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RESUMEN (en español) 

El cambio climático y el calentamiento global se han agudizado en las últimas décadas, 
ejerciendo una enorme presión ambiental sobre los organismos vivos. Por lo que el actual 
contexto de emergencia climática enfatiza la urgencia de descifrar y entender cómo las plantas 
perciben, responden, memorizan y se adaptan a eventos climáticos extremos como las olas de 
calor, que se encuentran entre los estreses más perjudiciales para las plantas y que además 
son extremadamente difíciles de controlar en condiciones de campo. A pesar de la relevancia 
de estos procesos de aclimatación y memoria, estos fenómenos están poco estudiados a nivel 
molecular, especialmente en especies no forestales modelo como Pinus radiata. Pinus radiata 
es una de las especies forestales más plantadas debido a su rápido crecimiento y calidad de la 
madera, además las poblaciones silvestres y manejadas de esta especie están distribuidas por 
todo el mundo. 

Teniendo esto en cuenta, el objetivo principal de esta tesis es identificar los mecanismos de 
adquisición de memoria y señalización de respuesta a alta temperatura más relevantes en 
dicha especie empleando un enfoque de proteómica subcelular y un sistema experimental 
realista acorde con el incremento de las temperaturas estimado para los próximos años para 
proporcionar un conjunto de indicadores robustos útiles para la selección temprana de árboles 
y semillas termotolerantes. 

Para ello, en primer lugar, se llevo a cabo la optimización de un protocolo de extracción de 
núcleos y cloroplastos, y se desarrolló una nueva herramienta bioinformática (pRocessomics), 
que permitiría analizar de un modo más exhaustivo y reproducible los datos generados en esta 
Tesis. 

A continuación, para comprender mejor los mecanismos moleculares que conducen a la 
adquisición de la termotolerancia, así como a los procesos de establecimiento de la memoria, 
se simuló una ola de calor severa en condiciones controladas que permitió caracterizar los 
cambios que dan forma a la respuesta al estrés por calor. Estas alteraciones se monitorizaron a 
través de la determinación de biomarcadores fisiológicos, la cuantificación del proteoma 
subcelular de núcleos y cloroplastos, la inmunolocalización de metilación de citosina y los 
niveles de expresión génica de candidatos seleccionados, incluidos ARNm y microARN. 

La comparativa del proteoma del cloroplasto entre dos poblaciones isogénicas (silvestre y 
manejada) reveló una memoria heredada, y permitió distinguir diferentes estrategias de 
aclimatación, demostrando que las condiciones de crecimiento de las plantas parentales tienen 
un efecto de primado transgeneracional relacionado con alteraciones en el Fotosistema II y 
proteínas osmoprotectoras y que, además, esta memoria transgeneracional ayudó a superar el 
estrés aplicado. 



                                                                 

 

El análisis del proteoma nuclear (de la población no primada) durante el estrés y después de 
una fase de recuperación mostró el papel fundamental de los mecanismos epigenéticos 
(metilación del ADN, modificaciones de histonas y microARN) en la adquisición de la memoria 
(durante el estrés) así como en el mantenimiento de esta (después de la recuperación o fase 
latente). La inmunolocalización de 5 mC mostró una pérdida de metilación del ADN durante el 
estrés por alta temperatura, en paralelo con un descenso significativo en la abundancia de S-
ADENOSYL METIONINE SYNTHASE, una proteína involucrada en el ciclo de metilación del 
ADN. Esta pérdida tanto en el nivel de metilación del ADN como en la abundancia de S-
ADENOSILMETIONINA SINTASA se recuperó e incrementó su acumulación una vez las 
plantas estuvieron aclimatadas. Además, la histona H2A.X se identificó como variante 
termolábil e impulsora de la respuesta, lo que destaca el papel de la conformación de la 
cromatina durante el estrés y la recuperación. 
 
La integración de ambos subproteomas permitió obtener una comprensión más profunda de la 
comunicación nuclear y del cloroplasto para coordinar la respuesta de calor celular, mostrando 
la dinámica de la señalización anterógrada y retrógrada bajo condiciones de estrés, y cómo 
proteínas relacionadas con microARN como ARGONAUTE1, responsable del silenciamiento 
génico postranscripcional, parecen dirigir la aclimatación a altas temperaturas en esta especie. 
 
Finalmente, los niveles de expresión de los genes candidatos seleccionados se analizaron en 
semillas y plántulas (antes, durante y después de un tratamiento de estrés en los individuos 
primados y en los no primados). Esto permitió validar las hipótesis de los capítulos anteriores y 
diseñar un panel de biomarcadores de termotolerancia, donde miR160 y S-
ADENOSILMETIONINA SINTASA parecen ser los candidatos más prometedores. 
 

 
RESUMEN (en Inglés) 

 
Climate change and global warming have worsen over the last decades, exerting a huge 
environmental pressure to living organisms. Hence, the current context of climate emergency 
emphasizes the urgency to decipher how plants sense, response, memorize and adapt to 
climate extreme events such as heat waves, which are among the most detrimental stresses for 
plants and extremely difficult to control in the field. Despite the relevance of acclimatization 
processes, these molecular phenomena are poorly studied, especially in non-model forest 
species as Pinus radiata. Pinus radiata is one of the most widely planted forest species due to 
its rapid grow and wood quality, and wild and managed populations of this species are 
distributed worldwide. 
 
Then, the main objective of this thesis is to identify the most relevant high-temperature 
response signaling and memory acquisition mechanisms in Pinus radiata employing an 
integrative subcellular proteomics approach and using a realistic scenario of high temperature 
increase in order to provide a set of reliable and useful biomarkers for early selection of 
thermotolerant or primed trees and seeds. 
 
To this end, a nuclei and chloroplast extraction method was optimized, and a bioinformatic tool 
(pRocessomics R package) was developed, both of them required in order to perform the 
subsequent analyses of this thesis. 
 
To further understand the molecular mechanisms that lead to thermotolerance acquisition as 
well as memory establishment processes, in this thesis, a severe heat wave was mimicked in 
controlled conditions to characterize the changes that shape the response to heat stress. These 
alterations were tracked through physiological biomarkers determination, nuclei and chloroplast 
subcellular proteome quantification, cytosine methylation immunostaining and gene expression 
levels of selected candidates including mRNAs and microRNAs.  
 
The chloroplast proteome comparative between two isogenic populations (wild and managed) 
revealed an inherited memory, and allowed to distinguish different acclimatization strategies, 
demonstrating that the growing conditions of the parental plants have a transgenerational 
priming effect related to alterations in Photosystem II and osmoprotective proteins which helped 
to overcome the applied stress.  



                                                                 

 

 
The nuclear proteome analysis of the non-primed population during the stress and after a 
recovery phase showed the pivotal role of epigenetics (DNA methylation, histone modifications 
and microRNAs) on the memory acquisition (during the stress) and maintenance (after recovery 
or latent phase) processes. 5mC immunostaining showed a DNA methylation loss during the 
applied heat stress in parallel with the depletion during the stress of S-ADENOSYL 
METHIONINE SYNTHASE, a protein involved in the DNA methylation cycle. Interestingly, these 
changes in DNA methylation level and S-ADENOSYLMETHIONINE SYNTHASE accumulation 
were the opposite after the plants were allowed to recover. Additionally, the thermosensitive 
H2A.X variant was identified as a heat response driver, highlighting the role of chromatin 
conformation during the stress and the recovery.  
 
The integration of both subproteomes allowed to gain a deeper understanding of nuclear and 
chloroplast communication for coordinating cellular heat-response showing the dynamics of the 
anterograde and retrograde signaling under the stress, and how microRNA related proteins as 
ARGONAUTE1, responsible for post transcriptional gene silencing, were finely tuned during the 
acclimation to high-temperature.  
 
Finally, the selected candidate gene expression levels were tracked in seeds and seedlings 
(prior, during and after a single or double heat stress treatment). This, allowed to validate the 
hypotheses from the previous chapters and the designing of a thermotolerance biomarker 
panel, where miR160 and S-ADENOSYLMETHIONINE SYNTHASE were the most promising 
candidates. 
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CHAPTER I. General introduction 
 

1.1 Climate emergency 
  

1.1.1 From The Greenhouse Effect to Climate Extremes 
 

The Greenhouse Effect was firstly described as a natural driver of the Earth’s 

surface temperature by Joseph Fourier in 1822. Fourier introduced the idea of the 

atmosphere as a strong component of the Earth’s climate. Since the surface temperature 

of Earth could not be explained only by the received solar radiation, then the atmosphere 

must play a role as a heat-trapping gaseous layer (Fourier, 1822).  

 

A few decades later, in the 1850s Eunice Newton Foote identified H2O and CO2 as 

the main molecules retaining the energy of the longer wavelengths and promoting 

temperature increase (Foote, 1856). Foote theorized this as a possible driver of Earth 

warming and provided the first experimental results on this topic. John Tyndall further 

explained this phenomenon from a physiochemical perspective in his studies on gases 

infrared absorption (Tyndall, 1861). Svante Arrhenius in 1896 created the first climate 

model, predicting that an one-fold increase in atmospheric CO2 would elevate in 5-6 ºC 

the temperature of the Earth (Arrhenius, 1896). His findings still hold up currently.  

 

However, the scientific concern about changes in the climate started only in the 

early 1960s, with several studies that monitored CO2 seasonal concentrations in different 

locations worldwide (Keeling, 1960). The potential severity of those variations in CO2 

remained however controversial.  

 

The term global warming, which describes the increase in the Earth's surface 

average temperature due to greenhouse gas emissions, was coined in 1975 by Wallace 

Broecker (Broecker, 1975). Afterward, in the 1990s, when the climate models reached a 

reasonable accuracy and precision levels for short-term predictions, the seriousness of 

the global warming was finally acknowledged. Accordingly, climate research has 

experienced unprecedented growth over the past years, becoming a hot topic for scientists 

in a wide variety of disciplines, covering the causes and the consequences for the years 

to come.  
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Since then, much effort has been put into understanding the impact that +0.5 ºC 

(achieved in 1995) or +1.1 ºC (achieved in 2020) in annual global average temperatures 

may have on living organisms. Despite these increments may seem modest, temperatures 

keep increasing (Fig. 1.1) heavily and irreversibly impairing the complex climate 

equilibrium. This imbalance was named as climate change, which was defined as a long-

term change in the average weather patterns that have come to define Earth's local, 

regional and global climates.  

 
 

 
 

Fig. 1.1 Trends in global temperature change over the last two decades relative to 1951–
1980. Map of the annual mean temperature change (°C) during (A) 2000–2009 and (B) 2010–2019. 
The data for land surface air temperature are from GISS (Goddard Institute for Space Studies) 
analysis based on global historical climatology network v4, and the data of sea surface temperature 
are from extended reconstructed sea surface temperature v5. The number at the top right-hand 
corner of the map plot is an estimate in Celsius degrees of the global mean of the calculated area. 
Gray areas signify missing data. Ocean data are not used over land nor within 100 km of a reporting 
land station. The maps were made using the website of GISS Surface Temperature Analysis 
(https://data.giss.nasa.gov/gistemp/maps/index.html). 
 

Climate change causes and intensifies the so-called weather extremes or weather 

extreme events (Stott, 2016). These are weather phenomena at the extremes of the 

historical distribution and are rare for a particular place and/or time. Weather extremes are 

considered unequivocal signs of the unfolding climate emergency we are currently facing. 

All of them have shown to have a deep impact on living organisms and their habitat which 

is predicted to continue to worsen in the decades to come (Coumou & Robinson, 2013; 

Abatzoglou & Barbero, 2014). 

 

1.1.2 Heat waves in the context of climate change 
 

Such meteorological incidents include thunderstorms, snowstorms, ice storms, 

blizzards, flooding, hurricanes, megadroughts, and heat waves. These cause severe 

impairments to natural habitats and magnify the climate equilibrium disruption as well as 

the frequency of occurrence of other events (Stott, 2016). Therefore, weather extremes 
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seem to be deeply interconnected. In this context, heat waves affect climate change more 

negatively than other events, since they have a positive feedback effect on temperature 

and hence on global warming. Heat waves have therefore been identified as a main 

climate change indicators. 

 

The most commonly used meteorological definition for a heat wave refers to three 

or more consecutive days where the maximum temperature is over the 90th percentile for 

a particular location at a particular time (Perkins & Alexander, 2013; Breshears et al., 

2021). The frequency of very hot days (those exceeding the 99th percentile of daily 

maximum temperature) has more than tripled during the past century (Scherrer et al., 

2016). In addition to the predictions of the increasing mean global temperatures (EEA 

European Environmental Agency, 2015), global climate models project an increase in the 

frequency, intensity and duration of heat waves in the future (Perkins-Kirkpatrick & Gibson, 

2017; Guerreiro et al., 2018), as shown in Fig. 1.2. This is coupled to increases in absolute 

record temperatures (Abatzoglou & Barbero, 2014). The land area affected by heat waves 

is expected to quadruple by 2040 (Coumou & Robinson, 2013).  

 

 
Fig. 1.2 Median regression coefficients estimated from the CMIP5 (Coupled Model 

Intercomparison Project Phase 5) model ensemble between global warming (ºC) and seasonal heat 
wave days, number of heat wave events, event duration, and peak heatwave intensity. Adapted 
from (Perkins-Kirkpatrick & Gibson, 2017)  

 

 

Figure1
From: Changes in regionalheatwave characteristics as a function of increasing global temperature

Median regressioncoefficients estimated fromthe CMIP5 modelensemble between globalwarming(°C) and seasonal (a) heatwave days; (b)
numberof events; (c) event duration;and (d) peak heatwave intensity.Created usingNCAR CommandLanguage (version 6.4.0) [Software].
(2017). http://dx.doi.org/10.5605/D6WD3XH5.
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1.2 Effects of heat waves on plant species 
 

Despite heat waves have a short duration relative to plants’ life cycle, their impact 

is devastating on plantations and wild populations growth and even survival. Heat stress 

is considered one of the most detrimental stresses. This stress is challenging to control in 

the field, causing billions of euros in annual losses in crop and forestry industries, as well 

as incalculable damage to ecosystems.  

 

However, plants show a differential sensitivity to high temperature depending on 

the severity, duration, and developmental timing of the stress. Heat stress effects usually 

include photosynthetic impairment, protein unfolding, loss of cell wall and membrane 

integrity, and oxidative damage by the accumulation of toxic metabolites, such as reactive 

oxygen species (ROS). 

 

1.2.1 Heat stress sensing and signalling 
 

Due to their sessile nature, plants rely on a continuous monitoring and sensing of 

their environment that allows them to adjust accordingly and cope with stress. Thus, for all 

environmental responses, sensing is the primary step during which a sensor directly 

decodes a stimulus into cellular signaling by altering its own structure and/or activity or its 

interaction with other molecular components. This then prompts downstream responses 

that allow acclimatization and therefore survival. 

 

Unlike other organisms as bacteria, there is not a unique thermosensor identified 

for plants as a master regulator and initiator of the response (Verslues et al., 2022). 

Instead, a wide set of thermosensors have been identified covering chromatin structure 

(H2A variants) (Kumar & Wigge, 2010), cell wall and cell membrane (Ca2+ signals and fatty 

acids), ROS (Muench et al., 2016), phytochromes (PHYTOCHROME INTERACTING 

FACTOR 4, PIF4) (Delker et al., 2022) and GENOMES UNCOUPLED protein family 

(GUN) (Mochizuki et al., 2001), as well as conformational changes in RNA and alternative 

splicing in proteins (Chung et al., 2020). The multiple sensing and signaling cascades that 

plants have evolved, most of them redundant or shared among different biotic and abiotic 

stresses, are a clear sign of the relevance and complexity of this primary stage. 
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Chromatin conformational changes 
 

Chromatin structure and dynamics regulate gene expression by controlling the 

accessibility of genomic DNA sequence by the general transcriptional machinery. 

Nucleosomes are the basic unit of chromatin, consisting of histone octamers (H2A, H2B, 

H3, and H4 – two molecules of each). In addition, a linker histone H1, seals the entry and 

exit of the nucleosomal DNA resulting in a more compact structure (Hergeth & Schneider, 

2015). Apart from H4, all histone protein families (H2A, H2B, and H3) are characterized 

by the presence of histone variants (Bönisch & Hake, 2012). Among these, the histone 

variants H2A.Z and H2A.X are involved in several biological processes, such as DNA 

repair, transcriptional control and regulation of centromeric heterochromatic (Giaimo et al., 

2019). It has been proposed that the chromatin state also influences the expression of 

temperature-induced genes; and H2A.Z-containing nucleosomes, instead of the canonical 

H2A, is involved in temperature sensing in Arabidopsis (Kumar & Wigge, 2010). 

