
is divided into two parts: a critical and a non-critical workspace.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 155

Figure 98 a) Theoretical and b) Non-critical workspace optimization (following [175]).

1. The non-critical area is described by a hemisphere with the original theoretical workspace 𝑟𝑡ℎ𝑒𝑜 as its maximum radius, and
2. The critical workspace is proposed as an ellipsoid with maximum focal point 𝑟𝑜𝑝𝑡. The

ellipsoid is chosen because its geometric shape builds a sphere very closely, resulting in
minimal modifications to the original workspace and minimal reductions regarding its
volume.

The non-critical area is represented with the equation for ellipsoids: (𝑥 − 𝑥0(𝑡))2𝑎2 + (𝑦 − 𝑦0(𝑡))2𝑏2 + (𝑧 − 𝑧0(𝑡))2𝑐2 = 1. (110)

Considering that the rotary axis of the front wheels of the mobile manipulator coincides with
one of its tilting shapes (see Figure 97), the risk of tip over the front two wheels tends to be
much higher in comparison with both lateral wheels. Consequently, the optimized radius, 𝑟𝑜𝑝𝑡,
can be considered for the 𝑎-direction in the Eq. (111), and the entire theoretical radius, rtheo, can
be used for the 𝑏- and 𝑐-directions. The generally valid equation is reformulated as follows 𝑥, 𝑦, 𝑧, 𝑟 ∈ ℝ3 |(𝑥 − 𝑥0(𝑡))2𝑟𝑜𝑝𝑡2 + (𝑦 − 𝑦0(𝑡))2𝑟𝑡ℎ𝑒𝑜2 + (𝑧 − 𝑧0(𝑡))2𝑟𝑡ℎ𝑒𝑜2 | ≤ 1. (111)

Since the optimized workspace must define the volume at which the mobile manipulator
adopts all positions without making it tip over, the tilting moment Mstatic with respect to point
A shown in Figure 99 is employed to define the dimensions of the ellipsoid.

Figure 99 Free body diagram of mobile manipulator (following [175]).

156 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

 𝑀static = ∑𝐹𝑖 · 𝑑𝑖 .𝑛
𝑖=0 (112)

Nearly all robot manipulators possess 6 or 7 articulated joints. It can be generalized that

from the three main joints and their corresponding links of robot manipulators (J1 or waist joint,
J2 or shoulder joint and J3 or elbow joint), the positions that mainly affect the tilting moment
Mstatic are characterized by its second and third link: in Figure 99, the lever arm of forces F1 and
F2 to the center of rotation A changes depending on angles β and Υ.

Thus, the moment generated by force F1 is determined by changes in the angle β of the
robot manipulator. Likewise, the moment produced by force F2 is determined by both, β and Υ,
as follows:
For F1, 𝑑1 = l1 · sin(𝛽) (113)

For F2, 𝑑2 = l1 · sin(𝛽) + l2 · sin(𝛽 + Υ). (114)

Considering the whole angle interval of β for the first link (l1) and only limiting the angle
interval Υ for the second link (l2) implies that the robot manipulator would be able to adopt the
greatest possible arch for reaching the target point, without suffering any instabilities.

Once the optimized workspace is defined, it is also necessary to determine whether the

robot manipulator’s TCP is located within the pre-defined critical volume (in front of the robot
manipulator) or within the non-critical volume (behind the robot manipulator– this area is less
critical, as the robot manipulator is further away from the edge it might tip over). For that
purpose, the vector between the mobile platform and the robot manipulator’s end-effector 𝑇𝐶𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗ has to be calculated and then transformed into the coordinate system of the mobile
platform.

Figure 100 The angle 𝛤 defines if the TCP is located within the critical volume (following [175]).

As shown in Figure 100, the scalar product between the direction vector 𝑥 mp and vector TCP⃗⃗ ⃗⃗ ⃗⃗ ⃗mp is used to infer the value of angle 𝛤 as follows

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 157

 Γ = cos−1 (𝑇𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗mp ∙ �⃗⃗� mp‖𝑇𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗mp‖). (115)

This angle 𝛤 provides information about the position of the TCP relative to the mobile
platform. This way, it can be distinguished whether the equation for the hemisphere or for the
ellipsoid should be used for the workspace during the operation of the mobile manipulator. In
general, if:
 𝛤 <90°, the TCP is located within the critical volume and, thus, the ellipsoid should be

employed as the permitted workspace for the motion planning.
 𝛤 >90°, the TCP is located within the non-critical volume and, thus, the hemisphere

defined by the theoretical local workspace should be employed for the motion planning.

By means of this function, the limits of the reachable working space is also implemented
in ROS: the transformation between the map and the mobile platform is first retrieved. This can
be used to determine the vector between the mobile platform and the TCP, which is then
transformed into the coordinate system of the mobile platform. The subsequent calculation
checks whether the TCP lays in front of the robot manipulator, in the critical volume, or behind
it, in the non-critical volume. The function can then distinguish whether the spherical equation
or the equation of the ellipsoid is being used.

5.3.2.2.2 Repositioning of robot manipulator

The robot manipulator and the mobile platform moving simultaneously is the second
relevant scenario that has to be examined. There, dynamic forces and moments are generated
by the robot manipulator joints and by the mobile platform motion itself. Therefore, as soon as
an instability is detected by the algorithm presented in Section 5.3.2.1, a further algorithm
should actively shift the system COG in such a way that the value from MHS exhibits more
stability, in other words, 𝛼𝑖−𝑐𝑚 increases its value.

The effortless way to implement it would be the reposition of the arm of the robot
manipulator into a fixed home/safe posture before the platform starts to move. However, this
method involves significant loss of time for the original task to be performed: even if the TCP
is only just outside the non-critical volume, the robot manipulator has to execute the complete
trajectory to the home/safe position before the mobile platform starts moving. Therefore, a
prerequisite for the stabilization strategy presented in this approach is that the robot manipulator
moves as little as possible during the reposition, in order not to unnecessarily deviate it from its
original path.

A similar analysis to that in Section 5.3.2.2.1 is carried out to determine the dynamic

critical torque Mdyn, using the schema in Figure 101.

158 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 101 Free body diagram of mobile manipulator considering dynamic forces and

 moments generated by operation movements (following [175]).

𝑀dyn = ∑𝐹𝑖 · 𝑑𝑖𝑛
𝑖=0 − ‖𝑎 ‖ · mtotal · ℎCOG. (116)

The height of the COG of the individual components, h𝑖 , depends on the angles β and Υ as ℎ𝑖=1 = ℎ0 + cos(𝛽) · ℎ1−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 (117)

where ℎ0 represents a constant, corresponding to the height up to the first joint, and the value ℎ1−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 describes the height of the COG for the first link, with respect to its own coordinate
system located in its pivot point. The height of the COG for the second member is, then,
calculated with help of both angles (β and Υ) as well as with the length 𝑙1 of the first link as
follows ℎ𝑖=2 = ℎ0 + 𝑙1 · cos(𝛽) +ℎ2−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 · cos(𝛽 + Υ). (118)

Changes in the dynamic tilting stability, α, can be studied in relation to the robot

manipulator joint variables, qi, which describe the relative rotational motion between its
contiguous links. They characterize the coordinates of the spaces in which the location of all
the links of the robot manipulator are represented [191].

Through the gradient method, it is possible to find out in which direction in space the vector
attached to the TCP acquires higher tilting stability by applying a fixed increment Δ±qi. This
increment is added to and subtracted from each current joint position qi of the robot manipulator
iteratively until the termination criterion, the dynamic tilting stability value computed by the
MHS method, is fulfilled.

A spatial discretization is carried out in order to simplify the approximation of the gradient
method. The revolute joints q1 to q4 of the robot manipulator are the only parameters used for
the discretization because they produce the greatest influence on the tilting stability of the entire
system. The tilting stability value remains almost unchanged if the joint variables q5, q6 and,
eventually, q7 varies, since they have about the same coordinate origin.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 159

Figure 102 Discretization of workspace for the implementation of the gradient function required for

the repositioning of the robot manipulator’s joints (following [175]).

The red point illustrated in Figure 102 represents the current position of the robot
manipulator´s TCP. Based on this configuration, when the tip over detection algorithm
identifies an instability, i.e. the stability value drops lower than the predefined critical value,
the tip over avoidance algorithm calculates a new tilting stability value, 𝛼∆±𝑞, for the joint
configuration that corresponds to each of the blue points. If the maximum value determined for
this new tilting stability value, 𝛼∆±𝑞, increases above the defined threshold value, 𝛼cm−critical,
then the new joint position is sent to the motion control and the robot manipulator repositions
its joint, thus, improving the system stability state. Otherwise, if the calculated 𝛼∆±𝑞 does not
fully overshoot the threshold value 𝛼cm−critical, the algorithm iteratively calculates a new tilting
stability value 𝛼∆±𝑞 until it fulfills the stability criterion. Using this technique, it can be ensured
that the robot manipulator is repositioned as much as necessary. This algorithm is illustrated in
Figure 103.

160 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 103 Algorithm for calculating the new joint position for robot manipulator (following [175]).

The developed algorithm of the stabilization strategy for mobile manipulators is also
implemented in the ROS model to cover the “tilting detection” and “tilting avoidance”
functionalities, as illustrated in Figure 104. It determines a new TCP position for the robot
manipulator that implies higher tilting stability and returns it to the main program. Then, the
control unit relocates the corresponding joints within the collision-free optimized workspace,
specifying the target orientation as the current orientation of the TCP.

Figure 104 Mobile manipulator control functionalities.

Before the mobile manipulator starts moving, the /tilt_over_detection node subscribes the
topic of the IMU measurements, to get the data provided by the inertial sensors, and the topic
COG, to get the position and orientation of the mobile manipulator’s COG. Once the required

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 161

information is received, the same node /tilt_over_detection estimates the vector
Position_IntersectionPoint for all tilting edges and, consequently, publishes this information in
the topic /tilt_risk. If the Position_IntersectionPoint delivers a positive value, the calculated
force points outside the overturning shape and the mobile manipulator is prone to tip over.
Following this, the node /robot_main_control subscribes the information contained in the topic
/tilt_risk and controls the robot manipulator to move to a safety position within the predefined
optimized workspace, employing the gradient approach. After the mobile manipulator is
considered as stable, the topic /estimated_tcp_goal sets and publishes how to reach the desired
tcp_goal_position, either only performing a rearrangement of the robot manipulator joints or
including the displacement of mobile platform to another point in the space. After the path
planning is completed, the target position and orientation for each robotic subsystem are posted
iteratively to the control unit and the mobile manipulator starts moving to the goal position.
Meanwhile, the /tilt_over_detection checks the current stability value 𝛼𝑖−𝑐𝑚 continuously: as
soon as 𝛼𝑖−𝑐𝑚 drops below the predefined critical value, the node /robot_main_control starts
the repositioning, since the whole system is unstable. Once the system exhibits a stable state,
the /estimated_tcp_goal adopts temporary the new position (after repositioning) in the path
planning as target position for the robot manipulator until the mobile platform reaches its target
position, so as to not affect the stability state achieved.

5.4 Implementation of stabilization strategy employing a testing system

Since this second approach demands the customization of the control system of the mobile
manipulators and due to the fact that the standard industrial robot manipulator used as testing
system in approach A (see Section 4.5) does not allow the alteration of its control system, an
additional testing system was required for the implementation of the stabilization strategy.

The new adopted testing system is operated by a higher robot manipulator and by an even
more compact mobile platform that, together, offer high agility and maneuverability due to its
compact design, however, the addressed stability problem has been observed during some
experimental attempts: large forces and moments generated by certain configurations and/or
motions of the robot manipulator tended to tip the mobile manipulator over.

The testing system is comprised by the mobile platform Scitos G5 by MetraLabs and the
7-DOF lightweight robot manipulator LWA 4D by Schunk, illustrated in Figure 105. Both
subsystems are equipped with open-source middlewares, which enable an easy and fast
implementation of algorithms.

Figure 105 Scitos G5 and LWA 4D as testing system for the developed approch B.

The mobile platform uses differential drives to get moving. Especially for such mobile
platforms, the direct contact between the ground and its drive wheels is essential; otherwise, if

162 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

the drive wheels raise off the ground, the theoretical current location of the TCP in the real
world space will be incorrect because it will be calculated using the wrong parameters for its
position and orientation.

The mobile platform’s battery powers the robot manipulator through a DC-DC converter.
This makes the mobile manipulator independent of wired connections. It must be noted that the
mobile platform is controllable with the middleware for robotic applications MIRA [192],
whereas the 7-DOF robot manipulator is controlled by the robot operating system ROS [193].
For the system integration of the two different middlewares, the ROS - MIRA bridge of the
STRANDS project [194] was implemented. This made the whole robot system controllable via
ROS, required for the execution of the stabilization strategy.

Although the presented approach was implemented through simulations, the goal is to

validate the stabilization strategy in the real system once the results from the simulation sets are
shown as satisfactory. For the assembly of both subsystems, the following mechanical,
electrical and information technology integration were required:
 Mechanical integration. The robot manipulator was mounted centered on the upper plate

of the mobile platform to ensure an equivalent handling workspace in all directions. This
way, the robot manipulator is able to handle the same payload under the same
circumstances in all directions of its world coordinate system, located center-aligned of the
mobile platform.

 Electrical integration. Both, the mobile platform and the robot manipulator, operate on
24 VDC. The robot manipulator required 5 A for continuous operation or rather a
maximum of 15 A for peak load operation [195]. Theoretically, the power consumption of
both subsystems could be supplied by the built-in battery of the mobile platform [196].
The main challenge by adopting this solution was the variations on the battery power
supply within the rated voltage depending on its state of charge (29 VDC while charging,
28 VDC at full charge and 22 VDC when almost empty). The servomotors of the robot
manipulator were designed for being operated at 24 ±5% VDC (25.2 VDC – 22.8 VDC).
If the robot manipulator was powered with a higher VDC, its components would be
damaged. To meet this requirement, a DC-DC converter had been integrated into the
electric circuit to power the robot manipulator with constant 24 VDC and to provide the
required 6.2 A nominal current (5 A for its motors and 1.2 A for its control unit).

 Information technology integration. As mentioned above, due to the fact that the mobile
platform was controlled by the middleware MIRA [197] and the 7-DOF robot manipulator
was controlled by the middleware ROS, a software/firmware integration was needed in
addition to the mechanical and the electrical integration. The mobile platform
manufacturer does not offer any possibility to achieve a communication between ROS-
based robot controllers with the mobile platform. Hence, both robotics systems should
work based on MIRA or ROS, and one of the systems had to be adapted to work based on
the middleware available by the other system. Considering the easiness ROS involves, an
interface between MIRA and ROS enabled them to collaborate in a ROS environment: the
mobile platform motion planning was calculated by MIRA but its execution was performed
by ROS, acting as a single system for the entire mobile manipulator. For the integration,
the Spation-Temporal Representation and Activities for Cognitive Control in Long-Term
Scenarios (STRANDS [50]) was implemented as interface between MIRA and ROS. The
STRANDS project contains the packages scitos_drivers, scitos_common and sick300. The
actuation of the robot manipulator joints are received from the computational unit located

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 163

at the mobile platform to the servomotors via CANopen. Consequently, the integrated
mobile manipulator can be controlled entirely through ROS.

5.4.1 Modeling a close-to-reality mobile manipulator testing system

The model of the testing system mobile manipulator was composed of the description of
the robot manipulator and the description of the mobile platform. The robot manipulator was
prepared according to the already available software package developed by Fraunhofer IPA
[176,198,199], as a part of various cooperative research projects with the robot manufacturer.
The subfolder package schunk_modular_robotics/schunk_description/meshes included the data
related to the links and joints geometry of the robot manipulator in form of STL (stereo
lithography CAD for 3D systems) mesh files.

The robot definition available from the IPA project [176,198,199] only included the
standard configuration of the robot manipulator (LWA 4D). The robot manipulator employed
as testing system in this work was a special edition of the LWA 4D, which contained a
230-mm extension piece between the third and fourth joints. Thus, for the purpose of analysis,
the robot definition was slightly adjusted in the schunk_lwa4d_moveit_config, adding the
mentioned extension piece together with its physical properties as mass, center of mass, inertial
parameters, etc.

Besides, the subfolder schunk_description/urdf described the masses of all robot
components, their material properties, how they were arranged to each other, where their
coordinate systems were located, the dependencies on a moving part fixed coordinate system,
the spatial boundaries, and so forth. Furthermore, security zones (collision zones) and the
Denavit-Hartenberg parameters, for the kinematic chain of the robot manipulator, were also
defined in the URDF-file.

The URDF-file for the mobile platform was built up from scratch based on STL. Since a
detailed modeling of all its components was not target-oriented, its structure was therefore
analyzed to identify the bodies with the greatest influence on the dynamic behavior of the
mobile platform. However, the real geometry must be reproduced as accurately as possible. The
mass and COG of each main body must match the reality.

The two wheels for the differential drives of the mobile platform together with its support
wheels were added to the robot definition, permitting all the DOF needed for a real motion.
Additionally, in order to help the detection of tilting instabilities, the same IMU implemented
for approach A (see Section 4.5.4) and the laser scanners were also represented virtually using
an additional node: Their raw data were employed as input variables in Gazebo for the current
pose of the mobile manipulator in space [200]. Thanks to a coordinate transformation of the
gravitational vector, changes in the direction of gravity, e.g., by driving on a ramp, could also
be detected.

For the integration of both subsystems into one single model, the robot description of the
mobile platform was defined as parent for the mobile manipulator, being the part on which the
robot manipulator (defined as child) was mounted. This integration is shown in Figure 106.

164 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 106 The virtual model of the mobile manipulator [95].

In order to obtain the same traveling behavior of the real mobile platform in the simulations
(controlled by the computational unit), plugins for the data transfer between ROS and Gazebo
for the differential drives were added and configured as in the real robot. These control packages
involved the scitos_drivers, the scitos_common and the sicks300, provided in Annex A.5.
Consequently, the entire mobile manipulator was able to be completely controlled through
ROS.

The robot control program “RobotMainControl” (RMC) allowed the mobile manipulator
to interact with its environment. RMC expected as input parameter the target position and
orientation for the TCP in world coordinate system. Then, an additional node estimated the
target position and orientation for each individual subsystem, the mobile platform and the robot
manipulator, so that the expected TCP position and orientation is reached. Given a target
position for the TCP, ROS nodes calculate the path planning, communicate their results to the
motion driver node and, then, the whole mobile manipulator moves and reaches the target
position.

In order to ensure that all required nodes started automatically and quickly one by one in
the correct sequence, the launch files kipp_dynamisch_bringup.launch and

bringup_robot_main_control_dyn.launch were implemented to manage the tasks needed for
the automated ROS package initiation.

5.4.2 Tip-over detection algorithm

The effect of the linear acceleration of the mobile platform over the entire mobile
manipulator can be be analyzed based on the illustrated example in Figure 107.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 165

Figure 107 Robot manipulator position for the estimation of the effects of linear accelerations.

In this example, the mobile manipulator’s COG is defined as

[𝑆𝑥𝑆𝑦𝑆𝑧] = [0 𝑚0 𝑚0.38 𝑚]
and the IMU only detects the value for the gravity vector

[𝑎𝑥𝑎𝑦𝑎𝑧] = [0 𝑚/𝑠20 𝑚/𝑠2−9.81 𝑚/𝑠2]
𝑇

The distance between the system COG (𝑆) and one of the two front wheels was 𝑑𝑓=0.075 m.
Then, if the mobile platform was assumed to experience an acceleration of 1 m/s2

[𝑎𝑥𝑎𝑦𝑎𝑧] = [1 𝑚/𝑠20 𝑚/𝑠2−9.81 𝑚/𝑠2]
𝑇

a displacement of the projected COG in the direction of the applied acceleration derived. As a
result of this, the distance from the COG to the tilt edge reduced to 𝑑𝑓=0.036 m.

The torques acting on each joint of the robot manipulator obtained from the ROS topic

rnea_return21 were validated for plausibility on the real mobile manipulator using the following
two scenarios:

21 Refer to [95] for source code.

166 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

1. In order to generate the greatest possible variation of torque by the robot manipulator’s

arm, the COG of the 5th, 6th and 7th robot manipulator links were aligned with the 4th joint
rotatory axis so that no additional moments affected the 4th joint. Then, the 4th joint was
accelerated from this position to the sides. As a result, during this acceleration the COG
was shifted and, thus, an additional moment was generated due to the increasing lever arm.
The moment acting on the 4th joint was analytically calculated for each instant with 𝑀4 = 𝐼4 ∙ 𝜔4. (119)

Table 44 shows the results obtained from the analytical calculations and from the RNEA
algorithm.

Table 44 Torque generated at 4th joint [95].

Analytical Results from RNEA node employing

the real robot manipulator

0.49 N·m 0.498 N·m

2. The robot manipulator’s arm was placed vertically. But now, instead of accelerating its 4th
joint to the sides, the mobile platform was linearly accelerated while the robot manipulator
stands still. 𝑎 = (0.37−0.03−0.13)m s2⁄ , 𝑆 = (−0.0021−0.00170.6307)m

where 𝑎 describes the linear acceleration of the mobile manipulator and 𝑆 defines the
position of its COG with respect to connection point P illustrated in Figure 96.
The inertial forces generated by the linear acceleration were calculated using d'Alembert’s
principle. Table 45 presents the forces and torques at the connection point P.

Table 45 Forces and torques generated at point P [95].

Force/Torque

components
Analytical

RNEA using real

robot manipulator 𝐹x 8.5 N 8.5 N 𝐹y -3.2 N -3.2 N 𝐹z 196.0 N 196.1 N 𝑀x 1.7 N·m 1.7 N·m 𝑀y 5.8 N·m 5.8 N·m 𝑀z 0.0 N·m 0.0 N·m

Thereupon, the proposed tip-over detection algorithm for the testing system was validated
by computing the dynamic tilting stability value on both, simulations and real mobile
manipulator. Table 46 shows that the calculated tilting stability from the simulations tends to
be higher than those calculated from the real mobile manipulator for the same three predefined
positions (with deviations smaller than 5%).

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 167

Table 46 Comparison of the tilting stability value for the simulation model and the real robot

manipulator in home, transport and one critical position [175].

Robot
manipulator

position

Dynamic tilting stability value
Regarding
tilting edge

Real
system

Simulation
environment

Discrepancy

Home position
𝛼1−𝑐𝑚 685 698 +1.9% 𝛼2−𝑐𝑚 675 703 +4.2% 𝛼3−𝑐𝑚 449 466 +3.8%

Transport
position

𝛼1−𝑐𝑚 744 773 +3.9% 𝛼2−𝑐𝑚 751 779 +3.7% 𝛼3−𝑐𝑚 396 388 −2.0%

Critical
position

𝛼1−𝑐𝑚 960 989 +3.0% 𝛼2−𝑐𝑚 958 993 +3.6% 𝛼3−𝑐𝑚 ≈0 ≈0 ≈0%

The main found discrepancy was the value 𝛼𝑖−𝑐𝑚 at which the mobile manipulator starts
to tip over: during the simulations, the mobile manipulator started to tip over at 𝛼𝑖−𝑐𝑚=0,
whereas the real mobile manipulator did at 𝛼𝑖−𝑐𝑚=150. The small variation in the braking
process of the real mobile platform regarding the ideal simulation profile could be the reason
for the higher stability state of the real mobile manipulator. Another possible cause could be
the model simplification used for the robot description employed in the simulations.

Although the causes for the discrepancies might be the same for simulations of all kind of
mobile manipulators, the value 𝛼𝑖−𝑐𝑚 has to be determined for each particular real mobile
manipulator.

5.4.3 Tip-over avoidance algorithm

The theoretical local workspace of the testing system robot manipulator of 0.963 m is
originally described by the manufacturer as the radius of the sphere formed with its center at
the second joint of the robot manipulator. During preliminary examinations, it was identified
that this theoretical workspace could not be fully deployed as local workspace for the mobile
manipulator due to the risk of tip-over.

Due to this fact, a redefinition of its theoretical local workspace was inferred by finding an
optimum volume as large as possible so that the robot manipulator had maximum room to move
freely and safely without risk of tip-over.

The diagrams in Figure 108 show the static tilting moment Mstatic as function of a wide
range of values for the angles β and Υ (refer to Section 5.3.2.2.1) of the testing system mobile
manipulator. The red lines indicate the critical range in which the system presented instabilities
(Mstatic>0).

168 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

a)

b)

Figure 108 Estimation of a) tilting moment (top) and b) ellipsoid critical radius (bottom)

under static conditions for different angle configurations β and Υ [175].

The minimum value of Υ for which the calculated tilting moment did not exceed 0 N·m
over the entire interval of 𝛽 is pointed out with the blue auxiliary line at Υ=84° in
Figure 108-a. This value was transferred to the diagram in Figure 108-b, which helped to
estimate the critical radius employed for the workspace optimization. Hence, the maximum
minor axis (ropt) for the semi-ellipsoid could be deduced from Figure 108-b to be about 0.7 m.

The optimized workspace was spatially discretized with q=0.1 rad, equivalent to a 5.7°

joint angle, as displayed with the dotted volume in Figure 109. Only within this optimized
workspace, the robot manipulator was allowed to extend its upper joints as far as possible
without causing any instability, as long as the mobile platform was not in motion. Additionally,
the robot manipulator did not have to leave this safe optimized working space when its joints
were moving to the target coordinate.

Figure 109 Optimized workspace for mobile manipulator in RViz [175].

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 169

In addition to the workspace optimization, the second tip-over avoidance countermeasure

developed for such scenarios, in which the mobile platform is in motion, is implemented for the
testing system. The normal and emergency braking processes of the mobile platform have the
same profile as the presented in Section 5.5.3 (see Figure 55).

The diagrams in Figure 110 show the tilting moment generated on the mobile manipulator
under different accelerations of the mobile platform: the black level lines display all states in
which the stability moment was bigger than the tilting moment (stable states). The red level
lines reveal the area at which the tilting moment had a higher value than the stability moment,
i.e. unstable states.

(a)

(b)

(c)

Figure 110 Analysis of the stability moment as a function of the manipulator´s joint positions and

mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2, (c) 0.4 m/s2,

(d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines represent

unstable states of the mobile manipulator [175].

170 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

(d)

(e)

Figure 110 (cont.) Analysis of the stability moment as a function of the manipulator´s joint positions

and mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2,

(c) 0.4 m/s2, (d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines

represent unstable states of the mobile manipulator [175].

The area that symbolized the stable states is reduced as a result of the increasing
acceleration of the mobile platform, since the inertial forces are directly proportional to this
acceleration. The graph below (Figure 111) demonstrates that the stability value 𝛼cm−critical is
more dependent on the acceleration of the mobile platform than on the joint angle Υ of the robot
manipulator.

Figure 111 Critical tilting instability for different values of 𝛶 as a function

of the mobile platform traveling acceleration [175].

Considering 0.8 m/s2 as the maximal acceleration of the mobile platform, a repositioning
of the robot manipulator has to be triggered if its current stability value drops below the critical

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 171

value 𝛼cm−critical=250. Additionally, the optimized workspace determined in the previous
paragraphs was also adopted for scenarios under dynamic loads. Only then, can it be ensured
that the mobile manipulator does not tip over at any time during travelling or braking.

5.4.4 Validation of stabilization strategy employing testing system

The proposed stabilization strategy is considered as successfully validated if:
1. Regarding the optimized workspace, the mobile manipulator is stable and capable of

determining whether the mobile platform has to be displaced or not in order to reach a
target point without any risk of instability.

