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RESUMEN (en español) 

Los manipuladores móviles de estructura ligera ofrecen gran flexibilidad, agilidad y 

maniobrabilidad, no obstante, tienden a volcarse, sobre todo durante procesos bruscos de 

frenado. 

El presente trabajo trata dos enfoques diferentes que ayudan a solucionar dicho problema de 

inestabilidad, los cuales difieren entre sí en el tipo de sistema al que serán aplicados: 

manipuladores móviles con sistema operativos de código cerrado o de código abierto, 

respectivamente. 

En el primer enfoque se describen tres estrategias de estabilización que compensan momentos 

de inestabilidad con la ayuda de mecanismos de actuadores externos.  

El primero de los mecanismos propuestos se compone de actuadores lineales en configuración 

delta, integrados entre la plataforma móvil y el robot manipulador. En la estrategia de 

estabilización "inclinación", el robot manipulador es inclinado en la dirección opuesta al 

desplazamiento de la plataforma móvil antes de que comience el proceso de frenado, con el 

fin de desplazar hacia atrás el centro de gravedad del robot manipulador. Por el contrario, la 

estrategia de estabilización "conservación del momento angular" impulsa al robot 

manipulador en la misma dirección del desplazamiento de la plataforma móvil durante el 

proceso de frenado, generando momentos angulares de compensación.  

El segundo mecanismo consigue un efecto similar, pero esta vez adoptando un estabilizador 

giroscópico como actuador.  

Para el dimensionamiento y evaluación de las tres estrategias de estabilización se ha 

propuesto un entorno de co-simulaciones mecatrónicas, basados en modelos de simulación 

multicuerpo (MBS). Para ello, se emplean resultados obtenidos de análisis modales 

experimentales (EMA) de la plataforma móvil y el robot manipulador real para parametrizar y 

validar sus modelos MBS, de forma que éstos reproduzcan su comportamiento dinámico real. 

El principal reto del modelado MBS es estimar los coeficientes de rigidez y amortiguamiento de 

los elementos de unión del sistema, necesarios para obtener los parámetros modales reales 

deseados. El largo ajuste iterativo manual de dichos coeficientes fue mejorado mediante un 

algoritmo de parametrización automatizado. 

Este primer enfoque fue evaluado en un manipulador móvil real con sistema operativo de 

código cerrado. El procedimiento presentado proporciona una de las primeras investigaciones 

sobre el modelado completo de co-simulaciones mecatrónicas de manipuladores robóticos y 

plataformas móviles: desde la identificación de sus parámetros modales mediante EMAs, hasta 



                                                                 

 

su modelado y parametrización como sistemas MBS. 

Las co-simulaciones mecatrónicas demostraron que las estrategias propuestas mejoran la 

estabilidad del manipulador móvil, incluso cuando grandes aceleraciones y desaceleraciones 

afectan al sistema. Cabe destacar que la técnica "inclinación" implica la predicción del perfil de 

frenado, lo que dificulta su implementación en un bucle de control cerrado. Por otro lado, el 

método basado en la “conservación del momento angular" puede integrarse en un bucle de 
control cerrado, pero su impacto en la mejora de estabilidad del sistema ha sido menor. Por 

último, el estabilizador giroscópico mostró gran potencial al generar la mayor compensación 

contra las inestabilidades. 

Aunque el presente estudio se implementó en robots particulares, ofrece una visión útil de la 

metodología para otros sistemas complejos similares. 

 

El segundo enfoque comprende la optimización del espacio de trabajo del manipulador móvil y 

el reposicionamiento de las articulaciones del robot manipulador. 

El valor de la estabilidad dinámica para la detección del vuelco se estimó mediante el método 

Moment-Height Stability Measurement (MHS), que considera el efecto de las fuerzas internas 

del robot manipulador y proporciona información sobre el grado de estabilidad. 

Con el fin de restringir el volumen máximo en el que el manipulador móvil puede operar sin 

riesgos de inestabilidad, el espacio de trabajo teórico del robot manipulador se optimizó en 

base al valor de estabilidad. Adicionalmente, se concibió un algoritmo que reposiciona los 

eslabones del robot manipulador cuando el valor de estabilidad está por debajo del valor 

crítico definido. Dicho algoritmo determina la nueva configuración del robot manipulador 

mediante un método de gradiente, también dependiente del valor de estabilidad. 

Este enfoque se aplicó a un segundo manipulador móvil con sistema operativo de código 

abierto. Los algoritmos se implementaron en el entorno ROS y se validaron en el sistema real. 

Pruebas realizadas con el manipulador móvil (real y en simulaciones) indicaron que la 

estrategia de estabilización es capaz de evitar su vuelco bajo diferentes escenarios. 

Quizás el valor añadido más significativo de esta estrategia de estabilización respecto a 

trabajos anteriores, es que se ejecuta en tiempo real y sin manipular el control de movimiento 

de los robots, reduciendo así la complejidad para su implementación y aumentando su 

flexibilidad como solución universal. 

 

 
RESUMEN (en inglés) 

 
Lightweight mobile manipulators offer great flexibility, agility and maneuverability, however, 

they tend to tip over especially during abrupt braking processes.  

This work describes two different approaches to deal with this instability problem, differing 

from each other in the system on which they will be implemented: mobile manipulators with 

closed-source or open-source operating systems, respectively. 

 

The first approach presents three stabilization strategies that compensate instability moments 

with the help of external actuator mechanisms.  

The first of the proposed mechanisms consists of linear actuators in delta configuration, 

integrated between the mobile platform and the robot manipulator. During the 

"inclining/tilting" stabilization strategy, the robot manipulator is tilted in the opposite direction 

of displacement of the mobile platform before the braking process starts, in order to shift back 

the robot manipulator’s center of gravity. In contrast, the "conservation of angular 
momentum" stabilization strategy impels the robot manipulator in the same direction of 

displacement of the mobile platform during the braking process, thus, generating beneficial 

angular moments.  



                                                                 

 

The second mechanism attains a similar effect, but this time adopting a gyroscopic stabilizer as 

external actuator.  

For the dimensioning and evaluation of the three stabilization strategies, mechatronic co-

simulation’s environments based on multibody system (MBS) models have been proposed. In 

this respect, results obtained from experimental modal analyses (EMA) of the real mobile 

platform and robot manipulator are employed to parameterize and validate their MBS models, 

so that they reproduce accurately their real dynamic behavior. The main challenge of modeling 

the mobile manipulator as MBS is to estimate the stiffness and damping coefficients of its 

joining elements, since they are essential to obtain the desired real modal parameters from 

the EMAs. An automated parameterization algorithm improved the manual time-consuming 

iterative adjustment of these coefficients. 

The first approach was implemented and evaluated on a real mobile manipulator with closed-

source operating system. This procedure provides one of the first investigations on the entire 

modeling of mechatronic co-simulations of robot manipulators and mobile platforms: from the 

identification of their modal parameters by means of EMAs, to their modeling and 

parameterization as MBS systems. 

The mechatronic co-simulations demonstrated that the three stabilization strategies improved 

the stability of the mobile manipulator, even when large accelerations and decelerations 

affected the system. However, it should be denoted that the "Inclining/tilting" technique 

implies the prediction of the braking profile of the mobile platform, which makes it difficult to 

implement in a closed control loop. On the other hand, the method based on "conservation of 

angular momentum" can be integrated in a closed control loop, but its impact on the 

improvement of the system stability has been limited. Lastly, the gyroscopic stabilizer showed 

great potential by generating the largest compensation against instabilities. 

Although the present study was implemented on particular robots, it provides a useful insight 

into the applied methodology for other similar mobile manipulators. 

 

The second approach comprises the optimization of the mobile manipulator workspace and 

the repositioning of the robot manipulator joints. 

The dynamic stability value for the tip-over detection was estimated using the Moment-Height 

Stability Measurement (MHS) method, which considers the effect of the internal forces of the 

robot manipulator and provides information about its degree of stability.  

In order to restrict the maximum volume in which the robot manipulator can operate without 

risks of instability, its theoretical workspace was optimized based on the computed stability 

value. Additionally, an algorithm repositions the links of the robot manipulator when the 

stability value lies below a defined critical value. This algorithm determines the new 

configuration of the robot manipulator using a gradient method, which is also dependent on 

the stability value. 

The approach was implemented in a second mobile manipulator with open-source operating 

system. All algorithms were processed in ROS environment and validated on the real system. 

Tests performed on the mobile manipulator (real and in simulations) indicated that the 

stabilization strategy was able to avoid tip-over under different scenarios. 

Perhaps the most significant added value of this stabilization strategy with respect to previous 

work is its execution in real time and without manipulating the motion control of the robots, 

thus reducing the complexity for its implementation and increasing its flexibility as a universal 

solution. 

 

 
 
SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO  
EN ___ ENERGÍA Y CONTROL DE PROCESOS ______________ 



 

  



  V 

Acknowledgements 

First and foremost, I would like to give special thanks to my husband, Tobias Jäger, for his 
constant advice, unconditional support, patience and all the huge personal sacrifices he took in 
order to make this aspiration a reality. 

In particular, I want to thank my supervisors, Professor Martin Kipfmüller and Professor 
Miguel Ángel José Prieto, for their invaluable continuous guidance, help and support. I wish to 
extend my thanks to Marcel Mohr, Volker Portje, Stefanie Seemann, Maximilian Bryg, Thomas 
Bertram, Tobias Bergmann, Franziska Kempf and each of the participants in this study, 
professors, students and colleagues of the Karlsruhe University of Applied Science, who helped 
me to arrive at this point. 

I am also deeply grateful to Ekiñe Aristizabal Tolosa for her unfailing source of 
encouragement and her constructive contributions to this thesis. 

 
 
 
 
 
 
 
 
 

To my family. 

Ndi xti bixhoze bida, Don Joel. 





Abstract  VII 

Abstract 

Mobile manipulators attain highly automated and flexible production facilities. They are 
designed for handling objects with different weights and sizes efficiently, without endangering 
production workers and machines. Their ideal requirements, such as having an optimal height 
for good reachability, light weight for good dynamics and small footprint for profitability, lead 
to one of their fundamental problems: mobile manipulators tend to tip over, most notably when 
their mobile platform suddenly brakes/accelerates. The compensation of forces affecting the 
system’s dynamics is therefore needed to avoid unwanted tip-over. 

Standard mobile manipulators are comprised by robot manipulators mounted on relatively 
bulky autonomous mobile platforms. They reach their driving stability through their own 
weight, by employing a comparatively large footprint to passively keep its stable driving 
behavior during their operation. However, mobile platforms with large footprint are associated 
with high costs, because they demand additional space of the generally limited layout of the 
production plant. Consequently, a cost-effective stable driving dynamic is best achieved with a 
mobile manipulator that, regardless of its high system center of gravity, has a small footprint. 
This idea led to the aim of the present research: assessing different stabilization strategies to 
reduce the risk of tip-over of small footprint mobile manipulators. 

Due to the fact that most of the robot manufacturers supply their products with restricted 
access to their robot operating system, the first treated approach focused on upgrading those 
systems with an external stabilization mechanism. The utilization of a mechanism conformed 
by linear drives and another one based on the gyro effect were considered. The development 
and evaluation of the stabilization strategies were carried out using multibody-system 
simulations. During the development, the experimental determination of the system modal 
parameters played an important role, since they enabled the creation of close-to-reality 
simulation models. 

The second approach focused on a tip-over detection and avoidance algorithm, designed 
for those mobile manipulators equipped with an open-access robot operating system. A tip-over 
detection algorithm based on the Moment Height Stability method was implemented to indicate 
how stable/unstable the system is during its operation/configuration and, thus, to effectively 
react against instability states. The theoretical workspace of the robot manipulator was also 
realigned by a calculated critical workspace boundary surface based on the analysis of the 
stability value. Then, in order to prevent a tip-over of the mobile manipulator during its 
navigation in the space, a tip-over avoidance algorithm was developed in a close-to-reality 
simulation environment. This algorithm repositioned the joints of the robot manipulator in real 
time, adopting a conveniently computed configuration to compensate the instabilities detected 
by the Moment Height Stability method. During the repositioning process, the initial orientation 
of the robot Tool Center Point was maintained to avoid a work piece mishandle. 

Both stabilization approaches presented in this thesis can contribute to effectively 
accomplish a compact autonomous and stable mobile manipulator, capable of operating in real 
production environments. 
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Ω 1/s Excitation frequency ς  Damping ratio 
σ  Coefficient (-1,…,+1) Γ rad Angle for the position of the TCP relative to the mobile 

platform. Υ rad Angle of 3rd joint of the manipulator Υ⃗⃗ i N·m Torque acting on link i, i=0,1,2,…,7 φ rad, grad Phase response φω rad, grad Phase of frequency response {φ⃗⃗ A}, {φ⃗⃗ X}  Set of two vectors 
ωt rad/s Angular velocity 



List of symbols and abbreviations  XVII 

ω4 rad/s Angular velocity for 4th joint of the manipulator 
ωg rad/s Angular velocity of rotary mass of gyroscope 
ωp rad/s Angular velocity for precession of gyroscope 

ω, ωi 1/s, Hz Eigenfrequency, i=1,2,…,n 
ω0 1/s Undamped eigenfrequency for freely oscillating system  
ωd 1/s Damped eigenfrequency ω̇ rad/s2 Angular acceleration ωp, ωg 1/s Tilting and rotary motor speed 
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1 Introduction 

Today, there are great drivers of worldwide technological progress and innovation which, 
as transformation instruments, long-term revolutionize the world slowly but rather radically. 
Since their impact on the global society covers several decades, they are considered the key 
aspects for the economy and social vision for the future and their corresponding plan of action 
[1]. 

Some well-known global scale emerging trends are personal health, renewed 
environmentalism, mobility, globalization, connectivity, individualization, etc. Out of 12 
current megatrends, the freedom of choice, ranked among the top 5 as particularly significant 
for the companies in the near future, because they have mostly characterized their business 
concern in the 2020s [2].  

The individualization as a driver for the transformation refers to value systems, 
consumption patterns and every day culture [1]. One of their indicators is the mass 
customization: customers demand offers that fit to their personal preferences and individual 
needs. In order to remain competitive in the future market, from a business point of view, it is 
not enough just to identify the opportunities and potentials brought through those drivers, but 
also their main challenges for the coming years. For the specific case of the mass customization, 
the main challenge lies in a clear restructuring of the production processes in order to achieve 
the objectives of the product individualization in a profitable way. This leads to the “batch size 
1” in the manufacturing: custom-made and single-item production to the cost of a mass 
production. Figure 1 shows how many companies already consider mass customization (“batch 
size 1”) as a strategical topic for their transformation. 

 

 
Figure 1 Is batch size 1 already an important topic for your company and your sector? (based on [3]). 
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For the purpose of fabricating lucrative and affordable multi-variant up to batch size 1 
products, extensive digitalization as well as automation of processes and production chains are 
crucial. The most relevant automation technologies that enable faster manufacturing while 
fulfilling the highly-individualized customer needs are the additive manufacturing and the 
Fourth Industrial Revolution (or Industry 4.0) [4]. Despite the fact that the term “Industry 4.0” 
derived from the national strategic initiative of the German government in 2011 for the high-
tech transformation of the industry, the vision behind has been adopted worldwide in the last 
years: flexible and full automated industrial manufacturing [5]. Although many authors, such 
as Mertens in 1995 [6], defined philosophically full automation as “concrete utopia, which is 
considered as a simple guide without a full-on achievement of the goal”, some companies such 
as Fanuc Ltd. have already proved the opposite: a full automated fabric that seemed totally 
utopian became a reality thanks to the unattended continuous manufacturing system. The “light 
out” fully automated plant in Oshino was able to operate in summer 2002 720 hrs. without any 
interruptions [7]. The production of one thousand robots per month by means of full automated 
optimized processes saved permanently time, material and human resources [8] and enabled the 
company to achieve more cost effective production processes than its competitors. This full 
automation´s success story shows that nothing is impossible, while the necessary resources and 
strategies are forthcoming. 

To ensure not only a fully automated production, but also individualized products, 
manufacturing processes must be able to adapt themselves to new circumstances, e.g. technical 
adjustments or near-term modifications regarding the batch size (number of units) determined 
by customer requirements. Compared with the continuous flow production, which requires big 
effort and investment for technical retrofits because it focuses on a certain product to achieve 
cost-efficient high volumes at low type diversity [9], the flexibility provided by the Industry 
4.0 enables a quick response to different specifications. Several relevant factors for this 
flexibility are directly dependent on the properties of the machines deployed in the operations, 
setup time, automation of technical processes, type diversity, etc. 

A flexible production in the “factory of the future” demands for modular machine concepts. 
Particularly, driverless transportation systems and robots based on AI technologies offer the 
highest level of flexibility and increase the speed and efficiency for any desired and variable 
adaptations or sequences due to changing requirements in the production lines, accompanied 
by the simplification of a production expansion [10]. Therefore, the “factory of the future” not 
only needs to be flexible but rather interconnected, integrated, adaptable and automated [11] to 
be able to manage in a smart and optimized way all the processes behind. Thanks to the well-
advanced digitalization and 5G [12], the so-called “smart factory” can adopt autonomous 
robots, driverless transportation systems and drones as well as smart sensors, cameras, IT-
systems and machine learning algorithms, which demand a large amount of data exchange and, 
thus, real time information in order to let machines and devices interact with each other and 
organize themselves [10]. In the “smart factory”, all machines and systems are mobile and 
modular, the production volume can be increased at any time while running at full capacity in 
order to achieve a cost-efficient flexibility. Goods are transported to assembly and production 
equipment by Automated Guided Vehicles (AGVs), Autonomous Mobile Robots (AMRs), 
mobile manipulators or drones. This is the most cost-effective way, the original planned 
production line can be transformed for the manufacturing of new/short-term products with the 
same equipment and the extension or cut back of the overall production. 

An example of a such “smart factory” is the intelligent and interconnected factory 
ARENA2036 conceived by researches of Fraunhofer IPA, university of Stuttgart and 
representatives from high-tech companies as Daimler and Bosch [13–15]. This project aims at 
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developing a decoupled, fully flexible and well-integrated production system by adopting 
loosely linked production modules. Mobile robotics represents an important technology its 
automation, because it makes the production versatile by providing flexibility and optimization 
of process chains [16]. 

As a part of the area mobile vehicles, automated guided vehicle systems, well-known as 
AGVs, are one of the most implemented technologies a few decades ago, especially to optimize 
the material flow and to integrate diverse sub-processes in manufacturing operations. Although, 
it is true that the nowadays widely used AGVs in logistic applications are individual and entirely 
intelligent, they are unfortunately not autonomous [17]. On the other hand, the autonomous 
mobile robots (AMRs) are able to navigate in a dynamic and constantly changing environment 
with a higher level of understanding via sensors, blueprints, artificial intelligence, 3D or 2D 
vision and more. AMRs are, compared to the traditional AGVs, which employ wires or magnets 
to guide them along a narrowly predefined route, fully automated. With the proper controller 
software, all AMRs can be bridged to a central traffic control interface, which manages the 
navigation of the AMRs based on their current location, thus working together, interacting with 
or around each other [11]. 

If the capabilities of an autonomous mobile platform and of a robot manipulator are 
combined into an integrated system called mobile manipulator, an extremely flexible mobile 
production module with extra benefits such as starting/stopping, loading/unloading machines 
as well as the transport of work pieces all over the plant can be created (see Figure 2). This kind 
of integrated systems helps the manufacturers to reach processes that go beyond the fixed 
automation, where an industrial robot manipulator fixed on the floor can only reach the work 
piece as far as its defined workspace limits allow for. 

 

 
Figure 2 Integration of mobile manipulators (based on [18]). 

Nevertheless, if the robot manipulator consists of a collaborative robot (the so-called co-
bot), all the advantages of the system outlined above are complemented with the qualification 
to work alongside humans and, thus, physical supporting operators in the factory during the 
performance of manual tasks. 

In general, the acceptance of mobile manipulators is high. Manufacturers know that a high 
level of automation, flexibility, smart manufacturing, smart maintenance and reconfigurable 
systems result in a time and cost-efficient production system [19]. “The companies need 
technology able to change along with the work environment”, reported Josh Cloer, Sales 
Director at Mobile Industrial Robots, Inc., (MiR). 
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Some notable projects related to the integration of manipulators mounted on mobile 
platforms that have been implemented during the last few years are shown in the Table 1: 

Table 1 Examples of robot manipulators mounted on mobile platforms. 

Mobile Manipulator 

Weight of 

the mobile 

platform 

Weight of the 

robot manipulator + 

Payload 

KMR iiwa by KUKA1 

 

 

390 kg LBR iiwa 7 R800 
=22.3 kg + 7 kg 
=29.3 kg 

IBR iiwa 14 R820 
=29.5 kg + 14 kg 
=43.5 kg 

“Little helper” by Aalborg 
University2 

 

 

200 kg 
 

Adept Viper s650 
=30 kg + 5 kg  
=35 kg 
KUKA LBR iiwa 14 
R820 
=29.5 kg + 14 kg 
=43.5 kg 

RB-KAIROS+ MOBILE ROBOT 
by Robotnik3 

 

115 kg Universal Robot UR16 
=33 kg + 16 kg 
=49 kg 

                                                 
 

1 Picture source: [201]. 
2 Picture source: [18]. 
3 Picture source: [202]. 
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Table 1 (cont.) Examples of robot manipulators mounted on mobile platforms. 

Mobile Manipulator 

Weight of 

the mobile 

platform 

Weight of the 

robot manipulator + 

Payload 

MM-400 & PRBT by 
Neobotix&Pliz4 

 

 

70 kg PRBT by Pilz + 
Payload 
=19 kg + 6 kg 
=25 kg 

MuR205 by the Insitute of 
Assembly Technology, Leibniz 
University Hanover5 

 

 

70 kg Universal robot UR5e 
=20 kg + 5 kg 
=25 kg  

 
The advantages of those systems for a smart factory are already clearly identified: 

 Their functional scopes are not attributable to a fixed location, resulting in an unlimited 
workspace for the robot manipulator and, thus, in a wide range of applications. 

 Free from unnecessary use of supporting systems such as loading and unloading stations, 
conveyor technologies, etc. and therefore, in theory, more affordable than classic industrial 
robot manipulators. 

 Thanks to the human-robot-interaction by employing mobile manipulators, it is now 
possible to increase the level of automation or to support the operator during complex 
arduous physical activities. 

 The robotic system is significantly more flexible for inaccuracies and deviations on the 
environment. E.g., if an object is not directly accessible to the robot manipulator, the 
mobile platform can navigate to a new favorable position and orientation in space. 
 
However, despite their benefits, such systems still present some handicaps, which restrict 

their unlimited use in production environments: 

                                                 
 

4 Picture source: [203]. 
5 Picture source: [204]. 
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 Challenging estimation of their flexibility and their limitations in order to quickly 
introduce new and completely different tasks. Technically speaking, the adaptation of the 
mobile manipulator and its tools to the working environment, which is constantly in 
change, is still ambitious for some cases. For example, the suitable lighting for its vision 
system should change depending on the current position of the mobile manipulator. 

 Increasing standards/requirements for safety regarding human interaction and, 
additionally, the already implemented technically feasible solutions are considerably 
limited6. 

 Over-proportional higher requirements with regards to the autonomous error handling in 
comparison to the number of its operational tasks. 
 

Furthermore, the fact that the robot manipulator is mounted on the mobile platform 
sometimes hinders each other: 
 The manipulator requires for a large and stable mobile platform in order to operate safely. 

Nevertheless, the mobile platform should have a small size and be light weight to navigate 
in an easy, dynamic and efficient manner. 

 The mobile platform must drive fast to reach shorter cycle times. An important aspect to 
be considered is to ensure not only accuracy for reaching the target position but also the 
stability during the navigation in the space. Being unstable, the current position of the robot 
manipulator and the mobile platform is less accurate and the path-planning algorithm 
requires additional correction mechanisms, resulting in longer cycle times. 

 To offer more possibilities for action and, thus, be more efficient, the mobile manipulator 
comprises a large number of peripheral devices (e.g. vision systems, sonars, scanners, all-
in-one grippers, etc.). However, the integration of more embedded components leads to a 
higher energy consumption and, consequently, to a lower battery duration. At best, the 
total weight of the system (manipulator and mobile platform together) must be kept to a 
minimum to increase the battery runtime of the integrated system. 
Particularly these last three challenges lead to the design/development paradigm for mobile 

manipulators: if the mobile platform is large, the whole system is stable but not dynamic and, 
thus, not supplying optimum cycle times. Furthermore, especially turning maneuvers for large 
mobile platforms can be complicated in plants with narrow lane width, resulting in worsening 
cycle time. On the other hand, if the mobile platform has a small footprint, that means, it is 
compact, the whole system is more dynamic but, of course, unstable. Then, if the mobile 
platform is unstable, it represents a danger especially for humans, but also for machines and 
equipment. This paradigm raises the question about how dynamic or rather how compact the 
mobile platform can be to operate effectively, efficiently and stably. 

The ideal solution would be to keep the mobile platform as compact as possible: the mobile 
manipulator would operate and navigate dynamically; additionally, its radius of motion would 
not be unnecessarily constrained, allowing short travelling times, and hence gaining a greater 
energy efficiency for the whole system. The main problem by employing compact mobile 

                                                 
 

6 The Robotic Industries Association publishes continuously the R15.08 American National Standard for Industrial 
Mobile Robots and Robot Systems – Safety Requirements published by (RIA) [205] as  common guidelines which 
comprises requirements for sensor systems, stability, physical and data interfaces, safety-related parts of the 
control system (SRP/CS), safety behaviors including safety-related stops, and other aspects related to the safety of 
people around the AMR [11]. 
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platforms for the integration is their instability. This is due to the fact that the whole system’s 
center of gravity lies quite high, as a result of the light weight of the mobile platform in 
comparison with the robot manipulator’s weight mounted on it. 

This problematic does not arise in existing mobile manipulators, as those shown in       
Table 1, because they involve a purely mechanical solution: the mobile platform’s weight, 
compared with the robot manipulator’s weight, is much heavier, which drastically shifts the 
whole system’s center of gravity towards the ground. 

In particular, during an interaction between a mobile manipulator and a human, machines 
or other mobile devices, the mobile manipulator must be able to suddenly accelerate and 
abruptly stop as well as to keep stable while these disturbances are happening, otherwise, the 
system could cause physical injury or material damage of expensive and unique devices while 
trying to interact with each other. If a so-called co-bot is mounted on a compact mobile 
platform, human injury must be avoided. Unintended tilting of the mobile manipulator during 
Human-Robot-Interaction (HRI) cannot be tolerated. This engineering gap, which more 
specifically, attempts to face the instability issue by compact mobile manipulators and, thus, to 
guarantee security and safety operation by a HMI/HRI, can be solved by adopting a mechatronic 
approach, instead of a purely mechanical one. The mechatronic concept may compensate all 
instability moments affecting the whole mobile manipulator. 

Compact and autonomous mobile platforms, with light weight and low volume, such as 
those seen on Table 2, are already found in the market: 

Table 2 Compact autonomous mobile platforms. 

Mobile platform model Weight 

OEM LD-60 & LD-90 by Omron7 
 

 
 

62 kg 

Freight100 Base by Fetch robotics8 
 

 
 

68 kg 

 

                                                 
 

7 Picture source: [206]. 
8 Picture source: [207]. 
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Table 2 (cont.) Compact autonomous mobile platforms. 

Mobile platform model Weight 

Scitos G5 by MetraLabs9 

 

60 kg 

This implies that the idea proposed above about the development of compact mobile 
manipulators is indeed possible, if the incurred instability concern could be solved by a 
mechatronic approach, and not purely mechanical through a heavy weight. 

It should be pointed out that for the development of a mechatronic concept to ensure the 
stability of mobile manipulators during handling tasks, the size and weight of the robot 
manipulator mounted on the mobile platform are limiting factors: definitely, the larger and 
heavier the robot manipulator is, the more difficult its integration with a compact mobile 
platform will be to become a compact mobile manipulator. Nevertheless, it can be argued that 
the so-called compact industrial robot manipulators and co-bots currently available in the 
market are the perfect candidates to allow for system integration, because they have a relatively 
small weight (light and middle weight) related to the payload that their end effector could 
handle. They seem to offer great potential for the development of compact mobile manipulators. 
A summary of the weight-to-payload ratio of some of the compact industrial robot manipulators 
and cobots within the common market is featured in Figure 3: 

 
Figure 3 Weight-to-payload ratio of some compact industrial robot manipulators and co-bots. 

                                                 
 

9 Picture source: [208]. 
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The following configurations on Table 3 illustrate the integration of some already shown 
compact robot manipulators or co-bots that could be mounted on a compact mobile platform: 

Table 3 Weight ratio of some configurations for compact mobile manipulators. 

Autonomous mobile platform 

Compact robot manipulator/Co-bot* 

OEM LD-60 & 
LD-90 by 

Omron 
(62 kg*) 

Freight100 
Base by Fetch 

robotics 
(68 kg*) 

Scitos G5 by 
MetraLabs 
(60 kg*) 

KUKA KR6 R700 fivve 57.0 kg 1.08 1.19 1.05 
KUKA KR10 R1100 fivve 63.0 kg 0.98 1.07 0.95 
FANUC LR Mate 200iD/7H 24.0 kg 2.58 2.83 2.50 
KUKA KR3 R540 28.0 kg 2.21 2.42 2.14 
KUKA KR6 R700 sixx 58.0 kg 1.06 1.17 1.03 
KUKA KR10 R900 sixx 64.0 kg 0.96 1.06 0.93 
Universal Robot UR10 43.5 kg 1.42 1.56 1.37 
Universal Robot UR16 49.1 kg 1.26 1.38 1.22 
FANUC CR-14iA/L 69.0 kg 0.89 0.98 0.86 
FANUC CRX-10iA 50.0 kg 1.24 1.36 1.20 
Schunk LWA 4P 21.0 kg 2.95 3.23 2.85 
KUKA LBR iiwa 7 R800 29.3 kg 2.11 2.32 2.04 
KUKA LBR iiwa 14 R820 43.5 kg 1.42 1.56 1.37 
Schunk LWA 4D 28.0 kg 2.21 2.42 2.14 

* Manipulator weight + its maximum payload. 

In Table 2, the ratio between the manipulator’s weight and the mobile platform’s weight 
is lower than the ratio shown in Table 3.Table 1 

Mobile manipulators demand reasonable moving speed to ensure effective task 
performance. Nowadays, “An AMR can approach a person without the person being aware of 
it,” says Carole Franklin, RIA Director of Standards Development. “We need to consider how 
to reduce the risk of a person being injured by an AMR or its payload [11]”. 
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Problem statement and aim of the presented study. 

The constantly changing environment in the plant imposes big challenges on the dynamics 
of compact mobile manipulators: they tend to tip over when the robot manipulator works under 
heavy loads, when its position comprises specific critical arm configurations or as a 
consequence of fast or abrupt movements induced by the mobile platform [20–22]. 

An important aftereffect of a tip-over, especially for differential wheeled mobile 
manipulators, is the noncompliance between the calculated TCP (Tool Center Point) and its real 
current value because it has been altered by the loss of contact between the drive wheels and 
the ground during the tip-over. Even for mobile manipulators equipped with hydraulically 
sprung undercarriage, a dramatic compression/expansion of its suspension during an abrupt 
braking process can be counter-productive. Those circumstances cause inaccuracy for handling 
or for avoiding collision with other objects that, according to the trajectory computations, 
should be clear of the path. 

 
Built on the premise that a system starts to tip over when applied forces generate a torque 

large enough to initiate a rotational motion around a tilting edge, stability disturbance appears 
when the sum of the tilting moments around one or more of the tilting edges is greater than the 
sum of its stability moments around the same edge(s) [23]: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑ �⃗⃗� 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦∑ �⃗⃗� 𝑡𝑖𝑙𝑡𝑖𝑛𝑔  (1) 

with,  
Stability ≥1, the system is stable and balanced. 
Stability =1, limit value to define a system as stable or not (the body is not yet tilted over). 
Stability <1, system is unstable and tends to tip over. 

The simplest approach to avoid tilting risks is to enlarge the ground area of the wheeled 
system and/or to increase the weight of the system at its basis, shifting its center of mass further 
to the ground. The drawbacks of those countermeasures are the requirement for bigger aisles, 
which would directly increase the fixed costs of the plant. Moreover, they fail to address the 
loss of mobility that is caused by the increase in weight and dimension. 

For the specific case of mobile manipulators, both countermeasures are unsuitable due to 
the fact that the mobile platform has a restricted payload and that the heavier the payload gets, 
the less agile the system is (important for the estimation of cycle-time) and the shorter the 
battery supply lasts. Therefore, the aim of this work is to introduce stabilization strategies for 
small footprint mobile manipulators that compensate instability moments occurring during 
navigation without restricting its mobility and dexterity. It addresses two approaches for solving 
the lack of stability problem, depending on the type of mobile manipulator to deal with. 

 
The first approach discusses the development of the stabilization strategies for such mobile 

manipulators whose control system is closed-source. In this case, only the integration of 
external actuators allows for the compensation of emerging tilting moments. The stabilization 
strategies are developed within multibody-system (MBS) simulation environments. The 
building of close-to-reality simulation models for the employed testing systems implies the 
experimental determination of the real system dynamic behavior. The system modal parameters 
serve as reference for the parametrization of the MBS models, which is usually carried out 
through the iterative adjustment of their stiffness and damping values until the dynamic 
behavior of the real system matches the simulation model. Due to the fact that this repetitive 
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procedure is time-consuming, a parametrization algorithm is developed for fitting not only the 
system natural frequencies, but also their mode shapes by means of statistical indicators. Then, 
based on this dynamic simulation, the suitable actuators and its control can be developed by 
means of co-simulations. 

 
The second approach focuses on the development of a stabilization strategy that can be 

adapted for all kind of compact-lightweight mobile manipulators, regardless of the model, size, 
manufacturer, etc. The only restriction imposed for its use is that both, mobile platform and 
robot manipulator, are operated with, e.g., the robotics middleware suite called Robot Operating 
System (ROS) or a similar open source platform. An algorithm provides information about the 
system stability state. Based on the computed stability value, the theoretical workspace of the 
robot manipulator is optimized to a working space in which the mobile manipulator can operate 
without causing instability. An additional algorithm compensates for the tilting moments 
emerged during navigation by means of repositioning the arm of the robot manipulator. Both 
algorithms are implemented and validated on the real testing system. 

 
The following terms will be used throughout this document to refer to the different parts 

of the systems under study: mobile platform as the mobile robot that navigates autonomously 
around the environment; robot manipulator as the articulated robotic arm that manages the work 
piece; and mobile manipulator as the system consisting of the robot manipulator mounted on 
the mobile platform. 
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2 Fundamentals 

This current chapter contextualizes key theoretical concepts to provide background 
information on the technical fields touched upon later in this work. The main themes covered 
in this section are regarding the dynamic and mechatronic modeling of robotic systems, 
including the theory corresponding to the Experimental Modal Analysis, Multibody-system 
Simulations and coupled simulations (co-simulations). Additionally, a brief overview of the 
most well-established robot operating system and a simple definition of the inverse dynamic 
approach for robot manipulators are given, both employed for the development of the 
stabilization algorithms. 

2.1 Experimental Modal Analysis (EMA) 

The implementation of control systems in robotics implies the good understanding of the 
dynamic behavior of the system of interest, represented by its transfer function. In case the 
mathematical function of the plant, i.e. its transfer function, is not familiar, a modal analysis 
helps to identify the modal parameters that characterize the dynamics of the system, such as its 
modal frequency, modal damping and modal shape. These modal parameters serve as the basis 
for building the mathematical functions that are employed to model the transfer function of a 
system in frequency range. Since this transfer function considers the system’s dynamical 
properties, it enables the representation of a close-to-reality model of, e.g., a robotic system to 
simulate the dynamical characteristics of its structure, or to predict the system’s response 
against external factors. 

The method behind the identification of the system’s modal parameters by means of modal 
analysis is based on the principles of the mechanical oscillation theory, whose mathematical 
statements are summarized employing the following simple example. 

Every system that is able to oscillate can be described in terms of masses, dampers and 
springs. One of the most simplified models to represent an oscillating element is the well-known 
spring-damper-mass-system, the mass oscillator with a single degree of freedom (DOF) shown 
in Figure 4. 

 
Figure 4 Spring-damper-mass-system. 

The method of superposition allows to describe complex systems as spring-damper-mass-
systems regardless of how many DOF the system has. A system with 𝑛-DOF can be described 
by the superposition of 𝑛 spring-damper-mass-systems with a certain arrangement in the space. 
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Thus, a complex system such as mobile manipulator can be modeled by means of multiple 
masses, dampers and springs. 

The equilibrium of forces of the system shown in Figure 4 is characterized by its equation 
of motion, in time domain resulting in 𝑚 · �̈�(𝑡) +  𝑐 · �̇�(𝑡) +  𝑘 · 𝑥(𝑡) = 𝐹(𝑡). (2) 

The modal parameters of a system describe the inner dynamic conditions of its structure 
when it is not being affected by any forces. To obtain the system’s oscillation behavior at its 
characteristic natural frequency, the system has to be considered as freely oscillating, i.e. the 
system oscillates subject to its own internal forces after the initial excitation was applied. If it 
is assumed that the applied force 𝐹(𝑡) is zero and the system is undamped, meaning that 𝑐 is 
also zero, Eq. (2) turns into the following second-order homogenous differential equation: 𝑚 ·  �̈�(𝑡) +  𝑘 · 𝑥(𝑡) = 0. (3) 

To solve this ordinary differential equation, the trial function in Eq. (4) replaces the terms 𝑥(𝑡) with  𝑥(𝑡) = 𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡). (4) 

Using Eq. (4) into Eq. (3) , the following Eq. (5) is obtained (−𝑚 · 𝜔2 + 𝑘) · [𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡)] = 0. (5) 

Since the displacement [𝐴1 · cos(𝜔 · 𝑡) + 𝐵1 · sin(𝜔 · 𝑡)] in a free oscillation does not 
tend to be zero, in order to solve Eq. (5) at any point in time, the part (−𝑚 · 𝜔2 + 𝑘) should be 
assumed to be zero, thus obtaining the angular frequency of an undamped free oscillating 
system (𝜔0) as 𝜔0 = √𝑘𝑚. (6) 

Coefficients 𝐴1 and 𝐵1 of Eq. (4) can be solved using some specific initial conditions. One 
of them defines the displacement of the mass at t = 0 as 𝑥0 = 𝑥(𝑡 = 0). (7) 

Using this initial condition into Eq. (4), coefficient 𝐴1 takes the value of 𝑥0. Then, applying the 
first derivate to Eq. (4) �̇�(𝑡) = −𝐴1 · 𝜔 · sin(𝜔 · 𝑡) + 𝐵1 · ω · cos(𝜔 · 𝑡) (8) 

and considering other initial condition, which implies the velocity of the mass at t = 0 as �̇�0 = �̇�(𝑡 = 0) (9) 

we can replace it into Eq. (8) and solve it for coefficient 𝐵1: 𝐵1 = �̇�0𝜔0. (10) 

Consequently, using the values for 𝐴1 and 𝐵1, the motion of the undamped freely 
oscillating system in function of time can be described as 𝑥(𝑡) = 𝑥0 · cos(𝜔0 · 𝑡) + �̇�0𝜔0  · sin(𝜔0 · 𝑡). (11) 

The amplitude and the phase of the oscillation can be also obtained using 𝐴1 and 𝐵1with 
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𝐴 = √𝐴12 + 𝐵12 = √𝑥02 + (�̇�0𝜔0)2
 (12) 

𝜑 = tan−1 (𝐵1𝐴1) = tan−1 ( �̇�0𝑥0 · 𝜔0). (13) 

Thus, Eq. (11) can be written as 𝑥(𝑡) = 𝐴 · cos(𝜔0 · 𝑡 −  𝜑) (14) 

Eq. (14) represents a free and undamped oscillation that does not come to rest after 
receiving an excitation as input. In the real world, all systems possess a certain damping 
coefficient. They tend to stop to oscillate after a certain time, depending on its damping 
coefficient 𝜁. 

From Eq. (2) and built on a free (𝐹(𝑡)=0) but speed-proportional viscous damping (𝑐 ≠0) 
oscillating system 𝑚 · �̈�(𝑡) +  𝑐 · �̇�(𝑡)  +  𝑘 · 𝑥(𝑡) = 0 (15) 

the following numerical solution for differential equations10 can be employed 𝑥(𝑡) = 𝐴 · 𝑒𝜆·𝑡 (16) 

where 𝜆 represents the eigenvalue. Replacing Eq. (16)(15) into Eq. (15) 𝑚 · 𝜆2 + 𝑐 · 𝜆 + 𝑘 = 0. (17) 

The solution of Eq. (17) provides the system eigenvalues as follows 

𝜆1,2 = − 𝑐2 · 𝑚  ± √( 𝑐2 · 𝑚)2 − 𝑘𝑚 . (18) 

If the damping ratio is defined as 𝜍 = 𝑐2 · 𝜔0 · 𝑚 (19) 

and using Eq. (6) for the eigenfrequency (𝜔0) in a free oscillating system, Eq. (18) can be 
simplified as 𝜆1,2 = −𝜁 · 𝜔0  ±  𝑖𝜔0 · √1 − 𝜍2. (20) 

The solution of Eq. (20) for damped freely oscillating system depends on the value of 𝜁. 
Thanks to the particular solutions for differential equations, a system can be classified into the 
three different oscillation behaviors shown in Table 4: 

Table 4 Classification of oscillation behaviors depending on 𝜁. 

ζ System oscillation behavior 

=0 The system oscillates undamped with 𝜔0 as eigenfrequency 
<1 The system has two complex conjugated eigenvalues 
=1 The system has two real eigenvalues (aperiodic borderline case) 
>1 The system does not present oscillations 

                                                 
 

10 For a detailed description about the oscillation differential equations and its solutions, see [209]. 
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In the real world, there is no system that possesses a damping ratio equal to zero. Most of 
the existing systems possess a damping ratio 0 < 𝜍 <1, whose effect is observable e.g. via 
friction. 

 

On the other hand, if the system has a forced oscillation, i.e. a deterministic harmonic force 𝐹(𝑡) = 𝐹0 · cos(Ω · 𝑡) excites the system and continues to sustain the excited oscillation, the 
vibrations are said to be forced, resulting in a system displacement 𝑥(𝑡). Replacing this into the 
general Eq. (2), a homogenous and a partial component (𝑥 = 𝑥ℎ + 𝑥𝑝) are derived. The 
homogenous component 𝑥ℎ can be estimated based on Eq. (20), using the logarithmic 
decrement 𝛿 = 𝜍𝜔0 and the following damped natural frequency 𝜔𝑑 = 𝜔0 · (1 − 𝜍2)1/2. (21) 

The corresponding eigenvalues is determined as 𝜆1,2 = −𝛿 ± 𝑖 · 𝜔𝑑 . (22) 

Employing this value into the initial function Eq. (4), its real components can be obtained 
as 𝑥(𝑡) = 𝑒−𝛿·𝑡 · [𝐴1 · cos(𝜔𝑑 · 𝑡) + 𝐵1 · sin(𝜔𝑑 · 𝑡)]. (23) 

Similarly, by applying the above-mentioned initial conditions, coefficients 𝐴1 and 𝐵1 can 
be calculated for the special solution of the differential equation as 𝑥(𝑡) = 𝑒−𝛿·𝑡 · [𝑥0 · cos(𝜔𝑑 · 𝑡) + �̇�0 +  𝛿 · 𝑥0𝜔𝑑  sin(𝜔𝑑 · 𝑡)]. (24) 

Further, to determinate the partial component 𝑥𝑝, the following can be applied 𝑥𝑝 = 𝑋 · 𝑒𝑖·Ω·𝑡 (25) �̇�𝑝 = 𝑖 · Ω · 𝑋 · 𝑒𝑖·Ω·𝑡 (26) �̈�𝑝 = −Ω2 · 𝑋 · 𝑒𝑖·Ω·𝑡 (27) 

where Ω represents the excitation frequency and 𝑋 its amplitude. Applying them into Eq. (2) 
results in (−Ω2 · 𝑚 + 𝑖 · Ω ·  𝑐 + 𝑘) · 𝑋 · 𝑒𝑖·Ω·𝑡 = 𝐹0 · cos(Ω · 𝑡). (28) 

Then, knowing that 𝐹0 · cos(Ω · 𝑡) = 𝑅𝑒 [𝐹0 · 𝑒𝑖·Ω·𝑡] (29) 

Eq. (28) can be simplified as (−Ω2 · 𝑚 + 𝑖 · Ω · 𝑐 + 𝑘) · 𝑋 = 𝐹0. (30) 

 

As previously stated, a very useful approach to analyze and design control systems is to 
represent the steady-state of the structure in frequency range by means of its frequency 
response, also known as transfer function. Considering the representation of the system’s 
dynamics in frequency range, the output spectrum 𝑋(𝜔) has to be related to the input spectrum 𝐹(𝜔) via the Frecuency Response Function (FRF) in order to constitute the system’s transfer 
function. From a physical point of view, if a system, e.g., a robot manipulator, is excited with 



Fundamentals  35 

a sinusoidal wave of frequency 𝜔, it is expected that the system (the robot manipulator) 
oscillates at the same frequency, as a response to the excitation. The FRF, 𝐻(𝜔), provides 
information about the internal dynamic properties of the system as a function of the angular 
frequency. 𝐻(𝜔) can be described as: 𝐻(𝜔) = 𝑋(𝜔)𝐹(𝜔). (31) 

As a result, |𝐻𝜔| represents its amplitude. Thereby, the response amplitude is the input 
amplitude |𝐹𝜔| multiplied by |𝐻𝜔|. 

The FRF signal, between the excitation and the response, is shifted by the phase angle 𝜑𝜔 
[24], estimated as follows 𝜑𝜔 = tan−1 (𝐼𝑚[𝐻(𝜔)]𝑅𝑒[𝐻(𝜔)]) . (32) 

The relation of the output 𝑋(𝜔) regarding the input 𝐹(𝜔) is characterized in the so-called 
modal analysis. A modal analysis can be classified into two different types according to the 
nature of its execution: 
 The Operational Modal Analysis, known as OMA, is based, as its name suggests, on purely 

mathematical calculations using, among others, Finite Element Methods and MBS (see 
next section). 

 The Experimental Modal Analysis, known as EMA, is an experimental method to obtain 
the oscillatory behavior of a body or system by measuring its response to a defined 
excitation. 
In this respect, unknown dynamical behaviors of real systems can be easily described by 

means of its modal parameters (natural frequencies, mode shapes and damping coefficients) 
through EMA. In this context, EMAs can be used to quantify the dynamic behavior of mobile 
manipulators, needed for the building and validation of their simulation models used for the 
development of the stabilization strategies examined within this work. 

During an EMA, the magnitude and direction of the force applied to the structure to be 
examined is measured at one or more points. Using these measurements together with the 
information about the applied force, the structure transfer function, 𝐻(𝜔), can be calculated. If 
more than one system response is measured at the same time, the evaluated frequency responses 
are arranged into a matrix, following the principle illustrated in Eq. (33). 

[𝑯(𝜔)] = [𝐻11 ⋯ 𝐻1𝑒⋮ ⋱ ⋮𝐻𝑚1 ⋯ 𝐻𝑚𝑒] (33) 

where m corresponds to the measurement point and e, to the excitation.  
If the system is excited with a frequency close to one of its natural frequencies, the system 

amplifies its oscillation and, as a result, its response grows into a maximum because the 
excitation frequency and its natural frequency are superimposed. Using a real-time analyzer 
and mathematical software tools11, the transformation of the magnitudes from the time domain 
into frequency domain can be performed by the Fast Fourier Transformation [25], also well 
known as FFT. Then, the frequencies with a phase shift of 90° can be identified as a system 
natural frequency. Finally, the best-fitted modal parameters can be estimated with the help of 

                                                 
 

11 For more information about the detailed signal processing, see [31,159]. 
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curve fitting algorithms, which use mathematical models to match fitted parameters with the 
measured system modal parameters. The system’s damping ratios, on the other hand, may 
contain great uncertainties from the EMA, because they cannot be determined so easily by the 
curve fitting algorithm. One possibility to determine them is employing the 3-dB bandwidth 
technique12. 

Besides the natural frequencies, an important system characteristics are the real 
eigenmodes, which are part of the complex eigenvalues of frequency responses. Those 
eigenmodes can also be used to assess the quality of simulation models when compared to 
measurements. 

When comparing the eigenvectors from two different data sets, the Modal Assurance 
Criterion (MAC) checks the orthogonality properties of the eigenvectors by means of the 
normalized scalar product of the set of two vectors, {𝜑𝐴}𝑟 as test modal vector for mode r, and {𝜑𝑋}𝑞 as compatible analytical modal vector for mode q, as in Eq. (34) and Eq. (35), following 

[26] 𝑀𝐴𝐶( 𝑟, 𝑞) = |{𝜑𝐴}𝑟𝑇 · {𝜑𝑋}𝑞𝑇|2({𝜑𝐴}𝑟𝑇 · {𝜑𝐴}𝑟) ({𝜑𝑋}𝑞𝑇 · {𝜑𝑋}𝑞) (34) 

or for complex eigenmodes {𝜓𝐴}𝑟 and {𝜓𝑋}𝑞, employing their respective complex conjugates {𝜓𝐴}𝑟∗  and {𝜓𝑋}𝑞∗  as 

𝑀𝐴𝐶( 𝑟, 𝑞) = |{𝜓𝐴}𝑟𝑇 · {𝜓𝑋}𝑞∗ |2({𝜓𝐴}𝑟𝑇 · {𝜓𝐴}𝑟∗) ({𝜓𝑋}𝑞𝑇 · {𝜓𝑋}𝑞∗ ). (35) 

The correspondence between the two eigenvectors can be represented in a normalized 
matrix or visualized graphically, as in Figure 5, whereby a correlation 1 means a perfect match 
between the two modes. 

 
Figure 5 Example of plot for a MAC with ideal correlations [26]. 

The closer the value lays to 0, the lower the match and the bigger the deviations between, 
e.g., an eigenvector provided by simulations and another one gained during experimental sets. 
A correlation bigger than 0.9 is considered as good. Values that do not exceed 0.5 have hardly 
any correlation between the two vectors [27]. 

                                                 
 

12 For more information about the 3 dB method, see [210]. 
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In fact, the correct selection of the excitation and measurement form is decisive to perform 
an appropriate EMA. The excitation and measurement points are to be chosen so that the 
experimental set is able to get all possible modal parameters of the system. 

 
The excitation stimulus can be achieved by employing pressurized loudspeakers test 

benches, flow loudspeakers test benches, impulse hammers, modal-shakers, shaker test 
benches, etc.13 The most common excitation form is the impulse hammer because of its 
reliability and simplicity, as well as its quick use and economical method [28]. Furthermore, 
the impulse hammer does not affect the dynamical behavior of the system, since it is not solidly 
coupled to the structure. At the moment the impulse hammer excites the structure, its internal 
force sensors (quartz crystal [29]) are able to transform the applied force into an analog signal. 
This analog signal contains all the information about the amplitude and phase from which the 
excitation function is derived. Disturbances in the input signal, e.g., noise, can be filtered using 
an H2 estimator [30,31], which assumes no noise on the output signal and, consequently, the 
output measurements are accurate. Figure 6 presents the simple representation of the H2 
estimator transfer function. Only the input signal (X) features noise (M). 

 
Figure 6 H2 estimator function [32]. 

There is a risk of inaccuracy by using the impulse hammer, if the impact force applied by 
the operator is irregular and inconsistent in magnitude, direction and spot location. In order to 
reduce this risk, it is necessary to apply multiple hammer strokes to one set of measurement. 

The impulse hammer tip is responsible for the frequency band for which the system will 
be excited. Depending on the requirements and/or the system to be investigated, a broad 
spectrum of the available frequency can be reached by adapting the hardness of the impulse 
hammer tip [25]. Generally speaking, the higher the degree of hardness of the tip, the higher 
the frequency range at which the structure excites. A proper tip can ensure that, e.g., a mobile 
manipulator is excited in low frequencies, the needed/desired frequency band for the further 
investigations. 

The execution of EMA using an impulse hammer is suitable if the system to be examined 
is expected to present linearity. If nonlinear behavior is expected in the structure under 
investigation, a linear approximation of the system, or part of it, should be carried out [31]. 
Therefore, when expecting nonlinear system’s behavior, a sinusoidal excitation with large 
amplitude is recommended, e.g., using electrodynamic shakers. 

On the other hand, the corresponding response signal can be measured by sensors such as 
accelerometers, velocity and position transducers, microphones, laser vibrometers, etc. [29]. 
The advantage of adopting accelerometers as measurement unit for mobile manipulators is that 
they do not affect the dynamical behavior of the structure since their mass, in comparison with 
the system to be investigated, is extremely small and they are not fixed connected to the 

                                                 
 

13 For detailed information about the characteristic of each test benches, see [211]. 
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structure. Thus, when selecting an accelerometer, its mass, its stiffness and its damping ratio 
should be carefully examined in order to discard any influence on the system’s behavior: the 
accelerometer mass is of the utmost importance because it could lead to a shift of those natural 
frequencies that are located in the lower frequency band. A large ratio between the 
accelerometer´s and the structure´s mass should be therefore avoided. 

Accelerometers are often attached to the structure with a thin layer of wax. Wax as a 
fastening medium also exhibits high internal damping, which might reduce the usability of the 
accelerometers at high-frequencies. Moreover, the accelerometers should be mounted on 
surfaces as rigid as possible, avoiding vibrating parts such as metal sheets or thin plastic parts 
if the oscillation behavior of the complete structure, and not just a specific system part, is to be 
recorded. 

Ideally, the measurement sets should be carried out in a vibration-isolated foundation and 
environment, otherwise, the measurement results can also be strongly affected. The possible 
presence of noise in the input can be excluded using an H1 estimator [30,31]. In comparison 
with an H2 estimator, the H1 estimator assumes that there is no noise N in the input, i.e. all the 
noise is assumed to be in the output (see Figure 7). 

 
Figure 7 H1 estimator function [32]. 

An H1 estimator has the same value as an H2 estimator only when both their assumptions 
are fitted: there is no noise at the input when computing H1, and there is no noise at the output 
when computing H2. If these premises do not match, H1 and H2 are not equal. 

The H1 and H2 estimators can also help to estimate the quality of the excitations and the 
measurements using γ2, which is defined as 𝛾2 = 𝐻1𝐻2 …0 ≤  𝛾2 ≤ 1 (36) 

whereby a coherence γ2 equal to zero indicates that the input and/or output signals consist 
entirely of noise, meaning a lack in quality for the experimental set and, thus, an unacceptable 
transfer function of the real system. On the other hand, an experimental set with coherence γ2 

equal to one would represent a result without disturbances. The literature (e.g., [24]) suggests 
a coherence γ2 equal or higher to 0.9 for a proper analysis. 

Given the above considerations with regard to the MAC and coherence coefficients, it can 
be guaranteed that the modal parameters of a real system obtained by an EMA are accurate 
enough to derive a system model that provides a very realistic representation of the real system. 
As a result, this model can be employed in the design and implementation of control strategies: 
if the control algorithms work properly in the close-to-reality model, they will also behave 
properly in the real system. 
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2.2 Simulation Methods, Multibody–system Simulation (MBS) 

Due to the high prototyping and tests cost for complex structures, simulation models have 
a vital role in the development of new systems. The modeling process can be implemented 
based on the approach developed by [33] for machine tools with parallel kinematics: first, the 
mechanical components of the system are represented in one model and its electrical drives and 
controls are then integrated in further modeling steps. 

 
A mechanical system can be described as a set of bodies with mass affected by forces 

acting on them. The study of the dynamic behavior of mobile manipulators can be carried out 
with modern widely used multibody-system modeling methods, comprised by the Finite-
Element-Method (FEM), Continuous System Simulations (CSS) or Multibody-system 
Simulations (MBS). They main distinction lies in its target nature: FEM provides a detailed 
investigation of the system structural behavior, mainly employing elastic body’s principles; 
CSS is the most precise method to describe the mass and elasticity distribution of elastic bodies 
with simple geometry; and MBS is employed for existing or planned systems with a large 
number of rigid parts that interact with each other in a complex manner. 

FEM is mainly used for the strength calculation of components and vibrational modeling, 
since it considers all system bodies as deformable. For the system modeling using FEM, a finite 
amount of single elements with defined physical characteristics is generated for each body, 
consisting of thousands of DOFs. The joining elements for the singles components are built by 
nodes with an own coordinate system each. Thus, by defining the DOF of each individual node, 
the system´s oscillation can be defined. All together, the finite single elements and the nodes, 
comprise the so-called mesh, which contains the body material properties, such as the Young's 
modulus and density. Then, a variety of algorithms can be used to compute the interaction 
between the individual finite elements and, thus, build a close-to-reality system behavior. As a 
consequence, FEM is also able to determine the system´s frequency response. However, since 
FEM focuses on the structural behavior rather than the dynamic behavior (in time domain) of a 
system, its main disadvantage is the very long computational time due to the large amount of 
DOF the models contain, even by relative simple models. In this respect, FEM is mainly 
employed for modeling parts in which stress-strain response or the deformation analysis takes 
place [34]. An example of application is the estimation of the stiffness coefficients (deformation 
against a predefined force) of a gearbox of a joint robot manipulator. 

On the other hand, CSS studies a system behavior by means of differential-algebraic 
equation models in which only one of all its attributes is studied over time. Due to its implied 
difficulty, they are well suited for elementary models (beam shaped cantilever) in which 
stochastic is not expected. In CSS, a fraction of the continuous matter in a compartment is 
transferred during a small time-step. They mostly contain continuous state variables that change 
continuously (and not discrete) over time [35]. 

Finally, MBS is suitable for the development of mechatronic systems [36] for aviation, 
spacecraft, rail vehicles, machines and robotics. A multibody-system is a set of rigid or elastic 
bodies connected by kinematic or physical linking elements that help to reproduce the dynamic 
behavior of more complex mechanical structures, such as robot manipulators. A kinematic 
connecting element defines geometrical constraints between two bodies by specifying how they 
can move in relation to each other. They correspond to the classic joint types such as revolute 
joint, planar joint, cylindrical joint, spherical joint or universal joint [36]. In addition to these 
purely geometric constraints, physical and basically massless linking elements complete the 
multibody-system modeling process by assigning spring stiffness’s and damping coefficients 
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to the joining elements, being the responsible for the force transmission between the two bodies. 
In this way, the motion DOF of rigid massed-bodies can be defined geometrically or via the 
forces and torques affecting the bodies. In order to obtain a close-to-reality MBS model, the 
parameters that might have the major influence on the dynamic behavior of the real system 
should be determined. In the case of a robot manipulator, these are represented by masses, 
center of gravity vectors and the six elements of the inertia tensors [37] as well as the stiffness 
and damping parameters of the individual joints. 

Table 5 presents a good comparison of these three modeling techniques. 

Table 5 Comparison of modeling methods (Source: Kreuzer et al. ([38]). 

Modeling 
Multibody-system 

Simulations 

Continuous 

System 

Simulations 

Finite Elements 

Method 

Body Rigid Elastic Elastic 

Geometry Complex Easy Complex 

Good level of 

detail for 

deformation 

Restricted Available Restricted 

Forces/Torques Discrete Steady increments Discrete 

Suitability for 

control design 
Good 

After reduction of 
complexity 

After reduction of 
complexity 

Since the aim of the present study is to design stabilization strategies (and not to inspect 
the system mechanical structure), MBS is suggested as the most suitable method [39]. 

 
The accuracy of a MBS depends on the model complexity, the reliability of the system 

parameters and the quality of the numerical solution [40]. The selection of the degree of detail 
depends on the nature of the system and the problem as well as on the capacity of the 
computational analysis. 