 

Membrane and redox changes to heat stress 
 

Heat stress causes an increased fluidity of the membrane, which leads to activation 

of lipid-based signaling cascades and to an increased Ca2+ influx and cytoskeletal 

reorganization. Signaling interaction between these routes leads to the production of 

osmolytes and antioxidants in response to heat stress in plants (Bita & Gerats, 2013). Ca2+ 

and ROS are involved in a signaling pathway that connects heat stress sensors and 

transcriptional regulators. Ca2+ enters the cytosol in response to plasma membrane 

fluidization, activating RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) and 

triggering ROS production (Saidi et al., 2009). The increased Ca2+ cellular levels causes 

the stimulation of the calmodulin-dependent glutamate decarboxylase activity and γ-4-

aminobutyric acid (GABA) synthesis (Kinnersley & Turano, 2000). Furthermore, studies 

revealed Ca2+ and ROS are the initial, indispensable factors that evoke heat stress 

response (Liu et al., 2005; Volkov et al., 2006), as schematized in Fig. 1.3. 

 

Intracellular communication and signaling 
 

After one or several thermosensors detect the stimulus, the alarm signal must be 

triggered in the cytoplasm and among the cellular organelles for developing the posterior 

response. In view of the presence of genes encoding organellar proteins in different 

cellular compartments of the plant cell, intracellular communication is required for the 



CHAPTER I. General Introduction 
 

 

 

8 

regulation and coordination of the physiological processes that will lead to acclimatization. 

Anterograde signals originating from the nucleus and retrograde signals emerging from 

the chloroplast orchestrate this intracellular coordination (Woodson & Chory, 2008).  

 

On top of that, recent studies highlight the chloroplast as a decision-making 

organelle raising further attention to understanding the role of retrograde communication 

over the recent years (Zhao et al., 2020). By definition, retrograde signaling is a 

communication pathway whereby the transcriptional activities in the nucleus are regulated 

by signals derived from plastids and mitochondria (Woodson & Chory, 2008). The main 

functions of retrograde signaling are the developmental control of organelle biogenesis 

and the operational control to adjust and acclimate to environmental cues (Pogson et al., 

2008). 

 

Retrograde signaling 
 

One of the most well-studied examples of coordination between the nucleus and 

the chloroplast is the regulation of Photosynthesis Associated Nuclear Genes (PhANGs). 

Given that different subunits of the complexes required for photosynthesis are encoded in 

separate compartments, gene expression in chloroplast and nuclear genomes require the 

existence of sophisticated regulatory mechanisms that ensure adequate synthesis of 

proteins functioning in photosynthetic complexes. Thus, the tightly coordinated gene 

expression in both nucleus and chloroplast is required for the correct stoichiometric subunit 

composition of these complexes (Schlicke et al., 2014; Tadini et al., 2020).  

 

From a historic perspective, the basis for postulating a plastid signal was firstly 

reported with the characterization of two barley chloroplast ribosome-deficient mutants, 

whose defects in plastid functions resulted in the downregulation of nuclear-encoded 

plastid proteins and albino phenotypes (Bradbeer et al., 1979). Since this revolutionary 

discovery, studies have been focusing on the function of retrograde signaling in plastid 

development by coordinating chlorophyll biosynthesis with the expression of nuclear 

genes that encode plastid-localized chlorophyll-binding proteins in different plant species 

using inhibitors of plastid protein synthesis (Oelmüller & Mohr, 1986; Susek & Chory, 1992; 

Susek et al., 1993).  

 

A thoroughly described gene family related to plastid-nucleus communication was 

then characterized and named GUN. The gun mutants in which the communication 
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between the chloroplast and the nucleus is disrupted were very helpful in deciphering 

retrograde signaling cascades (Woodson & Chory, 2008; Barajas-López et al., 2013). The 

mutant gun1 was able to express genes related to photosynthesis despite showing 

defective chloroplast physiology or inhibited biogenesis. According to restrictions in 

specific steps in chlorophyll biosynthesis, identification of the gun2, gun3, gun4, and gun5 

mutants provided evidence that the accumulation of the chlorophyll intermediate Mg-

protoporphyrin IX (Mg-Proto IX) is involved in the initiation of retrograde signaling 

(Koussevitzky et al., 2007). 

 

 

 
Figure 1.3. Membrane Ca2+ and ROS signaling in response to heat stress. Schematic 

representation of the major generation sites of ROS and transient calcium increase from different 
intracellular sources. The chloroplast is a major producer of ROS under heat stress contributing to 
sensing and signaling processes and contains a large array of ROS-scavenging mechanisms. 
Hydrogen peroxide (H2O2) and Ca2+ serve as messengers involved in heat-responsive activation of 
genes, such as heat shock transcription factors (HSFs), heat shock proteins (HSPs), and ascorbate 
peroxidase (APX). Under heat stress, several redox enzymes and metabolites, such as superoxide 
dismutase (SOD) and the ascorbate–glutathione (ASC–GSH) cycle are involved in the maintenance 
of ROS homeostasis. Heat stress is also sensed via an increased membrane fluidity and/or via a 
consequent increase in levels of Ca2+ controlled by a Ca2+ permeable channel (CNGC). Ca2+ influx 
activates downstream responses leading to the increase of ROS. Additionally, HS induces 
disturbance on the photosynthetic machinery and defects in plastid gene expression, again leading 
to generation of ROS and accumulation of tetrapyrroles such as Mg-ProtoIX and heme disrupting 
chlorophyll biosynthesis. The resulting ROS and disturbance of redox homeostasis in chloroplasts 
serve as retrograde signals to activate downstream signal cascades in the nucleus. Ca2+, 
sequestered from chloroplasts under heat stress, via calmodulin activates calmodulin-binding 
proteins pathway. The stressed chloroplasts may sequester Mg-ProtoIX, that binds to HSP90, 
which can form a complex with a peptidyl prolyl cis/trans isomerase. The resulting complex 
mobilizes into the nucleus with the help of the heat stress transcription factor HSFA2, which allow 
the transcription of target genes such as HSPs required for establishing cellular heat tolerance. 
Adapted from (Sun & Guo, 2016) 
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The role of the chloroplast as a heat stress sensor 
 

Plants have evolved complex signaling networks to sense and respond to 

environmental cues. In particular, chloroplasts act as specific sensors of intra- and 

extracellular stimuli and integrate a multitude of intracellular signals and pathways to 

sustain homeostasis at the cellular and organism level. In respect to chloroplast-nuclear 

signaling in response to environmental stimuli, intensive studies have been focusing on 

the initiation of signaling cascades in the chloroplast and transcriptional changes in the 

nucleus. In the past few years, a number of retrograde signaling pathways were identified 

and/or proposed as stress-specific organelles-to-nucleus retrograde signaling cascades. 

 

Most of operational retrograde signaling pathways are thought to be triggered by 

ROS and photosynthesis redox imbalance during stress conditions and play an important 

role in the acclimation of plants (Pogson et al., 2008; Galvez-Valdivieso & Mullineaux, 

2010; Suzuki et al., 2012). On the other hand, the redox-status of the chloroplasts, which 

correlates with the ROS accumulation caused by abiotic stresses, may be transmitted by 

monitoring the state of the plastoquinone, ascorbate, and glutathione pools (Suzuki et al., 

2012). 

 

Among a variety of ROS-dependent retrograde signaling pathways, most of the 

studies focused on the singlet oxygen pathway, which is independent of Magnesium 

Protoporphyrin IX (Mg-ProtoIX) and GUN1-mediated signaling (Suzuki et al., 2012). Unlike 

H2O2, 1O2 is a highly reactive radical that is involved in signaling pathway leading to cell 

death or to acclimation (Wagner et al., 2004). 

 

The singlet oxygen signaling pathway has been extensively studied in Arabidopsis 

using the conditional fluorescent in blue light (flu) mutants, which accumulate 

protochlorophyllide, a potent photosensitizer that generates large amounts of 1O2 

(Meskauskiene et al., 2001; Wagner et al., 2004; Kim & Apel, 2013). Importantly, the 

accumulated 1O2 in the flu mutant chloroplasts correlated with the induction of stress 

responses, including dramatic alterations in nuclear gene expression and higher 

expression of genes related to the biosynthesis of stress. Moreover, these 1O2-induced 

changes were regulated by the chloroplast proteins EXECUTER1 (EX1) and EXECUTER 

2 (EX2) (Wagner et al., 2004; Kim & Apel, 2013; Zhang et al., 2014) 
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1.2.2 Heat stress response  
 

Once the signalling cascades have been triggered, plant cells are required to 

respond in order to mitigate the exerted damage and reach an acclimated homeostatic 

state. Plants respond to heat stress by altering their transcriptome, and subsequently their 

proteome and metabolome (Escandón et al., 2022). These changes to cope with the stress 

are orchestrated from the nucleus, which is the main regulatory hub of the cell. In plants, 

approximately up the 25% of transcriptome is upregulated two-fold or more under heat 

stress. Most of these transcripts code for proteins involved in primary and secondary 

metabolisms, translation, regulation of gene expression and protein folding.  

 

Heat shock proteins in the heat stress response 
 

The most widely studied response to high temperature is the accumulation of heat 

shock proteins (HSPs). HSPs are molecular chaperones involved in the stabilization of 

proteins denatured by heat stress and the maintenance of accuracy in early protein folding 

(Baniwal et al., 2004). HSPs are widely conserved in all living organisms. All HSPs are 

characterized by the presence of a carboxylic terminal called heat-shock domain (Vierling, 

1991; Helm et al., 1993) and are located ubiquitously within the cell. These are usually 

classified in subfamilies according to their molecular weight or size, which ranges from 10 

to more than 100KDa, in HSP100, HSP70/60, HSP40/30 and small HSP or HSP20.  

  

Under heat stress, HSPs are induced by misfolded proteins and participate in 

protecting thermolabile proteins or complexes (Vierling, 1991; Helm et al., 1993). 

Furthermore, the HSP20 family acts as an essential factor in the early development of 

seedlings under heat stress and promotes basal thermotolerance (Clarke et al., 2004). In 

addition to their role as chaperones, some HSP100 and HSP20 protect plant cells from 

heat-induced programmed cell death (Rikhvanov et al., 2007). 

 

At the molecular level, Heat Shock Factors (HSFs) are the transcriptional activators 

of the HSPs genes (Banti et al., 2010). The number of HSFs in plants is far more numerous 

than in mammalian cells, and its number depend on the plant species. In Arabidopsis, 21 

HSF members have been identified (Jacob et al., 2017). Typically, plant HSF proteins 

share a well-conserved modular structure. Its N-terminal DNA binding domain of this 

transcription factor family is characterized by a central helix-turn-helix motif that specifically 

binds to the heat stress elements (HSEs) in the target promoters, and subsequently 
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activates the transcription of stress-inducible genes (Scharf et al., 2012). In general terms, 

overexpression of plant HSFs can enhance plant thermotolerance, but the gene knockouts 

of individual HSFs tested so far have had little effect on plant survival to high temperature. 

This implies that the HSF network may be redundant, perhaps reflecting the importance 

of this high temperature response.  

 

1.2.3 Consequences after the heat stress. Thermomemory 
 

Owing to their sessile nature and the current context of climate change, plants 

frequently face a wide range of recurring stress events during their life cycle. To counter 

these episodes, plants have evolved sophisticated molecular information storage 

mechanisms which allow them to adapt to such adverse conditions (Bäurle, 2016; 

Oberkofler et al., 2021).  

 

Stief et al., (2014) described molecular memory as a phenomenon in which a 

stimulus of limited duration is perceived, stored and later retrieved, as evidenced by a 

modified response. Several studies have elucidated a pivotal role of epigenetics in the 

memory acquisition processes. The epigenetic regulation of gene expression 

encompasses three main components: DNA methylation, histone modifications, and the 

expression of small RNAs as microRNAs (miRNAs). Histone modifications include 

methylation, acetylation, phosphorylation and ubiquitination (Lämke et al., 2016). Among 

these modifications, histone H3 lysine 4 trimethylation (H3K4me3) is typically associated 

with active gene transcription. It was reported that sustained H3K4 methylation marks on 

heat-responsive loci, such as HSP 18.2, HSP21, and HSP22.0, in Arabidopsis serves as 

a memory signature and are associated with hyper-induction of these genes upon 

repeated HS treatments (Lämke et al., 2016). However, the inherent short life-cycle of 

Arabidopsis prevents to study long-term memory (over months or even years). 

 

On the other hand, but also related to epigenetics, several miRNA pathways as 

well as some of their components (e.g. ARGONAUTE1 (AGO1), DICER-LIKE1 (DCL1) 

and SUO) were recently shown to involve in HS memory in Arabidopsis (Guan et al., 2013; 

Stief et al., 2014). It was hypothesized that the miR156 may integrate developmental 

pathways with stress conditions (Stief et al., 2014); while miR398 negatively regulates 

several ROS-scavenging enzymes as COPPER/ZINC SUPEROXIDE DISMUTASE 

(CSD1, CSD2) and COPPER CHAPERONE FOR SUPEROXIDE DISMUTASE (CCS) 

genes (Guan et al., 2013). Also, Fang et al., (2019) recently reported that the biogenesis 
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of miRNAs is positively regulated by tocopherols. Tocopherols are required for 

accumulation of 3′-phosphoadenosine-5′-phosphate to inhibit exoribonuclease (XRN)-

mediated primary miRNA degradation (Fang et al., 2019). These results indicate that a 

chloroplast to nucleus retrograde signaling favors miRNA biogenesis under heat stress 

and subsequently improves high temperature tolerance.  

 

1.2.4 Cross-tolerance 
 

Cross-tolerance, also referred to as cross-resistance or cross-protection (Pastori 

& Foyer, 2002), refers to the enhanced ability of a plant to tolerate multiple stresses. Plants 

growing in wild conditions are constantly exposed, either sequentially or simultaneously, 

to many abiotic and/or biotic stress factors. As a result, plants have evolved shared 

strategies to respond to ever-changing environmental conditions, enabling them to monitor 

their surroundings and trigger their metabolic systems to maintain homeostasis. 

 

Currently, there are three main approaches to characterize cross-tolerance 

processes; these include the identification of the transcriptional overlap between stress 

responses which is based on the study of the shared responses to different stressors; the 

study of the priming of plant stress responses following exposure to a different type of 

stress or compound (induced cross-tolerance) which relies on exposing plants to a training 

stressor and then compare the performance under a different or testing stressor; and the 

description of the genetic overlap between resistant populations to different stresses 

(inherent cross-tolerance), based on identifying a shared genetic signatures as single 

nucleotide polymorphisms (SNPs) or quantitative trait locus (QTLs) that some populations 

exhibit coupled to a basal tolerance to several stresses. 

 

Recently, priming and induced cross-stress tolerance have attracted considerable 

interest within the scientific community as a potential means of stress management and 

for the production of stress-resistant plants. 

 

1.2.5 Adaptation and transgenerational memory 
 

The modifications occurring during the memory acquisition process have the 

potential to be transmitted to the progeny of stressed plant through a phenomenon called 

transgenerational stress memory (Bilichak & Kovalchuk, 2016). This is thought to create 

(epi)genetic variation for natural selection to help adaptation to HS at species-wide level 
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(Stief et al., 2014). This represents a key mechanism by which plants can adapt to harsh 

environments. The concept of a possible heritability of attained traits caused by 

environmental conditions dates back to Lamarck and has often been referred to as ‘soft 

inheritance’ (Jablonka & Lamb, 2008; Jablonka, 2017). Numerous studies have made an 

attempt to analyze the molecular mechanisms of the acquisition of transgenerational 

inheritance in plants as previously reviewed (Dickins & Rahman, 2012). Overall, it has 

been accepted that when phenotypic characters are transferred to the offspring without 

the modification of a gene sequence, thus the underlying mechanism is epigenetic. The 

response to stress involves immediate and delayed responses directed towards the 

survival of an individual plant. At the somatic level, plants often acquire a certain memory 

of stress exposures that prepares them to withstand further encounters with similar and 

dissimilar stresses more efficiently. Despite the great interest and potential that this 

phenomenon holds, there is still scarce information about how this memory can be 

transmitted from the parents to their progeny.  
  



                                                                                                                                    CHAPTER I 
  

 

  

15 

1.3 Omics sciences to study complex process of plant 

physiology 
 

Systems Biology has emerged in the last years as a comprehensive set of tools 

which provides high-throughput biological information by integrating different cell 

organization levels, classically -omics datasets, providing the relationships and 

correlations among them. Besides, this kind of approaches also enable the possibility of 

tracking different cell compartments, toward modelling how and why cells are 

synchronized under different conditions. Contrary to targeted approaches, the untargeted 

analyses represent an unbiased approach that far from introducing noise or scatter the 

focus of the research can provide new candidates, pathways or counterintuitive 

mechanisms otherwise undetectable. 