2. The tilting stability value of the mobile manipulator is improved with repositioning
procedures of the robot manipulator’s arm, keeping the initial orientation of its TCP
unchanged during the joint rearrangement.
Furthermore, the stabilization strategy should not set the mobile platform in motion until

the overall system is sufficiently stable, characterized by the tilting stability value 𝛼𝑖−𝑐𝑚.
For the repositioning procedures, the increment used in the calculations of the gradient

method (see Section 5.3.2.2.2) was added to and subtracted from the corresponding joint
position 𝑞𝑖 of the robot manipulator iteratively with a sample rate of 100 ms.

The developed scripts employed for the implementation of the stabilization strategy on the
mobile manipulator testing system are available in Annex A.5.

5.4.4.1 Evaluation of the stabilization strategy by means of simulations

In order to assess the developed algorithms (including the tip-over detection) by means of
simulations, the following tests scenarios were first performed without stabilization and, then,
repeated under the same conditions applying the stabilization strategy.

For each of the sets, the mobile manipulator was set in different configurations before
moving towards the target point. The mobile manipulator started at the initial position
(𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟). Then, it received the target points for each of

the subsystems, 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , which were not reachable

within the optimized workspace. An example of this action can be seen in Figure 112.

172 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Figure 112 Example of starting position and orientation of mobile manipulator moving to the

predefined target position.

The mobile manipulator behavior with and without the stabilization strategy are
summarized in Table 47. It can be seen from these data that two different critical tilting stability
values were considered during the operation: the first value, αcm−critical=250, was employed
when the mobile manipulator was affected by dynamic conditions (which corresponds to the
critical stability value at the maximal acceleration of the mobile platform, 0.8 m/s2); the second
value, αcm−critical=150, was used for situations where the mobile platform did not exhibit any
accelerations (static tilting stability value). In other words, as long as the mobile platform is in
motion, the threshold for a repositioning procedure was represented by αcm−critical=250. On
the other hand, as soon as the mobile platform reached its target position (and, consequently,
the robot manipulator would move to approach its target position), from that moment on, the
static tilting stability value, αcm−critical=150, defined the threshold for eventual repositioning
procedures. If the computed αi-cm lies below the value for each particular condition, the mobile
manipulator tends to tip over its tilting shape.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 173

Table 47 Comparative scenarios in order to verify the effectiveness of the active stabilization by

means of simulations (following [175]).
Set 1

Initial dynamic
tilting stability

α3−cm = 23

Without
stabilization

The first instability occurred at the time the mobile manipulator started to
move (at 4 s): the mobile platform tilted slightly over the front wheels.
After a brief strong acceleration at 9 s, which was evident from the sudden
increase in 𝛼3−cm, a deceleration occured. As a consequence, the mobile
manipulator completely tipped over from 12 s onwards.

With
stabilization

A repositioning was performed before the mobile platform started to move,
thus the critical dynamic tilting stability increased to about 𝛼3−cm=280. As
long as the mobile platform was in motion, several repositionings were
performed at 7 s, 8 s, 10 s and 12 s, because the dynamic tilting stability
went below the threshold αcm−critical=250. At approx. 14 s, the mobile
platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and, hereafter, the robot manipulator

moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

174 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Table 47 (cont.) Comparative scenarios in order to verify the effectiveness of the active stabilization

by means of simulations (following [175]).
Set 2

Initial dynamic
tilting stability

α3−cm = 17

Without
stabilization

The acceleration process caused that the mobile manipulator tilted over the
front edge several times between 10 s and 14.5 s. From about 14.5 s on, the
mobile manipulator tipped completely over the front edge.

With
stabilization

First, before the mobile platform moved, a reposition process took place.
The value of the critical tilting stability 𝛼3−cm increased to just over 250.
The mobile platform then started to move. Further repositioning iterations
took place at about 10 s, 11s and 12 s increasing 𝛼3−𝑐𝑚. On the other hand,
the 𝛼1−cm fell below the limit value at 16 s. This resulted in a new
repositioning for the robot manipulator. At approx. 19 s, the mobile
platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and, hereafter, the robot manipulator

moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 175

Table 47 (cont.) Comparative scenarios in order to verify the effectiveness of the active stabilization

by means of simulations (following [175]).
Set 3

Initial dynamic
tilting stability

The critical axis was one of the two lateral tilting axes, at about 𝛼1−cm=187,
representing the critical tilting stability.

Without
stabilization

At about 13 s, the entire system tipped over the lateral tilting edge. The
bumpers of the mobile platform dragged across the floor, causing a strong
noise from 13 s onward.

With
stabilization

A repositioning occurred at about 4 s. The value for 𝛼1−cm increased thus
to about 250. The acceleration process at about 7 s caused a destabilizing
effect against the lateral tilt edge. A new reposition was initiated, increasing
the value for 𝛼1−cm to about 400. At approx. 15 s, the mobile platform
reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and, hereafter, the robot manipulator moves

to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

176 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

For all simulations with the stabilization strategy, the repositioning of the robot

manipulator took place several times during the trajectory of the mobile platform, increasing
the stability of the entire system. As a result, the mobile manipulator reached the target points,
both the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , without any instability risk.

During sets 1 and 2, even a complete overturning was prevented.

5.4.4.2 Evaluation of the stabilization strategy using the real mobile manipulator

Similar to the simulation environment, the joint information of the real mobile manipulator
was transmitted by a separate publisher which, in turn, received the information from the
individual subsystems, arranged them in a certain sequence and outputted them at defined time
intervals.

For the evaluation of the stabilization strategy on the real mobile manipulator, a recursive

filter was implemented to reduce the noise of the signals received from the IMU. 𝑦𝑛 = (1 − 𝜂𝐹)𝑦𝑛−1 + 𝜂𝐹𝑥𝑛 (120)

where 𝑦𝑛 is the output variable, 𝑥𝑛 the input variable and 𝑦𝑛−1 the output value from the
previous iteration. The noise on the output variable was adjusted via coefficient 𝜂𝐹 (0≤ 𝜂𝐹 ≤1),
where 𝜂𝐹=1 produced an unfiltered signal and, the closer the coefficient went towards 𝜂=0, the
less influence the output variable had concerning its original value. For the present purposes, a
coefficient 𝜂𝐹=0.25 for acceleration curves was sufficient. In consequence, the accelerations
measured on the real mobile manipulator was significantly lower than those in the simulations.
The filter was integrated as a separated ROS node.

In the following test scenarios, a real tip-over of the mobile manipulator was not induced

in order to avoid damaging to the equipment. Analogous to the simulative tests in
Section 5.4.4.1, the sets differed from each other on the initial position and orientation of the
robot manipulator and the mobile platform, 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 and 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 .

Table 48 outlines the effect of the stabilization strategy on the real testing system mobile
manipulator.

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 177

Table 48 Comparative scenarios in order to verify the effectiveness of the stabilization strategy using

the real mobile manipulator (following [175]).
Set 1

Initial position
and orientation
of robot
manipulator

α3−cm = −34

Dynamic
tilting stability
value during
repositioning

Between 5 s and 7 s, the robot manipulator was rearranged to achieve α3−cm=280 before the mobile platform started to move. During the
trajectory towards the target point, no additional repositioning was
required. At approx. 16 s, the mobile platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

and, hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

End position
and orientation
of robot
manipulator

178 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy

using the real mobile manipulator (following [175]).
Set 2

Initial position
and orientation
of robot
manipulator

α3−cm = −80

Dynamic
tilting stability
value during
repositioning

Before the mobile platform started moving at 10 s, the robot manipulator
was repositioned by arranging its joints q1 and q2, thus achieving α3−cm=260. From 11 s to 17 s, the mobile platform kept in motion. At
around 11 s, the tilting stability value decreased below αcm−critical=250
due to the acceleration of the mobile platform and, as a result, the robot
manipulator was repositioned again, keeping this new position until the
mobile platform reached its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 at 17 s.

Hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

End position
and orientation
of robot
manipulator

Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller 179

Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy

using the real mobile manipulator (following [175]).
Set 3

Initial position
and orientation
of robot
manipulator

α3−cm = 150

Dynamic
tilting stability
value during
repositioning

Joint q1 repositioned the robot manipulator before the mobile platform
started to move, at 7 s, achieving αcm−critical=250. During the acceleration
process, the threshold was slightly undercut again at 11 s, so the robot
manipulator was repositioned one more time. At 17 s, the mobile
manipulator achieved its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and, hereafter,

the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟.

End position
and orientation
of robot
manipulator

180 Approach B: Stabilization strategy for
mobile manipulators with full access to the robot controller

Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy

using the real mobile manipulator (following [175]).
Set 4

Initial position
and orientation
of robot
manipulator

α1−cm = 208

Dynamic
tilting stability
value during
repositioning

The tilting stability value was improved by a first repositioning at 6 s,
rearranging only joints q1 and q4. Other repositioning iterations were
required due to the mobile platform trajectory path, between 10 s and 12 s.
At 15 s, the mobile manipulator reached its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and, hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 .

End position
and orientation
of robot
manipulator

For all the sets, the real mobile manipulator reached the target points for both, the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 and the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , without any instability risk and keeping its

original TCP orientation. Therefore, the proposed stabilization strategy fulfilled the
expectations.

Concluding assessment 181

6 Concluding assessment

Despite the fact that all implemented strategies show a considerable improvement in the
stability state of the compact mobile manipulator’s testing systems, they do not possess the
same evaluation criteria with regard to their technical feasibility in industrial environments.
Table 49 supports this evaluation by providing a summarized comparison of the stabilization
strategies presented in this work.

According to their associated pros and contras, the last two stabilization strategies

(employing the gyro effect from approach A and repositioning the robot manipulator from
approach B) offer a notable stabilizing effect and, furthermore, both preserve the original
orientation of the Tool Center Point (TCP) during the execution of the countermeasures.
Nevertheless, it can be clearly seen that the last approach, B, provides an additional advantage
derived from producing its stabilizing effect (torque compensation) for as long as required by
the tilting detection algorithm, just by repositioning the robot manipulator further if necessary.
In contrast, the gyroscope produces a torque compensation only during the time the precession
motion is carried out.

182 Concluding assessment

Table 49 Comparison of the four stabilization strategies.
C

o
n

s

O

ri
en

ta
ti

on
 o

f
T

C
P

 is
 n

ot
 m

ai
nt

ai
ne

d
du

ri
ng

 c
ou

nt
er

m
ea

su
re

, t
hr

ea
te

ni
ng

th

e
w

or
k

pi
ec

e
be

in
g

ha
nd

le
d.

M
an

ip
ul

at
or

 m
us

t b
e

in
cl

in
ed

ba

ck
w

ar
ds

 b
ef

or
e

th
e

br
ak

in
g

pr
oc

es
s

of
 th

e
m

ob
ile

 m
an

ip
ul

at
or

 b
eg

in
s,

e.

g.
, b

as
ed

 o
n

th
e

re
ad

in
gs

 o
f

la
se

r
sc

an
ne

rs
.

C

om
pe

ns
at

io
n

of
 d

es
ta

bi
liz

in
g

to
rq

ue
s

on
ly

 d
ur

in
g

sh
or

t p
er

io
ds

.

O

ri
en

ta
ti

on
 o

f
T

C
P

 is
 n

ot
 m

ai
nt

ai
ne

d
du

ri
ng

 c
ou

nt
er

m
ea

su
re

, t
hr

ea
te

ni
ng

th

e
w

or
k

pi
ec

e
be

in
g

ha
nd

le
d.

P
oo

r
ef

fe
ct

 a
ga

in
st

 in
st

ab
il

iti
es

.

C
om

pe
ns

at
io

n
of

 d
es

ta
bi

liz
in

g
to

rq
ue

s
on

ly
 d

ur
in

g
sh

or
t p

er
io

ds
.

L

ar
ge

 d
im

en
si

on
in

g
of

 c
om

po
ne

nt
s.

R
eq

ui
re

s
hi

gh
 s

af
et

y
st

an
da

rd
s

du
e

to

it
s

la
rg

e
fl

yw
he

el
 r

ot
at

io
n

sp
ee

d.

C

om
pe

ns
at

io
n

of
 d

es
ta

bi
liz

in
g

to
rq

ue
s

on
ly

 d
ur

in
g

sh
or

t p
er

io
ds

.

T

he
or

et
ic

al
 w

or
ks

pa
ce

 is
 r

ed
uc

ed
.

M

ob
ile

 m
an

ip
ul

at
or

 h
as

 to
 b

e
op

er
at

ed
 b

y
R

O
S

.

P
ro

s

B

ig
ge

r
co

m
pe

ns
at

io
n

of
 in

st
ab

il
ity

 f
or

ce
s

in

co
m

pa
ri

so
n

w
it

h
th

e
ot

he
r

lin
ea

r
dr

iv
es

st

ra
te

gy

(c
om

pe
ns

at
io

n
of

an

gu
la

r
m

om
en

tu
m

).

O

n-
tim

e
re

ac
ti

on
.

E

as
y

to
 c

on
tr

ol
.

O

n-
tim

e
re

ac
ti

on
.

Q

ui
ck

 g
en

er
at

io
n

of

gr
ea

t c
om

pe
ns

at
io

n
to

rq
ue

s.

E

as
y

to
 c

on
tr

ol
.

O

ri
en

ta
ti

on
 o

f
T

C
P

 is

m
ai

nt
ai

ne
d

du
ri

ng

co
un

te
rm

ea
su

re
.

O

n-
tim

e
re

ac
ti

on
.

O

ri
en

ta
ti

on
 o

f
T

C
P

 is

m
ai

nt
ai

ne
d

du
ri

ng

co
un

te
rm

ea
su

re
.

S

ta
bi

liz
in

g
co

un
te

rm
ea

su
re

s
ca

n
be

 a
pp

lie
d

as
 m

an
y

tim
es

 a
nd

 f
or

 a
s

lo
ng

as

 n
ee

de
d.

O
u

tc
o
m

e

M
ob

il
e

m
an

ip
ul

at
or

 is

pr
ev

en
te

d
fr

om
 ti

p
ov

er

M
ob

il
e

m
an

ip
ul

at
or

 is

pr
ev

en
te

d
fr

om
 ti

p
ov

er

M
ob

il
e

m
an

ip
ul

at
or

 is

pr
ev

en
te

d
fr

om
 ti

p
ov

er

M
ob

il
e

m
an

ip
ul

at
or

 is

pr
ev

en
te

d
fr

om
 ti

p
ov

er

M
et

h
o
d

o
lo

g
y

D
ev

el
op

m
en

t a
nd

ve

ri
fi

ca
ti

on
 u

si
ng

co

-s
im

ul
at

io
ns

be

tw
ee

n
th

e
va

li
da

te
d

M
B

S
m

od
el

s
of

 th
e

m
ob

il
e

m
an

ip
ul

at
or

(M

S
C

.A
da

m
s/

V

ie
w

)
an

d
th

ei
r

co
rr

es
po

nd
in

g
co

nt
ro

l
al

go
ri

th
m

s
(M

at
la

b/

S
im

ul
in

k)
.

D
ev

el
op

m
en

t o
f

ti
p-

ov
er

 d
et

ec
ti

on

an
d

av
oi

da
nc

e
al

go
ri

th
m

s
in

R

O
S

en

vi
ro

nm
en

ts
 a

nd

va
li

da
ti

on
 u

si
ng

re

al
 te

st
in

g
sy

st
em

.

T
es

ti
n

g
/

v
a
li

d
a
ti

o
n

sy
st

em

R
ob

ot

M
an

ip
ul

at
or

:
M

it
su

bi
sh

i
R

V
-3

A
L

 M

ob
il

e
pl

at
fo

rm
:

M
et

ra
L

ab
s

S
ci

to
s

X
3

 R
ob

ot

M
an

ip
ul

at
or

:
S

ch
un

k
L

W
A

4D

 M

ob
il

e
pl

at
fo

rm
:

M
et

ra
L

ab
s

S
ci

to
s

G
5

In
cl

in
in

g/

T
ilt

in
g

C
om

pe
ns

a-
ti

on
 o

f
an

gu
la

r
m

om
en

tu
m

E
m

pl
oy

in
g

gy
ro

sc
op

ic

ef
fe

ct

W
or

ks
pa

ce
 o

pt
im

iz
at

io
n

to
ge

th
er

 w
ith

re

po
si

tio
ni

ng
 o

f
ro

bo
t

m
an

ip
ul

at
or

E
m

pl
oy

in
g

li
ne

ar

ac
tu

at
or

s

A
p

p
ro

a
ch

 A
:

E
x
te

rn
a
l

st
a
b

il
iz

a
ti

o
n

st
ra

te
g
ie

s

A
p

p
ro

a
ch

 B
:

A
ct

iv
e

st
a
b

il
iz

a
ti

o
n

st
ra

te
g
y

Summary and outlook 183

7 Summary and outlook

7.1 Summary

Small-footprint mobile manipulators offer not only high flexibility due to their compact
design, but also agility and maneuverability. Nevertheless, this kind of systems tends to tip over
due to its ability to travel at large accelerations and to suddenly brake, as well as due to its high
center of gravity. The present work explored two different ways to counteract the stability
problem of small footprint mobile manipulators.

The first part of this thesis described three stabilization strategies that employ external

actuators to generate the required compensation moments. The first proposed mechanism was
comprised by linear actuators arranged in delta configuration, integrated between the mobile
platform and the robot manipulator to produce a tilting effect and an angular momentum effect.
Although it is well established that hexapods are commonly used for motion compensation, its
implementation for the stabilization of mobile manipulators is limited due to cost and size
constraints. Therefore, this study provides new insights into the proposed simplified
mechanism, which only makes use of the g-tilt effect of the hexapod’s operating principle.

For the “inclining/tilting” stabilization strategy, the robot manipulator is tilted in the
opposite direction of travel of the mobile platform to shift the robot manipulator’s COG
backwards; this must be done before the braking process begins.

In contrast, the stabilization strategy “conservation of angular momentum” impels the
robot manipulator in the direction of travel of the mobile platform during the braking process,
thus generating an angular momentum forwards that compensates the decelerations produced
by the mobile platform. To accomplish this strategy, the robot manipulator has to be gradually
tilted backwards just before the braking process occurs.

The second mechanism was conceptualized based on the gyro effect principle, where the
direction of the pivot axis of a rotating mass is rapidly changed to generate the compensation
moment employed to stabilize the mobile manipulator. Despite being a well-known mechanism,
the use of gyro effect to improve the stability of mobile manipulators had not been previously
investigated.

A simulative procedure, based on multibody simulation (MBS) models, was proposed for
the sizing and examination of the stabilization strategies. At the first stage, experimental modal
analyses (EMA) is required to identify the natural frequencies and mode shapes of both real
subsystems, the mobile platform and the robot manipulator. Particular attention has to be paid
to the excitation and stimuli spots since they had to be chosen so that all possible directions for
system oscillations are excited and measured, avoiding orthogonality. The EMA of the robot
manipulator has to be performed in diverse positions and conditions (with energized and non-
energized motors) in order to find out if different link configurations affect the dynamic system
behavior.

The results obtained in this first stage are employed to parameterize and validate the MBS
model of each subsystem in such a way as the modeled MBS system matches the dynamics of
the real robot assemblies. In order to keep the simulation time and complexity within acceptable
limits, both subsystems can be implemented as rigid bodies. The main challenge in the MBS
modeling is to estimate the stiffness and damping values for all joint elements in the system.
Each dynamical simulation generates magnitudes of natural frequencies depending on those

184 Summary and outlook

stiffness and damping values. Together with their corresponding mode shapes, they are
compared with the empirical values obtained via EMA until they match suitably.

A limitation of the introduced MBS modeling technique is the iterative adjustment process
to obtain the desired real modal parameters of the robot manipulator, since its greater degree of
freedom (DOF) implies more unknown parameters for the stiffness and damping coefficients
of each of its joints. Besides this, the robot manipulator is the subsystem most affected by abrupt
braking maneuvers because of the height at which its COG is located. For this purpose, this
adjustment procedure was improved by an automated parametrization algorithm that considers
as reference for the setting not only the natural frequencies, but also the mode shapes by means
of MAC. The algorithm was able to mathematically determine the approximate stiffness and
damping values of each joint element of the system until the dynamic behavior of the real
system matches the simulation model, thereby avoiding the time-consuming manual iterative
process.

The actual implementation of the stabilization strategies took place in mechatronic co-
simulations, where forces and torques acting in the mobile manipulator as well as angle
displacements and velocities issued the output signals for the feedback block of the closed-loop
control. They served as real-time reference values which, in turn, allow to compute the new set
point for the actuation system to react against instabilities.

This approach was validated in a testing system consisting of a six-axis robot manipulator
mounted on an autonomous mobile platform, both with no open access to their control system.
A MBS model of the testing system mobile manipulator, including the articulated robot
manipulator, the mobile platform and the designed actuation mechanism for the stabilization
strategy, was accomplished following the proposed MBS modeling technique. The outcomes
of the automated parametrization algorithm verified a good reproduction of the dynamical
behavior of the testing system robot manipulator. The experimental work presented here
provides one of the first investigations into the complete modeling process of robot
manipulators and mobile platforms in order to carry out accurate mechatronic co-simulations:
from identifying their modal parameters by means of EMAs, to their modeling and
parametrization via MBS systems.

The mechatronic co-simulations demonstrated that all the presented strategies using
external actuators improved the stability of the mobile manipulator and, thus, reduced its risk
of tip-over, especially when large accelerations and decelerations affect the system. However,
the “inclining/tilting” technique implied the prediction of the braking profile, making its
implementation as a closed-control loop difficult. On the other hand, the “conservation of
angular momentum-based principle” could be integrated in a closed-control loop, but its impact
to the stability state was only minor. For both strategies, it was possible to achieve an
improvement in the stability of the overall system for a short period of time. However, the
stability of the mobile manipulator cannot be guaranteed if the mobile platform is subjected to
higher loads or accelerations/decelerations.

Finally, the gyro stabilizer exhibited major potential, generating enough compensation
torques against instabilities.

Although the current study was implemented on particular robots, it offers a helpful insight
into the methodology for further complex systems, especially with regards to mobile platforms
and robot manipulators, whose dynamic behavior is still little known.

The second part of this thesis addressed a further stabilization strategy which counteracts

the instabilities with the own robot manipulator links. This stability strategy was developed so
that it operates under robot manipulator movements, mobile platform movements, COGs

Summary and outlook 185

position vector and gravity vector changes. The stabilization strategy comprised the
implementation of a workspace optimization and an active stabilization by means of
repositioning the robot manipulator links.

As a first step, the tip-over detection algorithm was prepared. Despite the fact that the
method Force-Angle (FA) stability measure was able to detect a tip-over risk, the dynamic
stability value was estimated by the Height Stability method (MHS), since FA inspects only
external forces measured by inertial measurement units (IMU). The advantage of the MHS
method, over the FA approach, is that it also considers internal forces of the robot manipulator,
i.e. inertial forces and torques produced from joint accelerations. Additionally, it gives a
constant feedback of the stability value, while the FA approach only gives the stability status
as a binary value. Especially under scenarios where the mobile platform was moving, the MHS
method proved to be the most suitable for the tip-over detection algorithm. In addition, the value
of the dynamic tilting stability, α, over time provides information about the degree of instability
during the mobile manipulator motions. The bigger the value of α, the more stable the mobile
manipulator is against a tip-over regarding the corresponding tilting edge for which the value
was calculated. Therefore, the smaller the value of α, the greater the risk to tip over. The
implemented MHS method considered not only the direction of the overall acceleration but also
its effect on the whole system, since the system might appear to be stable, despite the fact that
resulting inertial forces cause the system to tip over. The tip-over edge also acted as very
important indicator for the implementation of suitable tip-over preventing actions, since a
countermeasure applied to the wrong tilting edge facilitates the system tip-over.

Hereafter, the theoretical workspace of the robot manipulator was optimized based on the
tilting stability value α, in order to constrain the maximum volume in which the robot
manipulator is able to operate without instability risks when the mobile platform does not move.

Additionally, a tip-over avoidance algorithm was conceived. It triggered the repositioning
of the robot manipulator´s links if the stability value resulting from the tip-over detection
algorithm lay below a predefined stability threshold. The repositioning algorithm determined a
safe configuration of the robot manipulator based on a gradient method, calculating the mobile
manipulator´s stability value depending on different joint arrangements about the current TCP
position. The algorithm was designed so that the robot manipulator TCP is kept as close as
possible from its original orientation.

The strategy covered both, a predictive and real time countermeasure: a preplanning
algorithm brought the mobile manipulator into a stable configuration before the mobile
platform started moving; additionally, any instabilities that occurred during travel were
compensated by repositioning the robot manipulator without stopping the mobile platform
tasks.

Both, the workspace optimization and the repositioning of the robot manipulator’s arm,
contributed to improve the stabilization of the mobile manipulator. The entire active
stabilization strategy consists of the following features:
 After receiving a target coordinate, the mobile manipulator decides independently whether

the target point is within the predefined reachable and stable workspace or outside it. In
case the target point is outside the optimized volume, the mobile platform moves to
approach it.

 In case instabilities are detected by MHS before the mobile platform moves, the robot
manipulator repositions its links to a non-critical, stable configuration.

 If instabilities are caused by accelerations or decelerations of the mobile platform, which
means that the stability value falls below the predefined threshold value, the robot

186 Summary and outlook

manipulator repositions itself without aborting any tasks. During this repositioning
process, the initial orientation of the TCP is maintained.

 The robot manipulator approaches the target point as soon as the mobile platform reaches
the target position, so that by extending the robot manipulator´s links, the TCP is situated
within the stable optimized workspace.
This strategy improved the approaches presented in literature, since only the robot

manipulator was employed to achieve the stabilization, without considering any modification
of the mobile platform’s motion path. A further distinction is that the dynamic tilting stability
value was utilized not only during the tip-over detection, but also for the tip-over avoidance,
being the reference for the gradient potential function used for the calculation of the new joint
configuration needed for the repositioning of the robot manipulator’s links. And, perhaps the
most significant added value with respect to previous works is that the countermeasures were
carried out in real time and without manipulating the motion control of the robots, thus reducing
the complexity for the implementation and increasing its flexibility as a universal solution.

The approach was implemented in a second mobile manipulator testing system. Real
inspections showed that the mobile manipulator tended to tip over at certain configurations.
The algorithms were implemented using ROS environment tools, and validated using the real
system. Their effectiveness was proved observing the simulative and real mobile manipulator
achieving its target position without suffering any instability. The successful tests using the real
mobile manipulator and the corresponding results indicated that the stabilization strategy was
able to avoid many tip-overs of the mobile manipulator under different circumstances.

7.2 Outlook

A relevant aspect observed during the implementation of the stabilization strategies of
Approach A in the testing system were the appearance of certain discrepancies between the
MBS- and the EMA-results, which were considered as acceptable for the purpose of this work.
These deviations have been caused, on the one hand, by the model simplification to decrease
the complexity of the robotic systems (e.g., bodies were modeled as rigid elements to avoid
large computational effort, the friction coefficients were not experimentally determined, etc.)
and, on the other hand, by parametric uncertainties such as lack of material homogeneity,
unknown tolerances and clearances in the geometry, etc. Non-ideal real conditions in MBS
models lead to difficulties in the adjustment of their modal parameters. Therefore, the
developed parametrization algorithm reinforced the modeling of a more close-to-reality system.
Despite the fact that satisfying results were obtained for the robot manipulator testing system,
the algorithm would be improved if other parameters that cause great impact on the modal
behavior of a certain system were easily identified. Furthermore, an extension of the
optimization algorithm for mass, density and those parameters identified by additional
sensitivity analyses would also complement the automated parametrization.