Since real systems can be represented by rigid or elastic multibody-system models, there 
are several possible levels of abstraction when modeling a MBS. In principle, modeling a 
joining element using geometrical constrains (without deformation) means low computing 
performance and time. In contrast, system joining elements modeled as deformable or non-
deformable element each has its pros and cons: the use of deformable joining elements 
reproduces a close-to-reality behavior but causes considerable difficulties for the numerical 
solution; however, the use of non-deformable joining elements between rigid bodies only limits 
the motion of the rigid body(ies) [40]. The forces and torques acting/ reacting on the rigid bodies 
can be then transmitted through additional massless springs, damping or contact elements. 

 
The theoretical approach for the dynamics of rigid bodies is based on equations of 

motion14, e.g. the Newton-Euler approach, the Lagrange approach, etc. [41]. Nevertheless, 
modeling a system employing rigid bodies (without deformation) implies also a simplification 

                                                 
 

14 For a detailed description about the physical principles of the multibody dynamic refer to [36]. 
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of the reality, which could lead to discrepancy regarding the dynamics of the investigated 
system behavior or, in a worst case, to the model not representing any characteristics of the real 
system. 

If a system is modeled employing elastics bodies, it replicates large body deformations, 
but implies great computing power. The simplest method to model an elastic structural element 
is the uniform local distribution of mass and elasticity on point-masses interlinked by massless 
springs, the so-called Lumped Mass Systems [38], generated in a FE-Mesh with thousands of 
DOFs. One of the biggest problems and limitations of the MBS modeling with elastic 
components is the determination of their corresponding spring constants, essential to represent 
the body properties. This is not a simple procedure and implies a good understanding of the 
expected system’s motion behavior [38]. Additionally, the higher the system DOF, the more 
complex its mathematical description and, thus, the MBS dynamic calculation.  

A reasonable compromise to create a close-to-reality system and to relatively easily model 
mobile manipulators without needing a high computer performance is the well-known hybrid 
MBS model. It combines rigid bodies with deformable bodies in the same model: the uncritical 
components (e.g. robot manipulator links) can be modeled as rigid bodies, while the critical 
deformable components (e.g. gearboxes) can be described by elastic bodies. 

 
With regard to MBS modeling and simulation tools, the MSC.Software ADAMS/View 

(Automatic Dynamic Analysis of Mechanical Systems) is the most commonly used to perform 
kinematic, kinetic and dynamic analyses. MSC.ADAMS/View allows users to model complex 
mechanical systems, to simulate the dynamics of moving parts and to evaluate the results of the 
interaction of all defined system components, including motion, structures, actuation and 
controls (emerging forces, positions, velocities and accelerations) [42]. For motion analysis, all 
components can be connected via joints and can be loaded with forces and torques. In addition, 
MSC.ADAMS/View offers the possibility to measure translational as well as rotational 
movements, velocities, accelerations and forces in all spatial directions, important during the 
implementation of control algorithms by means of simulations. Furthermore, bearing stiffness 
and damping coefficients can be defined as physical joints to simulate forces and torques on 
rotational or translational bearings. 

Some of the benefits of modeling mobile manipulators as multibody-systems in 
MSC.ADAMS/View15 are: 
 The use of robust numerical methods to solve dynamic and nonlinear problems. Clearances 

and frictions between parts as well as simple or complex contact problems that emerged 
during the navigation of, e.g., mobile platforms, can be computed by its fundamental 
numerical methods, including static, kinematic, dynamic, linearization and frequency 
analysis, being the latter the interesting in this work. 

 A variety of libraries are accessible to replicate the same environment and constraints the 
real system experiences, as well as to set up the simulation requirements. Thereby, the 
electrical drivers of a robot manipulator together with their rotational velocity or linear 
displacement and their action/reaction forces can be reproduced using the available control 
library. 

 CAD models can be imported directly into its user interface, helping the preparation of the 
mechanical system of the robots. 

                                                 
 

15 For more information about ADAMS and its diverse libraries, tools as well as examples, please refer to [212–
214]. 
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 Its postprocessor provides many visual capabilities for the parametrization of the model, 
the evaluation of simulation results or their validation against test data through animations 
and diagrams. 

 The plug-in solution ADAMS/Control helps to export the MBS models into black-boxes, 
in order to couple them with simulation environments for control algorithms, e.g., 
Matlab/Simulink. This supports the development and verification of control systems in a 
close-to-reality and cost-effective simulation environment [42]. 
Generally speaking, MSC.ADAMS/View supports the quick creation and test of 

mechatronic systems such as mobile manipulators. Thanks to its simulation environments, new 
developments require less time and cost that would be required to build and test a real prototype 
[43]. 

2.3 Co-Simulation (MSC.ADAMS/View & Matlab/Simulink) 

The development of the stabilization strategies presented in this work involves the 
mechatronic representation of the mobile manipulator, comprised by models of the dynamic 
behavior of its structure, its control and actuation. As previously mentioned, MBS tools offer a 
suitable environment for modeling the mechanical part. However, the development of the 
required control loops are subject to many limitations. A long-established mechatronic 
simulation tool to solve specific problems on the field of control engineering and mechatronics 
is the software package Matlab/Simulink. 

 
MATrix LABoratory (Matlab) serves as a high-level language and interactive environment 

for numerical computation, visualization and programming. Matlab supports the acquisition, 
analysis and visualization of data, the development of algorithms as well as the creation of 
models and applications [44]. It provides mathematical functions for linear algebra, statistics, 
Fourier analysis, filtering, optimization, numerical integration and solving ordinary differential 
equations as well as numerical computation methods for analyzing data, developing algorithms 
and creating models [45]. By combining their packages (libraries) resources, it is possible to 
build complex programs and applications. 

One of the most important add-on programs of Matlab is the toolbox extension Simulink. 
It provides a graphical development environment for simulation and Model-Based Design 
(MBD) of linear and nonlinear systems [46], relevant in control design. Its Control System 
Toolbox is very useful, mainly for the analysis, design and optimization of linear control 
systems, particularly for the optimization of controllers and sensors [47]. Simulink also supports 
the rapid prototyping using Hardware-in-the-loop (HIL) and Software-in-the-loop (SIL) 
techniques [48], being the perfect choice for modeling the stabilization strategy controls. 

 
Splitting a system into subsystems in accordance with the suitable software environment 

for each discipline facilitates the process of design of the stabilization strategies. The use of 
coupled simulations, the so-called co-simulations, allow the integration of these loosely and 
independently software environments, being concerned about the discrete synchronization and 
interaction of the sub-simulations. Table 6 displays some applications of co-simulations in the 
robotic field. 
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Table 6 Examples of applications that employ co-simulations (based on [41]). 

Example of  

control design 

Employing MBS 

(MSC.ADAMS/View) 
↔ 

Employing 

MATLAB/Simulink 

Control 

development of an 

industrial robot 

manipulator 

Dynamics of the robot 
manipulator 

C
o
-S

im
u

la
ti

o
n

 

Feedback for control loop 
containing joint angles, 
motor speed and current 

Joint angles, motor speed/acc. Motor drive torque 
Control 

development of a 

robot manipulator 

with elastic arms 

Dynamics of the robot 
manipulator arm and its elastic 
deformations 

Feedback for control loop 
containing joint angles, 
motor speed and current 

Joint angles, motor speed/acc. Motor drive torque 
Control 

development of a 

DC-Servomotor 

Torque calculation, rotor 
angle/speed/acceleration 

Speed and current control 
loops 

Considering the particular case of mobile manipulators, its mechanical structure can be 
modeled as a MBS model and the necessary control loops can be implemented in 
Matlab/Simulink environment. Therefore, a co-simulation can be performed in order to make 
them interact, coordinating two separate software programs (e.g., ADAMS/View and 
Matlab/Simulink). Due to the fact that one software program requires the information delivered 
by the other and so on, all relevant information has to be exchanged reciprocally in real-time. 

2.4 Robot Operating System (ROS) 

In the second part of this work, a stabilization method that directly makes use of the path 
planning of the mobile manipulators is investigated. An easy accessible robot framework to 
assist the development and implementation of algorithms to control the robot motion over time 
is essential. 

One of the most well-known frameworks for robot applications is the Robotic Operating 
System (so-called ROS). Much of ROS´s popularity is due to its modular building design 
principle to create complex and robust behaviors of robotic systems [49]. 

ROS is characterized by peer-to-peer networking architecture that enables a secure and 
high-performance communication between all subscribers (e.g., drivers) of the same network. 

All ROS functionalities are distributed in a large number of small tools that solve simple 
tasks, i.e., for the execution of one complex ROS function such as navigation, several ROS 
tools are involved (odometers, sensor streams, pose and velocity commands, safety using 
cameras or scanners, etc.). The developed algorithm is implemented in ROS standalone libraries 
with no dependencies on hardware, offering the reuse of the developed code for other 
components or for solving different problem statements [50]. The source code in ROS interacts 
via the console. 

ROS is fully supported by Linux operating system. The algorithms, their corresponding 
interpreted/compiled code and relevant data necessary for the execution of the programs [51] 
are contained in packages and located within a workspace that comprises the folder structure of 
a ROS project [52]. Packages also include the executable files, scripts and launch-files needed 
for the implementation of the complex functions. 

A single ROS executable program performing a task is represented by a node, i.e. the whole 
project possesses one node for each required task. Usually, a robot control system is comprised 
by many active nodes, which exchange information with each other in order to accomplish a 
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function. As an example for a mobile platform, one node performs the localization in space; 
using the information delivered by this node, another node performs the path planning to reach 
the target point on the map; then, a third node controls the wheel drive motors for the 
displacement with the velocity and acceleration the path planning node calculates. Thereby, the 
entire ROS program consists of a large number of several nodes, which interact/exchange 
information with each other. 

Nodes can publish or subscribe to other nodes via topics [52], the data bus used for the 
information exchange being the channel for the message flow between two nodes. Thus, nodes 
can receive messages from other nodes if they subscribe to the respective topic [52]. Similarly, 
messages from nodes are available to other nodes via published topics. 

The ROS master establishes the communication between all nodes that participate in a 
network. It helps nodes to find each other and to ensure the exchange of information and the 
supply of services. Nevertheless, once two or more nodes are connected to each other, they can 
communicate in a direct way without any intervention of the master. In other words, the master 
only manages the nodes to publish or subscribe on a defined topic. 

The node graph assists the visual representation of all nodes and their corresponding 
messages and topics. 

 

The following additional plugins facilitated the handling of the robot control developed in 
this work and its simulation environment: 
 The robot models can be built within realistic scenarios and environments using the tool 

Gazebo. In this way, the developed algorithms can be virtually verified in advance before 
they are implemented on the real robot. For the implementation on Gazebo, the robot 
geometry is read via the special file in Unified Robotic Description Format (URDF). 
Furthermore, sensors like accelerometers, scanners or cameras can be also implemented 
into the Gazebo environment [53]. In order to achieve a close-to-reality model, not only 
static but also dynamic conditions as gravity force, magnetic field, wind, external 
disturbances, unknown objects, etc. can be considered. 

 RViz as powerful widely used tool for close-to-reality and real-time cognition of robotic 
systems, in which the perception of the robot such as scans, camera images, point clouds 
or directions can be read out and displayed graphically. 

 MoveIt! is a motion planning framework to program robots in a fast and agile way [49], 
including a wide range of algorithms for motion and path planning. In addition, MoveIt! 
helps to analyze and calculate vision perception, forward/inverse kinematics [54], 
navigation as well as control operations. Specific controllers can be assigned to the 
individual joints and groups and self-collision matrixes can be defined to avoid collisions 
during the robot trajectory. MoveIt! also visualizes graphically the robot movement and its 
effects on the simulation model allowing a risk free implementation of the same planned 
movement on the real robot. 
 
Altogether, RViz and MoveIt! as control tool and Gazebo as virtual world, assist the 

development of the stabilization strategies presented in the second part of this work (see  
Chapter 5) in a close-to-reality virtual environment. The big advantage of their use is the risk-
free verification of the developed functionalities in real-time, thus saving time and money. After 
a successful verification phase in the ROS virtual environment, the control algorithms can be 
implemented directly on the real robot without requiring major further adaptations. 
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2.5 Recursive Newton-Euler Algorithm (RNEA) 

If the position and orientation of each coordinate system attached to all bodies of the 
kinematic chain of a robot manipulator are clearly identified, it is possible to determine not only 
the location of all bodies in the space, but also the location and orientation of the Tool Center 
Point (TCP) regarding, e.g., the world coordinate system. On the other hand, if the location and 
orientation of the TCP in a defined space is provided, the location and orientation of all parts 
of the kinematic chain can be estimated in order to get the configuration they need to reach the 
given TCP, by means of the so-called inverse kinematics. 

Moreover, the Recursive Newton-Euler Algorithm (so-called RNEA) method by 
Featherstone [55] estimates the inverse dynamics of a rigid-body system required for the 
evaluation of the stability state of the mobile manipulator. 

 
All 6D spatial vectors and matrixes employed in the RNEA, such as position (𝑺𝑖), joint 

velocity (𝑣 𝑖) and acceleration (𝑎 𝑖), as well as inertia (𝑰𝑖), forces (𝐹 ) and reaction forces (𝐹 𝑖𝐵) 
caused by each joint of the robot manipulator, can be described regarding its body fixed 
coordinate system. The velocity of a certain link 𝑖 is calculated by the sum of the velocity of its 
parent link 𝜆(𝑖) and the velocity of the joint 𝑖 that connects both links as follows 𝑣 𝑖 = 𝑿𝜆(𝑖) · 𝑣 𝜆(𝑖) + 𝑺𝑖 · �̇� 𝑖𝑖  (37) 

with 𝑣 𝜆(𝑖)     Parent link 6D velocity vector, 𝑺𝑖         6 x n-DOF matrix for the movement space of joint 𝑖, �̇� 𝑖         n-DOF vector for joint 𝑖 velocity, with the same dimension as the joint 𝑖 DOF, 𝑿𝑖 𝜆(𝑖) Matrixes for the coordinate transformation of the parent link 𝜆(𝑖) regarding the child 

link 𝑖 coordinate system. For detailed information about coordinate transformation 
matrixes see [56]. 

 
Considering the basis of a mobile manipulator as fixed, its velocity can be denoted as 𝑣0 = 0. 
Based on Eq. (37), the acceleration of the same link 𝑖 can also be estimated by applying its 
derivate with respect to time, where the derivate of 𝑺𝑖 is performed related to the body 
coordinate system 𝑎 𝑖 = 𝑿𝜆(𝑖) · 𝑎 𝜆(𝑖) + 𝑺𝑖 · 𝑞𝑖⃗⃗⃗  ̈ +  𝑺𝑖̇𝑖 · 𝑞𝑖⃗⃗⃗  ̇ +  𝑣 𝑖  ×  𝑺𝑖 · 𝑞𝑖⃗⃗⃗  ̇ (38) 

with 𝑎 𝜆(𝑖)     Parent link 6D acceleration vector, 𝑞𝑖⃗⃗⃗  ̈         6D vector for joint 𝑖 acceleration. 
 
Considering the basis of a mobile manipulator as fixed, its acceleration can be denoted as 𝑎 0 = −𝑎 𝑔𝑟𝑎𝑣𝑖𝑡𝑦. (39) 

Similar to Eq. (37) and (38), the forces and torques acting on a link 𝐹 𝑖𝐵  as a result of 
accelerations, can be estimated by combining the equations for linear and rotational motion of 
rigid bodies given by Newton and Euler, as follows: 𝐹 𝑖𝐵 = 𝑰𝑖 · 𝑎 𝑖 + 𝑣 𝑖  ×  𝑰𝑖 ·∗ 𝑣 𝑖 (40) 

with 
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 𝑰𝑖         6 x 6 inertial matrix (mass and moment of inertia of the link 𝑖), × ∗      represents a special form for the Cartesian cross product [56]. 

 

Based on the last equation, the external forces and torques, 𝐹 𝑖, affecting the joint can be 
calculated by 𝐹 𝑖 = 𝐹 𝑖𝐵 − 𝑿𝑖 0∗ · 𝐹 𝑖𝑥 + ∑ 𝑿𝑗∗ · 𝐹 𝑗𝑖𝑗∈𝜇(𝑖)  (41) 

with 𝐹 𝑖𝑥 known external forces and torques affecting the joint 𝑖, and described regarding the 
world coordinate system. For this reason, the coordinate transformations matrices 𝑿𝑖 0∗  are needed. In case, the external forces and torques are defined regarding the 𝑂𝑖, 
no coordinate transformations are needed and this part of the equation can be omitted. 𝜇(𝑖)     all children of link 𝑖, 𝐹 𝑗         forces and torques generated by the children 𝜇(𝑖) affecting the parent link 𝑖, 𝑿𝑗∗𝑖      matrices for the coordinate transformation of the force vectors. 

Similarly, the vector of torques for the joint 𝑖 can be estimated as 𝜏 𝑖 = 𝑺𝑖𝑇𝐹 𝑖. 
 

Employing the RNEA for the calculation of the robot inverse dynamics, all forces and 
torques acting on each joint of the robot manipulator can be computed if the system geometry 
and the parameters regarding the kinematics and motions are known over time. This enables 
the estimation of the forces and moments generated by the robot manipulator that affect the 
mobile platform across their physical connection point(s), and which could induce a tip-over of 
the entire system. 
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3 State-of-the-art 

The current chapter provides an overview of the most common methods that have been 
developed by different researchers to assess the stability problem of mobile systems. The first 
part presents those approaches that compensate for disturbing/destabilizing forces and moments 
by employing external mechanisms. The subsequent sections introduce a number of studies that 
comprise other kind of stabilization strategies, namely those that do not employ any external 
stabilization mechanism, but rather the manipulator itself, to guarantee the system stability. 

3.1 Stabilization approaches using external mechanisms  

Several institutes [57] and companies [58] are currently working on lightweight mobile 
platforms. Although this form of robotic solution avoids the potential risk of losing their 
stability while the mobile platform moves through the plant, they are limited by their restricted 
payload in contrast with previous large systems introduced in Chapter 1. The demand for 
handling higher payloads implies the use of big robot manipulators (with higher center of 
gravity) mounted on large-footprint and/or heavier mobile platforms to prevent the robot 
manipulators from tipping over [59], as the examples shown in Figure 8. 

  
Figure 8 Two representative models of mobile manipulators (left: KUKA KMR iiwa [60],  

right: OMRON TM-manipulators with LD-mobile platforms [61]). 

Likewise, large-footprint platforms are directly associated with more workspace required, 
and thus higher costs for the plant surface area. There is, therefore, a definite need to develop a 
mobile manipulator comprised by a high payload robot manipulator on a small-footprint 
autonomous mobile platform. 

 
Numerous studies have attempted to develop mechanisms and algorithms to guarantee the 

stability of mobile platforms and mobile manipulators. 
The first systematic studies about mobile platforms equipped with an external stabilization 

mechanism was reported by Graf and Dillmann [62–64] in 1997 and 1999. They attempted to 
compensate accelerations and decelerations of mobile transport systems using the concept of a 
six degree-of-freedom (DOF) Stewart-platform mounted on a wheeled vehicle. An example of 
application of the principle introduced by Graf and Dillmann [62–64] is shown in Figure 9. 
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Figure 9 Compensation of linear accelerations by means of a Stewart-platform ([65] based on [63]). 

This motion is implemented by the superposition of accelerations generated by a Washout-
Filter16 and the so-called g-tilt effect [64]. The Washout filter calculates valid positions and 
orientations for the upper plate of the Stewart-platform by means of the double integration of 
the angular and linear acceleration of the mobile platform. Moreover, the g-tilt effect utilizes 
the gravity force to generate continuing accelerations in horizontal directions. The washout 
filter acts as limiter for the g-tilt and executes a tilt so slowly that this movement produces only 
an insignificant rotatory acceleration of the upper plate of the Stewart-platform. Both 
accelerations are outlined by the curves in Figure 10, with acceleration by movement for the 
Washout-filter effect and acceleration by angle for the g-tilt effect. 

 
Figure 10 Compound motion generation [63]. 

Using inverse kinematics, the position controller determines the stroke length of the 6 
linear actuators of the Stewart-platform that have to be controlled to compensate disturbing 
accelerations on the mobile system. The complete control algorithm is represented graphically 
in Figure 11. 

                                                 
 

16 Detailed information about the filter is described in [63] and [215]. 
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Figure 11 Stewart platform controlling architecture [66]. 

Besides the complex design, this concept was originally developed especially for the 
transportation of liquids in small containers, i.e. for smaller weights than for standard industrial 
robot manipulators. The main disadvantage of the concept presented by Graf and Dillmann [62–
64] is that large sized components for the 6-DOF-platform are required to achieve only small 
compensations, which would seriously limit the use of small footprint wheeled systems. 
Adopting this approach for industrial robot manipulators mounted on mobile platforms would 
imply the use of very larger sized lineal positioning elements which displace the robot 
manipulator center of mass higher (decreasing stability) and demands a much bigger footprint 
area of the wheeled system suitable to mount the Stewart-platform. Further researches [67–69] 
include the application of this approach. 

 
Another similar approach is the well-known two-wheel inverse pendulum principle mostly 

employed for the balanced locomotion of two-wheel robots, as shown in Figure 12. 

 
Figure 12 Ideal two wheeled inverted pendulum system [70]. 

With a reasonable design and robust control techniques, many concepts have been already 
successfully implemented for person transporter purposes [71–76]. Figure 13 gives an overview 
of the controllers that have been investigated for two-wheeled robots. 
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Figure 13 Outline of most-used controllers for two-wheeled robots [71]. 

An extension to the standard stabilization functionality of the two-wheeled inverse 
pendulum is the mechanism adopted to self-tilt-up without any driver's intervention, as 
described in [77]. To achieve a self-tilting balancing, a precession motion is achieved via a 
flywheel mounted inside the vehicle. The flywheel and the body of the vehicle are forced to 
move around a fixed point. This motion generates a synchronous moment that tilts the body 
into the upright position. A prototype of this mechanism is shown in Figure 14. 

 
Figure 14 Concept of flywheel as stabilization mechanism for two-wheeled inverse pendulum [77]. 
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The dynamics of those systems have been significantly enhanced by further studies [78–
80]: In addition to the typical pitching, yawing and straight motions, the two-wheeled vehicle 
is integrated with an auxiliary mechanical tilting mechanism composed by a ball screw spindle 
that allows rolling and vertical motions (see Figure 15). 

 
Figure 15 Mechanism to achieve lateral stability for two-wheeled vehicles [80]. 

The tilt control of the auxiliary balancing mechanism that compensates the centrifugal 
acceleration of the two-wheeled vehicle is carried out by the control concept illustrated in 
Figure 16. In order to determine the angle of inclination required to compensate the centrifugal 
forces occurring in the transverse direction, the force equilibrium and moment equilibrium 
conditions must be established as a function of the angle of inclination. 

 
Figure 16 Control concept for the auxiliary balancing mechanism of two-wheeled vehicles [80]. 

Zhao et al. [81] as well as Acar and Murakami [82], have attempted to implement the 
system comprised by the three DOF manipulator mounted on the two-wheeled mobile platform 
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displayed in Figure 17. They applied the inverted pendulum principle to model the robot 
system’s dynamics. In the model, the robot center of gravity (COG), an important parameter to 
keep the system stable, varies depending on the displacements, velocities and acceleration of 
the mobile platform, as well as on the weight and height of the robot manipulator. 

 
Figure 17 Prototype of 3-DOF manipulator mounted on a two-wheeled vehicle [82]. 

The design approaches developed at the Institute for Cognitive Systems at the Technical 
University of Munich [83] as well as at the Korea Institute of Science and Technology [84] and 
at the Fraunhofer Institute of Optronics in Karlsruhe [85] consist of two-arm humanoid upper 
bodies mounted on Segway devices to allow them be moved. In Figure 18, the robot 
manipulator’s body of the MAHRU-M [84] is mounted on a “Compact Omni-directional 
Mobile Platform”. 

 
Figure 18 Mobile humanoid robot MAHRU-M [84]. 

Both systems, the three DOF mobile manipulator and the two-arm humanoid mounted on 
two-wheeled vehicles, are not suitable for application purposes in industrial environments due 
to their lack of DOFs and their high cost and complexity, respectively. 

 
Another potential approach for external stabilization, apart from tilting, revealed the use 

of gyroscopes, similar to the technic presented for the two-wheeled inverse pendulum with 
integrated flywheel abovementioned. Early examples of research into gyroscope mechanisms 
and its successful implementation include the today´s predominant use to reduce roll on ships, 
to control the airplanes automatic pilot, as well as missiles, satellites (Figure 19 [86]) and high-
degree stabilization capabilities of camera systems. 
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Figure 19 Schematic representation of satellite orientation by a control moment gyroscope [86]. 

Research into the gyroscopic effect and its benefits has a long history. Arnold and Mauder 
[87] demonstrated that the use of a gyroscope as stabilizer is particularly promising because of 
the immense torques it can exert under precession, and its rapid response capacity. In 1959 and 
1960 respectively, Novoselov [88] and Matrosov [89] described in detail the forces and torques 
acting during the gyroscope effect. Most recent researches, as in [90], attempt to evaluate the 
impact of perturbations and how the gyroscope can manage them by implementing new torque 
control algorithms based on continuous high-order sliding mode [86]. 

3.2 Detection of instability states 

In order to avoid a tip-over of the mobile manipulator, it is necessary to first detect all 
instability states. This far, several techniques have been developed to analyze the dynamical 
tilting stability of mobile manipulators. The study proposed by Ghasempoor and Sepehri [91] 
calculates the system energy level with respect to the tilting axes. On the other hand, Li [92] 
suggested the evaluation of the support forces between the wheels and the ground. A significant 
analysis and discussion on the subject was presented by Papadopoulos and Rey [20,93,94], the 
so-called Force Angle stability measure (FA), which inspects the vector between the system 
resulting total force (measured by an Inertial Measurement Unit) and the normal vector of each 

tilting axis. The reaction force vector 𝐹 r and the normal vectors of the tilting axes 𝑇1 and 𝑇2 
build the angles 𝜃1 and 𝜃2 shown in Figure 20 (for manageability, the schema illustrates only 

the components i=1 in a 2-DOF system). The length of the vectors ‖𝑑 1‖ and ‖𝑑 2‖ describes 
the distances between the resulting force line of action and the contact point between the wheels 
and the ground. 
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Figure 20 Planar Force-Angle stability Measure [95]. 

The Force-Angle stability measure is defined as 𝛼 = 𝜃𝑖  ∙  ‖𝑑 𝑖‖ ∙  ‖𝐹 𝑟‖. (42) 

If α contains a negative value, if the total reaction force points outside 𝜃𝑖 or if the COG 
points outside the tilting shape (comprised by the wheels), the system starts to tilt over. 

Defining the connecting line between the system tilting axes 𝑒 𝑖 as 𝑒 𝑖 = 𝑝 𝑖+1 − 𝑝 𝑖      𝑖={1,2, … , 𝑛 − 1} (43) 

where n is the amount of contact points and 𝑝 𝑖 is the position vector between these contact 
points with the ground, using as reference frame the coordinate system located at the system 

COG. By employing the normalized vector �̂� = 𝑒 ‖𝑒 ‖, the normal vector of the tilting axes 𝑇𝑖 that 

passes to the COG is characterized by �⃗� 𝑖 = (1 − �̂�𝑖 · �̂�𝑖𝑇)(𝑝 𝑖+1 − 𝑝 𝑐) (44) 

with 𝑝𝑐 as the instantaneous position vector of the system COG and 1 as the 3𝑥3 Identity 
matrix. Then, the total reaction force of the system acting on the COG is calculated as follows 𝐹 𝑟 = ∑𝐹 𝑔 + ∑𝐹 𝑒𝑒 + ∑𝐹 𝑠 + ∑𝐹 𝑑 − ∑𝐹 𝐼 (45) 

with 𝐹 𝑔for gravitational force, 𝐹 𝑒𝑒 for the forces transmitted by the end effector to the system 

(e.g. payload), 𝐹 𝑠 for the reaction forces of the vehicle support system, 𝐹 𝑑 for external forces 

(eg. disturbances) and 𝐹 𝐼 for the inertia forces. In addition to the forces, the resulting moment 
generated around the COG is determined as �⃗⃗� 𝑟 = ∑�⃗⃗� 𝑒𝑒 + ∑�⃗⃗� 𝑑 − ∑�⃗⃗� 𝐼 (46) 

which comprises both external and internal moments caused by 𝐹 𝑒𝑒 and 𝐹 𝑑 as well as 𝐹 𝐼 and 

their corresponding cantilever. For a given tilting axis �̂�𝑖, only the components of 𝐹 𝑟 and �⃗⃗� 𝑟 
that act about �̂�𝑖 are substantial for the calculation: 𝐹 𝑖 = (1 − �̂�𝑖 · �̂�𝑖𝑇) · 𝐹 𝑟 (47) 
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 �⃗⃗� 𝑖 = (�̂�𝑖 · �̂�𝑖𝑇) · �⃗⃗� 𝑟 . (48) 

In order to estimate the angle 𝜃𝑖 for the FA stability measure according to the vector 𝐹 𝑖 
related to each tip-over axis normal �̂�𝑖, the moment �⃗⃗� 𝑖 must be replaced by the equivalent force 

couple of 𝐹 𝑖. Thus, the force 𝐹 𝑖 intersects the tilting axis 𝑖, forming a cantilever to the normal 
vector of the tilting axis as follows 𝐹 𝑖 = �̂�𝑖 × �⃗⃗� 𝑖‖�⃗� 𝑖‖  (49) 

whereby, the normalized vector for the normal vector of the tilting axis is �̂� = �⃗� ‖�⃗� ‖. (50) 

Thus, the resulting force 𝐹 𝐹𝐴 regarding the 𝑖 tilting axis of the system is 𝐹 𝐹𝐴 = 𝐹 𝑖 + �̂�𝑖 × �⃗⃗� 𝑖‖�⃗� 𝑖‖  (51) 

In order to determine the tilting stability coefficient, the distances between the force and 
the ground contact point must be calculated 𝑑 𝑖 = −�⃗� 𝑖 + (𝑇𝑖𝑒 ∙ 𝐹 ̂𝐹𝐴) · 𝐹 ̂𝐹𝐴 (52) 

as well as the angle between the force and the normal vector to the tilting axis as 𝜃𝑖 = 𝜎𝑖 · cos−1(𝐹 ̂𝐹𝐴 · �̂�𝑖) (53) 

whereby, the normalized vector for the resulting force 𝐹 𝐹𝐴 is 𝐹 ̂𝐹𝐴 = 𝐹 𝐹𝐴‖𝐹 𝐹𝐴‖ (54) 

and 𝜎𝑖 represents the proper sign for 𝜃𝑖, which adopts a positive value if the projection of the 

cross-product of the force vector 𝐹 ̂𝐹𝐴 and the normal vector of the tip-over axis �̂�𝑖 is positive, 

i.e. in this case the 𝐹 ̂𝐹𝐴 points inside the defined tilting edge17: 𝜎𝑖 = {+1      (𝐹 ̂𝐹𝐴 × �̂�𝑖) > 0−1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (55) 

Finally, the tilting stability is obtained with 𝛼 = min (𝜃𝑖 ∙ ‖𝑑 𝑖‖ ∙ ‖𝐹 𝐹𝐴‖) (56) 

Therefore, 𝛼 = { > 0     𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒  < 0   𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒. (57) 

The result of FA is a binary value, distinguishing between stable and unstable, but lacking 
a statement about the degree of risk. 

                                                 
 

17 Only applicable if the direction of the tip-over axis is the same as the stabilizing moment vector. 
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Another relevant approach is the estimation of the stability by the so-called Zero Moment 
Point (ZMP), which was first established by Vukobratovic et al. [96] and implemented by 
Sugano, Huang and Kato [97,98]. ZMP assumes a system is stable if the sum of all moments 
acting on the system is equal to zero. It calculates a stability value by means of one point 
(marked as ZMP in Figure 21), which is located on the mobile platform supporting surface and 
represents the location where the sum of all resultant moment should be zero. 

 
Figure 21 Stable regions determined by the ZMP [95]. 

All moments are derived from gravitational forces and linear accelerations as well as from 
external forces and moments that affect the system. Internal forces generated by the joints and 
their movements, and external forces produced by the acceleration of the mobile platform [99] 
are also considered. A predefined stable region helps to estimate if the system, depending on 
its ZMP, can be considered stable or not. 

In the specific case of the mobile manipulator, this region corresponds to the inner surface 
of the wheels polygon. For the calculation, the bodies that comprise the system are considered 
as point masses with an own coordinate system. The acceleration of any point located in the 
multibody-system may be calculated and modified by applying d'Alembert’s strategy, in order 
to obtain the x- and y-coordinate of the ZMP as follows: 𝑥𝑍𝑀𝑃 = ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) · 𝑥𝑖 − ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑥) · 𝑧𝑖 + ∑𝑀𝑒𝑥𝑦 + ∑(𝑆𝑒𝑧 · 𝐹𝑒𝑥𝑥 − 𝑆𝑒𝑥𝑥 · 𝐹𝑒𝑥𝑧) ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) − ∑𝐹𝑒𝑥𝑧  

 

(58) 

𝑦𝑍𝑀𝑃 = ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) · 𝑦𝑖 − ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑦) · 𝑧𝑖 + ∑𝑀𝑒𝑥𝑥 + ∑(𝑆𝑒𝑥𝑦 · 𝐹𝑒𝑥𝑧 − 𝑆𝑒𝑥𝑧 · 𝐹𝑒𝑥𝑦) ∑𝑚𝑖 · (�̈�𝑖 + 𝑔𝑧) − ∑𝐹𝑒𝑥𝑧  
(59) 

with 𝑚𝑖 for the mass of body 𝑖, 𝑟 𝑖 for the position vector of body COG 𝑖 ([𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]), �⃗⃗� 𝑒𝑥  

([𝑀𝑒𝑥𝑥, 𝑀𝑒𝑥𝑥 , 𝑀𝑒𝑥𝑧]) and 𝐹 𝑒𝑥 ([𝐹𝑒𝑥𝑥 , 𝐹𝑒𝑥𝑦 , 𝐹𝑒𝑥𝑧]) for external moments and forces affecting the 

system, and 𝑆 𝑒𝑥 ([𝑆𝑒𝑥𝑥, 𝑆𝑒𝑥𝑦, 𝑆𝑒𝑥𝑧]) for the point of application of these external forces. The 
coordinate z is located on the surface of support; for this reason, its value does not need to be 
calculated. 

A stable region has to be defined to estimate if a system can be considered stable or not. 
Similar to the FA method, if the positions 𝑥𝑍𝑀𝑃 and 𝑦𝑍𝑀𝑃 calculated by ZMP are situated inside 
the defined region, the mobile manipulator can be considered as stable; otherwise, if the 
resultant ZMP lies outside this region, the mobile manipulator is unstable. In general, the 
farthest away from an edge of the region to the ZMP resultant, the more stable against tip over 
the mobile manipulator is regarding this edge. According to this, it is possible to define 
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 𝛼𝑖 = 𝑑𝑖𝑟𝑚𝑎𝑥 (60) 

with 𝛼𝑖 being the stability criterion regarding the edge 𝑖 of the stability region, 𝑑𝑖 as the smallest 
distance and 𝑟𝑚𝑎𝑥 for the longest distance between the ZMP resultant and the edge 𝑖 of the 
stability region, as shown in Figure 21. 

The ZMP strategy was originally developed for humanoid robots, whose COG does not 
change significantly. Moreover, this method considers only mass points, ignoring the bodies 
inertia moment. Both situations could lead to handicaps in its use for mobile manipulators. 

The main disadvantage of the above methods is that they did not consider parameters 
produced by the system dynamics. A method that takes into account this aspect is the Moment 
Height Stability method (so-called MHS) introduced by Moosavian and Alipour [99–101] for 
the computation of the moments acting on each tilting axis of the system. The MHS is also a 
moment-based method which considers, in addition to the internal and external forces (as ZMP 
does), the body moments of inertia in the stability calculation. In a highly simplified way, the 
MHS method calculates the total torque acting on each of the individual tip-over edges of the 
system and, additionally, emphasizes them with inertia values and with the overall COG height. 
For the estimation of a stability value by means of MHS, the system should first be split into 
the two parts that are physically connected, as the example illustrated in Figure 22. 

 
Figure 22 Separation of whole system into two subsystems, since the MHS measure is computed  

on the part which produces mobility (the mobile platform) [101]. 

This method serves to kinematically and dynamically analyse the two main bodies 
separately: 
 For the manipulator, joint positions, joint angular velocities and joint angular accelerations 

over time need to be determined. All forces and moments acting on the mobile platform 
across the connexion point can be estimated by means of inverse dynamic method (RNEA). 

 For the mobile platform, similar to the already described Force-Angle stability measure 
method, a unit vector 𝑒�̂� is defined for each tilting edge. Given 𝑝 𝑖, 𝑝 𝑖+1, …, 𝑝 𝑛−1 as the 
vector for the contact points of the mobile platform with the ground (wheels), with respect 
to the coordinate frame formed by the point where the robot manipulator is attached to the 
mobile platform, the unit vectors can be calculated as follows 

FR1

τ1

-R1

-τ1
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 �̂�𝑖 = 𝑝 𝑖+1− 𝑝 𝑖‖𝑝 𝑖+1− 𝑝 𝑖‖ , respectively �̂�𝑛 = 𝑝 1− 𝑝 𝑛‖𝑝 1− 𝑝 𝑛‖. (61) 

In addition, the resultant moments around a vertex have to be calculated and projected to 
the unit vectors that conform the tilting polygon. The resultant moment is comprised of all 
forces and moments acting over the connection point (caused by the robot manipulator) as well 
as of all forces and moments acting on the COG of the mobile platform (inertial and 
gravitational forces, etc.), �⃗⃗� 𝑣𝑖 = −𝑝 𝑖 × 𝐹 𝑟 + �⃗⃗� 𝑟 

 
(62) 𝑀𝑖 = �⃗⃗� 𝑣𝑖  ∙  𝑒�̂�. (63) 

The dynamic stability value 𝛼𝑖 related to the 𝑖 edge can be estimated by considering the 
mass moment of inertia of the mobile platform regarding the 𝑖 edge, 𝐼𝑣𝑖: 𝛼𝑖 = (𝐼𝑣𝑖)𝜎𝑖 ∙  𝑀𝑖 (64) 

Employing 𝜎𝑖 = {+1 𝑓𝑜𝑟 𝑀𝑖 > 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (65) 

The MHS is defined as the critical value (smallest dynamic stability 𝛼) regarding an edge 
of polygon 𝑖, indicating thus the critical tilt edge 𝛼 = min(𝛼𝑖) (66) 

which must be interpreted as 𝛼 > 0    System is stable 𝛼 = 0    System is critically stable 𝛼 < 0    System tends to tip over the edge 𝑖. 
 
The MHS method also provided information about the system stability in relation to all 

possible tip-over edges. By continuously calculating and monitoring the stability value of each 
edge during the operation of the mobile manipulator, it is possible to determine the risk of 
tipping over and, if applicable, which edge is most likely to be affected. 

 
The effectiveness of the last three mentioned methods were already evaluated and 

compared by other researchers. The authors in [101] confirmed that the ZMP method differs 
substantially from the other two methods because of the fact that the ZMP does not directly 
consider the inertial moment of the bodies and the height of the COG. Furthermore, the FA 
method requires much more computing power. In turn, the MHS demands much lower 
computing power and considers the system to be dynamic. Roan et al. in [102] carried out 
comparisons by using a real mobile manipulator whose COG location was fixed during the 
whole set, obtaining similar results to those in [101]. 

 
In summary, it has been shown from this review that the MHS technique appears to be the 

most suitable of these methods to detect instability conditions in mobile manipulators. 
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3.3 Tip-over prevention approaches employing the robot manipulator 

Generally speaking, there are two basic approaches currently being adopted in research to 
solve the problem of tip-over avoidance for the mobile manipulators: 
1. either the traveling speed of the mobile platform is reduced/suited or, 
2. the robot manipulator takes another position/orientation. 

The combination of both approaches is also possible [20,22,103]. 
 
Perhaps the best-known studies include those carried out by Rey et al. [20], who proposed 

a strategy based on the FA for the tilting detection in such a way that, in case an instability is 
detected by FA, the mobile manipulator assumes a predefined categorized safe position 
[20,104]; the major disadvantage of this method, however, is that the executed motion planning 
task must be completely aborted for the reposition, leading to big delays during the operation 
time. He [105] estimated the stabilization by the so-called contact force method, which employs 
the contact force between the mobile platform wheels and the ground to trigger a repositioning 
of the robot manipulator (see Figure 23). The new manipulator’s joint arrangement depends on 
the system COG and its speed, adopting the position in which the contact force is the same at 
all contact points (wheels). 

 
Figure 23 Ramp crossover with tip-over avoidance algorithm of He [105]. 
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The limitation of this approach is the measurement of the contact forces between the 
wheels and the ground, which implies the use of additional sensors and its integration on the 
wheels. Hatano and Obara [106] employed a highly simplified mobile manipulator consisting 
of single link with mass. As soon as an instability is detected by means of ZMP, the manipulator 
is moved to a predefined position, generating a force acting against the tilting moment. This 
principle is displayed in Figure 24. 

 
Figure 24 Stabilization principle of single link mass by Hatano and Obara [106]. 

Ding et al. [22] algorithm detected risk of tip-over by means of Improved Tip-Over 
Moment Stability Criterion (ITOMSC). It defined the position and orientation the robot 
manipulator’s joints should adopt or the speed the mobile platform should assume to 
accomplish the calculated optimum tilting moment for the current state of the mobile 
manipulator. The simplified algorithm is represented in Figure 25. 

Once again, the mobile manipulator aborts its original motion planning task, standing still 
during the stabilization and resuming it after the system is considered stable. The new 
position/orientation for the robot manipulator’s joint does not have to be part of the original 
trajectory path. 

 



State-of-the-art  61 
 

 
Figure 25 Tip-over prediction and avoidance algorithm by Ding et al. [22].  

For nomenclature, refer to [22]. 

The algorithm presented by Huang and Sugano [103] (shown in Figure 26) calculates an 
unadjusted optimal trajectory before the mobile platform starts moving. This algorithm inspects 
which points of the whole trajectory do not fulfill the ZMP criteria and recalculates these critical 
points as often as necessary until the criterion is fulfilled for each point. Only then, the mobile 
manipulator is ready to operate. 
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Figure 26 Algorithm of motion planing for maintaining stability by Huang and Sugano [103]. 

In theory, a tilting risk by means of ZMP will be never detected during a task execution, if 
the mobile manipulator follows the optimized pre-calculated path. This approach enormously 
manipulates the motion and path planning of the robot manipulator and, perhaps, the most 
serious disadvantage of this method is that it cannot react to unexpected behaviors (e.g., abrupt 
braking maneuvers). 

Furuno, Yamamoto and Mohri [107] also implemented a similar method based on the ZMP 
for tilting detection and a predefined stable trajectory path, which adjusts beforehand the 
position of the robot manipulator and the movement of the mobile platform. The same 
limitations apply to this approach. 
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Kim et al. [108] suggested a real-time null-space motion approach, which is only 
applicable to robot manipulators with kinematic redundancy. 

A different real-time method is proposed by Li and Liu [109,110] as well as by Alipour et 
al. [104], who implemented a fuzzy logic to get non-numerical statements, which depends on 
the joint positions, velocities and accelerations. Alipour et al. [104] triggered the fuzzy logic 
algorithm according to the information delivered by the MHS for the tip-over detection, as can 
be seen in Figure 27, whereas Li and Liu [109,110] rely upon the contact forces between the 
wheels and the ground. 

 
Figure 27 Fuzzy logic tip-over avoidance planner proposed by Alipour et al. [104].  

For nomenclature, refer to [104]. 

So far, however, the mentioned approaches ignore either the real time aspect, in order to 
react against unexpected abrupt braking maneuvers, the numerical statements (and not just 
Boolean) in order to detect the degree of tip-over risk or the simplicity of its measurement and 
calculation methods. Therefore, there is a clear need for a stabilization strategy that covers all 
these aspects. 
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This work offers insights into two different stabilization approaches: Approach A, as an 
external stabilization method that integrates additional actuators onto the mobile manipulator 
for the compensation of instability torques; and an Approach B, as an incorporated stabilization 
method in which the mobile manipulator independently brings itself into a stable state. 
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4 Approach A: Stabilization strategies for  

mobile manipulators with limited access 

to the robot controller 

This work describes two different approaches to deal with the instability problem affecting 
small-footprint mobile manipulators, differing from each other in the system to which they will 
be implemented: mobile manipulators with closed-source or open-source operating systems, 
respectively. 

The first approach, A, focuses on the design and development of stabilization strategies 
based on external mechanisms. Their purpose is to ensure the tilting stability of mobile 
manipulators at standstill or during normal plant operation, regardless of the robot 
manipulator’s and mobile platform’s controllers. If an external actuator system is used for the 
compensation of instability moments, an affordable mobile manipulator can be built by simply 
integrating currently available robot manipulators at the plant onto small footprint mobile 
platforms. The particular importance of this approach lies in the possible use of low-cost robot 
manipulators or the re-use of already existing robots/equipment, since its implementation does 
not require for access or alteration of the robot controllers. 

The main challenge the stabilization approach faces is to guarantee for the stability of the 
mobile manipulator during its operation, even when the mobile platform abruptly starts or stops. 
In other words, the stabilization mechanisms should be self-adaptive to react to any external 
influences and, consequently not to affect the human safety in the working areas [111]. Their 
adequate control strategy should ensure the equilibrium of dynamical forces affecting the 
system balance in every moment. 

4.1 Stabilization strategies employing tilting effect 

The first part addressed in approach A analyzes techniques to compensate accelerations 
affecting the mobile manipulator’s stability based on the g-tilt method, using a principle similar 
to that of the Stewart-platform presented by Graf and Dillmann [62,64,66]. Following the 
findings reported during the development of the Stewart-platform [62,64,66], it is a fact that 
external forces affecting a mobile system are mainly caused by sudden and unpredictable 
accelerations and decelerations of the mobile platforms. The mechanism proposed by Graf and 
Dillmann [62,64,66] reaches the compensation of these accelerations by implementing a 
translational displacement of its upper plate, while the inclination of the payload increases (see 
Section 3.1). Considering that the translation displacement effect only procures short 
acceleration impulses, longer lasting accelerations cannot be implemented due to the limited 
the Stewart-platform’s workspace [63]. Moreover, if only the gravity force effect (g-tilt) is 
taken into account, a compensation of braking processes could be achieved by shifting the 
system’s center of gravity (COG). 

Therefore, the stabilization strategies presented below propose the use of a distinct 
mechanism, in which only the g-tilt effect is carried out by independent linear actuators, while 
the robot manipulator’s weight is supported by a universal joint placed on the upper plate of the 
mobile platform. It is worth emphasizing that the stabilization strategies, thereby, do not involve 
any active motion of the robot manipulator or the mobile platform itself. 
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4.1.1 Actuation mechanism 

In order to compensate accelerations and decelerations affecting the mobile manipulator, 
the stabilization mechanism shown in Figure 28 consisting in trapezoidal screw drives mounted 
on the mobile platform in a delta configuration has been proposed. 

 

 
Figure 28 Linear actuators as external stabilization mechanism for a robot manipulator  

mounted on a small footprint mobile platform. 

The central column mounted on the mobile platform is a universal joint that connects both 
subsystems, supports most of the robot manipulator’s weight and allows motion in 2 degrees of 
freedom (DOFs). Each of the ball screw spindles mounted in delta configuration can execute a 
linear motion. Their motors are fixed to the upper plate by additional universal joints, as 
illustrated in Figure 29. 

 

 
Figure 29 Linear drives mechanism designed for the stabilization strategy via tilting effect. 

In order to quantify the influence of the accelerations acting on a mobile manipulator, the 
entire system can be simplified in a two-mass system and analyzed in a two-dimensional space. 
The acceleration at which the entire system starts to tip-over regarding the front wheels can be 

estimated by employing the moments generated during the equilibrium of forces (�⃗⃗� 𝑒𝑞=0). 
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Figure 30 Free body diagram of mobile manipulator at home position (following [112]). 

According to the schematic diagram in Figure 30, the moment of equilibrium �⃗⃗� 𝑒𝑞 can be 
calculated as follows �⃗⃗� 𝑒𝑞 = �⃗⃗� 𝑆 = − 𝑚𝑀𝑃 · 𝑔 · 𝑙2 − 𝑚𝑅 ·  𝑔 ·  𝑙1 + 𝑚𝑀𝑃 · 𝑎  · 𝑙4 + 𝑚𝑅 · 𝑎 · 𝑙3 = 0 (67) 

whereby, 𝑚𝑀𝑃 and 𝑚𝑅 are the mass of the subsystems conformed by the mobile platform (MP) 
and by the robot manipulator (R), respectively; 𝑙1 and 𝑙2 are the horizontal distance between 
the tilting point S and the 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡 and the 𝐶𝑂𝐺𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚, respectively; 𝑙3 and 𝑙4 are the 

vertical distances between the tilting point S and the 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡 and the 𝐶𝑂𝐺𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚, 
respectively; 𝑎 is the linear acceleration emerged by the acceleration/braking process performed 
by the mobile platform, and 𝑔 is the gravitational force. 

Based on Eq. (67), the acceleration at which the mobile manipulator tips over around point 
S is given by 𝑎 = 𝑔(𝑚𝑀𝑃 · 𝑙2 + 𝑚𝑅 · 𝑙1)𝑚𝑀𝑃 · 𝑙4 + 𝑚𝑅 · 𝑙3 . (68) 

4.1.2 Stabilization via “Inclining/tilting” 

By tilting the robot manipulator in a controlled manner backwards (opposite to the 
direction of travel of the mobile platform) before the braking process, the robot manipulator 
COG is shifted to the back-support wheels. During the braking process of the mobile platform, 
this stabilization strategy exploits the deceleration of the mobile platform itself to compensate 
the destabilizing forces affecting the entire mobile manipulator and, thus, preventing the system 
from tipping over. With the robot manipulator tilted backwards, the resulting torque caused by 
the deceleration of the mobile platform points forwards. 

Figure 31 illustrates this idea, whereby 𝜔𝑡 is the tilting velocity of the robot manipulator’s 
COG. 
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Figure 31 Description of the inclining/tilting method [113]. 

In order to reach a positive effect, the tilt (position 2 in Figure 31) must take place before 
the mobile platform starts to brake. For this, sensor signals, e.g., from widely used laser 
scanners on the mobile platforms, can be employed as activation flag for the tilting motion: 
they reveal that a braking process will be initiated by the mobile platform in the near future. 

The acceleration of the mobile platform might serve as input for the control loop of the 
stabilization strategy, which should calculate the inclination angle of the upper plate of the 
actuation mechanism needed to compensate presented instability moments. 

The outcomes of the implementation of this stabilization strategy employing a testing 
system are presented in Section 4.5.4.1. 

4.1.3 Stabilization based on the “Conservation of angular momentum” 

The previous stabilization strategy (through shifting the robot manipulator’s COG) cannot 
be performed during the braking process as there is a counteracting effect, which, however, 
could also be used for the stabilization: the angular acceleration of the robot manipulator 
generated during the inclination also affects the degree of stability of the whole system. Due to 
the conservation of angular momentum, a deceleration of the mobile platform produces a 
resulting external torque on the overall system that causes a change in angular velocity (angular 
acceleration). This leads to the idea of generating an angular momentum forwards, opposite to 
the direction of the angular momentum caused by the deceleration, in order to generate a 
moment that counteracts the destabilizing moment produced during the braking process. 

As a result, in contrast to the previous strategy, the robot manipulator is now impelled 
forwards (in the direction of travel) during a braking process, as described in Figure 32. For this 
purpose, the robot manipulator has to be carefully tilted backwards when the mobile platform 
is traveling straight ahead, before the braking process occurs so that when the mobile platform 
starts to brake, the robot manipulator can be impelled forwards. 
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Figure 32 Description of the conservartion of angular momentum method [113]. 

The required angular acceleration �⃗⃗̇� 𝑡 can be estimated based on the diagram given in 
Figure 33, 

 
Figure 33 Free body diagram of the testing system at equilibrium position (following [112]). 

The moment equilibrium (∑�⃗⃗� 𝑆 = �⃗⃗� 𝑒𝑞 = 0) of the Figure 33, results in 𝐹 𝑑 · 𝑙6 + 𝑚𝑀𝑃 · 𝑎 · 𝑙4 + 𝑚𝑅 · 𝑎 · 𝑙3 − 𝑚𝑀𝑃 · 𝑔 · 𝑙2 − 𝑚𝑅 · 𝑔 · 𝑙1 − 𝐹 𝑑 · 𝑙5 = 0 (69) 

whereby, additional to the already specified nomenclature from Figure 30, 𝜔𝑡̇  corresponds to 
the angular acceleration of the robot manipulator, 𝑙𝑑 is the lever arm between the coupled forces 𝐹 𝑑 that create the angular motion of the robot manipulator and 𝑙𝑡 is the distance between the 

pivot 𝑃 and 𝐶𝑂𝐺𝑅𝑜𝑏𝑜𝑡. Force 𝐹 𝑑 can be estimated after rearranging Eq. (72) as follows 
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 𝐹 𝑑 = −𝑎 · (𝑚𝑀𝑃 · 𝑙4 + 𝑚𝑅 · 𝑙3) + 𝑔 · (𝑚𝑀𝑃 · 𝑙2 + 𝑚𝑅 · 𝑙1)(𝑙6 − 𝑙5)  (70) 

that corresponds to the force applied by the linear drives. Then, the moment about pivot 𝑃 
(cardan joint) can be determined with �⃗⃗� 𝑃 = 𝐹 𝑑 · 𝑙𝑑. (71) 

The angular momentum theorem for the robot manipulator can be expressed with M⃗⃗⃗ 𝑃 = Θ𝑃 · �⃗⃗̇� 𝑡 (72) 

with Θ𝑃 as the moment of inertia of the robot manipulator with respect to the point 𝑃. Thus, the 
angular acceleration required to compensate instabilities can be calculated with �⃗⃗̇� 𝑡 = �⃗⃗� 𝑃Θ𝑃 . (73) 

Similar to the “inclining/tilting” strategy, the acceleration of the mobile platform might 
serves as input for the control of the stabilization strategy. The outcomes of this stabilization 
strategy employing a testing system are presented in Section 4.5.4.2. 

4.2 Stabilization strategy using the “Gyroscopic effect” 

Data collected during the investigation of the effect of conservation of angular momentum 
suggested a gyroscope stabilizer as further actuation mechanism to achieve greater moments 
generated by its precession motion [71,114]. This effect is exploited in technical applications 
such as stabilization techniques, among other things [115]. Achieving stabilization using 
gyroscopic effects is a state-of-the-art technique, e.g., in the field of cannon tanks or ships to 
compensate the effect of the waves [116]. While the gyro stabilizer is considered as a long-
established technology, no research has been found that surveyed its application in the stability 
problem of mobile manipulators. 

By accelerating or decelerating the rotating mass of the gyroscopic stabilizer and/or 
changing the direction of the axis of its angular motion, a moment perpendicular to the axis of 
rotation is generated [78–80]. As a result, this moment can be used to stabilize the mobile 
manipulator by mounting the mechanism on the mobile platform. This concept is illustrated in 
Figure 34. Hence, if the axis of rotation of the mass turns, a torque is applied at the point on the 
mobile platform that is perpendicular to the axis of rotation. 

 
Figure 34 Gyroscope mechanism on mobile manipulator. 
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Some of the advantages of the gyro mechanism are the generation of high torques with 

small sized components and its easy control. The accurate design and sizing of the gyro 
stabilizer as well as its control system are crucial for its effectiveness. 

The gyroscope given in Figure 35 rotates around its own axis, generating an angular 

momentum �⃗�  parallel to its rotation axis. If force 𝐹  acts on the rotating mass, a moment �⃗⃗� 𝑝 is 

produced, implying also a change in angular momentum over time (�⃗⃗� 𝑝=𝑑�⃗� /𝑑𝑡) and pointing in 

the same direction of the change of the angular momentum 𝑑�⃗� . This direction of change is 
defined by the angle 𝑑𝜑. 

 
Figure 35 Gyroscopic principle (following [117]). 

The angular velocity of the gyroscope rotational axis during this change in direction, 𝑑𝜑𝑑𝑡 , 

can be calculated using the formula 𝜔𝑝 = 𝑑𝜑𝑑𝑡 = 𝑀𝑝𝐿 = 𝑀𝑝Θ𝑧𝑧 ∙ 𝜔𝑔 (74) 

with Θ𝑧𝑧 being the moment of inertia of the gyroscope and �⃗⃗� 𝑔 its mass angular velocity. The 

generated torque can be then estimated by the precession moment �⃗⃗� 𝑝 as �⃗⃗� 𝑝 = �⃗⃗� 𝑝 × �⃗� = �⃗⃗� 𝑝  × (Θ𝑧𝑧  ∙  �⃗⃗� 𝑔). (75) 

Hence, the design parameters the gyroscope should have to achieve a desired precession 

moment (�⃗⃗� 𝑝) is determined by its tilting speed (�⃗⃗� 𝑝), the rotation speed of the gyro-mass (�⃗⃗� 𝑔), 
and the mass moment of inertia (Θ𝑧𝑧), as described by Eq. (75)Error! Reference source not 

found., and can be estimated using the following general rule: the higher the rotational speed 
of the gyroscope-mass (𝜔𝑔), the lower the inclination speed (𝜔𝑝) needed to achieve the desired 

torque. A DC motor can accelerate the mass to a constant angular velocity (𝜔𝑔). Then, if the 
gyroscope is additionally tilted (𝜔𝑝) by a second DC motor, the gyroscope generates a 

precession force (𝐹 𝑝), resulting in a moment (�⃗⃗� 𝑝) that can be used to stabilize the whole system 
against instabilities. 

Perhaps the most serious disadvantage of the gyro effect is its undesirable inherently side 
effect of the disturbance torque generated by the precession motion. The components of the 

resulting precession torque are the compensation torque �⃗⃗� 𝑐 and the disturbance torque �⃗⃗� 𝑑. 𝑀𝑝 = √‖�⃗⃗� 𝑐‖2 + ‖�⃗⃗� 𝑑‖2 . (76) 
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This disturbance moment (�⃗⃗� 𝑑) makes the system rotate around its own horizontal axis, 

whose magnitude depends on the angle of deflection: given a precision moment �⃗⃗� 𝑝, the 

compensation moment (�⃗⃗� 𝑐) becomes smaller with increasing angle of deflection (>90°), while 

the disturbance moment (�⃗⃗� 𝑑) becomes larger. Therefore, an important consideration for the 
mechatronic co-simulations to carry out is that only the horizontal portion of the precession 

moment �⃗⃗� 𝑝, i.e. the compensation torque �⃗⃗� 𝑐, acts on the mobile manipulator to compensate 
the destabilization. 

4.3 Methodology: Modeling a close-to-reality system of the mobile 

manipulator 

The use of real technical systems to conduct investigations in the field is, in most cases, 
very expensive and time-consuming [40]. Therefore, simulation models that reproduce the 
behavior of a real system accurately can be employed to carry out investigations that cannot be 
performed on the real unit for economic and time reasons [41]. 

Due to the fact that a prototype of a mobile manipulator, including the abovementioned 
external actuators, would imply large investment of capital and time, a computer-generated 
environment can be implemented for the development of the three proposed stabilization 
strategies by means of mechatronic co-simulations. They permit real-time actuation and 
measurement required for the closed-loop control of the stabilization strategies. 