  

To perform this characterization several analytical methods mainly, next 

generation sequencing, mass spectrometry, and statistical and modelling tools must be 

used. Omics approaches are based on the overlap of different information layers and 

allows us to discover and unravel the complex mechanisms and their interplay in plant 

systems, as well as track the molecular variability among individuals and link it to 

phenotype differences (Fukushima et al., 2014; Großkinsky et al., 2018). The integration 

of these omics layers is nowadays one of the most powerful strategies to deeper 

understand and analyze a wide variety of biological processes from a holistic point of view 

(Mochida & Shinozaki, 2011). 

 

1.3.1 Subcellular proteomics 
 

Among omics techniques, proteomics has emerged as a powerful strategy to 

unravel the complex mechanisms that drive cell responses to a determined stress, 

allowing us to evaluate the result of the previous regulation layers such as transcriptional 

regulation. Proteomics relies on three basic technological cornerstones that include a 

method to extract complex protein or peptide mixtures, mass spectrometry (MS) to acquire 

the data necessary to identify individual proteins, and bioinformatics to analyze and 

assemble the MS data. 

 

The complexity of the plant cell proteome, exhibiting thousands of proteins which 

abundance vary in several orders of magnitude, makes impossible to cover most of the 

plant proteins using standard shotgun-based approaches. Despite for a general proteome 
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description this complexity is not a big issue (current protocols and instrumentation allow 

the identification of several thousand proteins per injection), low or medium abundant 

proteins cannot be detected most of times, being necessary to fraction or perform targeted 

analyses in order to detect and quantify them. Among fractioning choices, cell fractioning 

in its different organelles is a good strategy not only for gaining a deeper coverage of the 

proteome, but also the basis for understanding organelle function, protein dynamics and 

trafficking within the cell, as nuclear and chloroplast communication. 

 

Despite its many virtues, one of the limitations for proteomics studies in non-model 

species is the requirement of a reference protein database, since protein identification is 

done by comparing an in vitro digestion of a given proteome database to the sequenced 

peptides from the spectra. Thus, the number of identified proteins heavily relies on the 

previous available knowledge and represent a challenge difficult to tackle in non-model 

organisms which lack a reference genome. Fortunately, next generation sequencing is 

becoming more affordable and for challenging species that have megagenomes, de novo 

transcriptomics studies can also yield a reliable database, enhancing proteome 

characterization including protein identification and annotation. 

 

1.3.2 Data analysis and integration 
 

In omics science, each advance of high-throughput techniques is usually geared 

towards obtaining a greater amount of molecular data. The analysis of these data was 

often considered the bottleneck of omics studies (Bino et al., 2004; Ritchie et al., 2015), to 

overcome this issue, novel bioinformatic tools are constantly being developed or updated 

to fulfil ongoing demand, and therefore bioinformatics is an exponentially growing field 

which is required to develop coupled to omics techniques (Manzoni et al., 2016; 

Rajasundaram & Selbig, 2016). However, despite the recent development of several tools, 

most of them are focused on sequence analysis and annotation pipelines, hindering a 

proper biostatistics analysis of omics datasets. Thus, there is still a lack of user friendly 

software to perform state-of-art analysis.  

  

For proteomics datasets, data quantitative analysis usually starts with a preprocess 

step that allows to reduce noisy variables or leverage variability between samples due not 

to biological causes but to the fragile nature of mass spectrometry. Once this step is 

performed the analysis workflow usually includes sample clustering, to infer the effect of 

the applied treatment to the subject of study and variable clustering by quantification to 
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detect co-expression and clusters of proteins that behave similarly, or by the biological 

processes related to that proteins and functional enrichment analysis.  

 

Integrative analyses are typically depicted as interaction networks which allow the  

establishment relationships based on clustering algorithms to find out co-expression 

patterns among the different studied omics levels (Moreno-Risueno et al., 2010) or protein-

protein interaction networks in the case of proteomics datasets. The latter can be based 

on correlations among the proteins, can include the already known biological interactions 

using databases, or both to enhance their functionality by the combination of omics derived 

mathematical correlations and the current interactome knowledge.  
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1.4 Approach and Objectives 
 

1.4.1 Pinus radiata as a model species for memory acquisition process 
 

Forests provide the world’s population with many far-reaching benefits. Among 

them, wood supplies and socio-economic goods, the delivery of vital long-term 

environmental benefits such as clean air and water, stable soils, and biodiversity (FAO, 

2015), and more relevantly, the promise of mid-term mitigation of increasing atmospheric 

CO2 concentrations which has been recently considered as a key strategy in the COP26 

(United Nations climate change conference, hosted in 2021) with the launch of the Forests 

and Climate Leaders’ Partnership financially supported with 19.2 billion US$ to fight 

deforestation and climate change.  

 

Hence, current models of vegetation dynamics predict profound landscape 

alterations affecting not only natural forests but also plantations due to an increased 

average temperature and extreme drought and/or heat periods. Besides reducing growth 

during these periods, stressful conditions will also have an effect over the following years. 

These changes in natural and managed forest landscapes will have a major impact over 

environment (conservation, CO2 capture) and productivity, endangering the sustainability 

of forest use, in a period in which the required production and consumption of wood 

products and wood energy are expected to increase largely, following historical trends 

(Aspinwall et al., 2019).  

 

Among forests tress, Pinus radiata is currently the most widely planted pine 

species for forestry due to its fast growth, acceptable wood quality, and economically 

profitable production (Mead, 2013). Therefore, in order to reach future sustainability of 

forest ecosystems and supply the demand of wood products there is an essential need to 

further characterize the signaling, response and acclimatization of Pinus radiata to heat 

stress as well as explore molecular memory mechanisms, especially being high 

temperature one of the most detrimental stresses that limits the growth of temperate forest 

trees (Wahid et al., 2007) being lethal sometimes and already producing forest die-back 

and decreasing distribution areas (Sire et al., 2022). 
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1.4.2 Experimental system 
 

The rapid climate change framework underlines the urgency of generating 

applicable knowledge that is global in scope, portraying vulnerability of organisms and 

ecosystems to heat wave events. To gain an integrative understanding of the magnitude, 

scope and vulnerability of key plants globally to heat waves, it has been suggested that a 

battery of trials should be conducted using controlled (e.g. growth chamber), standardized 

single heat wave events (Breshears et al., 2021). 

  

In this thesis it has been settled a common heat wave treatment for all the 

performed experiments, consisting of at least 5 days with a maximum temperature of 45 

ºC maintained over 6 hours a day, as a heat treatment severe enough to enable the 

characterization of the heat stress response. 

 

It is of vital importance to establish an experimental system that takes into account 

both future climatic conditions (such as heat waves) and the most relevant players in the 

triggering of the response and in the establishment of the possible epigenetic memory 

consequence of one or several exposures to thermal stress in a long life cycle species as 

radiata pine.  

  

To further study these mechanisms, chloroplast and nuclear untargeted 

proteomics are thought to be useful approaches since the central importance of 

chloroplasts as heat signal transduction and the relevance of nuclei in the response 

orchestration and the memory acquisition processes. Additionally, due to the multiple 

components and types of molecular memory (as described above), it is of great importance 

focus the analysis in a Pinus radiata population without a pre-existing priming component 

to heat or other stresses, that may introduce noise and produce unreproducible results in 

non-primed progenies  

 

1.4.3 Aim and partial objectives 
 

In conclusion, the main objective of this thesis is to identify the most relevant 
high-temperature response signaling and memory acquisition mechanisms in Pinus 
radiata employing an integrative subcellular proteomics approach and using a 
realistic scenario of high temperature increase in order to provide a set of reliable 
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and useful biomarkers for early selection of thermotolerant or primed trees and 
seeds. To accomplish this main goal, the following set of partial objectives was defined: 

 

1 Development of an universal protocol for (prote)-omics data analysis and integration 

(Chapter 2). 

 

2 Characterization of the chloroplast proteome in two wild isogenic populations grown in 
different environments in optimal conditions and under a controlled heat wave. 

Exploration of transgenerational memory through chloroplast proteomics. (Chapter 3). 

 

3 Characterization of the nuclear proteome in response to heat stress, before, during, 

and after the heat stress exposure in non-primmed P. radiata population. (Chapter 4) 

 

4 Integration and evaluation of the synchronization of nuclear and chloroplast proteomes 

in response to heat stress prior and during a controlled heat wave. (Chapter 5) 

 

5 Identification of a panel of thermotolerance and thermomemory biomarkers in seeds 

and seedlings in response to high temperature response in Pinus radiata (Chapter 6).  
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CHAPTER II. pRocessomics: a new Omics data 
analysis R package 

 
2.1 Abstract 

 

Data analyses and their interpretation usually represent the ultimate bottleneck in 

omics science, not due to the lack of tools aimed to perform these tasks but the 

incompatibilities among them and their complexity. pRocessomics is an open source R 

package designed for facilitating a complete state-of-the-art Omics data analysis in a 

comprehensive way. This package enables a wide set of analytics, including single and 

multi-level omics data analysis and integration, and produces high quality images and 

tables for publication. In addition to native functions for performing data analysis, building 

plots and exporting the results, this package contains wizard functions to help non-expert 

users. This feature makes pRocessomics an user-friendly tool by explaining the main 

statistical aspects required to select the best parameters or type of tests for each dataset 

as a step-by-step guide. pRocessomics benefits of having an all-in-one package for 

increasing the reproducibility of the statistical protocols and exploratory analyses. This 

package has been successfully applied to answer a broad range of biological questions 

and employed in the rest of the chapters of this thesis.  
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2.2 Introduction 
 

Omics datasets comprise quantitative information of thousands of features, leading 

to massive datasets especially when they are combined for their integration. This fact, also 

known as dimensionality curse, frequently represents a challenge for non-expert data 

analysts; since contrary to omics data, classic statistics tests and analyses are designed 

for data with a larger number of observations than features. However, the high 

dimensionality of the data is the main reason that enables exhaustive and unbiased 

analysis, that are able to detect previously ignored candidates and raise unbiased 

hypotheses. 

 

Then, in order to handle and interpret these complex datasets, it is mandatory to 

develop a strong statistical background and a very specific set of skills related to analytical 

and statistical competences. This heavily increases analyses time and, in many cases, 

represents a burden for data interpretation. On top of that, to adequately explore omics 

data several methodologies must be applied in order to preprocess, analyze, integrate and 

visualize data (Fukushima et al., 2009; Subramanian et al., 2020). All of them are 

necessary to identify the most important variables in a biological system, their 

accumulation patterns, whether those variables are clustered or which features describe 

the sample clustering and ultimately, to harness the data to the maximum and reach 

reliable conclusions.  

 

Addressing these queries, which are common for most of the research areas, is 

mandatory to raise robust data-driven hypothesis. Currently, answering them requires 

advanced data science knowledge, the use of several tools, and in most cases the 

development of new code. These problems come with the associated time investment, all 

far beyond of what most bench scientists are willing to commit. Besides, as omics data 

usually share most of the characteristics across different biological systems and 

experiments, there is a need to adopt an analytical workflow that enables the 

reproducibility of these analyses. 

 

The integration of multiple omics datasets represents a statistical challenge due to 

the limited number of individuals, the high number of variables and the heterogeneity of 

the datasets to integrate (Tini et al., 2019; Subramanian et al., 2020). Despite several tools 

already exist to meet these challenges, as Perseus (Tyanova et al., 2016) , MetaboAnalyst 

(Chong et al., 2018), PaintOmics (Hernández-de-Diego et al., 2018), instantClue (Nolte et 
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al., 2018), and BioMex (Taverna et al., 2020), demonstrating the need for these software; 

most of them lack some key aspects such as a thoroughly preprocess step or a complete 

workflow focused either only in one aspect of the analysis or in the omics integration stage.  

 

While many available tools lack advanced functionalities for integrating different 

datasets such as Multiple Co-Inertia Analysis (MCIA), which outperformed other 

integration tools (Meng et al., 2014; Tini et al., 2019) or Block Discriminant Analysis (BDA) 

(Singh et al., 2019),  which allow to build multi-and intra-omics level interaction networks 

and to identify the most relevant features of each omics layer; those including this state-

of-art analyses, are usually difficult to install or run, lack an implementation for bifactorial 

experimental designs, or require the tuning of too much parameters. Additionally, none of 

them provide built-in tools to guide the users step by step during analysis.  

    

To fill this gap, pRocessomics is presented in this Chapter as a package for 

performing data preprocess, univariate and multivariate integrative omics analyses. Within 

pRocessomics a non-specialist in data science will find wizards for performing complete 

and exhaustive analyses in an easy way. On the other hand, specialist will find a wide set 

of functions that can be called for performing exploratory analyses over different omics 

layers with only a single line of code. In both cases, these analyses will yield ready-to-

publish tables and figures to fully describe the data by following a straightforward but 

versatile workflow.  
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2.3 Implementation and design 
 

pRocessomics has been designed in a modular manner to offer the greatest 

possible versability, so the users can decide which modules to use with their data (Fig 2.1). 

This modular design also applies within each analysis or visualization. 

 

Each analysis module consist of at least two functions, one for the qualitative or 

quantitative analysis itself and the another for the plotting step, these functions are denoted 

in all cases with the suffix “_analysis” and “_plot” respectively (Table 2.1).  

 

Additionally, all analyses devoted functions share among them, arguments related 

to the structure of the data; similarly, some plotting functions may share the same type of 

representation, accordingly the parameters for these functions are always identical, 

creating a proprietary grammar that enhances the usability of the whole package and 

decrease the learning time. In this direction, pRocessomics also allows for the definition 

of a color theme which will be used for all the suitable representations.  
 
Table 2.1 List of pRocessomics functions 
 

 

  Analysis Visualization Wizard 

Import 
    importannotation 

    importfromexcel 

Preprocess preprocess_omic_list   preprocess_wizard 

Normalization transformdata   transformation_wizard 

Filtering featureselection   featureselection_wizard 

Qualitative Analysis Venn_analysis Venn_plot Venn_diagram_wizard 

Biological clustering mapman_group mapman_plot mapman_wizard 

Univariate Analysis univariate univariate_plot univariate_wizard 

Multivariate Analysis 

pca_analysis pca_plot pca_analysis_wizard 

ica_analysis ica_plot ica_analysis_wizard 

da_analysis da_plot da_analysis_wizard 

kmeans_analysis kmeans_wizard kmeans_plot 

Integrative Analysis 
spls_analysis spls_plot spls_analysis_wizard 

mcia_analysis mcia_plot mcia_analysis_wizard 

bda_analysis bda_plot bda_analysis_wizard 

Theme set_custom_palettes   select_palette 

Export export_table   
 export_plot   
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In case the user is unsure about the meaning of the parameters or how a function 

works step by step, pRocessomics includes wizard functions as console interactive 

dialogues. These explain each step and argument of the function in use and ask for the 

desired values to call the main function. This results in an identical functionalities and 

outcome independently of the use of wizards or classic functions. Thus, non-expert users 

will be able to get the same results regardless of their previous R or statistical knowledge. 

The implementation of this dialogue-based approach improves the usability of the package 

and represents a unique feature in the currently available tools for omics analysis. 

 

2.3.1 Module description 
 

Data import 
 

Dataset import in R can lead to issues, especially when collating text labels (as 

sample short descriptions or annotations) and numeric data in the same object. These 

mix-ups are difficult to spot and may lead to incorrect results or errors when running the 

functions in the next steps. Moreover, non-expert users may not be familiar with data 

structures in R programming. Hence, data import for both quantitative and variable 

description (annotations) is available in pRocessomics with the wizards 

“importfromexcel()” and “importannotation()” respectively, which store the information in a 

proper format for further steps. Data import module is not mandatory, but strongly 

recommended to use to ensure a proper run of posterior analyses.  

 

Data preprocess 
 

Before starting the analyses, it is essential to manage initial data heterogeneity 

(Fukushima et al., 2009). Raw data in this kind of analysis often comes from three main 

platforms: microarray, Next Generation Sequencing (NGS) and Mass Spectrometry (MS). 

Thus, datasets must be preprocessed according to their origin (Kim & Tagkopoulos, 2018).  

 

The most common pretreatments are missing values imputation, filtration, 

normalization and transformation (van den Berg et al., 2006; Fukushima et al., 2009; 

Gardinassi et al., 2017). To ease data imputation there are several algorithms already 

available in R as K-nearest neighbor (KNN) imputation (Hastie et al., 2017) and Random 

Forest (RF), a machine learning based algorithm to assess ‘not available’ values. After 

missing values imputation (Liaw and Wiener, 2002), the next proposed step is to remove 
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those variables that are nearly empty, employing a consistency criterion by the application 

of a user-defined threshold. Once missing values have been imputed and empty variables 

filtered, the last step is to balance sample total quantity, i.e. abundance balancing. This 

operation can be expressed as a fraction or times one, considering all the samples within 

the dataset contained the same amount (sample-centric approach) or considering that all 

the samples for each treatment or biological condition contained an equivalent amount. 