The stabilization strategies employing external actuators demonstrated the compensation

of presented instabilities in the testing system. However, with respect to the viability, they could
be insufficient if the duration of the braking process of the mobile platform increases.

From the two stabilization strategies using linear drives as external actuators, the
“inclination/tilting” of the robot manipulator before the braking occurs offered significant
improvement of the mobile manipulator stability, but its principle of action cannot be included
into a closed-loop control without more ado. A solution for this limitation could be the

Summary and outlook 187

implementation of AI-techniques in order to predict the braking process profile in a timely
manner, each time the laser scanner of the mobile platform sends a warning signal.

Moreover, the “conservation of angular momentum”, in which the robot manipulator is
angular impelled in the direction of the braking process, was fast enough to react in a proper
manner without any prior prediction, but its effects with respect to the stability compensation
torque were only minor. Based on the same principle, the gyroscopic effect showed good
potential for the compensation of instability torques, being, from all external stabilization
strategies, the most promising one. The design optimization of the gyroscope regarding a flatter
and bigger diameter might even enhance its performance.

The second approach, B, consisting of a tip-over detection and tip-over avoidance

algorithm for those mobile manipulators with an open-access robot operating system exhibited
better results. The small deviations in the calculated tilting stability value were compensated by
repetitive repositioning processes. Although each joint constraints were taken into account for
the computation of the new stable configuration of the robot manipulator, the repositioning was
not executed if this new joint configuration was situated within the predefined collision space.
This problem could be counteracted by using a new function, in which the collision constraints
were provided as no-go areas for the calculations, which in turn seeks for suitable, collision-
free joint positions.

Future research is recommended to explore the impact of employing other testing models

of mobile manipulators and their different types of path planning and motion control algorithms.
In any case, the outcomes point to the need for testing in a wide variety of environments to
reinforce the developed algorithms.

List of References 189

8 List of References

[1] Zukunftsinstitut. Die Megatrends 2020.

https://www.zukunftsinstitut.de/dossier/megatrends/ (accessed March 14, 2021).
[2] Zukunftsinstitut. Die 5 wichtigsten Megatrends für Unternehmern in den 2020ern 2020.

https://www.zukunftsinstitut.de/artikel/die-5-wichtigsten-megatrends-fuer-
unternehmern-in-den-2020ern/ (accessed March 14, 2021).

[3] Weinzierl S. Klarer Trend zu Losgröße 1. Produktion - Tech Und Wirtschaft Für Die
Dtsch Ind 2017. https://www.produktion.de/wirtschaft/klarer-trend-zu-losgroesse-1-
323.html (accessed March 14, 2021).

[4] ZukunfsInstitut. Glossar Individualisierung: Trendbegriffe zur Individualisierung 2020.
https://www.zukunftsinstitut.de/artikel/megatrend-glossar/individualisierung-glossar/
(accessed March 14, 2021).

[5] Obermaier R. Handbuch Industrie 4.0 und Digitale Transformation:
Betriebswirtschaftliche, technische und rechtliche Herausforderungen. Springer
Fachmedien Wiesbaden; 2019.

[6] Mertens P, Potthof I. Wirtschaftsinformatik - von den Moden zum Trend. Bereich
Wirtschaftsinformatik I; 1994.

[7] Inc. A. Fanuc Ltd. - Company Profile, Information, Business Description, History,
Background Information on Fanuc Ltd. 2021.
https://www.referenceforbusiness.com/history2/43/Fanuc-Ltd.html (accessed March 14,
2021).

[8] Florian Krebs, Stefan Nuschele. Kostenreduktion in der Qualitätssicherung durch
Roboter-basierte zerstörungsfreie Prüfung. Augsburg, Germany: 2012.

[9] Matthias Reinisch. Auswirkungen verschiedener Varianten des Fabriklayouts auf die
Materialflussplanung unter Beachtung der Lean Prinzipien. Technische Universität
Graz, 2011.

[10] Poll D. Woraus die Smart Factory besteht und was aktuell dazu kommt. Produktion -
Tech Und Wirtschaft Für Die Dtsch Ind 2020.
https://www.produktion.de/technik/woraus-die-smart-factory-besteht-und-was-aktuell-
dazu-kommt-118.html (accessed March 14, 2021).

[11] Zenner MJ. Autonomous Mobile Robots Push Robot Boundaries. Robot Ind Assoc 2019.
https://www.automate.org/industry-insights/autonomous-mobile-robots-push-robot-
boundaries (accessed March 14, 2021).

[12] Sinsel A. Das Internet der Dinge in der Produktion: Smart Manufacturing für Anwender
und Lösungsanbieter. Springer Berlin Heidelberg; 2019.

[13] Fechter M. ARENA2036. Fraunhofer-Institut Für Produktionstechnik Und Autom IPA
2020. https://www.ipa.fraunhofer.de/de/zusammenarbeit/industry-on-
campus/arena2036.html (accessed March 11, 2021).

[14] Unknown. ARENA2036: Der Forschungsbereich “ForschFab.” Bundesministerium Für
Bild Und Forsch n.d.
https://www.forschungscampus.bmbf.de/forschungscampi/arena2036/arena2036_forsc
hungsfabrik (accessed March 14, 2021).

[15] Unknown. Die ARENA2036. ARENA2036 eV n.d. https://www.arena2036.de/de/
(accessed March 11, 2021).

[16] Poll D. Intralogistik: Die coolsten autonomen Transportsysteme -. Produktion - Tech
Und Wirtschaft Für Die Dtsch Ind 2019.
https://www.produktion.de/technik/intralogistik-die-coolsten-autonomen-
transportsysteme-110.html (accessed March 11, 2021).

190 List of References

[17] Ullrich G, Kachur PA. Automated Guided Vehicle Systems: A Primer with Practical
Applications. Springer Berlin Heidelberg; 2014.

[18] Hvilshj M, Bgh S, Madsen O, Kristiansen M. The mobile robot “Little Helper”:
Concepts, ideas and working principles. ETFA 2009 - 2009 IEEE Conf. Emerg. Technol.
Fact. Autom., 2009, p. 1–4. https://doi.org/10.1109/ETFA.2009.5347251.

[19] Tr A, Dogra A, Singla E. Workspace Reconstruction for Designing Modular
Reconfigurable Manipulators, 2020. https://doi.org/10.1007/978-981-15-5689-0_24.

[20] Rey DA, Papadopoulos EG. On-line automatic tipover prevention for mobile
manipulators. IEEE Int. Conf. Intell. Robot. Syst., 1997.
https://doi.org/10.1109/iros.1997.656414.

[21] Tahboub KA. Robust control of mobile manipulators. J Robot Syst 1996.
https://doi.org/10.1002/(SICI)1097-4563(199611)13:11<699::AID-ROB2>3.0.CO;2-Q.

[22] Ding X, Liu Y, Hou J, Ma Q. Online Dynamic Tip-Over Avoidance for a Wheeled
Mobile Manipulator with an Improved Tip-Over Moment Stability Criterion. IEEE
Access 2019. https://doi.org/10.1109/ACCESS.2019.2915115.

[23] Böge A, Böge W. Technische Mechanik: Statik – Reibung – Dynamik – Festigkeitslehre
– Fluidmechanik. vol. 33. Springer Vieweg; 2019. https://doi.org/10.1007/978-3-658-
25724-8.

[24] DØssing O. Strukturen prüfen Teil 1: Mechanische Beweglichkeits-Messungen. 1989.
[25] Weck M. Werkzeugmaschinen 5: Messtechnische Untersuchung und Beurteilung,

dynamische Stabilität. Springer Berlin Heidelberg; 2006.
[26] Pastor M, Binda M, Harčarik T. Modal Assurance Criterion. Procedia Eng 2012;48:543–

8. https://doi.org/https://doi.org/10.1016/j.proeng.2012.09.551.
[27] Irretier H. Experimentelle Modalanalyse in der Rotordynamik. VDI-

Schwingungstagung, Kassel, Germany: 2000.
[28] Rosenow SE. Identifikation des dynamischen Verhaltens schiffbaulicher Strukturen.

2007.
[29] Zeller P, Andreas E, Fastl H, Kerber S, Hobelsberger J, Jebasinski R, et al. Handbuch

Fahrzeugakustik: Grundlagen, Auslegung, Berechnung, Versuch. Springer Fachmedien
Wiesbaden; 2018.

[30] Brandt A, Vaarning C. A Comparison of Non-Parametric Techniques for FRF Estimation
Using Pure Random Excitation. Conf Proc Soc Exp Mech Ser 2012;5:523–34.
https://doi.org/10.1007/978-1-4614-2425-3_49.

[31] DØssing O. Strukturen prüfen Teil 2: Modalanalyse und Simulation. 1989.
[32] Siemens Simcenter. What is a Frequency Response Function (FRF)? 2020.

https://community.sw.siemens.com/s/article/what-is-a-frequency-response-function-frf
(accessed May 3, 2022).

[33] Kipfmüller M. Aufwandsoptimierte Simulation von Werkzeugmaschinen. Shaker
Verlag, 2010. https://doi.org/10.5445/IR/1000014668.

[34] Christl J, Kunz S, Bayrasy P, Kalmykov I, Kleinert J. FEA-MBS-Coupling-Approach
for Vehicle Dynamics. NAFEMS Eur. Conf., Turin, Italy: 2015.

[35] Gustafsson L, Sternad M, Gustafsson E, Gustafsson L, Sternad M, Gustafsson E. The
Full Potential of Continuous System Simulation Modelling. Open J Model Simul
2017;5:253–99. https://doi.org/10.4236/OJMSI.2017.54019.

[36] Woernle C. Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von
Systemen starrer Körper. Springer Berlin Heidelberg; 2016.

[37] Dresig H, Rockhausen L, Holzweißig F. Maschinendynamik. Springer Berlin
Heidelberg; 2013.

[38] Kreuzer E, Lugtenburg JB, Meißner HG, Truckenbrodt A. Industrieroboter: Technik,
Berechnung und anwendungsorientierte Auslegung. Springer Berlin Heidelberg; 2012.

[39] Zirn O, Weikert S. Modellbildung und Simulation hochdynamischer Fertigungssysteme:

List of References 191

Eine praxisnahe Einführung. Springer Berlin Heidelberg; 2006.
[40] Rill G, Schaeffer T. Grundlagen und Methodik der Mehrkörpersimulation: Vertieft in

Matlab-Beispielen, Übungen und Anwendungen. Springer Fachmedien Wiesbaden;
2017.

[41] Glöckler M. Simulation mechatronischer Systeme: Grundlagen und Beispiele für
MATLAB®und Simulink®. Springer Fachmedien Wiesbaden; 2018.

[42] Adams n.d. https://www.mscsoftware.com/de/product/adams (accessed December 27,
2021).

[43] Adams - CAE Simulation und Solutions n.d. https://www.cae-sim-
sol.com//software/msc-software/adams (accessed January 22, 2022).

[44] MATLAB - MathWorks - MATLAB & Simulink n.d.
https://de.mathworks.com/products/matlab.html..html (accessed December 27, 2021).

[45] MATLAB® - The MathWorks - PDF Catalogs | Technical Documentation | Brochure
n.d. https://pdf.directindustry.com/pdf/mathworks/matlab/12865-370414.html (accessed
January 22, 2022).

[46] Pietruszka WD, Glöckler M. MATLAB®und Simulink®in der Ingenieurpraxis:
Modellbildung, Berechnung und Simulation. Springer Fachmedien Wiesbaden; 2021.

[47] Control System Toolbox - MATLAB n.d.
https://de.mathworks.com/products/control.html (accessed January 22, 2022).

[48] Simulink - The MathWorks - PDF Catalogs | Technical Documentation | Brochure n.d.
https://pdf.directindustry.com/pdf/mathworks/simulink/12865-370436.html (accessed
January 22, 2022).

[49] ROS: Home n.d. https://www.ros.org/ (accessed January 22, 2022).
[50] STRANDS · GitHub n.d. https://github.com/strands-project (accessed October 17,

2021).
[51] Newman WS. A Systematic Approach to Learning Robot Programming with ROS. CRC

Press; 2017.
[52] Quigley M, Gerkey B, Smart WD. Programming Robots with ROS. O’Reilly; 2015.
[53] Gazebo n.d. http://gazebosim.org/ (accessed January 22, 2022).
[54] Chitta S, Hershberger D, Pooley A, Coleman D, Gorner M, Suarez F, et al. MoveIt

Tutorials — moveit_tutorials Kinetic documentation 2018.
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/ (accessed October 16, 2021).

[55] Featherstone R. Rigid Body Dynamics Algorithms. 1st ed. Springer US; 2008.
https://doi.org/10.1007/978-1-4899-7560-7_1.

[56] Featherstone R. Robot Dynamics Algorithms. Springer US; 1987.
https://doi.org/10.1007/978-0-387-74315-8.

[57] Fraunhofer Institute for Factory Operation and Automation. Mobile robots support
airplane manufacturers - Research News - Topic 4 2014.
https://www.fraunhofer.de/en/press/research-news/2014/april/mobile-robots.html
(accessed January 17, 2022).

[58] KUKA AG. Mobility n.d. https://www.kuka.com/products/mobility/ (accessed January
17, 2022).

[59] Acar C, Murakami T. Underactuated two-wheeled mobile manipulator control using
nonlinear backstepping method. 2008 34th Annu. Conf. IEEE Ind. Electron., 2008, p.
1680–5. https://doi.org/10.1109/IECON.2008.4758206.

[60] German Design Award. KUKA KMR iiwa - Special Mention Industry 2017.
https://www.german-design-award.com/en/the-winners/gallery/detail/8600-kuka-kmr-
iiwa.html (accessed May 3, 2022).

[61] Dimalog. Mobile Cobots n.d. https://www.dimalog.com/mobile-cobots/ (accessed May
3, 2022).

[62] Gráf R, Dillmann R. Aktive Beschleunigungskompensation mittels einer Stewart-

192 List of References

Plattform auf einem mobilen Roboter, 1997, p. 189–98. https://doi.org/10.1007/978-3-
642-60904-6_17.

[63] Gráf R, Dillmann R. Active acceleration compensation using a Stewart-platform on a
mobile robot, 1997, p. 59–64. https://doi.org/10.1109/EURBOT.1997.633569.

[64] Gráf R, Dillmann R. Die Stewart-Plattform als dynamisches Lastaufnahmesystem eines
mobilen Roboters, 1999, p. 150–9. https://doi.org/10.1007/978-3-642-59708-4_15.

[65] Campos Bonilla AA, Quintero J, Saltaren R, Ferre M, Aracil R. Robotic Strategies to
Assist Pilots in Landing and Takeoff of Helicopters on Ships and Offshore, 2010.
https://doi.org/10.5772/10308.

[66] Gráf R, Dillmann R. Acceleration compensation using a Stewart platform on a mobile
robot, 1999, p. 17–24. https://doi.org/10.1109/EURBOT.1999.827617.

[67] Dang AXH, Ebert-Uphoff I. Active acceleration compensation for transport vehicles
carrying delicate objects. IEEE Trans Robot 2004;20:830–9.
https://doi.org/10.1109/TRO.2004.832791.

[68] Xiaoli B, Jeremy D, James D, Turner J, Junkins J. Dynamics, Control and Simulation of
a Mobile Robotic System for 6-DOF Motion Emulation. Lect Notes Eng Comput Sci
2007;2167.

[69] Danko TW, Chaney KP, Oh PY. A parallel manipulator for mobile manipulating UAVs.
2015 IEEE Int. Conf. Technol. Pract. Robot Appl., 2015, p. 1–6.
https://doi.org/10.1109/TePRA.2015.7219682.

[70] Khaled M, Mohammed A, Ibraheem MS, Ali R. Balancing a Two Wheeled Robot. 2009.
https://doi.org/10.13140/RG.2.2.25634.63683.

[71] Chan RPM, Stol KA, Halkyard CR. Review of modelling and control of two-wheeled
robots. Annu Rev Control 2013;37:89–103.
https://doi.org/https://doi.org/10.1016/j.arcontrol.2013.03.004.

[72] Wang J-J. Simulation studies of inverted pendulum based on PID controllers. Simul
Model Pract Theory 2011;19:440–9.
https://doi.org/https://doi.org/10.1016/j.simpat.2010.08.003.

[73] Bode H. MATLAB-SIMULINK: Analyse und Simulation dynamischer Systeme.
Vieweg+Teubner Verlag; 2006.

[74] Bertram T, Svaricek F. Zur Fuzzy-Regelung eines aufrechtstehenden Pendels/On Fuzzy-
control of an inverted pendulum. - Autom 1992;40:308–10.
https://doi.org/doi:10.1515/auto-1992-0808.

[75] Wey T, Spielmann M. Analytische und Fuzzy-Regelungskonzepte am Beispiel eines
aufrechtstehenden Pendels. - Autom 1999;47.
https://doi.org/10.1524/auto.1999.47.1.20.

[76] Anderson CW. Learning to control an inverted pendulum using neural networks. IEEE
Control Syst Mag 1989;9:31–7. https://doi.org/10.1109/37.24809.

[77] Miao S, Cao Q. Modeling of self‐tilt‐up motion for a two‐wheeled inverted pendulum.
Ind Robot An Int J 2011;38:76–85. https://doi.org/10.1108/01439911111097878.

[78] Alarfaj M, Kantor G. Centrifugal force compensation of a two-wheeled balancing robot.
2010 11th Int. Conf. Control Autom. Robot. Vis., 2010, p. 2333–8.
https://doi.org/10.1109/ICARCV.2010.5707337.

[79] Kim S, Seo J, Kwon S. Development of a two-wheeled mobile tilting amp; balancing
(MTB) robot. 2011 11th Int. Conf. Control. Autom. Syst., 2011, p. 1–6.

[80] Kwon S, Kim S, Yu J. Tilting-Type Balancing Mobile Robot Platform for Enhancing
Lateral Stability. IEEE/ASME Trans Mechatronics 2015;20:1470–81.
https://doi.org/10.1109/TMECH.2014.2364204.

[81] Zhao Y, Woo C, Lee J. Balancing control of mobile manipulator with sliding mode
controller. 2015 15th Int. Conf. Control. Autom. Syst., 2015, p. 802–5.
https://doi.org/10.1109/ICCAS.2015.7364730.

List of References 193

[82] Acar C, Murakami T. Multi-task control for dynamically balanced two-wheeled mobile
manipulator through task-priority. 2011 IEEE Int. Symp. Ind. Electron., 2011, p. 2195–
200. https://doi.org/10.1109/ISIE.2011.5984501.

[83] Leboutet Q, Dean-León E, Cheng G. Tactile-based compliance with hierarchical force
propagation for omnidirectional mobile manipulators. 2016 IEEE-RAS 16th Int. Conf.
Humanoid Robot., 2016, p. 926–31.
https://doi.org/10.1109/HUMANOIDS.2016.7803383.

[84] Cha Y-S, Kim K, Lee J-Y, Lee J, Choi M, Jeong M-H, et al. MAHRU-M: A mobile
humanoid robot platform based on a dual-network control system and coordinated task
execution. Rob Auton Syst 2011;59:354–66.
https://doi.org/https://doi.org/10.1016/j.robot.2011.01.003.

[85] Milighetti G, Petereit J, Kuntze H-B. Mobile Experimental Platform for the
Development of Environmentally Interactive Control Algorithms towards the
Implementation on a Walking Humanoid. ISR 2010 (41st Int. Symp. Robot. Robot. 2010
(6th Ger. Conf. Robot., 2010, p. 1–7.

[86] Keshtkar S, Moreno JA, Kojima H, Uchiyama K, Nohmi M, Takaya K. Spherical
gyroscopic moment stabilizer for attitude control of microsatellites. Acta Astronaut
2018;143:9–15. https://doi.org/https://doi.org/10.1016/j.actaastro.2017.10.033.

[87] ARNOLD RN, MAUNDER L. CHAPTER 9 - GYROSCOPIC VIBRATION
ABSORBERS AND STABILIZERS. In: ARNOLD RN, MAUNDER L, editors.
Gyrodynamics its Eng. Appl., Academic Press; 1961, p. 177–227.
https://doi.org/https://doi.org/10.1016/B978-0-12-063852-9.50012-8.

[88] Novoselov VS. Motion of stabilized gyroscopic systems on a moving base. J Appl Math
Mech 1959;23:1375–81. https://doi.org/https://doi.org/10.1016/0021-8928(59)90142-X.

[89] Matrosov VM. On the stability of gyroscopic stabilizers. J Appl Math Mech
1960;24:1214–24. https://doi.org/https://doi.org/10.1016/0021-8928(60)90102-7.

[90] Kuz’mina LK. On stability of systems of gyroscopic stabilization in the presence of
perturbations. J Appl Math Mech 1980;44:119–22.
https://doi.org/https://doi.org/10.1016/0021-8928(80)90184-7.

[91] Ghasempoor A, Sepehri N. Measure of machine stability for moving base manipulators.
Proc. - IEEE Int. Conf. Robot. Autom., 1995.
https://doi.org/10.1109/robot.1995.525596.

[92] Li Y. Dynamic stability analysis and control for the mobile manipulator. Can. Conf.
Electr. Comput. Eng., 2002. https://doi.org/10.1109/ccece.2002.1015287.

[93] Papadopoulos EG, Rey DA. New measure of tipover stability margin for mobile
manipulators. Proc. - IEEE Int. Conf. Robot. Autom., 1996.
https://doi.org/10.1109/robot.1996.509185.

[94] Papadopoulos E, Rey DA. Force-angle measure of tipover stability margin for mobile
manipulators. Veh Syst Dyn 2000. https://doi.org/10.1076/0042-3114(200001)33:1;1-
5;FT029.

[95] Bergmann T. Dynamische Kipperkennung eines mobilen Serviceroboters. Hochschule
Karlsruhe – Technik und Wirtschaft, 2019.

[96] Vukobratović M, Borovac B. Zero-Moment Point - Thirty Five Years of its Life. Int J
Humanoid Robot 2004. https://doi.org/10.1142/s0219843604000083.

[97] Sugano S, Huang Q, Kato I. Stability criteria in controlling mobile robotic systems.
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS ’93), 1993.
https://doi.org/10.1109/iros.1993.583186.

[98] Huang Q, Sugano S, Kato I. Stability control for a mobile manipulator using a potential
method. IEEE/RSJ/GI Int. Conf. Intell. Robot. Syst., 1994.
https://doi.org/10.1109/iros.1994.407542.

[99] Moosavian SAA, Alipour K. On the dynamic tip-over stability of wheeled mobile

194 List of References

manipulators. Int J Robot Autom 2007. https://doi.org/10.2316/journal.206.2007.4.206-
3036.

[100] Moosavian SAA, Alipour K. Stability evaluation of mobile robotic systems using
moment-height measure. 2006 IEEE Conf. Robot. Autom. Mechatronics, 2006.
https://doi.org/10.1109/RAMECH.2006.252730.

[101] Moosavian SAA, Alipour K. Moment-Height tip-over measure for stability analysis of
mobile robotic systems. IEEE Int. Conf. Intell. Robot. Syst., 2006.
https://doi.org/10.1109/IROS.2006.282270.

[102] Roan PR, Burmeister A, Rahimi A, Holz K, Hooper D. Real-world validation of three
tipover algorithms for mobile robots. Proc. - IEEE Int. Conf. Robot. Autom., 2010.
https://doi.org/10.1109/ROBOT.2010.5509506.

[103] Huang Q, Sugano S. Manipulator motion planning for stabilizing a mobile-manipulator.
IEEE Int. Conf. Intell. Robot. Syst., 1995. https://doi.org/10.1109/iros.1995.525926.

[104] Alipour K, Hasanpour A, Daemy P. Comparing two online tip-over avoidance
algorithms for mobile manipulators. 2014 2nd RSI/ISM Int. Conf. Robot. Mechatronics,
ICRoM 2014, 2014. https://doi.org/10.1109/ICRoM.2014.6990919.

[105] He L. Tip-over avoidance algorithm for modular mobile manipulator. Proc. 2012 1st Int.
Conf. Innov. Eng. Syst. ICIES 2012, 2012.
https://doi.org/10.1109/ICIES.2012.6530855.

[106] Hatano M, Obara H. Stability evaluation for mobile manipulators using criteria based on
reaction. SICE 2003 Annu Conf (IEEE Cat No03TH8734) 2003.

[107] Furuno S, Yamamoto M, Mohri A. Trajectory planning of mobile manipulator with
stability considerations. Proc. - IEEE Int. Conf. Robot. Autom., 2003.
https://doi.org/10.1109/robot.2003.1242116.

[108] Kim J, Chung WK, Youm Y, Lee BH. Real-time ZMP compensation method using null
motion for mobile manipulators. Proc - IEEE Int Conf Robot Autom 2002.
https://doi.org/10.1109/ROBOT.2002.1014829.

[109] Li Y, Liu Y. Fuzzy logic self-motion planning and robust adaptive control for tip-over
avoidance of redundant mobile modular manipulators. IEEE/ASME Int. Conf. Adv.
Intell. Mechatronics, AIM, 2005. https://doi.org/10.1109/aim.2005.1511187.

[110] Li Y, Liu Y. Real-time tip-over prevention and path following control for redundant
nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. J
Dyn Syst Meas Control Trans ASME 2006. https://doi.org/10.1115/1.2229253.

[111] Brettel M, Fischer F, Bendig D, Weber A, Wolff B. Enablers for Self-optimizing
Production Systems in the Context of Industrie 4.0. Procedia CIRP 2016;41:93–8.
https://doi.org/10.1016/j.procir.2015.12.065.

[112] Seemann S. Entwicklung und Simulation einer Strategie zur Stabilisierung eines
Knickarmroboters auf einer mobilen Plattform. Fakultät Elektro- und
Informationstechnik Masterstudiengang Elektro- und Informationstechnik, 2018.

[113] Kipfmueller M, Toledo Fuentes A, Seemann S, Prieto J. Simulation of stabilization
strategies for industrial robots on mobile platforms. XXV Semin. Anu. Automática,
Electrónica Ind. e Instrumentación Libr. Actas. Semin. Anu. automática, electrónica Ind.
e instrumentación (SAAEI 2018), 2018, p. 221–6.

[114] LEIFIphysik. Drehbewegungen n.d.
https://www.leifiphysik.de/mechanik/drehbewegungen (accessed February 20, 2022).

[115] Helmer P, Heemann P. Entwicklung und Auslegung eines Gyrostabilisers (Mid-term
Project). Karlsruhe: 2018.

[116] Seakeeper | Eliminate Boat Roll n.d. https://www.seakeeper.com/ (accessed January 21,
2022).

[117] Giallanza A, Elms T. Interactive roll stabilization comparative analysis for large yacht:
gyroscope versus active fins. Int J Interact Des Manuf 2020;14:143–51.

List of References 195

https://doi.org/10.1007/s12008-019-00618-y.
[118] Webhofer M. Modellierung eines Mehrkörpersystems zur Simulation der

Querpendelbewegung von Einseilumlaufbahnen bei der Stationseinfahrt. Technical
University of Munich (TUM), 2000.

[119] Rahnejat H, Rothberg S. Multi-body Dynamics: Monitoring and Simulation Techniques
III. Wiley; 2004.

[120] Bauchau OA. Flexible Multibody Dynamics. Springer Netherlands; 2012.
[121] What is mechatronic system simulation? n.d.

https://community.sw.siemens.com/s/article/what-is-mechatronic-system-simulation
(accessed October 15, 2022).

[122] Co-simulation with Abaqus and Dymola n.d. https://www.3ds.com/products-
services/simulia/training/course-descriptions/co-simulation-with-abaqus-and-dymola/
(accessed March 28, 2022).

