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The use of functionalised allylboronic esters in the catalytic 
enantioselective allylboration of aldehydes is described for the 
first time. γ-Silylallyl pinacolate derivatives give rise to α-silyl 
homoallylic alcohols in high yields, with complete 
diastereoselectivities and high enantioselectivities, in most of 
the cases. The usefulness of such intermediates is showcased by 
their transformation into fluorinated allylic alcohols. 

The fifty-years old allylboration reaction is still one of the most useful 
methods in organic synthesis.1,2 In a single operation a new carbon-
carbon bond is formed, a new stereogenic center created and two 
versatile functionalities, namely an alcohol and a C-C double bond, 
installed in the proximity of one another. Moreover, the use of γ-
substituted allylborane derivatives (crotylboronates being the most 
widely used) regio- and stereospecifically provides two consecutive 
stereocenters.3 For all these features, the allylboration reaction, and 
related transformations, have attracted the attention of some of the 
most important synthetic organic chemists of the second half of the 
last century who developed chiral allylborating reagents allowing the 
preparation of homoallylic alcohols with a very high degree of 
stereocontrol, which propelled the use of this reaction in natural 
product total synthesis.4,5 The new century has witnessed the advent 
of long sought-for catalytic enantioselective allylboration reactions.6 
Among them, the chiral Brønsted acid catalysed allylation developed 
by Antilla stands out for its experimental simplicity, efficiency and 
environmentally benign nature.7-9 Despite the impressive 
development achieved in the field, to the best of our knowledge the 
use of γ-functionalized allylborating reagents in asymmetric catalysis 
has been completely overlooked. Reagents of this kind give rise to 
vicinally funtionalised homoallylic alcohols in a regio- and 
diastereospecific manner. The synthetic versatility of allylsilanes 
inspired us to initiate our study on γ-functionalised allylboronates 
with the corresponding silylated analogues (Figure 1). Chiral 
derivatives of this kind have extensively been used by Roush and 
others for the synthesis of 1,2- and 1,4-diols, among other building 
blocks.10 In addition, Krische recently reported an iridium catalysed 
silylallylation using SEGPHOS as chiral ligand for the synthesis of 
analogous α-silyl homoallylic alcohols.11 Herein, we report our 

preliminary results on the use of γ-silyl allylboronic pinacolate 
derivatives in asymmetric catalysis for the first time (Figure 1). 

R

OH

SiR3

R O

BpinR3Si

OAc

TMS

R O

BR3Si
O

O

CO2R

CO2R

Ir
PO
P

O

*

CN

NO2

P
P *

O

O

O

O

PPh2

PPh2

=

SEGPHOS

chiral reagent
ref. 4

chiral organometallic catalyst
ref. 11

organocatalysis
this work

O
P

O

OH

O

Ar

Ar

  
Figure 1. Our organocatalytic approach to α-silyl homoallylic 
alcohols. 
 
Prompted by the availability of TMSallylBpin (1) in just one step 
from the corresponding commercially available allylic alcohol12 
we decided to study its performance in the chiral Brønsted acid 
catalysed allylboration reaction using benzaldehyde 2a as the 
model substrate (Table 1).  
 
Table 1. Optimisation of the reaction conditions 
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Entry I Addit. Solv. Temp. 

ºC 
3a 
(%) 

e.e. 
(%) 

1 Ia - TolH -30 74 36 
2 Ia - DCM -30 73 34 
3 Ia 4ÅMS TolH -30 80 11 
4 Ib - TolH -30 71 6 
5 Ic - TolH -30 50 16 
6 Id - TolH -30 66 95 
7 Ie - TolH -30 50 90 
8 If - TolH -30 39 67 
9 Ig - TolH -30 42 2 

10 Id 4ÅMS TolH -30 90 67 
11 Id - DCM -30 73 90 
12 Id - TolH -50 33 20 
13 Id - TolH 25 64 84 

 
The use of (R)-TRIP Ia under the optimised reaction conditions 
reported by Antilla7a afforded the expected α-silyl homoallylic 
alcohol 3a in good yield and with complete diastereoselectivity, 
although with modest enantiocontrol (Table 1, entry 1). A 
comparable level of enantiocontrol was observed when DCM 
was used as solvent (Table 1, entry 2) and, intriguingly, the 
addition of 4Å MS proved deleterious for the enantioselectivity 
(Table 1, entry 3).13 In view of these unsatisfactory results, we 
decided to explore other chiral Brønsted acid catalysts. A 
screening of common BINOL-derived phosphoric acids (Table 
1, entries 4-6) allowed identifying Id as an effective catalyst 
affording the product in high enantiomeric excess without 
affecting the yield nor the diastereoselectivity (Table 1, entry 6). 
Regarding structurally related catalysts, partially hydrogenated 
Ie provided slightly lower enantiocontrol (Table 1, entry 7), 
while the biphenol derivative If proved less efficient (Table 1, 
entry 8). On the other hand, VAPPOL derivative Ig, showed an 
almost complete lack of enantiocontrol (Table 1, entry 9). 
Further optimisation of the reaction conditions did not lead to 
any improvement (Table 1, entries 10-13). 
With these optimised conditions in hand (Table 1, entry 6), the 
scope and limitations of the new methodology were established 
(Scheme 1). Excellent anti selectivity (>95:5) was observed for 
all of the cases. Regarding the substitution pattern, as a general 
trend, substrates bearing substitution at the ortho position afford 