  

Data transformation and feature selection  
 

The functions of this module are intended to provide a quick way for normalizing 

data in order to meet the requirements for the use of a parametric statistic test. This 

normalization is often achieved by transforming the data with logarithm, square root, sin, 

among other functions. In addition, in this module it is possible to select features (variables) 

based on their variability in order to drop from the posterior analyses those variables that 

show the greatest erraticism. To this end inter-quartile range (IQR), coefficient of variation 

(CV), and p or q-value are accessible. 

 

 
Fig 2.1 pRocessomics consist of several modules: (0) data import, (1) data preprocess, (2) 

data transformation and feature selection, (3) univariate tests including parametric and non-
parametric tests, (4) Qualitative and annotation analyses, (5) Single omics multivariate analyses. 
and (6) multiple omics integrative analyses.  

 
 

DATAIMPORT

importfromexcel( )
importannotation( )

PREPROCESS

preprocess_omic_list( )

featureselection( )

FEATURE SELECTION

TRANSFORMATION

transformdata( )

UNIVARIATE ANALYSIS

univariate( )
univariate_plot( )

ANNOTATIONANALYSIS

mapman_group( )
mapman_plot( )

MAPMAN

-OMICS INTEGRATION

bda_analysis( )
bda_plot( )

spls_analysis( )
spls_plot( )

SPLS BDAMCIA

mcia_analysis( )
mcia_plot( )

venn_analysis( )
venn_plot( )

VENN

QUALITATIVEANALYSIS

SINGLE OMICS MULTIVARIATEANALYSES

Sample clustering

pca_analysis( )
pca_plot( )

ica_analysis( )
ica_plot( )

PCA ICA

Var.Clustering

K-MEANS

kmeans( )
kmeans_plot( )

Unsupervised analyses

da_analysis( )
da_plot( )

sPLS-DA

Supervised analyses

POL object
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Univariate analysis  
 

Univariate tests aim to compare the different features, one by one, across the 

applied treatments or the different experimental conditions within the data. Student t-test 

(parametric) or Mann Whitney U test (non-parametric) for testing two conditions; ANOVA 

(Analysis of Variance) and Kruskal Wallis as well as their respective post-hoc and False 

Discovery Rate (FDR) tests are currently implemented. Besides, a parametricity check is 

also offered in the wizard dialogue corresponding to this module to guide the user to 

properly choose the univariate test to apply. 

  

Exploratory analyses: Qualitative and Biological Quantitative analyses 
 

This module has been conceived for grouping, classifying, and visualizing data 

according to MapMan (Lohse et al., 2014) or any other supplied custom annotation 

categories. Heatmaps and bar and circular plots on individual or treatment-grouped 

samples may be produced in this module. Additionally, it includes a qualitative test for 

evaluating the presence or absence of the variables across the treatments. Both 

functionalities may be performed over the unfiltered datasets, after data preprocessing and 

prior to feature selection.  

 
Multivariate analyses 
 

This module contains supervised or discriminant : sparse Partial Least Squares-

Discriminant Analysis (sPLS-DA) (Lê Cao et al., 2011) and unsupervised: Principal 

Component Analysis (PCA), Independent Component Analysis (ICA) and kmeans 

clustering analyses to cluster samples or variables as indicated in Fig. 2.1. kmeans 

clustering aims to detect patterns among the variables across the treatments and group 

them in different units (Likas et al., 2003); while sPLS-DA (Lê Cao et al., 2011), PCA, and 

ICA (Helwig, 2022) are intended to reduce dimensionality and classify the samples 

according to artificial components that are set of variables that gather the variance among 

the samples (Mevik & Wehrens, 2007). This module can be fed with preprocessed, 

transformed or filtered data and provide resulting analysis as excel tables and pdf 

vectorized plots. 
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Integrative analysis 
 

The integration module consist of a set of functions for the integration of two or 

more omics layers, where one of them is used to predict the other in the case of sPLS (Lê 

Cao et al., 2011), while MCIA (Meng et al., 2014), and BDA (Singh et al., 2019) for 

integrating more than two omics layers and reveal the relations among them, MCIA 

explores the cohesion of the different samples across the input omics layers while BDA 

can be used for biomarker identification and interaction identification. The outcome of 

these functions includes correlation networks, which can be exported in a cytoscape 

compatible format for further aesthetics editing and circus plots. 
 
Tables and figures export 
 

Finally, after each analysis is performed the resulting tables and plots can be 

exported to excel and pdf formats respectively using the functions “export_table()” and 

“export_plot()”. 

 

2.3.2 Wizards 
 

Wizard functionalities are designed to help non-expert users to carry out every step 

of the pRocessomics workflow, enabling a communication channel between the user and 

the package. By calling the wizards, without any arguments (e.g. preprocess_wizard()), a 

dialogue will prompt in the console.   

 

Wizards search within the global environment for the data stored in the proper 

format for each analysis providing the list of elements suitable for each analysis. Or in the 

case of external data import, will prompt the operative system window interface to ease 

the localization and the acquisition of the data. This family of user-friendly functions guide 

the user by a dialogue in the console. These dialogues include the numeric analysis itself, 

the visualization options available, as well as the exporting functionalities. In addition, 

pRocessomics generates a plain text document (.txt) containing a log file with all the 

dialogue. 

 

2.3.3 Code and wiki availability 
 

pRocessomics, a comprehensive wiki, and fully detailed case-studies are available 

in the GitHub public repository https://github.com/Valledor/pRocessomics).  
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2.4 Discussion 
 

Despite its broad applicability and growth over the last years, there still remain 

some entry barriers to omics sciences. Probably the most frequent, is the difficulty of 

analyzing the ever-growing generated datasets, which may represent a limiting obstacle 

for bench researchers.   

 

Despite there are some available tools, contrary to pRocessomics most of them 

are missing an adequate data pretreatment and variable filtering workflows, have a more 

limited set of “common” analyses or lack the flexibility to meet the requirements of different 

types of datasets. Additionally, none of them incorporates a step by step dialogue to guide 

the users through the different analysis stages. 

 

pRocessomics can be used for processing and integrating virtually any omics and 

phenotype datasets, including for example geoclimatic data, to link omics and environment 

or in general terms, any quantitative variables. It has been developed to facilitate scientists 

with the arduous task of processing omics datasets in a comprehensive fashion, 

particularly for user with a limited R background, through the incorporation of wizards. This 

family of functions create log files after each analysis facilitating the reproducibility, 

shareability, and reviewability of the analyses; and could be used as a didactical tool to 

introduce researchers to the field of omics data science and R language.  

 

To date, pRocessomics package has been already employed in several research 

articles in different species and through transcriptomics, proteomics, metabolomics and, 

physiological data in response to biotic and abiotic stresses (Colina et al., 2020b,a; López-

Hidalgo et al., 2021; Valledor et al., 2021; Amaral et al., 2021; García-Campa et al., 2022; 

Escandón et al., 2022) and in the following chapters of this thesis, demonstrating its 

capabilities.  
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CHAPTER III. Comparative chloroplast 
proteome profiling to decipher transgenerational 

cross-tolerance to heat stress1 
 

3.1 Abstract 
 

How different stressors impact plant health and memory when they are imposed in 

different generations in wild ecosystems is still understudied. In this chapter, it is 

addressed whether different environments are able to shape heritable memory for the next 

generation. The performance of the seedlings belonging to two wild isogenic 

subpopulations of Pinus radiata (optimal fertirrigation vs lightly stressful soil conditions) 

was tested under heat stress through physiological profiling and comparative time-series 

chloroplast proteomics in the progenies belonging to both subpopulations. The obtained 

results showed differential responses between the progenies, evidencing a cross-stress 

transgenerational memory. Seedlings belonging to previously stressed subpopulation 

retained key proteins related to Photosystem II, chloroplast-to-nucleus signaling and 

osmoprotection which helped to overcome the applied heat stress. These finds not only 

delve into transgenerational cross-stress memory in trees, but also provide new 

information on how shared molecular mechanism enable differential responses in different 

climatic contexts.  

 

 
1 Lamelas L, López-hidalgo C, Valledor L, Meijón M, Jesús M. Like mother like son: 

transgenerational cross-tolerance from drought to heat stress is driven by retained 
osmoprotective related proteins and miR160. (Under review) 

 



CHAPTER III. Chloroplast Proteomics 
 

 40 

3.2 Introduction 
 

The current context of climate change, with increasingly intense and frequent 

events, represents a massive threat for plant species (EEA European Environmental 

Agency, 2015; Lesk et al., 2016; O’Neill et al., 2017). Thus, the ecological consequences 

are expected to be out of proportion to the relatively short duration of these extreme 

weather events (Walter et al., 2013). Fortunately, the exposure to one or repeated sub-

lethal stress makes plants more tolerant to them. This phenomenon is known as stress 

memory or priming, and has been observed in various plants in response to different 

abiotic stresses (Bäurle, 2016; Crisp et al., 2016; Wibowo et al., 2016; Razi and Muneer, 

2021; Roces et al., 2022). Increasing our awareness on how plants overcome stress 

seems fundamental for understanding plant acclimation and, subsequent adaptation to 

changing and challenging environments. This knowledge has therefore outstanding 

potential for stabilizing ecosystems in times of intensifying climatic extreme events (Walter 

et al., 2013).  

 

This acquired stress memory may be heritable in nature and long-term transmitted 

leading to transgenerational tolerance in plants (Herman and Sultan, 2011; Wang et al., 

2016; Wibowo et al., 2016). Hence, plants respond to environmental conditions not only 

by plastic changes to their own development and physiology, but also by altering the 

phenotypes expressed by their offspring. This inherited developmental plasticity may 

promote niche construction through adaptation to hostile environmental conditions, 

wherein the phenotypes of organisms are plastic and can better deal with their surrounding 

environment (Moczek et al., 2015). It has been established that environmental challenges 

to a maternal plant can affect the quantity and composition of starch reserves, epigenetic 

status, microRNAs, mRNAs, proteins, hormones, and other primary and secondary 

metabolites packaged into seeds (Herman and Sultan, 2011) leading to altered seed 

provisioning (Zas et al., 2013). 

 

Evolutionary ecology studies have shown that, in some cases, these inherited 

effects can include specific growth adjustments that are functionally adaptive to the 

parental environmental conditions that induced them. These can range from contrasting 

states of controlled laboratory environments to the complex habitat variation encountered 

by natural plant populations (Herman and Sultan, 2011; Adrian-Kalchhauser et al., 2020). 

The latter introduces the idea of stress cross-tolerance, which is based on the suitability 

of one stressor as a training stress for overcoming others. This occurs probably through 
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shared stress response mechanisms, such as HEAT SHOCK PROTEINS (HSPs) 

overaccumulation, which are widely triggered by a plethora of abiotic stresses (Timperio 

et al., 2008), or more efficient signaling mechanisms involving mainly reactive oxygen 

species (ROS) (Dickinson et al., 2018).  

 

Increasing evidence underlines the relevance of the chloroplast in modulating the 

whole cellular redox metabolism (Locato et al., 2018). The chloroplast is a key component 

in signaling and stress response in plants. Besides its primary role as a light-driven energy 

factory, the chloroplast perceives signals from the surroundings and transmits these 

signals to the nucleus. This signaling mechanism regulates alternative splicing (Petrillo et 

al., 2014; Roces et al., 2022), phytochrome interactions (Dickinson et al., 2018) and, 

homeostasis under stress conditions (Chen et al., 2010; Foyer et al., 2014), allowing 

acclimation to ever-changing environmental cues. Chloroplast proteome analysis has 

been proven useful to explore abiotic stress response (Tamburino et al., 2017; Watson et 

al., 2018; García-Campa et al., 2022). 

 

As natural plant populations confront rapid environmental changes, researchers 

are focusing on immediate and transgenerational plasticity as potential sources of adaptive 

rescue (Beltrán et al., 2018). However, little is known about whether a stress exposure 

suffered by the parent plants can trigger a better response to other stresses in their 

progeny, especially for long lived plants as trees in wild or field-managed environments. 

Thus, to explore the possible transgenerational cross-tolerance and adaptive molecular 

mechanisms along with population establishment and diversification, environmental 

variability has been incorporated in the experimental design of this work. Enabling a further 

characterization of this evo-devo processes at physiological and proteomics levels.  
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3.3 Materials and Methods 
 

3.3.1 Plant material and stress treatment 
 

Seeds of field-grown Pinus radiata were collected from two locations in the Biobío 

region in Chile: Escuadrón (E), Latitude 36° 56’ 49.26” S, Longitude: 73° 8’ 49.42” W; and 

Tranguilvoro (T), Latitude 37° 59’ 35.04”S, Longitude 73º 21’ 41.48”W. Both locations have 

a Mediterranean climate but were managed as follows: pines located in E were fertigated 

once a week using a drip system during the summer, while T pines suffered repetitive mild 

drought stress events (detailed information in Table S3.1). Originally, both subpopulations 

came from clone 0027. Ramets of 0027 clone were established by grafting in 1981 in both 

locations for wood production. Therefore, progenies will be considered isogenic, with the 

E progeny representing the experiment control line and the T progeny the previously 

stressed line.  

 

Seeds belonging to both subpopulations were grown in 1 dm3 pots in a climate 

chamber (Fitoclima 1200, Aralab) under the following day/night conditions: 16/8 h 

photoperiod (400 μmol m−2 s−1), 25/15 °C and 50/60% relative humidity. Eight-month-old 

seedlings of the two progenies (height 25 ± 0.3 cm, showing no growth difference between 

them, t test, P>0.05) were used for the heat stress experiment.  

 

The experiment was arranged in a completely randomized block design. The day 

before starting the experiment (T0), needles were sampled, and chlorophyll fluorescence 

measured in both progenies. The following day, the heat stress treatment began with an 

increasing temperature gradient from 15 °C to 45 °C, over a 5 h period, which was then 

maintained at 45 °C for 6 h. During the following 5 h, the temperature was returned to 15 

ºC and maintained for 8 h, thus mimicking a day-night scenario. Heat-stressed plant 

material was sampled, and chlorophyll fluorescence measured at the end of the 6 h heat 

exposure on day 1 (T1), day 3 (T3), and day 5 (T5). All the samples and measurements 

(T0, T1, T3 and T5) were collected at the same time of day to avoid any circadian 

fluctuations as shown in Fig. 3.1. Plants of each progeny were divided into four pools, 

constituted of needles of three plants each. These pools were kept across the experiment 

and formed the four independent biological replicates analysed. Each needle sample was 

divided into three fractions, one was frozen in liquid nitrogen and stored at −80 ºC for 

further biochemical analysis, another was kept in ice for immediate fresh chloroplast 

extraction and the third was used for electrolyte leakage determination. 
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Fig 3.1 Experimental design. Seeds from two isogenic subpopulations with different hydric 

and nutritional environments were collected and grown under the same favorable conditions. 
Seedlings belonging to both progenies were exposed to a five-day lasting heat wave, with maximum 
temperature of 45ºC. 

 
3.3.2 Physiological characterization 
 

The percentage of electrolyte leakage (EL, %) was used to determine cell 

membrane damage in samples from phase I during the heat stressed treatments (T0, T1, 

T3, and T5), and previous experiment to establish the optimal temperature, according the 

following protocol. 70 mg of needles of each biological replicate were collected after at 

each heat exposure, cut in 1 cm long pieces, immediately immersed in sterile de-ionized 

water, and then incubated for 24 hours at room temperature under agitation at 30 rpm on 

a Shaker Ch-4103 (Infors HT) experimental conductivity (Cexp) was then measured. 

Maximum conductivity (Cm) was measured after autoclaving for 20 min at 1100 KPa and 

121 °C (sensION +MM150 portable meter, Hach), and cooling at room temperature 

overnight under agitation. Electrolyte leakage (EL) were used to determine leaf membrane 

damage measurements (see above in plant material and experimental design). EL, was 

calculated using the equation EL(%) = [(Cexp-Ci)/(Cm-Cii)] x100, where C is water 

conductivity under control conditions (i), control conditions after 24h (ii). 

 

Chlorophyll fluorescence measurements were taken just prior to sampling using a 

pulse-amplitude modulation fluorimeter (OS1-FL, Opti-Sciences, Hudson). Quantification 

of Chlorophyll a, Chlorophyll b, Carotenoids, Malondyaldehyde (MDA), Free Amino Acids 

(FAA), Total Soluble Sugars (TSS), Starch (STA), Total Flavonoids (TFL), and Total 
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Phenolics Compounds (TPC) were performed according to López-Hidalgo et al. (2021). 