[123] Krauße M. Aufwandsoptimierte Simulation von Produktionsanlagen durch
Vergrößerung der Geltungsbereiche von Teilmodellen. Karlsruhe Institute of
Technology, 2014. https://doi.org/978-3-8440-2799-0.

[124] Blundell M, Harty D. The Multibody Systems Approach to Vehicle Dynamics. Elsevier
Science; 2014.

[125] Vöth S. Dynamik schwingungsfähiger Systeme: Von der Modellbildung bis zur
Betriebsfestigkeitsrechnung mit MATLAB/SIMULINK®. Vieweg+Teubner Verlag;
2007.

[126] Schumacher A. Optimierung mechanischer Strukturen: Grundlagen und industrielle
Anwendungen. Springer Berlin Heidelberg; 2013.

[127] National Technology and Engineering Solutions of Sandia L. Documentation | Dakota
n.d. https://dakota.sandia.gov/documentation.html (accessed December 23, 2021).

[128] Dakota Reference Manual: nl2sol n.d.
https://dakota.sandia.gov/sites/default/files/docs/6.0/html-ref/method-nl2sol.html
(accessed October 16, 2022).

[129] Adams, B. M.; Ebeida, M. S.; Eldred, M. S.; Jakeman, J. D.; Swiler, L. P.; Stephens, A.;
Vigil, D. M.; Wildey TM. Dakota, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
Analysis: Version 6.0 Theory Manual. Albuquerque, New Mexico: 2014.

[130] Dakota Reference Manual: package_scolib n.d.
https://dakota.sandia.gov/sites/default/files/docs/6.0/html-ref/topic-
package_scolib.html (accessed October 16, 2022).

[131] Portje V. Methode zur computerunterstützten Parametrierung von Mehrkörpermodellen.
Hochschule Karlsruhe - Fakultät für Maschinenbau und Mechatronik, 2018.

[132] Bhave S. Mechanical Vibrations: Theory and Practice. Dorling Kindersley; 2010.
[133] Mohr M, Portje V. Parametrierung eines Mehrkörpersystems mit Open Source Software

Dakota. 2016.
[134] Schenk A. Schwingungsidentiikation von Schienenfahrzeugen: Ziele, Methodik und

Nutzen. VDI-Schwingungstagung Exp. und Rechn. Modalanalyse sowie Identifikation
dynamischer Syst., Kassel, Germany: 2000.

[135] Mohr M, Portje V. Methode zur Parametrierung von Mehrkörpersystemen mittels Open-
source Optimierungssoftware Dakota. 2017.

[136] Füllekrug U. Computation of real normal modes from complex eigenvectors. Mech Syst
Signal Process 2008;22:57–65.

[137] Schilders WH, van der Vorst HA, Rommes J. Model Order Reduction: Theory, Research
Aspects and Applications. Springer Berlin Heidelberg; 2008.

[138] Shampine LF, Thompson S. Stiff systems. Scholarpedia 2007;2:2855.
https://doi.org/10.4249/SCHOLARPEDIA.2855.

196 List of References

[139] MSC Software Corporation. Adams Solver User’s Guide. MSC Software Corporation;
2021.

[140] Richter T, Wick T. Einführung in die Numerische Mathematik: Begriffe, Konzepte und
zahlreiche Anwendungsbeispiele. Springer Berlin Heidelberg; 2017.

[141] Bärwolff G. Numerik für Ingenieure, Physiker und Informatiker. Springer Berlin
Heidelberg; 2020.

[142] Negrut D, Dyer A. ADAMS/Solver Primer. 2004.
[143] Hexagon. Adams/View Overview 2021.

https://simcompanion.hexagon.com/customers/s/article/adams-view-help---adams-
2014-doc10647 (accessed February 16, 2021).

[144] Schröder D. Elektrische Antriebe - Regelung von Antriebssystemen. Springer Berlin
Heidelberg; 2015.

[145] Keviczky L, Bars R, Hetthéssy J, Bányász C. Control Engineering. Springer Nature
Singapore; 2018.

[146] Gattringer H. Starr-elastische Robotersysteme: Theorie und Anwendungen. Springer
Berlin Heidelberg; 2011.

[147] Sick AG. Betriebsanleitung S300 Sicherheits-Laserscanner 2013:156.
https://www.sick.com/media/pdf/5/95/595/IM0017595.PDF (accessed December 15,
2021).

[148] Toledo Fuentes A, Kipfmüller M, Burghart C, José Prieto MÁ, Bertram T, Bryg M, et
al. Stable operation of arm type robots on mobile platforms. 14th CIRP Conf. Intell.
Comput. Manuf. Eng. CIRP ICME ˈ20, Italy, 2020, p. 104–10.

[149] Möllmann S. Integration of an Inertial Measurement Unit into the autonomous vehicle
platform CampusBot (in German). 2014.

[150] Neugebauer, Reimund; Kolouch, M.; Richter, M.; Schulten M. Fehlerquellen bei einer
Modalanalyse: Untersuchung von Einflussfaktoren während der praktischen
Durchführung Sources of errors at conducting an experimental modal analysis. Wt
Werkstattstech Online 99 2009:889–94.

[151] Fuentes A, Kipfmueller M, Prieto M. 6 DOF articulated-arm robot and mobile platform:
Dynamic modelling as Multibody System and its validation via Experimental Modal
Analysis. IOP Conf Ser Mater Sci Eng 2017;257:12008. https://doi.org/10.1088/1757-
899X/257/1/012008.

[152] Gross D, Hauger W, Schröder J, Wall WA, Govindjee S. Engineering Mechanics 3:
Dynamics. Springer Berlin Heidelberg; 2014.

[153] Stewart DE. Dynamics with Inequalities: Impacts and Hard Constraints. Society for
Industrial and Applied Mathematics; 2011.

[154] Hexagon Manufacturing Intelligence Inc. About Adams/Solver. Hexagon
Manufacturing Intelligence Inc.; 2011.

[155] Devore JL, Farnum NR, Doi JA. Applied Statistics for Engineers and Scientists. Cengage
Learning; 2013.

[156] Kipfmueller M, Munzinger C. Efficient Simulation of Parallel Kinematic Machine
Tools. Vol. 7 33rd Mech. Robot. Conf. Parts A B, San Diego: ASMEDC; 2009, p. 523–
30. https://doi.org/10.1115/DETC2009-86769.

[157] Vinayak H, Singh R. MULTI-BODY DYNAMICS AND MODAL ANALYSIS OF
COMPLIANT GEAR BODIES. J Sound Vib 1998;210:171–214.

[158] Bremer H. Elastic Multibody Dynamics: A Direct Ritz Approach. Springer Netherlands;
2008.

[159] Ewins DJ. Modal Testing: Theory, Practice and Application. Wiley; 2009.
[160] Lutz H, Wendt W. Taschenbuch der Regelungstechnik: mit MATLAB und Simulink.

Verlag Europa-Lehrmittel Nourney, Vollmer; 2014.
[161] Maedler North America. Linear Drives (lifting devices) SFL 12 V - 24 V n.d.

List of References 197

http://smarthost.maedler.de/datenblaetter/K42_800_EN.pdf?_ga=2.164682360.651806
919.1663001258-1001102722.1663001258 (accessed September 12, 2022).

[162] Unknown. Technical Data n.d.
http://smarthost.maedler.de/datenblaetter/SFL_Kennlinien.pdf?_ga=2.164682360.6518
06919.1663001258-1001102722.1663001258 (accessed September 12, 2022).

[163] Drela M, Astro A&. Second-Order DC Electric Motor Model 2006.
[164] Product 47520114 - Linear drive SFL with DC-motor operating voltage 12V-24V

nominal lifting force 400N with Hall-IC n.d. https://www.maedler.de/Article/47520114
(accessed April 6, 2022).

[165] Berufsbildende Schulen Wolfsburg. Regelungstechnik: Vergleich und Dimensionierung
2020. https://www.xplore-dna.net/mod/page/view.php?id=95 (accessed March 28,
2021).

[166] Nelles O. Regelungstechnik (Script). Univ Siegen n.d. https://www.mb.uni-
siegen.de/mrt/lehre/rt/rt_skript.pdf (accessed May 21, 2021).

[167] Kuhn U. Eine praxisnahe Einstellregel für PID-Regler: die T-Summen-Regel. Autom.
Prax., 1995.

[168] Zacher S. Hinweise zur Identifikation einer Regelstrecke mit MATLAB nach
Versuchsdaten. Autom Nr 3 2011:10.

[169] Maxon Group. Catalog page DCX35L n.d.
https://www.maxongroup.de/medias/sys_master/root/8881024892958/EN-21-106.pdf
(accessed April 6, 2022).

[170] Gerdt Seefrid GmbH. Motor 627.031 DCGM 77 T72 n.d.
https://products.zilvertron.com/files/seefrid/Datasheet/627031.pdf (accessed April 6,
2022).

[171] Hochschule Karlsruhe. Systemtheorie Online: IT1-Glied n.d. https://www.eit.hs-
karlsruhe.de/mesysto/teil-a-zeitkontinuierliche-signale-und-
systeme/uebertragungsglieder-der-regelungstechnik/zusammengesetzte-
uebertragungsglieder/it1-glied.html (accessed April 28, 2022).

[172] Tietze U, Schenk C. Halbleiter-Schaltungstechnik. Springer Berlin Heidelberg; 2013.
[173] Kessler R. Weglose Waage: Simulation Einstellregeln von Tietze-Schenk nd von

Ziegler-Nichols (Sensorsystemtechnik). Karlsruhe: n.d.
[174] Spreckelsen NT. Co-Simulation eines Gyroskops als Stabilisierungsmechanismus für ein

mobiles Robotersystems. 2021.
[175] Kempf F. Development of an algorithm for active stabilization of a mobile manipulator.

Hochschule Karlsruhe – Technik und Wirtschaft, 2021.
[176] Fraunhofer IPA. GitHub - ipa320/schunk_modular_robotics 2019.

https://github.com/ipa320/schunk_modular_robotics (accessed October 16, 2021).
[177] Grote KH, Feldhusen J. Dubbel: Taschenbuch für den Maschinenbau. Springer Berlin

Heidelberg; 2011.
[178] Fok C-L, Johnson G, Sentis L, Mok A, Yamokoski JD. ControlIt! | A Software

Framework for Whole-Body Operational Space Control. Int J Humanoid Robot
2015;13:1550040. https://doi.org/10.1142/S0219843615500401.

[179] GitHub - hakuturu583/robot_kinetics_pkgs: ROS packages about robot kinetics(get
center of gravity etc..) n.d. https://github.com/hakuturu583/robot_kinetics_pkgs
(accessed October 17, 2021).

[180] KDL wiki | The Orocos Project n.d. https://www.orocos.org/kdl.html (accessed October
17, 2021).

[181] Smits R. orocos_kdl: KDL::ChainIdSolver_RNE Class Reference n.d.
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE
.html (accessed October 17, 2021).

[182] Murray R, Li Z, Sastry S. A mathematical introduction to robotic manipulation Cited by

198 List of References

me analytic_grasp_synt... grasp_quality_metrics. vol. 29. CRC Press; 1994.
[183] Siciliano B, Khatib O. Springer Handbook of Robotics. 2nd ed. Switzerland: Springer

International Publishing; 2016. https://doi.org/10.1007/978-3-319-32552-1_1.
[184] Zhao J, Feng Z, Chu F, Ma N. Workspace of the End Effector of a Robot Mechanism.

Adv Theory Constraint Motion Anal Robot Mech 2014:159–200.
https://doi.org/10.1016/B978-0-12-420162-0.00005-9.

[185] Maier H. Grundlagen der Robotik. Vde Verlag GmbH; 2019.
[186] Pobil AP, Serna MA. Spatial Representation and Motion Planning. Springer Berlin

Heidelberg; 1995.
[187] PickNik Robotics. MoveIt Setup Assistant — moveit_tutorials Kinetic documentation

n.d.
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/setup_assistant/setup_assi
stant_tutorial.html (accessed October 17, 2021).

[188] PickNik Robotics. Move Group C++ Interface — moveit_tutorials Kinetic
documentation n.d.
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/mov
e_group_interface_tutorial.html (accessed October 17, 2021).

[189] Company SR. Planners Benchmarking Documentation Shadow Robot Company 2020.
[190] Moll M, Sucan IA, Kavraki LE. Benchmarking Motion Planning Algorithms: An

Extensible Infrastructure for Analysis and Visualization. IEEE Robot Autom Mag 2015.
https://doi.org/10.1109/MRA.2015.2448276.

[191] Khalil W, Dombre E. Chapter 1 - Terminology and general definitions. In: Khalil W,
Dombre E, editors. Model. Identif. Control Robot., Oxford: Butterworth-Heinemann;
2002, p. 1–12. https://doi.org/https://doi.org/10.1016/B978-190399666-9/50001-4.

[192] Einhorn E, Langner T, Stricker R, Martin C, Gross H-M. MIRA - middleware for robotic
applications. 2012 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2012, p. 2591–8.
https://doi.org/10.1109/IROS.2012.6385959.

[193] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS: an open-source
Robot Operating System. ICRA Work. Open Source Softw., vol. 3, 2009.

[194] GitHub - strands-project/scitos_drivers: Scitos G5 drivers that interface ROS to MIRA
n.d. https://github.com/strands-project/scitos_drivers (accessed January 21, 2022).

[195] Schunk GmbH & Co. KG. Modulare und Mobile Greifsysteme n.d.
[196] MetraLabs GmbH. Betriebsanleitung (Original) 2014.
[197] MIRA: Concepts n.d. https://www.mira-project.org/MIRA-doc/ConceptsPage.html

(accessed October 16, 2021).
[198] schunk_robots - ROS Wiki. Open Robot n.d. http://wiki.ros.org/schunk_robots

(accessed October 23, 2021).
[199] GitHub - ipa320/schunk_robots n.d. https://github.com/ipa320/schunk_robots (accessed

October 23, 2021).
[200] Bryg M. Kopplung einer mobilen Roboterplattform mit einem Industrieroboterarm

Bachelorarbeit (B . Eng .). Hochschule Karlsruhe Technik und Wirtschaft, 2018.
[201] Mobile Roboter - KUKA AG n.d. https://www.kuka.com/de-de/produkte-

leistungen/mobilität/mobile-roboter (accessed May 5, 2022).
[202] RB-KAIROS Mobile Robot with Omnidirectional Wheels - Robotic Gizmos n.d.

https://www.roboticgizmos.com/rb-kairos-mobile-robot/ (accessed May 5, 2022).
[203] Industrial mobile robots for material flow and intralogistics by NEOBOTIX n.d.

https://www.expo21xx.com/industrial-robots/18488_st3_service-robots/default.htm
(accessed May 5, 2022).

[204] MuR205 - Mobile Universal Robot with Whole Body Control and Redundancy
Resolution - YouTube n.d. https://www.youtube.com/watch?v=v1bzNrgP8kg (accessed
May 5, 2022).

List of References 199

[205] Global Robotic Standards from A3 Robotics. Robot Ind Assoc 2020.
https://www.automate.org/a3-content/global-robotic-standards (accessed March 11,
2021).

[206] Technologisches Zentrum - ROBOTEC n.d. https://robotec.sk/de/technologisches-
zentrum-2/ (accessed August 1, 2022).

[207] Freight100 OEM Base - Fetch Robotics n.d. https://fetchrobotics.com/freight100-oem-
base/ (accessed August 1, 2022).

[208] SCITOS G5. - MetraLabs n.d. https://www.metralabs.com/en/mobile-robot-scitos-g5/
(accessed August 1, 2022).

[209] Gasch R, Knothe K, Liebich R. Strukturdynamik: Diskrete Systeme und Kontinua.
Springer Berlin Heidelberg; 2012.

[210] How to calculate damping from a FRF? n.d.
https://community.sw.siemens.com/s/article/how-to-calculate-damping-from-a-frf
(accessed November 7, 2022).

[211] Mohr M. Mehrkörpermodell einer mobilen Roboterplattform und zugehörige
Validierung mittels Modalanalyse. Karlsruhe University of Applied Sciences, 2015.

[212] Mechanical Dynamics I. ADAMS: Getting Started Using ADAMS/View : Version 10.
Mechanical Dynamics, Incorporated; 1999.

[213] Basic ADAMS Full Simulation Training Guide. Mechanical Dynamics, Incorporated;
2001.

[214] Building Models in ADAMS/View. Ann Arbor, Michigan: Mechanical Dynamics,
Incorporated; 2000.

[215] Graf R, Vierling R, Dillmann R. A flexible controller for a Stewart platform. In: Jain LC,
Jain RK, editors. Knowledge-Based Intell. Electron. Syst. 2nd Int. Conf. {KES} 1998,
Adelaide, South Aust. 21-23 April 1998, Proceedings, Part {II}, IEEE; 1998, p. 52–9.
https://doi.org/10.1109/KES.1998.725892.

List of Figures 201

9 List of Figures

Figure 1 Is batch size 1 already an important topic for your company and your sector? (based
on [3]). .. 19

Figure 2 Integration of mobile manipulators (based on [18]). .. 21

Figure 3 Weight-to-payload ratio of some compact industrial robot manipulators and co-bots.
 .. 26

Figure 4 Spring-damper-mass-system. .. 31

Figure 5 Example of plot for a MAC with ideal correlations [26]. ... 36

Figure 6 H2 estimator function [32]. ... 37

Figure 7 H1 estimator function [32]. ... 38

Figure 8 Two representative models of mobile manipulators (left: KUKA KMR iiwa [60],
right: OMRON TM-manipulators with LD-mobile platforms [61]) .. 47

Figure 9 Compensation of linear accelerations by means of a Stewart-platform ([65] based on
[63]). ... 48

Figure 10 Compound motion generation [63]. .. 48

Figure 11 Stewart platform controlling architecture [66]. .. 49

Figure 12 Ideal two wheeled inverted pendulum system [70]. ... 49

Figure 13 Outline of most-used controllers for two-wheeled robots [71]. 50

Figure 14 Concept of flywheel as stabilization mechanism for two-wheeled inverse pendulum
[77]. .. 50

Figure 15 Mechanism to achieve lateral stability for two-wheeled vehicles [80]. 51

Figure 16 Control concept for the auxiliary balancing mechanism of two-wheeled vehicles
[80]. .. 51

Figure 17 Prototype of 3-DOF manipulator mounted on a two-wheeled vehicle [82]. 52

Figure 18 Mobile humanoid robot MAHRU-M [84]. ... 52

Figure 19 Schematic representation of satellite orientation by a control moment gyroscope [86].
 .. 53

Figure 20 Planar Force-Angle stability Measure [95]. .. 54

Figure 21 Stable regions determined by the ZMP [95]. .. 56

Figure 22 Separation of whole system into two subsystems, since the MHS measure is
computed on the part which produces mobility (the mobile platform) [101] 57

Figure 23 Ramp crossover with tip-over avoidance algorithm of He [105]. 59

Figure 24 Stabilization principle of single link mass by Hatano and Obara [106]. 60

Figure 25 Tip-over prediction and avoidance algorithm by Ding et al. [22]. 61

Figure 26 Algorithm of motion planing for maintaining stability by Huang and Sugano [103].
 .. 62

Figure 27 Fuzzy logic tip-over avoidance planner proposed by Alipour et al. [104]. 63

Figure 28 Linear actuators as external stabilization mechanism for a robot manipulator
mounted on a small footprint mobile platform. .. 66

Figure 29 Linear drives mechanism designed for the stabilization strategy via tilting effect. 66

Figure 30 Free body diagram of mobile manipulator at home position (following [112]). 67

Figure 31 Description of the inclining/tilting method [113]. .. 68

Figure 32 Description of the conservartion of angular momentum method [113]. 69

Figure 33 Free body diagram of the testing system at equilibrium position (following [112]).
 .. 69

Figure 34 Gyroscope mechanism on mobile manipulator. .. 70

202 List of Figures

Figure 35 Gyroscopic principle (following [117]). ... 71

Figure 36 Principle of co-simulation of mechatronic systems (following [122]). 73

Figure 37 Test arrangement for the experimental modal analyses. ... 73

Figure 38 Graphical topology of a basic wheel suspension mechanism of a mobile platform.
 .. 75

Figure 39 Graphical topology of the elastic joint elements for a robot manipulator. 75

Figure 40 Iteration procedure for the MBS-modeling of a real system. 77

Figure 41 Functions/file interactions of the algorithm implemented in DAKOTA (following
[131]). ... 80

Figure 42 Two-mass oscillator. ... 81

Figure 43 MBS model of the employed two-mass oscillator ([133]). 81

Figure 44 Five-mass oscillator (m1=5 kg, m2=4 kg, m3=3 kg, m4=2 kg, m5=1 kg, k1=6 N/mm,
k2=5 N/mm, k3=4 N/mm, k4=3 N/mm, k5=2 N/mm, k1=1 N/mm) .. 83

Figure 45 MAC results without mode matching [135]. .. 84

Figure 46 MAC results with mode matching [135]. ... 84

Figure 47 MAC results with mode matching and employing evolutionary algorithm [135]. . 85

Figure 48 Testing system for further development [131]. ... 88

Figure 49 Co-simulation between the developed stabilization strategies (in Matlab/Simulink)
and the mobile manipulator as a multibody-system (in MSC.ADAMS/View). 91

Figure 50 Vectors for the estimation of the inverse kinematics (following [146]). 94

Figure 51 Co-simulation of g-tilt control with the MBS of the mobile manipulator. 96

Figure 52 Rotary and tilting motors of the gyro mechanism. .. 97

Figure 53 Schema of the co-simulation for the gyroscope. ... 97

Figure 54 Mitsubishi RV-3AL (left) and MetraLabs Scitos X3 (right) as testing system for
further analyses. ... 98

Figure 55 Emergency brake and normal brake of the mobile platform. 99

Figure 56 Schematic sketch of the mobile platform and the IMU mounting location [148]. . 99

Figure 57 CAD model of the mobile platform and its measurement points. 101

Figure 58 Representation of the mobile platform in OROS Modal (based on the points in Figure
57). .. 101

Figure 59 Excitation (green) and measurement (red) spots for the mobile platform. 102

Figure 60 Scheme of the performed experimental modal analyses for the robot manipulator.
 .. 104

Figure 61 CAD model of robot manipulator and its measurement points [151]. 105

Figure 62 Representation of the main parts of the robot manipulator in OROS Modal 2 [151].
 .. 105

Figure 63 Excitation (green) and measurement (red) spots for the robot manipulator. 105

Figure 64 Drive wheels and engines assembly of the mobile platform. 108

Figure 65 Wheel suspension mechanism of the mobile platform. .. 109

Figure 66 Graphical topology of the implemented joint elements for the wheel suspension
mechanism of the mobile platform ... 109

Figure 67 MBS model of mobile platform. ... 111

Figure 68 Correlation between EMA- and MSB-mobile platform using 3-sigma limits [151].
 .. 113

Figure 69 6-DOF-limited bushings in the multibody-system simulation of robot manipulator.
 .. 114

Figure 70 Correlation between EMA- and MSB-robot manipulator using 3-sigma limits [151].
 .. 116

List of Figures 203

Figure 71 MBS model for robot manipulator suited for the DAKOTA algorithm [131]. 118

Figure 72 Linear actuators as external stabilization mechanism for the testing system
comprised by the robot manipulator mounted on a small footprint mobile platform. 121

Figure 73 Gyroscope as external stabilization mechanism for the testing system comprised by
the robot manipulator mounted on a small footprint mobile platform. 121

Figure 74 Braking force influence on the front support wheels as a function of the travelling
deceleration and the tilt angle generated by the linear actuators [113] 125

Figure 75 Braking processes implemented for the linear drives strategy simulations [112]. 126

Figure 76 Braking process which served as the basis profile for the gyro stabilizer simulations
[112]. .. 126

Figure 77 Empirical estimation of the motor time constant [112]. 127

Figure 78 Designed gyroscope for the further analyses. ... 129

Figure 79 Inclination/tilting of the manipulator during braking process [148]. 131

Figure 80 Contact force measured with the “inclining/tilting” stabilization strategy [112]. 132

Figure 81 Conservation of angular momentum of the manipulator during braking process. 133

Figure 82 Contact force measured with the “conservation of angular momentum” 133

Figure 83 Gyroscopic stabilizer action during braking process [148]. 134

Figure 84 Torque achieved by the simple gyroscope model [148]. 135

Figure 85 Results from scenario 1 (top) and scenario 2 (bottom) [174]. 136

Figure 86 Results from scenario 3 [174]. .. 137

Figure 87 Results from scenario 4 for a braking process from 1 m/s to 0 m/s (top) and from 1.2
m/s to 0 m/s (bottom) [174] .. 138

Figure 88 Results from scenario 5 [174]. .. 139

Figure 89 Results from scenario 6 for the horizontal worst case position (top) and the vertical
worst case position (bottom) [174] ... 140

Figure 90 Tilting moment for mobile manipulator in scenario 1. ... 143

Figure 91 Tilting moment for mobile manipulator in scenario 2. ... 144

Figure 92 General description of the algorithm corresponding to the approach B (following
[175]). ... 146

Figure 93 Representation of 6 DOF massless joint implemented in a URDF-file. 147

Figure 94 Tilting shape and mobile platform COG (following [95]). 149

Figure 95 FA point of intersection (red) between resulting force and footprint (following
[148]). ... 150

Figure 96 Connection point P of the mobile platform with the robot manipulator [148]. 151

Figure 97 Vectors for the projected torque calculation. .. 152

Figure 98 a) Theoretical and b) Non-critical workspace optimization (following [175]). 155

Figure 99 Free body diagram of mobile manipulator (following [175]). 155

Figure 100 The angle 𝛤 defines if the TCP is located within the critical volume (following
[175]). ... 156

Figure 101 Free body diagram of mobile manipulator considering dynamic forces and moments
generated by operation movements (following [175]). .. 158

Figure 102 Discretization of workspace for the implementation of the gradient function
required for the repositioning of the robot manipulator’s joints (following [175]). 159

Figure 103 Algorithm for calculating the new joint position for robot manipulator (following
[175]). ... 160

Figure 104 Mobile manipulator control functionalities. ... 160

Figure 105 Scitos G5 and LWA 4D as testing system for the developed approch B. 161

Figure 106 The virtual model of the mobile manipulator [95]. ... 164

204 List of Figures

Figure 107 Robot manipulator position for the estimation of the effects of linear accelerations.
 .. 165

Figure 108 Estimation of a) tilting moment (top) and b) ellipsoid critical radius (bottom) under
static conditions for different angle configurations β and Υ [175] .. 168

Figure 109 Optimized workspace for mobile manipulator in RViz [175]. 168

Figure 110 Analysis of the stability moment as a function of the manipulator´s joint positions
and mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2, (c)
0.4 m/s2, (d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines
represent unstable states of the mobile manipulator [175]. .. 169

Figure 111 Critical tilting instability for different values of 𝛶 as a function of the mobile
platform traveling acceleration [175] ... 170

Figure 112 Example of starting position and orientation of mobile manipulator moving to the
predefined target position. .. 172

List of Tables 205

10 List of Tables

Table 1 Examples of robot manipulators mounted on mobile platforms. 22

Table 2 Compact autonomous mobile platforms. .. 25

Table 3 Weight ratio of some configurations for compact mobile manipulators. 27

Table 4 Classification of oscillation behaviors depending on 𝜁. ... 33

Table 5 Comparison of modeling methods (Source: Kreuzer et al. ([38]). 40

Table 6 Examples of applications that employ co-simulations (based on [41]). 43

Table 7 Modal parameters of the two-mass oscillator anallytically obtained (following [133]).
 .. 81