For that purpose, the dynamic behavior of the robotic systems can be described as 
multibody-system (MBS) models using software tools such as MSC.ADAMS/View. The 
modeling process of both, the robot manipulator and the mobile platform, as MBS can be 
derived from the procedure used in [118–120]: as a first step, the dynamic properties (mode 
shapes and natural frequencies) of each real subsystems are identified separately by means of 
experimental modal analyses (EMAs). Subsequently, CAD-Models of each robotic system are 
exported and adapted to build them as MBS models. The obtained experimental findings from 
the EMA are compared with the results produced by the MBS simulations. By adjusting the 
modal parameters of the simulation models, the dynamic behavior of the real system is 
replicated, resulting in a close-to-reality MBS models of the mobile manipulator. 

The physical reproduction of the real structure of the mobile manipulator in a MBS model 
allows for the testing of stabilization strategies using diverse scenarios without the real system 
being available. The accuracy and reliability of such models depends on how well the 
simulation correlates with the real system behavior. 

 
In order to accomplish the described approach A, the control loop of the external actuation 

mechanism (including controllers and drivers) needs to interact with the mechanical model of 
the mobile manipulator (MBS model) by means of mechatronic co-simulations. As illustrated 
in Figure 36, mechatronic simulations enable a group of system components, such as 
mechanical, electrical, software and control, interact together in order to build an integral 
system model [121]. The prefix “co” is added to the term mechatronic simulation when each of 
these stand-alone simulations (performed in different software tools) are joined into one single 
simulation environment. 
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Figure 36 Principle of co-simulation of mechatronic systems (following [122]). 

Despite the fact that the EMA and the MBS are well-known methods, especially in the 
automotive industry, there is a surprising lack of literature describing those methods applied in 
robotic systems [123]. For this purpose, the following sections describe how the EMA and the 
MBS methods have to be adapted for their used on modeling robot manipulators and mobile 
platforms. Furthermore, this study may be the first comprehensive assessment of performing an 
EMA carried out for a mobile platform. 

 

4.3.1 Experimental Modal Analysis of mobile manipulators 

The dynamic behavior of mechanical systems can be experimentally estimated by means 
of EMAs. They consist in externally exciting a real mechanical system and measuring the 
oscillations caused in response to the applied stimulus. The system response function describes 
the relation between its excitation and response (e.g., force/acceleration) and serves to validate 
the MBS models, required to perform accurate mechatronic co-simulations. 

The necessary equipment to perform EMAs includes a real-time analyzer, piezoelectric 3D 
accelerometers, vibration mats and impulse hammers with their associated impact tips, as 
illustrated in Figure 37. 

 
Figure 37 Test arrangement for the experimental modal analyses. 

The election of suitable excitation and measurement spots are relevant aspects that have to 
be considered during the experimental set-up of an EMA. The challenge lies in choosing the 
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appropriate excitation and measurement spots on the structure, without having previous precise 
knowledge about the dynamic behavior of the real systems. 

The risk of ignoring some natural frequencies and mode shapes during EMAs can be 
significantly reduced if the excitation points are placed non orthogonal to the chosen 
measurement points. The designation of the measurement points as a first step is therefore 
suggested. It is also recommended that all directions of the system’s motions are excited to 
ensure that all desired eigenmodes are fully identified in the relevant frequency range. Since 
the connecting elements of the robot manipulator and the mobile platform are relatively 
elastic/flexible compared to their bodies, a frequency range up to 500 Hz can be defined for 
their EMAs [118]. 

Additionally, the EMAs should be determined in different configurations of the structure 
in order to corroborate their dynamic linear behavior. 

4.3.2 Multibody-system model of mobile manipulators 

On the basis of the system response function (transfer function) of robot manipulators and 
mobile platforms, close-to-reality mechanical models of their real structure can be built as MBS 
following the modeling hybrid approach previously mentioned in Section 2.2. The mobile 
manipulators can be modeled with a low level of detail to get good computing performance, but 
they must be complex enough to guarantee that the reproduction of the real dynamic behavior 
is not affected by excluding some elements in the model. In other words, the MBS models must 
contain just the necessary components to describe the dynamic behavior of the real mobile 
platform and the robot manipulator. Parameters such as masses and moments of inertia are 
crucial for modeling the MBS simulation models and have to be determined. 

 
For the model simplification, bodies that are firmly connected to each other and elements 

with the same material can be merged into one or more main bodies. In case different material 
properties are presented in a merged group, their averaged density and their COG can be 
combined into a single body parameter. Furthermore, screws, screw nuts, washers and slot nuts 
can be removed and replaced by fix joints. 

An additional measure to simplify the models implies that the structure of most of the robot 
manipulators and mobile platforms has considerably uncritical deformation in comparison with 
their joints. Elastic deformations of the bodies themselves are less critical for the structural 
components and, therefore, might not be considered in the simulations. As a result, their bodies 
can be modeled as rigid bodies. 

To interlink the individual rigid bodies that form the robot’s structures, kinematic joints or 
physical connections (spring-damper systems so-called bushings) have to be located at the 
articulation point between two rigid bodies. They are assumed to be mass-free with only the 
constraint forces acting on their respective links. Each bushing had to allow the real DOF of the 
connecting element i.e. that for the robot manipulator, a bushing would allow only one 
rotational DOF for emulating the robot manipulator axis. Figure 38 and Figure 39 show 
examples of arrangements of the joint elements for a mobile platform and a robot manipulator, 
respectively. 
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Figure 38 Graphical topology of a basic wheel suspension mechanism of a mobile platform. 

 

 

Figure 39 Graphical topology of the elastic joint elements for a robot manipulator. 
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In every bushing, both translational and rotational constraints and applied forces and 

torques have to be replicated by introducing stiffness and damping values for each available 
DOF. It is assumed that the stiffness of the bodies is significantly greater than the stiffness of 
its joints, being the responsible of reproducing the first natural frequencies of the robots (based 
on [124]). In consequence, the interaction between the rigid bodies and the entire set of bushings 
defines the system oscillation behavior: Force and moments that are applied to the bodies by 
the bushing or acted from the bodies to the bushings, are comprised by a six components 

constraint (𝐹 𝑥, 𝐹 𝑦, 𝐹 𝑧, �⃗⃗� 𝑥, �⃗⃗� 𝑦, �⃗⃗� 𝑧), whose stiffness and damping values had to be adjusted. A 
good best practice for the adjustment of the model’s stiffness coefficients is to first estimate 
them by using finite element analysis (FEM) or, e.g., for the stiffness of bearings, by using 
manufacturer’s catalogues. 

 
The contact connections between the ground and the wheels of the mobile manipulator can 

be considered as Coulomb’s friction contacts, since the wheels should slide as in the real mobile 
platform. Here, the mass of the wheels, which is firmly connected to the ground by a spring, 
slides in the earth's gravitational field over a plane (ground) with a coefficient of friction μf.  
The significant feature of a Coulomb’s friction contact is that the frictional force always acts 
against the movement of the mass [125]. Thus, as soon as the spring force is smaller than the 
friction force, the movement of the mass stops. 

The concrete values for the stiffness and damping parameters of the contacts between the 
ground and the individual wheels are usually unknown and difficult to estimate. Large values 
in the simulation give small positional inaccuracy, but on the other hand, lead to long simulation 
time [41]. Referring to the statement of Glöckler [41], a reasonable simulation time with a good 
accuracy can be guaranteed if these values are empirically set high enough, without letting the 
simulation time increase excessively. 

 
The MBS models must describe the first natural frequencies and mode shapes of the real 

systems to ensure a suitable design of the control algorithms for the stabilization strategies. For 
this, the stiffness and damping values of the bushings in the MBS simulation models have to be 
parametrized. The natural frequencies and mode shapes from the EMAs served as a reference 
for the model parametrization. 

For an objective comparison between the modal parameters collected from the EMA and 
those obtained from the MBS, the model can be provided with small massless bodies at the 
positions the accelerometers are attached on the real system during the EMA. During the modal 
simulations, each modal shape of the corresponding natural frequency has to exhibit the same 
oscillation as in the real system, i.e. the obtained natural frequencies and mode shapes can be 
compared with the experimental findings from the EMA [40]. 

In order for the simulation to reproduce similar dynamic behaviours with sufficient 
accuracy, the stiffness and damping parameters of the elastic joints have to be iteratively 
adjusted by increasing or decreasing their values one at a time. Their adjusted values are subject 
to the natural frequencies and mode shapes generated during the corresponding simulation. If 
the modal parameters of the MBS model correspond to the modal parameters obtained 
experimentally, the MBS model is ready to be employed for the mechatronic co-simulations 
[40]. In this respect, the model of the mobile manipulator might be close enough to reality to 
allow a subsequent application in the development of the stabilizing algorithms. 

 
The described MBS modeling process is summarized in Figure 40. 
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Figure 40 Iteration procedure for the MBS-modeling of a real system. 
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4.3.2.1 Optimization of multibody-system model using a full automated algorithm 

The degree of correlation between a real system and its corresponding MBS model can be 
influenced accordingly to the following statements: 
 The system dynamics is described by its modal parameters, comprised by the natural 

frequencies and mode shapes as well as their reciprocal damping ratio. They are unique for 
each system. 

 The amount of natural frequencies resembles the amount of DOF of the system. 
 Each identified natural frequency belongs to a certain modal shape. 
 The mode shapes represent only amplitude ratios, not the absolute amounts of the 

deflections. 
 

With increasing model complexity, the adjustment process of the modal parameters of a 
MBS model is difficult or even impossible to implement manually. In order to facilitate this 
adjustment process and, at the same time, increase the quality and reliability of the system’s 
dynamic behavior in the simulation models, a computer-aided parametrization method is 
implemented to minimize the numerical deviation between the experimental and the simulative 
modal parameters. For the implementation of the computer-aided parametrization method, the 
open source software DAKOTA (Design Analysis Kit for Optimization and Terascale 
Applications) is adopted. It provides a variety of algorithms for different applications, e.g., for 
the parameter study, statistical analysis, design of experiments, quantification of uncertainties, 
calibration and optimization of complex physical systems [126,127]. 

 
The adopted fundamental correlation is an entirely quantitative comparison of the 

determined modal parameters, described by the system natural frequencies and the Modal 
Assurance Criterion (MAC). The goal of the parameter identification is to ensure that the 
experimentally determined values, natural frequencies and mode shapes of the real system, 
match the simulation accurately. If it is assumed that the mass distribution as well as the mass 
moments of inertia of the models sufficiently represent the reality, only the stiffness and 
damping coefficients of the joint elements (bushings) need to be parametrized. 

Hence, the developed algorithm in DAKOTA extracts the modal parameters calculated by 
the solver of the MBS software tools, in this specific case MCS.ADAMS/View, and verifies if 
the termination criterion (correlation with the modal parameters from EMA) is fulfilled during 
the last iteration. If so, the algorithm finishes the parametrization, otherwise, it starts a new 
simulation iteration with new adapted parameters. 

 
The selection of the proper numerical method for the optimization algorithm depends on 

the nature of the problem under consideration. For the optimization of modal parameters in 
MBS models, the two following elemental approaches can be adopted: 
 Gradient-based methods. They use gradients to minimize error with regard to a target 

function value, until the error cannot decrease further (local minimum) or until a defined 
termination criterion has been reached. A gradient-based method always converges at the 
same optimum employing the same initial values. 

 Heuristic methods. They are based on plausibility or analogy considerations that can only 
be substantiated experimentally. The best known methods are the so-called evolutionary 
approaches, in particular, the genetic algorithms as a mathematical imitation of the 
biological mechanisms occurring during the evolution processes in the nature. The 
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hereditary information of each individual forms its distinctive parameters and is changed 
by random combinations and random alterations of the information (mutation). By 
changing the “genetic” information, an adaptation from generation to generation (from 
iteration to iteration) takes place. Like the natural selection process, only the fittest 
individuals (parameter sets) of each generation (iteration) survive. The iteration process 
remains running until a defined termination criterion is reached. The environmental 
conditions are decisive for the selection, given by search space boundaries and restrictions. 
Due to their stochastic character, evolutionary algorithms are able to find both, local 
(suboptimal combinations) and global optimum. 
 

The nl2sol algorithm of DAKOTA [128] is a gradient-method algorithm that focus on 
finding local minimum within specified lower and upper bounds [129]. Its termination criterion 
is defined by tolerance ranges. Moreover, the coliny_ea algorithm (from the SCOLIB package 
[130]) is an evolutionary algorithm, particularly suitable for such systems whose initial 
parameters cannot be predicted or are situated within a wide parameter scope. Both algorithms 
are employed by the conceived automated parametrization method, introduced in the following 
sections. 

4.3.2.1.1 Conceptualization of the parametrization algorithm 

In the parametrization algorithm, an interaction between DAKOTA and the MBS model 
of the system to be characterized takes place, in which the MBS model operates as a black box 
system for DAKOTA. During an iteration step, DAKOTA specifies initial parameters, which 
are automatically read into the MBS model. Then, the MBS software tool performs a modal 
simulation. The simulation results with this set of parameters are then processed and transferred 
again to DAKOTA. After each iteration, the results are evaluated by DAKOTA and, if the 
termination criterion is not fulfilled, a new set parameters is output to the MBS model. This 
iteration loop runs until the defined termination criterion is met. 

 
The following steps are compulsory to perform the parameterization of the MBS models 

employing the developed parametrization algorithm: 
1. Conduct modal analyses (EMA) to determine the modal parameters of the real system. 
2. Process the modal parameters by means of a mode transformation. 
3. Prepare the MBS simulation model (with unknown/uncertain parameters) in 

MSC.Adams/View, considering the same positions and orientations the measuring spots 
had during the performed EMA. 

4. Select the numerical method for the parametrization (gradient-based or evolutionary). 
5. Setup interface in DAKOTA. 
6. Specify the parameter set (stiffness and damping coefficients). 
7. Arrange the data exchange between DAKOTA and MBS model (preprocessor and 

postprocessor), in which the measured modal parameters need to be provided as reference 
for parametrization algorithm. 

8. Adapt the MBS model solver script (for MSC.Adams/View, the *.cmd file) with the 
parameter set. 

9. Start the parametrization. DAKOTA triggers the simulation of the MBS model with the 
predefined parameter set. Then, DAKOTA reads out and processes the simulation results 
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from the set. It evaluates the correlation and, if necessary, specifies a new parameter set. 
The identification is aborted by DAKOTA when the termination criterion is reached. 

 
All mechanisms customized for their use in the MSC.Adams/View environment that are 

involved in the parametrization procedure are described in Figure 41. 

 
Figure 41 Functions/file interactions of the algorithm implemented in DAKOTA (following [131]). 

 

4.3.2.1.2 Enhanced parametrization algorithm based on multiple-mass oscillators. 

The further development of the elemental parameter identification mechanism provided by 
DAKOTA has its basis in the behavior of the two-mass oscillator shown in Figure 42. 
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Figure 42 Two-mass oscillator. 

Since the system has two DOF, two natural frequencies are expected. The masses of the 
adopted system were identical, being 0.358 kg each. The stiffness of the employed springs was 
analytically calculated based on experimentally measured elongations, being 0.49 N/mm for all 
three. Considering these masses and stiffness values, the system natural frequencies and mode 
shapes can be calculated according to the Lagrangian equations of the second kind [132], 
resulting in 5.9 Hz and 10.2 Hz for the specific two-mass oscillator employed, as summarized 
in Table 7. 

Table 7 Modal parameters of the two-mass oscillator anallytically obtained (following [133]).  
The amplitudes of the eigenvectors are normalized. 

Natural 
frequency 

Graphical representation of  
mode shapes 

5.9 Hz 

 
10.2 Hz 

 

A simple MBS model of the two-mass oscillator (including its physical quantities) has to 
be built, as the one shown in Figure 43. 

 
Figure 43 MBS model of the employed two-mass oscillator ([133]). 
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The acquired natural frequencies can be adopted as target reference values for the 

parameter identification. The first parametrization attempt of the adopted two-mass oscillator 
using the gradient-based algorithm required 26 iteration steps to ascertain the stiffness 
coefficients presented in Table 8. 

Table 8 Stiffness coefficients calculated by the first version of  

the parametrization algorithm in DAKOTA (following [133]). 

Stiffness (N/mm) 
𝒌𝟏 𝒌𝟐 𝒌𝟑 

0.433 0.467 0.433 

Table 9 exemplifies the natural frequencies and mode shapes obtained from the modal 
simulations in MSC.Adams/View for the employed two-mass oscillator. 

Table 9 Modal parameters for the two-mass oscillator: The system at rest is shown in black; the 

magenta blocks illustrate the masses at their maximum deflection during the oscillation process [133]. 

Natural frequency Mode shapes 
5.53 Hz 

 
Both masses oscillate in phase 

9.83 Hz 

 
The oscillate phase is shifted 180° 

Although in the MBS simulation no big deviations were presented regarding the natural 
frequencies and the mode shapes (f1=5.53 Hz and f2=9.83 Hz), the stiffness coefficients 
calculated by the algorithm differ from the analytically determined spring stiffness of               
0.49 N/mm by up to 11.5%. 

In order to improve the robustness of the parameter identification, the two-mass oscillator 
was extended to the system in Figure 44, comprised by 5 masses and 6 springs. 
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Figure 44 Five-mass oscillator (m1=5 kg, m2=4 kg, m3=3 kg, m4=2 kg, m5=1 kg,  

k1=6 N/mm, k2=5 N/mm, k3=4 N/mm, k4=3 N/mm, k5=2 N/mm, k1=1 N/mm). 

For the first trial, the lower and upper limits for the spring´s stiffness in the parametrization 
algorithm was set to 0.1 N·mm and 9 N·mm. Using these boundary limits, DAKOTA 
determined the natural frequencies and stiffness coefficients shown in Table 10: 

Table 10 Natural frequencies and sitffness coefficients for the five-mass oscillator  

obtained by the parametrization algorithm (following [133]). 

 Natural frequencies (in Hz) Stiffness coefficients (in N/mm) 
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 

Analytical value 3.8 8.1 11.3 13.9 16.1 11.0 9.0 7.0 5.0 3.0 1.0 
Determined by 
DAKOTA 

3.8 8.1 11.3 13.9 16.1 10.2 6.7 5.2 5.5 4.0 1.7 

Despite the fact that all natural frequencies matched the experimental values (see            
Table 10), the stiffness coefficients still differ significantly from the analytical results. This 
suggests that, for complex structures with many bodies and joint elements, only considering the 
natural frequencies as reference for the termination criteria is not sufficient for parameter 
identification. 

For this reason, the eigenvectors are integrated in the evaluation process 
(PostProcessor.py): the Modal Assurance Criterion (MAC) calculates the angles between the 
simulated (MBS) and experimentally (EMA) determined eigenvectors. Then, MAC checks the 
orthogonality properties of the two vectors [134], which indicates the degree of compliance and 
linear dependence of the two complex eigenvectors. Hence, the mode shapes can be not only 
qualitative but also quantitatively evaluated. 

 
Merely equal modes from the EMA and from the MBS can be compared with each other. 

Therefore, only the diagonal values of the MAC matrix (see Section 2.1) need to be computed 
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and the calibration.dat file has to be extended with the amount of modes to be expected, each 
of them with the set point 1.0. 

It is important to mention that the location of the measurement points in the MBS model 
has a significant influence in the parameter identification based on MAC; thus, the real positions 
of each individual accelerometer used during EMAs must match the measurement points 
attached in the simulation model. 

The diagram in Figure 45 shows the MAC of the last parameter identification for the five-
mass oscillator, without considering the eigenvectors as additional reference for the 
parametrization algorithm. 

 
Figure 45 MAC results without mode matching [135]. 

A new parameter identification under the same conditions, but with the implemented MAC 
as termination criteria was carried out. Although the computed stiffness coefficients exhibited 
large deviations (see Table 11), the mode shapes presented a better match (see Figure 46). 

Table 11 Natural frequencies and stiffness coefficients obtained by the algorithm  

with implemented mode matching (following [135]). 

 Natural frequencies (in Hz) Stiffness coefficient (in N/mm) 
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 

Analytical value 3.79 8.12 11.34 13.97 16.10 11 9 7 5 3 1 
Determined by 
DAKOTA 

3.66 8.10 11.34 14.01 16.08 7.5 6.0 6.4 6.5 3.5 2.0 

 
Figure 46 MAC results with mode matching [135]. 
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It is presumed that gradient-based algorithm always converges to about the same local 

minimum optimum due to the restricted preselected boundary limits. Therefore, in order to scan 
a wider parameter range, the evolutionary optimization algorithm was implemented. As a result, 
the elements of the MAC matrix represent the good correlation exhibited in Figure 47, Table 
12 and Table 13. 

 

Figure 47 MAC results with mode matching and employing evolutionary algorithm [135]. 

 

Table 12 Natural frequencies and stiffness coefficientes obtained by the algorithm with implemented 

mode matching and employing evolutionary algorithm (following [135]). 

 Natural frequencies (in Hz) Stiffness coefficient (in N/mm) 
 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 

Analytical value 3.8 8.1 11.3 13.9 16.1 11.0 9.0 7.0 5.0 3.0 1.0 
Determined by 
DAKOTA 

4.0 8.0 11.3 13.9 16.0 9.2 8.8 7.5 4.0 2.7 2.2 
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Table 13 Graphical representation of the eigenmodes of the five-mass oscillator obtained by the 

parametrization algorithm [133]. The blue lines represent the eigenmodes derivated from the 

parametrization algorithm and cover the (non visible in the graphical representation) lines for the 

eigenmodes obtained analitically, proving their congruence. 

Eigenmode Graphical representation of modal shape 

1st 

 

2nd 

 

3rd 

 

4th 

 

5th 

 
 

In order to verify the effectiveness of the developed algorithm, a parameter identification 
was performed on a simplified 3 DOF mechanism, comparable with a robot manipulator, in 
which oscillations in all spatial directions took place. The initial upper and lower bounds for 
the estimation of its stiffness coefficients were set as in Table 14: 
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Table 14 Lower and upper bound for the stiffness estimation of the 3 DOF mechanism 

(following [135]). 

Stiffness Lower bound Upper bound 𝑘1 (in N/m) 0.1 100.0 𝑘2 (in N/m) 10.0 2500.0 𝑘3 (in N/m) 1.0 300.0 

Its experimentally determined natural frequencies and stiffness coefficients, shown in 
Table 15, served as termination criterion for the parametrization. 

Table 15 Natural frequencies and stiffness coefficient of the 3 DOF mechanism (following [135]). 

Natural frequency Stiffness coefficient 𝜔1 𝜔2 𝜔3 𝑘1 𝑘2 𝑘3 
8.9 Hz 33.8 Hz 407.8 Hz 74.0 N/m 1094.1 N/m 165.2 N/m 

The parameter identification was performed employing both, gradient-based and 
evolutionary algorithm. The results from each of the parameter identifications are shown in 
Table 16. 

Table 16 Comparison between the gradient-based algorithm and  

the evolutionary algorithm (following [135]). 

 

Identification with 

gradient-based algorithm 

Identification with 

evolutionary algorithm 𝜔1 8.8 Hz 8.8 Hz 𝜔2 33.8 Hz 34.1 Hz 𝜔3 407.9 Hz 407.5 Hz 𝑘1 74.0 N/m 70.0 N/m 𝑘2 1094.1 N/m 1177.2 N/m 𝑘3 165.0 N/m 164.8 N/m 

MAC 

  

Employing the gradient-based algorithm (nl2sol), the largest discrepancy obtained for the 
natural frecuencies and for the stiffness coefficients was 1.1% and 0.12%, respectively, 
considering them as highly accurate. The identification with the evolutionary algorithm has 
provided a maximal discrepancy of 0.6% for the natural frequencies and 7.6% for the stiffness 
coefficients.  

The better results exhibited by the gradient-based method is primarily due to the 
satisfactory definition of the upper and lower boundaries for the computation. Nevertheless, 
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accurate outcomes would not have been easily reached, if these initial boundary limits had not 
be predicted beforehand. For such cases, an initial parametrization by means of the evolutionary 
algorithm is suggested to be performed firstly to estimate the interval of the parameter 
boundaries that can be employed as upper and lower limits for a second parameter identification 
using the gradient-based algorithm. 

 
Accordingly to observations, the parametrization algorithm is further developed with: 

 A combination of global and local optimization methods can be implemented for searching 
for the optimal parameter set. The evolutionary algorithm delivers several parameter sets 
with good global optimum. Based on these parameter sets, the correlation rate is increased 
with the local gradient-based method.  

 Implementing weights and penalty functions to focus on certain reference values for a 
better correlation, allowing specific parameters to strongly dominate at the expense of the 
others. Additionally, a penalty function acts in the parametrization algorithm as soon as 
the requested constraints are violated. 

 Parametrization of stiffness and damping coefficients separately. The restricted knowledge 
about damping parameters, mostly present as friction, makes its estimation difficult. Due 
to the fact that the damping coefficients usually have less influence on the modal 
parameters than the stiffness, the parametrization algorithm only considers the stiffness 
parameters in a first stage. However, by omitting the damping parameters, the MBS models 
provide purely real eigenmodes. For an adequate correlation between the EMA and the 
MBS results, it is necessary that both, the experimental and simulated natural frequencies 
and modes, are also purely real. To achieve this, the method of Fuellekrug [136] for mode 
transformation converts complex eigenmodes to real eigenmodes. Then, in a second stage, 
only the damping parameters are adjusted and the already computed stiffness remains 
unchanged. An outstanding problem during the transformation of complex eigenvectors is 
the condition that the amount of accelerometers should be equal to the amount of mode 
shapes, but usually the amount of accelerometers used during the EMAs is much higher 
than the amount of the determined mode shapes. By means of a modal truncation [137], 
the eigenvectors need to be truncated in order not to have to reduce the amount of 
measurement points. 
 

The parametrization algorithm that includes the listed considerations was tested using the 
simple oscillating system shown in Figure 48. 

 
Figure 48 Testing system for further development [131]. 
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Its inherent modal parameters obtained by means of EMAs are presented in Table 17. 

Table 17 Modal parameters of the testing system acquired by EMAs (following [131]). 

 1st mode 2nd mode 3rd mode 

Natural frequency 4.44 Hz 6.58 Hz 29.41 Hz 
Damping ratio 4.00 % 1.10 % 0.36 % 

Mode shape 

   
 

The MBS model of this system comprised the eight massless blue dummy bodies shown 
in Table 18, which were arranged accordingly to the real measuring points used during the 
EMA. 

Table 18 MBS model of the testing system [131]. 

Undamped system Damped system 

  

At the beginning of the parametrization, the system was considered as undamped, taking 
into account only its three spring stiffness. With the help of the evolutionary algorithm, the limit 
value 2100 N/m was estimated for all spring’s boundary constraints, employing it for the second 
attempt via gradient-based method. 

The determined parameter set for its stiffness coefficients, its natural frequencies and the 
MAC correlation of all its eigenmodes are illustrated in Table 19.  
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Table 19 Modal parameters obtained by the enhanced parametrization algorithm (following [131]). 

 Stiffness (N/m) 

 𝑘1=2778.4 𝑘2=2948.1 𝑘=2389.0 
 Natural frequency (Hz) 

 1st mode 2nd mode 3rd mode 
EMA 4.4 6.6 29.4 
MBS 4.4 6.6 29.4 
MAC 1.0 1.0 1.0 

Consequently, its three damping parameters were estimated. Since the damping parameters 
of the springs were completely unknown, their boundary limits were chosen relatively amply. 
The result from this parametrization is displayed in Table 20. 

Table 20 Damping coefficientes obtained during second run (following [131]). 

 Damping coefficients 

 EMA MBS 

1st mode 4.0 % 4.0 % 
2nd mode 1.1 % 1.1 % 
3rd mode 0.4 % 0.4 % 

In conclusion, the parametrization method generates applicable and realistic results, if the 
reference values from the real system are experimentally accurately obtained and if the modeled 
MBS system is capable of reproducing the required same physical behavior. 

The scripts implemented for the parametrization algorithm are presented in Annex A.1. 

4.4 Development of stabilization strategies 

In order to speed up the design and testing phase of the stabilization strategies, mechatronic 
co-simulations between the, to be developed, closed-loop controls (Matlab/Simulink) and the 
MBS model (built in MSC.ADAMS/View) are performed. 

4.4.1 Mechatronic co-simulations for the stabilization strategies 

To integrate the MBS model with the block diagrams (control systems) from 
Matlab/Simulink, the parameters to be controlled in the MBS model are defined as inputs and 
outputs variables. These variables read data from the MBS model during the simulation cycle, 
e.g., forces and torques generated in the robot manipulator joints, and also feed data back into 
the model, e.g., forces/moments applied by an actuator. This continuous data exchange enables 
a parallel, coupled simulation of mechanical and electrical/electronic components. 

Figure 49 shows this principle: The closed-loop control of the external actuators in 
Matlab/Simulink sends the control signals to each of virtual actuators built in MBS model. 
Then, the MBS model returns measurements from virtual sensors to the feedback loops, such 
as force, angle, speed, acceleration, etc., at certain time intervals. 

 
The representation of the emergency braking behavior of the mobile manipulator is 

indispensable for the good functioning of the proposed stabilization strategies. Therefore, a 
theoretical braking process of the mobile platform needs to be modeled as its trajectory in the 
MBS environment. 
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Figure 49 Co-simulation between the developed stabilization strategies (in Matlab/Simulink) and the 

mobile manipulator as a multibody-system (in MSC.ADAMS/View). 

The procedure to perform the mechatronic co-simulations can be summarized as follows: 
1. Define the inputs (from Matlab/Simulink) and outputs (sent to Matlab/Simulink) in the 

MBS model (MSC.ADAMS/View), such as forces, torques, position, speed, etc. The 
inputs defined in MSC.ADAMS/View should correspond to the outputs defined in 
Matlab/Simulink and reciprocal. 

2. Export the transfer function from the MBS model of mobile manipulator (so-called 
ADAMS-Plant) and import it into Matlab/Simulink. 

3. The simulation in Matlab/Simulink starts the interaction with the MBS model of the mobile 
manipulator by triggering the ADAMS solver. The inputs and outputs between both 
software platforms transfer the needed information during the simulation: The MBS model 
in MSC.ADAM/View acts according to the inputs sent by the control algorithm in 
Matlab/Simulink and this, in turn, reacts according to the feedback measured in the MBS 
model. 

4. The evaluation of results can be done in both, Matlab/Simulink and MCS.ADAMS/View. 
 

In order to guarantee reliable outcomes from the dynamic simulations triggered during the 
mechatronic co-simulations, a suitable solver able to find a dynamic solution for particular 
states of the model has to be chosen. 

MBS software tools offer multiple numerical methods to solver the ordinary differential 
equations that describe the continuous state of dynamic systems. Two elementary types of 
solvers defined by the stiffness, as an efficiency concern, are available for dynamic simulations 
in ADAMS/Solver: 
 "Stiff" algorithms use implicit backward differentiation methods (BDF) to solve 

differential and algebraic equations (so-called DAEs). 
 "Non-Stiff" algorithms employ explicit formulations for solving common equations. 

 

ADAMS/Solver provides four stiff integrators and a single non-stiff integrator. Following 
the statement presented by Shampine and Thompson [138], since the available non-stiff 
integrator did not converge on a solution during preliminary simulations, the problem may be 
stiff and stiff solvers should be employed, because they are designed for stiff solutions. 
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In order to select the suitable stiff solver in MSC.ADAMS/View that guarantees the 

computing state of the model during dynamic simulations, a solution stability analysis has to 
be carried out using the three stiff integrators WSTIFF, GSTIFF and BDF CONSTANT, whose 
properties are shortly summarized in Table 21. 

Table 21 Stiff integrators and its main properties [139]. 

Integrator Properties 

GSTIFF 
Standard integrator. 
Backward Differentiation Formulas. 
Uses fix coefficients for predictions and corrections. 

WSTIFF 
Backward Differentiation Formulas. 
Uses variable coefficients for predictions and corrections. 

CONSTANT_BDF 

Backward Differentiation Formulas. 
Uses fix coefficients for predictions and corrections. 
Its accuracy is defined by its maximal allowed increment. 
Each step is calculated by a non-local integration error. 
FORTRAN as programming language. 

A deeper insight into the implicit solution methods of these stiff integrators can be find in 
[140] and [141]. 

Each integrator is characterized by indexes, which are defined as the number of times a 
differential-algebraic equation must be differentiated to get a system into an ordinary 
differential equations [142]: 
 Index-3 (I3) is fast and ensures that the solution satisfies all modeled boundary conditions. 

However, integration errors are only monitored for movements of the system, and not for 
the calculation of velocities. Its convergence (Jacobian matrix) can be very limited when 
using small step sizes. 

 Stabilized index18-2 (SI2), in conjunction with the integrators GSTIFF or CONSTANT 
BDF, takes into account the boundary conditions of equations of motion in the solution. 
Furthermore, the SI2 integrator monitors the integration error of velocity variables, leading 
to accurate results in the simulations. The convergence value remains stable at small step 
sizes, which increases the robustness of the corrector at small step sizes. 

 Stabilized index18-1 (SI1), in conjunction with the integrators GSTIFF, WSTIFF or 
CONSTANT BDF, also takes into account the boundary conditions of equations of motion 
in the solution. In addition, as SI2, it monitors integration errors on Lagrange multipliers 
in the system. Its robustness is typically very similar to that of the SI2 index. 
 

Based on solution stability analyses, a solver can be considered as accurate only if there 
are no differences between the simulation results from employing the same solver with the same 
index, by reducing its error tolerance. Therefore, a comparison of simulation outcomes using 
different error tolerances can determine if the numerical results comprise a good approximation 
for a true solution [143]. The implementation of a solution stability analysis for simulatios in 
the context of this work is outlined in Section 4.5.31. 

                                                 
 

18 Reduction of the initial index-3, which is consider the most robust integrator but at the same time the most 
challeging for the numerical solution of the differential-algebraic equation [142]. 
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Moreover, the mechatronic co-simulations of the stabilization strategies require that virtual 

actuators and their corresponding control are modeled in Matlab/Simulink. In order to 
implement a reliable and accurate control system for the stabilization strategies, a closed-loop 
control is needed. 

The most relevant closed-loop control algorithms include cascade control, conditional 
feedback and state control [144]. The cascade control is the best suited for electric drive systems 
because their commonly complex systems to be controlled can be divided into smaller 
subsystems. It consists of a superordinate, slow outer control loop and, at least, one inner 
subordinate. The inner fast control loops promote the agile behavior of the control system, while 
the outer control loop only has to compensate residual dynamics, i.e. the inner control loops 
react against disturbances as if they were the only control loop presented.  

Typically, the cascade control design starts with the inner control loop(s). Then, based on 
the behavior of this (these) inner control loop(s), the outer control loop is conceived. 

The model of the DC motors (actuators) can be represented in the cascade control as black 
box models. They can be modeled with a transfer function of first-order lag (PT1) or second-
order lag (PT2), with damping factor greater than one as in [145], with: 𝐺𝑀(𝑠) = 𝐾(𝑇1 · 𝑠 + 1) (77) 

for first-order systems, and 𝐺𝑀(𝑠) = 𝐾(𝑇1 · 𝑠 + 1)(𝑇2 · 𝑠 + 1) (78) 

for second-order systems. In Eq. (77) and Eq. (78), K represents the process gain, T1 and T2 are 
the time constants for the first and second order lag, respectively. 

 
The actuators (DC motors) should react optimally to dynamic changes in the system. PI-, 

PD- and PID-controllers can be implemented to approach a target value abruptly. The transfer 
function of a PID-controller, 𝐺𝐶(𝑠), can be expressed as follows: 𝐺𝐶(𝑠) = 𝐾𝑃𝐼𝐷 · (1 + 1𝑇𝑁 · 𝑠 + 𝑇𝑉 · 𝑠 ) (79) 

where 𝐾𝑃𝐼𝐷 represents the controller gain, 𝑇𝑁 is the reset time of the integral component of the 
controller and 𝑇𝑉 is the controller derivative time. The selection of the suitable controller 
depends on the nature of the system dynamics. 

4.4.1.1 Mechatronic co-simulations of linear drives 

The orientation, the upper plate of the stabilization mechanism should adopt to compensate 
moments, is achieved through specific stroke lengths of the three linear drives proposed in 
Section 4.1.1. These required stroke lengths can be determined by its inverse kinematics [77]. 
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Figure 50 Vectors for the estimation of the inverse kinematics (following [146]). 

For the calculation, the inverse kinematics approach for Stewart-platforms presented by 
Gattringer [146] is applied for the stabilization mechanism in Figure 50: point C symbolizes 
the location of the end effector (cardan joint); the constant that represents the distance between 

the two local coordinate systems R and B (one for each plate) is defined as 𝑑  (in this case, this 
distance remains constant); vectors 𝑜 𝑖 are required to describe each of the cardan joints located 

on the lower plate and vectors �⃗� 𝑖 for the cardan joints located on the upper plate, relative to the 
local coordinate systems B and R, respectively; the green vector describes the stroke of the 

trapezoidal threaded rods, 𝑙 𝐵 𝑖 , which can be calculated via the vector chain as follows: 𝑙 𝐵 𝑖 = 𝑑 𝐵 𝐶 + 𝐴𝐶𝑎𝑟𝑑𝑎𝑛𝑇 ·  �⃗� 𝑅 𝑖 − 𝑜 𝐵 𝑖  (80) 

with the superscript 𝐵 and 𝑅 as origin of the local coordinate systems for the vectors and 𝐴𝐶𝑎𝑟𝑑𝑎𝑛𝑇  as the coordinate transformation via Cardan angles (see [146]). 
The magnitude of the vector, being equivalent to the stroke length of the trapezoidal rod, 

is estimated with 𝑙𝑖 = √( 𝑙 𝐵 𝑖 )𝑇 · 𝑙 𝐵 𝑖 . (81) 

Eq. (81) is implemented in Matlab/Simulink as inverse kinematic function. Both rotation 
angles of the upper plate of the stabilization mechanism are defined as its input parameters; 
further data such as distances between the coordinate systems, between the cardan joints and 
the local coordinate systems, etc., have also be custom-built into the function. 

 
The resulting torque, velocity and displacement of the lineal drives, generated by the 

closed-loop control is implemented in the MBS model by means of variables operating on the 
respective actuators during the co-simulations. Forces and torques, angle and linear 
displacements as well as velocities and accelerations are measured/computed over time in the 
MBS model and sent as output signals to the closed-loop control of the actuation system. All 
these signals serve as real-time reference values that allow the control model to calculate the 
deviation and, thus, react in real-time against instabilities. 

Additionally, each of the translational motion of the lineal drives is declared as input 
variable and the angle of the upper plate of the stabilization mechanism as output. Moreover, a 
jerk limitation in form of a low-pass filter with critical damping is required to avoid big 
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oscillations and to ensure a linear system behavior. Thus, the angle of the upper plate is pre-
processed by the filter and, then, passed on to the inverse kinematics as a set point. 

The entire concept is illustrated in Figure 51 and given in Annex A.2. 
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Figure 51 Co-simulation of g-tilt control with the MBS of the mobile manipulator. 
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4.4.1.2 Mechatronic co-simulations of gyroscope 

The MBS model of the gyro mechanism must perform two different motions: the mass 
rotates around the vertical axis, and additionally, it is tilted around the horizontal axis (see 
Figure 52 Rotary and  tilting motors of the gyro mechanism.Figure 52). 

 
Figure 52 Rotary and  tilting motors of the gyro mechanism. 

For this purpose, a control algorithm for each motor has to be implemented in 
Matlab/Simulink. The mass rotational speed must remain constant during the simulations. This 
greatly simplifies the general control concept, since this rotational speed is set initially to the 
target value by a simple speed control and no changes are needed to be carried out afterwards. 
Therefore, only the tilting motion has to be controlled depending on the required deflection 
angle by means of a closed-loop position control. 

Additionally, the control concept of the gyro mechanism detects accelerations and 
decelerations produced by the mobile platform, against which the gyroscope should 
automatically generate the compensation torque. 

 
Figure 53 Schema of the co-simulation for the gyroscope. 

Similar to the mechatronic co-simulations for the stabilization strategies in Section 4.4.1.1, 
while the motions of the gyro mechanism are implemented in the MBS model in 
MSC.ADAMS/View, the simulation of its control loop is carried out in Matlab/Simulink, 
establishing together the mechatronic co-simulation represented in Figure 53. 
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4.5 Implementation of stabilization strategies employing a testing system. 

The following sections deal with the implementation of the stabilization strategies 
previously introduced (Section 4.4.1 and Section 4.4.2) employing a testing system, with the 
aim of demonstrating their effectiveness. 

The adopted testing system consisted of the robot manipulator Mitsubishi RV-3AL 
mounted on the non-holonomic mobile platform Scitos X3 by MetraLabs, shown in Figure 54. 

  

Figure 54 Mitsubishi RV-3AL (left) and MetraLabs           

Scitos X3 (right) as testing system for further analyses. 

Although the robot manipulator does not represent the latest state-of-the-art in the robotic 
field, its weight and dimensions contribute to reproduce worst-cases scenarios, the approach 
should deal with. The robot manipulator is 660 mm high, 300 mm wide and weighs 60 kg.  

Besides this, the Scitos X3 is 442.54 mm high, 470 mm wide and 710 mm long, with a 
mass of 58 kg and a maximum payload of 100 kg. The mobile platform is equipped with front 
and rear laser scanners that help to move safely in its environment: when an object or a person 
is detected in the field of one of the laser scanners, a speed reduction and a braking process is 
initiated to react in advance [147]. An abrupt braking process is performed only when the object 
is detected closer than 2 m radius. 

 
The diagrams in Figure 55 displays the acceleration and braking process of the mobile 

platform according to the manufacturer. With an acceleration of 300 mm/s2, its maximum speed 
(1000 mm/s) is reached in 3.67 s. When the mobile platform abruptly brakes, a maximum 
negative acceleration of 1000 mm/s2 occurs during 0.16 s. A speed reduction, from 1000 mm/s 
to 200 mm/s, is automatically performed by the mobile platform when an object or person is 
detected within the outer warning field. 
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Figure 55 Emergency brake and normal brake of the mobile platform. 

In order to detect a braking process based on the provided profile (Figure 55), an Inertial 
Measurement Unit (so-called IMU) was attached to the mobile platform. Figure 56 exemplifies 
the location of the IMU with respect to the mobile platform. 

 
Figure 56 Schematic sketch of the mobile platform and the IMU mounting location [148]. 

Since the purpose of the IMU is to measure accelerations caused by the navigation of the 
mobile platform, the sensor can be arbitrarily placed on a horizontal surface plane of the mobile 
platform. However, it is recommended to mount the IMU in a surface where the least possible 
system vibrations can be perceived. 

In the case of the testing system, the sensor axes were correlated with the vector that 
describes the platform motion and, additionally, follows this convention: 
 “Roll axis”, in which the mobile platform and the sensor both indicated a forward motion. 

Its measurements went from 0° to ±180°.  
 “Pitch axis”, perpendicular to the surface, which indicated the inertia of the system during 

linear movements. The measurements went from 0° to ±90° and, then, again to 0°. 
 “Yaw axis”, displayed the changes regarding the direction and orientation of the mobile 

manipulator. The measurements went from 0° to 360°. 
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The IMU included a 3D accelerometer, a 3D gyroscope and a 3D magnetometer [149] to 

measure: 
 with the accelerometer, translational motion such as displacement, velocity, acceleration, 

jerk. 
 with the gyroscope, rotational motion such as angular displacement, angular velocity, 

angular acceleration. 
 with the magnetometer, the earth’s magnetic field, which helped to estimate all the above 

mentioned parameters with a higher accuracy. 
An evaluation of the range and accuracy of the measures acquired by the IMU was 

preliminary carried out: the mobile manipulator was tilted so that the mobile platform came 
into contact with the ground. It was observed that the sensor was able to detect all kind of 
alterations, even those caused by minuscule movements. 

4.5.1 Experimental Modal Analyses of testing systems 

The dynamic behavior of both, the adopted robot manipulator and the adopted mobile 
platform, were experimentally investigated in order to adjust and validate, as a next step, their 
corresponding MBS simulation models. This technique ensures a close-to-reality environment 
for the implementation of the proposed stabilization strategies by means of mechatronic co-
simulations. 

The EMAs presented in this section contribute to a deeper insight into the complete 
modeling process of robot manipulators and mobile platforms, lacking in the literature. 

 
For the EMAs of both systems, the OR36 real-time analyzer (24-bit A/D converter 

integrated) by OROS was employed as acquisition instrument. The data processing was 
performed in Oros Modal19 and NVGate multi-analyses20 software. 

Although the analysis was carried out in a frequency range from 0 Hz to 800 Hz, the most 
important frequencies for both systems were expected within a low frequency range, under     
500 Hz. 

The excitation and measuring devices for the experimental sets (see Table 22), i.e. the 
impulse hammer, tip and hammer head as well as accelerometers, were the same for all tests. 

Table 22 Excitation and measurement devices. 

Excitation stimulus Measurement unit 
Impulse hammer Dytran 5800B2 
Impulse hammer Dytran 5805A 

1D-Accelerometers Dytran 3225F1 
3D-Accelerometers Dytran 3023A1 

Their relevant parameters for the corresponding set up were chosen as shown in Table 23. 
  

                                                 
 

19 https://www.oros.com/products/structural-dynamics/modal-analysis/  
20 https://www.oros.com/products/general-noise-and-vibration/software-platform-nvgate/ 
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Table 23 Configuration parameters for the experimental modal analyses. 

Parameter 

Value  

(for robot manipulator 

and mobile platform sets) 

Measured Response Frequency range 800 Hz 
Impulse hammers – Tip Soft impact tip 
Impulse hammer (Dytran 5800B2 with 0.22 lb head 
weight) – Sensitivity, ±10% 

100 mV/lbf 

Impulse hammer (Dytran 5805A with 1 lb head weight) 
– Sensitivity, ±10%  

1.0 mV/lbf 

Accelerometer (Dytran 3225F1) – Sensitivity, ±10% 10 mV/G 
Accelerometer (Dytran 3023A1) – Sensitivity,-10/+15% 10 mV/G 

 
Aspects considered in this study, such as geometry, amount of measuring and excitation 

points as well as their corresponding arrangement in the structure of the robot manipulator and 
mobile platform, will help other researchers to experimentally analyze comparable mobile 
platforms and robot manipulators. 

4.5.1.1 EMA of the mobile platform 

First of all, the structure of the mobile platform was examined in order to select suitable 
excitation spots for the impulse hammer and measurement spots for the accelerometers, in such 
a way that all natural frequencies, natural modes and the natural damping will be covered by 
the experimental investigation. 

Three excitation points (see green dots in Figure 57) were selected in order to guarantee 
for the application of stimulus in all coordinates of the Cartesian space. The 25 measuring points 
were placed on the rigid aluminum profiles and near to the screw joints, to ensure a good 
reproduction of the system oscillation and not to emulate the vibration of each single element. 

All these spots built the basis for the geometry into the processing software OROS Modal 
and helped to graphically display the resulting mode shapes of the mobile platform (see      
Figure 58). 

 
Figure 57 CAD model of the mobile 

platform and its measurement points. 

 

 
 

Figure 58 Representation of the mobile platform in OROS Modal 

(based on the points in Figure 57). 

Each excitation stimuli was applied 5 times in the same spot, in the direction shown in 
Figure 59 (green arrows). 
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Figure 59 Excitation (green) and measurement (red) spots for the mobile platform. 

Although the most important frequencies were expected within a low frequency range, two 
different sets were performed in order to check the repeatability of the EMAs and to delimit the 
frequency range in which the dynamic behavior of the mobile platform will be more precisely 
described: the first experimental set covered the frequency range from 0 Hz to 800 Hz to capture 
all natural frequencies and all eigenmodes as far as possible; the second experimental set 
examined the frequency range from 0 Hz to 100 Hz, to accurately identify the first fundamental 
natural frequencies and mode shapes. 

 
The results of the EMAs for the mobile platform are shown in Table 24. An overlapping 

method [150] allowed to identify its first eight natural frequencies under 100 Hz: The first, third 
and fourth natural frequencies (7 Hz, 21 Hz and 28 Hz) appeared in all tests. Following the 
overlapping method, the remaining values were obtained at 10 Hz, 54 Hz, 62 Hz, 75 Hz and 81 
Hz, which were visible in no more than two different directions of excitation. 
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Table 24 Identification of the Scitos X3 natural frequencies by means of overlaping method. 

 

The mode shapes corresponding to the first five natural frequencies are graphically 
represented in the Table 25. 

Table 25 Mode shapes and natural frequencies of the mobile platform obtained from the EMAs. 

Natural 

freq. 
𝝎𝟏=7.8 Hz 𝝎𝟐=10.3 Hz 𝝎𝟑=21.4 Hz 𝝎𝟒=28.0 Hz 𝝎𝟓=54.0 Hz 

Mobile 
platform 
mode 
shapes 

 
   

Position of 

excitation

1st ≈ 8 Hz 2nd ≈ 10 Hz 3rd ≈ 21 Hz 4th ≈ 28 Hz 5th ≈ 52 Hz 6th ≈ 62 Hz 7th ≈ 75 Hz 8th ≈ 85 Hz

1st ≈ 8 Hz 3rd ≈ 22 Hz 4th ≈ 29 Hz 7th ≈ 75 Hz 8th ≈ 81 Hz

1st ≈ 8 Hz 3rd ≈ 22 Hz 4th ≈ 29 Hz 5th ≈ 54 Hz 6th ≈ 62 Hz 8th ≈ 81 Hz

Identified natural frequencies

IH #3                  
Direction -Z

IH #1                 
Direction +X

IH #2                 
Direction +Y
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The grey lines in the geometry represent the initial state of the structure, the red lines the 

maximum amplitude attained, the yellow lines the proportionately smaller amplitudes and the 
blue lines the smallest one. 

Experimental set no. 1 and experimental set no. 2 showed the same result for the frequency 
range up to 100 Hz: the first mode shape (7.8 Hz) from Table 25 consisted in a rotation of the 
platform about the Z-axis (yaw). The second mode shape (10.3 Hz) showed a translational 
movement in X-direction. The third one (21.4 Hz) exhibited a petty rotation around the Y-axis 
(roll) and another around the X-axis (pitch). The fourth and fifth mode shapes (28 Hz and 54 
Hz) displayed a slightly tilting around the Y-axis (roll) and the X-axis (pitch), respectively. All 
axes are related to the light blue coordinate system. 

4.5.1.2 EMA of robot manipulator 

A similar procedure was performed for the robot manipulator with regard to the described 
analyses of the mobile platform. 

The natural frequencies and mode shapes of the robot manipulator were determined for 
three different positions: home, fully extended arm in upright configuration and fully extended 
arm in horizontal configuration; all of them with and without energized motors. The described 
experimental set is illustrated in Figure 60. 

 
Figure 60 Scheme of the performed experimental modal analyses for the robot manipulator. 

The results for all three different positions were comparable to each other. For this reason 
and for practical purposes, only the EMA of the robot manipulator carried out in Home 
configuration is presented below. 

During the EMAs, two individual sets were performed: The first experimental set covered 
a frequency range from 0 Hz to 800 Hz, in order to capture all natural frequencies and, 
especially, all eigenmodes as far as possible. The second experimental set examined the 
frequency range from 0 Hz to 100 Hz to accurately classify these first fundamental natural 
frequencies and mode shapes. 
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Similar to the mobile platform, the excitation and measurement spots were chosen so that 

an appropriate identification of the modal parameters took place (see red and green dots in 
Figure 61). The simplification of the robot manipulator geometry in OROS Modal, shown in 
Figure 62, resulted in 3 excitation points and 20 measurement points. 

 
Figure 61 CAD model of robot manipulator 

and its measurement points [151]. 

 
 

Figure 62 Representation of the main parts of the robot 

manipulator in OROS Modal 2 [151]. 

Each excitation stimuli was applied 5 times in the same spot, in the direction shown in 
Figure 63 (green arrows). 

 
Figure 63 Excitation (green) and measurement (red) spots for the robot manipulator. 

 
Table 26 presents the results obtained from the EMAs of the robot manipulator. 

From Table 27, it can be observed that the first three natural frequencies (11 Hz, 21 Hz 
and 28 Hz) were found within all directions of excitation. Moreover, the natural frequency at 
72 Hz and 87 Hz were only found in two separately excitation points. 
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Table 26 First natural frequencies of the robot manipulator obtained from the EMAs.

 

 

 

Position of 

excitation

1st ≈ 12 Hz 2nd ≈ 21 Hz 3rd ≈ 29 Hz

1st ≈ 11 Hz 2nd ≈ 21 Hz 3rd ≈ 28 Hz 4th ≈ 72 Hz

1st ≈ 11 Hz 2nd ≈ 21 Hz 3rd ≈ 27 Hz 5th ≈ 87 Hz

IH #3                  
Direction -Z

IH #1                  
Direction +X

IH #2                  
Direction +Y

Identified natural frequencies
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Table 27 Mode shapes of the robot manipulator obtained from the EMAs. 

Natural 

frequencies 

and mode 

shapes 

ω1=11.0 Hz ω2=21.0 Hz ω3=28.0 Hz ω4=72 Hz ω5=87 Hz 

EMA 
Robot 
manipulator 

    

Closer inspection of Table 27 shows that the first mode shape (at 11 Hz) was represented 
by a pitching movement (around the X-axis) generated by the elbow, the forearm and the end 
effector; the second and third mode shapes (21 Hz and 28 Hz) affected only the lightest four 
components, causing a slightly rolling movement around the Z-axis and a rotation around the 
X-axis (pitching) in the elbow, forearm, hand and end effector; the fourth mode shape (72 Hz) 
produced a deflection on the left arm; and finally, the fifth modal shape (87 Hz) also exhibited 
a slightly pitching movement (rotation around X-axis) but just starting in the hand and 
continuing with the end effector. 

 
The next step was to examine the influence of the robot manipulator’s electric drives and 

their control on the previously acquired modal parameters. Typically, self-locking transmission 
gears are located between the electric drives and the links of a robot manipulator. These gears 
could induce additional vibrations that have not been identified during the last measurement. 
For this reason, further sets of EMAs were performed with the robot manipulator brakes 
released and compared with the outcomes of the previous EMAs, which were performed with 
the motors switched off. Table 28 summarizes the first natural frequencies of the robot 
manipulator in home position with the motors switched on and off. 

Table 28 Natural frequencies of the robot manipulator in home position with  

its servomotor’s brakes released and enganged. 

Home position 

Se
t Motor 

on/off 

Natural frequency (Hz) 𝜔1 𝜔2 𝜔3 

1  11 21 29 

 11 21 29 

2 
  13 21 28 

  13 21 28 

3 
  11 21 28 

  11 21 28 

4 
  11 21 28 

  11 21 28 

No significant changes of the robot manipulator system’s dynamic behavior were observed 
between the two scenarios. It is therefore deduced that the state of the servomotors has no 
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influence on the oscillation behavior of the robot manipulator due to the self-locking gears 
installed in the transmissions. 

4.5.2 Modeling the testing system as MBS 

The MBS simulation model of the mobile platform and the robot manipulator should 
reproduce the essential dynamics of the real system. The results of their EMAs, in terms of 
natural frequencies and mode shapes, allow a reliable modeling procedure for the mobile 
manipulator as multibody-system. 

Complementary to the EMAs exemplified previously, all the aspects considered in the 
following section will help other researchers to model comparable mobile platforms and robot 
manipulators as MBS. 

4.5.2.1 MBS of mobile platform 

The modeling process of the MBS of the mobile platform was based on the analysis of its 
system’s dynamic behavior according to the information obtained from its EMAs. 

First, the inertial parameters of the components that constitute its structure were estimated 
with all the information about geometries and materials contained in its 3D CAD model. Then, 
this 3D volume model was exported into MSC.Adams/View. 

 
The most significant assembly for the modeling was the middle central profile shown in 

Figure 64, on which the drive wheels and the engines are suspended via an upper swing arm, a 
damper and a lower articulated strut. Due to the DOFs emerging by the connections of the 
individual elements, this assembly is largely responsible for the oscillation behavior in the lower 
frequency range of the entire mobile platform. 

 
Figure 64 Drive wheels and engines assembly of the mobile platform. 

Figure 65 presents a clear overview of the kinematics of the individual elements of the 
wheel suspension and the associated elements of the mobile platform. 
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Figure 65 Wheel suspension mechanism of the mobile platform. 

The MBS model contained low level of detail to get good computing performance, without 
affecting the reproduction of the real dynamic behavior by the exclusion of structural elements. 
The motors and their holders, the wheels and bearings holder as well as the individual 
components of the swing arms, the drive shafts and struts were combined into main rigid bodies. 
The remaining joint elements were classified based on their kinematic (geometrical relation) 
and their physical force properties (e.g. torsion springs) acting between two or more links [152]. 

Between the cylinder and the piston of the dampers, a linear spring that allowed motion 
along the center axis of the damper was defined. To constrain the forces affecting the main 
bodies, virtual massless elastic joints were implemented. Figure 66 illustrated this scheme for 
one of the two identical wheel suspension mechanisms of the mobile plaftorm. 

 

Figure 66 Graphical topology of the implemented joint elements for  

the wheel suspension mechanism of the mobile platform. 

With help of bushings and springs, all translational and rotational DOFs were described by 
means of the stiffness and damping assignments shown in Table 29 for their translational 
coefficients and in Table 30 for their corresponding rotational coefficients. 
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Table 29 Adjusted translational stiffness and damping coefficients for the mobile platform. 

Joint elements 
Translational stiffness 
coefficients (N/mm) 

Translational damping  
coefficients (N·s/mm) 

x y z x y z 
Bushing #1 
Swing arm < > Al-profile 

30.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #2  
Swing arm < > Al-profile 

40.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #3  
Swing arm < > Al-profile 

30.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #4  
Swing arm < > Al-profile 

40.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #1  
Swing arm < > DC Motor 

150.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #2  
Swing arm < > DC Motor 

250.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #3  
Swing arm < > DC Motor 

250.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #4  
Swing arm < > DC Motor 

150.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #1  
Rigid strut < > Al-profile 

40.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #2  
Rigid strut < > Al-profile 

40.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #1  
Rigid strut < > DC Motor 

100.0 10000.0 400.0 0.01 0.01 0.01 

Bushing #2  
Rigid strut < > DC Motor 

100.0 10000.0 400.0 0.01 0.01 0.01 

Spring #1&2 
Cylinder < > Piston 

- - 600.0 - - 0.01 

Bushing #1&2 
Piston < > DC Motor 

1000.0 1.0×106 600.0 0.01 0.01 0.01 

 

Table 30 Adjusted rotational stiffness and damping coefficients for the mobile platform. 

Joint elements 
Rotational stiffness  

coefficients (N·mm/deg) 
Rotational damping  

coefficients (N·mm·s/deg) 
x y z x y z 

Bushing #1 
Swing arm < > Al-profile 

5.72×105 2864.8 14323.9 0.6 0.6 0.6 

Bushing #2  
Swing arm < > Al-profile 

5.72×105 5729.6 14323.9 0.6 0.6 0.6 

Bushing #3  
Swing arm < > Al-profile 

5.72×105 2864.8 14323.9 0.6 0.6 0.6 

Bushing #4  
Swing arm < > Al-profile 

5.72×105 5729.6 14323.9 0.6 0.6 0.6 

Bushing #1  
Swing arm < > DC Motor 

5.72×105 5729.6 14323.9 0.6 0.6 0.6 

Bushing #2  
Swing arm < > DC Motor 

5.72×105 2864.8 14323.9 0.6 0.6 0.6 

Bushing #3  
Swing arm < > DC Motor 

5.72×105 2864.8 14323.9 0.6 0.6 0.6 

Bushing #4  
Swing arm < > DC Motor 

5.72×105 5729.6 14323.9 0.6 0.6 0.6 
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Table 30 (cont.) Adjusted rotational stiffness and damping coefficients for the mobile platform. 