This analysis was performed for all sampling points and both progenies starting from 10 

mg of lyophilized needles.  

 

Chloroplast isolation and protein extraction 
 

Chloroplast enriched fraction for proteomics analyses was purified as described 

(Lamelas et al., 2020). In brief, samples were homogenized, incubated in cellular lysis 

buffer, and then filtrated. Organelle enrichment was achieved with sucrose-Percoll 

discontinuous gradients for intact chloroplast isolation. Protein extraction was performed 

following a phenol-SDS protocol (Valledor and Weckwerth, 2014). As protein samples 

were dissolved with the detergent SDS, an in-gel digestion was performed using trypsin 

(Roche, cat. no. 03 708 969 001) according to the manufacturer’s indications. Peptides 

were extracted and desalted as previously described (Valledor and Weckwerth, 2014). 

The peptides were analyzed using a 1D nano-flow LC coupled to an MS/MS Orbitrap 

Fusion spectrometer (ThermoFisher Scientific), using a 60 min gradient starting with 0.1% 

formic acid and with 80% acetonitrile as the mobile phase. 

 

Protein identification, quantification, and in silico subcellular location 
 

Protein identification and label free quantification were performed with Proteome 

Discoverer v2.2 (ThermoFischer). A combined database was compiled with three protein 

databases  and used for protein identification, including the Pinus taeda genome v.1.01 

(https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/), UniProt/SwissProt 

Viridiplantae, and P. radiata transcriptome (Escandón et al., 2022). 

 

Identified proteins were blasted using the following in silico localization tools: 

BUSCA (Savojardo et al., 2018), Localizer (Sperschneider et al., 2017), YLoc 

(Briesemeister et al., 2010) and TargetP (v2.0) (Almagro Armenteros et al., 2019). Then, 

proteins were annotated with sma3s (Casimiro-Soriguer et al., 2017) and Mercator 

MapMan (Lohse et al., 2014). 

 

Finally, contamination sources were addressed by dropping for downstream 

analyses proteins with less than two matches for chloroplast location considering in silico 

localization tools or with no positive chloroplast location in the annotation according to 

Mercator Mapman or sma3s. 
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3.3.3 Statistical analysis 
 

All statistical analyses were conducted in R (v 4.0.2) (R Core Team, 2020). 

Agricolae R package (http://CRAN.R-project.org/package=agricolae) was employed for 

biomarker significance testing according to de Mendiburu, (2017). Proteomics data were 

analyzed using pRocessomics R package (available at 

htttps://github.com/Valledor/pRocessomics) and described in Chapter 2, to perform data 

pre-processing, univariate (Venn) and multivariate (PCA and k-means) analyses. In brief, 

each proteomics dataset was pre-processed independently, keeping those proteins that 

were present in at least 15% of the samples or in all the replicates that constituted a 

treatment. Missing values were imputed using the Random Forest algorithm (Stekhoven 

and Bühlmann, 2012). After data pre-processing, univariate analyses were performed, and 

then both datasets were z-scaled for multivariate analysis. 
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3.4 Results 
 

3.4.1 T progeny showed improved performance under heat stress 
associated to enhanced basal photosynthesis and altered starch and 
soluble sugars content 
 

It was mimicked a five-day heat wave in a time-series experiment to elucidate 

whether there were differences in the response between the two plant isogenic progenies 

tested, whose direct ascendents grew in differential environmental conditions. The heat 

stress applied had a strong physiological impact over both groups of seedlings as shown 

in Fig. 3.2. Most of the biomarkers measured changed along with the applied stress (P < 

0.05, HSD test), and more interestingly some of them (Fv/Fm, EL, TSS, and STA) exhibited 

differences prior to the stress exposure (T0; P < 0.05, t test). Additionally, the E progeny 

showed a wider dispersion in most of the quantifications. 

 

Common to both progenies, photosynthesis, measured through Fv/Fm, suffered a 

decay since the first stress exposure. While chlorophyll a, and b, decreased continuously 

in E offspring plants, T descendant plants were able to re-raise their chlorophyll content 

values in the last day of stress. However, significant changes in carotenoids levels were 

not detected. 

 

Regarding the carbohydrate metabolism, an accumulation of starch was observed 

in the last stress shock along with a moderate sugar content increase for E pines progeny. 

On its turn, the T progeny exhibited a higher amount in TSS and a more stable content of 

STA in all the tested experimental conditions. The secondary metabolism was 

characterized by TPC and TFL. Both progenies increased their needle TPC content. 

However, TFL lowered its abundance under stress in E seedlings. In contrast, T seedlings 

exhibited a minimum TFL content in T1 which returned to basal levels in the third and fifth 

day. FAA content drastically increased at T5 in the T group pointing to deep changes in 

protein metabolism dynamics after several days of stress. In summary, T progeny 

exhibited a maintained activity of the primary metabolism along the stress (TSS and STA) 

and enhanced secondary metabolism (TPC and TFL) at final stress point coupled to an 

increase in chlorophyll content. These differences can be attributed to a better 

performance towards the stress, indicating alternative acclimation processes and 

highlighting the role of chloroplasts in the response to severe heat stress. 
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Fig 3.2. Physiological profile of the seedlings from E and T progenies including: Fv/Fm, 
Chlorophyll b, Chlorophyll a, ratio Chla/Chlb, Electrolyte leakage, malondialdehyde (MDA), total 
soluble sugars (TSS), starch (STA), Carotenoids, Free amino acids (FAA), total flavonoids (TFL) 
and total phenolic compounds (TPC) content in basal conditions (T0), after 1 day of stress (T1), 3 
days of stress (T3) and 5 days of stress (T5). Different letters indicate significant differences 
according to HSD test (lower case for E progeny and upper case for T progeny; p < 0.05); asterisks 
indicate significant differences between the progenies for a specific sampling point. (* p < 0.05, ** 
p < 0.01, *** p < 0.001 ).Dots represent mean values of four independent biological replicas and 
three technical replicas each. 

 

3.4.2 Chloroplast proteome revealed differences in the basal photosynthetic 
machinery between the two progenies  
 

A subcellular analysis was performed to determine whether the chloroplast 

proteome may shed light on the dissimilarities of heat stress response found at the 

physiological level between the two progenies. This approach allowed to identify and 

quantify 1847 proteins. Out of them, 1428 were found to be present in at least four samples 

out of 32. From these, 1243 proteins (Table S3.2) were confirmed to belong to the 

chloroplast by at least two in silico subcellular location tools or one annotation tool (Fig. 

S3.1a). These yielded an average ratio of 92.71% in abundance (Fig. S3.1b), validating 

the accuracy of the employed methodology (sample contamination distribution is shown in 

Fig. S3.1c).  

 

A general depiction of the chloroplast proteome profile according to Mercator 

MapMan annotation principal category is provided in Fig. 3.3a. This analysis indicates high 

similarity between progenies, being noteworthy the peak of the multi-process regulation 
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Figure 2. Physiological profile of the seedlings from E and T progenies including: Fv/Fm, Chlorophyll b, Chlorophyll a, ratio Chla/Chlb, Electrolyte
leakage, malondialdehyde (MDA), total soluble sugars (TSS), starch (STA), Carotenoids, Free amino acids (FAA), total flavonoids (TFL) and
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represent mean values of four independent biological replicas and three technical replicas each.
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cluster after three days in heat stress conditions and of protein homeostasis in T5 for both 

progenies. Additionally, they were found differences in the external stimuli response 

category, which reached its maximum in T5 for E progeny plants and earlier in T3 for T 

descendant plants, being maintained in T5. T offspring showed a milder decrease in 

hormonal action and secondary metabolism in T1 and T3 in comparation to E. However, 

prior to stress, clear differences were observed between both progenies for secondary 

metabolism, RNA biosynthesis, cell wall organization and redox homeostasis. A deeper 

look into the multi-process regulation (Fig. 3.3b), external stimuli response (Fig. 3.3c), and 

redox homeostasis (Fig. 3.3d) Mapmans bins highlighted the dynamics of terpenoids 

biosynthesis and morphogenesis related proteins in E progeny, the increased amount of 

drought related chloroplast proteins in T0 for T progeny and an altered tocopherol 

biosynthesis, which suggest variations in retrograde signaling between both 

subpopulations. 

 

Fig 3.3 Heatmap-clustering analysis using MapMan categorization pathways in the 
chloroplast proteome of needles of Pinus radiata seedlings subjected to heat stress from both 
progenies. The numbers inside the cells indicate the scaled abundance according to each MapMan 
functional bin. Manhattan distance and Ward’s aggregation method were used for hieratical 
clustering. The number of proteins included in each category are indicated for each Mapman bin 
for a) total chloroplast proteome, and sub-heatmaps of b) Multi-process regulation, c) External 
stimuli response and d) Redox homeostasis. 

 

In order to further identify these differences, the chloroplast proteome for each 

sampling point by the environment of their ascendants was compared, as shown in Fig. 

3.4. The most variable sampling point was T0 (Fig. 3.4a), with a total of 153 (32+15 
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d) Redox homeostasis.
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qualitative and 25+81 quantitative) proteins being qualitative or significantly over- or under-

accumulated; followed by 96 (22+16 qualitative and 25+33 quantitative) proteins in T1 (Fig. 

3.4b); 46 (18+12 qualitative and 5+11 quantitative) proteins in T3 (Fig.3.4c); and 55 

proteins in T5 (Fig. 3.4d) (17+9 qualitative and 15+12 quantitative). A closer look to the 

differentially accumulated proteins in T plants highlighted photosynthesis phosphorylation 

related processes in the chloroplast as key variation between the two subpopulations in 

T0. This increased basal concentration and variety of LHCII proteins in T descendant 

seedlings (Table S3.3, Supplementary File 3.1) may indicate an increased number of PSII 

complex in their chloroplasts, which was not coupled to an increased pigment basal 

concentration but to an enhanced FvFm (Fig. 3.2). Thus, suggesting a drought-induced 

basal protein fortification of PSII, which is known to be the most labile component of the 

photosynthetic machinery to several stressors.  

 
Fig. 3.4 Differential abundance and qualitative analysis comparing both progenies in a) T0, 

b) T1, c) T3, and d) T5. Volcano plots represent fold change and pvalue, Venn diagrams indicate 
qualitative chloroplast proteins and bar plots indicate the cumulative sums, where bold color 
indicates the number of qualitative proteins and light color the number of differentially over-
accumulated proteins for each progeny and sampling point. 
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Interestingly, after the first stress shock non-primed plants showed an increased 

abundance of small HSPs (sHSPs) in T1, while the potentially primed plants showed an 

overaccumulation of fatty acids remodelers as lipoxygenases (LOX) protein family (Fig. 

3.4b, Supplementary File 3.2, Table S3.3). The latter have been linked to drought and 

oxidative stress memory formation as dosage-dependent memory genes and a sign of 

adaptation to drought stress (Sofo et al., 2004; Zhou et al., 2009). Additionally, in T3 and 

T5, UROPORPHYRINOGEN DECARBOXYLASE (HEME2) (Fig 3.4c and d, 

Supplementary Files 3.3 and 3.4), a protein involved in the transcriptional regulation of 

tetrapyrrole biosynthesis (Kobayashi and Masuda, 2016), was found to be significantly 

higher concentrate in T progeny coupled to an increased chlorophyll content (Fig. 3.2).  

 

3.4.3 Transgenerational cross-stress memory allowed for a wider variety of 
heat shock proteins after five days at high temperature 
 

As shown in the PCA combining both progenies (Fig. S3.2, Table S3.4) and 

accordingly to Fig. 3.4, the greatest differences between the two progenies were detected 

at the initial time point. The first heat stress shock (T1) produced a drastic change in E 

offspring plants approaching them to T offspring T0 and T1 profiles, which showed a weak 

response to the first shock. This suggests that the latter group was better prepared for the 

high temperature. After this first-exposure divergence, both populations seemed to reach 

an equivalent proteomic profile at T3, evidenced by the samples overlap in Fig. S3.2. This 

profile was maintained for E subpopulation descendants at T5 while T subpopulation 

descendants kept evolving its chloroplast proteome. In addition, both progenies presented 

increased concentration of HSP at T5 as shown in PC1 positive loadings, representing a 

clear indicator of prolonged heat stress. 

 

After the global analysis of the data, the specific candidates driving the heat stress 

response for each population can be found in the separate PCAs in Fig. 3.5, Table S3.6. 

Each subpopulation developed alternative response strategies and timing. As expected, 

and confirming the extent of the heat stimuli applied to the seedlings, HSPs predominate 

in both cases in T5 samples (Top positive loadings PC1, both progenies). However, T 

pines offspring displayed a wider variety of HSP and not only sHSP. It was reported that 

HSP90 and HSP60 were differentially expressed in distinct varieties according to their heat 

tolerance in other species (Inoue et al., 2013; Yadav et al., 2020). Moreover, Hsp90C and 

HSP70 are associated with protein import intermediates (Inoue et al., 2013), through TIC-

TOC (translocation at the inner/outer envelope of the chloroplast) components (Sung and 
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Guy, 2003), and Hsp60 with newly translated polypeptides folding, being Rubisco among 

its client proteins (Zhao and Liu, 2018).  

 

In addition to the HSPs belonging to the Unfolding Protein Response (UPR) 

triggered in the chloroplasts in the longer heat stress time, (Fig. 3.5, PC2, top scoring 

loadings), the accumulation of SELENOPROTEIN O in T progeny at T3 provides some 

insight on the performance of light reactions. Since SELENOPROTEIN O interacts with 

Ferredoxin NADP Reductase (FNR) and Protein Proton Gradient Regulation, which are 

involved in electron transport from Photosystem I (PSI) and osmo-protection (Fichman et 

al., 2018). Still regarding the PC2 in T progeny, and increased amount of photosynthesis-

related proteins was found in T5: light harvesting complex proteins such as LHCB5, 

LHCA3, LHCB2 and LHC2; PSB 32, involved in the Photosystem II (PSII) repairment; the 

small subunit of RUBISCO; and PSAG and PSAH of Photosystem I (PSI) complex. These 

increments occurred parallel to the pigment content increase (Fig. 3.2) and suggest that 

after five days of heat stress a deep repairment of photosynthetic function took place 

exclusively in the offspring of stressed parental pines. Conversely, despite progeny E 

suffers considerable damage in photosynthesis components in T1, as indicated by Fv/Fm 

data (Fig. 3.2) and the loadings of PC2, did not seem to present an efficient repair system. 

Fig. 3.5. PCA Score plot and PC1 and PC2 top-ranked proteins. (a) E progeny and, (b) T 
progeny chloroplast proteome. Top 40 scoring loadings (20 highest and 20 lowest) of PC1 and PC2 
are shown by row for each PCA, bar colors indicate the experimental condition in which each top-
scoring protein is more accumulated. Ellipses show a 90% confidence interval. Different colors 
indicate different experimental conditions (n = 4 biologically independent replicates) 
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3.4.4 Protein accumulation pattern allowed for the differentiation of 
subpopulations initially and during the heat stress 
 
To further characterize the proteome patterns of both progenies a k-means 

clustering (Fig. 3.6, Table S3.6) was performed. This allowed to determine the shared and 

divergent changes in the proteome profiles of both plant sets along the stress. Shared 

profile clusters include 2, 6, and 9; and unrelated clusters 1, 3, 4, 5, 7 and 8.  

 

Among common patterns, HSPs were found to be significantly enriched in 

ascendent trend cluster 2, along with chlororespiration related proteins; Cluster number 6 

is made of plastid ribosomal proteins, which exhibited a drastic increase from T1 to T3, 

that was then maintained until T5, suggesting a deep proteomic rearrangement, probably 

also related to HSPs biosynthesis.  

 

Switching the focus to contrasting patterns between the two progenies, Cluster 1, 

which gathers proteins related to PSII and ATP synthase, displayed opposite trends. While 

E offspring reached the maximum in T1 and then stabilized, T offspring proteins decreased 

until T3 and then re-raised their abundance; however, the greatest change in this cluster 

was found under basal conditions (T0), similarly to cluster 5 also related to PSII. These 

results are in accordance with the univariate analysis shown in the volcano plot (Fig. 3.4) 

where the highest variability between the two progenies was found in T0, before to start 

heat stress conditions. 
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Fig. 3.6. Pattern-clustering and functional enrichment of chloroplast proteome for both 

progenies a) k-means analysis across the stress. Proteins for each progeny were, scaled using z-
scores separately in each data set, and k-means clustered yielding 9 groups. Colors indicate the 
progeny. Ribbons indicate the 95% confidence interval of the mean values for each protein at each 
experimental condition (n = 4 biologically independent replicates) and bold lines indicate mean 
values for each cluster at each experimental condition and progeny. (b) Functional enrichment 
analysis for each k-means cluster. Different dot colors indicate different corrected pvalues 
according to Bonferroni method. 
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3.5 Discussion 
 

Alterations in soil environment are known to induce several changes in the plants, 

which imply a reprogramming in the communications between shoots and roots, through 

hormone metabolism, damages in photosynthesis, ROS production, and secondary 

metabolism compound biosynthesis (Cheng et al., 2011). Heat stress also entails 

photosynthesis impairment, ROS generation and heat stress responses rely as well in 

stomatal closure and secondary metabolism biosynthesis (Escandón et al., 2015; Hu et 

al., 2020). Since the response to a wide range of stresses share a set of common, master 

response mechanisms, the next step was to test whether ascendants mild repetitive stress 

events would represent an advantage to overcome a “new” or “not previously memorized” 

abiotic stress. This phenomenon relying on transgenerational stress cross-tolerance would 

help plants to adapt to challenging scenarios and may represent a useful tool for breeders 

to design climate change resilient forests. 
 