Table 8 Stiffness coefficients calculated by the first version of the parametrization algorithm
in DAKOTA (following [133]) .. 82

Table 9 Modal parameters for the two-mass oscillator: The system at rest is shown in black;
the magenta blocks illustrate the masses at their maximum deflection during the oscillation
process [133]. ... 82

Table 10 Natural frequencies and sitffness coefficients for the five-mass oscillator 83

Table 11 Natural frequencies and stiffness coefficients obtained by the algorithm with
implemented mode matching (following [135]) .. 84

Table 12 Natural frequencies and stiffness coefficientes obtained by the algorithm with
implemented mode matching and employing evolutionary algorithm (following [135]). 85

Table 13 Graphical representation of the eigenmodes of the five-mass oscillator obtained by
the parametrization algorithm [133]. The blue lines represent the eigenmodes derivated from
the parametrization algorithm and cover the (non visible in the graphical representation) lines
for the eigenmodes obtained analitically, proving their congruence. 86

Table 14 Lower and upper bound for the stiffness estimation of the 3 DOF mechanism 87

Table 15 Natural frequencies and stiffness coefficient of the 3 DOF mechanism (following
[135]). ... 87

Table 16 Comparison between the gradient-based algorithm and the evolutionary algorithm
(following [135]) .. 87

Table 17 Modal parameters of the testing system acquired by EMAs (following [131]). 89

Table 18 MBS model of the testing system [131]. .. 89

Table 19 Modal parameters obtained by the enhanced parametrization algorithm (following
[131]). ... 90

Table 20 Damping coefficientes obtained during second run (following [131]). 90

Table 21 Stiff integrators and its main properties [139]. ... 92

Table 22 Excitation and measurement devices. ... 100

Table 23 Configuration parameters for the experimental modal analyses. 101

Table 24 Identification of the Scitos X3 natural frequencies by means of overlaping method.
 .. 103

Table 25 Mode shapes and natural frequencies of the mobile platform obtained from the EMAs.
 .. 103

Table 26 First natural frequencies of the robot manipulator obtained from the EMAs. 106

Table 27 Mode shapes of the robot manipulator obtained from the EMAs. 107

Table 28 Natural frequencies of the robot manipulator in home position with its servomotor’s
brakes released and enganged .. 107

206 List of Tables

Table 29 Adjusted translational stiffness and damping coefficients for the mobile platform.
 .. 110

Table 30 Adjusted rotational stiffness and damping coefficients for the mobile platform. .. 110

Table 31 Settings for the Coulomb’s friction contact constraints between the wheels and the
ground. .. 112

Table 32 Modal parameters of the mobile platform obtained from MBS simulations [151].112

Table 33 Adjusted stiffness and damping coefficientes for the bushings of the MBS robot
manipulator. .. 114

Table 34 Modal parameters of robot manipulator obtained from the MBS simulations [151].
 .. 115

Table 35 Premises applicable purely to 6 DOF robot manipulators and mobile platforms with
non-holonomic drive and without significant deformations .. 116

Table 36 Modal parameters for the robot manipulator computed by the parametrization
algorithms (following [131]) .. 119

Table 37 Stiffness and damping coefficientes for the bushings of the MBS robot manipulator
computed by the parametrization procedures (values in bold). ... 119

Table 38 Comparison of different indexes and tolerances for integrator GSTIFF (following
[112]). ... 122

Table 39 Comparison of different tolerances for integrator WSTIFF with Index-I3 (following
[112]). ... 123

Table 40 Comparison of different tolerances for integrator BDF constant (following [112]).
 .. 124

Table 41 Inputs/outputs for mechatronic co-simulations of the linear drives´stabilization
strategies. .. 128

Table 42 Signal assignment for the mechatronic co-simulations of the stabilization strategy
employing the gyro effect .. 130

Table 43 Comparison of the simulations for the stabilization strategies using the linear drives
mechanism .. 141

Table 44 Torque generated at 4th joint [95]. ... 166

Table 45 Forces and torques generated at point P [95]. .. 166

Table 46 Comparison of the tilting stability value for the simulation model and the real robot
manipulator in home, transport and one critical position [175]. .. 167

Table 47 Comparative scenarios in order to verify the effectiveness of the active stabilization
by means of simulations (following [175]). ... 173

Table 48 Comparative scenarios in order to verify the effectiveness of the stabilization strategy
using the real mobile manipulator (following [175]). .. 177

Table 49 Comparison of the four stabilization strategies. ... 182

Annex 207

11 Annex

A.1 DAKOTA files that conform the parametrization algorithm employed for the optimization
of the MBS of the robot manipulator [131]. The constants indicated as 0.0 need to be adjusted
with appropriate values depending on the system to be analyzed.

Settings for DAKOTA gradient based algorithm:
dakota_opt_settings.in [131]

environment

tabular_graphics_data

tabular_graphics_file = 'result_dakota.dat'

results_output

method

nl2sol

convergence_tolerance = 1e-3
output debug

model

single

variables

continuous_design = 24

initial_point 0.0 0.0 0.0 0.0 0.0
lower_bounds 0.0 0.0 0.0 0.0 0.0

upper_bounds 0.0 0.0 0.0 0.0 0.0

descriptors '<c1>' '<c2>' '<c3>' '<c4>' '<c5>'

interface
system

analysis_driver = 'run.bat'

parameters_file = 'params.in'

results_file = 'results.out'
aprepro

responses

calibration_terms = 8
calibration_data_file = 'calibration.dat'

freeform

weights = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

numerical_gradients

method_source Dakota
interval_type forward

fd_gradient_step_size = .01

no_hessians

Settings for DAKOTA evolutionary algorithm:
rosen_opt_ea.in [131]

environment
graphics
tabular_data
tabular_data_file = ’rosen_opt_ea.dat’

method

208 Annex

coliny_ea
max_iterations = 100
max_function_evaluations = 2000
seed = 11011011
population_size = 50
fitness_type merit_function
mutation_type offset_normal
mutation_rate 1.0
crossover_type two_point
crossover_rate 0.0
replacement_type chc = 10

model
single

variables
continuous_design = 2
lower_bounds 0.0 0.0
upper_bounds 0.0 0.0
descriptors '<c1>' '<c2>'

interface
analysis_drivers = ’rosenbrock’
direct

responses
objective_functions = 1

Section of script that corresponds to a MBS model generated by MSC.Adams/View and tagged with the
variables to be parametrized:
template.adm [131]

!----------------------------------- FORCES ------------------------------------

!

! adams_view_name='BUSHING_1_Base_Shoulder'

BUSHING/1
, I = 151

, J = 152

, C = 0.001, 0.001, 0.001

, K = 2.42037E+06, 2.41481E+06, 2.46091E+06

, CT = 5.729577951, 5.729577951, 5.729577951
, KT = 4.583662361E+09, 4.583662361E+08, 4.583662361E+08

!

! adams_view_name='BUSHING_2_Shoulder_UpperArmLeft'

BUSHING/2
, I = 153

, J = 154

, C = 0.001, 0.001, 0.001

, K = <c1>, <c2>, <c3>
, CT = 5.729577951, 5.729577951, 5.729577951

, KT = <c4>, <c5>, <c6>

!

! adams_view_name='BUSHING_3_Shoulder_UpperArmRight'

BUSHING/3
, I = 155

, J = 156

, C = 0.001, 0.001, 0.001

, K = <c7>, <c8>, <c9>
, CT = 5.729577951, 5.729577951, 5.729577951

, KT = <c10>, <c11>, <c12>

!

! adams_view_name='BUSHING_4_UpperArmRight_Elbow'

BUSHING/4

Annex 209

, I = 157

, J = 158
, C = 0.001, 0.001, 0.001

, K = <c13>, <c14>, <c15>

, CT = 5.729577951, 5.729577951, 5.729577951

, KT = <c16>, <c17>, <c18>
!

! adams_view_name='BUSHING_5_UpperArmLeft_Elbow''

BUSHING/5

, I = 159

, J = 160
, C = 0.001, 0.001, 0.001

, K = <c19>, <c20>, <c21>

, CT = 5.729577951, 5.729577951, 5.729577951

, KT = <c22>, <c23>, <c24>
!

Settings for parametrization criteria:
settings.py [131]

import numpy as np

np.savez('settings',

damping = "off", # "on" / "off"

penalfunction = "off", # "on" / "off"

measpoint_ema = [0.0,0.0,0.0], # PART/1, PART/3, PART/5 -> [1,3,5...]

measpoint_adams = [0.0,0.0,0.0], # PART/1, PART/3, PART/5 -> [1,3,5...]
accelerometerDOF= ["v1","v2","v3"] # for 3D "v1"=x;"v2"=y;"v3"=z

)

Penal function:
penalfunction.py [131]

from parameter import *

import numpy as np

import re

A = [[1 ,-1 , 0],

 [0 ,-1 , 1],

 [-1 , 0 , 1],] # linear constraints

Exponential_gain = 10

Linear_gain = 1

def penalfunction():
matrix_A = np.array(A)

parameter = []

parameter_dict = getParameter()

for key, initial in parameter_dict.items(): parameter.append(parameter_dict[key])
parameter = np.array(parameter)

delta = np.dot(matrix_A,parameter)

for i in range(len(delta)):

if delta[i] < 0: delta[i] = 0

return Linear_gain*(np.linalg.norm(delta))**Exponential_gain

210 Annex

DAKOTA pre-processing:
preprocessor.py [131]

import parameter as par

import re

import os

dir = os.path.dirname(__file__)

filetemplate = os.path.join(dir, '../ADAMS/template.adm')

fileberechnung = os.path.join(dir, '../ADAMS/calculation.adm')

fin = open(filetemplate,"r")

fout = open(filecalculation,"w")

parameter = par.getParameter()
for line in fin:

if line.find("<") == -1:

fout.write(line)

else:
fout.write(par.swapTags(line,parameter))

Searching tagged parameters in MBS model:
parameter.py [131]

import re

import math

import numpy as np
import os

dir = os.path.dirname(__file__)

fileparams = os.path.join(dir, '../params.in')

regex_taggedpar = "[-+]?\d+[\.]?\d*[eE]?[-+]?\d*"

def getParameter():
fpar = open(fileparams,"r")

parameter_dict = dict()

for line in fpar:

if not line.find("{ <c") == -1:

a = re.findall(regex_taggedpar, line)[0]
b = re.findall(regex_taggedpar, line)[1]

parameter_dict["<c"+str(a)+">"] = float(b)

if not line.find("{ <d") == -1:

a = re.findall(regex_taggedpar, line)[0]
b = re.findall(regex_taggedpar, line)[1]

parameter_dict["<d"+str(a)+">"] = float(b)

if not line.find("{ <E>") == -1:

a = re.findall(regex_taggedpar, line)[0]
parameter_dict["<E>"] = round(float(a),2)

else:

if not line.find("{ <E") == -1:

a = re.findall(taggedpar, line)[0]

b = re.findall(taggedpar, line)[1]
parameter_dict["<E"+str(a)+">"] = float(b)

fpar.seek(0)

return parameter_dict

def getfinParameter(file):

initline = 1

parameter_dict = dict()

f1_oldvalue = float('inf')

Annex 211

for line in file:

if initline == 1:
tags = re.findall("<.\d*.>",line)

isea = re.findall("(f1).?",line)

initline = 0

if len(isea) == 0:
ea = 0

isea.insert(0,0)

if isea[0] == "f1":

ea = 1

continue
if ea == 0:

parameterline = re.findall(taggedpar,line)

if ea == 1:

new = re.findall(taggedpar,line)
if float(neu[-1]) < f1_wert_alt:

parameterline = neu

f1_oldvalue = float(new[-1])

for i in range(len(tags)):
parameter_dict[tags[i]] = float(parameterline [1+i])

file.seek(0)

return parameter_dict

def swapTags(line,parameter):
for key, initial in parameter.items():

if not line.find(key) == -1:

if not line.find("KT") == -1:

initial = initial*180/math.pi
line = line.replace(key, str(initial))

return line

DAKOTA pre-processing:
preprocessor.py [131]

from result_extract import *
from mac import *

from parameter import *

from penalfunction import *

import numpy as np

import os

dir = os.path.dirname(__file__)

fileresadams = os.path.join(dir, '../ADAMS/result_adams.txt')

fileresout = os.path.join(dir, '../results.out')
fin = open(fileresadams,"r")

fout = open(fileresout,"w")

frequency = getFrequency(fin)
for i in range(len(frequency)):

fout.write(str(frequency[i])+"\n")

if np.load('../Python/settings.npz')["damping"] == "on":

dampingratio = getDamping(fin)
for i in range(len(dampingratio)):

fout.write(str(dampingratio[i])+"\n")

moden_sim = getMode_xyz(fin)
moden_exp = np.load('../OROS/modaldata.npz')["mode"]

mac_diag = np.diag(MAC(moden_exp,moden_sim))

for i in range(len(mac_diag)):

212 Annex

fout.write(str(mac_diag[i])+"\n")

if np.load('../Python/settings.npz')["penalfunction"] == "on":

fileIteration = os.path.join(dir, '../Iteration.out')

fite = open(fileIteration,"a")

penalterm = penalfunction ()
fout.write(str(penalterm))

fite.write(str(penalterm)+"\n")

Extract parameters from MBS model:
result_extract.py [131]

import parameter as par

import re
import numpy as np

regex_taggedpar = "[-+]?\d+[\.]?\d*[eE]?[-+]?\d*"

def getFrequency(file):

freq = []

for line in file:

if not line.find("Undamped natural freq.") == -1:
freq.append(float(re.findall(regex_taggedpar,line)[0]))

file.seek(0)

if np.load('../Python/settings.npz')["damping"] == "on":

damp = getDamping(file)

for i in range(len(freq)):
freq[i] = freq[i]*np.sqrt(1-(damp[i]/100)**2)

return freq

def getDamping(file):
damp = []

for line in file:

if not line.find("Damping ratio") == -1:

damp.append(float(re.findall(regex_taggedpar,line)[0])*100)
file.seek(0)

return damp

def getMode(file):

mode = dict()
mode_red = []

mode_matrix = []

oldposition = 0

for line in file:
if not line.find("PART/") == -1:

position = int(re.findall(regex_taggedpar,line)[0])

if position < oldposition:

for j in np.load('../Python/settings.npz')["measpoint_adams"]:
mode_red.append(mode[str(j)])

mode_matrix.append(mode_red[:])

mode_red.clear()

mode[str(position)]= re.findall(regex_taggedpar,line)

oldposition = 0
else:

mode[str(position)] = re.findall(regex_taggedpar,line)

oldposition = position

for j in np.load('../Python/settings.npz')["measpoint_adams"]:
mode_red.append(mode[str(j)])

mode_matrix.append(mode_red[:])

file.seek(0)

return mode_matrix

Annex 213

def scaling(mode):

for i in range(len(mode)):
max = np.amax(mode[i])

min = np.amin(mode[i])

if abs(min) > max:

max = abs(min)
for j in range(len(mode[i])):

if max == 0:

max = 1

mode[i][j] = mode[i][j]/max

return mode

def getMode_xyz(file):

spatialdir = np.load('settings.npz')["Spatial directions"]

print(len(spatialdir))
if len(spatialdir) == 2:

return print("Error: only one spatial direction!")

mode_matrix = getMode(file)

row = []
mode_xyz = []

mode_1D = []

out = 0

def P2R(radian, angles):

return radian * np.exp(1j*angles*np.pi/180)
for mode in mode_matrix:

for line in mode:

x = P2R(float(line[1]), float(line[2]))

y = P2R(float(line[3]), float(line[4]))
z = P2R(float(line[5]), float(line[6]))

if len(spatialdir) == 3:

row.extend([x,y,z])

else:
if spatialdir == "v1":

row.append(x)

if spatialdir == "v2":

row.append(y)

if spatialdir == "v3":
row.append(z)

if len(spatialdir) == 3:

mode_xyz.append(row[:])

row.clear()
else:

mode_1D.append(row[:])

row.clear()

if len(spatialdir) == 3:
out = scaling(np.array(mode_xyz))

else:

out = scaling(np.array(mode_1D))

file.seek(0)

return out

Compute MAC:
mac.py [131]

import numpy as np

import matplotlib.pyplot as plt

def mac(phi1,phi2):

phi1_c = np.conjugate(phi1)

phi1_c = np.conjugate(phi2)

mac_ij = abs(np.dot(phi1_c,phi2))**2/(np.dot(phi1_c,phi1)*np.dot(phi2_c,phi2))

214 Annex

mac_ij = mac_ij.real

if not mac_ij.imag == 0 :
print("Error: MAC exhibits imaginary part")

return mac_ij

def MAC(exp,sim):
mac_ij = np.zeros((len(exp),len(sim)))

for i in range(len(exp)):

for j in range(len(sim)):

a = np.squeeze(np.asarray(exp[i]))

b = np.squeeze(np.asarray(sim[j]))
mac_ij[i][j] = mac(a,b)

return mac_ij

Supply references:
uff.py [131]

import numpy as np
import matplotlib.pyplot as plt

import pyuff

https://github.com/openmodal/pyuff/blob/master/pyuff%20Showcase.ipynb

import glob
import imp

uffdata = []

for filename in glob.glob('../OROS/*.unv'):

uffdata.append(pyuff.UFF(filename).read_sets())

spatialdir = np.load('settings.npz')["Spatial direction"]

def getFreq(data):
freq = data["eig"].imag/(2*np.pi)

return freq

def getDamp(data):
a = abs(data["eig"].real/data["eig"].imag)

damp = a/np.sqrt(a**2+1)

return damp

def getEigenvalue(data):
eigen = data["eig"]

return eigen

def getMode(data):
if len(spatialdir) == 1:

sp = [data[spatialdir [0]]]

if len(spatialdir) == 2:

sp = [data[spatialdir [0]], data[spatialdir [1]]]
if len(raumrichtung) == 3:

sp = [data[spatialdir [0]], data[spatialdir [1]], data[spatialdir [2]]]

node_nums = data["node_nums"]

node_nums = list(map(int,node_nums))

mode = dict()
for i in range(len(node_nums)):

if len(spatialdir) == 1:

mode[str(node_nums[i])] = sp[0][i]

if len(spatialdir) == 2:
mode[str(node_nums[i])] = [sp[0][i], sp[1][i]]

if len(spatialdir) == 3:

mode[str(node_nums[i])] = [sp[0][i], sp[1][i], sp[2][i]]

return mode

Annex 215

def getAllModaldata (data):
dict = {"freq":getFreq(data),"damp":getDamp(data),"eigen":getEigenvalues(data),

 "mode":getMode(data)}

return dict

def getMatrixModaldata(data):

Modaldata = []

for i in range(len(data)):

if isinstance(data[i], dict) == True:

Modaldata.append(getAllModaldata(data[i]))
else:

for j in range(len(data[i])):

Modaldata.append(getModaldata_i(data[i][j]))

Modaldata.sort(key=lambda x:x["freq"])
return Modaldata

def scaling(mode):

for i in range(len(mode)):
max = np.amax(mode[i])

min = np.amin(mode[i])

if abs(min) > max:

max = abs(min)

for j in range(len(mode[i])):
if max == 0:

max = 1

mode[i][j] = mode[i][j]/max

return mode

def ModalParameter(data):

Modaldata = getMatrixModaldata(data)

freq = []
damp = []

eigenvalue = []

mode = []

for i in range(len(Modaldata)):

freq.append(Modaldata[i]["freq"])
damp.append(100*Modaldata[i]["damp"])

eigenvalue.append(Modaldata[i]["eigen"])

datamode = []

for j in np.load('settings.npz')["measpoint_ema"]:
if len(spatialdir) == 1:

datamode.append(Modaldata[i]["mode"][str(j)])

else:

for element in Modaldata[i]["mode"][str(j)]:
datamode.append(element)

mode.append(datamode[:])

mode = normiere(mode)

return [freq,damp,eigenwert,mode]

Mode transformation:
modetrans.py [131]

import numpy as np

import uff

import scipy.io

def eigen2n(eig):

eig2n = []

for i in range(len(eig)):

eig2n.append(eig[i])

216 Annex

eig2n.append(np.conjugate(eig[i]))

return eig2n

def mode2n(mod):

modcon = []

for i in mod:
modi = []

for j in i:

j = np.conjugate(j)

modi.append(j)

modcon.append(modi[:])
mod2n = []

for i,j in zip(mod,modcon):

mod2n.append(i)

mod2n.append(j)
return mod2n

def sort(f,x):

sort = []
j = 0

for i in f:

sort.append([i,x[j]])

j+=1

sort.sort(key=lambda x:x[0]) # nach der groesse der Frequenzen sortieren
f = []

x = []

for i in sort:

f.append(i[0])
x.append(i[1])

x = np.transpose(x)

return [f,x]

def transundampmodalparameter2damped(eigenvalue,X):

eigen = eigen2n(eigenvalue)

X = mode2n(X)

n_moden = int(len(X)/2)

n_elemente = int(len(X[0]))
X = np.transpose(X)

U, s, V = np.linalg.svd(np.real(X), full_matrices=True)

X_red = np.dot(np.transpose(U),X)

X_red = X_red[0:n_moden]

eigenX_red = np.multiply(X_red,eigen)

lhs = np.concatenate((X_red, eigenX_red), axis=0)

rhs = -1*np.multiply(X_red,np.array(eigen)**2)
MCMD = np.real(np.dot(rhs,np.linalg.inv(lhs)))

MC = np.hsplit(MCMD,2)[0]

eigen,X_red = np.linalg.eig(MC)

freq = np.sqrt(eigen)/(2*np.pi)

X_red = np.concatenate((X_red, np.zeros((n_elemente-n_moden,n_moden))), axis=0)

X = np.dot(U,X_red)
X = uff.normiere(np.transpose(X))

freq, X = sortieren(freq,X)

X = np.transpose(X)

return [freq,X]

Annex 217

Create calibration.dat:
reference.py [131]

import uff

import modentrans as mt

import numpy as np
import os

dir = os.path.dirname(__file__)

filecalibration = os.path.join(dir, '../calibration.dat')
fcal = open(filecalibration,"w")

freq, damp, eigenvalue, mode = uff.ModalParameter(uff.uffdata)

if np.load('settings.npz')["damping"] == "off":

freq,mode = mt. transundampmodalparameter2damped(eigenvalue,mode)
np.savez('../OROS/modaldata', freq=freq, mode=mode)

for f in freq:

fcal.write(str(f)+"\n")

for m in mode:
fcal.write(str(1.0)+"\n")

if np.load('settings.npz')["damping"] == "an":

freq_undamp = []

for f,d in zip(freq,damp):
f = f/np.sqrt(1-(d/100)**2)

freq_undamp.append(f)

np.savez('../OROS/modaldata', freq=freq_o, damp=damp, mode=mode)

for f in freq:

fcal.write(str(f)+"\n")
for d in damp:

fcal.write(str(d)+"\n")

for m in mode:

fcal.write(str(1.0)+"\n")

if np.load('settings.npz')["penalfunction"] == "on":

fcal.write(str(0.0))

fileacf = os.path.join(dir, '../ADAMS/run_adams.acf')

fdat = open(fileacf,"w")

fdat.write("calculation.adm"+"\n")

fdat.write("result_adams"+"\n")

if np.load('settings.npz')["damping"] == "on":
fdat.write("LINEAR/EIGENSOL, COORDS=1,"+str(len(freq))+",TABLE_PRECISION = 3")

else:

fdat.write("LINEAR/EIGENSOL,NODAMPING,COORDS=1,"+str(len(freq))+",TABLE_PRECISION =3")

218 Annex

A.2 Block diagram for mechatronic co-simulations of the linear drive stabilization strategies.

Annex 219

A.3 Cascade control loops of DC motors for the linear drives.

220 Annex

A.4 Control loops of the rotary and tilting motor for the stabilization strategy employing the
gyro mechanism.

Closed-loop control of rotatory motor.

Closed-loop control of tilting motor.