Joint elements 
Rotational stiffness  

coefficients (N·mm/deg) 
Rotational damping  

coefficients (N·mm·s/deg) 
x y z x y z 

Bushing #1  
Rigid strut < > Al-profile 

5.72×105 2864.8 45836.6 0.6 0.6 0.6 

Bushing #2  
Rigid strut < > Al-profile 

5.72×105 2864.8 45836.6 0.6 0.6 0.6 

Bushing #1  
Rigid strut < > DC Motor 

5.72×105 5729.6 28647.9 0.6 0.6 0.6 

Bushing #1  
Rigid strut < > DC Motor 

5.72×105 5729.6 28647.9 0.6 0.6 0.6 

Spring #1&2 
Cylinder < > Piston 

- - 28647.9 - - 0.6 

Bushing #1&2 
Piston < > DC Motor 

5.72×105 5729.6 28647.9 0.6 0.6 0.6 

 

A representation of the model of the mobile manipulator as MBS in MSC.Adams/View is 
shown in Figure 67. 

 
Figure 67 MBS model of mobile platform. 

The parameters of the implemented ground contact forces were empirically adjusted. 
Particular attention was paid to the stiffness and damping values, since a performed sensitivity 
analysis exhibited that these values affected the most the impact behavior between the ground 
and the wheels of the mobile platform. Beginning with the stiffness and damping going towards 
+∞ [153], their values were iteratively decreased to guarantee that no convergence errors and 
no large vibrations occurred during the simulations. All remaining parameters were empirically 
tuned based on the values suggested by the simulation software, as displayed in Table 31 [154]. 
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Table 31 Settings for the Coulomb’s friction contact constraints between the wheels and the ground. 

Parameter for contact constraint Value 

Contact type Point to plane 
Normal force Impact 

Stiffness 1.0 ×104 N/mm 
Force exponent 1.5 

Damping 500.0 N·s/mm 
Penetration depth 1.0 ×10-2 mm 

Friction force Coulomb 
Coulomb friction On 
Static coefficient 0.76 

Dynamic coefficient 0.8 
Stiction transition vel. 100.0 mm/s 
Friction transition vel. 1000.0 mm/s 

 
All along the iterative manual adjustment of the stiffness and damping coefficients of the 

bushings and springs implemented in the MBS model, the visualization of the mode shapes in 
the simulations served as helpful qualitative analysis to identify which specific joint element 
had to be modified and how much. 

Table 32 shows the derived natural frequencies and mode shapes for the mobile platform. 
The red traces in the illustrations represent the mode shapes in an overstated manner. 

Table 32 Modal parameters of the mobile platform obtained from MBS simulations [151]. 

Natural freq. and  

modal shapes 
ω1=8.9 Hz ω2=13.0 Hz ω3=21.5 Hz 

MBS Mobile platform 

 

 

 

 

The graphic in Figure 68 presents the calculation of the MBS reliability related to the EMA, 
using the “three-sigma limit” method [155]. The natural frequencies from EMA are represented 
by the black solid line. It can be seen that the first modal frequency of the MBS (red solid line) 
was not kept within the calculated limits (black and green dashed lines) as opposed to the second 
and third values, which were in the tolerated area. 
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Figure 68 Correlation between EMA- and MSB-mobile platform using 3-sigma limits [151]. 

The deviation of the first natural frequency, about 15%, could have been caused by the 
model simplification procedure enforced during modeling the mobile platform. Another 
uncertainty existed with respect to the global damping parameters determined from the EMAs, 
which in practice cannot be directly applied in MSC.Adams/View. However, according to 
[156,157], the model can be considered as satisfactory for the purpose of simulating the braking 
process of the mobile manipulator, since it will be integrated in a closed-loop control system to 
enhance robustness against small disturbances in the process. 

4.5.2.2 MBS of robot manipulator 

The modeling process of the six-axis robot manipulator in MSC.Adams/View was very 
similar to the procedure presented for the mobile platform, but with a main difference: its 
available CAD model just contained information merely related to sizes and geometries, but 
not to aspects about materials, weight, center of mass or moment of inertia, which play a crucial 
role in the modeling process. 

The bigger and heavier bodies of the robot manipulator mainly affect its dynamic behavior. 
For this reason, a material identification was carried out to estimate their relevant center of mass 
and moment of inertia and, thus, the density of the materials in the outer structure by performing 
some simple non-destructive tests. These material specifications were introduced into the 3D 
CAD model of the robot manipulator and were adjusted to match up the weight specified by 
the robot manufacturer. Then, this detailed model was exported into MSC.Adams/View. 

Analogous to the mobile platform, the robot manipulator components with the higher mass 
and inertial moment were abstracted and merged into primary elements: Basis, shoulder, right 
arm, left arm, elbow, forearm, hand and end-effector. They were also modeled as rigid bodies 
for the same reason as the mobile platform: these main bodies did not present relevant 
deformations in comparison to their elastic joint elements. In the same way, each of these 8 
basic elements were joined using three-dimensional massless bushings, at the place where in 
the real system massed gearboxes were located. The implemented bushings with respect to the 
main bodies of the robot manipulator are illustrated in red in Figure 69. 
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Figure 69 6-DOF-limited bushings in the multibody-system simulation of robot manipulator. 

The inherent stiffness and damping parameters of these joining elements enable the 
dynamic oscillation of the robot manipulator. Likewise the mobile platform (see Section 
4.5.2.1), the experimental outcomes from the EMA of the robot manipulator served as reference 
for the iterative adjustment of the stiffness and damping parameters in the MBS simulation 
model. The final values for each of the implemented bushings are presented in Table 33. 

Table 33 Adjusted stiffness and damping coefficientes for the bushings of the MBS robot manipulator. 

Parameter x-coordinate y-coordinate z-coordinate 

Bushing at “Base-Shoulder” 
Translational Stiffness (N/mm) 2.4×106 2.4×106 2.5×106 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 4.6×109 4.6×108 4.6×108 

Damping (N·mm·s/deg) 5.73 5.73 5.73 
Bushing at “Shoulder-Upper arm left” 

Translational Stiffness (N/mm) 2.1×104 2.0×104 2.5×104 
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 

Rotational Stiffness (N·mm/deg) 5.0×105 9.0×106 5.0×105 
Damping (N·mm·s/deg) 5.73 5.73 5.73 

Bushing at “Shoulder-Upper arm right” 
Translational Stiffness (N/mm) 2.1×104 2.0×104 2.5×104 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 5.0×105 9.0×106 5.0×105 

Damping (N·mm·s/deg) 5.73 5.73 5.73 
Bushing at “Upper arm left-Elbow” 

Translational Stiffness (N/mm) 6.76×103 2.00×104 3.43×103 
Damping (N·mm·s) 1.00×10-3 1.00×10-3 1.00×10-3 

Rotational Stiffness (N·mm/deg) 4.50×105 1.00×105 1.50×106 
Damping (N·mm·s/deg) 5.73 5.73 5.73 

Bushing at “Upper arm right-Elbow” 
Translational Stiffness (N/mm) 6.8×103 2.0×104 3.43×103 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 4.5×105 1.0×105 1.5×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Elbow-Forearm” 

Translational Stiffness (N/mm) 2.3×104 1.3×104 1.2×104 
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 

Rotational Stiffness (N·mm/deg) 2.9×106 5.7×106 5.2×106 
Damping (N·mm·s/deg) 5.7 5.7 5.7 
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Table 33 (cont.) Adjusted stiffness and damping coefficients for the bushings of the MBS robot 

manipulator. 

Bushing at “Forearm -Hand left” 
Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Forearm -Hand right” 

Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104 
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 

Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106 
Damping (N·mm·s/deg) 5.7 5.7 5.7 

Bushing at “Hand-Finger” 
Translational Stiffness (N/mm) 5.4×103 5.1×103 4.0×103 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 1.2×107 5.7×107 1.7×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 

Table 34 displays with red traces the representation of the mode shapes. Higher frequency 
ranges were not considered, since only the oscillations where the main bodies move relative to 
each other are particularly relevant for the dynamic behavior of the robot manipulator in the 
mechatronic co-simulations. 

Table 34 Modal parameters of robot manipulator obtained from the MBS simulations [151]. 

Natural 

freq. 
𝜔1=13.0 Hz 𝜔2=22.5 Hz 𝜔3=27.2 Hz 𝜔4=68.3 Hz 𝜔5=88.9 Hz 

Mode 

shapes 

 

 

 

 

 

The MBS of the robot manipulator presented a good fitting of its natural frequencies. As 
can be seen from the graphic for “three-sigma limits” calculation [155] in Figure 70, the second 
natural frequency was slightly outside of the tolerance margin. However, the maximal deviation 
between this MBS and the EMA resulted about 10.6%, which is considered sufficient in this 
type of study [33,156]. 
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Figure 70 Correlation between EMA- and MSB-robot manipulator using 3-sigma limits [151]. 

The deviations between the MBS- and the EMA- results could be caused, on the one hand, 
by the model simplification carried out to decrease the complexity of the systems (e.g., rigid 
bodies were used to avoid large computational calculations). On the other hand, parametric 
uncertainties could be induced by lack of material homogeneity, tolerances in the geometry, 
unknown clearances between the robot manipulator elements, etc., having non-ideal real 
conditions for the MBS model. 

 
 
It is important to emphasize that the premises for MBS modeling presented in this study 

were based on the nature of the dynamics of 6 DOF robot manipulators and mobile platforms 
with non-holonomic drive, both not exhibiting significant deformation of its mechanical 
structure. Table 35 provides an overview of these premises and their corresponding limitations 
for practical use in further systems. 

Table 35 Premises applicable purely to 6 DOF robot manipulators and mobile platforms  

with non-holonomic drive and without significant deformations. 

Adopted premise for modeling the 
robot manipulators and mobile 

platforms as MBS systems 
Limitations/Remarks 

Modeling the structure as rigid bodies. Avoid if it is intended to study the deformation of 
the structure. In this case, the implementation of 
flexible bodies is crucial during modeling the 
system. 

Merging multiple solid bodies to create 
a single-bodied part. 

Use only if the motion of the main bodies relative 
to each other (and not its interaction) is of interest. 

Merging bodies with different material 
properties. 

By combining the bodies’ density, center of gravity 
and moment of inertia into a single flexible body, 
local material-dependent deformations will not be 
reproduced. 

Removing and replacing screws, screw 
nuts, washers and slot nuts by fix joints. 

Avoid if the weight difference of these elements 
with respect to the rest of the bodies of the system 
is too small as themselves to affect the dynamic 
behavior of the system. 
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Table 35 (cont.) Premises applicable purely to 6 DOF robot manipulators and mobile platforms 

with non-holonomic drive and without significant deformations. 

Adopted premise for modeling the 
robot manipulators and mobile 

platforms as MBS systems 
Limitations/Remarks 

Considering only natural frequencies 
and the mode shapes found in low 
frequency ranges. 

Applicable only, if the oscillations generated by the 
interaction between the main bodies are 
particularly relevant for the dynamic behavior of 
robots, which is expected to be detected in the low 
frequency range. Higher frequency ranges have to 
be examined if it is intended to study the vibration 
of the structure. 

Assuming that the stiffness of the robot 
manipulator bodies are significantly 
greater than the stiffness of its revolute 
joints. 

Applicable only, if the structure does not present 
significant deformations or if the behavior of the 
revolute joint shows high friction indices. 

Adjusting only the stiffness and 
damping coefficients for the friction 
contacts between the ground and the 
wheels. 

Applicable only, if the impact behavior between the 
bodies or the evaluation of contact forces are 
irrelevant during the simulations. 

Implementing the stiffness between 
two body centers of gravity using a 
spring-damper model. 

This implies that the stiffness of the bearings itself 
is incorporated in the stiffness value of the joining 
elements. Avoid if it is proposed to analyze the 
action and reaction region of the structure where 
the joint is situated.  

 

The use of these premises in systems, whose structure and/or dynamic behavior is not 
comparable with the robotic systems adopted in this work could lead to incorrect results and, 
thus, to a model that does not resemble the reality. 

 
By contrast, the following criteria can be implemented in other different types of robot 

manipulators and mobile platforms: 
 Interlink individual rigid bodies using physical connections (e.g. bushings) to build the 

system’s kinematic chain. 
 In order to constrain translational and rotational forces affecting the main bodies, virtually 

massless elastic joints with 6 DOF (e.g. bushings) can be implemented. By only adjusting 
the stiffness and damping coefficients of each of its DOF, the translational and rotational 
forces affecting the bodies can be reproduced in an accurate manner. 

 If the mass of a joint element is already considered in the mass of the adjacent rigid bodies, 
its corresponding kinematic joint or physical connection in the MBS model can be 
considered as mass-free. 

 In order to obtain accurate mode shapes in the simulation models, equip the MBS model 
with dummy massless bodies to represent the exact location of the accelerometers 
employed in the EMAs. 
 
Further information about the general multibody approach for dynamic systems can be 

found in [124,158]. 
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4.5.2.3 Optimization of MBS of the robot manipulator using the parametrization algorithm 

Since the robot manipulator is the subsystem that will be driven by the stabilization 
mechanism and due to its high center of gravity, its dynamic behavior plays an important role 
during the development of the stabilization strategy. It must be ensured that the MBS model of 
the robot manipulator describes the real system more accurately, with a maximum deviation of 
about 5% between the natural frequencies and mode shapes obtained by means of EMAs and 
the MBS simulations. 

Therefore, the parametrization algorithm introduced in Section 4.3.2.1 re-estimated the 
stiffness and damping parameters of the bushings modeled in the MBS. For this purpose, the 
dynamic behavior of the real robot manipulator had to be reanalyzed experimentally via EMA, 
but this time including the following aspects: 
 The base of the robot manipulator was firmly screwed to a steel plate, which in turn was 

fixed to the ground. 
 In order to better identify the robot manipulator’s oscillation behavior, more one-

dimensional accelerometers had to be attached to the structure; only in this way, all spatial 
directions could be registered. 

 The system was excited at the forearm, upper arm and elbow in the frequency range up to 
500 Hz. A too strong excitation could cause a non-linear system behavior [159]. 
 

For the following identification processes, only the first four natural frequencies and their 
corresponding eigenmodes were used as reference values, since the global eigenmodes from 
the EMAs (see Section 4.5.1.2) showed that the main oscillations were caused by the upper 
links. Therefore, only the four bushings located on the upper links were parametrized first. The 
forearm and elbow were merged to one rigid body, eliminating their associated bushings. 

The MBS model was complemented with dummies, located where the accelerometers were 
attached to the individual bodies of the real system. The MBS model of the robot manipulator 
adapted for its adjustment employing the parametrization algorithm is displayed in Figure 71. 

 
Figure 71 MBS model for robot manipulator suited for the DAKOTA algorithm [131]. 

The first parametrization was performed by means of the evolutionary algorithm, set with 
relatively wide outer boundaries. Then, using the gradient-based method, the parameter 
identification set a higher weight for the eigenmodes than for the natural frequencies, in order 
to attempt a good MAC correlation. The results of the parametrization procedures are shown in 
Table 36. 
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Table 36 Modal parameters for the robot manipulator computed by  

the parametrization algorithms (following [131]). 

 1st mode 2nd mode 3rd mode 4th mode 

EMA 11.6 Hz 14.6 Hz 21.2 Hz 27.0 Hz 
First estimation with 

evolutionary 

algorithm 

11.1 Hz 15.3 Hz 20.2 Hz 28.6 Hz 

Deviation 4.0 % 5.0 % 4.5 % 5.7 % 
MAC 0.7 0.5 0.9 0.7 
Subsequent 

identification with a 

gradient-based 

algorithm 

11.7 Hz 15.0 Hz 20.6 Hz 26.9 Hz 

Deviation 1.0 % 2.7 % 2.8 % 1.0 % 
MAC 0.9 0.8 0.8 0.8 

The values in bold in Table 37 are the parameters corresponding to the four bushings of the 
robot manipulator that were parametrized by the algorithms. 

Table 37 Stiffness and damping coefficientes for the bushings of the MBS robot manipulator computed 

by the parametrization procedures (values in bold). 

Parameter x-coordinate y-coordinate z-coordinate 

Bushing at “Base-Shoulder” 
Translational Stiffness (N/mm) 2.4×106 2.4×106 2.5×106 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 4.6×109 4.6×108 4.6×108 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Shoulder-Upper arm left” 

Translational Stiffness (N/mm) 5.0×103 4.4×104 5.0×103 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 8.7×105 1.4×106 0.0 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Shoulder-Upper arm right” 

Translational Stiffness (N/mm) 570.0 6.5×103 4.8×105 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 3.6×105 5.5×105 3.0×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Upper arm left-Elbow” 

Translational Stiffness (N/mm) 123.1 238.7 1.6×103 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 8.7×105 1.3×104 1.6×104 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Upper arm right-Elbow” 

Translational Stiffness (N/mm) 831.7 6.4×103 9.0×103 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 2.0×106 2.3×105 2.8×105 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
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Table 37 (cont.) Stiffness and damping coefficientes for the bushings of the MBS robot manipulator 

computed by the parametrization procedures (values in bold). 

Bushing at “Elbow-Forearm” 
Translational Stiffness (N/mm) 2.3×104 1.3×104 1.2×104 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 2.7×106 5.7×106 5.2×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Forearm -Hand left” 

Translational Stiffness (N/mm) 1.7×104 2.0×104 1.9×104 
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 

Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106 
Damping (N·mm·s/deg) 5.7 5.7 5.7 

Bushing at “Forearm -Hand right” 
Translational Stiffness (N/mm) 1.7×104 2.0×104 1.7×104 

Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 
Rotational Stiffness (N·mm/deg) 5729.6 5729.6 1.7×106 

Damping (N·mm·s/deg) 5.7 5.7 5.7 
Bushing at “Hand-Finger” 

Translational Stiffness (N/mm) 5.4×103 5.1×103 4.0×103 
Damping (N·mm·s) 1.0×10-3 1.0×10-3 1.0×10-3 

Rotational Stiffness (N·mm/deg) 1.2×107 5.7×107 1.7×106 
Damping (N·mm·s/deg) 5.7 5.7 5.7 

The developed algorithm can be employed for the parameterization of stiffness and 
damping coefficients of any robot manipulator that has been modeled under the criteria 
presented in Section 4.5.2.2. In case, the MBS model of the robot manipulator is not built in the 
simulation tool MSC.Adams/View, the interface between DAKOTA and MSC.Adams/View, 
described by, e.g., the script run_adams.acf and the file simmodell.adm, need to be adapted. 

Once both MBS systems, the mobile platform and the robot manipulator, were successfully 
adjusted, they were unified into a single model for the mobile manipulator. This new MBS 
system has to be integrated with the actuation mechanisms, the linear drives (Figure 72) and 
the gyro stabilizer (Figure 73), whose task is the dynamic compensation of external forces to 
assure the system stability and, thus, to prevent the mobile manipulator from tip over by abrupt 
acceleration and deceleration events. 
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Figure 72 Linear actuators as external stabilization mechanism for the testing system comprised by 

the robot manipulator mounted on a small footprint mobile platform. 

 

Figure 73 Gyroscope as external stabilization mechanism for the testing system comprised by the 

robot manipulator mounted on a small footprint mobile platform. 

4.5.3 Mechatronic co-simulation of testing system 

The effectiveness of the three stabilization strategies proposed in approach A (referred to 
as “inclining/tilting”, “conservation of angular momentum” and “gyroscopic effect”) is 
assessed by implementing series of mechatronic co-simulations, which perform critical braking 
profiles for the mobile platform. The following sections present an overview of the proceedings 
carried out particularly for the testing system. 

4.5.3.1 Solution stability analysis of solvers 

The required solution stability analysis for the in MSC.Adams/View available solvers (see 
Section 4.4) were carried out using the MBS model of the mobile manipulator, capable to 
represent a dynamic critical state of the system due to the oscillations generated by the spring 
suspension located in the drive wheels. 
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During mechatronic co-simulations, each stand-alone sub-simulator exchanges its output 

variables at a certain communication interval. The sub-simulators consider their inputs as 
constant over the integration time of each communication time step, although in reality their 
values vary continuously. As a result, large comminucation intervals can lead to errors in the 
numeric estimations and affect the simulation accuracy. In this work, the communication 
interval was defined following the technique for the sampling time estimation in control 
engineering, which states that the sampling time must be at least ten times higher than the 
smallest time constant presented in the control system [160]. Hence, considering the time 
constants of the control systems obtained in Section 4.5.3.3 and Section 4.5.3.4, the data 
transmission interval for all mechatronic co-simulations was set to 0.001 s. 

 
Three different error tolerances were considered into the solution stability analysis. The 

stability of the integrators (and their corresponding tolerances) was evaluated regarding the 
linear acceleration the mobile platform adopted during the MBS simulations. Their 
corresponding outcomes are outlined in the Table 38, Table 39 and Table 40, respectively: 

 
 Integrator GSTIFF with index I3 and with index SI2: 

Table 38 Comparison of different indexes and tolerances for integrator GSTIFF (following [112]). 

Tolerance Index I3 

1×10-3 

 

1×10-5 

 

1×10-2 
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Table 38 (cont.) Comparison of different indexes and tolerances for integrator GSTIFF ([112]). 

Index SI2 

1×10-3 

 

1×10-5 

 

1×10-2 

 

The results with the different error tolerances made the GSTIFF integrator with index-3 
(I3) or with index-2 (SI2) unsuitable for the simulation, since the output signals for each index 
(I3 or SI2) do not exhibit the same course among the different tolerances. 

 Integrator WSTIFF with index I3 (only available): 

Table 39 Comparison of different tolerances for integrator WSTIFF with Index-I3 (following [112]). 
Tolerance Index I3 

1×10-3 

 

1×10-5 

 

1×10-2 
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Here, as with the GSTIFF integrator, the acceleration did not produce equivalent results 

for the graduated tolerance values. Thus, this integrator was also unsuitable for the simulations. 

 BDF CONSTANT integrator with an index I3 (top) and an index SI2 (bottom): 

Table 40 Comparison of different tolerances for integrator BDF constant (following [112]). 

Tolerance Index I3 

1×10-3 

 

1×10-5 

 

1×10-2 

 
Index SI2 

1×10-3 

 

1×10-5 

 

1×10-2 

 

As illustrated in Table 38, the results for all tolerance values showed only minimal 
differences between the acceleration graphs. Therefore, the BDF CONSTANT integrator is 
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considered as the suitable solver to achieve the best approximation for the dynamic multibody 
simulation of the particular system. The faster responses were obtained with the I3 index and 
with an error tolerance of 1×10-3, which were employed for the further co-simulations. 

4.5.3.2 General simulation statements and setups 

Figure 74 shows how the force on the front support wheels of the mobile platform increases 
depending on the applied braking deceleration: the mass of the entire system, before the 
disequilibrium occurs, is distributed among the six wheels. If the back-support wheels lift-off, 
then only the drive wheels and the front wheels support the whole system weight (indicated 
with the white line in the graphic on Figure 74). And, if the drive wheels lift additionally, the 
entire weight is held only by the front wheels, pointed out with the black line in the graphic on 
Figure 74. 

 

Figure 74 Braking force influence on the front support wheels as a function of the  

travelling deceleration and the tilt angle generated by the linear actuators [113]. 

Figure 74 reveals that if the robot manipulator has no tilt angle and no stabilization strategy, 
the system tips over at a deceleration of 1.4 m/s2. If the robot manipulator adopts its equilibrium 
position (COG aligned with the axis of the universal joint at approx. 11.86°), a deceleration of 
2 m/s2 causes both rear support wheels to lift off. 

 
The mobile platform is accelerated until it reaches a maximal velocity, particular for each 

scenario to be tested; then, the mobile platform travels with a constant linear velocity for a short 
time to ensure a stable steady state before the braking process starts; after that, the platform 
brakes abruptly. 

The mechatronic co-simulations of both strategies “Inclining/Tilting” and “Conservation 
of angular momentum” employed the same velocity curve for the mobile manipulator during 
the simulations. To demand a particularly difficult testing scenario, two braking processes were 
carried out for all simulations, with a deceleration of 2 m/s2 and with 2.1 m/s2, respectively, in 
order to make the linear drives act in its technical extremes twice, for consecutive periods. 
These braking processes are presented in Figure 75. 
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Figure 75 Braking processes implemented for the linear drives strategy simulations [112]. 

 

On the other hand, due to the simplicity of the gyro mechanism and its control, more 
extensive and diverse braking processes were implemented during the mechatronic co-
simulations. The acceleration and deceleration slopes were based on the simple profile provided 
by the manufacturer (curves shown in Figure 76), being adapted depending on the scenarios to 
be tested. 

 
Figure 76 Braking process which served as the basis profile for the gyro stabilizer simulations [112]. 
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4.5.3.3 Mechatronic co-simulation of stabilization strategies employing linear drives 

For the mechatronic co-simulations of the external mechanism, the Linear Drive SFL with 
DC-Motor [161] was adopted. Using the information supplied by the manufacturer ([161,162]) 
and benchtop measurements on the real motor together with simple data fitting following the 
approach in [163], the motor was identified as a second-order system which, according to        
Eq. (78), resulted in 𝐺𝑀(𝑠) = 489(0.01337𝑠 + 1)(0.01025𝑠 + 1). (82) 

 

Taking into account the gear transmission ratio of 1:10 [164], the motor transfer function 
can expressed as 𝐺𝑀(𝑠) = 48.9(0.01337𝑠 + 1)(0.01025𝑠 + 1). (83) 

Since the system does not contain an I-component, PI-controllers can be used to reach 
stationary accuracy for the speed control loop (inner control loop) [165]. By employing only P 
and PD components, a permanent control deviation would be observed in the system [166]. The 
time constant for the required PI controller for the speed control loop was estimated with the 
rules according to Kuhn [167,168], since the system dynamic behavior (transfer function) was 
available from the experimental setups. ∑𝑇 = 𝑇1 + 𝑇2 (84) ∑𝑇 was obtained by searching the point where the areas 𝐴1 and 𝐴2 of the step response graph 
are equal. As in Figure 77, the resulting sum of the time constants for the case considered is ∑𝑇 = 0.02 𝑠. 

 
Figure 77 Empirical estimation of the motor time constant [112]. 

Then, the controller gain 𝐾𝑐 and the reset time 𝑇𝑁 were estimated employing the equations for 
setting rules of a PI controller according to Kuhn [160], as follows 𝐾𝑐 = 1𝐾𝑠 = 148.9 = 0.02045 (85) 

where 𝐾𝑠 is the gain factor of the controlled system. 𝑇𝑁 = 0,7 · ∑𝑇 = 0.7 ·  0.02362 = 0.01653. (86) 
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For a PI controller, the proportional factor, 𝐾𝑃, can be considered the same as the  controller 

gain, 𝐾𝑃 = 𝐾𝑐 = 0.02045 (87) 

and the integral factor, 𝐾𝐼, can be then obtained with 𝐾𝐼 = 𝐾𝑃𝑇𝑁 = 0.020450.01653 = 1.23685 (88) 𝐾𝐼𝐾𝑃 = 1.236850.02045 = 60.48143. (89) 

By employing these parameters, the step response reached its target value after 0.132 s and 
had an overshoot of 3.8%. Based on a root locus analysis, the proportional gain KP was 
minimally increased from 0.02045 to 0.02192 and, thus KI to 1.3257. After that, the pole of the 
PI controller migrated to -54.3 1/s. As a result, the step response reached the target velocity 
value after 0.117 s with 5% overshoot. 

After the velocity control loop (inner controller) had been prepared, the position controller 
(outer control loop) was designed. The steady-state accuracy of the position control loop was 
already ensured, since the velocity must be integrated to get positioning values. Thus, if the 
system did not overshoot at all, a P controller could be employed to ensure that the position is 
approached accurately. With a proportional gain KP of 15.582, its step response took 0.367 s 
until the stationary target value was reached and showed no overshoot, representing a proper 
controlling behavior. 

A comprehensive review of the design of the control system implemented for the particular 
case of the testing system lies beyond the scope of this study. The designed control is illustrated 
in Annex A.3. 
 

Finally, the so-called motions were implemented for the drive wheels to reproduce the 
acceleration and braking process of the mobile platform. 

The corresponding assignment of signals for the mechatronic co-simulations are indicated 
in Table 41. 

Table 41 Inputs/outputs for mechatronic co-simulations of the linear drives´stabilization strategies. 

Input signals for MBS  
(MSC.Adams/View) 

Output signals from MBS  
(MSC.Adams/View) 

 Stroke position of linear 
drive 1 

 Stroke position of linear 
drive 2 

 Stroke position of linear 
drive 3 

 Angle of upper plate of 
stabilization mechanism 

 Linear travel velocity of 
mobile platform 

 Acceleration of linear drive 1 
 Acceleration of linear drive 2 
 Acceleration of linear drive 3 
 Global X-acceleration of mobile platform 
 Global Y-acceleration of mobile platform 
 Global Z-acceleration of mobile platform 
 Force between ground and left support wheel back 
 Force between ground and right support wheel back 
 Force between ground and left drive wheel 
 Force between ground and right drive wheel 
 Force between ground and left support wheel back 
 Force between ground and right support wheel back 

Output signals from Controls  
(Matlab/Simulink) 

Input signal for Controls  
(Matlab/Simulink) 
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4.5.3.4 Mechatronic co-simulation of stabilization strategy using gyroscope 

First, estimations about the effectiveness of the gyroscopic system as stabilization strategy 
were carried out using Eq. (67) in order to proceed with its detailed design. Starting with a 
maximal deceleration during the braking process (𝑎) of −1 m/s2, a compensation torque (𝑀𝑐) 
of approx. −40 N·m had to be applied by the gyroscope to the whole system to achieve a 
stabilization during the standard braking process. 

First, a very simplified model of a gyroscope was built as MBS system in order to estimate 
the design parameters required to compensate the estimated torque. The rotational speed (𝜔𝑔) 
of the mass was implemented in MSC.Adams/View by a motion on the upper axis of rotation. 
The tilting speed (𝜔𝑝) of the mass was imposed as two motions on the lateral axes of rotation. 

After the first analytical and simulative estimations were performed, a gyro stabilizer 
consisting in a mass with a moment of inertia of 𝐼=1414.1 kg∙mm2 and a fix rotational speed of 𝑛motor=5000 min-1 was designed, so that the required compensation torque to stabilize the mobile 
manipulator was achieved. The final model consisted of the mass (with its associated moment 
of inertia), the cage, the supports and the motors (gears) is displayed in Figure 78. 

 
Figure 78 Designed gyroscope for the further analyses. 

Two light weight servo motors with high positioning accuracy, [169] for the rotary motor 
and [170] for the tilting motor, were selected. Their corresponding control algorithms had to be 
implemented in Matlab/Simulink. The mass rotational speed could be initially set to the target 
value by a simple speed control. The precession moment should be controlled depending on the 
required deflection angle of the tilting motor by means of a position control. 

Since not all motor parameters were provided by the manufacturers, the step response of 
both, the tilting motor and the rotary motor, were experimentally determined. The rotary motor 
was identified as first-order system and the tilting motor as first-order system with an additional 
integration element [171]. Both motors were modeled as black box in Matlab/Simulink 
according to Eq. (77) as follows 𝐺𝑇𝑀(𝑠) = 4.63(0.063 · 𝑠 + 1) (90) 

for the tilting motor, and 𝐺𝑅𝑀(𝑠) = 523.6(22 · 𝑠 + 1) (91) 
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for the rotary motor. 

 
Due to the fact the experimental determination of the controlled system showed that the 

tilting motor itself contained an I-component, a PD-controller was implemented. Its controller 
design parameters were established according to the Tietze-Schenk tuning method [172,173], 
in which the derivative time 𝑇𝑉 of a PD-controller is determined by 𝑇𝑉 = 𝑇𝑝2 ·  𝜋 (92) 

using the measured period duration of the step function response, 𝑇𝑝=0.099 s, and according to 
Eq. (92), 𝑇𝑉 resulted in 0.015 s. The value for the corresponding proportional-derivative gain, 
KPD, after the controller setting was 0.0225. 

For the rotary motor, a PI-controller was designed. Its reset time, 𝑇𝑁 , was estimated as      
22 s and its proportional-integral gain, KPI, as 7.15×10-4. 

A comprehensive review of the design of the control systems implemented for the 
particular case of the testing system lies beyond the scope of this study. Their corresponding 
block diagrams can be seen in Annex A.4. 

 
The maximum torque generated by the gyroscope as well as the angular position and 

velocity of its tilting motion were set as the evaluation parameters for the motor closed-loop 
controls. 

The input and output parameters implemented for the mechatronic co-simulations are 
described in Table 42. 

Table 42 Signal assignment for the mechatronic co-simulations of the stabilization strategy  

employing the gyro effect. 

Input signals for MBS  
(MSC.Adams/View) 

Output signals from MBS  
(MSC.Adams/View) 

 Position of tilting motor 
 Rotational speed of tilting motor 
 Rotational speed for rotary motor 
 Linear travel velocity of mobile 

platform 

 Tilting angle of gyroscope 
 Tilting speed of gyroscope 
 Rotational speed of rotary motor 
 Generated torque measured in the upper 

plate of the mobile platform 
 Force between ground and left support 

wheel back 
 Force between ground and right support 

wheel back 
 Force between ground and left drive wheel 
 Force between ground and right drive wheel 
 Force between ground and left support 

wheel back 
 Force between ground and right support 

wheel back 
Output signals from Controls  

(Matlab/Simulink) 
Input signal for Controls  

(Matlab/Simulink) 
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4.5.4 Validation of stabilization strategies employing testing system 

To ensure an accurate comparison between the validation scenarios, the contact forces and 
distances between the ground and each wheel of the mobile platform were used as evaluation 
criterion during the mechatronic co-simulations: contact forces greater than 0 N or distances 
equal to 0 mm mean that the mobile manipulator is not tipped-over. In other words, the higher 
the contact force distributed across all the wheels, the more stable the robotic system is. 

4.5.4.1 Evaluation of stabilization strategy “Inclining/Tilting” employing testing system 

For the stabilization strategy “Inclining/Tilting”, the mobile platform has been accelerated 
until its maximum velocity (yellow area in Figure 79), followed by a short traveling path with 
constant speed (green area in Figure 79). Immediately after the IMU-measurements in the MBS 
model revealed that the system achieved a stable steady state, the mobile platform braked to 
stop the system abruptly (red area in Figure 79). Just before the mobile platform braked, the 
robot manipulator was tilted backwards. Tilting the robot manipulator backward shifts its COG 
to the back, which keeps the system more stable while braking. Figure 79 shows the robot 
manipulator over time, during acceleration and braking of the mobile platform (yellow curve in 
the graph). 

 
Figure 79 Inclination/tilting of the manipulator during braking process [148]. 

Simulations without the stabilization strategy demonstrated that during the accelerations 
of 2 m/s2 and 2.1 m/s2, the rear support wheels lifted off the ground, lacking of any ground 
contact forces. In comparison, the stabilization strategy revealed that even a deceleration about 
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2.1 m/s2 did not exhibit instabilities if the mobile manipulator was tilted approx. −4° before the 
brake occurred. In this scenario, the contact force between the back support wheels and the 
ground was 42.6 N, as displayed in Figure 80. 

 
Figure 80 Contact force measured with the “inclining/tilting” stabilization strategy [112]. 

Nevertheless, the drawback of this strategy is that the countermeasure has to be done prior 
to the braking operation. In fact, the exact value of the braking deceleration cannot be easily 
known beforehand and, thus, the angle set point the robot manipulator should have adopted 
before the brake occurs is unknown. In that regard, the stabilization strategy is only applicable 
if the mobile manipulator is equipped with warning field devices, such as safety laser scanners, 
which help to estimate the eventual braking acceleration based on the current velocity of the 
mobile platform when an object has been detected. 

Furthermore, there will always be a superposition of the impulse with the effect shown in 
the next section. 

4.5.4.2 Evaluation of stabilization strategy “Conservation of angular momentum” 

employing testing system 

During the braking process of the mobile platform, the robot manipulator´s COG was 
turned from the equilibrium position in the direction of travel of the mobile platform (opposite 
to the last explained concept), as represented in the diagram in Figure 81. As a result, the angular 
acceleration of the robot manipulator counteracted the braking acceleration of the mobile 
platform following the principle of conservation of angular momentum. After the braking 
process was finished, the robot manipulators´ COG was returned to the equilibrium position. 
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Figure 81 Conservation of angular momentum of the manipulator during braking process.  

Based on [148]. 

In order to objectively compare the effectiveness of this strategy with the strategy 
“inclining/tilting”, the same traveling profile for linear drives from Section 4.5.4.1 was used, 
but with opposite sign because the robot manipulator is now impelled in the direction of travel 
of the mobile platform. 

The outcomes of the stabilization strategy based on the conservation of angular momentum 
are shown in Figure 82. 

 
Figure 82 Contact force measured with the “conservation of angular momentum” 

stabilization strategy [112]. 

It can be observed that effect of the stabilization strategy is critical and needs to be 
enhanced at some point in the braking profile with an additional short angular momentum. In 
practice, this technique is more suitable when braking process appear unforeseen, or when the 
robot manipulator is already tilted to the back. 
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4.5.4.3 Evaluation of stabilization strategy “Gyroscope” employing testing system 

The yellow curve in Figure 83 illustrates an example of a basic braking process 
implemented for the mechatronic co-simulations with the gyro stabilizer and its corresponding 
moment of action. The mass of the gyro stabilizer acquired a rotational speed of 5000 min-1 by 
the beginning of the simulations (t=0, blue area in Figure 83). While accelerating the mobile 
manipulator, the mass of the gyroscope was tilted counterclockwise by 0.78 rad (Figure 83-
yellow) and, during its deceleration, the gyroscope was returned to its starting position (0°), 
tilting it by −0.78 rad (Figure 83-red). 

 

Figure 83 Gyroscopic stabilizer action during braking process [148]. 

During the acceleration and braking process of the mobile platform, the speed of the tilting 
motor was set to 𝜔𝑝=0.60 rad/s. The gyro stabilizer was able to generate the precession torque 

(𝑀𝑝) of approx. 60 N·m, shown in Figure 84. The first peak in Figure 84 indicates the 
inclination of the flywheel mass of the gyroscope at +0.78 rad. The second and higher peak 
illustrates when the flywheel mass tilts to the opposite side, at -0.78 rad. The asymmetry of the 
curves is inferred by an unbalanced mass distribution due to the rotary motor attached to the 
flywheel mass. 
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Figure 84 Torque achieved by the simple gyroscope model [148]. 

In order to assess the effectiveness of the proposed gyroscope stabilizer, diverse scenarios 
were implemented by means of mechatronic co-simulations. For each of the scenarios 
introduced in the following pages, the basic braking process shown in Figure 76 was adapted 
to produce the intended acceleration and deceleration behavior of the mobile platform. The 
measured distance between the ground and the shaft axis of the rear wheels (37 mm) served as 
reference for the evaluation of the gyroscopic effect, since it represents the state when all the 
wheels of the mobile platform have physical contact with the ground. If this distance increases 
above the reference (37 mm), a tip-over of the mobile manipulator is detected during the braking 
process. 

 
For the purpose of analysis, the mechatronic co-simulations were first carried out without 

the activation of the gyro stabilizer, in order to identify the events at which the mobile 
manipulator experienced instabilities. Then, further mechatronic co-simulations under the same 
circumstances were performed with the activated gyro stabilizer.  
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 Scenario 1 and scenario 2 performed a braking process from 1.1 m/s (scenario 1) or rather 

from 1.2 m/s (scenario 2) to 0 m/s within 1.0 s to evaluate how small changes in the 
deceleration of the mobile platform affect the performance of the gyroscope. Without the 
stabilization mechanism, these decelerations produced a significantly larger lift-off of the 
rear wheels from the ground (>25 mm) compared to each other. 
The co-simulations exhibited a complete compensation of the instabilities by tilting the 
gyroscope 0.78 rad in 1.3 s for both scenarios, as shown in Figure 85 (top) and Figure 85 
(bottom), respectively. 

 
 

 

Figure 85 Results from scenario 1 (top) and scenario 2 (bottom) [174]. 
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 Scenario 3 examined the minimum angle the gyroscope needs to compensate the braking 

process of scenario 2 (1.2 m/s to 0 m/s). For this purpose, the target value for the tilting 
angle of the gyroscope was increased iteratively, starting from 0.17 rad, until the lift-off of 
the rear wheels of the mobile platform was completely prevented. 
Figure 86 compares the results from the co-simulations with the different tested tilting 
angles. It can be seen that with a tilting angle of 0.33 rad, the mobile platform had physical 
contact with the ground throughout the entire braking process. 

 

Figure 86 Results from scenario 3 [174]. 

  



138  Approach A: Stabilization strategies for  
mobile manipulators with limited access to the robot controller 

 
 Scenario 4 investigated the minimal time span at which the mobile manipulator can 

completely stopped without suffering any instabilities if the gyro stabilizer is positioned at 
0.78 rad in 1.3 s during the braking process. 
The simulations showed that the minimum possible braking time the mobile platform could 
induce from a velocity of 1.0 m/s to 0 m/s was 0.8 s. Likewise, if the mobile platform 
traveled at a speed of 1.2 m/s, the minimum possible braking time was 0.9 s. Both 
corresponding results are shown in Figure 87. 

 
 

 

Figure 87 Results from scenario 4 for a braking process from 1 m/s to 0 m/s (top) and  

from 1.2 m/s to 0 m/s (bottom) [174]. 
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 Scenario 5 aimed to evaluate the effectiveness of the gyro stabilizer under three directly 

successive extreme accelerations (from 0 m/s to 1.2 m/s within 1 s) and braking (from 1.2 
m/s to 0 m/s within 1 s) processes. 
Figure 88 illustrates how the gyroscope ensured the stability of the mobile manipulator for 
all of them and even no instabilities occurred during turning back the gyroscope to its initial 
state after each deceleration (no peaks in green curve). 

 

Figure 88 Results from scenario 5 [174]. 

  



140  Approach A: Stabilization strategies for  
mobile manipulators with limited access to the robot controller 

 
 Scenario 6 simulated the same conditions as scenario 2 (deceleration in 1 s from 1.2 m/s 

to 0 m/s), but this time, the robot manipulator adopted two worst-case positions: its arm 
was vertical and horizontal aligned, thus shifting the system’s COG to be affected by the 
worst-case deceleration profile. 
As illustrated in Figure 89, the gyro stabilizer was also able to compensate instabilities for 
both worst-case positions of the robot manipulator.  

 
 

 

Figure 89 Results from scenario 6 for the horizontal worst case position (top) and  

the vertical worst case position (bottom) [174]. 

 

All these scenarios demonstrated that the designed gyro stabilizer can be adopted as a 
capable stabilization mechanism for the testing system mobile manipulator. 
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4.5.5 Comparison of the stabilization strategies results 

The outcomes of the stabilization strategies that employ linear drives as external 
stabilization mechanism are summarized in Table 43. With respect to the “conservation of 
angular momentum” method, the maximum measured contact force between the wheels of the 
mobile platform and the ground dropped to 12.4 N. Moreover, for the strategy 
“inclining/tilting”, the ground contact force only dropped to 53.1 N, by employing the same 
braking profile of −2.0 m/s2. This results in a difference of 40.7 N for the compensation of 
instabilities. 

Using as deceleration profile −2.1 m/s2, the ground contact force measured during the co-
simulations for the strategy “conservation of angular momentum” went down to 3.6 N and can, 
thus, be defined as unsuitable for this case. On the other hand, co-simulations for the strategy 
“inclining/tilting” indicated that the ground contact force only dropped to 42.6 N all along the 
braking process, resulting in a difference of 39.6 N generated force between the two mentioned 
strategies. 

Table 43 Comparison of the simulations for the stabilization strategies  

using the linear drives mechanism. 

Stabilization strategy 
Maximum measured 

ground contact force 

Max. braking deceleration 
of mobile platform 

−2 m/s2 −2.1 m/s2 

Inclining/Tilting 53.1 N 42.6 N 
Conservation of angular 
momentum 

12.4 N 3.6 N 

The main advantage of the strategy “inclining/tilting” is that higher contact forces between 
the wheels of the mobile platform and the ground were reached in comparison to the strategy 
based on the “conservation of angular momentum” principle. However, in order to obtain a 
positive effect for the strategy “inclining/tilting”, the linear drives should shift the robot 
manipulator’s COG before the braking process starts. However, thanks to the laser scanners 
mounted on the employed mobile platform, the stabilization strategy could be able to react prior 
to a deceleration. If an object was detected in a critical area in front of the mobile manipulator, 
the robot manipulator would be tilted backwards immediately. 

During the stabilization strategy based on the “conservation of angular momentum” 
principle, the linear drives tilted the robot manipulator in the direction of travel of the mobile 
platform to compensate on time a braking process. It was possible to react on time depending 
on the acceleration signal of the mobile platform and, thus, generate the required angular 
acceleration for the compensation. 

For an adequate compensation of instability moments regardless of the strategy, it is 
important to mention that the braking process of the mobile platform should last no longer than 
the counteracting angular acceleration applied to the robot manipulator. 

 
Moreover, the described effects suggested the implementation of a gyro stabilizer as 

further stabilization strategy. Mechatronic co-simulations demonstrated that the gyro 
mechanism was able to compensate instability states at the right moment when the mobile 
platform decelerates, explained by its short reaction time and its big impact to the system 



142  Approach A: Stabilization strategies for  
mobile manipulators with limited access to the robot controller 

 
stability. In comparison to the “inclining/tilting” strategy, the gyro stabilizer did not depend on 
a prediction mechanism that prior estimates the mobile platform braking profile. 
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5 Approach B: Stabilization strategy for 

mobile manipulators with full access to 

the robot controller 

The stabilization strategies described in Chapter 4 require an additional external 
mechanism to compensate instabilities, either through linear drives or a gyroscope, since they 
focus on mobile manipulators that have closed-source operating systems. 

The second approach introduced in Chapter 5, uses the mobile manipulator itself as 
stability actuator, detecting instabilities and performing the countermeasures to prevent tip-over 
even in changing environments.  

An important aspect considered in this approach B, is the fact that the mobile manipulator 
should independently detect instabilities and independently trigger the countermeasures to 
prevent the tip over. The strategy to avoid tipping over has to be designed in such a way that 
the mobile manipulator experiences the least possible loss of time for the overall task. The 
following sections provide details on the proposed concept, its development and validation 
employing a robot manipulator testing system. 

5.1 Stabilization strategy incorporated in the robot internal control system  

The dynamic effects emerged from the robot manipulator and/or mobile platform motions 
may lead the overall system to become unstable and start to tip over under the following 
scenarios: 

1) Instabilities can occur when the mobile platform is immobile and the robot manipulator is 
moving. In other words, the target position is approached only by using the robot 
manipulator. 

 
Figure 90 Tilting moment for mobile manipulator in scenario 1. 
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The moment 𝑀𝑆, which is formed around the tilting edge marked by 𝑆 in Figure 90, results 

primarily from the location of the total 𝐹 𝐶𝑂𝐺. Employing distance 𝑑1, the force 𝐹 𝐶𝑂𝐺, or the 
total mass 𝑚𝑡𝑜𝑡𝑎𝑙 with the acceleration due to gravity 𝑔 , the moment 𝑀𝑆 can be calculated 
as 𝑀𝑆 = −‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 = −𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑔 ‖ · 𝑑1. (93) 

Changing the robot manipulator’s arm position affects the overall center of gravity (COG) 
and, as a result, the lever arm in relation to the tilt edge S is shifted. In this case, the robot 
manipulator starts to tip over when the distance to the tilting axis 𝑑1 becomes smaller than 

zero and, thus, the direction of rotation of 𝐹 𝐶𝑂𝐺 changes. 
 

2) Instabilities can also occur when the mobile platform and the robot manipulator move 
simultaneously, e.g., if the Tool Center Point (TCP) is outside the available workspace and 
the mobile platform receives the signal to move to a predetermined location. If the robot 
manipulator has assumed an unfavorable position during the braking and acceleration 
process of the mobile platform, a tip-over also occurs. This is because the acceleration or 
deceleration results in forces that affect the overall system. However, as shown in         

Figure 91, in addition to the force 𝐹 𝐶𝑂𝐺 and the lever arm 𝑑1, the force 𝐹 = 𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑎 ‖  
needs to be taken into account. 

 
Figure 91 Tilting moment for mobile manipulator in scenario 2. 

This force is originated from the total mass of the system 𝑚𝑡𝑜𝑡𝑎𝑙 and the applied 
acceleration 𝑎 , and generates a moment with the lever arm 𝑑2 𝑀𝑆 = −‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 + ‖𝐹 ‖ · 𝑑2 = −𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑔 ‖ · 𝑑1 + 𝑚𝑡𝑜𝑡𝑎𝑙 · ‖𝑎 ‖ · 𝑑2. (94) 

In this case, instabilities can occur if the stand moment 𝑀𝑆 describes that ‖𝐹 𝐶𝑂𝐺‖ · 𝑑1 is 

smaller than the moment generated by ‖𝐹 ‖ · 𝑑2. 
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With focus on increasing ‖𝐹 𝐶𝑂𝐺‖ · 𝑑1, a mechanical approach (adding mass or extending 

the footprint of the mobile platform) cannot be pursued as a solution for mobile manipulators 
because a higher overall mass negatively impacts on battery life and additional supports limit 
its mobility. 

Therefore, for scenario 1 where the mobile platform stands still while the robot manipulator 
is moving, a concept consisting of an optimization of the theoretical workspace of the robot 
manipulator is proposed to avoid a tip-over of the mobile manipulator. In addition, the 
configuration space of the robot manipulator must be adapted so that its joints and links do not 
move beyond the limits of the optimized working space. For the optimized workspace, it is 
important to cover a volume as large as possible so that the robot manipulator has maximum 
room to move. 

In scenario 2, the mobile platform moves to a defined position if the given target 
coordinates for the robot manipulator’s TCP is located outside the optimized workspace (from 
scenario 1). The robot manipulator could either move at the same time or remains in its position 
while the mobile platform moves through space. Here, a repositioning of the robot 
manipulator’s arm should act as stabilization approach, when an instability is detected. In the 
proposed algorithm, the robot manipulator retracts into a safe area while maintaining the 
orientation of the TCP as follows: 
1. The algorithm waits for the target position/orientation. 
2. After receiving the target point, it is checked whether this point is situated inside or outside 

the optimized workspace (from scenario 1). 
3. If the target point is located within the optimized workspace, the path is calculated directly 

and the robot manipulator moves to this target position. 
4. In case the target point is outside the optimized workspace, the mobile platform moves 

near to the target point. During the displacement if the system is in a critical state, the 
repositioning of the arm of the robot manipulator is initialized. The repositioning procedure 
is to be executed as a loop, until the mobile manipulator exhibits a stable state. 

5. As soon as the mobile platform stops, the robot manipulator can move to the target 
position, which should be located inside the optimized workspace. 

 
The entire concept is represented in a simplified way in the flow chart in Figure 92. 
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Figure 92 General description of the algorithm corresponding to the approach B (following [175]). 

The central goal of this part of the work is to develop and implement the stabilization 
strategy shown in Figure 92 based on a ROS framework, and empirically demonstrate its 
effectiveness on a real autonomous mobile manipulator using the proposed countermeasures 
against tip-over. 

5.2 Methodology: Modeling a close-to-reality system of the mobile 

manipulator 

This second approach is also developed in a simulative environment. But this time, ROS 
modeling and simulation tools are employed instead of MBS models, since a further interaction 
between the robot control and path planning is needed. Regardless of this technical distinctness, 
the model of the mobile manipulator needs to be close-to-reality, in order to ensure that the 
performance of the proposed strategy is also reflected in the real system.  

In comparison with the modeling procedure employed for approach A, the model of the 
mobile manipulator is not set up regarding its modal criterion, but rather its geometrical and 
inertial parameters. This assumption is carried out because the system itself is arranged as 
closed-loop control and, thus, its current states are instantly well-known, i.e. unexpected 
behaviors can be detected all the time. 

 
In order to analyze the performance of the stabilization strategy under different conditions 

before it is implemented in the real world, the algorithms are developed and evaluated by means 
of simulations in ROS environments. 

The real mobile manipulator can be represented in the simulation tool Gazebo, which is 
based on a robot description that visualizes the mobile manipulator in a virtual environment. 
For this, the ROS package gazebo_ros_pkgs provides the necessary interfaces to simulate the 
mobile manipulator in Gazebo, implementing ROS messages and services in real time with the 
virtual robot [176]. The mobile manipulator description is contained in the so-called URDF 



Approach B: Stabilization strategy for 
mobile manipulators with full access to the robot controller 147 

 
files (Unified Robot Description Format) as XML-format. The URDF files also includes 
information about individual components and their geometry, the joints/connections between 
components and their constraints, the alignment of individual components as well as material, 
physical and collision properties that support the visualization of each component. For the 
simulation model of the mobile manipulator, it is very important that the dynamical parameters 
and general information contained in the URDF-file fits properly the real system regarding the 
geometry, bodies mass, inertia tensor, COG vector and its kinematic chain. 

The geometry of the mobile platform and the robot manipulator as a complete CAD volume 
model is required for its robot definition. It is crucial to simplify the model while keeping its 
nominal weight and its theoretical COG. In particular, the dimensions and the material volume 
that are located far away from axes of rotation, have to be mapped realistically, since these have 
the greatest influence on the inertia tensor [177]. Small electrical components (circuit boards, 
cables, etc.) as well as mechanical fastening elements might not be taken into consideration. 

All components of the mobile manipulator can be modeled as rigid bodies because 
deformations during the simulations are not expected. One important aspect to consider during 
the modeling of the mobile platform is the friction coefficient, which should avoid occasional 
slipping of the wheels, as in the real world. 

Both robot definitions (robot manipulator and mobile platform) need to be assembled into 
an entire module. In a separate URDF-file, a 6 degrees of freedom (DOF) massless joint has to 
be attached at the point that represents the spot at which both subsystem are connected to each 
other. This point, P in Figure 93, helps to represent the components of the forces and moments 
acting to and deriving from both subsystems, the mobile platform and the robot manipulator. 

 
Figure 93 Representation of 6 DOF massless joint implemented in a URDF-file. 

In addition, since the mobile platform should move relative to the world (global) coordinate 
system, a virtual planar joint between the world and the mobile manipulator has to be added in 
MoveIt! to describe this motion constraint. 

 

RViz as 3D representation of the robotic system, MoveIt! (configured to work with 
ControlIt! [178]) as control tool and Gazebo as virtual world, assist the development of the 
algorithms in a close-to-reality virtual environment. They provide the same functionalities of a 
real mobile manipulator, mostly the data transfer for the differential drives (servo motors) and 
the navigation sensors (e.g., laser scanners [52]). 
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5.3 Development of stabilization strategy 

The first step consists in determining whether the target position of the Tool Center Point 
(TCP) could be reached just by moving the robot manipulator arm. For this, the algorithm 
estimates the current TCP position and orientation of the robot manipulator in its world 
coordinate system (fixed on the mobile platform) and the current position and orientation of the 
mobile platform, with respect to its dynamic workspace. Then, the robot manipulator’s inverse 
kinematics is computed to verify if the target TCP position can be reached by the robot 
manipulator links. If so, the robot manipulator is controlled to reach the target. 

If not, it means that the target TCP position is located outside the current robot manipulator 
workspace, and that the mobile platform has to move in the direction of the target TCP. The 
vectors with respect to the mobile platform driving plane to the target TCP position, which is 
located outside the workspace, is computed and assigned as displacement set point for the 
mobile platform. In this case, moving both individual subsystems simultaneously would be the 
most effective way to reach the target TCP position as fast as possible. 

The general principal limitation is that large forces and torques generated by certain 
configurations/motions of the robot manipulator and/or by accelerations of the mobile platform 
tend to overturn the whole robotic system. Therefore, no matter which behavior is adopted to 
reach the target position, the compensation of the generated forces and moments by the 
stabilization strategy is indispensable. 

5.3.1 Building a simulation setup in ROS environment 

Section 2.4 provided a brief overview of the basic concepts of the Robot Operating System 
(ROS), which facilitates the understanding of the paragraphs below. 

 

To operate in the simulation environment, Gazebo has to be started and immediately be 
followed by RViz via MoveIt!. Afterwards, the communication link between Gazebo and 
MoveIt! has to be established. Then, the following steps need to be executed: 
1. Load a predefined map for the world space in Gazebo and RViz. 
2. Define the TCP target position in the space. 
3. If required, the mobile platform moves towards the TCP target position using the ROS 

package move_scitos. 
4. The robot manipulator is then approached to the TCP target position by MoveIt! using the 

ROS package move_arm. 
 
Both ROS packages, move_scitos for the motion of the mobile platform and move_arm for 

the motion of the robot manipulator, are included into a superordinate package called tcp_goal. 
This logic is enclosed in the main function that incorporates the data about the current position 
and orientation of the mobile manipulator. Based on the target TCP position, the algorithm 
establishes autonomously, if the target position is located inside the workspace of the robot 
manipulator and, thus, can be reached without needing to move the mobile platform. On the 
other hand, it calculates how much the mobile platform must be relocated in space. Hence, 
depending on the current and the target TCP position/orientation, the main program calls the 
corresponding functions to move the mobile platform, if necessary. Then, the main program 
waits until the target position/orientation for the mobile platform has been reached. Once it 
happens, the main program calls the function to move the robot manipulator, thus reaching the 
end target TCP position. 
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The computer unit must be able to manage all processes in parallel as a multitasking 

system. To fulfil this requirement, the Whole Body Operational Space Control (WBOSC)[178] 
is implemented. This algorithm allows to control multiple tasks of the mobile manipulator at 
the same time by defining restrictions and particular priorities to each task. WBOSC is also 
implemented in ROS via ControlIt! It simultaneously gets the information sent by the sensors 
from each rotational joint and computes the motion path. 

 
The main problem of the described motion logic is that the tilting stability of the mobile 

manipulator is not guaranteed for all points located in the robot manipulator theoretical 
workspace and for scenarios when the mobile platform moves. To avoid human beings and 
machines dangerous situations, algorithms for the autonomous tilting detection and avoidance 
have been developed. 

5.3.2 Stabilization strategy 

The entire algorithm for the stabilization strategy is divided into two main parts: The first 
section addresses the problematic regarding the tip-over detection and then, the second part, 
examines the tip-over avoidance query. 

5.3.2.1 Tip-over detection algorithm 

Generally speaking, a mobile manipulator tends to tip over its tip-over axis. A tip-over axis 
is described by the outer edge of its footprint. Depending on the shape of the footprint, the 
mobile manipulator could tip over the different axes that correspond to the outer edge of its 
footprint. 

The tilting shape of a mobile manipulator is defined by linking the connecting lines of the 
contact points between the wheels of the mobile platform and the ground. Thus, for a mobile 
platform with three wheels, the triangle sides constitute the tilting stability axes for the mobile 
manipulator. Each of these axes is represented with a unit vector, as shown in Figure 94. Their 
direction corresponds to the shape of a closed chain. 

 
Figure 94 Tilting shape and mobile platform COG (following [95]). 

The technique Force Angle stability measure (FA), seen in Section 3.2, served as a starting 
point for the implementation of the tip-over detection algorithm. Since the position of the 
mobile manipulator’s COG changes depending on the configuration of the robot manipulator, 
the COG of the overall system has to be continuously calculated by the ROS package 
robot_kinetics_pkgs [179]. In order to detect if the mobile manipulator is prone to tip-over, the 
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algorithm computes all forces acting on the robot manipulator at any point of time. The resulting 
vector intersects the plane on which the tilting shape lies. Then, the distance between the 
projection of the intersection point and the tilting axes are determined. If the intersection point 
is situated outside the tilting shape (Figure 94), the mobile manipulator has a risk to tip-over. 

The sensitivity of this algorithm can be adjusted by increasing or decreasing the offset that 
describes the distance between the COG and the footprint, as shown in Figure 95. The greater 
the offset, the more sensitive the tip-over detection because the resulting force vector points 
outside the footprint earlier. 

 
Figure 95 FA point of intersection (red) between resulting force and footprint (following [148]). 