Thus, in this work, it has been characterized firstly basal alterations in seedlings. 

And secondly, heat stress response differences between two progenies through 

biochemical profiling, and chloroplast proteomics. This experimental system, consisting on 

the progeny of two wild isogenic subpopulations, permitted to decipher stress cross-

tolerance as a proof of principle to understudied mechanisms involving long-term memory 

in one generation and adaptation in its progeny; as well as deeper understand the natural 

mechanisms leading to population conformation. 

 

3.5.1 Shared response mechanisms between heat and drought stresses 
may be the key for transgenerational abiotic stress cross tolerance 
 

One of the most representative differences in the biochemical analysis in this work 

was the increased and retained concentration of soluble sugars in primed progeny needles 

coupled to a decrease in electrolyte leakage after five days of stress treatment. Soluble 

sugars are well-known osmolytes, signaling molecules, which also play an essential role 

in protecting membrane stability under heat stress (Wang et al. 2016). These are also 

reported to prevent impairments in other abiotic stresses as drought or salinity and, in 

some cases, stabilize biomolecules (Garg et al., 2002). Additionally, the decreased 

electrolyte leakage, closely related to membrane integrity along with the chlorophyll 

content re-raise at long-term may indicate a better health status of T progeny plants at the 

end of the experiment, suggesting an enhanced tolerance in the drought primed progeny. 
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3.5.2 Different progenies developed different strategies based on short- and 
long-term heat stress tolerance acquisition  
 

The applied stress had a sharp impact in E progeny, however, for T progeny, 

whose parents have passed through repetitive mild drought stress and nutrient deficiency, 

it was found a very similar proteome profiling when comparing basal conditions with the 

first six hours after heat stress (T1). This fact could be due to a rapid response, sufficient 

to contain the damage caused by the first shock, or a less sensitive heat stress phenotype. 

Both of them could be attributed to an inherited priming. These results support the inherited 

priming hypothesis and validate the aim of this work. 

 

After five days of heat exposure, the analyses showed a greater abundance of 

HSP90 and HSP60 proteins in the T progeny, while a majority of sHSPs was found in E 

progeny. sHSPs are ATP-independent, and mechanistically, instead of refold unfolded or 

denaturalized proteins they bind early unfolded proteins to prevent them from irreversible 

aggregation, however, whether client proteins exceeded sHSP, the latter can be recruited 

to the insoluble fraction (Haslbeck and Vierling, 2015; Haslbeck et al., 2019) the 

disassembling of insoluble substrate aggregates with incorporation sHSPs and substrate 

refolding can only be achieved by HSP60/HSP90 ClpB Chloroplast bichaperone system 

and require the consumption of ATP. Interestingly, even though both subpopulation 

exhibited large amounts of HSPs, it is noteworthy that “potentially primed subpopulation” 

T presented a shifted ratio HSPs/HSP in the longest stress exposure time. In addition, 

HSP90, and 70 are required together with calmodulin, a thermoprotective compound 

(Guihur et al., 2022), to activate calcineurin signaling, which is a well-known regulator of 

the responses to a plethora of stressors (Someren et al., 1999). 

 

Small HSPs form a soluble complex with substrate proteins, creating a transient 

reservoir of substrates for subsequent refolding by ATP-dependent chaperone systems 

such as HSP60, 70, 90 ClpB and DnaJ DnaK among others (Nakamoto and Vígh, 2007). 

sHSP reconcentrate in the thylakoids and protect the PSII electron transport system. Also, 

they have a key role preventing the heat induced destabilization of lipid bilayers. On the 

other hand, several experiments have confirmed that HSP90 and 60 can induce the 

refolding of Calvin cycle enzymes, such as citrate synthase and malate dehydrogenase, 

chloroplast protein import machinery and GUN5, covering the main differences found 

when comparing the heat stress response of both subpopulations.  



CHAPTER III. Chloroplast Proteomics 
 

 56 

 

Thus, despite sHPS importance in heat stress response, these work as a first stage 

response to control protein aggregation and not a de facto strategy to overcome stress as 

other HSP family members. Altogether, it seems that the T progeny was able to further 

develop the UPR process even in the presence of the stressor and the energy (ATP) cost, 

showing an improved tolerance under the stress. 

 

Despite of the potential relevance of epigenetic mechanisms in transgenerational 

memory as reviewed in (Bilichak and Kovalchuk, 2016), the data showed that, especially 

during the stress, this retained memory can be tracked through the chloroplasts, where it 

can be observed the traces of an altered retrograde signaling through ROS and gun genes, 

coupled to a photosystem II protein reinforcement, HSP90 and HSP60 families 

overaccumulation and increased chlorophyll content under the stress conditions. The 

results also indicated that primed plants were keener to recover the basal chloroplast-to-

nucleus signaling and protein folding leading to an increased stress cross-tolerance.  
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3.7 Supplemental information 
 

3.7.1 Supplemental Figures 

 
 
Supplemental Figure S3.1. Protein contaminants assessment. A and b Venn diagram for 

chloroplast proteins detected according to each insilico subcellular location tool (Localizer, TargetP, 
BUSCA and YLoc) or annotation tool (Mercator and sma3s (Gene Ontology). Proteins not identified 
as chloroplastic by at least two location tools or one annotation tool were considered contaminants. 
c contaminant distribution (reads) along the samples, the horizontal red line indicates the average 
amount of contaminants for the data set and showed no bias within the dataset (P = 0.784). 
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Supplemental Figure S3.2. PCA Score plot and PC1 and PC2 top-ranked proteins. of 
chloroplast proteome for both progenies. Top 40 scoring loadings (20 highest and 20 lowest) of 
PC1 and PC2, bar colors indicate the experimental condition in which each top-scoring protein is 
more accumulated. Different colors indicate different experimental conditions (n = 4 biologically 
independent replicates)  
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3.7.2 Supplemental tables and files 
 

Supplemental table legends 
 

Supplemental Table S3.1. Environmental conditions of E and T subpopulations 

Supplemental Table S3.2. Chloroplast proteins quantification, statistics and 

description according to Mapman annotation  

Supplemental Table S3.3. List of qualitative and quantitative proteins for each 

sampling point 

Supplemental Table S3.4. PCA explained variance and loading for both progenies 

Supplemental Table S3.5. PCA explained variance and loading for (a) E progeny 

and, (b) T progeny 

Supplemental Table S3.6. kmeans clustering of chloroplast proteins 

 

Supplemental File legends 
 

Supplemental File S3.1. Volcano interactive representation for T0 contrast 

between the chloroplast proteome of both progenies. 

Supplemental File S3.2. Volcano interactive representation for T1 contrast 

between the chloroplast proteome of both progenies. 

Supplemental File S3.3. Volcano interactive representation for T3 contrast 

between the chloroplast proteome of both progenies. 

Supplemental File S3.4. Volcano interactive representation for T5 contrast 

between the chloroplast proteome of both progenies. 
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CHAPTER IV. Nuclear proteomics in response 
to heat stress and recovery in Pinus radiata1 

 

4.1 Abstract 
 

How do abiotic stresses affect nuclear proteome and mediate memory? Despite 

the relevance of this question in the present context of climate emergency, its answer 

remains unknown for most species. This chapter aims to define how Pinus radiata nuclei 

respond, acclimate, and remember heat stress. Seedlings were heat-stressed at 45 ºC in 

a 10-day-stress and recovery experiment. Nuclear proteins were isolated and quantified 

by nLC-MS/MS, and potential acquired memory was analyzed in recovered plants. 

Specific nuclear heat responsive proteins were identified, and its biological role evaluated 

employing a systems biology approach. In addition to HSP, several clusters involved in 

regulation processes, as epigenomic-driven gene regulation, some transcription factors 

and a variety of RNA-associated functions were discovered. Nuclei exhibited differential 

proteome profiles across experiment, being notably H2A histone and methyl cycle 

enzymes accumulated at the recovery step. These results suggest that epigenetic 

mechanisms play a key role in heat stress tolerance and priming mechanisms. 

 

 

 
1 Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M. 2020. 

Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming 
coupled to epigenetic regulation. Journal of Experimental Botany 71: 2040–2057. 
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4.2 Introduction 
 

Heat stress response implies changes in multiple mechanisms and metabolic 

pathways. And, although a few of the more important players in heat stress response and 

adaptation have been already depicted in P. radiata, as heat shock proteins, flavonoids or 

fatty acids (Escandón et al., 2015, 2017, 2018), how gene regulation drives these 

biochemical and physiological responses remains elusive. 

 

Nuclear proteome dynamics is crucial to increase our understanding of how both 

environmental and cytoplasmic signals are sensed and translated into molecular 

responses, mainly through the proteins that guide and control the gene expression. 

Nuclear proteomics is an useful approach not just for investigating the mechanisms 

underlying plant responses to abiotic stresses, including protein–protein interactions, 

enzyme activities, and post-translational modifications (Yin & Komatsu, 2016), but also 

with potential to create solutions to improve forest management and breeding programs.  

  

Nuclear post-transcriptional regulatory mechanisms involving the processing of 

precursor mRNA as alternative splicing (Ling et al., 2018), as well as structural variations 

in histone H2A and H2B dimers (Talbert & Henikoff, 2014) play an important role in relation 

to heat stress memory in Arabidopsis. Nevertheless, epigenetic factors are thought to play 

the main role in establishing this heat stress memory (Ling et al., 2018). 

 

In this respect, and in relation to nuclear proteins relevance when driving heat 

stress adaptation, it has been described in Arabidopsis thaliana, the key role of epigenetic 

regulation and histone modifications to remain memory of the stress (Bäurle, 2016; Lämke 

et al., 2016) that lead to priming mechanism (Martinez-medina et al., 2016). Priming 

involves a first training stress, a latent phase and a second stress event; in this later stress, 

the plant will be able to react in a more efficient way than previously, due to the information 

stored as chromatin structural changes and histone modifications (Gutzat and Scheid, 

2012; Pastor et al., 2013; Asensi-Fabado et al., 2017). According to these findings, the 

epigenetic mechanisms, and particularly DNA methylation and nucleosome occupancy, 

seem to be the main players on priming establishment. The epigenetic mechanisms 

involve covalent modifications of DNA and histones, which affect transcriptional activity of 

chromatin (Valledor et al., 2007). Since chromatin states can be propagated through cell 

divisions, epigenetic mechanisms are thought to provide heritable ‘cellular memory’ 

(Iwasaki & Paszkowski, 2014). 
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This work aims to provide a comprehensive knowledge of heat stress response 

and adaptation at nuclear level that will allow the depiction of the nuclear events involved 

in heat stress memory. Thus, the main goal consists of the characterization, quantification 

and biological interpretation of nuclear proteome of P. radiata needles in response to high 

temperature stress and the assessment of the recovery stage  

 

The relevance of the discovered proteins related to chromatin reorganization will 

suppose a major advance in heat stress biology field, also providing a set of key nuclear 

elements in cytoplasmic proteome reorganization during the heat-stress response and 

recovery process.  
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4.3 Material and Methods 
 

4.3.1 Plant material and experimental design 
 

P. radiata seedlings were grown in a climate chamber under a photoperiod of 16 h 

(400 μmol m-2 s-1) at 25 °C and 50 % relative humidity (RH), and 15 °C and 60 % RH during 

the night period (Fitoclima 1200, Aralab). The plants were watered with nutritive solution 

(N:P:K, 5:8:10), same conditions as stated in Chapter 3. 

 

Eight-month-old seedlings (plant height 24 ± 0.4 cm) were sampled (T0) and then 

divided in two sets. The following day Plant Set I was heat-stressed as described in 

Chapter 3, while Set II was maintained under control conditions to test whether it was any 

long-lasting difference after the stress ended. Set I seedlings were sampled under control 

(T0) and heat stressed conditions according to the scheme detailed in Fig. 4.1a, and 

extending the experimental design of Chapter 3 to 10 days, plant material was collected 

at the end of the 6 h heat exposure on day 1 (T1), day 3 (T3), day 5 (T5) and day 10 (T10).  

 
Fig.4.1. Experimental design. a) Detailed temperature profile of control (T0) and heat stress 

conditions (T1, T3, T5, and T10), all sampling procedures were performed after 6 hours at the 
maximum temperature of 45ºC. b) Outline of the experimental set up, heat treatments are squared 
in a red discontinuous line. SR (Stress recovered) and NS (not stressed) were maintained under 
optimum conditions over one month, and then sampled without any further stress treatment. 
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Since T10 plants were too damaged, T5 plants were selected to continue to test 

the possible memory acquisition process after the one-month recovery stage. Thus, T5 

and Set II seedlings were maintained under control conditions and sampled after one 

month of the heat treatment, when the plants showed an apparent physiological recovery 

(Fig. 4.1b; SR, stress-recovered and NS, not-stressed respectively). Needles were frozen 

in liquid nitrogen immediately after sampling, and conserved at -80 ºC until nuclei and 

protein isolation were performed. Leaf gas-exchange parameters were quantified just prior 

to sampling. Electrolyte leakage (EL) was measured for heat stressed samples as 

described in Chapter 3. 

  

In both sets, plants were divided into four pools, constituted of needles of three 

plants each. These pools constituted the four biological independent replicates that were 

analyzed. 

 

4.3.2 Gas-exchange measurements 
 

Net CO2 assimilation rate (A, µmol CO2 m-2 s-1), stomatal conductance (gs, mol H2O 

m-2s-1), transpiration rate (E, µmol H2O m-2s-1) and intercellular CO2 concentration content 

(Ci, ppm) were measured in all plants and averaged for each biological replicate per each 

treatment in basal conditions and during the heat stress, using a portable infrared gas 

analyser (LCpro-SD, ADC BioScientific Ltd., UK) equipped with the broad leaf chamber. 

To find out the saturation light intensity A/PPFD (photosynthetic photon flux density; light 

response curves of CO2 assimilation) curves were performed with the following PPFD: 

2000, 1500, 1000, 750, 500, 250, 100, 50 and 0 µmol m-2s-1. After A/PPFD data analysis, 

punctual measurements at saturation light intensity were performed at 1000 µmol m-2s-1. 

The following conditions were maintained inside the chamber during all the 

measurements: air flux: 200 mol s-1; block temperature: 25 ºC; and atmospheric CO2 and 

H2O concentration. Data were recorded when the measured parameters were stable. 

Instantaneous carboxylation efficiency (CE, µmol CO2 m-2 s-1) was calculated as the 

coefficient between A and Ci. 

 

4.3.3 Nucleus isolation and protein extraction 
 

Nuclear proteome was analysed the four biological replicates of phase I at all 

sampling times (T0, T1, T3, T5, T10, NS and SR). Nuclei were isolated following the 

protocol described by Lamelas et al., (2020). Nuclei isolation and enrichment performance 
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was assessed by confocal microscopy (Leica TCS-SP2-AOBS) using propidium iodide 

(PI) dye (Fig. S4.1). The PI dye was excited by 488 nm diode laser and the fluorescence 

emission was recorded at 636 nm. Images were processed and analyzed using Fiji 

software (Schindelin et al., 2012). 

 

Once the nuclei were purified, samples were sonicated in 300 μL of 1 % SDS for 

15 s at 60 % amplitude (HielcherUP200S) and then incubated in a vortex at maximum 

speed for 15 min at room temperature. Subsequently, 300 μL of extraction buffer (1.5 M 

sucrose, 10 mM DTT and 300 μL of phenol) were added to begin protein extraction. After 

mixing vigorously, tubes were centrifuged 5 min at 17,000 g and room temperature. After 

centrifugation, phenolic (upper) phase was saved and the lower phase was re-extracted 

by adding 300 μL of phenol. Both phenolic phases were collected and cleaned with 

extraction buffer in the same way to conserve the upper phase. Proteins were precipitated 

by adding 0.1 M ammonium acetate in methanol and incubated overnight at -20 °C. Tubes 

were centrifuged, and protein pellets washed twice with acetone. Dry pellets were 

dissolved in 1.5 % SDS, 8 M Urea. Protein content was quantified by BCA assay (Smith 

et al., 1985). The enrichment in nuclear proteins was assessed by comparing running 

nuclear protein fraction and total protein in 1-DE SDS-PAGE. 