Annex 221

A.5 Scripts implemented for the Approach B stabilization strategy.

kipp_dynamisch_bringup.launch [95]

<?xml version="1.0" ?>

<launch>

<node pkg="acceleration_publisher" type="acceleration_publisher"

name="acceleration_publisher" output="screen">

</node>

<node pkg="tipover_detection" type="tipover_detection" name="tipover_detection"

output="screen" respawn="true">

</node>

</launch>

acceleration_publisher.cpp [95]

#include "acceleration_publisher.h"

#include <kdl_parser/kdl_parser.hpp>//kdl_parser to create kdl_tree from URDF

//Constructor will get called whenever an instance of this class is created

// odd syntax: have to pass nodehandle pointer into constructor for constructor to build

subscribers, etc

acceleration_publisher::acceleration_publisher(ros::NodeHandle*
nodehandle):nh_(*nodehandle)

{ // constructor

ROS_INFO("constructor of class acceleration_publisher");

//initializeSubscribers(); // package up the messy work of creating subscribers; do this

overhead in constructor

initializeSubscribers();

initializePublishers();

// can also do tests/waits to make sure all required services, topics, etc are alive
}

//member helper function to set up subscribers;

//note odd syntax: &example::subscriberjointstateCallback is a pointer to a member function

of example
//"this" keyword is required, to refer to the current instance of class example

void acceleration_publisher::initializeSubscribers()

{
ROS_INFO("initializing Subscribers");

joint_state_subscriber = nh_.subscribe("joint_states", 1,

&acceleration_publisher::subscriberjointstateCallback,this);

}

//member helper function to set up publishers;

void acceleration_publisher::initializePublishers()

{

ROS_INFO("initializing Publishers");
joint_state_acceleration_publisher =

nh_.advertise<sensor_msgs::JointState>("joint_states_acceleration", 1);

}

void acceleration_publisher::subscriberjointstateCallback(const

sensor_msgs::JointState::ConstPtr& jointstate_msg) {

222 Annex

// this callback function wakes up every time a new message is published on "/joint_states"

for(int i=0; i<=10; i++) //iterate all joints

{

name[i] = jointstate_msg->name[i];//get joint names from topic "/joint_states""

position[i] = jointstate_msg->position[i];//get joint positions from topic "/joint_states""
velocity[i] = jointstate_msg->velocity[i];//get joint velocities from topic

"/joint_states""

}

//i=0 -> right_wheel_jointi=6 -> arm_3_joint
//i=1 -> left_wheel_joint i=7 -> arm_4_joint

//i=2 -> back_caster_jointi=8 -> arm_5_joint

//i=3 -> back_wheel_jointi=9 -> arm_6_joint

//i=4 -> arm_1_jointi=10 -> arm_7_joint
//i=5 -> arm_2_joint

//get current ROS Time

double currentTime = ros::Time::now().toSec();

//calculate time delta between last and current cycle of this callback function

double delta = currentTime - storedTime;

//calculate joint accelerations as derivative of joint velocities with f'=(y(t) - y(t-
delta_t))/delta_t (differential quotient)

for(int i=0; i<=10; i++)

{

acceleration[i] = (velocity[i]-velocity_remember[i])/delta;
}

//remember current velocity values for next loop, must be done AFTER acceleration is

calculated

for(int i=0; i<=10; i++)
{

velocity_remember[i] = velocity[i];

}

//remember current time for next loop, must be done AFTER acceleration is calculated

storedTime = currentTime;
}

int main(int argc, char** argv)

{
// ROS set-ups:

ros::init(argc, argv, "acceleration_publisher_node"); //node name

ros::NodeHandle nh; // create a node handle; need to pass this to the class constructor

ros::Rate loop_rate(10);//set a desired run time of a cycle in Hz
sensor_msgs::JointState output_message;//create output message of Type

sensor_msg::JointState

//segmentation fault (core dumped) without resize of output message

output_message.name.resize(11);
output_message.position.resize(11);

output_message.velocity.resize(11);

output_message.effort.resize(11);

ROS_INFO("main: instantiating an object of type acceleration_publisher");

acceleration_publisher acceleration_publisher(&nh); //instantiate an

acceleration_publisher class object and pass in pointer to nodehandle for constructor to

use
while(ros::ok())

{

output_message.header.stamp = ros::Time::now();//timestamp of message

for(int i=0; i<=10; i++) //write the joint states in output message

Annex 223

{

output_message.name[i] = name[i];
output_message.position[i] = position[i];

output_message.velocity[i] = velocity[i];

output_message.effort[i] = acceleration[i];//publish the accelerations as "effort" in

output message of type JointState
//because there is no array for "acceleration" available in sensor_msgs::JointState

}

acceleration_publisher.joint_state_acceleration_publisher.publish(output_message);

//publish output_message on topic "/joint_states_acceleration""
::spinOnce();

loop_rate.sleep();//sleeps for any leftover time in a cycle to meet desired loop rate

(calculated from the last time sleep/reset/constructor was called)

}
return 0;

}

tipover_detection.cpp [95]

//headers in this package

#include "tipover_detection.h"

//headers for standard library

#include <iostream>

#include <fstream>

//headers for ROS
#include <ros/ros.h>

#include <ros/package.h>

#include <sensor_msgs/PointCloud.h>

#include <geometry_msgs/PointStamped.h>
#include <geometry_msgs/Point32.h>

#include <geometry_msgs/Inertia.h>

#include <geometry_msgs/Vector3.h>

//headers for urdf-parser

#include <kdl_parser/kdl_parser.hpp>

//headers for RNEA

#include <kdl/chainidsolver_recursive_newton_euler.hpp>
#include <kdl/chain.hpp>

#include <kdl/tree.hpp>

#include <kdl/segment.hpp>

//Constructor will get called whenever an instance of this class is created

//odd syntax: have to pass nodehandle pointer into constructor for constructor to build

subscribers, etc

tipover_detection::tipover_detection(ros::NodeHandle* nodehandle):nh_(*nodehandle)
{

// constructor for class tipover_detection

ROS_INFO("constructor of class tipover_detection");

initializeSubscribers();
initializePublishers();

//get robot_description parameter from parameter server

std::string robot_description_text;
nh_.param("robot_description", robot_description_text, std::string());

//alternative: nh_.getParam("/robot_description", robot_description_text);

//parse urdf by using kdl_parser

224 Annex

KDL::Tree robot_tree;

if(!kdl_parser::treeFromString(robot_description_text, robot_tree))
{

ROS_ERROR("failed to construct kdl tree: robot_tree");

}

//show number of tree segments and joints

ROS_INFO_STREAM("robot_tree segments: " << robot_tree.getNrOfSegments()<<" Joints:

"<<robot_tree.getNrOfJoints());

//get chain from robot_tree
if(!robot_tree.getChain("base_link","arm_ee_link",robot_chain))

//tree.getChain(chain_root,chain_tip,chain) base_link

{

ROS_ERROR("failed to construct kdl chain robot_chain from tree robot_tree");
}

//show number of chain segments and joints

ROS_INFO_STREAM("robot_chain segments: " << robot_chain.getNrOfSegments()<<"Joints:
"<<robot_chain.getNrOfJoints());

//inverse dynamics solver can only calculate forces/torques for joints

//solution: create "virtual" joints for roll/pitch/yaw (torque) and x/y/z (force) in a

separate URDF (these joints do not exist on the real robot, only needed for calculations)
//origin of these joints is where the robot arm (Schunk LWA 4D) is mounted on the base

(Scitos G5)

//create torque_tree from URDF file "torque_joints.urdf.xacro"

KDL::Tree torque_tree;
if(!kdl_parser::treeFromFile("/home/franzi/ros/ros_robo_ws_sim/src/kipp_dynamisch_ws_pgks/t

orque_joints.urdf.xacro",torque_tree))

{

ROS_ERROR("failed to construct kdl tree: torque_tree");
}

//show number of tree segments and joints

ROS_INFO_STREAM("torque_tree segments: "<<torque_tree.getNrOfSegments()<<"joints:

"<<torque_tree.getNrOfJoints());

//create chain from torque_tree

if(!torque_tree.getChain("torque_base","connector_link",torque_chain))

{

ROS_ERROR("failed to construct kdl chain torque_chain from tree torque_tree");
}

//show number of chain segments and joints

ROS_INFO_STREAM("torque_chain segments: " << torque_chain.getNrOfSegments()<<"joints:

"<<torque_chain.getNrOfJoints());

//add robot_chain at the end of torque_chain (robot arm should be "on top" of the torque

joints)

torque_chain.addChain(robot_chain);

//show number of segments and joints of combined chain
ROS_INFO_STREAM("combined chain segments: " << torque_chain.getNrOfSegments()<<"joints:

"<<torque_chain.getNrOfJoints());

//calculate mass of mobile base
std::string

base_links[6]={"base_link","scitos_right_wheel","scitos_left_wheel","scitos_wheel_back_cyli

nder","scitos_wheel_back_plate","scitos_wheel_back"};

base_mass = 0;
for(int i=0;i<6;i++)

{

base_mass=base_mass+robot_tree.getSegment(base_links[i])>second.segment.getInertia().getMas

s();

Annex 225

}

//resize arrays for position, velocity and acceleration to number of joints in chain (in

this case: 13)

q.resize(torque_chain.getNrOfJoints());

q_dot.resize(torque_chain.getNrOfJoints());
q_dotdot.resize(torque_chain.getNrOfJoints());

//set values to zero here in constructor as safety, values will get updated by callback

function of acceleration_subscriber

SetToZero(q);
SetToZero(q_dot);

SetToZero(q_dotdot);

}

//member function to set up subscribers

//note odd syntax: &tipover_detection::subscriberaccelerationCallback is a pointer to a

member function of tipover_detection

//"this" keyword is required, to refer to the current instance of class tipover_detection
void tipover_detection::initializeSubscribers()

{

ROS_INFO("initializing Subscribers");

acceleration_subscriber = nh_.subscribe("joint_states_acceleration",1,

&tipover_detection::subscriberaccelerationCallback,this); //subscribes to topic
"/joint_states_acceleration""

imu_subscriber = nh_.subscribe("imu",1,&tipover_detection::subscriberimuCallback,this);

//subscribes to topic "/imu"

imu_without_gravity_subscriber =
nh_.subscribe("linear_acc_without_gravity",1,&tipover_detection::subscriberimuwithoutgravit

yCallback,this); //subscribes to topic "/linear_acc_without_gravity"

cog_subscriber =

nh_.subscribe("cog/robot",1,&tipover_detection::subscribercogCallback,this);
}

//member function to set up publishers

void tipover_detection::initializePublishers()

{
ROS_INFO("initializing Publishers");

joint_torque_publisher = nh_.advertise<sensor_msgs::JointState>("joint_torques", 1, true);

//publishes topic "/joint_torques"

tipover_publisher = nh_.advertise<sensor_msgs::JointState>("tipover_data", 1, true);
}

void tipover_detection::subscriberaccelerationCallback(const

sensor_msgs::JointState::ConstPtr& acceleration_msg)
{

// callback function for acceleration_subscriber

// it wakes up every time a new message is published on "/joint_states_acceleration"

//position, velocity and acceleration values of torque_joint_roll, torque_joint_pitch and
torque_joint_yaw are always zero ("virtual" joints do not move)

q.data[0] = 0.0;

q_dot.data[0] = 0.0;

q_dotdot.data[0] = 0.0;
q.data[1] = 0.0;

q_dot.data[1] = 0.0;

q_dotdot.data[1] = 0.0;

q.data[2] = 0.0;
q_dot.data[2] = 0.0;

q_dotdot.data[2] = 0.0;

//position and velocity of force_joint_x, force_joint_y and force_joint_z is zero

("virtual" joints do not move)

226 Annex

//accelerations are set to base linear acceleration in subscriberimuwithoutgravityCallback

function to calculate forces
q.data[3] = 0.0;

q_dot.data[3] = 0.0;

//q_dotdot.data[3] = 0.0;

q.data[4] = 0.0;
q_dot.data[4] = 0.0;

//q_dotdot.data[4] = 0.0;

q.data[5] = 0.0;

q_dot.data[5] = 0.0;

//q_dotdot.data[5] = 0.0;

for (int i=6; i<=12; i++) //robot arm joint 1..7 is "joint_states_acceleration" at

[4]..[10}

{
q.data[i] = acceleration_msg->position[i-2]; //write joint positions from topic

"/joint_states_acceleration"" to KDL::JntArray q

q_dot.data[i] = acceleration_msg->velocity[i-2]; //write joint velocities from topic

"/joint_states_acceleration"" to KDL::JntArray q_dot
q_dotdot.data[i] = acceleration_msg->effort[i-2]; //write joint accelerations from topic

"/joint_states_acceleration"" to KDL::JntArray q_dotdot

}

}

void tipover_detection::subscriberimuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg)

{

//callback function for imu_subscriber

//wakes up every time a new message is published on "/imu"
//gravitational acceleration (minus any movement) in m/s²

gravity.data[0] = 10*imu_msg -> linear_acceleration.x; //gravity vector x

gravity.data[1] = 10*imu_msg -> linear_acceleration.y; //gravity vector y

gravity.data[2] = 10*imu_msg -> linear_acceleration.z; //gravity vector z
}

void tipover_detection::subscriberimuwithoutgravityCallback(const

sensor_msgs::Imu::ConstPtr &linear_acc_without_gravity_msg)

{
//callback function for imu_without_gravity_subscriber

//wakes up every time a new message is published on "/linear_acc_without_gravity"

//linear acceleration data (acceleration minus gravity) in m/s²

linear_accel.data[0] = linear_acc_without_gravity_msg -> linear_acceleration.x;
linear_accel.data[1] = linear_acc_without_gravity_msg -> linear_acceleration.y;

linear_accel.data[2] = linear_acc_without_gravity_msg -> linear_acceleration.z;

//set force joint accelerations to moving base linear accelerations for force calculation
q_dotdot.data[3] = linear_acc_without_gravity_msg -> linear_acceleration.x;

q_dotdot.data[4] = linear_acc_without_gravity_msg -> linear_acceleration.y;

q_dotdot.data[5] = linear_acc_without_gravity_msg -> linear_acceleration.z;

}

void tipover_detection::subscribercogCallback(const geometry_msgs::PointStamped::ConstPtr

&cog_msg)

{

//callback function for cog_subscriber
//wakes up every time a new message is published on "/cog/robot"

cog.x = cog_msg->point.x; //cog x in coordinate frame of "base_link"

cog.y = cog_msg->point.y; //cog y in coordinate frame of "base_link"

cog.z = cog_msg->point.z; //cog z in coordinate frame of "base_link"
}

geometry_msgs::Vector3 tipover_detection::crossProduct(geometry_msgs::Vector3 vector_a,

geometry_msgs::Vector3 vector_b)

Annex 227

{

//member function to calculate the cross product of two vectors
geometry_msgs::Vector3 vector_c;

vector_c.x = (vector_a.y * vector_b.z) - (vector_a.z * vector_b.y);

vector_c.y = (vector_a.z * vector_b.x) - (vector_a.x * vector_b.z);

vector_c.z = (vector_a.x * vector_b.y) - (vector_a.y * vector_b.x);
return vector_c;

}

double tipover_detection::dotProduct(geometry_msgs::Vector3 vector_a,

geometry_msgs::Vector3 vector_b)
{

//member function to calculate the dot product (= scalar product) of two vectors

double dotProduct = (vector_a.x * vector_b.x) + (vector_a.y * vector_b.y) + (vector_a.z *

vector_b.z);
return dotProduct;

}

geometry_msgs::Vector3 tipover_detection::addVector(geometry_msgs::Vector3 vector_a,
geometry_msgs::Vector3 vector_b)

{

//member function for addition of two vectors

geometry_msgs::Vector3 vector_c;

vector_c.x = vector_a.x + vector_b.x;
vector_c.y = vector_a.y + vector_b.y;

vector_c.z = vector_a.z + vector_b.z;

return vector_c;

}

double tipover_detection::alphacalc(double factor,double base)

{

//member function to calculate tip-over stability margin alpha
if(factor > 0)

{

return pow(base,1)*factor;

}

else
{

return pow(base,-1)*factor;

}

}

double tipover_detection::alpha_cm_calc(double factor,double base)

{

//member function to calculate tip-over stability margin alpha_cm (with incorporation of
c.m. height)

if(factor > 0)

{

return pow(base,-1)*factor;

}
else

{

return pow(base,1)*factor;

}
}

void tipover_detection::calculate_tipover(geometry_msgs::Vector3

right_wheel,geometry_msgs::Vector3 back_wheel,geometry_msgs::Vector3
left_wheel,geometry_msgs::Vector3 edge1,

geometry_msgs::Vector3 edge2,geometry_msgs::Vector3 edge3,geometry_msgs::Vector3

cog_right_wheel,geometry_msgs::Vector3 cog_back_wheel,geometry_msgs::Vector3

cog_left_wheel)

228 Annex

{

//member function to perform all calculations to determine tip-over stability
//calculate joint torques/forces with inverse dynamics solver (RNE)

//use the calculated forces/torques to determine (critical) tip-over margin

//build as many wrenches in vector f_ext as the number of segments in the chain (in this
case: 17 segments)

//wrenches represent external forces/torques acting on each chain element

std::vector<KDL::Wrench> f_ext; //external forces

KDL::Vector extforce(0.0,0.0,0.0); //set external forces to zero

KDL::Vector exttorque(0.0,0.0,0.0); //set external torques to zero

for(int i=0; i<=torque_chain.getNrOfSegments()-1; i++)

{

KDL::Wrench externalforce(extforce,exttorque);
//externalforce.Zero();

f_ext.push_back(externalforce);

}

rnea_return.resize(torque_chain.getNrOfJoints()); //resize array to number of joints in

chain (in this case: 13)

KDL::ChainIdSolver_RNE solver(torque_chain,gravity); //create an element of class

ChainIdSolver_RNE and initialise it with chain and gravity vector

//q, q_dot, q_dotdot and rnea_return must be the same size as the number of joints in the

chain

//f_ext must be the same size as the number of segments in the chain
if(solver.CartToJnt(q,q_dot,q_dotdot,f_ext,rnea_return)!=0) //calculate joint torques

{

ROS_ERROR("calculation of joint torques and forces failed"); //error message if

calculation fails
}

//calculate the force acting on the cog of the mobile base (due to gravitational forces and

base motion)
//Force = (linear acceleration + gravitational acceleration) * base mass

geometry_msgs::Vector3 F_base;

F_base.x = (linear_accel[0]*(-1)+gravity[0])*base_mass;

F_base.y = (linear_accel[1]*(-1)+gravity[1])*base_mass;
F_base.z = (linear_accel[2]*(-1)+gravity[2])*base_mass;

//Wrench with ALL forces and torques exerted to the base body (in point F) due to

manipulator motion, gravitational forces, inertial force and external forces/torques
//this wrench reflects the whole effect of the manipulator arm on the mobile base

(including manipulator dynamics, end-effector loading

//and reaction forces due to interaction with the environment)

geometry_msgs::Vector3 F_r, M_r;

F_r.x = rnea_return.data[3]*(-1); //force in direction of x-axis
F_r.y = rnea_return.data[4]*(-1); //force in direction of y-axis

F_r.z = rnea_return.data[5]*(-1); //force in direction of z-axis

M_r.x = rnea_return.data[0]*(-1); //torque about x-axis (roll)

M_r.y = rnea_return.data[1]*(-1); //torque about y-axis (pitch)
M_r.z = rnea_return.data[2]*(-1); //torque about z-axis (yaw)

//moment of forces/torques in "F" about the corner points of the support polygon can be

calculated
// M = (r x F) + n

geometry_msgs::Vector3 M_f1, M_f2, M_f3;

M_f1 = addVector(crossProduct(right_wheel,F_r),M_r);

M_f2 = addVector(crossProduct(back_wheel,F_r),M_r);

Annex 229

M_f3 = addVector(crossProduct(left_wheel,F_r),M_r);

//moment about corner points of support polygon exerted by force acting on the cog of the

mobile base

geometry_msgs::Vector3 M_base1,M_base2,M_base3;

M_base1 = crossProduct(cog_right_wheel,F_base);
M_base2 = crossProduct(cog_back_wheel,F_base);

M_base3 = crossProduct(cog_left_wheel,F_base);

//calculate total moment about each corner point by adding M_f and M_base

geometry_msgs::Vector3 Mv1,Mv2,Mv3;
Mv1 = addVector(M_f1,M_base1);

Mv2 = addVector(M_f2,M_base2);

Mv3 = addVector(M_f3,M_base3);

//moments about corner points (vertices) can be projected about the different edges of the

support polygon

double M1,M2,M3;

M1 = dotProduct(Mv1,edge1);
M2 = dotProduct(Mv2,edge2);

M3 = dotProduct(Mv3,edge3);

//base moment of inertia about i-th edge of support boundary (i=1..3) in kg/m²

double I_v1 = 4.673861;
double I_v2 = 4.57659;

double I_v3 = 4.724126;

//dynamic stability margin (alpha) about each boundary edge ist computed
alpha1 = alphacalc(M1,I_v1);

alpha2 = alphacalc(M2,I_v2);

alpha3 = alphacalc(M3,I_v3);

//MHS measure is computed by considering the most critical case (smallest alpha)

// - if the minimum of all alphas is positive (which means all alphas are positive), the

system is stable

// - a negative alpha represents an instability about the corresponding edge (robot is

tipping over)
// - alpha value of zero represents the critical dynamic stability

//std::min() returns the smaller of both values

alpha_critical = std::min(std::min(alpha1,alpha2),alpha3); //alpha_critical is the

smallest of the three values

//MHS measure in the above form is not directly sensitive to the height of the center of

mass

//measurement can be improved by incorporating the c.m. height
//cog.z is expressed in coordinate frame of "base_link", needs to be converted to represent

height above ground level

double h_cm = 0.6088+(cog.z-0.452); //center of mass height (cog.z-0.452 converts from

"base_link" to coordinate frame in F, point F is 0.6088 cm above ground contact)

alpha1_cm = alpha_cm_calc(alpha1,h_cm);

alpha2_cm = alpha_cm_calc(alpha2,h_cm);

alpha3_cm = alpha_cm_calc(alpha3,h_cm);

alpha_critical_cm = std::min(std::min(alpha1_cm,alpha2_cm),alpha3_cm);

//alpha_critical_cm is the smallest of the three values

}

int main(int argc, char** argv)

{

//ROS SET-UPS:

ros::init(argc, argv, "tipover_detection_node"); //node name

230 Annex

ros::NodeHandle nh; // create a node handle; need to pass this to the class constructor

ros::Rate loop_rate(10); //set a desired run time of a cycle in Hz

sensor_msgs::JointState torque_output; //initialise an output message for joint

forces/torques

sensor_msgs::JointState tipover_output; //initialise an output message for tip-over
stability values

//resize output messages

tipover_output.name.resize(8);

tipover_output.effort.resize(8);
torque_output.name.resize(13);

torque_output.effort.resize(13);

//GEOMETRY SET-UP OF THE ROBOT
//position vectors of ground contact points in the "base coordinate frame", origin is point

A where manipulator exerts the moving base

geometry_msgs::Vector3 left_wheel, right_wheel, back_wheel;

//P1 (right wheel)

right_wheel.x = 0.075;

right_wheel.y = -0.155;

right_wheel.z = -0.6088;

//P2 (back wheel)

back_wheel.x = -0.327;

back_wheel.y = 0.0;

back_wheel.z = -0.6088;

//P3 (left wheel)

left_wheel.x = 0.075;

left_wheel.y = 0.155;
left_wheel.z = -0.6088;

//calculate the unit vectors of the edges between the ground contact points (wheels) which

form the support polygon (in this case support polygon is a triangle)

//vectors are defined so that they make a closed loop in clockwise direction
geometry_msgs::Vector3 edge1, edge2, edge3;

double norm1,norm2,norm3;

edge1.x = back_wheel.x-right_wheel.x;

edge1.y = back_wheel.y-right_wheel.y;
edge1.z = back_wheel.z-right_wheel.z;

norm1 = sqrt(pow(edge1.x,2)+pow(edge1.y,2)+pow(edge1.z,2));

edge1.x = edge1.x / norm1;

edge1.y = edge1.y / norm1;
edge1.z = edge1.z / norm1;

edge2.x = left_wheel.x-back_wheel.x;

edge2.y = left_wheel.y-back_wheel.y;

edge2.z = left_wheel.z-back_wheel.z;
norm2 = sqrt(pow(edge2.x,2)+pow(edge2.y,2)+pow(edge2.z,2));

edge2.x = edge2.x / norm2;

edge2.y = edge2.y / norm2;

edge2.z = edge2.z / norm2;

edge3.x = right_wheel.x-left_wheel.x;

edge3.y = right_wheel.y-left_wheel.y;

edge3.z = right_wheel.z-left_wheel.z;
norm3 = sqrt(pow(edge3.x,2)+pow(edge3.y,2)+pow(edge3.z,2));

edge3.x = edge3.x / norm3;

edge3.y = edge3.y / norm3;

edge3.z = edge3.z / norm3;

Annex 231

geometry_msgs::Vector3 cog_base,cog_right_wheel,cog_left_wheel,cog_back_wheel;
//position vector of mobile base cog, origin is point A (fixed values because mobile base

itself is rigid, therefore cog does not change)

cog_base.x = -0.00235;

cog_base.y = -0.00194;
cog_base.z = -0.39443;

//vector pointing FROM each wheel TO cog_base

cog_right_wheel.x = cog_base.x - right_wheel.x;

cog_right_wheel.y = cog_base.y - right_wheel.y;
cog_right_wheel.z = cog_base.z - right_wheel.z;

cog_back_wheel.x = cog_base.x - back_wheel.x;

cog_back_wheel.y = cog_base.y - back_wheel.y;
cog_back_wheel.z = cog_base.z - back_wheel.z;

cog_left_wheel.x = cog_base.x - left_wheel.x;

cog_left_wheel.y = cog_base.y - left_wheel.y;
cog_left_wheel.z = cog_base.z - left_wheel.z;

//invert position vectors of the ground contact points

//necessary because calculation of tip-over needs vector pointing FROM reference point of

torque (= corner points) TO the point of
//application of the force (= Point A), NOT the other way around

right_wheel.x = right_wheel.x*(-1);

right_wheel.y = right_wheel.y*(-1);

right_wheel.z = right_wheel.z*(-1);

back_wheel.x = back_wheel.x*(-1);

back_wheel.y = back_wheel.y*(-1);

back_wheel.z = back_wheel.z*(-1);

left_wheel.x = left_wheel.x*(-1);

left_wheel.y = left_wheel.y*(-1);

left_wheel.z = left_wheel.z*(-1);

ROS_INFO("main: instantiating an object of type tipover_detection");

tipover_detection tipover_detection(&nh); //instantiate an tipover_detection class object

and pass in pointer to nodehandle for constructor to use

while(ros::ok())

{

//call member function to calculate tip-over stability

tipover_detection.calculate_tipover(right_wheel,back_wheel,left_wheel,edge1,edge2,edge3,cog
_right_wheel,cog_back_wheel,cog_left_wheel);

//write the tip-over values in output message

tipover_output.name[0] = "alpha1";

tipover_output.effort[0] = tipover_detection.alpha1;
tipover_output.name[1] = "alpha2";

tipover_output.effort[1] = tipover_detection.alpha2;

tipover_output.name[2] = "alpha3";

tipover_output.effort[2] = tipover_detection.alpha3;
tipover_output.name[3] = "alpha_critical";

tipover_output.effort[3] = tipover_detection.alpha_critical;

tipover_output.name[4] = "alpha1_cm";

tipover_output.effort[4] = tipover_detection.alpha1_cm;
tipover_output.name[5] = "alpha2_cm";

tipover_output.effort[5] = tipover_detection.alpha2_cm;

tipover_output.name[6] = "alpha3_cm";

tipover_output.effort[6] = tipover_detection.alpha3_cm;

232 Annex

tipover_output.name[7] = "alpha_critical_cm";

tipover_output.effort[7] = tipover_detection.alpha_critical_cm;

//write the calculated joint torques in output message

torque_output.name[0] = "torque_joint_roll";

torque_output.name[1] = "torque_joint_pitch";
torque_output.name[2] = "torque_joint_yaw";

torque_output.name[3] = "force_x";

torque_output.name[4] = "force_y";

torque_output.name[5] = "force_z";

torque_output.name[6] = "arm_1_joint";
torque_output.name[7] = "arm_2_joint";

torque_output.name[8] = "arm_3_joint";

torque_output.name[9] = "arm_4_joint";

torque_output.name[10] = "arm_5_joint";
torque_output.name[11] = "arm_6_joint";

torque_output.name[12] = "arm_7_joint";

for(int i=0;i<13;i++)
{

torque_output.effort[i] = tipover_detection.rnea_return.data[i];

}

//write timestamp of message in msg header
torque_output.header.stamp = ros::Time::now();

tipover_output.header.stamp =ros::Time::now();

//publish joint torques to topic "/joint_torques"
tipover_detection.joint_torque_publisher.publish(torque_output);

//publish tip-over values to topic "/tipover_data"

tipover_detection.tipover_publisher.publish(tipover_output);

ros::spinOnce();

loop_rate.sleep(); //sleeps for any leftover time in a cycle to meet desired loop rate

(calculated from the last time sleep/reset/constructor was called)

}

return 0;
}

bringup_robot_main_control_dyn.launch [175]

<?xml version="1.0" ?>

<launch>

<node pkg="lowpass_filter" type="lowpass_filter" name="lowpass_filter" output="screen">
</node>

<node pkg="robot_main_control_dyn" type="robot_main_control_dyn"

name="robot_main_control_dyn" output="screen" respawn="true">

</node>
<node pkg="test_cmdvel_vali" type="test_points.py" name="help_points" output="screen"

respawn="true">

</node>

</launch>

lowpass_filter.cpp [175]

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"

#include <sensor_msgs/Imu.h>

double T = 0.3; //sec

Annex 233

double dt = 0.1; //ms

double x_ = 0;

double y_ = 0;

double z_ = 0;

double epsilon = 0.0001;

ros::Publisher imu_filtered_pub;

sensor_msgs::Imu imu_filtered;

double lowPassFilter(double x, double y0, double dt, double T)
{

double res = y0 + (x - y0) * (dt/(dt+T));

if ((res*res) <= epsilon)

res = 0;
return res;

}

void imuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg){
double x = imu_msg -> linear_acceleration.x;

double y = imu_msg -> linear_acceleration.y;

double z = imu_msg -> linear_acceleration.z;

x_ = lowPassFilter(x, x_, dt, T);
y_ = lowPassFilter(y, y_, dt, T);

z_ = lowPassFilter(z, z_, dt, T);

imu_filtered.header.stamp = ros::Time::now();
imu_filtered.linear_acceleration.x = x_;

imu_filtered.linear_acceleration.y = y_;

imu_filtered.linear_acceleration.z = z_;

//imu_filtered_pub.publish(imu_filtered);

}

int main(int argc, char **argv)

{

// Publishes Odometry messages
ros::Publisher baseOdometryPublisher;

ros::init(argc, argv, "lowpass_filter");

ros::NodeHandle n;