The Force-Angle stability measure monitors the angle between the resulting force and the 
mobile manipulator tip-over axes, but only examines magnitude and direction of the total 
acceleration measured by sensors located on the mobile platform. Additionally, the stability 
state is represented as a binary value, distinguishing between stable and unstable, but no 
statement is made about the degree of risk. 

Consequently, this approach is enriched by employing the Moment Height Stability (MHS) 
method, introduced in Section 3.2, which not only considers the forces measured by Inertial 
Measurement Units (IMU) situated on the mobile platform, but also contemplates the internal 
forces emerged during the robot manipulator’s motion. 

 
In order to implement the MHS technique, the mobile manipulator model (including mass, 

COG and inertia tensor) in combination with the motions of the robot manipulator (position, 
velocity and acceleration of all joints) is employed to determine the inverse dynamics of the 
system by applying the recursive Newton-Euler algorithm (RNEA) of R. Featherstone [55], 
seen in Section 2.5. The inverse dynamics is the foundation of the dynamic tip-over detection 
using the MHS technique, since its components represent how the robot manipulator affects the 
mobile platform in terms of the forces (including inertial) and torques generated only by the 
robot manipulator’s motion itself. The RNEA algorithm adopted to solve the inverse dynamics 
in this study was already implemented by R. Smits [180,181] in ROS, based on the R. 
Featherstone statements. 

To this effect, the ROS topic joint_states provides the current joint positions and joint 
angular velocities of the robot manipulator. The joint angular accelerations are not directly 
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available from the topic, but they are implemented as an extra ROS node, which continuously 
calculates them by using the backward-difference approximation (only the current and last 
value for the angular velocity are available). The topic joint_state_acceleration publishes then 
all the information regarding each joint required for the inverse dynamics. 

As a first step, the velocity and acceleration of all robot manipulator’s links, beginning 
from the basis to the end effector (TCP), as well as the emerging forces and torques that induced 
those accelerations are estimated. Subsequent, all forces and torques transferred from the parent 
link to the child link across the kinematic chain are also computed by combining equations for 
the linear and rotational motion of rigid bodies given by Newton and Euler [55]. Besides, an 
IMU has to deliver information about the 3D-linear acceleration of the moving mobile platform 
and the vector of the gravitational acceleration regarding the mobile platform, since the 
acceleration/deceleration generated during the starting off/braking process is crucial for the 
estimation of a stability value. 

Based on the outcomes of the inverse dynamics (RNEA) as well as the measurements from 
the IMU and the location of the COG related to the mobile coordinate system, the dynamic 
stability can be estimated by means of the MHS method following these steps: 
1. The system has to be first split into the two parts that are physically connected by the point 

P, as represented in Figure 96: the mobile platform and the robot manipulator. The 

components of 𝐹  and �⃗⃗�  represent how the robot manipulator affects the mobile platform 
when the robot manipulator moves. 

 
Figure 96 Connection point P of the mobile platform with the robot manipulator [148]. 

2. The acceleration values acting on point P has to be estimated and represented in the 
coordinate system of the mobile platform. 

3. The joint forces acting on point P are also computed by means of inverse dynamics 
(RNEA) and correspondingly projected to the mobile platform coordinate system. 
Additionally, all inertial forces caused by the linear acceleration of the mobile platform 
acting on its COG has to be considered into the algorithm. 

4. The tilting shape is defined, as in the FA method. 
5. From the sum of the forces affecting the system, a total moment Mi,T is calculated for each 

vertex of tilting shape by the cross product between the resultant force FM generated by the 
robot manipulator and the (inverted) connection vectors of the tilting shape 𝑒 𝑠𝑖𝑑𝑒, adding 
the resulting moments of the articulations Md. Figure 97 assists the formulation of the 
corresponding equations. 
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Figure 97 Vectors for the projected torque calculation. �⃗⃗� 1,𝑇 = (𝑒 𝑟𝑖𝑔ℎ𝑡  ×  𝐹 𝑀) + �⃗⃗� 𝑑 

 
(95) �⃗⃗� 2,𝑇 = (𝑒 𝑙𝑒𝑓𝑡  ×  𝐹 𝑀) + �⃗⃗� 𝑑 

 
(96) �⃗⃗� 3,𝑇 = (𝑒 𝑓𝑟𝑜𝑛𝑡  ×  𝐹 𝑀) + �⃗⃗� 𝑑. (97) 

In addition, all moments acting on the COG of the mobile platform have to be estimated 
by the cross product between the force and the corresponding lever arm as follows �⃗⃗� 1,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑟𝑖𝑔ℎ𝑡 × 𝐹 𝐵𝑎𝑠𝑒) 

 
(98) �⃗⃗� 2,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑙𝑒𝑓𝑡 × 𝐹 𝐵𝑎𝑠𝑒) 

 
(99) �⃗⃗� 3,𝐵𝑎𝑠𝑖𝑠 = (𝐶𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓𝑟𝑜𝑛𝑡 × 𝐹 𝐵𝑎𝑠𝑒). (100) 

The total moment regarding each tilting edge is calculated as the addition of both moments: �⃗⃗� 𝑣1 = �⃗⃗� 1,𝑇 + �⃗⃗� 1,𝐵𝑎𝑠𝑖𝑠 
 

(101) �⃗⃗� 𝑣2 = �⃗⃗� 2,𝑇 + �⃗⃗� 2,𝐵𝑎𝑠𝑖𝑠 
 

(102) �⃗⃗� 𝑣3 = �⃗⃗� 3,𝑇 + �⃗⃗� 3,𝐵𝑎𝑠𝑖𝑠. (103) 

6. These resulting moments �⃗⃗� 𝑣𝑖 have to be projected on the respective tilting axis by means 
of scalar product between them and the vectors of the tilting shape. Given 𝑝1⃗⃗  ⃗, 𝑝2⃗⃗⃗⃗ … 𝑝𝑛⃗⃗⃗⃗  as 
contact points of the mobile platform with the ground (wheels), the unit vectors can be 
calculated as follows �⃗⃗� 𝑖 = �⃗⃗� 𝑣𝑖  ∙  𝑒�̂� (104) 

with 𝑒�̂� = 𝑝 𝑖+1 − 𝑝 𝑖‖𝑝 𝑖+1 − 𝑝 𝑖‖. (105) 

The resultant moment �⃗⃗� 𝑖 comprises all forces and moments acting on P (caused by the 
robot manipulator) as well as all forces and moments acting on the COG of the mobile 
platform (caused by inertias, linear accelerations/decelerations from starting off and 
braking process, gravitational forces, etc.). 
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7. Considering that positive moments faced inside the unit vectors of the tilting shape, positive 

moments mean that the sum of all stability moments regarding an edge is bigger than the 
sum of all the tilting moments. The dynamical stability value 𝛼𝑖 relating to the same 𝑖 edge, 
for which the moment is calculated, can be then computed with help of the mass moment 
of inertia of the mobile manipulator regarding the 𝑖 edge, 𝐼𝑣𝑖. 𝛼𝑖 = (𝐼𝑣𝑖)𝜎𝑖 ∙  𝑀𝑖 (106) 

where 𝜎𝑖 = {+1 𝑓𝑜𝑟 𝑀𝑖 > 0−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (107) 

The MHS coefficient is defined as the critical value (smallest dynamical stability value for 𝛼) regarding an edge 𝑖 of the tilting shape. In other words, the smallest value of 𝛼𝑖 regarding an 
edge represents the edge with the most critical stability state. 𝛼 = min(𝛼𝑖) can thus be 
interpreted as: 𝛼>0  System is stable 𝛼=0  System is critically stable 𝛼<0  System tends to tip over edge 𝑖 
 𝛼𝑖 reacts very sensitively to the height of the system COG, i.e. under the same conditions, 
a higher position of the COG leads to an increased level of vulnerability for the system stability 
against tilting over. Therefore, the MHS equation is complemented as follows 𝛼𝑖−𝑐𝑚 = (ℎ𝐶𝑂𝐺)𝜆 · min(𝛼𝑖) (108) 

being 𝜆 = {−1 𝑓𝑜𝑟 min(𝛼𝑖) > 0+1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (109) 

The continuous computation of the stability value 𝛼𝑖−𝑐𝑚 during the mobile manipulator 
operation allows the detection of tip over risks and its critical tilting edge. The stability value 
based on the MHS method is the basis for triggering the tilting avoidance countermeasures. 

5.3.2.2 Tip-over avoidance algorithm 

Once the tip-over detection algorithm is able to identify a possible overturn of the mobile 
manipulator, it is decisive to actively react against these instabilities by means of a tip-over 
avoidance algorithm. 

A reduction of the traveling speed of the mobile platform can contribute to prevent a 
system tip-over, however, it involves significant cycle time loss. Shifting the system COG, 
whereby the robot manipulator takes another configuration/position, is probably the best and 
most efficient method to avoid a tip-over of the mobile manipulator. Therefore, in case unstable 
states are detected while the mobile platform is moving, a repositioning of the robot 
manipulator’s arm takes place. 

A prerequisite for tip-over avoidance procedure is that the initial orientation of the robot 
manipulator’s TCP remains unchanged during the repositioning process. 

5.3.2.2.1 Workspace optimization 

The reachable workspace of a robot manipulator describes all points in the space that its 
end-effector can reach in at least one of its orientations within its mechanical configurations. 
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On the other hand, the dexterous workspace is the subset of the reachable space in which the 
end-effector is able to reach the points with all its possible orientations [182–184]. 

The workspace of a stationary robot manipulator is perfectly known and delimited by its 
own kinematics. In contrast, the workspace of a mobile manipulator is infinitely large, variable 
and restricted by walls and other barriers. Mobile manipulators have a global and a local 
workspace: the local workspace is situated directly around the robot manipulator and describes 
all points that can be reached by its end-effector without having to move the mobile platform; 
the global workspace is characterized by the space the end-effector can reach when the mobile 
platform also moves [183,185]. 

Besides that, the configuration space (so-called C-Space) contains all possible poses 
restricted by the joint properties, in which each of its single point defines a unique configuration 
of the robot manipulator kinematic chain [183]. The dimension of the configuration space 
corresponds to the minimum number of parameters needed to specify a pose of the robot 
manipulator (its degree of freedom [186]). Moreover, all joint positions that are impermissible 
within the configuration space are represented by the collision (obstacle) space Cobs. The so-
called free space is, then, the difference of the collision space and the configuration space. 

 

The proposed stabilization algorithm implements all these workspaces in ROS as follows: 
 The reachable workspace of the robot manipulator has to be stored in the general robot 

description. 
 The robot manipulator´s configuration space, including its permissible joint range, are 

defined as variable on the robot description. The joint movements can be set up using the 
MoveIt! wizard. 

 The configuration space has to be constrained with collision matrixes, so that no collisions 
with the own robot manipulator’s links occur [187]. 

 Obstacles in the workspace are included to simulate the items that normally exist in a real 
environment. They are taken into account during the motion planning [188]. 

 Based on the defined configuration and collision space, a collision-free path is created. A 
comprehensive selection of algorithms for the motion planning can move the joints within 
this free space employing MoveIt! Because of its high success rate and its fast computation, 
the solver RRT (rapidly-exploring random tree) is implemented to search for a collision-
free path within the configuration space in this approach [189, 190]. 
 

In order to implement the workspace optimization (illustrated with the green area in    
Figure 98-b), the entire theoretical workspace (illustrated with the orange area in Figure 98-a) 
is divided into two parts: a critical and a non-critical workspace. 
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Figure 98 a) Theoretical and b) Non-critical workspace optimization (following [175]). 

1. The non-critical area is described by a hemisphere with the original theoretical workspace 𝑟𝑡ℎ𝑒𝑜 as its maximum radius, and 
2. The critical workspace is proposed as an ellipsoid with maximum focal point 𝑟𝑜𝑝𝑡. The 

ellipsoid is chosen because its geometric shape builds a sphere very closely, resulting in 
minimal modifications to the original workspace and minimal reductions regarding its 
volume. 

The non-critical area is represented with the equation for ellipsoids: (𝑥 − 𝑥0(𝑡))2𝑎2 + (𝑦 − 𝑦0(𝑡))2𝑏2 + (𝑧 − 𝑧0(𝑡))2𝑐2 = 1. (110) 

Considering that the rotary axis of the front wheels of the mobile manipulator coincides with 
one of its tilting shapes (see Figure 97), the risk of tip over the front two wheels tends to be 
much higher in comparison with both lateral wheels. Consequently, the optimized radius, 𝑟𝑜𝑝𝑡, 
can be considered for the 𝑎-direction in the Eq. (111), and the entire theoretical radius, rtheo, can 
be used for the 𝑏- and 𝑐-directions. The generally valid equation is reformulated as follows 𝑥, 𝑦, 𝑧, 𝑟 ∈ ℝ3 |(𝑥 − 𝑥0(𝑡))2𝑟𝑜𝑝𝑡2 + (𝑦 − 𝑦0(𝑡))2𝑟𝑡ℎ𝑒𝑜2 + (𝑧 − 𝑧0(𝑡))2𝑟𝑡ℎ𝑒𝑜2 | ≤ 1. (111) 

 

Since the optimized workspace must define the volume at which the mobile manipulator 
adopts all positions without making it tip over, the tilting moment Mstatic with respect to point 
A shown in Figure 99 is employed to define the dimensions of the ellipsoid. 

 
Figure 99 Free body diagram of mobile manipulator (following [175]). 
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 𝑀static = ∑𝐹𝑖 · 𝑑𝑖 .𝑛
𝑖=0  (112) 

 
Nearly all robot manipulators possess 6 or 7 articulated joints. It can be generalized that 

from the three main joints and their corresponding links of robot manipulators (J1 or waist joint, 
J2 or shoulder joint and J3 or elbow joint), the positions that mainly affect the tilting moment 
Mstatic are characterized by its second and third link: in Figure 99, the lever arm of forces F1 and 
F2 to the center of rotation A changes depending on angles β and Υ. 

Thus, the moment generated by force F1 is determined by changes in the angle β of the 
robot manipulator. Likewise, the moment produced by force F2 is determined by both, β and Υ, 
as follows: 
For F1, 𝑑1 = l1 · sin(𝛽) (113) 

For F2, 𝑑2 = l1 · sin(𝛽) + l2 · sin(𝛽 + Υ). (114) 

Considering the whole angle interval of β for the first link (l1) and only limiting the angle 
interval Υ for the second link (l2) implies that the robot manipulator would be able to adopt the 
greatest possible arch for reaching the target point, without suffering any instabilities. 

 
Once the optimized workspace is defined, it is also necessary to determine whether the 

robot manipulator’s TCP is located within the pre-defined critical volume (in front of the robot 
manipulator) or within the non-critical volume (behind the robot manipulator– this area is less 
critical, as the robot manipulator is further away from the edge it might tip over). For that 
purpose, the vector between the mobile platform and the robot manipulator’s end-effector 𝑇𝐶𝑃⃗⃗⃗⃗⃗⃗ ⃗⃗  has to be calculated and then transformed into the coordinate system of the mobile 
platform. 

 
Figure 100 The angle 𝛤 defines if the TCP is located within the critical volume (following [175]). 

As shown in Figure 100, the scalar product between the direction vector 𝑥 mp and vector TCP⃗⃗ ⃗⃗ ⃗⃗  ⃗mp is used to infer the value of angle 𝛤 as follows 
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 Γ = cos−1 (𝑇𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗mp ∙ �⃗⃗� mp‖𝑇𝐶𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗mp‖ ). (115) 

This angle 𝛤 provides information about the position of the TCP relative to the mobile 
platform. This way, it can be distinguished whether the equation for the hemisphere or for the 
ellipsoid should be used for the workspace during the operation of the mobile manipulator. In 
general, if: 
 𝛤 <90°, the TCP is located within the critical volume and, thus, the ellipsoid should be 

employed as the permitted workspace for the motion planning. 
 𝛤 >90°, the TCP is located within the non-critical volume and, thus, the hemisphere 

defined by the theoretical local workspace should be employed for the motion planning. 
 

By means of this function, the limits of the reachable working space is also implemented 
in ROS: the transformation between the map and the mobile platform is first retrieved. This can 
be used to determine the vector between the mobile platform and the TCP, which is then 
transformed into the coordinate system of the mobile platform. The subsequent calculation 
checks whether the TCP lays in front of the robot manipulator, in the critical volume, or behind 
it, in the non-critical volume. The function can then distinguish whether the spherical equation 
or the equation of the ellipsoid is being used. 

5.3.2.2.2 Repositioning of robot manipulator 

The robot manipulator and the mobile platform moving simultaneously is the second 
relevant scenario that has to be examined. There, dynamic forces and moments are generated 
by the robot manipulator joints and by the mobile platform motion itself. Therefore, as soon as 
an instability is detected by the algorithm presented in Section 5.3.2.1, a further algorithm 
should actively shift the system COG in such a way that the value from MHS exhibits more 
stability, in other words, 𝛼𝑖−𝑐𝑚 increases its value. 

The effortless way to implement it would be the reposition of the arm of the robot 
manipulator into a fixed home/safe posture before the platform starts to move. However, this 
method involves significant loss of time for the original task to be performed: even if the TCP 
is only just outside the non-critical volume, the robot manipulator has to execute the complete 
trajectory to the home/safe position before the mobile platform starts moving. Therefore, a 
prerequisite for the stabilization strategy presented in this approach is that the robot manipulator 
moves as little as possible during the reposition, in order not to unnecessarily deviate it from its 
original path. 

 
A similar analysis to that in Section 5.3.2.2.1 is carried out to determine the dynamic 

critical torque Mdyn, using the schema in Figure 101. 
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Figure 101 Free body diagram of mobile manipulator considering dynamic forces and 

 moments generated by operation movements (following [175]). 

𝑀dyn = ∑𝐹𝑖 · 𝑑𝑖𝑛
𝑖=0 − ‖𝑎 ‖ · mtotal · ℎCOG. (116) 

The height of the COG of the individual components, h𝑖 , depends on the angles β and Υ as ℎ𝑖=1 = ℎ0 + cos(𝛽) · ℎ1−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 (117) 

where ℎ0 represents a constant, corresponding to the height up to the first joint, and the value ℎ1−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 describes the height of the COG for the first link, with respect to its own coordinate 
system located in its pivot point. The height of the COG for the second member is, then, 
calculated with help of both angles (β and Υ) as well as with the length 𝑙1 of the first link as 
follows ℎ𝑖=2 = ℎ0 + 𝑙1 · cos(𝛽) +ℎ2−𝐽𝑜𝑖𝑛𝑡𝐶𝑂𝐺 · cos(𝛽 + Υ). (118) 

 
Changes in the dynamic tilting stability, α, can be studied in relation to the robot 

manipulator joint variables, qi, which describe the relative rotational motion between its 
contiguous links. They characterize the coordinates of the spaces in which the location of all 
the links of the robot manipulator are represented [191]. 

Through the gradient method, it is possible to find out in which direction in space the vector 
attached to the TCP acquires higher tilting stability by applying a fixed increment Δ±qi. This 
increment is added to and subtracted from each current joint position qi of the robot manipulator 
iteratively until the termination criterion, the dynamic tilting stability value computed by the 
MHS method, is fulfilled. 

A spatial discretization is carried out in order to simplify the approximation of the gradient 
method. The revolute joints q1 to q4 of the robot manipulator are the only parameters used for 
the discretization because they produce the greatest influence on the tilting stability of the entire 
system. The tilting stability value remains almost unchanged if the joint variables q5, q6 and, 
eventually, q7 varies, since they have about the same coordinate origin. 
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Figure 102 Discretization of workspace for the implementation of the gradient function required for 

the repositioning of the robot manipulator’s joints (following [175]). 

The red point illustrated in Figure 102 represents the current position of the robot 
manipulator´s TCP. Based on this configuration, when the tip over detection algorithm 
identifies an instability, i.e. the stability value drops lower than the predefined critical value, 
the tip over avoidance algorithm calculates a new tilting stability value, 𝛼∆±𝑞, for the joint 
configuration that corresponds to each of the blue points. If the maximum value determined for 
this new tilting stability value, 𝛼∆±𝑞, increases above the defined threshold value, 𝛼cm−critical, 
then the new joint position is sent to the motion control and the robot manipulator repositions 
its joint, thus, improving the system stability state. Otherwise, if the calculated 𝛼∆±𝑞 does not 
fully overshoot the threshold value 𝛼cm−critical, the algorithm iteratively calculates a new tilting 
stability value 𝛼∆±𝑞 until it fulfills the stability criterion. Using this technique, it can be ensured 
that the robot manipulator is repositioned as much as necessary. This algorithm is illustrated in    
Figure 103. 
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Figure 103 Algorithm for calculating the new joint position for robot manipulator (following [175]). 

The developed algorithm of the stabilization strategy for mobile manipulators is also 
implemented in the ROS model to cover the “tilting detection” and “tilting avoidance” 
functionalities, as illustrated in Figure 104. It determines a new TCP position for the robot 
manipulator that implies higher tilting stability and returns it to the main program. Then, the 
control unit relocates the corresponding joints within the collision-free optimized workspace, 
specifying the target orientation as the current orientation of the TCP. 

 

Figure 104 Mobile manipulator control functionalities. 

Before the mobile manipulator starts moving, the /tilt_over_detection node subscribes the 
topic of the IMU measurements, to get the data provided by the inertial sensors, and the topic 
COG, to get the position and orientation of the mobile manipulator’s COG. Once the required 
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information is received, the same node /tilt_over_detection estimates the vector 
Position_IntersectionPoint for all tilting edges and, consequently, publishes this information in 
the topic /tilt_risk. If the Position_IntersectionPoint delivers a positive value, the calculated 
force points outside the overturning shape and the mobile manipulator is prone to tip over. 
Following this, the node /robot_main_control subscribes the information contained in the topic 
/tilt_risk and controls the robot manipulator to move to a safety position within the predefined 
optimized workspace, employing the gradient approach. After the mobile manipulator is 
considered as stable, the topic /estimated_tcp_goal sets and publishes how to reach the desired 
tcp_goal_position, either only performing a rearrangement of the robot manipulator joints or 
including the displacement of mobile platform to another point in the space. After the path 
planning is completed, the target position and orientation for each robotic subsystem are posted 
iteratively to the control unit and the mobile manipulator starts moving to the goal position. 
Meanwhile, the /tilt_over_detection checks the current stability value 𝛼𝑖−𝑐𝑚 continuously: as 
soon as 𝛼𝑖−𝑐𝑚 drops below the predefined critical value, the node /robot_main_control starts 
the repositioning, since the whole system is unstable. Once the system exhibits a stable state, 
the /estimated_tcp_goal adopts temporary the new position (after repositioning) in the path 
planning as target position for the robot manipulator until the mobile platform reaches its target 
position, so as to not affect the stability state achieved. 

5.4 Implementation of stabilization strategy employing a testing system 

Since this second approach demands the customization of the control system of the mobile 
manipulators and due to the fact that the standard industrial robot manipulator used as testing 
system in approach A (see Section 4.5) does not allow the alteration of its control system, an 
additional testing system was required for the implementation of the stabilization strategy. 

The new adopted testing system is operated by a higher robot manipulator and by an even 
more compact mobile platform that, together, offer high agility and maneuverability due to its 
compact design, however, the addressed stability problem has been observed during some 
experimental attempts: large forces and moments generated by certain configurations and/or 
motions of the robot manipulator tended to tip the mobile manipulator over.  

The testing system is comprised by the mobile platform Scitos G5 by MetraLabs and the 
7-DOF lightweight robot manipulator LWA 4D by Schunk, illustrated in Figure 105. Both 
subsystems are equipped with open-source middlewares, which enable an easy and fast 
implementation of algorithms. 

 

 
Figure 105 Scitos G5 and LWA 4D as testing system for the developed approch B. 

The mobile platform uses differential drives to get moving. Especially for such mobile 
platforms, the direct contact between the ground and its drive wheels is essential; otherwise, if 
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the drive wheels raise off the ground, the theoretical current location of the TCP in the real 
world space will be incorrect because it will be calculated using the wrong parameters for its 
position and orientation. 

The mobile platform’s battery powers the robot manipulator through a DC-DC converter. 
This makes the mobile manipulator independent of wired connections. It must be noted that the 
mobile platform is controllable with the middleware for robotic applications MIRA [192], 
whereas the 7-DOF robot manipulator is controlled by the robot operating system ROS [193]. 
For the system integration of the two different middlewares, the ROS - MIRA bridge of the 
STRANDS project [194] was implemented. This made the whole robot system controllable via 
ROS, required for the execution of the stabilization strategy. 

 
Although the presented approach was implemented through simulations, the goal is to 

validate the stabilization strategy in the real system once the results from the simulation sets are 
shown as satisfactory. For the assembly of both subsystems, the following mechanical, 
electrical and information technology integration were required: 
 Mechanical integration. The robot manipulator was mounted centered on the upper plate 

of the mobile platform to ensure an equivalent handling workspace in all directions. This 
way, the robot manipulator is able to handle the same payload under the same 
circumstances in all directions of its world coordinate system, located center-aligned of the 
mobile platform. 

 Electrical integration. Both, the mobile platform and the robot manipulator, operate on      
24 VDC. The robot manipulator required 5 A for continuous operation or rather a 
maximum of 15 A for peak load operation [195]. Theoretically, the power consumption of 
both subsystems could be supplied by the built-in battery of the mobile platform [196]. 
The main challenge by adopting this solution was the variations on the battery power 
supply within the rated voltage depending on its state of charge (29 VDC while charging, 
28 VDC at full charge and 22 VDC when almost empty). The servomotors of the robot 
manipulator were designed for being operated at 24 ±5% VDC (25.2 VDC – 22.8 VDC). 
If the robot manipulator was powered with a higher VDC, its components would be 
damaged. To meet this requirement, a DC-DC converter had been integrated into the 
electric circuit to power the robot manipulator with constant 24 VDC and to provide the 
required 6.2 A nominal current (5 A for its motors and 1.2 A for its control unit). 

 Information technology integration. As mentioned above, due to the fact that the mobile 
platform was controlled by the middleware MIRA [197] and the 7-DOF robot manipulator 
was controlled by the middleware ROS, a software/firmware integration was needed in 
addition to the mechanical and the electrical integration. The mobile platform 
manufacturer does not offer any possibility to achieve a communication between ROS-
based robot controllers with the mobile platform. Hence, both robotics systems should 
work based on MIRA or ROS, and one of the systems had to be adapted to work based on 
the middleware available by the other system. Considering the easiness ROS involves, an 
interface between MIRA and ROS enabled them to collaborate in a ROS environment: the 
mobile platform motion planning was calculated by MIRA but its execution was performed 
by ROS, acting as a single system for the entire mobile manipulator. For the integration, 
the Spation-Temporal Representation and Activities for Cognitive Control in Long-Term 
Scenarios (STRANDS [50]) was implemented as interface between MIRA and ROS. The 
STRANDS project contains the packages scitos_drivers, scitos_common and sick300. The 
actuation of the robot manipulator joints are received from the computational unit located 
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at the mobile platform to the servomotors via CANopen. Consequently, the integrated 
mobile manipulator can be controlled entirely through ROS. 

5.4.1 Modeling a close-to-reality mobile manipulator testing system 

The model of the testing system mobile manipulator was composed of the description of 
the robot manipulator and the description of the mobile platform. The robot manipulator was 
prepared according to the already available software package developed by Fraunhofer IPA 
[176,198,199], as a part of various cooperative research projects with the robot manufacturer. 
The subfolder package schunk_modular_robotics/schunk_description/meshes included the data 
related to the links and joints geometry of the robot manipulator in form of STL (stereo 
lithography CAD for 3D systems) mesh files. 

The robot definition available from the IPA project [176,198,199] only included the 
standard configuration of the robot manipulator (LWA 4D). The robot manipulator employed 
as testing system in this work was a special edition of the LWA 4D, which contained a             
230-mm extension piece between the third and fourth joints. Thus, for the purpose of analysis, 
the robot definition was slightly adjusted in the schunk_lwa4d_moveit_config, adding the 
mentioned extension piece together with its physical properties as mass, center of mass, inertial 
parameters, etc. 

Besides, the subfolder schunk_description/urdf described the masses of all robot 
components, their material properties, how they were arranged to each other, where their 
coordinate systems were located, the dependencies on a moving part fixed coordinate system, 
the spatial boundaries, and so forth. Furthermore, security zones (collision zones) and the 
Denavit-Hartenberg parameters, for the kinematic chain of the robot manipulator, were also 
defined in the URDF-file. 

The URDF-file for the mobile platform was built up from scratch based on STL. Since a 
detailed modeling of all its components was not target-oriented, its structure was therefore 
analyzed to identify the bodies with the greatest influence on the dynamic behavior of the 
mobile platform. However, the real geometry must be reproduced as accurately as possible. The 
mass and COG of each main body must match the reality. 

The two wheels for the differential drives of the mobile platform together with its support 
wheels were added to the robot definition, permitting all the DOF needed for a real motion. 
Additionally, in order to help the detection of tilting instabilities, the same IMU implemented 
for approach A (see Section 4.5.4) and the laser scanners were also represented virtually using 
an additional node: Their raw data were employed as input variables in Gazebo for the current 
pose of the mobile manipulator in space [200]. Thanks to a coordinate transformation of the 
gravitational vector, changes in the direction of gravity, e.g., by driving on a ramp, could also 
be detected. 

For the integration of both subsystems into one single model, the robot description of the 
mobile platform was defined as parent for the mobile manipulator, being the part on which the 
robot manipulator (defined as child) was mounted. This integration is shown in Figure 106. 
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Figure 106 The virtual model of the mobile manipulator [95]. 

In order to obtain the same traveling behavior of the real mobile platform in the simulations 
(controlled by the computational unit), plugins for the data transfer between ROS and Gazebo 
for the differential drives were added and configured as in the real robot. These control packages 
involved the scitos_drivers, the scitos_common and the sicks300, provided in Annex A.5. 
Consequently, the entire mobile manipulator was able to be completely controlled through 
ROS. 
 

The robot control program “RobotMainControl” (RMC) allowed the mobile manipulator 
to interact with its environment. RMC expected as input parameter the target position and 
orientation for the TCP in world coordinate system. Then, an additional node estimated the 
target position and orientation for each individual subsystem, the mobile platform and the robot 
manipulator, so that the expected TCP position and orientation is reached. Given a target 
position for the TCP, ROS nodes calculate the path planning, communicate their results to the 
motion driver node and, then, the whole mobile manipulator moves and reaches the target 
position. 

In order to ensure that all required nodes started automatically and quickly one by one in 
the correct sequence, the launch files kipp_dynamisch_bringup.launch and 

bringup_robot_main_control_dyn.launch were implemented to manage the tasks needed for 
the automated ROS package initiation. 

5.4.2 Tip-over detection algorithm 

The effect of the linear acceleration of the mobile platform over the entire mobile 
manipulator can be be analyzed based on the illustrated example in Figure 107. 
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Figure 107 Robot manipulator position for the estimation of the effects of linear accelerations. 

In this example, the mobile manipulator’s COG is defined as 

[𝑆𝑥𝑆𝑦𝑆𝑧] = [ 0 𝑚0 𝑚0.38 𝑚] 
and the IMU only detects the value for the gravity vector 

[𝑎𝑥𝑎𝑦𝑎𝑧] = [ 0 𝑚/𝑠20 𝑚/𝑠2−9.81 𝑚/𝑠2]
𝑇
 

The distance between the system COG (𝑆) and one of the two front wheels was 𝑑𝑓=0.075 m. 
Then, if the mobile platform was assumed to experience an acceleration of 1 m/s2 

[𝑎𝑥𝑎𝑦𝑎𝑧] = [ 1 𝑚/𝑠20 𝑚/𝑠2−9.81 𝑚/𝑠2]
𝑇

 

a displacement of the projected COG in the direction of the applied acceleration derived. As a 
result of this, the distance from the COG to the tilt edge reduced to 𝑑𝑓=0.036 m. 

 
The torques acting on each joint of the robot manipulator obtained from the ROS topic 

rnea_return21 were validated for plausibility on the real mobile manipulator using the following 
two scenarios: 

                                                 
 
21 Refer to [95] for source code. 
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1. In order to generate the greatest possible variation of torque by the robot manipulator’s 

arm, the COG of the 5th, 6th and 7th robot manipulator links were aligned with the 4th joint 
rotatory axis so that no additional moments affected the 4th joint. Then, the 4th joint was 
accelerated from this position to the sides. As a result, during this acceleration the COG 
was shifted and, thus, an additional moment was generated due to the increasing lever arm.  
The moment acting on the 4th joint was analytically calculated for each instant with 𝑀4 = 𝐼4 ∙ 𝜔4. (119) 

Table 44 shows the results obtained from the analytical calculations and from the RNEA 
algorithm. 

Table 44 Torque generated at 4th joint [95]. 

Analytical Results from RNEA node employing 

the real robot manipulator 

0.49 N·m 0.498 N·m 

2. The robot manipulator’s arm was placed vertically. But now, instead of accelerating its 4th 
joint to the sides, the mobile platform was linearly accelerated while the robot manipulator 
stands still. 𝑎 = ( 0.37−0.03−0.13)m s2⁄       ,     𝑆 = (−0.0021−0.00170.6307 )m 

where 𝑎  describes the linear acceleration of the mobile manipulator and 𝑆  defines the 
position of its COG with respect to connection point P illustrated in Figure 96. 
The inertial forces generated by the linear acceleration were calculated using d'Alembert’s 
principle. Table 45 presents the forces and torques at the connection point P. 

Table 45 Forces and torques generated at point P [95]. 

Force/Torque 

components 
Analytical 

RNEA using real 

robot manipulator 𝐹x 8.5 N 8.5 N 𝐹y -3.2 N -3.2 N 𝐹z 196.0 N 196.1 N 𝑀x 1.7 N·m 1.7 N·m 𝑀y 5.8 N·m 5.8 N·m 𝑀z 0.0 N·m 0.0 N·m 
 

Thereupon, the proposed tip-over detection algorithm for the testing system was validated 
by computing the dynamic tilting stability value on both, simulations and real mobile 
manipulator. Table 46 shows that the calculated tilting stability from the simulations tends to 
be higher than those calculated from the real mobile manipulator for the same three predefined 
positions (with deviations smaller than 5%). 
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Table 46 Comparison of the tilting stability value for the simulation model and the real robot 

manipulator in home, transport and one critical position [175]. 

Robot 
manipulator 

position 

Dynamic tilting stability value 
Regarding 
tilting edge 

Real 
system 

Simulation 
environment 

Discrepancy 

Home position 
𝛼1−𝑐𝑚 685 698 +1.9% 𝛼2−𝑐𝑚 675 703 +4.2% 𝛼3−𝑐𝑚 449 466 +3.8% 

Transport 
position 

𝛼1−𝑐𝑚 744 773 +3.9% 𝛼2−𝑐𝑚 751 779 +3.7% 𝛼3−𝑐𝑚 396 388 −2.0% 

Critical 
position 

𝛼1−𝑐𝑚 960 989 +3.0% 𝛼2−𝑐𝑚 958 993 +3.6% 𝛼3−𝑐𝑚 ≈0 ≈0 ≈0% 

The main found discrepancy was the value 𝛼𝑖−𝑐𝑚 at which the mobile manipulator starts 
to tip over: during the simulations, the mobile manipulator started to tip over at 𝛼𝑖−𝑐𝑚=0, 
whereas the real mobile manipulator did at 𝛼𝑖−𝑐𝑚=150. The small variation in the braking 
process of the real mobile platform regarding the ideal simulation profile could be the reason 
for the higher stability state of the real mobile manipulator. Another possible cause could be 
the model simplification used for the robot description employed in the simulations. 

Although the causes for the discrepancies might be the same for simulations of all kind of 
mobile manipulators, the value 𝛼𝑖−𝑐𝑚 has to be determined for each particular real mobile 
manipulator. 

5.4.3 Tip-over avoidance algorithm 

The theoretical local workspace of the testing system robot manipulator of 0.963 m is 
originally described by the manufacturer as the radius of the sphere formed with its center at 
the second joint of the robot manipulator. During preliminary examinations, it was identified 
that this theoretical workspace could not be fully deployed as local workspace for the mobile 
manipulator due to the risk of tip-over.  

Due to this fact, a redefinition of its theoretical local workspace was inferred by finding an 
optimum volume as large as possible so that the robot manipulator had maximum room to move 
freely and safely without risk of tip-over. 

The diagrams in Figure 108 show the static tilting moment Mstatic as function of a wide 
range of values for the angles β and Υ (refer to Section 5.3.2.2.1) of the testing system mobile 
manipulator. The red lines indicate the critical range in which the system presented instabilities 
(Mstatic>0). 
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a) 

 
b) 

Figure 108 Estimation of a) tilting moment (top) and b) ellipsoid critical radius (bottom)  

under static conditions for different angle configurations β and Υ [175]. 

The minimum value of Υ for which the calculated tilting moment did not exceed 0 N·m 
over the entire interval of 𝛽 is pointed out with the blue auxiliary line at Υ=84° in                     
Figure 108-a. This value was transferred to the diagram in Figure 108-b, which helped to 
estimate the critical radius employed for the workspace optimization. Hence, the maximum 
minor axis (ropt) for the semi-ellipsoid could be deduced from Figure 108-b to be about 0.7 m. 

 
The optimized workspace was spatially discretized with q=0.1 rad, equivalent to a 5.7° 

joint angle, as displayed with the dotted volume in Figure 109. Only within this optimized 
workspace, the robot manipulator was allowed to extend its upper joints as far as possible 
without causing any instability, as long as the mobile platform was not in motion. Additionally, 
the robot manipulator did not have to leave this safe optimized working space when its joints 
were moving to the target coordinate. 

 
Figure 109 Optimized workspace for mobile manipulator in RViz [175]. 
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In addition to the workspace optimization, the second tip-over avoidance countermeasure 

developed for such scenarios, in which the mobile platform is in motion, is implemented for the 
testing system. The normal and emergency braking processes of the mobile platform have the 
same profile as the presented in Section 5.5.3 (see Figure 55). 

The diagrams in Figure 110 show the tilting moment generated on the mobile manipulator 
under different accelerations of the mobile platform: the black level lines display all states in 
which the stability moment was bigger than the tilting moment (stable states). The red level 
lines reveal the area at which the tilting moment had a higher value than the stability moment, 
i.e. unstable states. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 110 Analysis of the stability moment as a function of the manipulator´s joint positions and 

mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2, (c) 0.4 m/s2, 

(d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines represent 

unstable states of the mobile manipulator [175]. 
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(d) 

 
(e) 

Figure 110 (cont.) Analysis of the stability moment as a function of the manipulator´s joint positions 

and mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2,             

(c) 0.4 m/s2, (d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines 

represent unstable states of the mobile manipulator [175]. 
 

The area that symbolized the stable states is reduced as a result of the increasing 
acceleration of the mobile platform, since the inertial forces are directly proportional to this 
acceleration. The graph below (Figure 111) demonstrates that the stability value 𝛼cm−critical is 
more dependent on the acceleration of the mobile platform than on the joint angle Υ of the robot 
manipulator. 

 

Figure 111 Critical tilting instability for different values of 𝛶 as a function  

of the mobile platform traveling acceleration [175]. 

Considering 0.8 m/s2 as the maximal acceleration of the mobile platform, a repositioning 
of the robot manipulator has to be triggered if its current stability value drops below the critical 
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value 𝛼cm−critical=250. Additionally, the optimized workspace determined in the previous 
paragraphs was also adopted for scenarios under dynamic loads. Only then, can it be ensured 
that the mobile manipulator does not tip over at any time during travelling or braking. 

 

5.4.4 Validation of stabilization strategy employing testing system 

The proposed stabilization strategy is considered as successfully validated if: 
1. Regarding the optimized workspace, the mobile manipulator is stable and capable of 

determining whether the mobile platform has to be displaced or not in order to reach a 
target point without any risk of instability. 

2. The tilting stability value of the mobile manipulator is improved with repositioning 
procedures of the robot manipulator’s arm, keeping the initial orientation of its TCP 
unchanged during the joint rearrangement. 
Furthermore, the stabilization strategy should not set the mobile platform in motion until 

the overall system is sufficiently stable, characterized by the tilting stability value 𝛼𝑖−𝑐𝑚. 
For the repositioning procedures, the increment used in the calculations of the gradient 

method (see Section 5.3.2.2.2) was added to and subtracted from the corresponding joint 
position 𝑞𝑖 of the robot manipulator iteratively with a sample rate of 100 ms. 

The developed scripts employed for the implementation of the stabilization strategy on the 
mobile manipulator testing system are available in Annex A.5. 

 

5.4.4.1 Evaluation of the stabilization strategy by means of simulations 

In order to assess the developed algorithms (including the tip-over detection) by means of 
simulations, the following tests scenarios were first performed without stabilization and, then, 
repeated under the same conditions applying the stabilization strategy. 

For each of the sets, the mobile manipulator was set in different configurations before 
moving towards the target point. The mobile manipulator started at the initial position 
(𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟). Then, it received the target points for each of 

the subsystems, 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , which were not reachable 

within the optimized workspace. An example of this action can be seen in Figure 112. 
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Figure 112 Example of starting position and orientation of mobile manipulator moving to the 

predefined target position. 

The mobile manipulator behavior with and without the stabilization strategy are 
summarized in Table 47. It can be seen from these data that two different critical tilting stability 
values were considered during the operation: the first value,  αcm−critical=250, was employed 
when the mobile manipulator was affected by dynamic conditions (which corresponds to the 
critical stability value at the maximal acceleration of the mobile platform, 0.8 m/s2); the second 
value, αcm−critical=150, was used for situations where the mobile platform did not exhibit any 
accelerations (static tilting stability value). In other words, as long as the mobile platform is in 
motion, the threshold for a repositioning procedure was represented by αcm−critical=250. On 
the other hand, as soon as the mobile platform reached its target position (and, consequently, 
the robot manipulator would move to approach its target position), from that moment on, the 
static tilting stability value, αcm−critical=150, defined the threshold for eventual repositioning 
procedures. If the computed αi-cm lies below the value for each particular condition, the mobile 
manipulator tends to tip over its tilting shape. 
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Table 47 Comparative scenarios in order to verify the effectiveness of the active stabilization by 

means of simulations (following [175]). 
Set 1 

Initial dynamic 
tilting stability 

α3−cm = 23 

 
Without 
stabilization 

 
The first instability occurred at the time the mobile manipulator started to 
move (at 4 s): the mobile platform tilted slightly over the front wheels. 
After a brief strong acceleration at 9 s, which was evident from the sudden 
increase in 𝛼3−cm, a deceleration occured. As a consequence, the mobile 
manipulator completely tipped over from 12 s onwards. 

With 
stabilization 

 
A repositioning was performed before the mobile platform started to move, 
thus the critical dynamic tilting stability increased to about 𝛼3−cm=280. As 
long as the mobile platform was in motion, several repositionings were 
performed at 7 s, 8 s, 10 s and 12 s, because the dynamic tilting stability 
went below the threshold αcm−critical=250. At approx. 14 s, the mobile 
platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and, hereafter, the robot manipulator 

moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 
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Table 47 (cont.) Comparative scenarios in order to verify the effectiveness of the active stabilization 

by means of simulations (following [175]). 
Set 2 

Initial dynamic 
tilting stability 

α3−cm = 17 

 
Without 
stabilization 

 
The acceleration process caused that the mobile manipulator tilted over the 
front edge several times between 10 s and 14.5 s. From about 14.5 s on, the 
mobile manipulator tipped completely over the front edge. 

With 
stabilization 

 
First, before the mobile platform moved, a reposition process took place. 
The value of the critical tilting stability 𝛼3−cm increased to just over 250. 
The mobile platform then started to move. Further repositioning iterations 
took place at about 10 s, 11s and 12 s increasing 𝛼3−𝑐𝑚. On the other hand, 
the 𝛼1−cm fell below the limit value at 16 s. This resulted in a new 
repositioning for the robot manipulator. At approx. 19 s, the mobile 
platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and, hereafter, the robot manipulator 

moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 
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Table 47 (cont.) Comparative scenarios in order to verify the effectiveness of the active stabilization 

by means of simulations (following [175]). 
Set 3 

Initial dynamic 
tilting stability 

The critical axis was one of the two lateral tilting axes, at about 𝛼1−cm=187, 
representing the critical tilting stability. 

 
Without 
stabilization 

 
At about 13 s, the entire system tipped over the lateral tilting edge. The 
bumpers of the mobile platform dragged across the floor, causing a strong 
noise from 13 s onward. 

With 
stabilization 

 
A repositioning occurred at about 4 s. The value for 𝛼1−cm increased thus 
to about 250. The acceleration process at about 7 s caused a destabilizing 
effect against the lateral tilt edge. A new reposition was initiated, increasing 
the value for 𝛼1−cm to about 400. At approx. 15 s, the mobile platform 
reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and, hereafter, the robot manipulator moves 

to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 
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For all simulations with the stabilization strategy, the repositioning of the robot 

manipulator took place several times during the trajectory of the mobile platform, increasing 
the stability of the entire system. As a result, the mobile manipulator reached the target points, 
both the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , without any instability risk. 

During sets 1 and 2, even a complete overturning was prevented. 

5.4.4.2 Evaluation of the stabilization strategy using the real mobile manipulator 

Similar to the simulation environment, the joint information of the real mobile manipulator 
was transmitted by a separate publisher which, in turn, received the information from the 
individual subsystems, arranged them in a certain sequence and outputted them at defined time 
intervals. 

 
For the evaluation of the stabilization strategy on the real mobile manipulator, a recursive 

filter was implemented to reduce the noise of the signals received from the IMU. 𝑦𝑛 = (1 − 𝜂𝐹)𝑦𝑛−1 + 𝜂𝐹𝑥𝑛 (120) 

where 𝑦𝑛 is the output variable, 𝑥𝑛 the input variable and 𝑦𝑛−1 the output value from the 
previous iteration. The noise on the output variable was adjusted via coefficient 𝜂𝐹 (0≤ 𝜂𝐹 ≤1), 
where 𝜂𝐹=1 produced an unfiltered signal and, the closer the coefficient went towards 𝜂=0, the 
less influence the output variable had concerning its original value. For the present purposes, a 
coefficient 𝜂𝐹=0.25 for acceleration curves was sufficient. In consequence, the accelerations 
measured on the real mobile manipulator was significantly lower than those in the simulations. 
The filter was integrated as a separated ROS node. 

 
In the following test scenarios, a real tip-over of the mobile manipulator was not induced 

in order to avoid damaging to the equipment. Analogous to the simulative tests in                     
Section 5.4.4.1, the sets differed from each other on the initial position and orientation of the 
robot manipulator and the mobile platform, 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟  and  𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 . 

Table 48 outlines the effect of the stabilization strategy on the real testing system mobile 
manipulator. 
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Table 48 Comparative scenarios in order to verify the effectiveness of the stabilization strategy using 

the real mobile manipulator (following [175]). 
Set 1 

Initial position 
and orientation 
of robot 
manipulator 

α3−cm = −34 

 
Dynamic 
tilting stability 
value during 
repositioning 

 
Between 5 s and 7 s, the robot manipulator was rearranged to achieve   α3−cm=280 before the mobile platform started to move. During the 
trajectory towards the target point, no additional repositioning was 
required. At approx. 16 s, the mobile platform reaches 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  

and, hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 

End position 
and orientation 
of robot 
manipulator 

 

 
  



178  Approach B: Stabilization strategy for 
mobile manipulators with full access to the robot controller 

 
Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy 

using the real mobile manipulator (following [175]). 
Set 2 

Initial position 
and orientation 
of robot 
manipulator 

α3−cm = −80 

 
Dynamic 
tilting stability 
value during 
repositioning 

 
Before the mobile platform started moving at 10 s, the robot manipulator 
was repositioned by arranging its joints q1 and q2, thus achieving α3−cm=260. From 11 s to 17 s, the mobile platform kept in motion. At 
around 11 s, the tilting stability value decreased below αcm−critical=250 
due to the acceleration of the mobile platform and, as a result, the robot 
manipulator was repositioned again, keeping this new position until the 
mobile platform reached its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  at 17 s. 

Hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 

End position 
and orientation 
of robot 
manipulator 
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Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy 

using the real mobile manipulator (following [175]). 
Set 3 

Initial position 
and orientation 
of robot 
manipulator 

α3−cm = 150 

 
Dynamic 
tilting stability 
value during 
repositioning 

 
Joint q1 repositioned the robot manipulator before the mobile platform 
started to move, at 7 s, achieving αcm−critical=250. During the acceleration 
process, the threshold was slightly undercut again at 11 s, so the robot 
manipulator was repositioned one more time. At 17 s, the mobile 
manipulator achieved its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and, hereafter, 

the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟. 

End position 
and orientation 
of robot 
manipulator 
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Table 48 (cont.) Comparative scenarios in order to verify the effectiveness of the stabilization strategy 

using the real mobile manipulator (following [175]). 
Set 4 

Initial position 
and orientation 
of robot 
manipulator 

α1−cm = 208 

 
Dynamic 
tilting stability 
value during 
repositioning 

 
The tilting stability value was improved by a first repositioning at 6 s, 
rearranging only joints q1 and q4. Other repositioning iterations were 
required due to the mobile platform trajectory path, between 10 s and 12 s. 
At 15 s, the mobile manipulator reached its target point 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and, hereafter, the robot manipulator moves to 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 . 

End position 
and orientation 
of robot 
manipulator 

 

For all the sets, the real mobile manipulator reached the target points for both, the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑏𝑖𝑙𝑒𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚  and the 𝑃𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑜𝑏𝑜𝑡𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 , without any instability risk and keeping its 

original TCP orientation. Therefore, the proposed stabilization strategy fulfilled the 
expectations. 
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6 Concluding assessment 

Despite the fact that all implemented strategies show a considerable improvement in the 
stability state of the compact mobile manipulator’s testing systems, they do not possess the 
same evaluation criteria with regard to their technical feasibility in industrial environments. 
Table 49 supports this evaluation by providing a summarized comparison of the stabilization 
strategies presented in this work. 

 
According to their associated pros and contras, the last two stabilization strategies 

(employing the gyro effect from approach A and repositioning the robot manipulator from 
approach B) offer a notable stabilizing effect and, furthermore, both preserve the original 
orientation of the Tool Center Point (TCP) during the execution of the countermeasures. 
Nevertheless, it can be clearly seen that the last approach, B, provides an additional advantage 
derived from producing its stabilizing effect (torque compensation) for as long as required by 
the tilting detection algorithm, just by repositioning the robot manipulator further if necessary. 
In contrast, the gyroscope produces a torque compensation only during the time the precession 
motion is carried out.
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Table 49 Comparison of the four stabilization strategies. 
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7 Summary and outlook 

7.1 Summary 

Small-footprint mobile manipulators offer not only high flexibility due to their compact 
design, but also agility and maneuverability. Nevertheless, this kind of systems tends to tip over 
due to its ability to travel at large accelerations and to suddenly brake, as well as due to its high 
center of gravity. The present work explored two different ways to counteract the stability 
problem of small footprint mobile manipulators. 

 
The first part of this thesis described three stabilization strategies that employ external 

actuators to generate the required compensation moments. The first proposed mechanism was 
comprised by linear actuators arranged in delta configuration, integrated between the mobile 
platform and the robot manipulator to produce a tilting effect and an angular momentum effect. 
Although it is well established that hexapods are commonly used for motion compensation, its 
implementation for the stabilization of mobile manipulators is limited due to cost and size 
constraints. Therefore, this study provides new insights into the proposed simplified 
mechanism, which only makes use of the g-tilt effect of the hexapod’s operating principle. 

For the “inclining/tilting” stabilization strategy, the robot manipulator is tilted in the 
opposite direction of travel of the mobile platform to shift the robot manipulator’s COG 
backwards; this must be done before the braking process begins. 

In contrast, the stabilization strategy “conservation of angular momentum” impels the 
robot manipulator in the direction of travel of the mobile platform during the braking process, 
thus generating an angular momentum forwards that compensates the decelerations produced 
by the mobile platform. To accomplish this strategy, the robot manipulator has to be gradually 
tilted backwards just before the braking process occurs.  

The second mechanism was conceptualized based on the gyro effect principle, where the 
direction of the pivot axis of a rotating mass is rapidly changed to generate the compensation 
moment employed to stabilize the mobile manipulator. Despite being a well-known mechanism, 
the use of gyro effect to improve the stability of mobile manipulators had not been previously 
investigated. 

A simulative procedure, based on multibody simulation (MBS) models, was proposed for 
the sizing and examination of the stabilization strategies. At the first stage, experimental modal 
analyses (EMA) is required to identify the natural frequencies and mode shapes of both real 
subsystems, the mobile platform and the robot manipulator. Particular attention has to be paid 
to the excitation and stimuli spots since they had to be chosen so that all possible directions for 
system oscillations are excited and measured, avoiding orthogonality. The EMA of the robot 
manipulator has to be performed in diverse positions and conditions (with energized and non-
energized motors) in order to find out if different link configurations affect the dynamic system 
behavior. 

The results obtained in this first stage are employed to parameterize and validate the MBS 
model of each subsystem in such a way as the modeled MBS system matches the dynamics of 
the real robot assemblies. In order to keep the simulation time and complexity within acceptable 
limits, both subsystems can be implemented as rigid bodies. The main challenge in the MBS 
modeling is to estimate the stiffness and damping values for all joint elements in the system. 
Each dynamical simulation generates magnitudes of natural frequencies depending on those 
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stiffness and damping values. Together with their corresponding mode shapes, they are 
compared with the empirical values obtained via EMA until they match suitably. 

A limitation of the introduced MBS modeling technique is the iterative adjustment process 
to obtain the desired real modal parameters of the robot manipulator, since its greater degree of 
freedom (DOF) implies more unknown parameters for the stiffness and damping coefficients 
of each of its joints. Besides this, the robot manipulator is the subsystem most affected by abrupt 
braking maneuvers because of the height at which its COG is located. For this purpose, this 
adjustment procedure was improved by an automated parametrization algorithm that considers 
as reference for the setting not only the natural frequencies, but also the mode shapes by means 
of MAC. The algorithm was able to mathematically determine the approximate stiffness and 
damping values of each joint element of the system until the dynamic behavior of the real 
system matches the simulation model, thereby avoiding the time-consuming manual iterative 
process. 

The actual implementation of the stabilization strategies took place in mechatronic co-
simulations, where forces and torques acting in the mobile manipulator as well as angle 
displacements and velocities issued the output signals for the feedback block of the closed-loop 
control. They served as real-time reference values which, in turn, allow to compute the new set 
point for the actuation system to react against instabilities. 

This approach was validated in a testing system consisting of a six-axis robot manipulator 
mounted on an autonomous mobile platform, both with no open access to their control system. 
A MBS model of the testing system mobile manipulator, including the articulated robot 
manipulator, the mobile platform and the designed actuation mechanism for the stabilization 
strategy, was accomplished following the proposed MBS modeling technique. The outcomes 
of the automated parametrization algorithm verified a good reproduction of the dynamical 
behavior of the testing system robot manipulator. The experimental work presented here 
provides one of the first investigations into the complete modeling process of robot 
manipulators and mobile platforms in order to carry out accurate mechatronic co-simulations: 
from identifying their modal parameters by means of EMAs, to their modeling and 
parametrization via MBS systems. 

The mechatronic co-simulations demonstrated that all the presented strategies using 
external actuators improved the stability of the mobile manipulator and, thus, reduced its risk 
of tip-over, especially when large accelerations and decelerations affect the system. However, 
the “inclining/tilting” technique implied the prediction of the braking profile, making its 
implementation as a closed-control loop difficult. On the other hand, the “conservation of 
angular momentum-based principle” could be integrated in a closed-control loop, but its impact 
to the stability state was only minor. For both strategies, it was possible to achieve an 
improvement in the stability of the overall system for a short period of time. However, the 
stability of the mobile manipulator cannot be guaranteed if the mobile platform is subjected to 
higher loads or accelerations/decelerations. 

Finally, the gyro stabilizer exhibited major potential, generating enough compensation 
torques against instabilities. 

Although the current study was implemented on particular robots, it offers a helpful insight 
into the methodology for further complex systems, especially with regards to mobile platforms 
and robot manipulators, whose dynamic behavior is still little known. 

 
The second part of this thesis addressed a further stabilization strategy which counteracts 

the instabilities with the own robot manipulator links. This stability strategy was developed so 
that it operates under robot manipulator movements, mobile platform movements, COGs 
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position vector and gravity vector changes. The stabilization strategy comprised the 
implementation of a workspace optimization and an active stabilization by means of 
repositioning the robot manipulator links. 

As a first step, the tip-over detection algorithm was prepared. Despite the fact that the 
method Force-Angle (FA) stability measure was able to detect a tip-over risk, the dynamic 
stability value was estimated by the Height Stability method (MHS), since FA inspects only 
external forces measured by inertial measurement units (IMU). The advantage of the MHS 
method, over the FA approach, is that it also considers internal forces of the robot manipulator, 
i.e. inertial forces and torques produced from joint accelerations. Additionally, it gives a 
constant feedback of the stability value, while the FA approach only gives the stability status 
as a binary value. Especially under scenarios where the mobile platform was moving, the MHS 
method proved to be the most suitable for the tip-over detection algorithm. In addition, the value 
of the dynamic tilting stability, α, over time provides information about the degree of instability 
during the mobile manipulator motions. The bigger the value of α, the more stable the mobile 
manipulator is against a tip-over regarding the corresponding tilting edge for which the value 
was calculated. Therefore, the smaller the value of α, the greater the risk to tip over. The 
implemented MHS method considered not only the direction of the overall acceleration but also 
its effect on the whole system, since the system might appear to be stable, despite the fact that 
resulting inertial forces cause the system to tip over. The tip-over edge also acted as very 
important indicator for the implementation of suitable tip-over preventing actions, since a 
countermeasure applied to the wrong tilting edge facilitates the system tip-over. 

Hereafter, the theoretical workspace of the robot manipulator was optimized based on the 
tilting stability value α, in order to constrain the maximum volume in which the robot 
manipulator is able to operate without instability risks when the mobile platform does not move. 

Additionally, a tip-over avoidance algorithm was conceived. It triggered the repositioning 
of the robot manipulator´s links if the stability value resulting from the tip-over detection 
algorithm lay below a predefined stability threshold. The repositioning algorithm determined a 
safe configuration of the robot manipulator based on a gradient method, calculating the mobile 
manipulator´s stability value depending on different joint arrangements about the current TCP 
position. The algorithm was designed so that the robot manipulator TCP is kept as close as 
possible from its original orientation. 

The strategy covered both, a predictive and real time countermeasure: a preplanning 
algorithm brought the mobile manipulator into a stable configuration before the mobile 
platform started moving; additionally, any instabilities that occurred during travel were 
compensated by repositioning the robot manipulator without stopping the mobile platform 
tasks. 

Both, the workspace optimization and the repositioning of the robot manipulator’s arm, 
contributed to improve the stabilization of the mobile manipulator. The entire active 
stabilization strategy consists of the following features: 
 After receiving a target coordinate, the mobile manipulator decides independently whether 

the target point is within the predefined reachable and stable workspace or outside it. In 
case the target point is outside the optimized volume, the mobile platform moves to 
approach it. 

 In case instabilities are detected by MHS before the mobile platform moves, the robot 
manipulator repositions its links to a non-critical, stable configuration. 

 If instabilities are caused by accelerations or decelerations of the mobile platform, which 
means that the stability value falls below the predefined threshold value, the robot 
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manipulator repositions itself without aborting any tasks. During this repositioning 
process, the initial orientation of the TCP is maintained. 