 

4.3.4 Protein identification and quantitation by GeLC-Orbitrap/MS analysis 
 

Proteins were in gel-digested with trypsin (Roche, Cat. No. 03 708 969 001), 

obtained peptides were extracted and desalted as described by Valledor and Weckwerth 

(2014). 

 

Peptides were then analysed in Central Support Service for Research of the 

University of Cordoba (SCAI) employing one-dimensional (1D) nano-flow LC coupled to 

MS/MS Orbitrap Fusion (Thermo) spectrometer, using a 60 minutes gradient starting with 

0.1 % formic acid and as mobile phase 80 % acetonitrile. 

 

Three protein databases were used for protein identification: Pinus taeda genome 

v.1.01 (http://dendrome.ucdavis.edu), Uniprot/SwissProt, Viridiplantae and an in-house 

Pinus radiata transcriptome, following the recommendations described by Romero-

Rodríguez et al.(2014).  

 

Proteome Discoverer 2.2 was employed for the identification and quantification of 

proteins employing a 2 % false discovery rate (FDR), XCorr of 1.6, one unique or razor 
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peptide for identification, and one peptide (unique/razor) per protein for label free 

quantification. Lysine ubiquitination, methionine oxidation, acetylation of protein N-

terminus and phosphorylation of serine, threonine and tyrosine were taken into account as 

dynamic modifications. 

 

Identified protein sequences were analysed with PlantTFcat tool (Dai et al., 2013), 

to identify transcription factors and nuclear regulators domains, and two independent and 

plant-specific subcellular localization tools, Localizer v1.0.4.  (Sperschneider et al., 2017) 

and YLoc (Briesemeister et al, 2010a, 2010b) using YLoc+ prediction model and plant 

version with a fixed probability greater than 0.75 and medium confidence score (at least 

0.4). Proteins were also annotated using Mercator sequence annotation tool against TAIR, 

SwissProt/UniProt Plant Proteins, Clusters of orthologous eukaryotic genes (KOG) 

databases (Lohse et al., 2014) and Uni-Prot KB/Swiss-Prot using sma3s v2 (Casimiro-

Soriguer, 2017). Restrictive conditions were used to catalog nuclear proteins. Proteins not 

predicted to belong to the nucleus or endoplasmic reticulum, by at least of two from the 

five selected data sources, were dropped from the analysis. 

 

4.3.5 Statistical and bioinformatics analysis 
 

All statistical procedures were conducted with the R programming language 

running under the open-source computer software R v3.4.0 (R Core Team, 2017) and 

RStudio v1.1.456, available from http://www.rstudio.org/.  

 

Four biological replicates were used for all statistical procedures. The agricolae 

package (de Mendiburu, 2017) was used for univariate one-way analysis of variance 

(ANOVA) followed by post-hoc multiple comparisons using Tukey’s test (function 

HSD.test) to estimate the significance of the leaf gas-exchange and membrane damage 

data (p ≤ 0.05). 

 

Nuclear proteome was analyzed using pRocessomics R package 

(https://github.com/Valledor/pRocessomics) (described in Chapter 2), which was used to 

pre-filter and impute missing values according to Random Forest algorithm, MissForest 

package, (Stekhoven & Bühlmann, 2012), and consistency-based criteria with a threshold 

of 0.25. Then the three most stable protein abundances were identified with sLqPCR 

package, according to Vandesompele et al. (2002) to equalize inter-sample total intensity 

variation, whose mean values were used for normalizing each sample. 
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Most significant nuclear proteins were selected by performing an ANOVA analysis 

considering as cut off a q-value of 0.05 calculated using Benjamini-Hochberg model. Then, 

mixOmics R package (Rohart, 2017) was used to perform the statistical analysis including 

Principal Component Analysis (PCA) and sparse Partial Least Square (sPLS) providing 

two networks: first of them integrating physiologic and proteomics data, and a second 

network with identified transcription factors with significantly different nuclear proteins. 

Both networks were filtered by applying a net cut-off of 0.75.  
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4.4 Results 
 

4.4.1 High temperature affects gas-exchange parameters and membrane 
integrity 
 

Analysis of leaf gas-exchange parameters uncovered significant physiological 

changes in response to heat stress. Stressed plants showed significant decreases in net 

CO2 assimilation rate (A), carboxylation efficiency (CE), stomatal conductance (gs), and 

transpiration rate (E) Fig 4.2 a-d. The effects were more severe when the stress exposure 

time was increased, and showed a similar pattern in the four parameters. This, coupled 

with maintenance of the intercellular CO2 content Fig. 4.2e, suggested a decrease of 

carbon fixation in the stressed plants in favor of photorespiration at sampling time T10, 

when the intercellular CO2 concentration (Ci) was increased. In addition, the electrolyte 

leakage (EL) showed significant differences at T5 and it increased dramatically at T10, 

indicating severe disruption of cell membrane integrity (Fig. 4.2f).	

 
Fig. 4.2. Leaf gas-exchange parameters and electrolyte leakage. a) net CO2 assimilation 

rate, A; b) Carboxylation efficiency, CE; c) stomatal conductance, gs; d) Transpiration rate, E; e) 
Intercellular CO2 concentration, Ci and f) Electrolyte leakage, EL; measurements in C, T1, T3, T5, 
T10, SR and NS. Different letters indicate statistically significate differences (p< 0.05). 

 

After a one-month period of recovery in control conditions, stressed-recovered 

(SR) and non-stressed (NS) plants presented similar CO2 values of A and CE Fig. 4.2 a 

and b, indicating that photosynthetic activity returned to normal. On the other hand, higher 

values of gs and E Fig 4.2 c-d were observed in recovered stressed plants, which were 

probably related to some adaptation process or memory effect. 
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An age effect was also detected when comparing the initial control and NS groups, 

with increases in E, gs, and CE and a decrease in Ci suggesting different physiological 

states that were possibly related to plant growth during the recovery period. 

 

4.4.2 Identification and characterization of nuclear proteins across periods 
of exposure to heat stress 
 

GeLC-Orbitrap/MS analysis of the nuclei-enriched fraction resulted in the 

identification of 3571 protein groups, of which 3328 could be reliably quantified. Given the 

limitations of non-model databases, very restrictive conditions were used for classifying 

nuclear proteins. Thus, after removal of the non-nuclear proteins based on their in silico 

annotations and YLoc and Localizer subcellular localization tools, 862 protein groups were 

identified as certainly being nuclear, of which 309 (q-value ≤0.05) were considered as 

differentially accumulated (Table S4.1; ANOVA, 5% FDR). 

 
Fig. 4.3. Heatmap-Clustering analysis of Mapman categorization pathways in nuclear 

proteome. Numbers inside the cells indicate scaled abundance according to Mapman functional 
bin. Manhattan distance and Ward’s aggregation method were used for hieratical clustering. 
Numbers in brackets indicate the proteins included in each category 

 
MapMan functional classification of the identified nuclear proteins showed that the 

differentially accumulated pathways covered both primary and secondary metabolism (Fig. 

4.3). The abundance of stress-related clusters (stress and metal handling) increased 
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under heat-stress conditions. In addition, T5 seedlings showed signs of recovery as their 

values for development and cell wall clusters showed increases. However, in T10 samples 

the development, cell wall, and protein metabolism clusters were found to be down-

regulated; moreover, these samples showed considerable increases in fermentation and 

stress-related clusters, which highlighted cell impairment consistent with the physiological 

results shown in Fig 4.2a-f. 

  

After the recovery period, SR plants exhibited differences compared to unstressed 

plants. Nucleotide, amino acid, cofactor and vitamin, and secondary metabolism were 

clearly up-regulated, as were the tetrapyrrole synthesis and glycolysis pathways. In 

addition, there were also found considerable changes in the development category 

between the T0–T1 and the SR–NS groups; however, these seemed to be linked to the 

age of the plants rather than being relevant for analyzing the heat-stress response. This 

highlighted the importance of maintaining control plants throughout the experiment. 

 

In summary, the functional classification and heatmap clustering analysis of the 

nuclear proteome distinguished the different periods of heat exposure and allowed the 

determination of specific pathway clusters related to each exposure period. 

 

4.4.3 A multivariate approach reveals the nuclear mechanisms involved in 
the heat-stress and memory responses 
 

In order to reduce the complexity of the results, multivariate analyses including 

PCA and K-means were performed. PCA showed that the first two components accounted 

for 46% of the total variance (Fig. 4.4a). The treatments were separated into three mains 

groups: control plants (T0 and NS), heat-stressed plants (T1, T3, T5, and T10), and 

recovered plants (SR). The variance gathered for each component was explained by the 

proteins exhibiting the highest and lowest loadings for each component. Component 1 

(PC1) seemed to be related to the heat-stress response (Table 4.1); thus, among the 

proteins in PC1 were heat-shock proteins (HSPs), proteins that have previously been 

related to cold stress such as LOS4 (Gong et al., 2004) and PHOSPHOGLYCERATE 

KINASE (Bae et al., 2003; Escandón et al., 2017a) and elements involved in proteome 

and transcriptome reorganization like the ARGININE/SERINE-RICH SPLICING FACTOR 

(SRSF)  or 40S RIBOSOMAL PROTEIN S30.  
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Fig. 4.4. Principal Component Analysis (PCA) of ANOVA filtered (q-value < 0.05) nuclear 

proteins of: a) all samples groups (C, T1, T3, T5, T10, SR and NS) together; b) Heat Treated 
samples groups (C, T1, T3, T5, T10); and c) Recovered samples groups (C, T5, SR and NS) 
analysing separately. Ellipses indicate a 0.90 confidence level. 

 
Table 4.1 Top positive and negative loadings for PC1 and PC2 considering all treatments. 
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In the case of PC2, the biological interpretation remained unclear as it included 

proteins involved in a wide range of processes (signalization, endoplasmic reticulum 

transport, and DNA damage among others (Table 4.1). This was probably due to an 

excess of variability as a consequence of mixing stress-recovery (SR) and stress response 

(T1, T3, T5, T10) processes in the same multivariate analysis.  

 

Separating the treatments into two major categories, namely heat-treated (HT) 

consisting of T0, T1, T3, T5, and T10 (Fig 4.4b), and recovery (R) consisting of T0, T5, SR 

and NS (Fig. 4.4c), caused the explained variance to increase to 55% and 67%, 

respectively. Nevertheless, the PC2 negative loadings for all the treatments PCA Table 

4.1 may have constituted a cluster that is mainly composed of recovery and heat-stress 

memory proteins. Neddylation, a post-transcriptional modification directly linked to histone 

H2A, seemed to be occurring, since the NEDD8-activating enzyme E1 catalytic subunit 

was over-accumulated, concomitantly with histone H2A replenishment above basal levels. 

NEDD8 is covalently conjugated to H2A, and that neddylation of H2A antagonizes its 

ubiquitylation (Li et al., 2014). 

 

PCA of HT plants and their control indicated that PC1 classified the samples into 

those consisting of no stress (T0), first and mid-term responses (T1, T3, and T5), and a 

long-term response (T10) (40% of explained variance; Fig 4.4b), while PC2 explained the 

variation among the mid-term stress treatments. The analysis of the proteins with the top-

scoring loadings in PC1 (Table 4.2, Table S4.2)) identified small HSPs (sHSPs) and also 

proteins related to epigenetic and alternative-splicing regulation.  

 

Adenosylhomocysteinase (SAHH) and its product–competitive inhibitor S-

adenosylmethionine (SAM) synthase, proteins involved in DNA and histone methylation, 

and the SM-like protein LSM3A, which is directly linked to alternative-splicing regulation, 

all play critical roles in the regulation of development-related gene expression (Perea-Resa 

et al., 2012). Furthermore, two transcription factors belonging to NF-Y family involved in 

histones methyl marks (Donati et al., 2008) were found to be up-regulated in response to 

heat stress.  
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Table 4.2 Heat stressed treatments PC1 and PC2 top positive and negative loadings 

 

These results suggested a fundamental change in cell organization leading to a 

new proteome profile. In addition, fatty acid metabolism and flavonoid biosynthesis also 

seemed to be altered, as indicated by changes found in PC1 to the proteins of the first 

steps of the phenylpropanoid biosynthesis pathway (coumarate 3-hydrolase, C3H) and 

PC2 (caffeic acid O-methyltransferase, COMT). Interestingly, in PC2, which separated the 

first response (T1) and the mid-term response (T3 and T5), a cluster of spliceosome-

related proteins including heterogeneous nuclear ribonucleoprotein U-like protein 1 

(HNRNP U-like1) and SRSF was found to be up-regulated proportionally to the exposure 

to heat stress (Table 4.2, PC2 positive loadings). 

 

PCA of the recovery treatments (Fig. 4.4c) showed the nuclear proteins that did 

not return to the basal level after a 5-day heat treatment even after a month in control 

conditions. PC1 (45% of explained variance) distinguished stress-induced proteome  

HT PC1 Top positive loadings HT PC2 Top positive loadings 
Hap3/NF-YB transcription factor WD repeat-containing protein 5 

Eukaryotic translation initiation factor 3 subunit G Heme oxygenase 1, chloroplastic 
40S ribosomal protein S20-2 Mitochondrial-processing peptidase subunit beta 
60S ribosomal protein L23 Probable mediator of RNA pol II transcription subunit 37b 
Small heat shock protein arginine/serine-rich splicing factor 

Low molecular weight heat shock protein DNA/RNA-binding protein Alba-like protein 
unnanotated Trans-2,3-enoyl-CoA reductase 

Sm-like protein LSM3A Heterogeneous nuclear ribonucleoprotein U-like 1 
Alba DNA/RNA-binding protein Aldehyde dehydrogenase family 3 member F1 

17.6 kDa class II heat shock protein DEAD-box ATP-dependent RNA helicase 53 
60S ribosomal protein L23a Protein Fes1A 

Hap3/NF-YB transcription factor Protein HEAT-STRESS-ASSOCIATED 32 
Heterogeneous nuclear ribonucleoprotein 27C Novel plant SNARE 13 

22.0 kDa class IV heat shock protein Pre-mRNA cleavage factor Im 25 kDa subunit 2 
HT PC1 Top negative loadings HT PC2 Top negative loadings 
DNA topoisomerase 6 subunit B 40S ribosomal protein S10-3 

Salt tolerance protein 1 Dehydrogenase/reductase SDR family member 4 
Thiamine thiazole synthase EF1Bgamma class glutathione S-transferase 
Delta(24)-sterol reductase Ribosomal protein 

S-adenosylmethionine synthase Enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase 
Beta-glucosidase 42 DNA damage-inducible protein 1 

fatty acid beta-oxidation protein Chalcone synthase 
UDP-glucose 6-dehydrogenase 3 Caffeic acid O-methyltransferase 
S-adenosylmethionine synthase 5 Male gametophyte defective 1 

Protein plastid transcriptionally active 16 Protein disulfide-isomerase 
Calcium-dependent phosphotriesterase protein ATP synthase subunit D 

Peroxisomal acyl-coenzyme A oxidase 1 Aldehyde dehydrogenase 
Coumarate 3-hydroxylase Histone H2B 
Adenosylhomocysteinase Fructose-bisphosphate aldolase 
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Table 4.3 Top positive and negative PC1 and PC2 of recovery groups 

 

changes related to adaptation, with H2A and H2B (negative loadings; Table 4.3) being 

markers of the acquired memory (Kumar & Wigge, 2010; Liu et al., 2015), and 

spliceosome-related proteins such as HNRNP U-like1 and HNRNP 27C (positive loadings) 

being markers of heat exposure. PC2 (21% of explained variance) showed stable induced 

markers in the modulation of the proteome profile, confirming the importance of molecular 

chaperones (sHSP and PPIase), ER–chloroplast crosstalk (e.g. UDP-sulfoquinovose 

synthase) (Higashi et al., 2015) and DNA mismatch repair processes (HPMS5 

HOMOLOG) (Horii et al., 1994). 