//setup input/output communication

n.param("T", T, 0.3);

n.param("dt", dt, 0.1);
// Receives Sensor messages from Talker.

ros::Subscriber talker_sub = n.subscribe("linear_acc_without_gravity", 1000, &imuCallback);

imu_filtered_pub =n.advertise<sensor_msgs::Imu>("linear_acc_without_gravity_filter",1);

//coordination

ros::Rate rate(10);

while (n.ok()){

ros::spinOnce();

imu_filtered_pub.publish(imu_filtered);
rate.sleep();

}

return 0;

}

234 Annex

robot_main_control_dyn.cpp [175]

#include "robot_main_control_dyn.h"

// constructor

robot_main_control::robot_main_control(ros::NodeHandle* nodehandle):nh_(*nodehandle)
{

ROS_INFO("in class constructor of robot_main_control");

init();

run();

}

void robot_main_control::init()

{

//speed_scaling_factor controls the moving speed of the robot arm
speed_scaling_factor_arm = 1.0;

//speed_scaling_factor_base = 1.0;

//moveit_plannerID specifies the IK-solver

moveit_plannerID = "RRT"; //ESTkConfigDefault
overturn.data = false;

start.data = false;

//initialize tcp poses and current pose with zero

received_tcp_goal.pose.position.x = 0.0;
received_tcp_goal.pose.position.y = 0.0;

received_tcp_goal.pose.position.z = 0.0;

received_tcp_goal.pose.orientation.x = 0.0;

received_tcp_goal.pose.orientation.y = 0.0;
received_tcp_goal.pose.orientation.z = 0.0;

received_tcp_goal.pose.orientation.w = 0.0;

current_state.pose.position.x = 0.0;
current_state.pose.position.y = 0.0;

current_state.pose.position.z = 0.0;

current_state.pose.orientation.x = 0.0;

current_state.pose.orientation.y = 0.0;

current_state.pose.orientation.z = 0.0;
current_state.pose.orientation.w = 0.0;

using_tcp_goal.pose.position.x = 0.0;

using_tcp_goal.pose.position.y = 0.0;
using_tcp_goal.pose.position.z = 0.0;

using_tcp_goal.pose.orientation.x = 0.0;

using_tcp_goal.pose.orientation.y = 0.0;

using_tcp_goal.pose.orientation.z = 0.0;
using_tcp_goal.pose.orientation.w = 0.0;

target_arm_pose.pose.position.x = 0.0;

target_arm_pose.pose.position.y = 0.0;

target_arm_pose.pose.position.z = 0.0;

target_arm_pose.pose.orientation.x = 0.0;

target_arm_pose.pose.orientation.y = 0.0;

target_arm_pose.pose.orientation.z = 0.0;

target_arm_pose.pose.orientation.w = 0.0;

initializeSubscribers(); //creating subscribers

//RNEA
//get robot_description parameter from parameter server

std::string robot_description_text;

nh_.param("robot_description", robot_description_text, std::string());

//alternative: nh_.getParam("/robot_description", robot_description_text);

Annex 235

//parse urdf by using kdl_parser
KDL::Tree robot_tree;

if(!kdl_parser::treeFromString(robot_description_text, robot_tree))

{

ROS_ERROR("failed to construct kdl tree: robot_tree");
}

//show number of tree segments and joints

ROS_INFO_STREAM("robot_tree segments: " << robot_tree.getNrOfSegments()<<"Joints:"

<<robot_tree.getNrOfJoints());

//get chain from robot_tree

if(!robot_tree.getChain("base_link","arm_ee_link",robot_chain))

//tree.getChain(chain_root,chain_tip,chain) base_link
{

ROS_ERROR("failed to construct kdl chain robot_chain from tree robot_tree");

}

//show number of chain segments and joints

ROS_INFO_STREAM("robot_chain segments: " << robot_chain.getNrOfSegments()<<" Joints:"

<<robot_chain.getNrOfJoints());

//inverse dynamics solver can only calculate forces/torques for joints
//solution: create "virtual" joints for roll/pitch/yaw (torque) and x/y/z (force) in a

separate URDF (these joints do not exist on the real robot, only needed for calculations)

//origin of these joints is where the robot arm (Schunk LWA 4D) is mounted on the base

(Scitos G5)
//create torque_tree from URDF file "torque_joints.urdf.xacro"

KDL::Tree torque_tree;

if(!kdl_parser::treeFromFile("/home/franzi/ros/ros_robo_ws_sim/src/kipp_dynamisch_ws_pgks/

torque_joints.urdf.xacro",torque_tree))
{

ROS_ERROR("failed to construct kdl tree: torque_tree");

}

//show number of tree segments and joints

ROS_INFO_STREAM("torque_tree segments: "<<torque_tree.getNrOfSegments()<<" joints: "
<<torque_tree.getNrOfJoints());

//create chain from torque_tree

if(!torque_tree.getChain("torque_base","connector_link",torque_chain))
{

ROS_ERROR("failed to construct kdl chain torque_chain from tree torque_tree");

}

//show number of chain segments and joints
ROS_INFO_STREAM("torque_chain segments: " << torque_chain.getNrOfSegments()<<" joints: "

<<torque_chain.getNrOfJoints());

//add robot_chain at the end of torque_chain (robot arm should be "on top" of the torque

joints)
torque_chain.addChain(robot_chain);

//show number of segments and joints of combined chain

ROS_INFO_STREAM("combined chain segments: " << torque_chain.getNrOfSegments()<<" joints: "

<<torque_chain.getNrOfJoints());

//calculate mass of mobile base

std::string base_links[6] =

{"base_link","scitos_right_wheel","scitos_left_wheel","scitos_wheel_back_cylinder",
"scitos_wheel_back_plate","scitos_wheel_back"};

base_mass = 0;

for(int i=0;i<6;i++)

{

236 Annex

base_mass = base_mass + robot_tree.getSegment(base_links[i])>

second.segment.getInertia().getMass();
}

//resize arrays for position, velocity and acceleration to number of joints in chain (in

this case: 13)
q.resize(torque_chain.getNrOfJoints());

q_dot.resize(torque_chain.getNrOfJoints());

q_dotdot.resize(torque_chain.getNrOfJoints());

//set values to zero here in constructor as safety, values will get updated by callback
function of acceleration_subscriber

SetToZero(q);

SetToZero(q_dot);

SetToZero(q_dotdot);

//define alpha subscriber

alpha_crit.resize(4);

SetToZero(alpha_crit);

q_calc.resize(torque_chain.getNrOfJoints());

SetToZero(q_calc);

}

geometry_msgs::Pose robot_main_control::calculate_new_arm_position()

{

//GEOMETRY SET-UP OF THE ROBOT

//position vectors of ground contact points in the "base coordinate frame", origin is

point A where manipulator exerts the moving base

geometry_msgs::Vector3 left_wheel, right_wheel, back_wheel;

//P1 (right wheel)

right_wheel.x = 0.075;

right_wheel.y = -0.155;

right_wheel.z = -0.6088;

//P2 (back wheel)

back_wheel.x = -0.327;

back_wheel.y = 0.0;
back_wheel.z = -0.6088;

//P3 (left wheel)

left_wheel.x = 0.075;
left_wheel.y = 0.155;

left_wheel.z = -0.6088;

//calculate the unit vectors of the edges between the ground contact points (wheels) which

form the support polygon (in this case support polygon is a triangle)
//vectors are defined so that they make a closed loop in clockwise direction

geometry_msgs::Vector3 edge1, edge2, edge3;

double norm1,norm2,norm3;

edge1 = addVector(back_wheel, right_wheel,0);
norm1 = sqrt(pow(edge1.x,2)+pow(edge1.y,2)+pow(edge1.z,2));

edge1.x = edge1.x / norm1;

edge1.y = edge1.y / norm1;

edge1.z = edge1.z / norm1;

edge2 = addVector(left_wheel,back_wheel,0);

norm2 = sqrt(pow(edge2.x,2)+pow(edge2.y,2)+pow(edge2.z,2));

edge2.x = edge2.x / norm2;

Annex 237

edge2.y = edge2.y / norm2;

edge2.z = edge2.z / norm2;

edge3 = addVector(right_wheel,left_wheel,0);

norm3 = sqrt(pow(edge3.x,2)+pow(edge3.y,2)+pow(edge3.z,2));

edge3.x = edge3.x / norm3;
edge3.y = edge3.y / norm3;

edge3.z = edge3.z / norm3;

geometry_msgs::Vector3 cog_base,cog_right_wheel,cog_left_wheel,cog_back_wheel,cog;

//position vector of mobile base cog, origin is point A (fixed values because mobile base
itself is rigid, therefore cog does not change)

cog_base.x = -0.00235;

cog_base.y = -0.00194;

cog_base.z = -0.39443;

//vector pointing FROM each wheel TO cog_base

cog_right_wheel = addVector(cog_base,right_wheel,0);

cog_back_wheel = addVector(cog_base,back_wheel,0);
cog_left_wheel = addVector(cog_base,left_wheel,0);

//invert position vectors of the ground contact points

//necessary because calculation of tip-over needs vector pointing FROM reference point of

torque (= corner points) TO the point of

//application of the force (= Point A), NOT the other way around
right_wheel.x = right_wheel.x*(-1);

right_wheel.y = right_wheel.y*(-1);

right_wheel.z = right_wheel.z*(-1);

back_wheel.x = back_wheel.x*(-1);

back_wheel.y = back_wheel.y*(-1);

back_wheel.z = back_wheel.z*(-1);

left_wheel.x = left_wheel.x*(-1);

left_wheel.y = left_wheel.y*(-1);

left_wheel.z = left_wheel.z*(-1);

//calculates alpha, from actual situation, and if arm_link_1 and arm_link_2 are moved
about +- dq

//highest new alpha is used to calculate new point for arm.

// plus arm_1_joint = 6, arm_2_joint = 7, arm_3_joint = 8, arm_4_joint = 9

q_calc = q;

double delta_q_max = 0;

KDL::Frame np_output;

KDL::Frame np_output2;
KDL::ChainFkSolverPos_recursive NewPoint(torque_chain);

std::array<int,4> needed_jointArray = {6,7,8,9};

std::array<double,2*needed_jointArray.size()+1> delta_q;

int count_itt =0;

bool error = false;

while (delta_q_max < alpha_G || error == false) {

int a = 0;
for (int n=0;n<delta_q.size();n++) {

q_repo = q_calc;

if (n == 0){

}else {
if(n % 2 == 1){

if (a % 2 == 1){

if (q_calc.data[needed_jointArray[a]]+dq < 2.0){

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]+dq;

238 Annex

}else {

q_repo.data[needed_jointArray[a]] = 2.0;
}

}else {

if (q_calc.data[needed_jointArray[a]]+dq < 3.0){

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]+dq;
}else {

q_repo.data[needed_jointArray[a]] = 3.0;

}

}

}else {
if (a % 2 == 1){

if (q_calc.data[needed_jointArray[a]]-dq > -2.0){

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]-dq;

}else {
q_repo.data[needed_jointArray[a]] = -2.0;

}

}else {

if (q_calc.data[needed_jointArray[a]]-dq > -3.0){
q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]-dq;

}else {

q_repo.data[needed_jointArray[a]] = -3.0;

}

a++;
}

}

}
calculate_tipover(right_wheel,back_wheel,left_wheel,edge1,edge2,edge3,cog_right_wheel,cog_

back_wheel,cog_left_wheel,q_repo);

//write calculated alpha critical in Array

delta_q[n]= this -> alpha_critical_cm;
if (int y = NewPoint.JntToCart (q_repo, np_output, torque_chain.getNrOfSegments())<0){

ROS_ERROR("failed to calcutale new point");

}

delta_h[n] = np_output.p.z()+0.452;

}
//get Maximum of calculated alpha critical

int x= 0;

double delta_h_max = delta_h[0];

delta_q_max = delta_q[0];
for (int n=0;n<delta_q.size();n++) {

if (delta_q[n] > delta_q_max){ // && delta_h[i]>delta_h_max){

x = n;

delta_q_max = delta_q[n];
delta_h_max = delta_h[n];

}

}

q_repo = q_calc;

if (x == 0){

error = true;

ROS_WARN_STREAM("No convergence or better value. Use last calculated value");

}else {
// set new konfiguration.

// target_joint is the joint which has to be changed. Get Position of Targetjoint in Array

needed_jointArray

int target_joint = (int) (x+1)/2 -1;
// Check if with Modulus if +dp or -dp

if (x%2 ==0) {

q_repo.data[needed_jointArray[target_joint]]=

q_calc.data[needed_jointArray[target_joint]]-dq;

Annex 239

}else {

q_repo.data[needed_jointArray[target_joint]]=
q_calc.data[needed_jointArray[target_joint]]+dq;

}

// set reposition konfiguration for new konfiguraion
q_calc = q_repo;

// iteration counter

}

count_itt++;

}

if (int y = NewPoint.JntToCart (q, np_output2, torque_chain.getNrOfSegments())<0)

{

ROS_ERROR("failed to calcutale new point");
}

if (int y = NewPoint.JntToCart (q_repo, np_output, torque_chain.getNrOfSegments())<0)

{
ROS_ERROR("failed to calcutale new point");

}

//geometry_msgs::Pose repo_state;

repo_state.pose.position.x = np_output.p.x();

repo_state.pose.position.y = np_output.p.y();
repo_state.pose.position.z = np_output.p.z()+0.452;

repo_state.pose.orientation.x = PoseEE.pose.orientation.x;

repo_state.pose.orientation.y = PoseEE.pose.orientation.y;

repo_state.pose.orientation.z = PoseEE.pose.orientation.z;
repo_state.pose.orientation.w = PoseEE.pose.orientation.w;

return repo_state.pose;

}

void robot_main_control::run()

{

//preconfigure part for scitos and robotarm

//tell the action client that we want to spin a thread by default
MoveBaseClient ac("move_base", true);

//wait for the action server to come up

while(!ac.waitForServer(ros::Duration(5.0))){
ROS_INFO("Waiting for the move_base action server to come up");

}

move_base_msgs::MoveBaseGoal scitos_goal;

scitos_goal.target_pose.header.frame_id = "map";

scitos_goal.target_pose.header.stamp = ros::Time::now();

// set static variable for Planning_group

static const std::string PLANNING_GROUP = "arm";

moveit::planning_interface::MoveGroupInterface arm_plan_group(PLANNING_GROUP);

// We are going to use the :planning_scene_interface:`PlanningSceneInterface`

// class to add and remove collision objects in our "virtual world" scene

moveit::planning_interface::PlanningSceneInterface planning_scene_interface;

arm_plan_group.setMaxAccelerationScalingFactor(speed_scaling_factor_arm);

arm_plan_group.setMaxVelocityScalingFactor(speed_scaling_factor_arm);

//configure moveit Planner

arm_plan_group.setPlannerId(moveit_plannerID);

arm_plan_group.setPlanningTime(10);

arm_plan_group.setPoseReferenceFrame("base_footprint");// base_footprint

240 Annex

arm_plan_group.setStartStateToCurrentState();

ROS_INFO("Planning reference frame: %s", arm_plan_group.getPlanningFrame().c_str());

ROS_INFO("End effector reference frame: %s", arm_plan_group.getEndEffectorLink().c_str());

int reduce_counter=0;
ros::AsyncSpinner spinner(1);

spinner.start();

const moveit::core::JointModelGroup* joint_model_group =

arm_plan_group.getCurrentState()->getJointModelGroup(PLANNING_GROUP);

// Define a collision object ROS message.

moveit_msgs::CollisionObject collision_object;

collision_object.header.frame_id = arm_plan_group.getPlanningFrame();

// The id of the object is used to identify it.

collision_object.id = "box1";

// Define a box to add to the world.
shape_msgs::SolidPrimitive primitive;

primitive.type = primitive.BOX;

primitive.dimensions.resize(3);

primitive.dimensions[0] = 0.2;

primitive.dimensions[1] = 1.0;
primitive.dimensions[2] = 2;

// Define a pose for the box (specified relative to frame_id)

geometry_msgs::Pose box_pose;
box_pose.orientation.w = 1.0;

box_pose.position.x = X_KRIT+primitive.dimensions[0]*0.5;

box_pose.position.y = 0;

box_pose.position.z = primitive.dimensions[2]*0.5;

collision_object.primitives.push_back(primitive);

collision_object.primitive_poses.push_back(box_pose);

collision_object.operation = collision_object.ADD;

std::vector<moveit_msgs::CollisionObject> collision_objects;

collision_objects.push_back(collision_object);

ROS_INFO("Add the box in front of the Robot into the world");
planning_scene_interface.addCollisionObjects(collision_objects);

//main

while(ros::ok())
{

try{

listen_pose_of_scitos.waitForTransform("/map","/base_footprint",ros::Time(0),

ros::Duration(0.2));

listen_pose_of_scitos.lookupTransform("/map","/base_footprint",ros::Time(0),

transform_of_scitos);

listen_pose_of_ee.waitForTransform("/base_footprint","/arm_ee_link",ros::Time(0),

ros::Duration(0.2));

listen_pose_of_ee.lookupTransform("/base_footprint","/arm_ee_link",ros::Time(0),
transform_of_ee);

}

catch (tf::TransformException ex){

ROS_ERROR("%s",ex.what());

Annex 241

ros::Duration(1.0).sleep();

}

// Get current pose of scitos via tf /map /base_footprint

current_state.pose.position.x = transform_of_scitos.getOrigin().x();

current_state.pose.position.y = transform_of_scitos.getOrigin().y();
current_state.pose.position.z = transform_of_scitos.getOrigin().z();

current_state.pose.orientation.x = transform_of_scitos.getRotation().x();

current_state.pose.orientation.y = transform_of_scitos.getRotation().y();

current_state.pose.orientation.z = transform_of_scitos.getRotation().z();
current_state.pose.orientation.w = transform_of_scitos.getRotation().w();

ee_pose.pose.orientation.x = transform_of_ee.getRotation().x();

ee_pose.pose.orientation.y = transform_of_ee.getRotation().y();
ee_pose.pose.orientation.z = transform_of_ee.getRotation().z();

ee_pose.pose.orientation.w = transform_of_ee.getRotation().w();

ROS_INFO("Please publish a target pose to the topic: /estimated_tcp_goal and then start the
execution with publishing at the topic /start_moving_robot.");

while(start.data == false && ros::ok()){

} //waiting for publishing start true;

move_arm.data = false;
goal_pos.data = false;

repo.data = false;

using_tcp_goal = received_tcp_goal;
// prepare Point for coordinate Transformation from /map to /base_footprint

TCP_global.header.stamp = ros::Time(0);

TCP_global.header.frame_id ="map";

TCP_global.point.x = received_tcp_goal.pose.position.x;
TCP_global.point.y = received_tcp_goal.pose.position.y;

TCP_global.point.z = received_tcp_goal.pose.position.z;

// Transform the Point into Base frame

listen_pose_of_scitos.transformPoint("/base_footprint", TCP_global,TCP_base);

//call function

calculate_scitos_arm_target_poses();

repo.data = false;

//check if estimated TCP is within reachable workingspace

if (in_workspace.data == false){

if (alpha_crit.data[3]<= alpha_G)
{

ROS_WARN("Critical state. Initializing repositioning of arm.");

while (alpha_crit.data[3]<= alpha_G) {

// get initial Orientation
PoseEE = arm_plan_group.getCurrentPose("arm_ee_link");

arm_plan_group.setPoseTarget(calculate_new_arm_position());

moveit::planning_interface::MoveGroupInterface::Plan my_plan;

moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan);

if(success.SUCCESS == 1) {

ROS_INFO("Sending robot arm new Position");

arm_plan_group.execute(my_plan);

arm_plan_group.clearPathConstraints();

242 Annex

geometry_msgs::Vector3 ee_position;

ee_position.x = transform_of_ee.getOrigin().x();
ee_position.y = transform_of_ee.getOrigin().y();

ee_position.z = transform_of_ee.getOrigin().z();

geometry_msgs::Vector3 repo_position;
repo_position.x = repo_state.pose.position.x;

repo_position.y = repo_state.pose.position.y;

repo_position.z = repo_state.pose.position.z;

int wait = 0;

//Wait until robot arm has finished moving
while (dTwoPoints(ee_position,repo_position)>0.05) {

listen_pose_of_ee.lookupTransform("/base_footprint","/arm_ee_link",ros::Time(0),

transform_of_ee);

ee_position.x = transform_of_ee.getOrigin().x();

ee_position.y = transform_of_ee.getOrigin().y();

ee_position.z = transform_of_ee.getOrigin().z();

sleep(1);

wait ++;

if (wait == 5){break;}

}

}
}

repo.data = true;

}else {
repo.data = true;

}

}else {

move_arm.data = true;
}

if (repo.data){

//start planing and executing robot scitos

scitos_goal.target_pose.header.frame_id = "map";

scitos_goal.target_pose.header.stamp = ros::Time::now();
scitos_goal.target_pose.pose = scitos_pose.pose;

ac.sendGoal(scitos_goal);

ROS_INFO("Sending scitos goal: (%f,%f,%f)",scitos_goal.target_pose.pose.position.x,
scitos_goal.target_pose.pose.position.y,scitos_goal.target_pose.pose.position.z);

ROS_INFO("Sending scitos goal");

repo.data = false;

// Calculate Distance between Goal an actual position

geometry_msgs::Vector3 scitos_position;

scitos_position.x = transform_of_scitos.getOrigin().x();

scitos_position.y = transform_of_scitos.getOrigin().y();

scitos_position.z = transform_of_scitos.getOrigin().z();

geometry_msgs::Vector3 scitos_goal_position;

scitos_goal_position.x = scitos_goal.target_pose.pose.position.x;

scitos_goal_position.y = scitos_goal.target_pose.pose.position.y;
scitos_goal_position.z = scitos_goal.target_pose.pose.position.z;

geometry_msgs::Vector3Stamped ex_global;

ex_global.header.stamp = ros::Time(0);
ex_global.header.frame_id ="map";

ex_global.vector.x = 1;

ex_global.vector.y = 0;

ex_global.vector.z = 0;

Annex 243

geometry_msgs::Vector3Stamped ex_base;

double angle_scitos_goal= 180;
ROS_INFO_STREAM("distance = "<< dTwoPoints(scitos_position,scitos_goal_position) <<

 " Angle: "<< angle_scitos_goal);

// Check if Scitos is on goal pose.

while (dTwoPoints(scitos_position,scitos_goal_position)>0.1 || angle_scitos_goal >10) {

listen_pose_of_scitos.lookupTransform("/map","/base_footprint",ros::Time(0),

transform_of_scitos);

scitos_position.x = transform_of_scitos.getOrigin().x();

scitos_position.y = transform_of_scitos.getOrigin().y();
scitos_position.z = transform_of_scitos.getOrigin().z();

// calculate angle between goal orientation and current orientation from scitos

listen_pose_of_scitos.transformVector("/base_footprint", ex_global,ex_base);
// Scalar produkt from ex_base with (1|0) x-direction from scitos

angle_scitos_goal = acos((1*ex_base.vector.x + 0*ex_base.vector.y))*180/PI;

if (alpha_crit.data[3] <= alpha_G)
{

ROS_INFO("Thats too critical i have find an other position for my arm");

PoseEE = arm_plan_group.getCurrentPose("arm_ee_link");

ROS_ERROR_STREAM("Orientation is, x: "<< PoseEE.pose.orientation.x << " y:"

<< PoseEE.pose.orientation.y << " z: " << PoseEE.pose.orientation.z << " w: "
<< PoseEE.pose.orientation.w);

arm_plan_group.setPoseTarget(calculate_new_arm_position());

moveit::planning_interface::MoveGroupInterface::Plan my_plan;

moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan);

if(success.SUCCESS == 1) {
arm_plan_group.execute(my_plan); //wait until planning is ready

ROS_INFO("Sending robot arm new Position");

}

}

}
move_arm.data = true;

goal_pos.data = true;

}

if (move_arm.data){
//start Planning and execute the robot arm

arm_plan_group.setGoalTolerance(0.1);

arm_plan_group.setPoseTarget(target_arm_pose.pose);

moveit::planning_interface::MoveGroupInterface::Plan my_plan;
moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan);

if(success.SUCCESS == 1) {

arm_plan_group.execute(my_plan); //wait until planning is ready

ROS_INFO("Sending robot arm goal");
}

goal_pos.data = true;

}

int waiting = 0;
while(waiting <= 5 && goal_pos.data)

{

waiting++;

sleep(1);
}

OS_INFO("Ready for next target! Please publish first on tcp_goal and then on start.");

tart.data = false;

244 Annex

}

spinner.stop();
}

double robot_main_control::dTwoPoints(geometry_msgs::Vector3 p1, geometry_msgs::Vector3

p2){

double distance;

distance = sqrt(pow(p1.x-p2.x,2)+pow(p1.y-p2.y,2)+pow(p1.z-p2.z,2));

return distance;

}
void robot_main_control::initializeSubscribers()

{

ROS_INFO("Initializing Subscribers");

tcp_goal_subscriber = nh_.subscribe("estimated_tcp_goal", 1,
&robot_main_control::subscribergoalCallback,this);

overtrun_subscriber = nh_.subscribe("kippgefahr", 1,

&robot_main_control::subscriberoverturnCallback,this);

start_moving_subscriber = nh_.subscribe("/start_moving_robot", 1,
&robot_main_control::subscriber_start_moving_Callback,this);

tipover_value_subscriber = nh_.subscribe("/tipover_data", 1,

&robot_main_control::subscriber_tipover_Callback,this);

acceleration_subscriber = nh_.subscribe("joint_states_acceleration", 1,
&robot_main_control::subscriberaccelerationCallback,this); //subscribes to topic

"/joint_states_acceleration""

imu_subscriber = nh_.subscribe("imu",1,&robot_main_control::subscriberimuCallback,this);

//subscribes to topic "/imu"

//Check Parameter "use_lowpassfilter" and initialize Subcriber

bool lowpassfilter;

ros::param::get("/use_lowpass",lowpassfilter);
if (lowpassfilter)

{

imu_without_gravity_subscriber =

nh_.subscribe("linear_acc_without_gravity_filter",1,&robot_main_control::subscriberimuwitho

utgravityCallback,this); //subscribes to topic "/linear_acc_without_gravity"
ROS_INFO("Parameter for Lowpassfilter is set: %d, I'm using filtered data ",lowpassfilter);

}

else

{
imu_without_gravity_subscriber =

nh_.subscribe("linear_acc_without_gravity",1,&robot_main_control::subscriberimuwithoutgravi

tyCallback,this); //subscribes to topic "/linear_acc_without_gravity"

ROS_INFO("Parameter for Lowpassfilter is set: %d, I'm using raw data ",lowpassfilter);
}

cog_subscriber =

nh_.subscribe("cog/robot",1,&robot_main_control::subscribercogCallback,this);

}

void robot_main_control::subscribergoalCallback(const geometry_msgs::Pose::ConstPtr

&pose_goal_msg)

{

received_tcp_goal.pose.position = pose_goal_msg->position;
received_tcp_goal.pose.orientation = pose_goal_msg->orientation;

}

void robot_main_control::subscriberoverturnCallback(const std_msgs::Bool::ConstPtr
&overturn_msg)

{

 overturn.data = overturn_msg->data;

}

Annex 245

void robot_main_control::subscriber_tipover_Callback (const
sensor_msgs::JointState::ConstPtr &alpha_krit)

{

// it wakes up every time a new message is published on "/tipover_data"

alpha_crit.data[0] = alpha_krit ->effort[4];
alpha_crit.data[1] = alpha_krit ->effort[5];

alpha_crit.data[2] = alpha_krit ->effort[6];

alpha_crit.data[3] = alpha_krit ->effort[7];