 The robot manipulator approaches the target point as soon as the mobile platform reaches 
the target position, so that by extending the robot manipulator´s links, the TCP is situated 
within the stable optimized workspace. 
This strategy improved the approaches presented in literature, since only the robot 

manipulator was employed to achieve the stabilization, without considering any modification 
of the mobile platform’s motion path. A further distinction is that the dynamic tilting stability 
value was utilized not only during the tip-over detection, but also for the tip-over avoidance, 
being the reference for the gradient potential function used for the calculation of the new joint 
configuration needed for the repositioning of the robot manipulator’s links. And, perhaps the 
most significant added value with respect to previous works is that the countermeasures were 
carried out in real time and without manipulating the motion control of the robots, thus reducing 
the complexity for the implementation and increasing its flexibility as a universal solution. 

The approach was implemented in a second mobile manipulator testing system. Real 
inspections showed that the mobile manipulator tended to tip over at certain configurations. 
The algorithms were implemented using ROS environment tools, and validated using the real 
system. Their effectiveness was proved observing the simulative and real mobile manipulator 
achieving its target position without suffering any instability. The successful tests using the real 
mobile manipulator and the corresponding results indicated that the stabilization strategy was 
able to avoid many tip-overs of the mobile manipulator under different circumstances. 

7.2 Outlook 

A relevant aspect observed during the implementation of the stabilization strategies of 
Approach A in the testing system were the appearance of certain discrepancies between the 
MBS- and the EMA-results, which were considered as acceptable for the purpose of this work. 
These deviations have been caused, on the one hand, by the model simplification to decrease 
the complexity of the robotic systems (e.g., bodies were modeled as rigid elements to avoid 
large computational effort, the friction coefficients were not experimentally determined, etc.) 
and, on the other hand, by parametric uncertainties such as lack of material homogeneity, 
unknown tolerances and clearances in the geometry, etc. Non-ideal real conditions in MBS 
models lead to difficulties in the adjustment of their modal parameters. Therefore, the 
developed parametrization algorithm reinforced the modeling of a more close-to-reality system. 
Despite the fact that satisfying results were obtained for the robot manipulator testing system, 
the algorithm would be improved if other parameters that cause great impact on the modal 
behavior of a certain system were easily identified. Furthermore, an extension of the 
optimization algorithm for mass, density and those parameters identified by additional 
sensitivity analyses would also complement the automated parametrization. 

 
The stabilization strategies employing external actuators demonstrated the compensation 

of presented instabilities in the testing system. However, with respect to the viability, they could 
be insufficient if the duration of the braking process of the mobile platform increases. 

From the two stabilization strategies using linear drives as external actuators, the 
“inclination/tilting” of the robot manipulator before the braking occurs offered significant 
improvement of the mobile manipulator stability, but its principle of action cannot be included 
into a closed-loop control without more ado. A solution for this limitation could be the 
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implementation of AI-techniques in order to predict the braking process profile in a timely 
manner, each time the laser scanner of the mobile platform sends a warning signal. 

Moreover, the “conservation of angular momentum”, in which the robot manipulator is 
angular impelled in the direction of the braking process, was fast enough to react in a proper 
manner without any prior prediction, but its effects with respect to the stability compensation 
torque were only minor. Based on the same principle, the gyroscopic effect showed good 
potential for the compensation of instability torques, being, from all external stabilization 
strategies, the most promising one. The design optimization of the gyroscope regarding a flatter 
and bigger diameter might even enhance its performance. 

 
The second approach, B, consisting of a tip-over detection and tip-over avoidance 

algorithm for those mobile manipulators with an open-access robot operating system exhibited 
better results. The small deviations in the calculated tilting stability value were compensated by 
repetitive repositioning processes. Although each joint constraints were taken into account for 
the computation of the new stable configuration of the robot manipulator, the repositioning was 
not executed if this new joint configuration was situated within the predefined collision space. 
This problem could be counteracted by using a new function, in which the collision constraints 
were provided as no-go areas for the calculations, which in turn seeks for suitable, collision-
free joint positions. 

 
Future research is recommended to explore the impact of employing other testing models 

of mobile manipulators and their different types of path planning and motion control algorithms. 
In any case, the outcomes point to the need for testing in a wide variety of environments to 
reinforce the developed algorithms.



  



List of References  189 
 

8 List of References 

 
[1] Zukunftsinstitut. Die Megatrends 2020. 

https://www.zukunftsinstitut.de/dossier/megatrends/ (accessed March 14, 2021). 
[2] Zukunftsinstitut. Die 5 wichtigsten Megatrends für Unternehmern in den 2020ern 2020. 

https://www.zukunftsinstitut.de/artikel/die-5-wichtigsten-megatrends-fuer-
unternehmern-in-den-2020ern/ (accessed March 14, 2021). 

[3] Weinzierl S. Klarer Trend zu Losgröße 1. Produktion - Tech Und Wirtschaft Für Die 
Dtsch Ind 2017. https://www.produktion.de/wirtschaft/klarer-trend-zu-losgroesse-1-
323.html (accessed March 14, 2021). 

[4] ZukunfsInstitut. Glossar Individualisierung: Trendbegriffe zur Individualisierung 2020. 
https://www.zukunftsinstitut.de/artikel/megatrend-glossar/individualisierung-glossar/ 
(accessed March 14, 2021). 

[5] Obermaier R. Handbuch Industrie 4.0 und Digitale Transformation: 
Betriebswirtschaftliche, technische und rechtliche Herausforderungen. Springer 
Fachmedien Wiesbaden; 2019. 

[6] Mertens P, Potthof I. Wirtschaftsinformatik - von den Moden zum Trend. Bereich 
Wirtschaftsinformatik I; 1994. 

[7] Inc. A. Fanuc Ltd. - Company Profile, Information, Business Description, History, 
Background Information on Fanuc Ltd. 2021. 
https://www.referenceforbusiness.com/history2/43/Fanuc-Ltd.html (accessed March 14, 
2021). 

[8] Florian Krebs, Stefan Nuschele. Kostenreduktion in der Qualitätssicherung durch 
Roboter-basierte zerstörungsfreie Prüfung. Augsburg, Germany: 2012. 

[9] Matthias Reinisch. Auswirkungen verschiedener Varianten des Fabriklayouts auf die 
Materialflussplanung unter Beachtung der Lean Prinzipien. Technische Universität 
Graz, 2011. 

[10] Poll D. Woraus die Smart Factory besteht und was aktuell dazu kommt. Produktion - 
Tech Und Wirtschaft Für Die Dtsch Ind 2020. 
https://www.produktion.de/technik/woraus-die-smart-factory-besteht-und-was-aktuell-
dazu-kommt-118.html (accessed March 14, 2021). 

[11] Zenner MJ. Autonomous Mobile Robots Push Robot Boundaries. Robot Ind Assoc 2019. 
https://www.automate.org/industry-insights/autonomous-mobile-robots-push-robot-
boundaries (accessed March 14, 2021). 

[12] Sinsel A. Das Internet der Dinge in der Produktion: Smart Manufacturing für Anwender 
und Lösungsanbieter. Springer Berlin Heidelberg; 2019. 

[13] Fechter M. ARENA2036. Fraunhofer-Institut Für Produktionstechnik Und Autom IPA 
2020. https://www.ipa.fraunhofer.de/de/zusammenarbeit/industry-on-
campus/arena2036.html (accessed March 11, 2021). 

[14] Unknown. ARENA2036: Der Forschungsbereich “ForschFab.” Bundesministerium Für 
Bild Und Forsch n.d. 
https://www.forschungscampus.bmbf.de/forschungscampi/arena2036/arena2036_forsc
hungsfabrik (accessed March 14, 2021). 

[15] Unknown. Die ARENA2036. ARENA2036 eV n.d. https://www.arena2036.de/de/ 
(accessed March 11, 2021). 

[16] Poll D. Intralogistik: Die coolsten autonomen Transportsysteme -. Produktion - Tech 
Und Wirtschaft Für Die Dtsch Ind 2019. 
https://www.produktion.de/technik/intralogistik-die-coolsten-autonomen-
transportsysteme-110.html (accessed March 11, 2021). 



190  List of References 

[17] Ullrich G, Kachur PA. Automated Guided Vehicle Systems: A Primer with Practical 
Applications. Springer Berlin Heidelberg; 2014. 

[18] Hvilshj M, Bgh S, Madsen O, Kristiansen M. The mobile robot “Little Helper”: 
Concepts, ideas and working principles. ETFA 2009 - 2009 IEEE Conf. Emerg. Technol. 
Fact. Autom., 2009, p. 1–4. https://doi.org/10.1109/ETFA.2009.5347251. 

[19] Tr A, Dogra A, Singla E. Workspace Reconstruction for Designing Modular 
Reconfigurable Manipulators, 2020. https://doi.org/10.1007/978-981-15-5689-0_24. 

[20] Rey DA, Papadopoulos EG. On-line automatic tipover prevention for mobile 
manipulators. IEEE Int. Conf. Intell. Robot. Syst., 1997. 
https://doi.org/10.1109/iros.1997.656414. 

[21] Tahboub KA. Robust control of mobile manipulators. J Robot Syst 1996. 
https://doi.org/10.1002/(SICI)1097-4563(199611)13:11<699::AID-ROB2>3.0.CO;2-Q. 

[22] Ding X, Liu Y, Hou J, Ma Q. Online Dynamic Tip-Over Avoidance for a Wheeled 
Mobile Manipulator with an Improved Tip-Over Moment Stability Criterion. IEEE 
Access 2019. https://doi.org/10.1109/ACCESS.2019.2915115. 

[23] Böge A, Böge W. Technische Mechanik: Statik – Reibung – Dynamik – Festigkeitslehre 
– Fluidmechanik. vol. 33. Springer Vieweg; 2019. https://doi.org/10.1007/978-3-658-
25724-8. 

[24] DØssing O. Strukturen prüfen Teil 1: Mechanische Beweglichkeits-Messungen. 1989. 
[25] Weck M. Werkzeugmaschinen 5: Messtechnische Untersuchung und Beurteilung, 

dynamische Stabilität. Springer Berlin Heidelberg; 2006. 
[26] Pastor M, Binda M, Harčarik T. Modal Assurance Criterion. Procedia Eng 2012;48:543–

8. https://doi.org/https://doi.org/10.1016/j.proeng.2012.09.551. 
[27] Irretier H. Experimentelle Modalanalyse in der Rotordynamik. VDI-

Schwingungstagung, Kassel, Germany: 2000. 
[28] Rosenow SE. Identifikation des dynamischen Verhaltens schiffbaulicher Strukturen. 

2007. 
[29] Zeller P, Andreas E, Fastl H, Kerber S, Hobelsberger J, Jebasinski R, et al. Handbuch 

Fahrzeugakustik: Grundlagen, Auslegung, Berechnung, Versuch. Springer Fachmedien 
Wiesbaden; 2018. 

[30] Brandt A, Vaarning C. A Comparison of Non-Parametric Techniques for FRF Estimation 
Using Pure Random Excitation. Conf Proc Soc Exp Mech Ser 2012;5:523–34. 
https://doi.org/10.1007/978-1-4614-2425-3_49. 

[31] DØssing O. Strukturen prüfen Teil 2: Modalanalyse und Simulation. 1989. 
[32] Siemens Simcenter. What is a Frequency Response Function (FRF)? 2020. 

https://community.sw.siemens.com/s/article/what-is-a-frequency-response-function-frf 
(accessed May 3, 2022). 

[33] Kipfmüller M. Aufwandsoptimierte Simulation von Werkzeugmaschinen. Shaker 
Verlag, 2010. https://doi.org/10.5445/IR/1000014668. 

[34] Christl J, Kunz S, Bayrasy P, Kalmykov I, Kleinert J. FEA-MBS-Coupling-Approach 
for Vehicle Dynamics. NAFEMS Eur. Conf., Turin, Italy: 2015. 

[35] Gustafsson L, Sternad M, Gustafsson E, Gustafsson L, Sternad M, Gustafsson E. The 
Full Potential of Continuous System Simulation Modelling. Open J Model Simul 
2017;5:253–99. https://doi.org/10.4236/OJMSI.2017.54019. 

[36] Woernle C. Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von 
Systemen starrer Körper. Springer Berlin Heidelberg; 2016. 

[37] Dresig H, Rockhausen L, Holzweißig F. Maschinendynamik. Springer Berlin 
Heidelberg; 2013. 

[38] Kreuzer E, Lugtenburg JB, Meißner HG, Truckenbrodt A. Industrieroboter: Technik, 
Berechnung und anwendungsorientierte Auslegung. Springer Berlin Heidelberg; 2012. 

[39] Zirn O, Weikert S. Modellbildung und Simulation hochdynamischer Fertigungssysteme: 



List of References  191 
 

Eine praxisnahe Einführung. Springer Berlin Heidelberg; 2006. 
[40] Rill G, Schaeffer T. Grundlagen und Methodik der Mehrkörpersimulation: Vertieft in 

Matlab-Beispielen, Übungen und Anwendungen. Springer Fachmedien Wiesbaden; 
2017. 

[41] Glöckler M. Simulation mechatronischer Systeme: Grundlagen und Beispiele für 
MATLAB®und Simulink®. Springer Fachmedien Wiesbaden; 2018. 

[42] Adams n.d. https://www.mscsoftware.com/de/product/adams (accessed December 27, 
2021). 

[43] Adams - CAE Simulation und Solutions n.d. https://www.cae-sim-
sol.com//software/msc-software/adams (accessed January 22, 2022). 

[44] MATLAB - MathWorks - MATLAB & Simulink n.d. 
https://de.mathworks.com/products/matlab.html..html (accessed December 27, 2021). 

[45] MATLAB® - The MathWorks - PDF Catalogs | Technical Documentation | Brochure 
n.d. https://pdf.directindustry.com/pdf/mathworks/matlab/12865-370414.html (accessed 
January 22, 2022). 

[46] Pietruszka WD, Glöckler M. MATLAB®und Simulink®in der Ingenieurpraxis: 
Modellbildung, Berechnung und Simulation. Springer Fachmedien Wiesbaden; 2021. 

[47] Control System Toolbox - MATLAB n.d. 
https://de.mathworks.com/products/control.html (accessed January 22, 2022). 

[48] Simulink - The MathWorks - PDF Catalogs | Technical Documentation | Brochure n.d. 
https://pdf.directindustry.com/pdf/mathworks/simulink/12865-370436.html (accessed 
January 22, 2022). 

[49] ROS: Home n.d. https://www.ros.org/ (accessed January 22, 2022). 
[50] STRANDS · GitHub n.d. https://github.com/strands-project (accessed October 17, 

2021). 
[51] Newman WS. A Systematic Approach to Learning Robot Programming with ROS. CRC 

Press; 2017. 
[52] Quigley M, Gerkey B, Smart WD. Programming Robots with ROS. O’Reilly; 2015. 
[53] Gazebo n.d. http://gazebosim.org/ (accessed January 22, 2022). 
[54] Chitta S, Hershberger D, Pooley A, Coleman D, Gorner M, Suarez F, et al. MoveIt 

Tutorials — moveit_tutorials Kinetic documentation 2018. 
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/ (accessed October 16, 2021). 

[55] Featherstone R. Rigid Body Dynamics Algorithms. 1st ed. Springer US; 2008. 
https://doi.org/10.1007/978-1-4899-7560-7_1. 

[56] Featherstone R. Robot Dynamics Algorithms. Springer US; 1987. 
https://doi.org/10.1007/978-0-387-74315-8. 

[57] Fraunhofer Institute for Factory Operation and Automation. Mobile robots support 
airplane manufacturers - Research News - Topic 4 2014. 
https://www.fraunhofer.de/en/press/research-news/2014/april/mobile-robots.html 
(accessed January 17, 2022). 

[58] KUKA AG. Mobility n.d. https://www.kuka.com/products/mobility/ (accessed January 
17, 2022). 

[59] Acar C, Murakami T. Underactuated two-wheeled mobile manipulator control using 
nonlinear backstepping method. 2008 34th Annu. Conf. IEEE Ind. Electron., 2008, p. 
1680–5. https://doi.org/10.1109/IECON.2008.4758206. 

[60] German Design Award. KUKA KMR iiwa - Special Mention Industry 2017. 
https://www.german-design-award.com/en/the-winners/gallery/detail/8600-kuka-kmr-
iiwa.html (accessed May 3, 2022). 

[61] Dimalog. Mobile Cobots n.d. https://www.dimalog.com/mobile-cobots/ (accessed May 
3, 2022). 

[62] Gráf R, Dillmann R. Aktive Beschleunigungskompensation mittels einer Stewart-



192  List of References 

Plattform auf einem mobilen Roboter, 1997, p. 189–98. https://doi.org/10.1007/978-3-
642-60904-6_17. 

[63] Gráf R, Dillmann R. Active acceleration compensation using a Stewart-platform on a 
mobile robot, 1997, p. 59–64. https://doi.org/10.1109/EURBOT.1997.633569. 

[64] Gráf R, Dillmann R. Die Stewart-Plattform als dynamisches Lastaufnahmesystem eines 
mobilen Roboters, 1999, p. 150–9. https://doi.org/10.1007/978-3-642-59708-4_15. 

[65] Campos Bonilla AA, Quintero J, Saltaren R, Ferre M, Aracil R. Robotic Strategies to 
Assist Pilots in Landing and Takeoff of Helicopters on Ships and Offshore, 2010. 
https://doi.org/10.5772/10308. 

[66] Gráf R, Dillmann R. Acceleration compensation using a Stewart platform on a mobile 
robot, 1999, p. 17–24. https://doi.org/10.1109/EURBOT.1999.827617. 

[67] Dang AXH, Ebert-Uphoff I. Active acceleration compensation for transport vehicles 
carrying delicate objects. IEEE Trans Robot 2004;20:830–9. 
https://doi.org/10.1109/TRO.2004.832791. 

[68] Xiaoli B, Jeremy D, James D, Turner J, Junkins J. Dynamics, Control and Simulation of 
a Mobile Robotic System for 6-DOF Motion Emulation. Lect Notes Eng Comput Sci 
2007;2167. 

[69] Danko TW, Chaney KP, Oh PY. A parallel manipulator for mobile manipulating UAVs. 
2015 IEEE Int. Conf. Technol. Pract. Robot Appl., 2015, p. 1–6. 
https://doi.org/10.1109/TePRA.2015.7219682. 

[70] Khaled M, Mohammed A, Ibraheem MS, Ali R. Balancing a Two Wheeled Robot. 2009. 
https://doi.org/10.13140/RG.2.2.25634.63683. 

[71] Chan RPM, Stol KA, Halkyard CR. Review of modelling and control of two-wheeled 
robots. Annu Rev Control 2013;37:89–103. 
https://doi.org/https://doi.org/10.1016/j.arcontrol.2013.03.004. 

[72] Wang J-J. Simulation studies of inverted pendulum based on PID controllers. Simul 
Model Pract Theory 2011;19:440–9. 
https://doi.org/https://doi.org/10.1016/j.simpat.2010.08.003. 

[73] Bode H. MATLAB-SIMULINK: Analyse und Simulation dynamischer Systeme. 
Vieweg+Teubner Verlag; 2006. 

[74] Bertram T, Svaricek F. Zur Fuzzy-Regelung eines aufrechtstehenden Pendels/On Fuzzy-
control of an inverted pendulum. - Autom 1992;40:308–10. 
https://doi.org/doi:10.1515/auto-1992-0808. 

[75] Wey T, Spielmann M. Analytische und Fuzzy-Regelungskonzepte am Beispiel eines 
aufrechtstehenden Pendels. - Autom 1999;47. 
https://doi.org/10.1524/auto.1999.47.1.20. 

[76] Anderson CW. Learning to control an inverted pendulum using neural networks. IEEE 
Control Syst Mag 1989;9:31–7. https://doi.org/10.1109/37.24809. 

[77] Miao S, Cao Q. Modeling of self‐tilt‐up motion for a two‐wheeled inverted pendulum. 
Ind Robot An Int J 2011;38:76–85. https://doi.org/10.1108/01439911111097878. 

[78] Alarfaj M, Kantor G. Centrifugal force compensation of a two-wheeled balancing robot. 
2010 11th Int. Conf. Control Autom. Robot. Vis., 2010, p. 2333–8. 
https://doi.org/10.1109/ICARCV.2010.5707337. 

[79] Kim S, Seo J, Kwon S. Development of a two-wheeled mobile tilting amp; balancing 
(MTB) robot. 2011 11th Int. Conf. Control. Autom. Syst., 2011, p. 1–6. 

[80] Kwon S, Kim S, Yu J. Tilting-Type Balancing Mobile Robot Platform for Enhancing 
Lateral Stability. IEEE/ASME Trans Mechatronics 2015;20:1470–81. 
https://doi.org/10.1109/TMECH.2014.2364204. 

[81] Zhao Y, Woo C, Lee J. Balancing control of mobile manipulator with sliding mode 
controller. 2015 15th Int. Conf. Control. Autom. Syst., 2015, p. 802–5. 
https://doi.org/10.1109/ICCAS.2015.7364730. 



List of References  193 
 

[82] Acar C, Murakami T. Multi-task control for dynamically balanced two-wheeled mobile 
manipulator through task-priority. 2011 IEEE Int. Symp. Ind. Electron., 2011, p. 2195–
200. https://doi.org/10.1109/ISIE.2011.5984501. 

[83] Leboutet Q, Dean-León E, Cheng G. Tactile-based compliance with hierarchical force 
propagation for omnidirectional mobile manipulators. 2016 IEEE-RAS 16th Int. Conf. 
Humanoid Robot., 2016, p. 926–31. 
https://doi.org/10.1109/HUMANOIDS.2016.7803383. 

[84] Cha Y-S, Kim K, Lee J-Y, Lee J, Choi M, Jeong M-H, et al. MAHRU-M: A mobile 
humanoid robot platform based on a dual-network control system and coordinated task 
execution. Rob Auton Syst 2011;59:354–66. 
https://doi.org/https://doi.org/10.1016/j.robot.2011.01.003. 

[85] Milighetti G, Petereit J, Kuntze H-B. Mobile Experimental Platform for the 
Development of Environmentally Interactive Control Algorithms towards the 
Implementation on a Walking Humanoid. ISR 2010 (41st Int. Symp. Robot. Robot. 2010 
(6th Ger. Conf. Robot., 2010, p. 1–7. 

[86] Keshtkar S, Moreno JA, Kojima H, Uchiyama K, Nohmi M, Takaya K. Spherical 
gyroscopic moment stabilizer for attitude control of microsatellites. Acta Astronaut 
2018;143:9–15. https://doi.org/https://doi.org/10.1016/j.actaastro.2017.10.033. 

[87] ARNOLD RN, MAUNDER L. CHAPTER 9 - GYROSCOPIC VIBRATION 
ABSORBERS AND STABILIZERS. In: ARNOLD RN, MAUNDER L, editors. 
Gyrodynamics its Eng. Appl., Academic Press; 1961, p. 177–227. 
https://doi.org/https://doi.org/10.1016/B978-0-12-063852-9.50012-8. 

[88] Novoselov VS. Motion of stabilized gyroscopic systems on a moving base. J Appl Math 
Mech 1959;23:1375–81. https://doi.org/https://doi.org/10.1016/0021-8928(59)90142-X. 

[89] Matrosov VM. On the stability of gyroscopic stabilizers. J Appl Math Mech 
1960;24:1214–24. https://doi.org/https://doi.org/10.1016/0021-8928(60)90102-7. 

[90] Kuz’mina LK. On stability of systems of gyroscopic stabilization in the presence of 
perturbations. J Appl Math Mech 1980;44:119–22. 
https://doi.org/https://doi.org/10.1016/0021-8928(80)90184-7. 

[91] Ghasempoor A, Sepehri N. Measure of machine stability for moving base manipulators. 
Proc. - IEEE Int. Conf. Robot. Autom., 1995. 
https://doi.org/10.1109/robot.1995.525596. 

[92] Li Y. Dynamic stability analysis and control for the mobile manipulator. Can. Conf. 
Electr. Comput. Eng., 2002. https://doi.org/10.1109/ccece.2002.1015287. 

[93] Papadopoulos EG, Rey DA. New measure of tipover stability margin for mobile 
manipulators. Proc. - IEEE Int. Conf. Robot. Autom., 1996. 
https://doi.org/10.1109/robot.1996.509185. 

[94] Papadopoulos E, Rey DA. Force-angle measure of tipover stability margin for mobile 
manipulators. Veh Syst Dyn 2000. https://doi.org/10.1076/0042-3114(200001)33:1;1-
5;FT029. 

[95] Bergmann T. Dynamische Kipperkennung eines mobilen Serviceroboters. Hochschule 
Karlsruhe – Technik und Wirtschaft, 2019. 

[96] Vukobratović M, Borovac B. Zero-Moment Point - Thirty Five Years of its Life. Int J 
Humanoid Robot 2004. https://doi.org/10.1142/s0219843604000083. 

[97] Sugano S, Huang Q, Kato I. Stability criteria in controlling mobile robotic systems. 
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS ’93), 1993. 
https://doi.org/10.1109/iros.1993.583186. 

[98] Huang Q, Sugano S, Kato I. Stability control for a mobile manipulator using a potential 
method. IEEE/RSJ/GI Int. Conf. Intell. Robot. Syst., 1994. 
https://doi.org/10.1109/iros.1994.407542. 

[99] Moosavian SAA, Alipour K. On the dynamic tip-over stability of wheeled mobile 



194  List of References 

manipulators. Int J Robot Autom 2007. https://doi.org/10.2316/journal.206.2007.4.206-
3036. 

[100] Moosavian SAA, Alipour K. Stability evaluation of mobile robotic systems using 
moment-height measure. 2006 IEEE Conf. Robot. Autom. Mechatronics, 2006. 
https://doi.org/10.1109/RAMECH.2006.252730. 

[101] Moosavian SAA, Alipour K. Moment-Height tip-over measure for stability analysis of 
mobile robotic systems. IEEE Int. Conf. Intell. Robot. Syst., 2006. 
https://doi.org/10.1109/IROS.2006.282270. 

[102] Roan PR, Burmeister A, Rahimi A, Holz K, Hooper D. Real-world validation of three 
tipover algorithms for mobile robots. Proc. - IEEE Int. Conf. Robot. Autom., 2010. 
https://doi.org/10.1109/ROBOT.2010.5509506. 

[103] Huang Q, Sugano S. Manipulator motion planning for stabilizing a mobile-manipulator. 
IEEE Int. Conf. Intell. Robot. Syst., 1995. https://doi.org/10.1109/iros.1995.525926. 

[104] Alipour K, Hasanpour A, Daemy P. Comparing two online tip-over avoidance 
algorithms for mobile manipulators. 2014 2nd RSI/ISM Int. Conf. Robot. Mechatronics, 
ICRoM 2014, 2014. https://doi.org/10.1109/ICRoM.2014.6990919. 

[105] He L. Tip-over avoidance algorithm for modular mobile manipulator. Proc. 2012 1st Int. 
Conf. Innov. Eng. Syst. ICIES 2012, 2012. 
https://doi.org/10.1109/ICIES.2012.6530855. 

[106] Hatano M, Obara H. Stability evaluation for mobile manipulators using criteria based on 
reaction. SICE 2003 Annu Conf (IEEE Cat No03TH8734) 2003. 

[107] Furuno S, Yamamoto M, Mohri A. Trajectory planning of mobile manipulator with 
stability considerations. Proc. - IEEE Int. Conf. Robot. Autom., 2003. 
https://doi.org/10.1109/robot.2003.1242116. 

[108] Kim J, Chung WK, Youm Y, Lee BH. Real-time ZMP compensation method using null 
motion for mobile manipulators. Proc - IEEE Int Conf Robot Autom 2002. 
https://doi.org/10.1109/ROBOT.2002.1014829. 

[109] Li Y, Liu Y. Fuzzy logic self-motion planning and robust adaptive control for tip-over 
avoidance of redundant mobile modular manipulators. IEEE/ASME Int. Conf. Adv. 
Intell. Mechatronics, AIM, 2005. https://doi.org/10.1109/aim.2005.1511187. 

[110] Li Y, Liu Y. Real-time tip-over prevention and path following control for redundant 
nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. J 
Dyn Syst Meas Control Trans ASME 2006. https://doi.org/10.1115/1.2229253. 

[111] Brettel M, Fischer F, Bendig D, Weber A, Wolff B. Enablers for Self-optimizing 
Production Systems in the Context of Industrie 4.0. Procedia CIRP 2016;41:93–8. 
https://doi.org/10.1016/j.procir.2015.12.065. 

[112] Seemann S. Entwicklung und Simulation einer Strategie zur Stabilisierung eines 
Knickarmroboters auf einer mobilen Plattform. Fakultät Elektro- und 
Informationstechnik Masterstudiengang Elektro- und Informationstechnik, 2018. 

[113] Kipfmueller M, Toledo Fuentes A, Seemann S, Prieto J. Simulation of stabilization 
strategies for industrial robots on mobile platforms. XXV Semin. Anu. Automática, 
Electrónica Ind. e Instrumentación  Libr. Actas. Semin. Anu. automática, electrónica Ind. 
e instrumentación (SAAEI 2018), 2018, p. 221–6. 

[114] LEIFIphysik. Drehbewegungen n.d. 
https://www.leifiphysik.de/mechanik/drehbewegungen (accessed February 20, 2022). 

[115] Helmer P, Heemann P. Entwicklung und Auslegung eines Gyrostabilisers (Mid-term 
Project). Karlsruhe: 2018. 

[116] Seakeeper | Eliminate Boat Roll n.d. https://www.seakeeper.com/ (accessed January 21, 
2022). 

[117] Giallanza A, Elms T. Interactive roll stabilization comparative analysis for large yacht: 
gyroscope versus active fins. Int J Interact Des Manuf 2020;14:143–51. 



List of References  195 
 

https://doi.org/10.1007/s12008-019-00618-y. 
[118] Webhofer M. Modellierung eines Mehrkörpersystems zur Simulation der 

Querpendelbewegung von Einseilumlaufbahnen bei der Stationseinfahrt. Technical 
University of Munich (TUM), 2000. 

[119] Rahnejat H, Rothberg S. Multi-body Dynamics: Monitoring and Simulation Techniques 
III. Wiley; 2004. 

[120] Bauchau OA. Flexible Multibody Dynamics. Springer Netherlands; 2012. 
[121] What is mechatronic system simulation? n.d. 

https://community.sw.siemens.com/s/article/what-is-mechatronic-system-simulation 
(accessed October 15, 2022). 

[122] Co-simulation with Abaqus and Dymola n.d. https://www.3ds.com/products-
services/simulia/training/course-descriptions/co-simulation-with-abaqus-and-dymola/ 
(accessed March 28, 2022). 

[123] Krauße M. Aufwandsoptimierte Simulation von Produktionsanlagen durch 
Vergrößerung der Geltungsbereiche von Teilmodellen. Karlsruhe Institute of 
Technology, 2014. https://doi.org/978-3-8440-2799-0. 

[124] Blundell M, Harty D. The Multibody Systems Approach to Vehicle Dynamics. Elsevier 
Science; 2014. 

[125] Vöth S. Dynamik schwingungsfähiger Systeme: Von der Modellbildung bis zur 
Betriebsfestigkeitsrechnung mit MATLAB/SIMULINK®. Vieweg+Teubner Verlag; 
2007. 

[126] Schumacher A. Optimierung mechanischer Strukturen: Grundlagen und industrielle 
Anwendungen. Springer Berlin Heidelberg; 2013. 

[127] National Technology and Engineering Solutions of Sandia L. Documentation | Dakota 
n.d. https://dakota.sandia.gov/documentation.html (accessed December 23, 2021). 

[128] Dakota Reference Manual: nl2sol n.d. 
https://dakota.sandia.gov/sites/default/files/docs/6.0/html-ref/method-nl2sol.html 
(accessed October 16, 2022). 

[129] Adams, B. M.; Ebeida, M. S.; Eldred, M. S.; Jakeman, J. D.; Swiler, L. P.; Stephens, A.; 
Vigil, D. M.; Wildey TM. Dakota, A Multilevel Parallel Object-Oriented Framework for 
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity 
Analysis: Version 6.0 Theory Manual. Albuquerque, New Mexico: 2014. 

[130] Dakota Reference Manual: package_scolib n.d. 
https://dakota.sandia.gov/sites/default/files/docs/6.0/html-ref/topic-
package_scolib.html (accessed October 16, 2022). 

[131] Portje V. Methode zur computerunterstützten Parametrierung von Mehrkörpermodellen. 
Hochschule Karlsruhe - Fakultät für Maschinenbau und Mechatronik, 2018. 

[132] Bhave S. Mechanical Vibrations: Theory and Practice. Dorling Kindersley; 2010. 
[133] Mohr M, Portje V. Parametrierung eines Mehrkörpersystems mit Open Source Software 

Dakota. 2016. 
[134] Schenk A. Schwingungsidentiikation von Schienenfahrzeugen: Ziele, Methodik und 

Nutzen. VDI-Schwingungstagung Exp. und Rechn. Modalanalyse sowie Identifikation 
dynamischer Syst., Kassel, Germany: 2000. 

[135] Mohr M, Portje V. Methode zur Parametrierung von Mehrkörpersystemen mittels Open-
source Optimierungssoftware Dakota. 2017. 

[136] Füllekrug U. Computation of real normal modes from complex eigenvectors. Mech Syst 
Signal Process 2008;22:57–65. 

[137] Schilders WH, van der Vorst HA, Rommes J. Model Order Reduction: Theory, Research 
Aspects and Applications. Springer Berlin Heidelberg; 2008. 

[138] Shampine LF, Thompson S. Stiff systems. Scholarpedia 2007;2:2855. 
https://doi.org/10.4249/SCHOLARPEDIA.2855. 



196  List of References 

[139] MSC Software Corporation. Adams Solver User’s Guide. MSC Software Corporation; 
2021. 

[140] Richter T, Wick T. Einführung in die Numerische Mathematik: Begriffe, Konzepte und 
zahlreiche Anwendungsbeispiele. Springer Berlin Heidelberg; 2017. 

[141] Bärwolff G. Numerik für Ingenieure, Physiker und Informatiker. Springer Berlin 
Heidelberg; 2020. 

[142] Negrut D, Dyer A. ADAMS/Solver Primer. 2004. 
[143] Hexagon. Adams/View Overview 2021. 

https://simcompanion.hexagon.com/customers/s/article/adams-view-help---adams-
2014-doc10647 (accessed February 16, 2021). 

[144] Schröder D. Elektrische Antriebe - Regelung von Antriebssystemen. Springer Berlin 
Heidelberg; 2015. 

[145] Keviczky L, Bars R, Hetthéssy J, Bányász C. Control Engineering. Springer Nature 
Singapore; 2018. 

[146] Gattringer H. Starr-elastische Robotersysteme: Theorie und Anwendungen. Springer 
Berlin Heidelberg; 2011. 

[147] Sick AG. Betriebsanleitung S300 Sicherheits-Laserscanner 2013:156. 
https://www.sick.com/media/pdf/5/95/595/IM0017595.PDF (accessed December 15, 
2021). 

[148] Toledo Fuentes A, Kipfmüller M, Burghart C, José Prieto MÁ, Bertram T, Bryg M, et 
al. Stable operation of arm type robots on mobile platforms. 14th CIRP Conf. Intell. 
Comput. Manuf. Eng. CIRP ICME ˈ20, Italy, 2020, p. 104–10. 

[149] Möllmann S. Integration of an Inertial Measurement Unit into the autonomous vehicle 
platform CampusBot (in German). 2014. 

[150] Neugebauer, Reimund; Kolouch, M.; Richter, M.; Schulten M. Fehlerquellen bei einer 
Modalanalyse: Untersuchung von Einflussfaktoren während der praktischen 
Durchführung Sources of errors at conducting an experimental modal analysis. Wt 
Werkstattstech Online 99 2009:889–94. 

[151] Fuentes A, Kipfmueller M, Prieto M. 6 DOF articulated-arm robot and mobile platform: 
Dynamic modelling as Multibody System and its validation via Experimental Modal 
Analysis. IOP Conf Ser Mater Sci Eng 2017;257:12008. https://doi.org/10.1088/1757-
899X/257/1/012008. 

[152] Gross D, Hauger W, Schröder J, Wall WA, Govindjee S. Engineering Mechanics 3: 
Dynamics. Springer Berlin Heidelberg; 2014. 

[153] Stewart DE. Dynamics with Inequalities: Impacts and Hard Constraints. Society for 
Industrial and Applied Mathematics; 2011. 

[154] Hexagon Manufacturing Intelligence Inc. About Adams/Solver. Hexagon 
Manufacturing Intelligence Inc.; 2011. 

[155] Devore JL, Farnum NR, Doi JA. Applied Statistics for Engineers and Scientists. Cengage 
Learning; 2013. 

[156] Kipfmueller M, Munzinger C. Efficient Simulation of Parallel Kinematic Machine 
Tools. Vol. 7 33rd Mech. Robot. Conf. Parts A B, San Diego: ASMEDC; 2009, p. 523–
30. https://doi.org/10.1115/DETC2009-86769. 

[157] Vinayak H, Singh R. MULTI-BODY DYNAMICS AND MODAL ANALYSIS OF 
COMPLIANT GEAR BODIES. J Sound Vib 1998;210:171–214. 

[158] Bremer H. Elastic Multibody Dynamics: A Direct Ritz Approach. Springer Netherlands; 
2008. 

[159] Ewins DJ. Modal Testing: Theory, Practice and Application. Wiley; 2009. 
[160] Lutz H, Wendt W. Taschenbuch der Regelungstechnik: mit MATLAB und Simulink. 

Verlag Europa-Lehrmittel Nourney, Vollmer; 2014. 
[161] Maedler North America. Linear Drives (lifting devices) SFL 12 V - 24 V n.d. 



List of References  197 
 

http://smarthost.maedler.de/datenblaetter/K42_800_EN.pdf?_ga=2.164682360.651806
919.1663001258-1001102722.1663001258 (accessed September 12, 2022). 

[162] Unknown. Technical Data n.d. 
http://smarthost.maedler.de/datenblaetter/SFL_Kennlinien.pdf?_ga=2.164682360.6518
06919.1663001258-1001102722.1663001258 (accessed September 12, 2022). 

[163] Drela M, Astro A&. Second-Order DC Electric Motor Model 2006. 
[164] Product 47520114 - Linear drive SFL with DC-motor operating voltage 12V-24V 

nominal lifting force 400N with Hall-IC n.d. https://www.maedler.de/Article/47520114 
(accessed April 6, 2022). 

[165] Berufsbildende Schulen Wolfsburg. Regelungstechnik: Vergleich und Dimensionierung 
2020. https://www.xplore-dna.net/mod/page/view.php?id=95 (accessed March 28, 
2021). 

[166] Nelles O. Regelungstechnik (Script). Univ Siegen n.d. https://www.mb.uni-
siegen.de/mrt/lehre/rt/rt_skript.pdf (accessed May 21, 2021). 

[167] Kuhn U. Eine praxisnahe Einstellregel für PID-Regler: die T-Summen-Regel. Autom. 
Prax., 1995. 

[168] Zacher S. Hinweise zur Identifikation einer Regelstrecke mit MATLAB nach 
Versuchsdaten. Autom Nr 3 2011:10. 

[169] Maxon Group. Catalog page DCX35L n.d. 
https://www.maxongroup.de/medias/sys_master/root/8881024892958/EN-21-106.pdf 
(accessed April 6, 2022). 

[170] Gerdt Seefrid GmbH. Motor 627.031 DCGM 77 T72 n.d. 
https://products.zilvertron.com/files/seefrid/Datasheet/627031.pdf (accessed April 6, 
2022). 

[171] Hochschule Karlsruhe. Systemtheorie Online: IT1-Glied n.d. https://www.eit.hs-
karlsruhe.de/mesysto/teil-a-zeitkontinuierliche-signale-und-
systeme/uebertragungsglieder-der-regelungstechnik/zusammengesetzte-
uebertragungsglieder/it1-glied.html (accessed April 28, 2022). 

[172] Tietze U, Schenk C. Halbleiter-Schaltungstechnik. Springer Berlin Heidelberg; 2013. 
[173] Kessler R. Weglose Waage: Simulation Einstellregeln von Tietze-Schenk nd von 

Ziegler-Nichols (Sensorsystemtechnik). Karlsruhe: n.d. 
[174] Spreckelsen NT. Co-Simulation eines Gyroskops als Stabilisierungsmechanismus für ein 

mobiles Robotersystems. 2021. 
[175] Kempf F. Development of an algorithm for active stabilization of a mobile manipulator. 

Hochschule Karlsruhe – Technik und Wirtschaft, 2021. 
[176] Fraunhofer IPA. GitHub - ipa320/schunk_modular_robotics 2019. 

https://github.com/ipa320/schunk_modular_robotics (accessed October 16, 2021). 
[177] Grote KH, Feldhusen J. Dubbel: Taschenbuch für den Maschinenbau. Springer Berlin 

Heidelberg; 2011. 
[178] Fok C-L, Johnson G, Sentis L, Mok A, Yamokoski JD. ControlIt! | A Software 

Framework for Whole-Body Operational Space Control. Int J Humanoid Robot 
2015;13:1550040. https://doi.org/10.1142/S0219843615500401. 

[179] GitHub - hakuturu583/robot_kinetics_pkgs: ROS packages about robot kinetics(get 
center of gravity etc..) n.d. https://github.com/hakuturu583/robot_kinetics_pkgs 
(accessed October 17, 2021). 

[180] KDL wiki | The Orocos Project n.d. https://www.orocos.org/kdl.html (accessed October 
17, 2021). 

[181] Smits R. orocos_kdl: KDL::ChainIdSolver_RNE Class Reference n.d. 
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE
.html (accessed October 17, 2021). 

[182] Murray R, Li Z, Sastry S. A mathematical introduction to robotic manipulation Cited by 



198  List of References 

me analytic_grasp_synt... grasp_quality_metrics. vol. 29. CRC Press; 1994. 
[183] Siciliano B, Khatib O. Springer Handbook of Robotics. 2nd ed. Switzerland: Springer 

International Publishing; 2016. https://doi.org/10.1007/978-3-319-32552-1_1. 
[184] Zhao J, Feng Z, Chu F, Ma N. Workspace of the End Effector of a Robot Mechanism. 

Adv Theory Constraint Motion Anal Robot Mech 2014:159–200. 
https://doi.org/10.1016/B978-0-12-420162-0.00005-9. 

[185] Maier H. Grundlagen der Robotik. Vde Verlag GmbH; 2019. 
[186] Pobil AP, Serna MA. Spatial Representation and Motion Planning. Springer Berlin 

Heidelberg; 1995. 
[187] PickNik Robotics. MoveIt Setup Assistant — moveit_tutorials Kinetic documentation 

n.d. 
http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/setup_assistant/setup_assi
stant_tutorial.html (accessed October 17, 2021). 

[188] PickNik Robotics. Move Group C++ Interface — moveit_tutorials Kinetic 
documentation n.d. 
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/move_group_interface/mov
e_group_interface_tutorial.html (accessed October 17, 2021). 

[189] Company SR. Planners Benchmarking Documentation Shadow Robot Company 2020. 
[190] Moll M, Sucan IA, Kavraki LE. Benchmarking Motion Planning Algorithms: An 

Extensible Infrastructure for Analysis and Visualization. IEEE Robot Autom Mag 2015. 
https://doi.org/10.1109/MRA.2015.2448276. 

[191] Khalil W, Dombre E. Chapter 1 - Terminology and general definitions. In: Khalil W, 
Dombre E, editors. Model. Identif. Control Robot., Oxford: Butterworth-Heinemann; 
2002, p. 1–12. https://doi.org/https://doi.org/10.1016/B978-190399666-9/50001-4. 

[192] Einhorn E, Langner T, Stricker R, Martin C, Gross H-M. MIRA - middleware for robotic 
applications. 2012 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2012, p. 2591–8. 
https://doi.org/10.1109/IROS.2012.6385959. 

[193] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS: an open-source 
Robot Operating System. ICRA Work. Open Source Softw., vol. 3, 2009. 

[194] GitHub - strands-project/scitos_drivers: Scitos G5 drivers that interface ROS to MIRA 
n.d. https://github.com/strands-project/scitos_drivers (accessed January 21, 2022). 

[195] Schunk GmbH & Co. KG. Modulare und Mobile Greifsysteme n.d. 
[196] MetraLabs GmbH. Betriebsanleitung ( Original ) 2014. 
[197] MIRA: Concepts n.d. https://www.mira-project.org/MIRA-doc/ConceptsPage.html 

(accessed October 16, 2021). 
[198] schunk_robots - ROS Wiki. Open Robot n.d. http://wiki.ros.org/schunk_robots 

(accessed October 23, 2021). 
[199] GitHub - ipa320/schunk_robots n.d. https://github.com/ipa320/schunk_robots (accessed 

October 23, 2021). 
[200] Bryg M. Kopplung einer mobilen Roboterplattform mit einem Industrieroboterarm 

Bachelorarbeit ( B . Eng .). Hochschule Karlsruhe Technik und Wirtschaft, 2018. 
[201] Mobile Roboter - KUKA AG n.d. https://www.kuka.com/de-de/produkte-

leistungen/mobilität/mobile-roboter (accessed May 5, 2022). 
[202] RB-KAIROS Mobile Robot with Omnidirectional Wheels - Robotic Gizmos n.d. 

https://www.roboticgizmos.com/rb-kairos-mobile-robot/ (accessed May 5, 2022). 
[203] Industrial mobile robots for material flow and intralogistics by NEOBOTIX n.d. 

https://www.expo21xx.com/industrial-robots/18488_st3_service-robots/default.htm 
(accessed May 5, 2022). 

[204] MuR205 - Mobile Universal Robot with Whole Body Control and Redundancy 
Resolution - YouTube n.d. https://www.youtube.com/watch?v=v1bzNrgP8kg (accessed 
May 5, 2022). 



List of References  199 
 

[205] Global Robotic Standards from A3 Robotics. Robot Ind Assoc 2020. 
https://www.automate.org/a3-content/global-robotic-standards (accessed March 11, 
2021). 

[206] Technologisches Zentrum - ROBOTEC n.d. https://robotec.sk/de/technologisches-
zentrum-2/ (accessed August 1, 2022). 

[207] Freight100 OEM Base - Fetch Robotics n.d. https://fetchrobotics.com/freight100-oem-
base/ (accessed August 1, 2022). 

[208] SCITOS G5. - MetraLabs n.d. https://www.metralabs.com/en/mobile-robot-scitos-g5/ 
(accessed August 1, 2022). 

[209] Gasch R, Knothe K, Liebich R. Strukturdynamik: Diskrete Systeme und Kontinua. 
Springer Berlin Heidelberg; 2012. 

[210] How to calculate damping from a FRF? n.d. 
https://community.sw.siemens.com/s/article/how-to-calculate-damping-from-a-frf 
(accessed November 7, 2022). 

[211] Mohr M. Mehrkörpermodell einer mobilen Roboterplattform und zugehörige 
Validierung mittels Modalanalyse. Karlsruhe University of Applied Sciences, 2015. 

[212] Mechanical Dynamics I. ADAMS: Getting Started Using ADAMS/View : Version 10. 
Mechanical Dynamics, Incorporated; 1999. 

[213] Basic ADAMS Full Simulation Training Guide. Mechanical Dynamics, Incorporated; 
2001. 

[214] Building Models in ADAMS/View. Ann Arbor, Michigan: Mechanical Dynamics, 
Incorporated; 2000. 

[215] Graf R, Vierling R, Dillmann R. A flexible controller for a Stewart platform. In: Jain LC, 
Jain RK, editors. Knowledge-Based Intell. Electron. Syst. 2nd Int. Conf. {KES} 1998, 
Adelaide, South Aust. 21-23 April 1998, Proceedings, Part {II}, IEEE; 1998, p. 52–9. 
https://doi.org/10.1109/KES.1998.725892. 



 

  



List of Figures  201 
 

9 List of Figures 

Figure 1 Is batch size 1 already an important topic for your company and your sector? (based 
on [3]). ...................................................................................................................................... 19 

Figure 2 Integration of mobile manipulators (based on [18]). ................................................ 21 

Figure 3 Weight-to-payload ratio of some compact industrial robot manipulators and co-bots.
 .................................................................................................................................................. 26 

Figure 4 Spring-damper-mass-system. .................................................................................... 31 

Figure 5 Example of plot for a MAC with ideal correlations [26]. ......................................... 36 

Figure 6 H2 estimator function [32]. ....................................................................................... 37 

Figure 7 H1 estimator function [32]. ....................................................................................... 38 

Figure 8 Two representative models of mobile manipulators (left: KUKA KMR iiwa [60], 
right: OMRON TM-manipulators with LD-mobile platforms [61]) ........................................ 47 

Figure 9 Compensation of linear accelerations by means of a Stewart-platform ([65] based on 
[63]). ......................................................................................................................................... 48 

Figure 10 Compound motion generation [63]. ........................................................................ 48 

Figure 11 Stewart platform controlling architecture [66]. ...................................................... 49 

Figure 12 Ideal two wheeled inverted pendulum system [70]. ............................................... 49 

Figure 13 Outline of most-used controllers for two-wheeled robots [71]. .............................. 50 

Figure 14 Concept of flywheel as stabilization mechanism for two-wheeled inverse pendulum 
[77]. .......................................................................................................................................... 50 

Figure 15 Mechanism to achieve lateral stability for two-wheeled vehicles [80]. .................. 51 

Figure 16 Control concept for the auxiliary balancing mechanism of two-wheeled vehicles 
[80]. .......................................................................................................................................... 51 

Figure 17 Prototype of 3-DOF manipulator mounted on a two-wheeled vehicle [82]. .......... 52 

Figure 18 Mobile humanoid robot MAHRU-M [84]. ............................................................. 52 

Figure 19 Schematic representation of satellite orientation by a control moment gyroscope [86].
 .................................................................................................................................................. 53 

Figure 20 Planar Force-Angle stability Measure [95]. ............................................................ 54 

Figure 21 Stable regions determined by the ZMP [95]. .......................................................... 56 

Figure 22 Separation of whole system into two subsystems, since the MHS measure is 
computed on the part which produces mobility (the mobile platform) [101] .......................... 57 

Figure 23 Ramp crossover with tip-over avoidance algorithm of He [105]. .......................... 59 

Figure 24 Stabilization principle of single link mass by Hatano and Obara [106]. ................ 60 

Figure 25 Tip-over prediction and avoidance algorithm by Ding et al. [22]. ......................... 61 

Figure 26 Algorithm of motion planing for maintaining stability by Huang and Sugano [103].
 .................................................................................................................................................. 62 

Figure 27 Fuzzy logic tip-over avoidance planner proposed by Alipour et al. [104]. ............ 63 

Figure 28 Linear actuators as external stabilization mechanism for a robot manipulator 
mounted on a small footprint mobile platform. ........................................................................ 66 

Figure 29 Linear drives mechanism designed for the stabilization strategy via tilting effect. 66 

Figure 30 Free body diagram of mobile manipulator at home position (following [112]). .... 67 

Figure 31 Description of the inclining/tilting method [113]. .................................................. 68 

Figure 32 Description of the conservartion of angular momentum method [113]. ................. 69 

Figure 33 Free body diagram of the testing system at equilibrium position (following [112]).
 .................................................................................................................................................. 69 

Figure 34 Gyroscope mechanism on mobile manipulator. ...................................................... 70 



202  List of Figures 

Figure 35 Gyroscopic principle (following [117]). ................................................................. 71 

Figure 36 Principle of co-simulation of mechatronic systems (following [122]). .................. 73 

Figure 37 Test arrangement for the experimental modal analyses. ......................................... 73 

Figure 38 Graphical topology of a basic wheel suspension mechanism of a mobile platform.
 .................................................................................................................................................. 75 

Figure 39 Graphical topology of the elastic joint elements for a robot manipulator. ............. 75 

Figure 40 Iteration procedure for the MBS-modeling of a real system. ................................. 77 

Figure 41 Functions/file interactions of the algorithm implemented in DAKOTA (following 
[131]). ....................................................................................................................................... 80 

Figure 42 Two-mass oscillator. ............................................................................................... 81 

Figure 43 MBS model of the employed two-mass oscillator ([133]). ..................................... 81 

Figure 44 Five-mass oscillator (m1=5 kg, m2=4 kg, m3=3 kg, m4=2 kg, m5=1 kg, k1=6 N/mm, 
k2=5 N/mm, k3=4 N/mm, k4=3 N/mm, k5=2 N/mm, k1=1 N/mm) .......................................... 83 

Figure 45 MAC results without mode matching [135]. .......................................................... 84 

Figure 46 MAC results with mode matching [135]. ............................................................... 84 

Figure 47 MAC results with mode matching and employing evolutionary algorithm [135]. . 85 

Figure 48 Testing system for further development [131]. ....................................................... 88 

Figure 49 Co-simulation between the developed stabilization strategies (in Matlab/Simulink) 
and the mobile manipulator as a multibody-system (in MSC.ADAMS/View). ...................... 91 

Figure 50 Vectors for the estimation of the inverse kinematics (following [146]). ................ 94 

Figure 51 Co-simulation of g-tilt control with the MBS of the mobile manipulator. ............. 96 

Figure 52 Rotary and  tilting motors of the gyro mechanism. ................................................ 97 

Figure 53 Schema of the co-simulation for the gyroscope. ..................................................... 97 

Figure 54 Mitsubishi RV-3AL (left) and MetraLabs Scitos X3 (right) as testing system for 
further analyses. ....................................................................................................................... 98 

Figure 55 Emergency brake and normal brake of the mobile platform. ................................. 99 

Figure 56 Schematic sketch of the mobile platform and the IMU mounting location [148]. . 99 

Figure 57 CAD model of the mobile platform and its measurement points. ........................ 101 

Figure 58 Representation of the mobile platform in OROS Modal (based on the points in Figure 
57). .......................................................................................................................................... 101 

Figure 59 Excitation (green) and measurement (red) spots for the mobile platform. ........... 102 

Figure 60 Scheme of the performed experimental modal analyses for the robot manipulator.
 ................................................................................................................................................ 104 

Figure 61 CAD model of robot manipulator and its measurement points [151]. .................. 105 

Figure 62 Representation of the main parts of the robot manipulator in OROS Modal 2 [151].
 ................................................................................................................................................ 105 

Figure 63 Excitation (green) and measurement (red) spots for the robot manipulator. ........ 105 

Figure 64 Drive wheels and engines assembly of the mobile platform. ............................... 108 

Figure 65 Wheel suspension mechanism of the mobile platform. ........................................ 109 

Figure 66 Graphical topology of the implemented joint elements for the wheel suspension 
mechanism of the mobile platform ......................................................................................... 109 

Figure 67 MBS model of mobile platform. ........................................................................... 111 

Figure 68 Correlation between EMA- and MSB-mobile platform using 3-sigma limits [151].
 ................................................................................................................................................ 113 

Figure 69 6-DOF-limited bushings in the multibody-system simulation of robot manipulator.
 ................................................................................................................................................ 114 

Figure 70 Correlation between EMA- and MSB-robot manipulator using 3-sigma limits [151].
 ................................................................................................................................................ 116 



List of Figures  203 
 

Figure 71 MBS model for robot manipulator suited for the DAKOTA algorithm [131]. .... 118 

Figure 72 Linear actuators as external stabilization mechanism for the testing system 
comprised by the robot manipulator mounted on a small footprint mobile platform. ........... 121 

Figure 73 Gyroscope as external stabilization mechanism for the testing system comprised by 
the robot manipulator mounted on a small footprint mobile platform. .................................. 121 

Figure 74 Braking force influence on the front support wheels as a function of the travelling 
deceleration and the tilt angle generated by the linear actuators [113] .................................. 125 

Figure 75 Braking processes implemented for the linear drives strategy simulations [112]. 126 

Figure 76 Braking process which served as the basis profile for the gyro stabilizer simulations 
[112]. ...................................................................................................................................... 126 

Figure 77 Empirical estimation of the motor time constant [112]. ....................................... 127 

Figure 78 Designed gyroscope for the further analyses. ....................................................... 129 

Figure 79 Inclination/tilting of the manipulator during braking process [148]. .................... 131 

Figure 80 Contact force measured with the “inclining/tilting” stabilization strategy [112]. 132 

Figure 81 Conservation of angular momentum of the manipulator during braking process. 133 

Figure 82 Contact force measured with the “conservation of angular momentum” ............. 133 

Figure 83 Gyroscopic stabilizer action during braking process [148]. ................................. 134 

Figure 84 Torque achieved by the simple gyroscope model [148]. ...................................... 135 

Figure 85 Results from scenario 1 (top) and scenario 2 (bottom) [174]. .............................. 136 

Figure 86 Results from scenario 3 [174]. .............................................................................. 137 

Figure 87 Results from scenario 4 for a braking process from 1 m/s to 0 m/s (top) and from 1.2 
m/s to 0 m/s (bottom) [174] .................................................................................................... 138 

Figure 88 Results from scenario 5 [174]. .............................................................................. 139 

Figure 89 Results from scenario 6 for the horizontal worst case position (top) and the vertical 
worst case position (bottom) [174] ......................................................................................... 140 

Figure 90 Tilting moment for mobile manipulator in scenario 1. ......................................... 143 

Figure 91 Tilting moment for mobile manipulator in scenario 2. ......................................... 144 

Figure 92 General description of the algorithm corresponding to the approach B (following 
[175]). ..................................................................................................................................... 146 

Figure 93 Representation of 6 DOF massless joint implemented in a URDF-file. ............... 147 

Figure 94 Tilting shape and mobile platform COG (following [95]). ................................... 149 

Figure 95 FA point of intersection (red) between resulting force and footprint (following 
[148]). ..................................................................................................................................... 150 

Figure 96 Connection point P of the mobile platform with the robot manipulator [148]. .... 151 

Figure 97 Vectors for the projected torque calculation. ........................................................ 152 

Figure 98 a) Theoretical and b) Non-critical workspace optimization (following [175]). .... 155 

Figure 99 Free body diagram of mobile manipulator (following [175]). .............................. 155 

Figure 100 The angle 𝛤 defines if the TCP is located within the critical volume (following 
[175]). ..................................................................................................................................... 156 

Figure 101 Free body diagram of mobile manipulator considering dynamic forces and moments 
generated by operation movements (following [175]). .......................................................... 158 

Figure 102 Discretization of workspace for the implementation of the gradient function 
required for the repositioning of the robot manipulator’s joints (following [175]). .............. 159 

Figure 103 Algorithm for calculating the new joint position for robot manipulator (following 
[175]). ..................................................................................................................................... 160 

Figure 104 Mobile manipulator control functionalities. ....................................................... 160 

Figure 105 Scitos G5 and LWA 4D as testing system for the developed approch B. .......... 161 

Figure 106 The virtual model of the mobile manipulator [95]. ............................................. 164 



204  List of Figures 

Figure 107 Robot manipulator position for the estimation of the effects of linear accelerations.
 ................................................................................................................................................ 165 

Figure 108 Estimation of a) tilting moment (top) and b) ellipsoid critical radius (bottom) under 
static conditions for different angle configurations β and Υ [175] ........................................ 168 

Figure 109 Optimized workspace for mobile manipulator in RViz [175]. ........................... 168 

Figure 110 Analysis of the stability moment as a function of the manipulator´s joint positions 
and mobile platform acceleration, employing as linear acceleration: (a) 0 m/s2, (b) 0.2 m/s2, (c) 
0.4 m/s2, (d) 0.6 m/s2, and (e) 0.8 m/s2. The black lines represent stable states and the red lines 
represent unstable states of the mobile manipulator [175]. .................................................... 169 

Figure 111 Critical tilting instability for different values of 𝛶 as a function of the mobile 
platform traveling acceleration [175] ..................................................................................... 170 

Figure 112 Example of starting position and orientation of mobile manipulator moving to the 
predefined target position. ...................................................................................................... 172 



List of Tables  205 
 

10 List of Tables 

Table 1 Examples of robot manipulators mounted on mobile platforms. ............................... 22 

Table 2 Compact autonomous mobile platforms. .................................................................... 25 

Table 3 Weight ratio of some configurations for compact mobile manipulators. ................... 27 

Table 4 Classification of oscillation behaviors depending on 𝜁. ............................................. 33 

Table 5 Comparison of modeling methods (Source: Kreuzer et al. ([38]). ............................. 40 

Table 6 Examples of applications that employ co-simulations (based on [41]). ..................... 43 

Table 7 Modal parameters of the two-mass oscillator anallytically obtained (following [133]).
 .................................................................................................................................................. 81 

Table 8 Stiffness coefficients calculated by the first version of the parametrization algorithm 
in DAKOTA (following [133]) ................................................................................................ 82 

Table 9 Modal parameters for the two-mass oscillator: The system at rest is shown in black; 
the magenta blocks illustrate the masses at their maximum deflection during the oscillation 
process [133]. ........................................................................................................................... 82 

Table 10 Natural frequencies and sitffness coefficients for the five-mass oscillator .............. 83 

Table 11 Natural frequencies and stiffness coefficients obtained by the algorithm with 
implemented mode matching (following [135]) ...................................................................... 84 

Table 12 Natural frequencies and stiffness coefficientes obtained by the algorithm with 
implemented mode matching and employing evolutionary algorithm (following [135]). ....... 85 

Table 13 Graphical representation of the eigenmodes of the five-mass oscillator obtained by 
the parametrization algorithm [133]. The blue lines represent the eigenmodes derivated from 
the parametrization algorithm and cover the (non visible in the graphical representation) lines 
for the eigenmodes obtained analitically, proving their congruence. ...................................... 86 

Table 14 Lower and upper bound for the stiffness estimation of the 3 DOF mechanism ....... 87 

Table 15 Natural frequencies and stiffness coefficient of the 3 DOF mechanism (following 
[135]). ....................................................................................................................................... 87 

Table 16 Comparison between the gradient-based algorithm and the evolutionary algorithm 
(following [135]) ...................................................................................................................... 87 

Table 17 Modal parameters of the testing system acquired by EMAs (following [131]). ...... 89 

Table 18 MBS model of the testing system [131]. .................................................................. 89 

Table 19 Modal parameters obtained by the enhanced parametrization algorithm (following 
[131]). ....................................................................................................................................... 90 

Table 20 Damping coefficientes obtained during second run (following [131]). ................... 90 

Table 21 Stiff integrators and its main properties [139]. ......................................................... 92 

Table 22 Excitation and measurement devices. ..................................................................... 100 

Table 23 Configuration parameters for the experimental modal analyses. ........................... 101 

Table 24 Identification of the Scitos X3 natural frequencies by means of overlaping method.
 ................................................................................................................................................ 103 

Table 25 Mode shapes and natural frequencies of the mobile platform obtained from the EMAs.
 ................................................................................................................................................ 103 

Table 26 First natural frequencies of the robot manipulator obtained from the EMAs. ....... 106 

Table 27 Mode shapes of the robot manipulator obtained from the EMAs. ......................... 107 

Table 28 Natural frequencies of the robot manipulator in home position with its servomotor’s 
brakes released and enganged ................................................................................................ 107 



206  List of Tables 

Table 29 Adjusted translational stiffness and damping coefficients for the mobile platform.
 ................................................................................................................................................ 110 

Table 30 Adjusted rotational stiffness and damping coefficients for the mobile platform. .. 110 

Table 31 Settings for the Coulomb’s friction contact constraints between the wheels and the 
ground. .................................................................................................................................... 112 

Table 32 Modal parameters of the mobile platform obtained from MBS simulations [151].112 

Table 33 Adjusted stiffness and damping coefficientes for the bushings of the MBS robot 
manipulator. ............................................................................................................................ 114 

Table 34 Modal parameters of robot manipulator obtained from the MBS simulations [151].
 ................................................................................................................................................ 115 

Table 35 Premises applicable purely to 6 DOF robot manipulators and mobile platforms with 
non-holonomic drive and without significant deformations .................................................. 116 

Table 36 Modal parameters for the robot manipulator computed by the parametrization 
algorithms (following [131]) .................................................................................................. 119 

Table 37 Stiffness and damping coefficientes for the bushings of the MBS robot manipulator 
computed by the parametrization procedures (values in bold). ............................................. 119 

Table 38 Comparison of different indexes and tolerances for integrator GSTIFF (following 
[112]). ..................................................................................................................................... 122 

Table 39 Comparison of different tolerances for integrator WSTIFF with Index-I3 (following 
[112]). ..................................................................................................................................... 123 

Table 40 Comparison of different tolerances for integrator BDF constant (following [112]).
 ................................................................................................................................................ 124 

Table 41 Inputs/outputs for mechatronic co-simulations of the linear drives´stabilization 
strategies. ................................................................................................................................ 128 

Table 42 Signal assignment for the mechatronic co-simulations of the stabilization strategy 
employing the gyro effect ...................................................................................................... 130 

Table 43 Comparison of the simulations for the stabilization strategies using the linear drives 
mechanism .............................................................................................................................. 141 

Table 44 Torque generated at 4th joint [95]. ......................................................................... 166 

Table 45 Forces and torques generated at point P [95]. ........................................................ 166 

Table 46 Comparison of the tilting stability value for the simulation model and the real robot 
manipulator in home, transport and one critical position [175]. ............................................ 167 

Table 47 Comparative scenarios in order to verify the effectiveness of the active stabilization 
by means of simulations (following [175]). ........................................................................... 173 

Table 48 Comparative scenarios in order to verify the effectiveness of the stabilization strategy 
using the real mobile manipulator (following [175]). ............................................................ 177 

Table 49 Comparison of the four stabilization strategies. ..................................................... 182 

 



Annex  207 
 

11 Annex 

A.1 DAKOTA files that conform the parametrization algorithm employed for the optimization 
of the MBS of the robot manipulator [131]. The constants indicated as 0.0 need to be adjusted 
with appropriate values depending on the system to be analyzed. 
 