only moderate enantioselectivities (compare 3d with 3g and 3m 
or 3c with 3h); however, good enantiocontrol is observed for 
ortho-vinyl derivative 3b. The dependence of the 
enantioselectivity with the electronic nature of the substituents 
also seem to follow a general trend; while electron-withdrawing 
groups afford enantioselectivities above 90% (see 3g,h,j,k,l,m), 
mild electron-donating groups do not exceed 80% (see 3f,i).† 
Interestingly, the m-methoxy derivative is obtained in a 
relatively high 90% ee suggesting that the –I effect overrides the 
+R. Finally, the more robust dimethylphenylsilyl derivative 
could also be obtained although in modest 87% ee (3p,q).# 
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Scheme 1. Scope and limitations. 
 
The relative and absolute stereochemistry of the two newly 
created stereocenters was unambiguously established by means 
of X-ray diffraction experiments on derivative 3m (Figure 2). 
Those of others were surmised by analogy. 
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Figure 2. ORTEP diagram of compound 3m. 
 
As anticipated, the relative stereochemistry is anti, reflecting the 
E stereochemistry of the starting allylboronate. With regard to 
absolute stereochemistry, the re-face attack suggests that the 
reaction proceeds through a two-point transition state analogous 
to the one proposed by Goodman and Houk for allylboration 
(Figure 2, the absolute configuration changes due to priority 
considerations).14 This transition state accounts for the observed 
lower enantioselectivity obtained with TRIP, since the bulky 
TMS group might clash with the tris(isopropyl)phenyl 
substituents of TRIP. Apparently, the less bulky 3,3’-bis(9-
anthryl) derivative shows an optimum balance allowing 
enantiodifferentiation; the pinacol being still the most hindered 
substituent occupies the empty pocket while the TMS group 
must be accommodated in the sterically demanding pocket. 
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Figure 3. Suggested stereochemical model 
 
Allylsilanes are very versatile reagents in organic synthesis.15 
Undoubtedly, Sakurai-like nucleophilic addition to carbonyl 
compounds represents the most popular reaction of synthetic 
value.16 In a first approach, several reactions of this kind (Lewis 
or Brønsted acid catalysed allylation of carbonyl compounds) 
were assayed on α-silyl homoallylic alcohols 3.17 However, 
elimination was observed under each of the assayed reaction 
conditions.§ The high stabilisation of the β-silyl benzyl 
carbocation intermediate accounts for the observed 
incompatibility of compounds 3 with acidic reaction conditions. 
Therefore, buffered reaction conditions are required in order to 
avoid the kinetic and thermodynamically favoured Peterson 
elimination.  Krische recently demonstrated that the DMDO-
mediated oxidation of such scaffolds towards the corresponding 
1,4-diols was a viable process under buffered conditions.11 
Hence, we wondered if the electrophilic allylic fluorination 
reported by Gouverneur could be used on our substrates, since 
acid catalysis is not necessary.18,19 Disappointingly, the use of the 
original reaction conditions only achieved small amounts of the 
desired fluorinated product (>15%) along with the diene as the 
major product, even when the acetyl protected alcohol was used, 
indicating that Selectfluor behaves as a strong Lewis acid to 
promote the elimination. To our delight, treatment of 3g with 
Selectfluor under buffered reaction conditions afforded product 

4g in good yield (72 %), as a single stereosiomer and with almost 
complete preservation of the optical purity.18a Next, the 
generality of this transformation was established using some of 
the α-silyl homoallylic alcohols shown in Scheme 1 (Scheme 2). 
Good yields with minor erosion of optical purity and complete 
E-selectivities were observed in all cases.  
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Scheme 2. Scope of the electrophilic fluorination. 
 
To the best of our knowledge, this is the first available 
methodology for the synthesis of these versatile intermediates. 
Recently, the reversed reaction sequence (electrophilic allylic 
fluorination / allylboration) using isomeric γ-sylilvinylboronates 
has been described.20 Hence, while our methodology affords 
enantioenriched fluorinated allylic alcohols, the complementary 
one gives rise to isomeric fluorinated homoallylic alcohols, in a 
racemic fashion (Scheme 3).  
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Scheme 3. Comparison of the two methodologies. 

Conclusions 
Since the pioneering work of Brown and Roush, the application 
of functionalised allylborating reagents in asymmetric synthesis 
has, for decades, been limited to the use of chiral boronate 
reagents. In this communication, the application of a γ-
functionalised allylboronic ester in a catalytic enantioselective 
reaction has been reported for the first time. More specifically, 
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the chiral Brønsted acid catalysed allylboration of aromatic 
aldehydes with γ-silyl functionalised reagents has been achieved 
in good yields and with high enantioselectivities in most cases. 
The synthetic versatility of the thus-obtained α-silylhomoallylic 
alcohols has been extended to the synthesis of fluorinated allylic 
alcohols by means of electrophilic fluorination. Further studies 
aimed to broaden the scope of this transformation, specially to 
the use of readily oxidisable silyl groups as well as to the 
introduction of functionalities of other kinds, are currently 
underway in our laboratories and will be disclosed in due time. 
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