}

void robot_main_control::subscriberaccelerationCallback(const

sensor_msgs::JointState::ConstPtr& acceleration_msg)

{

// callback function for acceleration_subscriber
// it wakes up every time a new message is published on "/joint_states_acceleration"

//position, velocity and acceleration values of torque_joint_roll, torque_joint_pitch and

torque_joint_yaw are always zero ("virtual" joints do not move)
q.data[0] = 0.0;

q_dot.data[0] = 0.0;

q_dotdot.data[0] = 0.0;

q.data[1] = 0.0;

q_dot.data[1] = 0.0;
q_dotdot.data[1] = 0.0;

q.data[2] = 0.0;

q_dot.data[2] = 0.0;

q_dotdot.data[2] = 0.0;
//position and velocity of force_joint_x, force_joint_y and force_joint_z is zero

("virtual" joints do not move)

//accelerations are set to base linear acceleration in subscriberimuwithoutgravityCallback

function to calculate forces
q.data[3] = 0.0;

q_dot.data[3] = 0.0;

q.data[4] = 0.0;

q_dot.data[4] = 0.0;

q.data[5] = 0.0;
q_dot.data[5] = 0.0;

for (int i=6; i<=12; i++) //robot arm joint 1..7 is "joint_states_acceleration" at

[4]..[10}
{

q.data[i] = acceleration_msg->position[i-2]; //write joint positions from topic

"/joint_states_acceleration"" to KDL::JntArray q

}
}

void robot_main_control::subscriberimuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg)

{

//callback function for imu_subscriber
//wakes up every time a new message is published on "/imu"

//gravitational acceleration (minus any movement) in m/s²

//Change to 1*imu_msg 21.10.2020 /for simulation

gravity.data[0] = 10*imu_msg -> linear_acceleration.x; //gravity vector x
gravity.data[1] = 10*imu_msg -> linear_acceleration.y; //gravity vector y

gravity.data[2] = 10*imu_msg -> linear_acceleration.z; //gravity vector z

}

void robot_main_control::subscriberimuwithoutgravityCallback(const

sensor_msgs::Imu::ConstPtr &linear_acc_without_gravity_msg)

{

//callback function for imu_without_gravity_subscriber

246 Annex

//wakes up every time a new message is published on "/linear_acc_without_gravity"

//linear acceleration data (acceleration minus gravity) in m/s²
linear_accel.data[0] = linear_acc_without_gravity_msg -> linear_acceleration.x;

linear_accel.data[1] = linear_acc_without_gravity_msg -> linear_acceleration.y;

linear_accel.data[2] = linear_acc_without_gravity_msg -> linear_acceleration.z;

//set force joint accelerations to moving base linear accelerations for force calculation

q_dotdot.data[3] = linear_acc_without_gravity_msg -> linear_acceleration.x;

q_dotdot.data[4] = linear_acc_without_gravity_msg -> linear_acceleration.y;

q_dotdot.data[5] = linear_acc_without_gravity_msg -> linear_acceleration.z;

}

void robot_main_control::subscribercogCallback(const geometry_msgs::PointStamped::ConstPtr

&cog_msg)

{
//callback function for cog_subscriber

//wakes up every time a new message is published on "/cog/robot"

cog.x = cog_msg->point.x; //cog x in coordinate frame of "base_link"

cog.y = cog_msg->point.y; //cog y in coordinate frame of "base_link"
cog.z = cog_msg->point.z; //cog z in coordinate frame of "base_link"

}

void robot_main_control::subscriber_start_moving_Callback(const std_msgs::Bool::ConstPtr

&start_msg)
{

start.data = start_msg->data;

}

geometry_msgs::Vector3 robot_main_control::crossProduct(geometry_msgs::Vector3 vector_a,

geometry_msgs::Vector3 vector_b)

{

//member function to calculate the cross product of two vectors
geometry_msgs::Vector3 vector_c;

vector_c.x = (vector_a.y * vector_b.z) - (vector_a.z * vector_b.y);

vector_c.y = (vector_a.z * vector_b.x) - (vector_a.x * vector_b.z);

vector_c.z = (vector_a.x * vector_b.y) - (vector_a.y * vector_b.x);

return vector_c;
}

double robot_main_control::dotProduct(geometry_msgs::Vector3 vector_a,

geometry_msgs::Vector3 vector_b)
{

//member function to calculate the dot product (= scalar product) of two vectors

double dotProduct = (vector_a.x * vector_b.x) + (vector_a.y * vector_b.y) + (vector_a.z *

vector_b.z);
return dotProduct;

}

geometry_msgs::Vector3 robot_main_control::addVector(geometry_msgs::Vector3 vector_a,

geometry_msgs::Vector3 vector_b, int i)
{

//member function for addition of two vectors

//integer decides if plus or minus

geometry_msgs::Vector3 vector_c;
if (i==1)

{

vector_c.x = vector_a.x + vector_b.x;

vector_c.y = vector_a.y + vector_b.y;
vector_c.z = vector_a.z + vector_b.z;

}else {

vector_c.x = vector_a.x - vector_b.x;

vector_c.y = vector_a.y - vector_b.y;

Annex 247

vector_c.z = vector_a.z - vector_b.z;

}
return vector_c;

}

double robot_main_control::alphacalc(double factor,double base)
{

//member function to calculate tip-over stability margin alpha

if(factor > 0)

{

return pow(base,1)*factor;
}

else

{

return pow(base,1)*factor;
}

}

double robot_main_control::alpha_cm_calc(double factor,double base)
{

//member function to calculate tip-over stability margin alpha_cm (with incorporation of

c.m. height)

if(factor > 0)

{
return pow(base,-1)*factor;

}

else

{
return pow(base,-1)*factor;

}

}

void robot_main_control::calculate_tipover(geometry_msgs::Vector3

right_wheel,geometry_msgs::Vector3 back_wheel,geometry_msgs::Vector3

left_wheel,geometry_msgs::Vector3 edge1,

geometry_msgs::Vector3 edge2,geometry_msgs::Vector3 edge3,geometry_msgs::Vector3

cog_right_wheel,geometry_msgs::Vector3 cog_back_wheel,geometry_msgs::Vector3
cog_left_wheel, KDL::JntArray q)

{

//member function to perform all calculations to determine tip-over stability

//calculate joint torques/forces with inverse dynamics solver (RNE)
//use the calculated forces/torques to determine (critical) tip-over margin

//build as many wrenches in vector f_ext as the number of segments in the chain (in this

case: 17 segments)
//wrenches represent external forces/torques acting on each chain element

std::vector<KDL::Wrench> f_ext; //external forces

KDL::Vector extforce(0.0,0.0,0.0); //set external forces to zero

KDL::Vector exttorque(0.0,0.0,0.0); //set external torques to zero

for(int i=0; i<=torque_chain.getNrOfSegments()-1; i++)

{

KDL::Wrench externalforce(extforce,exttorque);

f_ext.push_back(externalforce);
}

rnea_return.resize(torque_chain.getNrOfJoints()); //resize array to number of joints in

chain (in this case: 13)

KDL::ChainIdSolver_RNE solver(torque_chain,gravity); //create an element of class

ChainIdSolver_RNE and initialise it with chain and gravity vector

248 Annex

//q, q_dot, q_dotdot and rnea_return must be the same size as the number of joints in the

chain
//f_ext must be the same size as the number of segments in the chain

if(solver.CartToJnt(q,q_dot,q_dotdot,f_ext,rnea_return)!=0) //calculate joint torques

{

ROS_ERROR("calculation of joint torques and forces failed"); //error message if
calculation fails

}

//calculate the force acting on the cog of the mobile base (due to gravitational forces and

base motion)
//Force = (linear acceleration + gravitational acceleration) * base mass

geometry_msgs::Vector3 F_base;

F_base.x =(linear_accel[0]*(-1)+gravity[0])*base_mass;
F_base.y =(linear_accel[1]*(-1)+gravity[1])*base_mass;

F_base.z =(linear_accel[2]*(-1)+gravity[2])*base_mass;

//Wrench with ALL forces and torques exerted to the base body (in point F) due to
manipulator motion, gravitational forces, inertial force and external forces/torques

//this wrench reflects the whole effect of the manipulator arm on the mobile base

(including manipulator dynamics, end-effector loading

//and reaction forces due to interaction with the environment)

geometry_msgs::Vector3 F_r, M_r;
F_r.x = rnea_return.data[3]*(-1); //force in direction of x-axis

F_r.y = rnea_return.data[4]*(-1); //force in direction of y-axis

F_r.z = rnea_return.data[5]*(-1); //force in direction of z-axis

M_r.x = rnea_return.data[0]*(-1); //torque about x-axis (roll)
M_r.y = rnea_return.data[1]*(-1); //torque about y-axis (pitch)

M_r.z = rnea_return.data[2]*(-1); //torque about z-axis (yaw)

//moment of forces/torques in "F" about the corner points of the support polygon can be
calculated

// M = (r x F) + n

geometry_msgs::Vector3 M_f1, M_f2, M_f3;

M_f1 = addVector(crossProduct(right_wheel,F_r),M_r,1);

M_f2 = addVector(crossProduct(back_wheel,F_r),M_r,1);
M_f3 = addVector(crossProduct(left_wheel,F_r),M_r,1);

//moment about corner points of support polygon exerted by force acting on the cog of the

mobile base
geometry_msgs::Vector3 M_base1,M_base2,M_base3;

M_base1 = crossProduct(cog_right_wheel,F_base);

M_base2 = crossProduct(cog_back_wheel,F_base);

M_base3 = crossProduct(cog_left_wheel,F_base);

//calculate total moment about each corner point by adding M_f and M_base

geometry_msgs::Vector3 Mv1,Mv2,Mv3;

Mv1 = addVector(M_f1,M_base1,1);

Mv2 = addVector(M_f2,M_base2,1);
Mv3 = addVector(M_f3,M_base3,1);

//moments about corner points (vertices) can be projected about the different edges of the

support polygon
double M1,M2,M3;

M1 = dotProduct(Mv1,edge1);

M2 = dotProduct(Mv2,edge2);

M3 = dotProduct(Mv3,edge3);

//base moment of inertia about i-th edge of support boundary (i=1..3) in kg/m²

double I_v1 = 4.673861;

double I_v2 = 4.57659;

Annex 249

double I_v3 = 4.724126;

//dynamic stability margin (alpha) about each boundary edge ist computed

alpha1 = alphacalc(M1,I_v1);

alpha2 = alphacalc(M2,I_v2);

alpha3 = alphacalc(M3,I_v3);

//MHS measure is computed by considering the most critical case (smallest alpha)

// - if the minimum of all alphas is positive (which means all alphas are positive), the

system is stable

// - a negative alpha represents an instability about the corresponding edge (robot is
tipping over)

// - alpha value of zero represents the critical dynamic stability

alpha_critical = std::min(std::min(alpha1,alpha2),alpha3); //alpha_critical is the

smallest of the three values

//MHS measure in the above form is not directly sensitive to the height of the center of

mass

//measurement can be improved by incorporating the c.m. height
//cog.z is expressed in coordinate frame of "base_link", needs to be converted to represent

height above ground level

double h_cm = 0.6088+(cog.z-0.452); //center of mass height (cog.z-0.452 converts from

"base_link" to coordinate frame in F, point F is 0.6088 cm above ground contact)

alpha1_cm = alpha_cm_calc(alpha1,h_cm);

alpha2_cm = alpha_cm_calc(alpha2,h_cm);

alpha3_cm = alpha_cm_calc(alpha3,h_cm);

alpha_critical_cm = std::min(std::min(alpha1_cm,alpha2_cm),alpha3_cm);

//alpha_critical_cm is the smallest of the three values

}

void robot_main_control::check_workspace()

{

//This feature decide if the estimated Point is in the Workpspace.

double angle_scitos_TCP;

double dot_product_scitos_TCP;

in_workspace.data = false;

// get current pose of Scitos

double current_position_x = transform_of_scitos.getOrigin().x();
double current_position_y = transform_of_scitos.getOrigin().y();

double current_position_z = 0.832; // Position of Arm_2_link

// Calculation of Angle between Pose Scitos and TCP to Check if it is before or behind the
robot

double a1 = 1; //coodinates of x-axsis in BaseKoordinateframe

double a2 = 0; //coodinates of x-axsis in BaseKoordinateframe

double b1 = TCP_base.point.x; //transformed Point from /map to /base_footprint
double b2 = TCP_base.point.y;

double amount_b = sqrt(pow(b1,2)+pow(b2,2));

double amount_a = sqrt(pow(a1,2)+pow(a2,2));

dot_product_scitos_TCP = a1*b1 +a2*b2;

angle_scitos_TCP = acos(dot_product_scitos_TCP/(amount_b*amount_a))*180/PI;

if(angle_scitos_TCP<90){

// if angle_scitos_TCP smaller than 90 degree use ellipsoide, TCP is in front of robot

250 Annex

double scitos_elipsoide =

pow((TCP_base.point.x)/X_KRIT,2)+pow((TCP_base.point.y)/MAX_WS_RADIUS,2)+pow((TCP_global.po
int.z-current_position_z)/MAX_WS_RADIUS,2);

if(scitos_elipsoide < 1){

in_workspace.data = true;

ROS_INFO("It is in front of me");
}

}

else{

// if angle_scitos_TCP higher than 90 degree use spehre, TCP is behind robot

double scitos_sphere =
pow(TCP_base.point.x,2)+pow(TCP_base.point.y,2)+pow(TCP_global.point.z-

current_position_z,2);

if(scitos_sphere < pow(MAX_WS_RADIUS,2)){

in_workspace.data = true;
ROS_INFO("It is behind me");

}

}

}
void robot_main_control::calculate_scitos_arm_target_poses()

{

//check if the given TCP is in the workingspace

check_workspace();

if(in_workspace.data == false){

//Goal not able to reach only with move_arm. First need to move the base.

//calculate the goal for the base and the arm and set the calulated goal to scitos_pose and

arm_pose

scitos_pose.pose.position.x = TCP_global.point.x -MAX_VALUE_DELTA_X;

scitos_pose.pose.position.y = TCP_global.point.y -MAX_VALUE_DELTA_Y;

scitos_pose.pose.orientation.w = 1;

scitos_pose.pose.orientation.z = 0;

target_arm_pose.pose.position.x = MAX_VALUE_DELTA_X;

target_arm_pose.pose.position.y = MAX_VALUE_DELTA_Y;
target_arm_pose.pose.position.z = TCP_global.point.z;

target_arm_pose.pose.orientation = using_tcp_goal.pose.orientation;

ROS_INFO("movement of base required");

ROS_INFO("Scitos_goal_pose: [%f], [%f], [%f]", scitos_pose.pose.position.x,

scitos_pose.pose.position.y, scitos_pose.pose.orientation.w);

ROS_INFO("arm_goal_pose: [%f], [%f], [%f]", target_arm_pose.pose.position.x,
target_arm_pose.pose.position.y, target_arm_pose.pose.position.z);

}

else{

// estimated TCP is within the workspace
target_arm_pose.pose.position.x = TCP_base.point.x; //using relative x position of TCP

target_arm_pose.pose.position.y = TCP_base.point.y; //using relative y position of TCP

target_arm_pose.pose.position.z = TCP_global.point.z; //using real high of TCP

target_arm_pose.pose.orientation = using_tcp_goal.pose.orientation;

ROS_INFO("arm_goal_pose: [%f], [%f], [%f]", target_arm_pose.pose.position.x,

target_arm_pose.pose.position.y, target_arm_pose.pose.position.z);

}
ROS_INFO("calculate_scitos_arm_target_poses is done");

}

int main(int argc, char** argv)

Annex 251

{

// ROS set-ups:
ros::init(argc, argv, "robot_main_control_dyn"); //node name

ros::NodeHandle nh;

ROS_INFO("main: instantiating an object of type robot_main_control");

robot_main_control robot_main_control(&nh);

return 0;

}

test_points.py [175]

import rospy

import roslib

import numpy as np

from geometry_msgs.msg import Pose
from geometry_msgs.msg import Twist

from std_msgs.msg import Bool

from time import sleep

import tf

estimated_goal = Pose()

offset = Pose()

tf_pose = Pose()

def callback_goal(goal):

#Angle between /map and /base_link

phi = np.arccos(tf_pose.orientation.w)*2

a= tf_pose.orientation.w
b= tf_pose.orientation.x

c= tf_pose.orientation.y

d = tf_pose.orientation.z

xbase1 = 2*(a**2+b**2)-1

xbase2 = 2*(b*c+a*d)
ybase1 =2*(b*c-a*d)

ybase2 =2*(a**2+c**2)-1

amount_x= np.sqrt(xbase1**2+xbase2**2)
amount_y= np.sqrt(ybase1**2+ybase2**2)

xbase1 = xbase1/amount_x

xbase2 = xbase2/amount_x

ybase1 =ybase1/amount_y
ybase2 =ybase2/amount_y

#Relative positions of offset, depending on

estimated_goal.position.x = tf_pose.position.x +goal.position.x*xbase1

+goal.position.y*ybase1

estimated_goal.position.y = tf_pose.position.y +goal.position.x*xbase2

+goal.position.y*ybase2

estimated_goal.position.z = goal.position.z

estimated_goal.orientation.x = goal.orientation.x
estimated_goal.orientation.y = goal.orientation.y

estimated_goal.orientation.z = goal.orientation.z

estimated_goal.orientation.w = goal.orientation.w

rospy.loginfo("I am going publish:
(x,y,z)(%f,%f,%f)",estimated_goal.position.x,estimated_goal.position.y,estimated_goal.posit

ion.z)

point_publisher = rospy.Publisher('/estimated_tcp_goal', Pose ,queue_size=10)

252 Annex

point_publisher.publish(estimated_goal)

def send_estimated_goal():

rospy.init_node('help_points')

StartTest_Publisher = rospy.Publisher('/start_test', Bool ,queue_size=1)
goal_subscriber=rospy.Subscriber("/tcp_offset_from_base",Pose,callback_goal)

scitos_tf = tf.TransformListener()

rate = rospy.Rate(1)

while not rospy.is_shutdown():
try:

(trans,rot) = scitos_tf.lookupTransform('/map', '/base_link', rospy.Time(0))

tf_pose.position.x = trans[0]

tf_pose.position.y = trans[1]
tf_pose.position.z = trans[2]

except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): continue

cosphi = np.arccos(rot[3])*2*180/np.pi

sinphi = np.arcsin(rot[2])*2*180/np.pi

tf_pose.position.x = trans[0]

tf_pose.position.y = trans[1]
tf_pose.position.z = trans[2]

tf_pose.orientation.z = rot[2]

tf_pose.orientation.w = rot[3]

rate.sleep()

if __name__ == '__main__':

send_estimated_goal()

test_cmdvel_vali.py [175]

import rospy
from geometry_msgs.msg import TwistStamped

from geometry_msgs.msg import Twist

from std_msgs.msg import Bool

from time import sleep
vel_msg = TwistStamped()

vel_msg2 =Twist()

def do_movement(lin,ang):
For Documentation

vel_msg.header.stamp = rospy.Time.now()

vel_msg.twist.linear.x = lin

vel_msg.twist.linear.y = 0

vel_msg.twist.linear.z = 0

vel_msg.twist.angular.x = 0

vel_msg.twist.angular.y = 0

vel_msg.twist.angular.z = ang

#For real cmd velocity

vel_msg2.linear.x = lin

vel_msg2.linear.y = 0

vel_msg2.linear.z = 0
vel_msg2.angular.x = 0

vel_msg2.angular.y = 0

vel_msg2.angular.z = ang

Annex 253

def move():

Starts a new node
cmdvel_linear_x = 0.5

cmdvel_angular_z = 0.0

wait_time=2

MVRobot = False
rospy.init_node('validate_algo', anonymous=True)

StartTest_Publisher = rospy.Publisher('/start_test', Bool ,queue_size=1)

velocity_publisher = rospy.Publisher('/cmd_vel_test', TwistStamped, queue_size=1)

velocity_publisher2 = rospy.Publisher('/cmd_vel',Twist,queue_size=1)

do_movement(0,0)

velocity_publisher.publish(vel_msg)

velocity_publisher2.publish(vel_msg2)

MVRobot = rospy.wait_for_message('/start_test', Bool, timeout=None)
if (MVRobot):

rospy.loginfo("Begin the Test: Move %f m/s linear and %f m/s angular. Wait %i s and go

backwarts",cmdvel_linear_x,cmdvel_angular_z,wait_time)

sleep(1)
i = 0

itteration = int(wait_time/0.1) #Time for frequently messages

for i in range(itteration):

do_movement(cmdvel_linear_x,cmdvel_angular_z)

velocity_publisher.publish(vel_msg)
velocity_publisher2.publish(vel_msg2)

sleep(0.1)

for i in range(itteration):
do_movement(0,0)

velocity_publisher.publish(vel_msg)

velocity_publisher2.publish(vel_msg2)

sleep(0.1)

for i in range(itteration):

do_movement(-cmdvel_linear_x,-cmdvel_angular_z)

velocity_publisher.publish(vel_msg)

velocity_publisher2.publish(vel_msg2)
sleep(0.1)

for i in range(itteration):

do_movement(0,0)
velocity_publisher.publish(vel_msg)

velocity_publisher2.publish(vel_msg2)

sleep(0.1)

else:

do_movement(0,0)

velocity_publisher.publish(vel_msgs)

velocity_publisher2.publish(vel_msg2)

sleep(0.1)
if __name__ == '__main__':

try:

move()
except rospy.ROSInterruptException: pass

imu_scitos.cpp [175]

#include "ros/ros.h"

#include <visualization_msgs/Marker.h>

#include <sensor_msgs/Imu.h>

254 Annex

#include <iostream>

#include <string>
#include <unistd.h>

#include <cstdlib>

#include <boost/algorithm/string.hpp>

#include "tf/tf.h"

const double PI = 3.14159;

double markerposx,markerposy,markerposz,markerposw;

int i;

//create Global value --> That I can use it in All functions
sensor_msgs::Imu imu_without_gravity;//Create the Imu withouth gravity

void linearACCwoG(const sensor_msgs::Imu::ConstPtr &imu_msg)

{
//ROS_INFO("I AM HERE! IMU_SCITOS_VIRT WORK");

//callback function for imu_subscriber

//relevant imu without acceleration variables

imu_without_gravity.linear_acceleration.x = imu_msg -> linear_acceleration.x;

imu_without_gravity.linear_acceleration.y = imu_msg -> linear_acceleration.y;

imu_without_gravity.linear_acceleration.z = imu_msg -> linear_acceleration.z-9.81;

// Pose of the marker
markerposx = imu_msg -> orientation.x;

markerposy = imu_msg -> orientation.y;

markerposz = imu_msg -> orientation.z;

markerposw = imu_msg -> orientation.w;
}

int main(int argc, char **argv)

{
ros::init(argc, argv, "imu_scitos"); //node name

// create a node handle; need to pass this to the class constructor

ros::Rate loop_rate(10); //set a desired run time of a cycle in Hz

ros::NodeHandle n;
ros::Publisher marker_pub = n.advertise<visualization_msgs::Marker>("marker",1);

ros::Publisher imu_without_gravity_pub =

n.advertise<sensor_msgs::Imu>("linear_acc_without_gravity",1);

ros::Subscriber imu_sub = n.subscribe("imu",1,linearACCwoG);
uint32_t shape = visualization_msgs::Marker::ARROW;

// Enter the main loop

for(i=0;1<10;)
{

// Create a marker to visualize the IMU data

visualization_msgs::Marker marker;

marker.header.frame_id = "/c_o_g";
marker.ns = "basic_shapes";

marker.id = 0;

marker.type = shape;

marker.action = visualization_msgs::Marker::ADD;

// Position of the marker

marker.pose.position.x = 5;

marker.pose.position.y = 5;
marker.pose.position.z = 5;

// Pose of Marker

marker.pose.orientation.x = markerposx;

Annex 255

marker.pose.orientation.y = markerposy;

marker.pose.orientation.z = markerposz;
marker.pose.orientation.w = markerposw;

// Scale of the marker

marker.scale.x = 1.0;
marker.scale.y = 1.0;

marker.scale.z = 1.0;

// Set the color -- be sure to set alpha to something non-zero!

marker.color.r = 0.0f;
marker.color.g = 1.0f;

marker.color.b = 0.0f;

marker.color.a = 1.0;

marker.lifetime = ros::Duration();

imu_without_gravity_pub.publish(imu_without_gravity);

marker_pub.publish(marker);

ros::spinOnce();

}

}

visualize_workingspace.py [175]

import rospy

import std_msgs.msg

from geometry_msgs.msg import Point

from geometry_msgs.msg import Vector3
#from vector_3_array.msg import Vector3DArray

from sensor_msgs.msg import PointCloud

import numpy as np

from geometry_msgs.msg import PoseArray

from geometry_msgs.msg import Pose

pc_workspace=PointCloud()

#new_point= Vector3DArray()

next_point = Pose()
next_point_array=PoseArray()

X_kRIT = 0.7

MAX_WS_RADIUS = 1.2

if __name__ == '__main__':

rospy.init_node('visualize_workingspace')

pub_pc_workspace = rospy.Publisher('/visi_pc', PointCloud, queue_size = 1)

rate = rospy.Rate(10.0)

pc_workspace.header.frame_id = "arm_podest_link"

pc_workspace.header.stamp = rospy.Time.now()

pc_workspace.points = 100

pc_workspace.channels = 1
next_point_array.poses = 100

x=-MAX_WS_RADIUS

y=-MAX_WS_RADIUS

s= 0
while x<0:

while y<0:

cood_ws = MAX_WS_RADIUS**2-x**2-y**2

if cood_ws >=0:

256 Annex

z=np.sqrt(cood_ws)

next_point.position.x = x
next_point_array.poses.append(next_point)

s= s+1

x = x+0.1

y=y+0.1
x=0

y=0

while x<X_KRIT:

while y<MAX_WS_RADIUS:

cood_ws = 1-(x/X_KRIT)**2-(y/MAX_WS_RADIUS)**2
if cood_ws >0:

z = np.sqrt(cood_ws)*MAX_WS_RADIUS

new_point.x=x

new_point.y=y
new_point.z=z

pc_workspace.points.append(new_point)

i= i+1

x = x+0.1
y=y+0.1

while not rospy.is_shutdown():

pub_pc_workspace.publis(pc_workspace)

rate.sleep()

Additionally, source code from the following digital repositories was employed:

For ros_controllers package
https://github.com/ros-controls/ros_controllers.git

For schunk_modular_robotics package
https://github.com/ipa320/schunk_modular_robotics.git

For schunk_robots package
https://github.com/ipa320/schunk_robots.git

For scitos_common package
https://github.com/cburbridge/scitos_common

For scitos_driver package
https://github.com/strands-project/scitos_drivers

For Recursive Newton Euler Inverse Dynamics Solver
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE.html

For The STRANDS Project: Long-Term Autonomy in Everyday Environments
https://arxiv.org/abs/1604.04384

For Navigation control
http://library.isr.ist.utl.pt/docs/roswiki/navigation(2f)Tutorials(2f)SendingSimpleGoals.html

https://github.com/ros-controls/ros_controllers.git
https://github.com/ipa320/schunk_modular_robotics.git
https://github.com/ipa320/schunk_robots.git
https://github.com/cburbridge/scitos_common
https://github.com/strands-project/scitos_drivers
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE.html
https://arxiv.org/abs/1604.04384
http://library.isr.ist.utl.pt/docs/roswiki/navigation(2f)Tutorials(2f)SendingSimpleGoals.html