 
Settings for DAKOTA gradient based algorithm:  
dakota_opt_settings.in [131] 
 
environment 

tabular_graphics_data 

tabular_graphics_file = 'result_dakota.dat' 

results_output 

 

method 

nl2sol 

convergence_tolerance = 1e-3 
output debug 

     

model 

single 
   

variables 

continuous_design  = 24 

initial_point       0.0    0.0    0.0    0.0    0.0 
lower_bounds        0.0    0.0    0.0    0.0    0.0 

upper_bounds        0.0    0.0    0.0    0.0    0.0 

descriptors        '<c1>' '<c2>' '<c3>' '<c4>' '<c5>' 

 

interface 
system 

analysis_driver = 'run.bat' 

parameters_file = 'params.in' 

results_file    = 'results.out' 
aprepro 

     

responses 

calibration_terms        = 8 
calibration_data_file = 'calibration.dat' 

freeform 

weights               = 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

numerical_gradients 

method_source Dakota 
interval_type forward 

fd_gradient_step_size = .01   

no_hessians 
 
 

Settings for DAKOTA evolutionary algorithm:  
rosen_opt_ea.in [131] 
 
environment 
graphics 
tabular_data 
tabular_data_file = ’rosen_opt_ea.dat’ 
 
method 



208  Annex 

coliny_ea 
max_iterations           = 100 
max_function_evaluations = 2000 
seed                     = 11011011 
population_size          = 50 
fitness_type             merit_function 
mutation_type            offset_normal 
mutation_rate            1.0 
crossover_type           two_point 
crossover_rate           0.0 
replacement_type chc     = 10 
 
model 
single 
 
variables 
continuous_design = 2 
lower_bounds       0.0  0.0   
upper_bounds       0.0  0.0   
descriptors      '<c1>' '<c2>' 
 
interface 
analysis_drivers  = ’rosenbrock’ 
direct 
 
responses 
objective_functions = 1 

 

 

Section of script that corresponds to a MBS model generated by MSC.Adams/View and tagged with the 
variables to be parametrized:  
template.adm [131] 
 
!----------------------------------- FORCES ------------------------------------ 

! 

!                   adams_view_name='BUSHING_1_Base_Shoulder' 

BUSHING/1 
, I = 151 

, J = 152 

, C = 0.001, 0.001, 0.001 

, K = 2.42037E+06, 2.41481E+06, 2.46091E+06 

, CT = 5.729577951, 5.729577951, 5.729577951 
, KT = 4.583662361E+09, 4.583662361E+08, 4.583662361E+08 

! 

!                   adams_view_name='BUSHING_2_Shoulder_UpperArmLeft' 

BUSHING/2 
, I = 153 

, J = 154 

, C = 0.001, 0.001, 0.001 

, K = <c1>, <c2>, <c3> 
, CT = 5.729577951, 5.729577951, 5.729577951 

, KT = <c4>, <c5>, <c6> 

! 

!                  adams_view_name='BUSHING_3_Shoulder_UpperArmRight' 

BUSHING/3 
, I = 155 

, J = 156 

, C = 0.001, 0.001, 0.001 

, K = <c7>, <c8>, <c9> 
, CT = 5.729577951, 5.729577951, 5.729577951 

, KT = <c10>, <c11>, <c12> 

! 

!                 adams_view_name='BUSHING_4_UpperArmRight_Elbow' 

BUSHING/4 
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, I = 157 

, J = 158 
, C = 0.001, 0.001, 0.001 

, K = <c13>, <c14>, <c15> 

, CT = 5.729577951, 5.729577951, 5.729577951 

, KT = <c16>, <c17>, <c18> 
! 

!                  adams_view_name='BUSHING_5_UpperArmLeft_Elbow'' 

BUSHING/5 

, I = 159 

, J = 160 
, C = 0.001, 0.001, 0.001 

, K = <c19>, <c20>, <c21> 

, CT = 5.729577951, 5.729577951, 5.729577951 

, KT = <c22>, <c23>, <c24> 
! 

 

 

Settings for parametrization criteria:  
settings.py [131] 
 

import numpy as np 

  
np.savez('settings', 

damping         = "off",            # "on" / "off" 

penalfunction   = "off",            # "on" / "off" 

measpoint_ema   = [0.0,0.0,0.0],   # PART/1, PART/3, PART/5 -> [1,3,5...]  

measpoint_adams = [0.0,0.0,0.0],   # PART/1, PART/3, PART/5 -> [1,3,5...] 
accelerometerDOF= ["v1","v2","v3"] # for 3D "v1"=x;"v2"=y;"v3"=z 

) 

 

 

Penal function:  
penalfunction.py [131] 
 

from parameter import * 

import numpy as np 

import re 
 

A = [ [ 1 ,-1 , 0], 

      [ 0 ,-1 , 1], 

      [-1 , 0 , 1], ] # linear constraints 

 
Exponential_gain = 10 

Linear_gain      = 1 

   

def penalfunction(): 
matrix_A = np.array(A) 

parameter = [] 

parameter_dict = getParameter() 

for key, initial in parameter_dict.items(): parameter.append(parameter_dict[key]) 
parameter = np.array(parameter) 

delta = np.dot(matrix_A,parameter) 

for i in range(len(delta)): 

if delta[i] < 0: delta[i] = 0 

return Linear_gain*(np.linalg.norm(delta))**Exponential_gain 
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DAKOTA pre-processing:  
preprocessor.py [131] 
 

import parameter as par 

import re 

import os 
 

dir  = os.path.dirname(__file__) 

filetemplate = os.path.join(dir, '../ADAMS/template.adm') 

fileberechnung = os.path.join(dir, '../ADAMS/calculation.adm') 
 

fin  = open(filetemplate,"r") 

fout = open(filecalculation,"w") 

 

parameter = par.getParameter() 
for line in fin: 

if line.find("<") == -1: 

fout.write(line) 

else: 
fout.write(par.swapTags(line,parameter)) 

 

 

Searching tagged parameters in MBS model:  
parameter.py [131] 
 

import re 

import math 

import numpy as np 
import os 

 

dir = os.path.dirname(__file__) 

fileparams = os.path.join(dir, '../params.in') 
 

regex_taggedpar = "[-+]?\d+[\.]?\d*[eE]?[-+]?\d*" 

 

def getParameter(): 
fpar = open(fileparams,"r")  

parameter_dict = dict() 

for line in fpar: 

if not line.find("{ <c") == -1: 

a = re.findall(regex_taggedpar, line)[0] 
b = re.findall(regex_taggedpar, line)[1] 

parameter_dict["<c"+str(a)+">"] = float(b) 

if not line.find("{ <d") == -1: 

a = re.findall(regex_taggedpar, line)[0] 
b = re.findall(regex_taggedpar, line)[1] 

parameter_dict["<d"+str(a)+">"] = float(b) 

if not line.find("{ <E>") == -1: 

a = re.findall(regex_taggedpar, line)[0] 
parameter_dict["<E>"] = round(float(a),2) 

else: 

if not line.find("{ <E") == -1: 

a = re.findall(taggedpar, line)[0] 

b = re.findall(taggedpar, line)[1] 
parameter_dict["<E"+str(a)+">"] = float(b) 

fpar.seek(0) 

return parameter_dict 

 
def getfinParameter(file): 

initline = 1 

parameter_dict = dict() 

f1_oldvalue = float('inf') 
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for line in file: 

if initline == 1: 
tags = re.findall("<.\d*.>",line) 

isea = re.findall("(f1).?",line) 

initline = 0 

if len(isea) == 0: 
ea = 0 

isea.insert(0,0) 

if isea[0] == "f1": 

ea = 1 

continue 
if ea == 0: 

parameterline = re.findall(taggedpar,line) 

if ea == 1: 

new = re.findall(taggedpar,line) 
if float(neu[-1]) < f1_wert_alt: 

parameterline = neu 

f1_oldvalue = float(new[-1]) 

for i in range(len(tags)): 
parameter_dict[tags[i]] = float(parameterline [1+i]) 

file.seek(0) 

return parameter_dict 

 

def swapTags(line,parameter): 
for key, initial in parameter.items(): 

if not line.find(key) == -1: 

if not line.find("KT") == -1: 

initial = initial*180/math.pi 
line = line.replace(key, str(initial)) 

return line 

 

 

DAKOTA pre-processing:  
preprocessor.py [131] 
 

from result_extract import * 
from mac import * 

from parameter import * 

from penalfunction import * 

import numpy as np 

import os 
 

dir  = os.path.dirname(__file__) 

fileresadams = os.path.join(dir, '../ADAMS/result_adams.txt') 

fileresout = os.path.join(dir, '../results.out') 
fin  = open(fileresadams,"r") 

fout = open(fileresout,"w") 

 

frequency = getFrequency(fin) 
for i in range(len(frequency)): 

fout.write(str(frequency[i])+"\n") 

 

if np.load('../Python/settings.npz')["damping"] == "on": 

dampingratio = getDamping(fin) 
for i in range(len(dampingratio)):  

fout.write(str(dampingratio[i])+"\n") 

 

moden_sim = getMode_xyz(fin) 
moden_exp = np.load('../OROS/modaldata.npz')["mode"]  

 

mac_diag = np.diag(MAC(moden_exp,moden_sim)) 

for i in range(len(mac_diag)): 
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fout.write(str(mac_diag[i])+"\n") 

 
if np.load('../Python/settings.npz')["penalfunction"] == "on":  

fileIteration = os.path.join(dir, '../Iteration.out') 

fite = open(fileIteration,"a") 

penalterm =  penalfunction () 
fout.write(str(penalterm)) 

fite.write(str(penalterm)+"\n") 

 

 

Extract parameters from MBS model:  
result_extract.py [131] 
 

import parameter as par 

import re 
import numpy as np 

 

regex_taggedpar = "[-+]?\d+[\.]?\d*[eE]?[-+]?\d*" 

 
def getFrequency(file): 

freq = [] 

for line in file: 

if not line.find("Undamped natural freq.") == -1: 
freq.append(float(re.findall(regex_taggedpar,line)[0])) 

file.seek(0) 

if np.load('../Python/settings.npz')["damping"] == "on": 

damp = getDamping(file) 

for i in range(len(freq)): 
freq[i] = freq[i]*np.sqrt(1-(damp[i]/100)**2) 

return freq 

 

def getDamping(file): 
damp = [] 

for line in file: 

if not line.find("Damping ratio") == -1: 

damp.append(float(re.findall(regex_taggedpar,line)[0])*100) 
file.seek(0) 

return damp 

 

def getMode(file): 

mode = dict() 
mode_red = [] 

mode_matrix = [] 

oldposition = 0 

for line in file: 
if not line.find("PART/") == -1: 

position = int(re.findall(regex_taggedpar,line)[0]) 

if position < oldposition: 

for j in np.load('../Python/settings.npz')["measpoint_adams"]: 
mode_red.append(mode[str(j)]) 

mode_matrix.append(mode_red[:]) 

mode_red.clear() 

mode[str(position)]= re.findall(regex_taggedpar,line) 

oldposition = 0 
else: 

mode[str(position)] = re.findall(regex_taggedpar,line) 

oldposition = position 

for j in np.load('../Python/settings.npz')["measpoint_adams"]: 
mode_red.append(mode[str(j)]) 

mode_matrix.append(mode_red[:])  

file.seek(0) 

return mode_matrix 
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def scaling(mode): 

for i in range(len(mode)): 
max = np.amax(mode[i]) 

min = np.amin(mode[i]) 

if abs(min) > max: 

max = abs(min) 
for j in range(len(mode[i])): 

if max == 0: 

max = 1 

mode[i][j] = mode[i][j]/max 

return mode 
 

def getMode_xyz(file): 

spatialdir = np.load('settings.npz')["Spatial directions"] 

print(len(spatialdir)) 
if len(spatialdir) == 2:  

return print("Error: only one spatial direction!") 

mode_matrix = getMode(file) 

row = [] 
mode_xyz = [] 

mode_1D = [] 

out = 0 

def P2R(radian, angles): 

return radian * np.exp(1j*angles*np.pi/180) 
for mode in mode_matrix: 

for line in mode: 

x = P2R(float(line[1]), float(line[2])) 

y = P2R(float(line[3]), float(line[4])) 
z = P2R(float(line[5]), float(line[6])) 

if len(spatialdir) == 3: 

row.extend([x,y,z]) 

else: 
if spatialdir == "v1": 

row.append(x) 

if spatialdir == "v2": 

row.append(y) 

if spatialdir == "v3": 
row.append(z) 

if len(spatialdir) == 3: 

mode_xyz.append(row[:]) 

row.clear() 
else: 

mode_1D.append(row[:]) 

row.clear() 

if len(spatialdir) == 3: 
out = scaling(np.array(mode_xyz)) 

else: 

out = scaling(np.array(mode_1D)) 

file.seek(0) 

return out 
 

 

Compute MAC:  
mac.py [131] 
 

import numpy as np 

import matplotlib.pyplot as plt 

 
def mac(phi1,phi2): 

phi1_c = np.conjugate(phi1) 

phi1_c = np.conjugate(phi2) 

mac_ij = abs(np.dot(phi1_c,phi2))**2/(np.dot(phi1_c,phi1)*np.dot(phi2_c,phi2)) 
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mac_ij = mac_ij.real 

if not mac_ij.imag == 0 : 
print("Error: MAC exhibits imaginary part") 

return mac_ij 

 

def MAC(exp,sim): 
mac_ij = np.zeros((len(exp),len(sim)))  

for i in range(len(exp)): 

for j in range(len(sim)): 

a = np.squeeze(np.asarray(exp[i])) 

b = np.squeeze(np.asarray(sim[j])) 
mac_ij[i][j] = mac(a,b) 

return mac_ij 

 

 

Supply references: 
uff.py [131] 
 

import numpy as np 
import matplotlib.pyplot as plt 

import pyuff  

# https://github.com/openmodal/pyuff/blob/master/pyuff%20Showcase.ipynb 

import glob 
import imp 

 

uffdata = [] 

for filename in glob.glob('../OROS/*.unv'): 

uffdata.append(pyuff.UFF(filename).read_sets()) 
 

spatialdir = np.load('settings.npz')["Spatial direction"] 

 

def getFreq(data): 
freq = data["eig"].imag/(2*np.pi) 

return freq 

 

def getDamp(data): 
a = abs(data["eig"].real/data["eig"].imag) 

damp = a/np.sqrt(a**2+1) 

return damp 

 

def getEigenvalue(data): 
eigen = data["eig"] 

return eigen 

 

def getMode(data): 
if len(spatialdir) == 1: 

sp = [data[spatialdir [0]]] 

if len(spatialdir) == 2: 

sp = [data[spatialdir [0]], data[spatialdir [1]]] 
if len(raumrichtung) == 3: 

sp = [data[spatialdir [0]], data[spatialdir [1]], data[spatialdir [2]]] 

node_nums = data["node_nums"] 

node_nums = list(map(int,node_nums)) 

mode = dict() 
for i in range(len(node_nums)): 

if len(spatialdir) == 1: 

mode[str(node_nums[i])] = sp[0][i] 

if len(spatialdir) == 2: 
mode[str(node_nums[i])] = [sp[0][i], sp[1][i]] 

if len(spatialdir) == 3: 

mode[str(node_nums[i])] = [sp[0][i], sp[1][i], sp[2][i]] 

return mode 
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def getAllModaldata (data): 
dict = {"freq":getFreq(data),"damp":getDamp(data),"eigen":getEigenvalues(data), 

        "mode":getMode(data)} 

return dict 

 
def getMatrixModaldata(data): 

Modaldata = [] 

for i in range(len(data)): 

if isinstance(data[i], dict) == True: 

Modaldata.append(getAllModaldata(data[i])) 
else: 

for j in range(len(data[i])): 

Modaldata.append(getModaldata_i(data[i][j])) 

Modaldata.sort(key=lambda x:x["freq"]) 
return Modaldata 

 

def scaling(mode):   

for i in range(len(mode)): 
max = np.amax(mode[i]) 

min = np.amin(mode[i]) 

if abs(min) > max: 

max = abs(min) 

for j in range(len(mode[i])): 
if max == 0: 

max = 1 

mode[i][j] = mode[i][j]/max 

return mode 
 

def ModalParameter(data): 

Modaldata = getMatrixModaldata(data) 

freq = [] 
damp = [] 

eigenvalue = [] 

mode = [] 

for i in range(len(Modaldata)): 

freq.append(Modaldata[i]["freq"]) 
damp.append(100*Modaldata[i]["damp"]) 

eigenvalue.append(Modaldata[i]["eigen"]) 

datamode = [] 

for j in np.load('settings.npz')["measpoint_ema"]: 
if len(spatialdir) == 1:  

datamode.append(Modaldata[i]["mode"][str(j)]) 

else: 

for element in Modaldata[i]["mode"][str(j)]: 
datamode.append(element) 

mode.append(datamode[:]) 

mode = normiere(mode) 

return [freq,damp,eigenwert,mode] 

 
 

Mode transformation: 
modetrans.py [131] 
 
import numpy as np 

import uff 

import scipy.io 

 
def eigen2n(eig): 

eig2n = [] 

for i in range(len(eig)): 

eig2n.append(eig[i]) 
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eig2n.append(np.conjugate(eig[i])) 

return eig2n 
 

def mode2n(mod): 

modcon = [] 

for i in mod: 
modi = [] 

for j in i: 

j = np.conjugate(j) 

modi.append(j) 

modcon.append(modi[:]) 
mod2n = [] 

for i,j in zip(mod,modcon): 

mod2n.append(i) 

mod2n.append(j) 
return mod2n 

 

def sort(f,x): 

sort = [] 
j = 0 

for i in f: 

sort.append([i,x[j]]) 

j+=1 

sort.sort(key=lambda x:x[0]) # nach der groesse der Frequenzen sortieren 
f = [] 

x = []  

for i in sort: 

f.append(i[0]) 
x.append(i[1]) 

x = np.transpose(x) 

return [f,x] 

 
def transundampmodalparameter2damped(eigenvalue,X): 

eigen = eigen2n(eigenvalue) 

X = mode2n(X) 

n_moden = int(len(X)/2) 

n_elemente = int(len(X[0])) 
X = np.transpose(X) 

U, s, V = np.linalg.svd(np.real(X), full_matrices=True) 

X_red = np.dot(np.transpose(U),X)  

X_red = X_red[0:n_moden] 
 

eigenX_red = np.multiply(X_red,eigen) 

lhs = np.concatenate((X_red, eigenX_red), axis=0) 

rhs = -1*np.multiply(X_red,np.array(eigen)**2) 
MCMD = np.real(np.dot(rhs,np.linalg.inv(lhs))) 

MC = np.hsplit(MCMD,2)[0] 

 

eigen,X_red = np.linalg.eig(MC) 

 
freq = np.sqrt(eigen)/(2*np.pi) 

X_red = np.concatenate((X_red, np.zeros((n_elemente-n_moden,n_moden))), axis=0) 

 

X = np.dot(U,X_red) 
X = uff.normiere(np.transpose(X)) 

freq, X  = sortieren(freq,X) 

X = np.transpose(X) 

return [freq,X] 
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Create calibration.dat: 
reference.py [131] 
 

import uff 

import modentrans as mt 

import numpy as np 
import os 

 

dir = os.path.dirname(__file__) 

filecalibration = os.path.join(dir, '../calibration.dat') 
fcal = open(filecalibration,"w") 

 

freq, damp, eigenvalue, mode = uff.ModalParameter(uff.uffdata)   

if np.load('settings.npz')["damping"] == "off": 

freq,mode = mt. transundampmodalparameter2damped(eigenvalue,mode) 
np.savez('../OROS/modaldata', freq=freq, mode=mode) 

for f in freq: 

fcal.write(str(f)+"\n") 

for m in mode: 
fcal.write(str(1.0)+"\n") 

if np.load('settings.npz')["damping"] == "an": 

freq_undamp = [] 

for f,d in zip(freq,damp): 
f = f/np.sqrt(1-(d/100)**2) 

freq_undamp.append(f) 

np.savez('../OROS/modaldata', freq=freq_o, damp=damp, mode=mode) 

for f in freq: 

fcal.write(str(f)+"\n") 
for d in damp: 

fcal.write(str(d)+"\n") 

for m in mode: 

fcal.write(str(1.0)+"\n") 
 

if np.load('settings.npz')["penalfunction"] == "on": 

fcal.write(str(0.0)) 

 
fileacf = os.path.join(dir, '../ADAMS/run_adams.acf') 

fdat = open(fileacf,"w") 

fdat.write("calculation.adm"+"\n") 

fdat.write("result_adams"+"\n") 

if np.load('settings.npz')["damping"] == "on": 
fdat.write("LINEAR/EIGENSOL, COORDS=1,"+str(len(freq))+",TABLE_PRECISION = 3") 

else: 

fdat.write("LINEAR/EIGENSOL,NODAMPING,COORDS=1,"+str(len(freq))+",TABLE_PRECISION =3") 
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A.2 Block diagram for mechatronic co-simulations of the linear drive stabilization strategies. 
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A.3 Cascade control loops of DC motors for the linear drives. 
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A.4 Control loops of the rotary and tilting motor for the stabilization strategy employing the 
gyro mechanism. 
 
Closed-loop control of rotatory motor. 

 
 
Closed-loop control of tilting motor. 
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A.5 Scripts implemented for the Approach B stabilization strategy. 
 

 

kipp_dynamisch_bringup.launch [95] 
 
<?xml version="1.0" ?> 

<launch> 

 

<node pkg="acceleration_publisher" type="acceleration_publisher" 

name="acceleration_publisher" output="screen"> 

</node> 

 

<node pkg="tipover_detection" type="tipover_detection" name="tipover_detection" 

output="screen" respawn="true"> 

</node> 

 

</launch> 

 

 

acceleration_publisher.cpp [95] 
 
#include "acceleration_publisher.h" 

#include <kdl_parser/kdl_parser.hpp>//kdl_parser to create kdl_tree from URDF 
 

//Constructor will get called whenever an instance of this class is created 

// odd syntax: have to pass nodehandle pointer into constructor for constructor to build 

subscribers, etc 

acceleration_publisher::acceleration_publisher(ros::NodeHandle* 
nodehandle):nh_(*nodehandle) 

{ // constructor 

ROS_INFO("constructor of class acceleration_publisher"); 

//initializeSubscribers(); // package up the messy work of creating subscribers; do this 

overhead in constructor 

initializeSubscribers(); 

initializePublishers(); 

// can also do tests/waits to make sure all required services, topics, etc are alive 
} 

 

//member helper function to set up subscribers; 

//note odd syntax: &example::subscriberjointstateCallback is a pointer to a member function 

of example 
//"this" keyword is required, to refer to the current instance of class example 

 

void acceleration_publisher::initializeSubscribers() 

{ 
ROS_INFO("initializing Subscribers"); 

joint_state_subscriber = nh_.subscribe("joint_states", 1, 

&acceleration_publisher::subscriberjointstateCallback,this);   

} 
 

//member helper function to set up publishers; 

void acceleration_publisher::initializePublishers() 

{ 

ROS_INFO("initializing Publishers"); 
joint_state_acceleration_publisher = 

nh_.advertise<sensor_msgs::JointState>("joint_states_acceleration", 1);  

} 

 
void acceleration_publisher::subscriberjointstateCallback(const 

sensor_msgs::JointState::ConstPtr& jointstate_msg) { 
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// this callback function wakes up every time a new message is published on "/joint_states" 

 
for(int i=0; i<=10; i++) //iterate all joints 

{ 

name[i] = jointstate_msg->name[i];//get joint names from topic "/joint_states"" 

position[i] = jointstate_msg->position[i];//get joint positions from topic "/joint_states"" 
velocity[i] = jointstate_msg->velocity[i];//get joint velocities from topic 

"/joint_states"" 

} 

 

//i=0 -> right_wheel_jointi=6 -> arm_3_joint 
//i=1 -> left_wheel_joint i=7 -> arm_4_joint 

//i=2 -> back_caster_jointi=8 -> arm_5_joint 

//i=3 -> back_wheel_jointi=9 -> arm_6_joint 

//i=4 -> arm_1_jointi=10 -> arm_7_joint 
//i=5 -> arm_2_joint 

 

//get current ROS Time 

double currentTime = ros::Time::now().toSec(); 
 

//calculate time delta between last and current cycle of this callback function 

double delta = currentTime - storedTime; 

 

//calculate joint accelerations as derivative of joint velocities with f'=(y(t) - y(t-
delta_t))/delta_t (differential quotient) 

for(int i=0; i<=10; i++) 

{ 

acceleration[i] = (velocity[i]-velocity_remember[i])/delta; 
} 

//remember current velocity values for next loop, must be done AFTER acceleration is 

calculated 

for(int i=0; i<=10; i++) 
{ 

velocity_remember[i] = velocity[i]; 

} 

//remember current time for next loop, must be done AFTER acceleration is calculated 

storedTime = currentTime;     
} 

 

int main(int argc, char** argv)  

{ 
// ROS set-ups: 

ros::init(argc, argv, "acceleration_publisher_node"); //node name 

ros::NodeHandle nh; // create a node handle; need to pass this to the class constructor 

ros::Rate loop_rate(10);//set a desired run time of a cycle in Hz 
sensor_msgs::JointState output_message;//create output message of Type 

sensor_msg::JointState 

 

//segmentation fault (core dumped) without resize of output message 

output_message.name.resize(11); 
output_message.position.resize(11); 

output_message.velocity.resize(11); 

output_message.effort.resize(11); 

 
ROS_INFO("main: instantiating an object of type acceleration_publisher"); 

acceleration_publisher acceleration_publisher(&nh);  //instantiate an 

acceleration_publisher class object and pass in pointer to nodehandle for constructor to 

use 
while(ros::ok()) 

{ 

output_message.header.stamp = ros::Time::now();//timestamp of message 

for(int i=0; i<=10; i++) //write the joint states in output message 
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{ 

output_message.name[i] = name[i]; 
output_message.position[i] = position[i]; 

output_message.velocity[i] = velocity[i]; 

output_message.effort[i] = acceleration[i];//publish the accelerations as "effort" in 

output message of type JointState  
//because there is no array for "acceleration" available in sensor_msgs::JointState 

} 

 

acceleration_publisher.joint_state_acceleration_publisher.publish(output_message); 

//publish output_message on topic "/joint_states_acceleration"" 
::spinOnce(); 

loop_rate.sleep();//sleeps for any leftover time in a cycle to meet desired loop rate 

(calculated from the last time sleep/reset/constructor was called) 

} 
return 0; 

} 

 
tipover_detection.cpp [95] 
 
//headers in this package 

#include "tipover_detection.h" 

 
//headers for standard library 

#include <iostream> 

#include <fstream> 

 

//headers for ROS 
#include <ros/ros.h> 

#include <ros/package.h> 

#include <sensor_msgs/PointCloud.h> 

#include <geometry_msgs/PointStamped.h> 
#include <geometry_msgs/Point32.h> 

#include <geometry_msgs/Inertia.h> 

#include <geometry_msgs/Vector3.h> 

 
//headers for urdf-parser 

#include <kdl_parser/kdl_parser.hpp> 

 

//headers for RNEA 

#include <kdl/chainidsolver_recursive_newton_euler.hpp> 
#include <kdl/chain.hpp> 

#include <kdl/tree.hpp> 

#include <kdl/segment.hpp> 

 
//Constructor will get called whenever an instance of this class is created 

//odd syntax: have to pass nodehandle pointer into constructor for constructor to build 

subscribers, etc 

tipover_detection::tipover_detection(ros::NodeHandle* nodehandle):nh_(*nodehandle) 
{  

// constructor for class tipover_detection 

ROS_INFO("constructor of class tipover_detection"); 

 

initializeSubscribers(); 
initializePublishers(); 

 

//get robot_description parameter from parameter server 

std::string robot_description_text; 
nh_.param("robot_description", robot_description_text, std::string()); 

//alternative: nh_.getParam("/robot_description", robot_description_text); 

 

//parse urdf by using kdl_parser 
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KDL::Tree robot_tree; 

if(!kdl_parser::treeFromString(robot_description_text, robot_tree)) 
{ 

ROS_ERROR("failed to construct kdl tree: robot_tree"); 

} 

 
//show number of tree segments and joints 

ROS_INFO_STREAM("robot_tree segments: " << robot_tree.getNrOfSegments()<<" Joints: 

"<<robot_tree.getNrOfJoints()); 

 

//get chain from robot_tree 
if(!robot_tree.getChain("base_link","arm_ee_link",robot_chain)) 

//tree.getChain(chain_root,chain_tip,chain) base_link 

{ 

ROS_ERROR("failed to construct kdl chain robot_chain from tree robot_tree"); 
} 

 

//show number of chain segments and joints 

ROS_INFO_STREAM("robot_chain segments: " << robot_chain.getNrOfSegments()<<"Joints: 
"<<robot_chain.getNrOfJoints()); 

 

//inverse dynamics solver can only calculate forces/torques for joints 

//solution: create "virtual" joints for roll/pitch/yaw (torque) and x/y/z (force) in a 

separate URDF (these joints do not exist on the real robot, only needed for calculations) 
//origin of these joints is where the robot arm (Schunk LWA 4D) is mounted on the base 

(Scitos G5) 

//create torque_tree from URDF file "torque_joints.urdf.xacro"   

KDL::Tree torque_tree; 
if(!kdl_parser::treeFromFile("/home/franzi/ros/ros_robo_ws_sim/src/kipp_dynamisch_ws_pgks/t

orque_joints.urdf.xacro",torque_tree)) 

{ 

ROS_ERROR("failed to construct kdl tree: torque_tree"); 
} 

//show number of tree segments and joints 

ROS_INFO_STREAM("torque_tree segments: "<<torque_tree.getNrOfSegments()<<"joints: 

"<<torque_tree.getNrOfJoints()); 

 
//create chain from torque_tree 

if(!torque_tree.getChain("torque_base","connector_link",torque_chain)) 

{ 

ROS_ERROR("failed to construct kdl chain torque_chain from tree torque_tree"); 
} 

//show number of chain segments and joints 

ROS_INFO_STREAM("torque_chain segments: " << torque_chain.getNrOfSegments()<<"joints: 

"<<torque_chain.getNrOfJoints()); 
 

//add robot_chain at the end of torque_chain (robot arm should be "on top" of the torque 

joints) 

torque_chain.addChain(robot_chain); 

//show number of segments and joints of combined chain 
ROS_INFO_STREAM("combined chain segments: " << torque_chain.getNrOfSegments()<<"joints: 

"<<torque_chain.getNrOfJoints()); 

 

//calculate mass of mobile base 
std::string 

base_links[6]={"base_link","scitos_right_wheel","scitos_left_wheel","scitos_wheel_back_cyli

nder","scitos_wheel_back_plate","scitos_wheel_back"}; 

base_mass = 0; 
for(int i=0;i<6;i++) 

{ 

base_mass=base_mass+robot_tree.getSegment(base_links[i])>second.segment.getInertia().getMas

s(); 
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} 

 
//resize arrays for position, velocity and acceleration to number of joints in chain (in 

this case: 13) 

q.resize(torque_chain.getNrOfJoints()); 

q_dot.resize(torque_chain.getNrOfJoints()); 
q_dotdot.resize(torque_chain.getNrOfJoints()); 

 

//set values to zero here in constructor as safety, values will get updated by callback 

function of acceleration_subscriber 

SetToZero(q); 
SetToZero(q_dot); 

SetToZero(q_dotdot); 

} 

 
//member function to set up subscribers 

//note odd syntax: &tipover_detection::subscriberaccelerationCallback is a pointer to a 

member function of tipover_detection 

//"this" keyword is required, to refer to the current instance of class tipover_detection 
void tipover_detection::initializeSubscribers() 

{ 

ROS_INFO("initializing Subscribers"); 

acceleration_subscriber = nh_.subscribe("joint_states_acceleration",1, 

&tipover_detection::subscriberaccelerationCallback,this);  //subscribes to topic 
"/joint_states_acceleration"" 

imu_subscriber = nh_.subscribe("imu",1,&tipover_detection::subscriberimuCallback,this);    

//subscribes to topic "/imu" 

imu_without_gravity_subscriber = 
nh_.subscribe("linear_acc_without_gravity",1,&tipover_detection::subscriberimuwithoutgravit

yCallback,this);   //subscribes to topic "/linear_acc_without_gravity" 

cog_subscriber = 

nh_.subscribe("cog/robot",1,&tipover_detection::subscribercogCallback,this); 
} 

 

//member function to set up publishers 

void tipover_detection::initializePublishers() 

{ 
ROS_INFO("initializing Publishers"); 

joint_torque_publisher = nh_.advertise<sensor_msgs::JointState>("joint_torques", 1, true); 

//publishes topic "/joint_torques" 

tipover_publisher = nh_.advertise<sensor_msgs::JointState>("tipover_data", 1, true); 
} 

 

void tipover_detection::subscriberaccelerationCallback(const 

sensor_msgs::JointState::ConstPtr& acceleration_msg)  
{ 

// callback function for acceleration_subscriber 

// it wakes up every time a new message is published on "/joint_states_acceleration" 

 

//position, velocity and acceleration values of torque_joint_roll, torque_joint_pitch and 
torque_joint_yaw are always zero ("virtual" joints do not move) 

q.data[0] = 0.0;      

q_dot.data[0] = 0.0;   

q_dotdot.data[0] = 0.0; 
q.data[1] = 0.0;      

q_dot.data[1] = 0.0;   

q_dotdot.data[1] = 0.0; 

q.data[2] = 0.0;      
q_dot.data[2] = 0.0;   

q_dotdot.data[2] = 0.0; 

//position and velocity of force_joint_x, force_joint_y and force_joint_z is zero 

("virtual" joints do not move) 
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//accelerations are set to base linear acceleration in subscriberimuwithoutgravityCallback 

function to calculate forces 
q.data[3] = 0.0;      

q_dot.data[3] = 0.0;   

//q_dotdot.data[3] = 0.0; 

q.data[4] = 0.0;      
q_dot.data[4] = 0.0;   

//q_dotdot.data[4] = 0.0; 

q.data[5] = 0.0;      

q_dot.data[5] = 0.0;   

//q_dotdot.data[5] = 0.0; 
 

for (int i=6; i<=12; i++)  //robot arm joint 1..7 is "joint_states_acceleration" at 

[4]..[10} 

{ 
q.data[i] = acceleration_msg->position[i-2];      //write joint positions from topic 

"/joint_states_acceleration"" to KDL::JntArray q 

q_dot.data[i] = acceleration_msg->velocity[i-2];  //write joint velocities from topic 

"/joint_states_acceleration"" to KDL::JntArray q_dot 
q_dotdot.data[i] = acceleration_msg->effort[i-2]; //write joint accelerations from topic 

"/joint_states_acceleration"" to KDL::JntArray q_dotdot 

}     

} 

 
void tipover_detection::subscriberimuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg) 

{ 

//callback function for imu_subscriber 

//wakes up every time a new message is published on "/imu" 
//gravitational acceleration (minus any movement) in m/s² 

gravity.data[0] =  10*imu_msg -> linear_acceleration.x;     //gravity vector x 

gravity.data[1] =  10*imu_msg -> linear_acceleration.y;     //gravity vector y 

gravity.data[2] =  10*imu_msg -> linear_acceleration.z;     //gravity vector z 
} 

 

void tipover_detection::subscriberimuwithoutgravityCallback(const 

sensor_msgs::Imu::ConstPtr &linear_acc_without_gravity_msg) 

{ 
//callback function for imu_without_gravity_subscriber 

//wakes up every time a new message is published on "/linear_acc_without_gravity" 

//linear acceleration data (acceleration minus gravity) in m/s² 

linear_accel.data[0] = linear_acc_without_gravity_msg -> linear_acceleration.x; 
linear_accel.data[1] = linear_acc_without_gravity_msg -> linear_acceleration.y; 

linear_accel.data[2] = linear_acc_without_gravity_msg -> linear_acceleration.z; 

 

//set force joint accelerations to moving base linear accelerations for force calculation 
q_dotdot.data[3] = linear_acc_without_gravity_msg -> linear_acceleration.x;  

q_dotdot.data[4] = linear_acc_without_gravity_msg -> linear_acceleration.y; 

q_dotdot.data[5] = linear_acc_without_gravity_msg -> linear_acceleration.z; 

} 

 
void tipover_detection::subscribercogCallback(const geometry_msgs::PointStamped::ConstPtr 

&cog_msg) 

{ 

//callback function for cog_subscriber 
//wakes up every time a new message is published on "/cog/robot" 

cog.x = cog_msg->point.x;   //cog x in coordinate frame of "base_link" 

cog.y = cog_msg->point.y;   //cog y in coordinate frame of "base_link" 

cog.z = cog_msg->point.z;   //cog z in coordinate frame of "base_link" 
} 

 

geometry_msgs::Vector3 tipover_detection::crossProduct(geometry_msgs::Vector3 vector_a, 

geometry_msgs::Vector3 vector_b) 
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{ 

//member function to calculate the cross product of two vectors 
geometry_msgs::Vector3 vector_c;  

vector_c.x = (vector_a.y * vector_b.z) - (vector_a.z * vector_b.y);  

vector_c.y = (vector_a.z * vector_b.x) - (vector_a.x * vector_b.z);  

vector_c.z = (vector_a.x * vector_b.y) - (vector_a.y * vector_b.x);  
return vector_c; 

} 

 

double tipover_detection::dotProduct(geometry_msgs::Vector3 vector_a, 

geometry_msgs::Vector3 vector_b) 
{ 

//member function to calculate the dot product (= scalar product) of two vectors 

double dotProduct = (vector_a.x * vector_b.x) + (vector_a.y * vector_b.y) + (vector_a.z * 

vector_b.z);  
return dotProduct; 

} 

 

geometry_msgs::Vector3 tipover_detection::addVector(geometry_msgs::Vector3 vector_a, 
geometry_msgs::Vector3 vector_b) 

{ 

//member function for addition of two vectors 

geometry_msgs::Vector3 vector_c;  

vector_c.x = vector_a.x + vector_b.x;  
vector_c.y = vector_a.y + vector_b.y;  

vector_c.z = vector_a.z + vector_b.z;  

return vector_c; 

} 
 

double tipover_detection::alphacalc(double factor,double base) 

{ 

//member function to calculate tip-over stability margin alpha 
if(factor > 0) 

{ 

return pow(base,1)*factor; 

} 

else 
{ 

return pow(base,-1)*factor;  

} 

} 
 

double tipover_detection::alpha_cm_calc(double factor,double base) 

{ 

//member function to calculate tip-over stability margin alpha_cm (with incorporation of 
c.m. height) 

if(factor > 0) 

{ 

return pow(base,-1)*factor; 

} 
else 

{ 

return pow(base,1)*factor; 

} 
} 

 

void tipover_detection::calculate_tipover(geometry_msgs::Vector3 

right_wheel,geometry_msgs::Vector3 back_wheel,geometry_msgs::Vector3 
left_wheel,geometry_msgs::Vector3 edge1, 

geometry_msgs::Vector3 edge2,geometry_msgs::Vector3 edge3,geometry_msgs::Vector3 

cog_right_wheel,geometry_msgs::Vector3 cog_back_wheel,geometry_msgs::Vector3 

cog_left_wheel) 



228  Annex 

{ 

//member function to perform all calculations to determine tip-over stability 
//calculate joint torques/forces with inverse dynamics solver (RNE) 

//use the calculated forces/torques to determine (critical) tip-over margin 

 

//build as many wrenches in vector f_ext as the number of segments in the chain (in this 
case: 17 segments) 

//wrenches represent external forces/torques acting on each chain element 

std::vector<KDL::Wrench> f_ext; //external forces 

KDL::Vector extforce(0.0,0.0,0.0); //set external forces to zero 

KDL::Vector exttorque(0.0,0.0,0.0); //set external torques to zero 
     

for(int i=0; i<=torque_chain.getNrOfSegments()-1; i++) 

{ 

KDL::Wrench externalforce(extforce,exttorque); 
//externalforce.Zero(); 

f_ext.push_back(externalforce);      

} 

 
rnea_return.resize(torque_chain.getNrOfJoints()); //resize array to number of joints in 

chain (in this case: 13) 

     

KDL::ChainIdSolver_RNE solver(torque_chain,gravity);  //create an element of class 

ChainIdSolver_RNE and initialise it with chain and gravity vector 
 

//q, q_dot, q_dotdot and rnea_return must be the same size as the number of joints in the 

chain 

//f_ext must be the same size as the number of segments in the chain 
if(solver.CartToJnt(q,q_dot,q_dotdot,f_ext,rnea_return)!=0) //calculate joint torques 

{ 

ROS_ERROR("calculation of joint torques and forces failed");       //error message if 

calculation fails 
}   

 

 

//calculate the force acting on the cog of the mobile base (due to gravitational forces and 

base motion) 
//Force = (linear acceleration + gravitational acceleration) * base mass 

geometry_msgs::Vector3 F_base; 

F_base.x = (linear_accel[0]*(-1)+gravity[0])*base_mass; 

F_base.y = (linear_accel[1]*(-1)+gravity[1])*base_mass;  
F_base.z = (linear_accel[2]*(-1)+gravity[2])*base_mass;  

     

//Wrench with ALL forces and torques exerted to the base body (in point F) due to 

manipulator motion, gravitational forces, inertial force and external forces/torques 
//this wrench reflects the whole effect of the manipulator arm on the mobile base 

(including manipulator dynamics, end-effector loading  

//and reaction forces due to interaction with the environment) 

geometry_msgs::Vector3 F_r, M_r; 

F_r.x = rnea_return.data[3]*(-1);  //force in direction of x-axis 
F_r.y = rnea_return.data[4]*(-1);  //force in direction of y-axis 

F_r.z = rnea_return.data[5]*(-1);  //force in direction of z-axis 

M_r.x = rnea_return.data[0]*(-1);   //torque about x-axis (roll) 

M_r.y = rnea_return.data[1]*(-1);   //torque about y-axis (pitch) 
M_r.z = rnea_return.data[2]*(-1);   //torque about z-axis (yaw) 

 

//moment of forces/torques in "F" about the corner points of the support polygon can be 

calculated 
// M = (r x F) + n 

geometry_msgs::Vector3 M_f1, M_f2, M_f3; 

M_f1 = addVector(crossProduct(right_wheel,F_r),M_r); 

M_f2 = addVector(crossProduct(back_wheel,F_r),M_r); 
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M_f3 = addVector(crossProduct(left_wheel,F_r),M_r); 

 
//moment about corner points of support polygon exerted by force acting on the cog of the 

mobile base 

geometry_msgs::Vector3 M_base1,M_base2,M_base3; 

M_base1 = crossProduct(cog_right_wheel,F_base); 
M_base2 = crossProduct(cog_back_wheel,F_base); 

M_base3 = crossProduct(cog_left_wheel,F_base); 

 

//calculate total moment about each corner point by adding M_f and M_base 

geometry_msgs::Vector3 Mv1,Mv2,Mv3; 
Mv1 = addVector(M_f1,M_base1); 

Mv2 = addVector(M_f2,M_base2); 

Mv3 = addVector(M_f3,M_base3); 

 
//moments about corner points (vertices) can be projected about the different edges of the 

support polygon 

double M1,M2,M3; 

M1 = dotProduct(Mv1,edge1); 
M2 = dotProduct(Mv2,edge2); 

M3 = dotProduct(Mv3,edge3); 

 

//base moment of inertia about i-th edge of support boundary (i=1..3) in kg/m² 

double I_v1 = 4.673861; 
double I_v2 = 4.57659; 

double I_v3 = 4.724126; 

 

//dynamic stability margin (alpha) about each boundary edge ist computed 
alpha1 = alphacalc(M1,I_v1); 

alpha2 = alphacalc(M2,I_v2); 

alpha3 = alphacalc(M3,I_v3); 

 
//MHS measure is computed by considering the most critical case (smallest alpha)  

//  - if the minimum of all alphas is positive (which means all alphas are positive), the 

system is stable 

//  - a negative alpha represents an instability about the corresponding edge (robot is 

tipping over) 
//  - alpha value of zero represents the critical dynamic stability  

//std::min() returns the smaller of both values 

alpha_critical = std::min(std::min(alpha1,alpha2),alpha3);   //alpha_critical is the 

smallest of the three values 
 

//MHS measure in the above form is not directly sensitive to the height of the center of 

mass 

//measurement can be improved by incorporating the c.m. height 
//cog.z is expressed in coordinate frame of "base_link", needs to be converted to represent 

height above ground level 

double h_cm = 0.6088+(cog.z-0.452); //center of mass height (cog.z-0.452 converts from 

"base_link" to coordinate frame in F, point F is 0.6088 cm above ground contact) 

 
alpha1_cm = alpha_cm_calc(alpha1,h_cm); 

alpha2_cm = alpha_cm_calc(alpha2,h_cm); 

alpha3_cm = alpha_cm_calc(alpha3,h_cm); 

 
alpha_critical_cm = std::min(std::min(alpha1_cm,alpha2_cm),alpha3_cm);   

//alpha_critical_cm is the smallest of the three values 

} 

 
int main(int argc, char** argv)  

{ 

//ROS SET-UPS: 

ros::init(argc, argv, "tipover_detection_node"); //node name 
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ros::NodeHandle nh; // create a node handle; need to pass this to the class constructor 

ros::Rate loop_rate(10);    //set a desired run time of a cycle in Hz 
 

sensor_msgs::JointState torque_output;  //initialise an output message for joint 

forces/torques 

sensor_msgs::JointState tipover_output; //initialise an output message for tip-over 
stability values 

 

//resize output messages 

tipover_output.name.resize(8); 

tipover_output.effort.resize(8); 
torque_output.name.resize(13);   

torque_output.effort.resize(13); 

 

//GEOMETRY SET-UP OF THE ROBOT 
//position vectors of ground contact points in the "base coordinate frame", origin is point 

A where manipulator exerts the moving base 

geometry_msgs::Vector3 left_wheel, right_wheel, back_wheel; 

 
//P1 (right wheel) 

right_wheel.x = 0.075; 

right_wheel.y = -0.155; 

right_wheel.z = -0.6088; 

 
//P2 (back wheel) 

back_wheel.x = -0.327; 

back_wheel.y = 0.0; 

back_wheel.z = -0.6088; 
 

//P3 (left wheel) 

left_wheel.x = 0.075; 

left_wheel.y = 0.155; 
left_wheel.z = -0.6088; 

 

//calculate the unit vectors of the edges between the ground contact points (wheels) which 

form the support polygon (in this case support polygon is a triangle) 

//vectors are defined so that they make a closed loop in clockwise direction 
geometry_msgs::Vector3 edge1, edge2, edge3; 

double norm1,norm2,norm3; 

edge1.x = back_wheel.x-right_wheel.x; 

edge1.y = back_wheel.y-right_wheel.y; 
edge1.z = back_wheel.z-right_wheel.z; 

norm1 = sqrt(pow(edge1.x,2)+pow(edge1.y,2)+pow(edge1.z,2)); 

edge1.x = edge1.x / norm1; 

edge1.y = edge1.y / norm1; 
edge1.z = edge1.z / norm1; 

 

edge2.x = left_wheel.x-back_wheel.x; 

edge2.y = left_wheel.y-back_wheel.y; 

edge2.z = left_wheel.z-back_wheel.z; 
norm2 = sqrt(pow(edge2.x,2)+pow(edge2.y,2)+pow(edge2.z,2)); 

edge2.x = edge2.x / norm2; 

edge2.y = edge2.y / norm2; 

edge2.z = edge2.z / norm2; 
 

edge3.x = right_wheel.x-left_wheel.x; 

edge3.y = right_wheel.y-left_wheel.y; 

edge3.z = right_wheel.z-left_wheel.z; 
norm3 = sqrt(pow(edge3.x,2)+pow(edge3.y,2)+pow(edge3.z,2)); 

edge3.x = edge3.x / norm3; 

edge3.y = edge3.y / norm3; 

edge3.z = edge3.z / norm3; 
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geometry_msgs::Vector3 cog_base,cog_right_wheel,cog_left_wheel,cog_back_wheel;  
//position vector of mobile base cog, origin is point A (fixed values because mobile base 

itself is rigid, therefore cog does not change) 

cog_base.x = -0.00235; 

cog_base.y = -0.00194; 
cog_base.z = -0.39443; 

 

//vector pointing FROM each wheel TO cog_base 

cog_right_wheel.x = cog_base.x - right_wheel.x; 

cog_right_wheel.y = cog_base.y - right_wheel.y; 
cog_right_wheel.z = cog_base.z - right_wheel.z; 

 

cog_back_wheel.x = cog_base.x - back_wheel.x; 

cog_back_wheel.y = cog_base.y - back_wheel.y; 
cog_back_wheel.z = cog_base.z - back_wheel.z; 

 

cog_left_wheel.x = cog_base.x - left_wheel.x; 

cog_left_wheel.y = cog_base.y - left_wheel.y; 
cog_left_wheel.z = cog_base.z - left_wheel.z; 

 

//invert position vectors of the ground contact points 

//necessary because calculation of tip-over needs vector pointing FROM reference point of 

torque (= corner points) TO the point of  
//application of the force (= Point A), NOT the other way around 

right_wheel.x = right_wheel.x*(-1); 

right_wheel.y = right_wheel.y*(-1); 

right_wheel.z = right_wheel.z*(-1); 
 

back_wheel.x = back_wheel.x*(-1); 

back_wheel.y = back_wheel.y*(-1); 

back_wheel.z = back_wheel.z*(-1); 
 

left_wheel.x = left_wheel.x*(-1); 

left_wheel.y = left_wheel.y*(-1); 

left_wheel.z = left_wheel.z*(-1); 

 
ROS_INFO("main: instantiating an object of type tipover_detection"); 

tipover_detection tipover_detection(&nh);  //instantiate an tipover_detection class object 

and pass in pointer to nodehandle for constructor to use 

 
while(ros::ok()) 

{ 

//call member function to calculate tip-over stability 

tipover_detection.calculate_tipover(right_wheel,back_wheel,left_wheel,edge1,edge2,edge3,cog
_right_wheel,cog_back_wheel,cog_left_wheel); 

 

//write the tip-over values in output message 

tipover_output.name[0] = "alpha1"; 

tipover_output.effort[0] = tipover_detection.alpha1; 
tipover_output.name[1] = "alpha2"; 

tipover_output.effort[1] = tipover_detection.alpha2; 

tipover_output.name[2] = "alpha3"; 

tipover_output.effort[2] = tipover_detection.alpha3; 
tipover_output.name[3] = "alpha_critical"; 

tipover_output.effort[3] = tipover_detection.alpha_critical; 

tipover_output.name[4] = "alpha1_cm"; 

tipover_output.effort[4] = tipover_detection.alpha1_cm; 
tipover_output.name[5] = "alpha2_cm"; 

tipover_output.effort[5] = tipover_detection.alpha2_cm; 

tipover_output.name[6] = "alpha3_cm"; 

tipover_output.effort[6] = tipover_detection.alpha3_cm; 
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tipover_output.name[7] = "alpha_critical_cm"; 

tipover_output.effort[7] = tipover_detection.alpha_critical_cm;  
 

//write the calculated joint torques in output message 

torque_output.name[0] = "torque_joint_roll"; 

torque_output.name[1] = "torque_joint_pitch"; 
torque_output.name[2] = "torque_joint_yaw"; 

torque_output.name[3] = "force_x"; 

torque_output.name[4] = "force_y"; 

torque_output.name[5] = "force_z"; 

torque_output.name[6] = "arm_1_joint"; 
torque_output.name[7] = "arm_2_joint"; 

torque_output.name[8] = "arm_3_joint"; 

torque_output.name[9] = "arm_4_joint"; 

torque_output.name[10] = "arm_5_joint"; 
torque_output.name[11] = "arm_6_joint"; 

torque_output.name[12] = "arm_7_joint"; 

 

for(int i=0;i<13;i++) 
{ 

torque_output.effort[i] = tipover_detection.rnea_return.data[i]; 

} 

 

//write timestamp of message in msg header 
torque_output.header.stamp = ros::Time::now(); 

tipover_output.header.stamp =ros::Time::now(); 

 

//publish joint torques to topic "/joint_torques" 
tipover_detection.joint_torque_publisher.publish(torque_output); 

//publish tip-over values to topic "/tipover_data" 

tipover_detection.tipover_publisher.publish(tipover_output); 

 
ros::spinOnce(); 

loop_rate.sleep();   //sleeps for any leftover time in a cycle to meet desired loop rate 

(calculated from the last time sleep/reset/constructor was called) 

} 

return 0; 
} 

 
 
bringup_robot_main_control_dyn.launch [175] 
 

<?xml version="1.0" ?> 

<launch> 

<node  pkg="lowpass_filter" type="lowpass_filter" name="lowpass_filter" output="screen"> 
</node> 

<node pkg="robot_main_control_dyn" type="robot_main_control_dyn" 

name="robot_main_control_dyn" output="screen" respawn="true"> 

</node> 
<node pkg="test_cmdvel_vali" type="test_points.py" name="help_points" output="screen" 

respawn="true"> 

</node> 

</launch> 

 
 

lowpass_filter.cpp [175] 
 

#include "ros/ros.h" 
#include "geometry_msgs/Twist.h" 

#include <sensor_msgs/Imu.h>  

 

double T = 0.3; //sec 
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double dt = 0.1; //ms 

 
double x_ = 0; 

double y_ = 0; 

double z_ = 0; 

double epsilon = 0.0001; 
 

ros::Publisher imu_filtered_pub; 

sensor_msgs::Imu imu_filtered; 

 

double lowPassFilter(double x, double y0, double dt, double T) 
{ 

double res = y0 + (x - y0) * (dt/(dt+T)); 

if ((res*res) <= epsilon) 

res = 0; 
return res; 

} 

 

void imuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg){ 
double x =  imu_msg -> linear_acceleration.x; 

double y =  imu_msg -> linear_acceleration.y; 

double z =  imu_msg -> linear_acceleration.z; 

 

x_ = lowPassFilter(x, x_, dt, T); 
y_ = lowPassFilter(y, y_, dt, T); 

z_ = lowPassFilter(z, z_, dt, T); 

 

imu_filtered.header.stamp = ros::Time::now(); 
imu_filtered.linear_acceleration.x = x_; 

imu_filtered.linear_acceleration.y = y_; 

imu_filtered.linear_acceleration.z = z_; 

 
//imu_filtered_pub.publish(imu_filtered); 

} 

int main(int argc, char **argv) 

{ 

// Publishes Odometry messages 
ros::Publisher baseOdometryPublisher; 

 

ros::init(argc, argv, "lowpass_filter"); 

ros::NodeHandle n; 
 

//setup input/output communication 

n.param("T", T, 0.3); 

n.param("dt", dt, 0.1); 
// Receives Sensor messages from Talker. 

ros::Subscriber talker_sub = n.subscribe("linear_acc_without_gravity", 1000, &imuCallback); 

imu_filtered_pub =n.advertise<sensor_msgs::Imu>("linear_acc_without_gravity_filter",1); 

//coordination 

ros::Rate rate(10); 
 

while (n.ok()){ 

ros::spinOnce(); 

imu_filtered_pub.publish(imu_filtered); 
rate.sleep(); 

} 

return 0; 

} 
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robot_main_control_dyn.cpp [175] 
 
#include "robot_main_control_dyn.h" 

 

// constructor 

robot_main_control::robot_main_control(ros::NodeHandle* nodehandle):nh_(*nodehandle) 
{  

ROS_INFO("in class constructor of robot_main_control"); 

init(); 

run();  

} 
 

void robot_main_control::init() 

{ 

//speed_scaling_factor controls the moving speed of the robot arm 
speed_scaling_factor_arm = 1.0; 

//speed_scaling_factor_base = 1.0; 

//moveit_plannerID specifies the IK-solver 

moveit_plannerID = "RRT"; //ESTkConfigDefault 
overturn.data = false; 

start.data = false; 

 

//initialize tcp poses and current pose with zero 

received_tcp_goal.pose.position.x = 0.0; 
received_tcp_goal.pose.position.y = 0.0; 

received_tcp_goal.pose.position.z = 0.0; 

received_tcp_goal.pose.orientation.x = 0.0; 

received_tcp_goal.pose.orientation.y = 0.0; 
received_tcp_goal.pose.orientation.z = 0.0; 

received_tcp_goal.pose.orientation.w = 0.0; 

 

current_state.pose.position.x = 0.0; 
current_state.pose.position.y = 0.0; 

current_state.pose.position.z = 0.0; 

current_state.pose.orientation.x = 0.0; 

current_state.pose.orientation.y = 0.0; 

current_state.pose.orientation.z = 0.0; 
current_state.pose.orientation.w = 0.0; 

 

using_tcp_goal.pose.position.x = 0.0; 

using_tcp_goal.pose.position.y = 0.0; 
using_tcp_goal.pose.position.z = 0.0; 

using_tcp_goal.pose.orientation.x = 0.0; 

using_tcp_goal.pose.orientation.y = 0.0; 

using_tcp_goal.pose.orientation.z = 0.0; 
using_tcp_goal.pose.orientation.w = 0.0; 

 

target_arm_pose.pose.position.x = 0.0; 

target_arm_pose.pose.position.y = 0.0; 

target_arm_pose.pose.position.z = 0.0; 

target_arm_pose.pose.orientation.x = 0.0; 

target_arm_pose.pose.orientation.y = 0.0; 

target_arm_pose.pose.orientation.z = 0.0; 

target_arm_pose.pose.orientation.w = 0.0; 
 

initializeSubscribers(); //creating subscribers 

 

//RNEA 
//get robot_description parameter from parameter server 

std::string robot_description_text; 

nh_.param("robot_description", robot_description_text, std::string()); 

//alternative: nh_.getParam("/robot_description", robot_description_text); 
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//parse urdf by using kdl_parser 
KDL::Tree robot_tree; 

if(!kdl_parser::treeFromString(robot_description_text, robot_tree)) 

{ 

ROS_ERROR("failed to construct kdl tree: robot_tree"); 
} 

 

//show number of tree segments and joints 

ROS_INFO_STREAM("robot_tree segments: " << robot_tree.getNrOfSegments()<<"Joints:" 

<<robot_tree.getNrOfJoints()); 
 

//get chain from robot_tree 

if(!robot_tree.getChain("base_link","arm_ee_link",robot_chain)) 

//tree.getChain(chain_root,chain_tip,chain) base_link 
{ 

ROS_ERROR("failed to construct kdl chain robot_chain from tree robot_tree"); 

} 

 
//show number of chain segments and joints 

ROS_INFO_STREAM("robot_chain segments: " << robot_chain.getNrOfSegments()<<" Joints:" 

<<robot_chain.getNrOfJoints()); 

 

//inverse dynamics solver can only calculate forces/torques for joints 
//solution: create "virtual" joints for roll/pitch/yaw (torque) and x/y/z (force) in a  

separate URDF (these joints do not exist on the real robot, only needed for calculations) 

//origin of these joints is where the robot arm (Schunk LWA 4D) is mounted on the base  

(Scitos G5) 
//create torque_tree from URDF file "torque_joints.urdf.xacro" 

KDL::Tree torque_tree; 

if(!kdl_parser::treeFromFile("/home/franzi/ros/ros_robo_ws_sim/src/kipp_dynamisch_ws_pgks/ 

torque_joints.urdf.xacro",torque_tree)) 
{ 

ROS_ERROR("failed to construct kdl tree: torque_tree"); 

} 

//show number of tree segments and joints 

ROS_INFO_STREAM("torque_tree segments: "<<torque_tree.getNrOfSegments()<<" joints: " 
<<torque_tree.getNrOfJoints()); 

 

//create chain from torque_tree 

if(!torque_tree.getChain("torque_base","connector_link",torque_chain)) 
{ 

ROS_ERROR("failed to construct kdl chain torque_chain from tree torque_tree"); 

} 

//show number of chain segments and joints 
ROS_INFO_STREAM("torque_chain segments: " << torque_chain.getNrOfSegments()<<" joints: " 

<<torque_chain.getNrOfJoints()); 

 

//add robot_chain at the end of torque_chain (robot arm should be "on top" of the torque  

joints) 
torque_chain.addChain(robot_chain); 

//show number of segments and joints of combined chain 

ROS_INFO_STREAM("combined chain segments: " << torque_chain.getNrOfSegments()<<" joints: " 

<<torque_chain.getNrOfJoints()); 
 

//calculate mass of mobile base 

std::string base_links[6] = 

{"base_link","scitos_right_wheel","scitos_left_wheel","scitos_wheel_back_cylinder", 
"scitos_wheel_back_plate","scitos_wheel_back"}; 

base_mass = 0; 

for(int i=0;i<6;i++) 

{ 
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base_mass = base_mass + robot_tree.getSegment(base_links[i])> 

second.segment.getInertia().getMass(); 
} 

 

//resize arrays for position, velocity and acceleration to number of joints in chain (in  

this case: 13) 
q.resize(torque_chain.getNrOfJoints()); 

q_dot.resize(torque_chain.getNrOfJoints()); 

q_dotdot.resize(torque_chain.getNrOfJoints()); 

 

//set values to zero here in constructor as safety, values will get updated by callback  
function of acceleration_subscriber 

SetToZero(q); 

SetToZero(q_dot); 

SetToZero(q_dotdot); 
 

//define alpha subscriber 

alpha_crit.resize(4); 

SetToZero(alpha_crit); 
 

q_calc.resize(torque_chain.getNrOfJoints()); 

 

SetToZero(q_calc); 

 
} 

geometry_msgs::Pose robot_main_control::calculate_new_arm_position() 

{ 

 
//GEOMETRY SET-UP OF THE ROBOT 

//position vectors of ground contact points in the "base coordinate frame", origin is  

point A where manipulator exerts the moving base 

geometry_msgs::Vector3 left_wheel, right_wheel, back_wheel; 
 

//P1 (right wheel) 

right_wheel.x = 0.075; 

right_wheel.y = -0.155; 

right_wheel.z = -0.6088; 
 

//P2 (back wheel) 

back_wheel.x = -0.327; 

back_wheel.y = 0.0; 
back_wheel.z = -0.6088; 

 

//P3 (left wheel) 

left_wheel.x = 0.075; 
left_wheel.y = 0.155; 

left_wheel.z = -0.6088; 

 

//calculate the unit vectors of the edges between the ground contact points (wheels) which  

form the support polygon (in this case support polygon is a triangle) 
//vectors are defined so that they make a closed loop in clockwise direction 

geometry_msgs::Vector3 edge1, edge2, edge3; 

double norm1,norm2,norm3; 

edge1 = addVector(back_wheel, right_wheel,0); 
norm1 = sqrt(pow(edge1.x,2)+pow(edge1.y,2)+pow(edge1.z,2)); 

edge1.x = edge1.x / norm1; 

edge1.y = edge1.y / norm1; 

edge1.z = edge1.z / norm1; 
 

edge2 = addVector(left_wheel,back_wheel,0); 

norm2 = sqrt(pow(edge2.x,2)+pow(edge2.y,2)+pow(edge2.z,2)); 

edge2.x = edge2.x / norm2; 
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edge2.y = edge2.y / norm2; 

edge2.z = edge2.z / norm2; 
 

edge3 = addVector(right_wheel,left_wheel,0); 

norm3 = sqrt(pow(edge3.x,2)+pow(edge3.y,2)+pow(edge3.z,2)); 

edge3.x = edge3.x / norm3; 
edge3.y = edge3.y / norm3; 

edge3.z = edge3.z / norm3; 

 

geometry_msgs::Vector3 cog_base,cog_right_wheel,cog_left_wheel,cog_back_wheel,cog; 

//position vector of mobile base cog, origin is point A (fixed values because mobile base  
itself is rigid, therefore cog does not change) 

cog_base.x = -0.00235; 

cog_base.y = -0.00194; 

cog_base.z = -0.39443; 
 

//vector pointing FROM each wheel TO cog_base 

cog_right_wheel = addVector(cog_base,right_wheel,0); 

cog_back_wheel = addVector(cog_base,back_wheel,0); 
cog_left_wheel = addVector(cog_base,left_wheel,0); 

//invert position vectors of the ground contact points 

//necessary because calculation of tip-over needs vector pointing FROM reference point of  

torque (= corner points) TO the point of 

//application of the force (= Point A), NOT the other way around 
right_wheel.x = right_wheel.x*(-1); 

right_wheel.y = right_wheel.y*(-1); 

right_wheel.z = right_wheel.z*(-1); 

 
back_wheel.x = back_wheel.x*(-1); 

back_wheel.y = back_wheel.y*(-1); 

back_wheel.z = back_wheel.z*(-1); 

 
left_wheel.x = left_wheel.x*(-1); 

left_wheel.y = left_wheel.y*(-1); 

left_wheel.z = left_wheel.z*(-1); 

 

//calculates alpha, from actual situation, and if arm_link_1 and arm_link_2 are moved  
about +- dq 

//highest new alpha is used to calculate new point for arm. 

// plus arm_1_joint = 6, arm_2_joint = 7, arm_3_joint = 8, arm_4_joint = 9 .... 

q_calc = q; 
 

double delta_q_max = 0; 

KDL::Frame np_output; 

KDL::Frame np_output2; 
KDL::ChainFkSolverPos_recursive NewPoint(torque_chain); 

 

std::array<int,4> needed_jointArray = {6,7,8,9}; 

std::array<double,2*needed_jointArray.size()+1> delta_q; 

 
int count_itt =0; 

bool error = false; 

while (delta_q_max < alpha_G || error == false ) { 

int a = 0; 
for (int n=0;n<delta_q.size();n++) { 

q_repo = q_calc; 

if (n == 0){ 

}else { 
if( n % 2 == 1){ 

if (a % 2 == 1){ 

if (q_calc.data[needed_jointArray[a]]+dq < 2.0){ 

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]+dq; 
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}else { 

q_repo.data[needed_jointArray[a]] = 2.0; 
} 

}else { 

if (q_calc.data[needed_jointArray[a]]+dq < 3.0){ 

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]+dq; 
}else { 

q_repo.data[needed_jointArray[a]] = 3.0; 

} 

} 

}else { 
if (a % 2 == 1){ 

if (q_calc.data[needed_jointArray[a]]-dq > -2.0){ 

q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]-dq; 

}else { 
q_repo.data[needed_jointArray[a]] = -2.0; 

} 

}else { 

if (q_calc.data[needed_jointArray[a]]-dq > -3.0){ 
q_repo.data[needed_jointArray[a]] = q_calc.data[needed_jointArray[a]]-dq; 

}else { 

q_repo.data[needed_jointArray[a]] = -3.0; 

} 

a++; 
} 

 

} 

} 
calculate_tipover(right_wheel,back_wheel,left_wheel,edge1,edge2,edge3,cog_right_wheel,cog_ 

back_wheel,cog_left_wheel,q_repo); 

//write calculated alpha critical in Array 

delta_q[n]= this -> alpha_critical_cm; 
if (int y = NewPoint.JntToCart (q_repo, np_output, torque_chain.getNrOfSegments())<0){ 

ROS_ERROR("failed to calcutale new point"); 

} 

delta_h[n] = np_output.p.z()+0.452; 

} 
//get Maximum of calculated alpha critical 

int x= 0; 

double delta_h_max = delta_h[0]; 

delta_q_max = delta_q[0]; 
for (int n=0;n<delta_q.size();n++) { 

if (delta_q[n] > delta_q_max){ // && delta_h[i]>delta_h_max){ 

x = n; 

delta_q_max = delta_q[n]; 
delta_h_max = delta_h[n]; 

} 

} 

q_repo = q_calc; 

 
if (x == 0){ 

error = true; 

ROS_WARN_STREAM("No convergence or better value. Use last calculated value"); 

}else { 
// set new konfiguration. 

// target_joint is the joint which has to be changed. Get Position of Targetjoint in Array  

needed_jointArray 

int target_joint = (int) (x+1)/2 -1; 
// Check if with Modulus if +dp or -dp 

if (x%2 ==0) { 

q_repo.data[needed_jointArray[target_joint]]=  

q_calc.data[needed_jointArray[target_joint]]-dq; 
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}else { 

q_repo.data[needed_jointArray[target_joint]]=  
q_calc.data[needed_jointArray[target_joint]]+dq; 

} 

 

// set reposition konfiguration for new konfiguraion 
q_calc = q_repo; 

// iteration counter 

} 

count_itt++; 

} 
 

if (int y = NewPoint.JntToCart (q, np_output2, torque_chain.getNrOfSegments())<0) 

{ 

ROS_ERROR("failed to calcutale new point"); 
} 

 

if (int y = NewPoint.JntToCart (q_repo, np_output, torque_chain.getNrOfSegments())<0) 

{ 
ROS_ERROR("failed to calcutale new point"); 

} 

//geometry_msgs::Pose repo_state; 

repo_state.pose.position.x = np_output.p.x(); 

repo_state.pose.position.y = np_output.p.y(); 
repo_state.pose.position.z = np_output.p.z()+0.452; 

repo_state.pose.orientation.x = PoseEE.pose.orientation.x; 

repo_state.pose.orientation.y = PoseEE.pose.orientation.y; 

repo_state.pose.orientation.z = PoseEE.pose.orientation.z; 
repo_state.pose.orientation.w = PoseEE.pose.orientation.w; 

 

return  repo_state.pose; 

} 
 

void robot_main_control::run() 

{ 

//preconfigure part for scitos and robotarm 

//tell the action client that we want to spin a thread by default 
MoveBaseClient ac("move_base", true); 

 

//wait for the action server to come up 

while(!ac.waitForServer(ros::Duration(5.0))){ 
ROS_INFO("Waiting for the move_base action server to come up"); 

} 

move_base_msgs::MoveBaseGoal scitos_goal; 

 
scitos_goal.target_pose.header.frame_id = "map"; 

scitos_goal.target_pose.header.stamp = ros::Time::now(); 

// set static variable for Planning_group 

static const std::string PLANNING_GROUP = "arm"; 

moveit::planning_interface::MoveGroupInterface arm_plan_group(PLANNING_GROUP); 
 

// We are going to use the :planning_scene_interface:`PlanningSceneInterface` 

// class to add and remove collision objects in our "virtual world" scene 

moveit::planning_interface::PlanningSceneInterface planning_scene_interface; 
 

arm_plan_group.setMaxAccelerationScalingFactor(speed_scaling_factor_arm); 

arm_plan_group.setMaxVelocityScalingFactor(speed_scaling_factor_arm); 

 
//configure moveit Planner 

arm_plan_group.setPlannerId(moveit_plannerID); 

arm_plan_group.setPlanningTime(10); 

arm_plan_group.setPoseReferenceFrame("base_footprint");// base_footprint 
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arm_plan_group.setStartStateToCurrentState(); 

 
ROS_INFO("Planning reference frame: %s", arm_plan_group.getPlanningFrame().c_str()); 

ROS_INFO("End effector reference frame: %s", arm_plan_group.getEndEffectorLink().c_str()); 

 

int reduce_counter=0; 
ros::AsyncSpinner spinner(1); 

spinner.start(); 

const moveit::core::JointModelGroup* joint_model_group = 

arm_plan_group.getCurrentState()->getJointModelGroup(PLANNING_GROUP); 

 
// Define a collision object ROS message. 

moveit_msgs::CollisionObject collision_object; 

collision_object.header.frame_id = arm_plan_group.getPlanningFrame(); 

 
// The id of the object is used to identify it. 

collision_object.id = "box1"; 

 

// Define a box to add to the world. 
shape_msgs::SolidPrimitive primitive; 

primitive.type = primitive.BOX; 

primitive.dimensions.resize(3); 

primitive.dimensions[0] = 0.2; 

primitive.dimensions[1] = 1.0; 
primitive.dimensions[2] = 2; 

 

// Define a pose for the box (specified relative to frame_id) 

geometry_msgs::Pose box_pose; 
box_pose.orientation.w = 1.0; 

box_pose.position.x = X_KRIT+primitive.dimensions[0]*0.5; 

box_pose.position.y = 0; 

box_pose.position.z = primitive.dimensions[2]*0.5; 
 

collision_object.primitives.push_back(primitive); 

collision_object.primitive_poses.push_back(box_pose); 

collision_object.operation = collision_object.ADD; 

 
std::vector<moveit_msgs::CollisionObject> collision_objects; 

collision_objects.push_back(collision_object); 

 

ROS_INFO("Add the box in front of the Robot into the world"); 
planning_scene_interface.addCollisionObjects(collision_objects); 

 

//main 

while(ros::ok()) 
{    

try{ 

     

listen_pose_of_scitos.waitForTransform("/map","/base_footprint",ros::Time(0), 

ros::Duration(0.2)); 
     

listen_pose_of_scitos.lookupTransform("/map","/base_footprint",ros::Time(0), 

transform_of_scitos); 

     
listen_pose_of_ee.waitForTransform("/base_footprint","/arm_ee_link",ros::Time(0), 

ros::Duration(0.2)); 

     

listen_pose_of_ee.lookupTransform("/base_footprint","/arm_ee_link",ros::Time(0), 
transform_of_ee); 

} 

catch (tf::TransformException ex){ 

ROS_ERROR("%s",ex.what()); 
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ros::Duration(1.0).sleep(); 

} 
 

// Get current pose of scitos via tf /map /base_footprint 

current_state.pose.position.x = transform_of_scitos.getOrigin().x(); 

current_state.pose.position.y = transform_of_scitos.getOrigin().y(); 
current_state.pose.position.z = transform_of_scitos.getOrigin().z(); 

 

current_state.pose.orientation.x = transform_of_scitos.getRotation().x(); 

current_state.pose.orientation.y = transform_of_scitos.getRotation().y(); 

current_state.pose.orientation.z = transform_of_scitos.getRotation().z(); 
current_state.pose.orientation.w = transform_of_scitos.getRotation().w(); 

 

ee_pose.pose.orientation.x = transform_of_ee.getRotation().x(); 

ee_pose.pose.orientation.y = transform_of_ee.getRotation().y(); 
ee_pose.pose.orientation.z = transform_of_ee.getRotation().z(); 

ee_pose.pose.orientation.w = transform_of_ee.getRotation().w(); 

 

ROS_INFO("Please publish a target pose to the topic: /estimated_tcp_goal and then start the 
execution with publishing at the topic /start_moving_robot."); 

 

while(start.data == false && ros::ok()){ 

} //waiting for publishing start true; 

move_arm.data = false; 
goal_pos.data = false; 

repo.data = false; 

 

using_tcp_goal = received_tcp_goal; 
// prepare Point for coordinate Transformation from /map to /base_footprint 

TCP_global.header.stamp = ros::Time(0); 

TCP_global.header.frame_id ="map"; 

TCP_global.point.x = received_tcp_goal.pose.position.x; 
TCP_global.point.y = received_tcp_goal.pose.position.y; 

TCP_global.point.z = received_tcp_goal.pose.position.z; 

 

// Transform the Point into Base frame 

listen_pose_of_scitos.transformPoint("/base_footprint", TCP_global,TCP_base); 
 

//call function 

calculate_scitos_arm_target_poses(); 

 
repo.data = false; 

//check if estimated TCP is within reachable workingspace 

if (in_workspace.data == false){ 

if (alpha_crit.data[3]<= alpha_G) 
{ 

ROS_WARN("Critical state. Initializing repositioning of arm."); 

while (alpha_crit.data[3]<= alpha_G) { 

 

// get initial Orientation 
PoseEE = arm_plan_group.getCurrentPose("arm_ee_link"); 

 

arm_plan_group.setPoseTarget(calculate_new_arm_position()); 

moveit::planning_interface::MoveGroupInterface::Plan my_plan; 
 

moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan); 

if(success.SUCCESS == 1) { 

 
ROS_INFO("Sending robot arm new Position"); 

arm_plan_group.execute(my_plan); 

arm_plan_group.clearPathConstraints(); 
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geometry_msgs::Vector3 ee_position; 

ee_position.x = transform_of_ee.getOrigin().x(); 
ee_position.y = transform_of_ee.getOrigin().y(); 

ee_position.z = transform_of_ee.getOrigin().z(); 

 

geometry_msgs::Vector3 repo_position; 
repo_position.x =  repo_state.pose.position.x; 

repo_position.y =  repo_state.pose.position.y; 

repo_position.z =  repo_state.pose.position.z; 

int wait = 0; 

//Wait until robot arm has finished moving 
while (dTwoPoints(ee_position,repo_position)>0.05) { 

listen_pose_of_ee.lookupTransform("/base_footprint","/arm_ee_link",ros::Time(0), 

transform_of_ee); 

 
ee_position.x = transform_of_ee.getOrigin().x(); 

ee_position.y = transform_of_ee.getOrigin().y(); 

ee_position.z = transform_of_ee.getOrigin().z(); 

 
sleep(1); 

wait ++; 

if (wait == 5){break;} 

} 

} 
} 

repo.data = true; 

 

}else { 
repo.data = true; 

} 

}else { 

move_arm.data = true; 
} 

if (repo.data){ 

//start planing and executing robot scitos 

scitos_goal.target_pose.header.frame_id = "map"; 

scitos_goal.target_pose.header.stamp = ros::Time::now(); 
scitos_goal.target_pose.pose = scitos_pose.pose; 

 

ac.sendGoal(scitos_goal); 

ROS_INFO("Sending scitos goal: (%f,%f,%f)",scitos_goal.target_pose.pose.position.x, 
scitos_goal.target_pose.pose.position.y,scitos_goal.target_pose.pose.position.z); 

ROS_INFO("Sending scitos goal"); 

repo.data = false; 

 
// Calculate Distance between Goal an actual position 

geometry_msgs::Vector3 scitos_position; 

scitos_position.x = transform_of_scitos.getOrigin().x(); 

scitos_position.y = transform_of_scitos.getOrigin().y(); 

scitos_position.z = transform_of_scitos.getOrigin().z(); 
 

geometry_msgs::Vector3 scitos_goal_position; 

scitos_goal_position.x = scitos_goal.target_pose.pose.position.x; 

scitos_goal_position.y = scitos_goal.target_pose.pose.position.y; 
scitos_goal_position.z = scitos_goal.target_pose.pose.position.z; 

 

geometry_msgs::Vector3Stamped ex_global; 

ex_global.header.stamp = ros::Time(0); 
ex_global.header.frame_id ="map"; 

ex_global.vector.x = 1; 

ex_global.vector.y = 0; 

ex_global.vector.z = 0; 
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geometry_msgs::Vector3Stamped ex_base; 

double angle_scitos_goal= 180; 
ROS_INFO_STREAM("distance = "<< dTwoPoints(scitos_position,scitos_goal_position) << 

 "  Angle: "<< angle_scitos_goal); 

// Check if Scitos is on goal pose. 

 
while (dTwoPoints(scitos_position,scitos_goal_position)>0.1 || angle_scitos_goal >10 ) { 

listen_pose_of_scitos.lookupTransform("/map","/base_footprint",ros::Time(0), 

transform_of_scitos); 

scitos_position.x = transform_of_scitos.getOrigin().x(); 

scitos_position.y = transform_of_scitos.getOrigin().y(); 
scitos_position.z = transform_of_scitos.getOrigin().z(); 

 

// calculate angle between goal orientation and current orientation from scitos 

listen_pose_of_scitos.transformVector("/base_footprint", ex_global,ex_base); 
// Scalar produkt from ex_base with (1|0) x-direction from scitos 

 

angle_scitos_goal = acos((1*ex_base.vector.x + 0*ex_base.vector.y))*180/PI; 

if (alpha_crit.data[3] <= alpha_G) 
{ 

ROS_INFO("Thats too critical i have find an other position for my arm"); 

PoseEE = arm_plan_group.getCurrentPose("arm_ee_link"); 

ROS_ERROR_STREAM("Orientation is, x: "<< PoseEE.pose.orientation.x << " y:"  

<< PoseEE.pose.orientation.y << " z: " << PoseEE.pose.orientation.z << " w: " 
<< PoseEE.pose.orientation.w); 

 

arm_plan_group.setPoseTarget(calculate_new_arm_position()); 

 
moveit::planning_interface::MoveGroupInterface::Plan my_plan; 

 

moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan); 

if(success.SUCCESS == 1) { 
arm_plan_group.execute(my_plan); //wait until planning is ready 

ROS_INFO("Sending robot arm new Position"); 

} 

} 

} 
move_arm.data = true; 

goal_pos.data = true; 

} 

if (move_arm.data){ 
//start Planning and execute the robot arm 

arm_plan_group.setGoalTolerance(0.1); 

arm_plan_group.setPoseTarget(target_arm_pose.pose); 

moveit::planning_interface::MoveGroupInterface::Plan my_plan; 
moveit_msgs::MoveItErrorCodes success = arm_plan_group.plan(my_plan); 

 

if(success.SUCCESS == 1) { 

arm_plan_group.execute(my_plan); //wait until planning is ready 

ROS_INFO("Sending robot arm goal"); 
} 

goal_pos.data = true; 

} 

int waiting = 0; 
while(waiting <= 5 && goal_pos.data) 

{ 

waiting++; 

sleep(1); 
} 

 

OS_INFO("Ready for next target! Please publish first on tcp_goal and then on start."); 

tart.data = false; 
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} 

spinner.stop(); 
} 

double robot_main_control::dTwoPoints(geometry_msgs::Vector3 p1, geometry_msgs::Vector3 

p2){ 

double distance; 
 

distance = sqrt(pow(p1.x-p2.x,2)+pow(p1.y-p2.y,2)+pow(p1.z-p2.z,2)); 

 

return distance; 

} 
void robot_main_control::initializeSubscribers() 

{ 

ROS_INFO("Initializing Subscribers"); 

tcp_goal_subscriber = nh_.subscribe("estimated_tcp_goal", 1, 
&robot_main_control::subscribergoalCallback,this);  

overtrun_subscriber = nh_.subscribe("kippgefahr", 1, 

&robot_main_control::subscriberoverturnCallback,this); 

start_moving_subscriber = nh_.subscribe("/start_moving_robot", 1, 
&robot_main_control::subscriber_start_moving_Callback,this); 

tipover_value_subscriber = nh_.subscribe("/tipover_data", 1, 

&robot_main_control::subscriber_tipover_Callback,this); 

 

acceleration_subscriber = nh_.subscribe("joint_states_acceleration", 1, 
&robot_main_control::subscriberaccelerationCallback,this);  //subscribes to topic 

"/joint_states_acceleration"" 

imu_subscriber = nh_.subscribe("imu",1,&robot_main_control::subscriberimuCallback,this);    

//subscribes to topic "/imu" 
 

//Check Parameter "use_lowpassfilter" and initialize Subcriber 

bool lowpassfilter; 

ros::param::get("/use_lowpass",lowpassfilter); 
if (lowpassfilter) 

{ 

imu_without_gravity_subscriber = 

nh_.subscribe("linear_acc_without_gravity_filter",1,&robot_main_control::subscriberimuwitho

utgravityCallback,this);   //subscribes to topic "/linear_acc_without_gravity" 
ROS_INFO("Parameter for Lowpassfilter is set: %d, I'm using filtered data ",lowpassfilter); 

} 

else 

{ 
imu_without_gravity_subscriber = 

nh_.subscribe("linear_acc_without_gravity",1,&robot_main_control::subscriberimuwithoutgravi

tyCallback,this);   //subscribes to topic "/linear_acc_without_gravity" 

ROS_INFO("Parameter for Lowpassfilter is set: %d, I'm using raw data ",lowpassfilter); 
} 

cog_subscriber = 

nh_.subscribe("cog/robot",1,&robot_main_control::subscribercogCallback,this); 

} 

 
void robot_main_control::subscribergoalCallback(const geometry_msgs::Pose::ConstPtr 

&pose_goal_msg) 

{ 

received_tcp_goal.pose.position = pose_goal_msg->position; 
received_tcp_goal.pose.orientation = pose_goal_msg->orientation; 

} 

 

void robot_main_control::subscriberoverturnCallback(const std_msgs::Bool::ConstPtr 
&overturn_msg) 

{ 

 overturn.data = overturn_msg->data; 

} 



Annex  245 
 

 

void robot_main_control::subscriber_tipover_Callback (const 
sensor_msgs::JointState::ConstPtr &alpha_krit) 

{ 

// it wakes up every time a new message is published on "/tipover_data" 

alpha_crit.data[0] = alpha_krit ->effort[4]; 
alpha_crit.data[1] = alpha_krit ->effort[5]; 

alpha_crit.data[2] = alpha_krit ->effort[6]; 

alpha_crit.data[3] = alpha_krit ->effort[7]; 

} 

 
void robot_main_control::subscriberaccelerationCallback(const 

sensor_msgs::JointState::ConstPtr& acceleration_msg) 

{ 

// callback function for acceleration_subscriber 
// it wakes up every time a new message is published on "/joint_states_acceleration" 

 

//position, velocity and acceleration values of torque_joint_roll, torque_joint_pitch and 

torque_joint_yaw are always zero ("virtual" joints do not move) 
q.data[0] = 0.0; 

q_dot.data[0] = 0.0; 

q_dotdot.data[0] = 0.0; 

q.data[1] = 0.0; 

q_dot.data[1] = 0.0; 
q_dotdot.data[1] = 0.0; 

q.data[2] = 0.0; 

q_dot.data[2] = 0.0; 

q_dotdot.data[2] = 0.0; 
//position and velocity of force_joint_x, force_joint_y and force_joint_z is zero 

("virtual" joints do not move) 

//accelerations are set to base linear acceleration in subscriberimuwithoutgravityCallback 

function to calculate forces 
q.data[3] = 0.0; 

q_dot.data[3] = 0.0; 

q.data[4] = 0.0; 

q_dot.data[4] = 0.0; 

q.data[5] = 0.0; 
q_dot.data[5] = 0.0; 

 

for (int i=6; i<=12; i++)  //robot arm joint 1..7 is "joint_states_acceleration" at 

[4]..[10} 
{ 

q.data[i] = acceleration_msg->position[i-2];      //write joint positions from topic 

"/joint_states_acceleration"" to KDL::JntArray q 

} 
} 

 

void robot_main_control::subscriberimuCallback(const sensor_msgs::Imu::ConstPtr &imu_msg) 

{ 

//callback function for imu_subscriber 
//wakes up every time a new message is published on "/imu" 

//gravitational acceleration (minus any movement) in m/s² 

//Change to 1*imu_msg 21.10.2020 /for simulation 

gravity.data[0] =  10*imu_msg -> linear_acceleration.x;     //gravity vector x 
gravity.data[1] =  10*imu_msg -> linear_acceleration.y;     //gravity vector y 

gravity.data[2] =  10*imu_msg -> linear_acceleration.z;     //gravity vector z 

} 

 
void robot_main_control::subscriberimuwithoutgravityCallback(const 

sensor_msgs::Imu::ConstPtr &linear_acc_without_gravity_msg) 

{ 

//callback function for imu_without_gravity_subscriber 
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//wakes up every time a new message is published on "/linear_acc_without_gravity" 

//linear acceleration data (acceleration minus gravity) in m/s² 
linear_accel.data[0] = linear_acc_without_gravity_msg -> linear_acceleration.x; 

linear_accel.data[1] = linear_acc_without_gravity_msg -> linear_acceleration.y; 

linear_accel.data[2] = linear_acc_without_gravity_msg -> linear_acceleration.z; 

 
//set force joint accelerations to moving base linear accelerations for force calculation 

q_dotdot.data[3] = linear_acc_without_gravity_msg -> linear_acceleration.x; 

q_dotdot.data[4] = linear_acc_without_gravity_msg -> linear_acceleration.y; 

q_dotdot.data[5] = linear_acc_without_gravity_msg -> linear_acceleration.z; 

} 
 

void robot_main_control::subscribercogCallback(const geometry_msgs::PointStamped::ConstPtr 

&cog_msg) 

{ 
//callback function for cog_subscriber 

//wakes up every time a new message is published on "/cog/robot" 

cog.x = cog_msg->point.x;   //cog x in coordinate frame of "base_link" 

cog.y = cog_msg->point.y;   //cog y in coordinate frame of "base_link" 
cog.z = cog_msg->point.z;   //cog z in coordinate frame of "base_link" 

} 

 

void robot_main_control::subscriber_start_moving_Callback(const std_msgs::Bool::ConstPtr 

&start_msg) 
{ 

start.data = start_msg->data; 

} 

 
geometry_msgs::Vector3 robot_main_control::crossProduct(geometry_msgs::Vector3 vector_a, 

geometry_msgs::Vector3 vector_b) 

{ 

//member function to calculate the cross product of two vectors 
geometry_msgs::Vector3 vector_c; 

vector_c.x = (vector_a.y * vector_b.z) - (vector_a.z * vector_b.y); 

vector_c.y = (vector_a.z * vector_b.x) - (vector_a.x * vector_b.z); 

vector_c.z = (vector_a.x * vector_b.y) - (vector_a.y * vector_b.x); 

return vector_c; 
} 

 

double robot_main_control::dotProduct(geometry_msgs::Vector3 vector_a, 

geometry_msgs::Vector3 vector_b) 
{ 

//member function to calculate the dot product (= scalar product) of two vectors 

double dotProduct = (vector_a.x * vector_b.x) + (vector_a.y * vector_b.y) + (vector_a.z * 

vector_b.z); 
return dotProduct; 

} 

 

geometry_msgs::Vector3 robot_main_control::addVector(geometry_msgs::Vector3 vector_a, 

geometry_msgs::Vector3 vector_b, int i) 
{ 

//member function for addition of two vectors 

//integer decides if plus or minus 

geometry_msgs::Vector3 vector_c; 
if (i==1) 

{ 

vector_c.x = vector_a.x + vector_b.x; 

vector_c.y = vector_a.y + vector_b.y; 
vector_c.z = vector_a.z + vector_b.z; 

}else { 

vector_c.x = vector_a.x - vector_b.x; 

vector_c.y = vector_a.y - vector_b.y; 
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vector_c.z = vector_a.z - vector_b.z; 

} 
return vector_c; 

} 

 

double robot_main_control::alphacalc(double factor,double base) 
{ 

//member function to calculate tip-over stability margin alpha 

if(factor > 0) 

{ 

return pow(base,1)*factor; 
} 

else 

{ 

return pow(base,1)*factor; 
} 

} 

 

double robot_main_control::alpha_cm_calc(double factor,double base) 
{ 

//member function to calculate tip-over stability margin alpha_cm (with incorporation of 

c.m. height) 

if(factor > 0) 

{ 
return pow(base,-1)*factor; 

} 

else 

{ 
return pow(base,-1)*factor; 

} 

} 

 
void robot_main_control::calculate_tipover(geometry_msgs::Vector3 

right_wheel,geometry_msgs::Vector3 back_wheel,geometry_msgs::Vector3 

left_wheel,geometry_msgs::Vector3 edge1, 

geometry_msgs::Vector3 edge2,geometry_msgs::Vector3 edge3,geometry_msgs::Vector3 

cog_right_wheel,geometry_msgs::Vector3 cog_back_wheel,geometry_msgs::Vector3 
cog_left_wheel, KDL::JntArray q) 

{ 

//member function to perform all calculations to determine tip-over stability 

//calculate joint torques/forces with inverse dynamics solver (RNE) 
//use the calculated forces/torques to determine (critical) tip-over margin 

 

//build as many wrenches in vector f_ext as the number of segments in the chain (in this 

case: 17 segments) 
//wrenches represent external forces/torques acting on each chain element 

std::vector<KDL::Wrench> f_ext; //external forces 

KDL::Vector extforce(0.0,0.0,0.0); //set external forces to zero 

KDL::Vector exttorque(0.0,0.0,0.0); //set external torques to zero 

 
for(int i=0; i<=torque_chain.getNrOfSegments()-1; i++) 

{ 

KDL::Wrench externalforce(extforce,exttorque); 

f_ext.push_back(externalforce); 
} 

 

rnea_return.resize(torque_chain.getNrOfJoints()); //resize array to number of joints in 

chain (in this case: 13) 
 

KDL::ChainIdSolver_RNE solver(torque_chain,gravity);  //create an element of class 

ChainIdSolver_RNE and initialise it with chain and gravity vector 
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//q, q_dot, q_dotdot and rnea_return must be the same size as the number of joints in the 

chain 
//f_ext must be the same size as the number of segments in the chain 

if(solver.CartToJnt(q,q_dot,q_dotdot,f_ext,rnea_return)!=0) //calculate joint torques 

{ 

ROS_ERROR("calculation of joint torques and forces failed");       //error message if 
calculation fails 

} 

 

//calculate the force acting on the cog of the mobile base (due to gravitational forces and 

base motion) 
//Force = (linear acceleration + gravitational acceleration) * base mass 

geometry_msgs::Vector3 F_base; 

 

F_base.x =(linear_accel[0]*(-1)+gravity[0])*base_mass; 
F_base.y =(linear_accel[1]*(-1)+gravity[1])*base_mass; 

F_base.z =(linear_accel[2]*(-1)+gravity[2])*base_mass; 

 

//Wrench with ALL forces and torques exerted to the base body (in point F) due to 
manipulator motion, gravitational forces, inertial force and external forces/torques 

//this wrench reflects the whole effect of the manipulator arm on the mobile base 

(including manipulator dynamics, end-effector loading 

//and reaction forces due to interaction with the environment) 

geometry_msgs::Vector3 F_r, M_r; 
F_r.x = rnea_return.data[3]*(-1);  //force in direction of x-axis 

F_r.y = rnea_return.data[4]*(-1);  //force in direction of y-axis 

F_r.z = rnea_return.data[5]*(-1);  //force in direction of z-axis 

M_r.x = rnea_return.data[0]*(-1);   //torque about x-axis (roll) 
M_r.y = rnea_return.data[1]*(-1);   //torque about y-axis (pitch) 

M_r.z = rnea_return.data[2]*(-1);   //torque about z-axis (yaw) 

 

//moment of forces/torques in "F" about the corner points of the support polygon can be 
calculated 

// M = (r x F) + n 

geometry_msgs::Vector3 M_f1, M_f2, M_f3; 

M_f1 = addVector(crossProduct(right_wheel,F_r),M_r,1); 

M_f2 = addVector(crossProduct(back_wheel,F_r),M_r,1); 
M_f3 = addVector(crossProduct(left_wheel,F_r),M_r,1); 

 

//moment about corner points of support polygon exerted by force acting on the cog of the 

mobile base 
geometry_msgs::Vector3 M_base1,M_base2,M_base3; 

M_base1 = crossProduct(cog_right_wheel,F_base); 

M_base2 = crossProduct(cog_back_wheel,F_base); 

M_base3 = crossProduct(cog_left_wheel,F_base); 
 

//calculate total moment about each corner point by adding M_f and M_base 

geometry_msgs::Vector3 Mv1,Mv2,Mv3; 

Mv1 = addVector(M_f1,M_base1,1); 

Mv2 = addVector(M_f2,M_base2,1); 
Mv3 = addVector(M_f3,M_base3,1); 

 

//moments about corner points (vertices) can be projected about the different edges of the 

support polygon 
double M1,M2,M3; 

M1 = dotProduct(Mv1,edge1); 

M2 = dotProduct(Mv2,edge2); 

M3 = dotProduct(Mv3,edge3); 
 

//base moment of inertia about i-th edge of support boundary (i=1..3) in kg/m² 

double I_v1 = 4.673861; 

double I_v2 = 4.57659; 
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double I_v3 = 4.724126; 

 
//dynamic stability margin (alpha) about each boundary edge ist computed 

alpha1 = alphacalc(M1,I_v1); 

alpha2 = alphacalc(M2,I_v2); 

alpha3 = alphacalc(M3,I_v3); 
 

//MHS measure is computed by considering the most critical case (smallest alpha) 

//  - if the minimum of all alphas is positive (which means all alphas are positive), the 

system is stable 

//  - a negative alpha represents an instability about the corresponding edge (robot is 
tipping over) 

//  - alpha value of zero represents the critical dynamic stability 

alpha_critical = std::min(std::min(alpha1,alpha2),alpha3);   //alpha_critical is the 

smallest of the three values 
 

//MHS measure in the above form is not directly sensitive to the height of the center of 

mass 

//measurement can be improved by incorporating the c.m. height 
//cog.z is expressed in coordinate frame of "base_link", needs to be converted to represent 

height above ground level 

double h_cm = 0.6088+(cog.z-0.452); //center of mass height (cog.z-0.452 converts from 

"base_link" to coordinate frame in F, point F is 0.6088 cm above ground contact) 

 
alpha1_cm = alpha_cm_calc(alpha1,h_cm); 

alpha2_cm = alpha_cm_calc(alpha2,h_cm); 

alpha3_cm = alpha_cm_calc(alpha3,h_cm); 

 
alpha_critical_cm = std::min(std::min(alpha1_cm,alpha2_cm),alpha3_cm);   

//alpha_critical_cm is the smallest of the three values 

} 

 
void robot_main_control::check_workspace() 

{ 

//This feature decide if the estimated Point is in the Workpspace. 

double angle_scitos_TCP; 

double dot_product_scitos_TCP; 
 

in_workspace.data = false; 

// get current pose of Scitos 

double current_position_x = transform_of_scitos.getOrigin().x(); 
double current_position_y = transform_of_scitos.getOrigin().y(); 

double current_position_z = 0.832; // Position of Arm_2_link 

 

// Calculation of Angle between Pose Scitos and TCP to Check if it is before or behind the 
robot 

double a1 = 1; //coodinates of x-axsis in BaseKoordinateframe 

double a2 = 0; //coodinates of x-axsis in BaseKoordinateframe 

 

double b1 = TCP_base.point.x; //transformed Point from /map to /base_footprint 
double b2 = TCP_base.point.y; 

 

double amount_b = sqrt(pow(b1,2)+pow(b2,2)); 

double amount_a = sqrt(pow(a1,2)+pow(a2,2)); 
 

dot_product_scitos_TCP = a1*b1 +a2*b2; 

 

angle_scitos_TCP = acos(dot_product_scitos_TCP/(amount_b*amount_a))*180/PI; 
 

if(angle_scitos_TCP<90){ 

// if angle_scitos_TCP smaller than 90 degree use ellipsoide, TCP is in front of robot 
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double scitos_elipsoide = 

pow((TCP_base.point.x)/X_KRIT,2)+pow((TCP_base.point.y)/MAX_WS_RADIUS,2)+pow((TCP_global.po
int.z-current_position_z)/MAX_WS_RADIUS,2); 

if(scitos_elipsoide < 1){ 

in_workspace.data = true; 

ROS_INFO("It is in front of me"); 
} 

} 

else{ 

// if angle_scitos_TCP higher than 90 degree use spehre, TCP is behind robot 

double scitos_sphere = 
pow(TCP_base.point.x,2)+pow(TCP_base.point.y,2)+pow(TCP_global.point.z-

current_position_z,2); 

if(scitos_sphere < pow(MAX_WS_RADIUS,2)){ 

in_workspace.data = true; 
ROS_INFO("It is behind me"); 

} 

} 

} 
void robot_main_control::calculate_scitos_arm_target_poses() 

{ 

//check if the given TCP is in the workingspace 

check_workspace(); 

 
if(in_workspace.data == false){ 

//Goal not able to reach only with move_arm. First need to move the base. 

//calculate the goal for the base and the arm and set the calulated goal to scitos_pose and 

arm_pose 
 

scitos_pose.pose.position.x = TCP_global.point.x -MAX_VALUE_DELTA_X; 

scitos_pose.pose.position.y = TCP_global.point.y -MAX_VALUE_DELTA_Y; 

 
scitos_pose.pose.orientation.w =  1; 

scitos_pose.pose.orientation.z =  0; 

 

target_arm_pose.pose.position.x = MAX_VALUE_DELTA_X; 

target_arm_pose.pose.position.y = MAX_VALUE_DELTA_Y; 
target_arm_pose.pose.position.z = TCP_global.point.z; 

target_arm_pose.pose.orientation = using_tcp_goal.pose.orientation; 

 

 
ROS_INFO("movement of base required"); 

ROS_INFO("Scitos_goal_pose: [%f], [%f], [%f]", scitos_pose.pose.position.x, 

scitos_pose.pose.position.y, scitos_pose.pose.orientation.w); 

ROS_INFO("arm_goal_pose: [%f], [%f], [%f]", target_arm_pose.pose.position.x, 
target_arm_pose.pose.position.y, target_arm_pose.pose.position.z); 

 

} 

else{ 

// estimated TCP is within the workspace 
target_arm_pose.pose.position.x = TCP_base.point.x;   //using relative x position of TCP 

target_arm_pose.pose.position.y = TCP_base.point.y;   //using relative y position of TCP 

target_arm_pose.pose.position.z = TCP_global.point.z; //using real high of TCP 

target_arm_pose.pose.orientation = using_tcp_goal.pose.orientation; 
 

ROS_INFO("arm_goal_pose: [%f], [%f], [%f]", target_arm_pose.pose.position.x, 

target_arm_pose.pose.position.y, target_arm_pose.pose.position.z); 

} 
ROS_INFO("calculate_scitos_arm_target_poses is done");  

} 

 

int main(int argc, char** argv)  
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{ 

// ROS set-ups: 
ros::init(argc, argv, "robot_main_control_dyn"); //node name 

 

ros::NodeHandle nh;  

 
ROS_INFO("main: instantiating an object of type robot_main_control"); 

robot_main_control robot_main_control(&nh);  

 

return 0; 

} 
 

 

test_points.py [175] 
 
import rospy 

import roslib 

import numpy as np 

from geometry_msgs.msg import Pose 
from geometry_msgs.msg import Twist 

from std_msgs.msg import Bool 

from time import sleep  

import tf 

 
estimated_goal = Pose() 

offset = Pose() 

tf_pose = Pose() 

 
def callback_goal(goal): 

#Angle between /map and /base_link 

phi = np.arccos(tf_pose.orientation.w)*2 

a= tf_pose.orientation.w 
b= tf_pose.orientation.x 

c= tf_pose.orientation.y 

d = tf_pose.orientation.z 

xbase1 = 2*(a**2+b**2)-1 

xbase2 = 2*(b*c+a*d) 
ybase1 =2*(b*c-a*d) 

ybase2 =2*(a**2+c**2)-1  

 

amount_x= np.sqrt(xbase1**2+xbase2**2) 
amount_y= np.sqrt(ybase1**2+ybase2**2) 

xbase1 = xbase1/amount_x 

xbase2 = xbase2/amount_x 

ybase1 =ybase1/amount_y 
ybase2 =ybase2/amount_y 

 

#Relative positions of offset, depending on  

estimated_goal.position.x = tf_pose.position.x +goal.position.x*xbase1 

+goal.position.y*ybase1 

estimated_goal.position.y = tf_pose.position.y +goal.position.x*xbase2 

+goal.position.y*ybase2 

estimated_goal.position.z = goal.position.z 

estimated_goal.orientation.x = goal.orientation.x 
estimated_goal.orientation.y = goal.orientation.y 

estimated_goal.orientation.z = goal.orientation.z 

estimated_goal.orientation.w = goal.orientation.w 

rospy.loginfo("I am going publish: 
(x,y,z)(%f,%f,%f)",estimated_goal.position.x,estimated_goal.position.y,estimated_goal.posit

ion.z) 

 

point_publisher = rospy.Publisher('/estimated_tcp_goal', Pose ,queue_size=10) 
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point_publisher.publish(estimated_goal) 

 
def send_estimated_goal(): 

rospy.init_node('help_points') 

 

StartTest_Publisher = rospy.Publisher('/start_test', Bool ,queue_size=1) 
goal_subscriber=rospy.Subscriber("/tcp_offset_from_base",Pose,callback_goal) 

 

scitos_tf = tf.TransformListener() 

rate = rospy.Rate(1) 

while not rospy.is_shutdown(): 
try: 

(trans,rot) = scitos_tf.lookupTransform('/map', '/base_link', rospy.Time(0)) 

tf_pose.position.x = trans[0] 

tf_pose.position.y = trans[1] 
tf_pose.position.z = trans[2]      

 

except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): continue 

 
cosphi = np.arccos(rot[3])*2*180/np.pi 

sinphi = np.arcsin(rot[2])*2*180/np.pi 

 

tf_pose.position.x = trans[0] 

tf_pose.position.y = trans[1] 
tf_pose.position.z = trans[2] 

tf_pose.orientation.z = rot[2] 

tf_pose.orientation.w = rot[3] 

 
rate.sleep() 

 

if __name__ == '__main__': 

send_estimated_goal() 
 

 

test_cmdvel_vali.py [175] 
 

import rospy 
from geometry_msgs.msg import TwistStamped 

from geometry_msgs.msg import Twist 

from std_msgs.msg import Bool 

from time import sleep  
vel_msg = TwistStamped() 

vel_msg2 =Twist() 

 

def do_movement(lin,ang): 
# For Documentation 

vel_msg.header.stamp = rospy.Time.now() 

vel_msg.twist.linear.x = lin 

vel_msg.twist.linear.y = 0 

vel_msg.twist.linear.z = 0 

vel_msg.twist.angular.x = 0 

vel_msg.twist.angular.y = 0 

vel_msg.twist.angular.z = ang 

 
#For real cmd velocity 

vel_msg2.linear.x = lin 

vel_msg2.linear.y = 0 

vel_msg2.linear.z = 0 
vel_msg2.angular.x = 0 

vel_msg2.angular.y = 0 

vel_msg2.angular.z = ang 
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def move(): 

# Starts a new node 
cmdvel_linear_x = 0.5 

cmdvel_angular_z = 0.0 

wait_time=2 

MVRobot = False 
rospy.init_node('validate_algo', anonymous=True) 

StartTest_Publisher = rospy.Publisher('/start_test', Bool ,queue_size=1) 

velocity_publisher = rospy.Publisher('/cmd_vel_test', TwistStamped, queue_size=1) 

velocity_publisher2 = rospy.Publisher('/cmd_vel',Twist,queue_size=1) 

do_movement(0,0) 
     

velocity_publisher.publish(vel_msg) 

velocity_publisher2.publish(vel_msg2) 

MVRobot = rospy.wait_for_message('/start_test', Bool, timeout=None) 
if (MVRobot):    

rospy.loginfo("Begin the Test: Move %f m/s linear and %f m/s angular. Wait %i s and go 

backwarts",cmdvel_linear_x,cmdvel_angular_z,wait_time) 

sleep(1) 
i = 0  

itteration = int(wait_time/0.1) #Time for frequently messages 

for i in range(itteration): 

do_movement(cmdvel_linear_x,cmdvel_angular_z) 

velocity_publisher.publish(vel_msg) 
velocity_publisher2.publish(vel_msg2) 

sleep(0.1) 

 

for i in range(itteration): 
do_movement(0,0) 

velocity_publisher.publish(vel_msg) 

velocity_publisher2.publish(vel_msg2) 

sleep(0.1) 
    

for i in range(itteration): 

do_movement(-cmdvel_linear_x,-cmdvel_angular_z) 

velocity_publisher.publish(vel_msg) 

velocity_publisher2.publish(vel_msg2) 
sleep(0.1) 

 

for i in range(itteration): 

do_movement(0,0)     
velocity_publisher.publish(vel_msg) 

velocity_publisher2.publish(vel_msg2) 

sleep(0.1) 

 
else: 

do_movement(0,0) 

velocity_publisher.publish(vel_msgs) 

velocity_publisher2.publish(vel_msg2) 

sleep(0.1) 
if __name__ == '__main__': 

    

try: 

move() 
except rospy.ROSInterruptException: pass 

 

 

imu_scitos.cpp [175] 
 
#include "ros/ros.h" 

#include <visualization_msgs/Marker.h> 

#include <sensor_msgs/Imu.h> 
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#include <iostream> 

#include <string> 
#include <unistd.h> 

#include <cstdlib> 

#include <boost/algorithm/string.hpp> 

#include "tf/tf.h" 
 

const double PI = 3.14159; 

double markerposx,markerposy,markerposz,markerposw; 

int i; 

//create Global value --> That I can use it in All functions 
sensor_msgs::Imu imu_without_gravity;//Create the Imu withouth gravity 

 

void linearACCwoG(const sensor_msgs::Imu::ConstPtr &imu_msg) 

{   
//ROS_INFO("I AM HERE! IMU_SCITOS_VIRT WORK"); 

//callback function for imu_subscriber 

//relevant imu without acceleration variables 

 
imu_without_gravity.linear_acceleration.x = imu_msg -> linear_acceleration.x; 

imu_without_gravity.linear_acceleration.y = imu_msg -> linear_acceleration.y; 

imu_without_gravity.linear_acceleration.z = imu_msg -> linear_acceleration.z-9.81; 

 

// Pose of the marker 
markerposx = imu_msg -> orientation.x; 

markerposy = imu_msg -> orientation.y; 

markerposz = imu_msg -> orientation.z; 

markerposw = imu_msg -> orientation.w; 
} 

 

int main(int argc, char **argv) 

{ 
ros::init(argc, argv, "imu_scitos"); //node name 

// create a node handle; need to pass this to the class constructor 

ros::Rate loop_rate(10);  //set a desired run time of a cycle in Hz  

 

ros::NodeHandle n; 
ros::Publisher marker_pub = n.advertise<visualization_msgs::Marker>("marker",1); 

ros::Publisher imu_without_gravity_pub = 

n.advertise<sensor_msgs::Imu>("linear_acc_without_gravity",1); 

ros::Subscriber imu_sub = n.subscribe("imu",1,linearACCwoG); 
uint32_t shape = visualization_msgs::Marker::ARROW; 

 

// Enter the main loop 

for(i=0;1<10;) 
{ 

// Create a marker to visualize the IMU data 

visualization_msgs::Marker marker; 

 

marker.header.frame_id = "/c_o_g"; 
marker.ns = "basic_shapes"; 

marker.id = 0; 

marker.type = shape; 

marker.action = visualization_msgs::Marker::ADD; 
 

// Position of the marker 

marker.pose.position.x = 5; 

marker.pose.position.y = 5; 
marker.pose.position.z = 5; 

 

// Pose of Marker 

marker.pose.orientation.x = markerposx; 
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marker.pose.orientation.y = markerposy; 

marker.pose.orientation.z = markerposz; 
marker.pose.orientation.w = markerposw; 

 

// Scale of the marker 

marker.scale.x = 1.0; 
marker.scale.y = 1.0; 

marker.scale.z = 1.0; 

 

// Set the color -- be sure to set alpha to something non-zero! 

marker.color.r = 0.0f; 
marker.color.g = 1.0f; 

marker.color.b = 0.0f; 

marker.color.a = 1.0; 

 
marker.lifetime = ros::Duration(); 

 

imu_without_gravity_pub.publish(imu_without_gravity); 

 
marker_pub.publish(marker); 

 

ros::spinOnce(); 

} 

} 
 

 

visualize_workingspace.py [175] 
 
import rospy 

import std_msgs.msg 

from geometry_msgs.msg import Point 

from geometry_msgs.msg import Vector3 
#from vector_3_array.msg import Vector3DArray 

from sensor_msgs.msg import PointCloud 

import numpy as np 

from geometry_msgs.msg import PoseArray 

from geometry_msgs.msg import Pose 
 

pc_workspace=PointCloud() 

#new_point= Vector3DArray() 

next_point = Pose() 
next_point_array=PoseArray() 

X_kRIT = 0.7 

MAX_WS_RADIUS = 1.2 

 
if __name__ == '__main__': 

rospy.init_node('visualize_workingspace') 

pub_pc_workspace = rospy.Publisher('/visi_pc', PointCloud, queue_size = 1) 

rate = rospy.Rate(10.0) 

     

pc_workspace.header.frame_id = "arm_podest_link" 

pc_workspace.header.stamp = rospy.Time.now() 

pc_workspace.points = 100 

pc_workspace.channels = 1 
next_point_array.poses = 100 

x=-MAX_WS_RADIUS 

y=-MAX_WS_RADIUS 

s= 0  
while x<0:  

while y<0: 

cood_ws = MAX_WS_RADIUS**2-x**2-y**2 

if cood_ws >=0: 
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z=np.sqrt(cood_ws) 

next_point.position.x = x 
next_point_array.poses.append(next_point)                

s= s+1 

x = x+0.1 

y=y+0.1 
x=0 

y=0 

while x<X_KRIT: 

while y<MAX_WS_RADIUS: 

cood_ws = 1-(x/X_KRIT)**2-(y/MAX_WS_RADIUS)**2 
if cood_ws >0: 

z = np.sqrt(cood_ws)*MAX_WS_RADIUS 

new_point.x=x 

new_point.y=y 
new_point.z=z 

pc_workspace.points.append(new_point) 

i= i+1 

x = x+0.1 
y=y+0.1                

while not rospy.is_shutdown(): 

pub_pc_workspace.publis(pc_workspace) 

rate.sleep() 

 
 

Additionally, source code from the following digital repositories was employed: 
 
For ros_controllers package 
https://github.com/ros-controls/ros_controllers.git  
 
For schunk_modular_robotics package 
https://github.com/ipa320/schunk_modular_robotics.git  
 
For schunk_robots package 
https://github.com/ipa320/schunk_robots.git  
 
For scitos_common package 
https://github.com/cburbridge/scitos_common  
 
For scitos_driver package 
https://github.com/strands-project/scitos_drivers  
 
For Recursive Newton Euler Inverse Dynamics Solver 
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE.html  
 
For The STRANDS Project: Long-Term Autonomy in Everyday Environments 
https://arxiv.org/abs/1604.04384  
 
For Navigation control 
http://library.isr.ist.utl.pt/docs/roswiki/navigation(2f)Tutorials(2f)SendingSimpleGoals.html  
 

https://github.com/ros-controls/ros_controllers.git
https://github.com/ipa320/schunk_modular_robotics.git
https://github.com/ipa320/schunk_robots.git
https://github.com/cburbridge/scitos_common
https://github.com/strands-project/scitos_drivers
http://docs.ros.org/en/kinetic/api/orocos_kdl/html/classKDL_1_1ChainIdSolver__RNE.html
https://arxiv.org/abs/1604.04384
http://library.isr.ist.utl.pt/docs/roswiki/navigation(2f)Tutorials(2f)SendingSimpleGoals.html