 

4.4.4 K-means clustering analysis identify the central role of the epigenome 
in heat-stress response 
 

Co-accumulation patterns in heat treated and recovery groups (Fig. 4.5) were 

investigated employing a K-means clustering analysis. Proteins of the heat-treated 

R PC1 Top positive loadings R PC2 Top positive loadings 
RNA-binding (RRM/RBD/RNP motifs) family protein Salt tolerance protein 1 

60S ribosomal protein L15-1 Late embryogenesis abundant protein LEA7-1  
Glycine-rich RNA-binding protein RZ1B Delta(24)-sterol reductase 

DNA/RNA-binding protein Alba-like protein Casein kinase II subunit alpha 
DnaJ protein ERDJ3A WD40-like transcription factor 

Reticulon-like protein B2 Glutamate decarboxylase 
Heterogeneous nuclear ribonucleoprotein 27C  unnanotated 

SNF2 transcription factor DNA topoisomerase 6 subunit B 
Heat shock 90/70 organizing protein Calcium-dependent phosphotriesterase superfamily protein 

Heterogeneous nuclear ribonucleoprotein 27C Dehydrogenase/reductase SDR family member 4 
RuvB-like 2 CSC1-like protein ERD4 

Peroxisomal targeting signal 2 receptor Aldehyde dehydrogenase 
Heterogeneous nuclear ribonucleoprotein U-like protein 1 Male gametophyte defective 1 

Translocon-associated protein (TRAP), alpha subunit Alpha/beta-Hydrolases superfamily protein 
R PC1 Top negative loadings R PC2 Top negative loadings 

RS9, ribosomal protein 9 peptidase subunit beta 
60S ribosomal protein L21 Serine-threonine kinase receptor-associated protein 
40S ribosomal protein S15 Isoeugenol synthase 1 

50S ribosomal protein L10, chloroplastic Putative mitochondrial ribosomal protein S1 
Transposon protein,  LOS4 

Cucumisin Riboflavin synthase 
60S ribosomal protein L38 arginine/serine-rich splicing factor 

NADH dehydrogenase 13-A HPMS5 protein 
Cinnamate 4-hydroxylase AMPSase 

60S ribosomal protein L26-1 T-complex protein 1 subunit zeta 
Beta-glucosidase 42 Eukaryotic translation initiation factor 2 gamma subunit 

17.5 kd heat shock family protein AtSUFE 
Histone H2A PPIase 
Histone H2B UDP-sulfoquinovose synthase, chloroplastic 
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experimental conditions were clustered in 9 groups (Fig. 4.5a). The elements involved in 

the first response to heat were grouped in cluster 1 and included the peak-and-run class 

heat-shock factor HSFA6b, while proteins related to stress signaling and responses such 

as CALMODULIN-LIKE PROTEIN 3 (CML3), LSM3A, HSPs, and ribosomal proteins were 

found in cluster 6. Clusters 7 and 9 showed a pattern of continuous increases; these 

clusters included two of the most well-known proteins related to acquired thermotolerance, 

HSP101 and HEAT STRESS-ASSOCIATED 32 (HSA32) (Wu et al., 2013). In contrast, 

cluster 8 showed a decreasing pattern; included in this cluster were proteins such as SAM 

synthase and SAHH, both key elements for epigenetic reorganization. 

	

	
Fig. 4.5. k-means clustering of differentially accumulated (q<0.05) nuclear proteins in a) 

Heat Treated groups (C, T1, T3, T5, T10) and b) Recovered groups (C, T5, T5R and CR). Dashed 
lines show individual patterns and bold lines the mean for each cluster. 

 

The nuclear proteomes of the recovery treatments were grouped into four different 

clusters (Fig. 4.5b). Clusters 1 and 2 showed a similar trend with a clear peak in SR, which 

indicated groups of proteins up-regulated 1month after the 5-d heat-stress treatment. 

While cluster 1 comprised histone H2A and some ribosomal proteins that were decreased 

at the stress point T5, cluster 2 showed over-accumulated proteins only in plants 

recovered from the stress. This cluster comprised key proteins including: SAM synthase 

that are strongly related to DNA, RNA, and histone methylation (Bender, 2004); calcium-

binding protein CML13, a calcium sensor that is possibly involved in heat sensing and has 

previously been described as a cold-inducible nuclear protein in Arabidopsis thaliana 

(McCormack & Braam, 2003; Saidi et al., 2011); Hap3/NF-YB transcription factors; NEDD8 

E1 essential for DNA damage response modulation (Brown et al., 2015), and histones H1 
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and H4. Cluster 4 included stress-related proteins (e.g. HSP101, FIB4, and LOS4, which 

were also identified in PCA HT loadings; Table 4.2) that returned to control levels when 

the heat exposure ended. Cluster 3 followed the same trend as the proteins related heat 

stress; however, in this group significant differences were detected between the levels in 

NS and SR plants, with a slight increase in SR protein abundance compared to the control 

NS (e.g. FES1A, HNRNP U-like 1, BAX inhibitor 1) (Table S4.3). 

	
4.4.5 sPLS analysis reveals a complex network of nuclear protein 

interactions involved in the heat-stress response 
 

Sparse partial least-square (sPLS) analysis produced networks that were 

constructed by considering transcription factors and regulators as the predictor matrix for 

the rest of the differentially accumulated nuclear proteins in heat-treated (HT) groups (Fig. 

4.6a, Table S4.4a). This pinpointed the importance of sHSPs, ribosomal proteins, and 

spliceosome-related proteins during heat stress (e.g. LSM3A and the small nuclear 

ribonucleoprotein SmD3B). Histones (H2A, H2B, and H4) and eukaryotic translation 

initiation factor 3G (eIF3G) were shown to play major roles in managing the heat-stress 

response, being the nodes selected according to the 0.75 threshold to explain the relations 

among the nuclear proteins. 

	
DnaJ ERDJ3A protein (a molecular chaperone) and glycine-rich protein were the 

unique nodes negatively related to net CO2 assimilation rate and transpiration (Fig. S4.2, 

Table S4.4b) in an sPLS-based network where proteins predicted leaf gas-exchange 

parameters. Coumarate 3 hydroxylase, coumarate 4 hydroxylase, and DNA 

topoisomerases 6A and B were down-regulated in heat-treated plants and were positively 

related to the photosynthesis parameters shown in the network. 

 

Additional biological functional analysis of protein–protein interactions was 

performed using STRING (Szklarczyk et al., 2017) with Arabidopsis thaliana database. 

Proteins selected using the STRING database from the 20 highest positive and negative 

loadings of the first two components in the PC analysis of heat-treated plants Fig. 4.4b, 

(Table S4.2) are shown in the network in (Fig. 4.6b). Clear functional interactions were 

observed between the nuclear proteins identified, which frame the biological clusters in 

line with the mathematical correlations established using sPLS analysis. 
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Fig. 4.6: Integrative analysis of nuclear proteins involved in heat stress and thermopriming 

process. a) sPLS-based network built using transcription factors and regulators identified with the 
TF predictor tool as the predictor matrix for changes in the rest of nuclear proteome. Correlation 
cut-off was 0.75, node size was calculated accordingly to radiality. b) STRING based network of 40 
most relevant proteins (20 top scoring positive loadings and 20 top scoring negative loadings) in 
PCA components 1 and 2. Selected proteins were blasted against STRING database of the model 
species Arabidopsis thaliana and those with a minimum of homology of 60% were employed to 
build the network. Network edges indicate a biological correlation at least of 0.7 from experimental 
or curated databases resources.  
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The functional interaction analysis showed clusters that were devoted to HSPs: 

ribosomal activity, epigenetics, fatty acid metabolism, and RNA processing and splicing. 

This reflected the connection between spliceosome proteins and the ribosomal machinery, 

and between both of them and HSPs. In addition, HSPs were directly connected to 

epigenetic regulation (SAM synthase and SAHH), since epigenetic related changes are 

those intended to react in fastest way, the link among HSPs and methyl cycle enzymes 

may suggest the relevance of the quick regulation of HSP expression. Epigenetic proteins 

showed the highest values at T3 and T5, key points related to the acclimation process and 

adaptation, respectively (Fig. S4.3). An independent cluster related to redox, flavonoid 

biosynthesis, and energy processes was also found. 
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4.5 Discussion 
 

4.5.1 Integrative analysis of the nuclear proteome confirms proteomic 
rearrangement and small HSPs as essential mechanisms to maintain 
plant function after initial heat stress 
 

High temperature has a great impact on plant physiology (Escandón et al., 2017), 

and many and complex processes are involved in heat-response signaling. Recent studies 

in plants have elucidated the complex transcriptional regulatory networks involved in high-

temperature responses (Ohama et al., 2017; Ling et al., 2018). Our study was focused on 

studying the nuclear proteome under heat stress; the nucleus plays an essential role 

during genome organization, different phases of cellular development, and physiological 

responsiveness through regulated gene expression. Thus, identification of nuclear 

proteins represents an initial step towards gaining new insights into cell responses to heat 

stress in P. radiata. The nuclear proteome is highly dynamic, changing its composition in 

response to environmental and intracellular stimuli (Pascual et al., 2016) in order to guide 

the subsequent remodulation of the global proteome (Narula et al., 2013), and it provides 

useful information about the mechanisms underlying the heat-stress adaptation processes 

in Pinus radiata at transcriptional level.  

 

In addition to HSPs, our study identified different regulation steps involved in 

epigenomic-driven gene regulation, several transcription factor families, and a variety of 

RNA-associated functions (spliceosome, proteasome, and mRNA surveillance). The 

results of all these changes were subsequently detectable in the over-accumulation of the 

translasome machinery (ribosomal proteins and eukaryotic initiation factors) needed to 

carry out the required cell reorganization. We also found differential responses to short-, 

mid-, and long-term heat exposure, as well as stable histone H2A-related heat-induced 

markers that were established during the recovery phase. 

 

Photosynthetic activity was clearly impaired by heat stress in P. radiata, as 

observed from leaf gas-exchange parameters (Fig. 4.2) and heatmap clustering (Fig.4.3). 

These results, in accordance with Chapter 3 and those described in Buchner et al. (2015), 

showed that under heat stress photorespiration metabolism was favored, and in the 

extreme treatment for 10 d it led to fermentation. There were differences in the gas-

exchange parameters such as transpiration rate and stomatal conductance, with values 

for recovered plants exceeded those of the controls. Together with the alterations that we 
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observed in the nuclear proteome, this provided a sign of epigenetic regulation; the 

biological processes were durable even in the absence of stress, indicating possible 

memory effects, which have already been described in other model species (Ling et al., 

2018). 

 

Heatmapping revealed two groups associated with the stress treatments, namely 

those related to mid- (T3 and T5) and long-term (T10) exposure, and those related to short-

term (T1), control, and recovery treatments, which emphasized the wide differences 

between stress and recovery events. Since the T10 treatment severely damaged the 

plants, the T5 plants were used for testing any possible primming effect (Fig. 4.1). A recent 

study (Ling et al., 2018) refers to thermopriming as an event of non-lethal exposure to heat 

stress that allow plants to survive subsequent and otherwise lethal conditions. 

 

Using multivariate analyses including PCA and K-means, together with integrative 

approaches and a comprehensive analysis of the generated sPLS networks with biological 

correlations and the STRING tool, we were able to uncover several links between key 

proteins in relation to both the stress and memory responses. As expected, we found high 

abundances of HSPs, ER molecular chaperones (DnaJ), and ribosomal machinery, as 

previously reported by Escandón et al. (2017), Several relevant players and pathways 

were identified that have also previously been described in heat and cold responses, such 

as LOS4 (Gong et al., 2002, 2004), PHOSPHOGLYCERATE KINASE (Escandón et al., 

2017), and polyphenol biosynthesis through the alteration of COMT. These results not only 

validate the nuclear integrative approach used but also represent new findings, as 

discussed below. 

 

4.5.2 Stress-response and memory effects in conjunction with differential 
and opposite epigenetic patterns involving hypo- and 
hypermethylation 
 

DNA methylation is a well-known epigenetic marker of transcriptional gene 

silencing, but it also occurs in the establishment of heterochromatin, transposon control, 

and genomic imprinting (Galindo-Gonzalez et al., 2018). Two of the key enzymes 

regulating the methylation cycle, SAM synthase and SAHH, were identified as central 

elements in our integrative analysis of the nuclear proteome, with both decreasing 

proportionally with the stress exposure time. This seemed to indicate that heat stress 

drives hypomethylation, since SAM is a methyl-group donor and an essential 
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methyltransferase co-factor, and SAHH is a methyl-cycle enzyme that is required for SAM 

regeneration and transcriptional gene silencing-mediated methylation. In addition, COMT, 

a precursor of fatty acid and flavonoid biosynthesis through phenylpropanoid biosynthesis, 

was found to be over-accumulated uniquely in the short-term response (T1). COMT is also 

a SAM-dependent methyltransferase. Hence, contributing to the depletion of SAM 

suggesting a possible DNA hypomethylation in the first heat stress shock. As showed in 

Escandón et al., (2017), the overproduction of fatty acids is required for the short-term 

response to heat stress in Pinus radiata, and in the mid- and long term, enzymes 

implicated with flavonoid synthesis are essential for successful adaptation. This 

metabolites favor protein biosynthesis in the cell cytoplasm, which is of great importance 

at this point when the translasome machinery is clearly up-regulated and has a high 

demand for HSPs.  

 

Interestingly, SAM synthase and SAHH were found to among the major differences 

between heat-stressed and stress-recovered plants (T5 versus SR); both were depleted 

by the stress, but higher levels were detected in the stress-recovered plants (Fig. 4.5b). 

Moreover, stress-induced demethylation has been found to relax chromatin structure, 

thereby allowing enhanced transcription and proteasomal rearrangement (Shilatifard, 

2006; Santos et al., 2011), which has been linked to heat-tolerant genotypes in other plant 

species (Gao et al., 2014).  

 

These results support the hypothesis that environmental factors (including 

temperature and other stresses) are more important in changes in DNA methylation than 

in those that occur spontaneously or that have a genetic basis (Dubin et al., 2015). Over 

recent years it has been proposed that, as sessile organisms that must persist in the same 

location for a long time, plants may be particularly likely to exploit DNA methylation for 

rapid adaptation to changing environments (Valledor et al., 2012; Kawakatsu et al., 2017). 

 

4.5.3 Nucleosome structure and spliceosome functioning are altered by 
heat stress in relation to the thermopriming process 
 

Priming and the establishment of stress memory can help plants to survive a variety 

of abiotic stress conditions, including heat (Tanou et al., 2012; Filippou et al., 2012). The 

maintenance of acquired thermotolerance is crucial for successful priming and tolerance 

to subsequent exposure to otherwise lethal temperatures (Ling et al., 2018). The rebound 

effect pattern showed through clusters 1 and 2 in protein k-means analysis of recovered 
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groups (Fig. 4.6b) seemed to reveal a priming process, since the highest levels of some 

key proteins were increased in recovered plants, such as histones H2A and H2B, and 

NEDD8 E1. The decrease of histone abundance during the first round of stress could be 

related to the formation of hexasomes, as described by Shaytan et al. (2015). Hexasomes 

are stable nucleosomes lacking H2A-H2B dimers, usually caused by RNA pol II 

transcriptional activity and DNA repair processes. Accordingly, RNA polymerase II kinetics 

are accelerated under heat exposure (Jonkers and Lis 2015, Chen et al. 2016) and some 

DNA mismatch repair proteins are over-accumulated such as HPMS5 HOMOLOG and 

NEDD8 E1. This hypothesis fits with the over-accumulation of some probable mediators 

of RNA polymerase II transcription proteins which were identified as the proteins in cluster 

9 (Fig. 4.6a, Table S4.3) that were increased by the heat stress.  

 

The loss of H2A–H2B dimers in the nucleosome was counteracted in the recovery 

step (1 month in control conditions), providing a sign of an epigenetic memory-related 

process. Interestingly, both histones and DNA methylation enzymes were found to be 

altered in order to enhance DNA accessibility by chromatin relaxation under heat stress. 

While chromatin relaxation marked the nucleosome status during the stress, a more 

compact nucleosome structure was found to occur after recovery, when the plant 

metabolism was again focused on development and growth pathways. This provide an 

insight into the importance of nucleosome occupancy and DNA accessibility in the non-

primed and primed responses.  

 

Spliceosome-related proteins were also significantly altered by heat stress, as 

shown in the PCA and, the sPLS and STRING based networks (Figs. 4 and 6). 

Spliceosomal activity was impaired under stress (Table 4.2) and then the abundance of 

spliceosomal proteins was increased beyond basal levels in recovered plants (Figure 5b, 

Table S4.4); as a consequence, mRNA surveillance and proteasome activities such as 

ubiquitination were found to have a pivotal role in the STRING and sPLS networks, as a 

link between the spliceosome and translasome machinery. This findings align with 

previous works, showing how thermopriming leads to alternative or impaired splicing 

events (Ling et al., 2018).  

 

This study shows for first time the dynamics of the nuclear proteome related to the 

heat-stress response and the recovery processes. The depth and complexity of this study 

in relation to the number of proteins identified and analyses performed allowed a detailed 

depiction of these routes, and revealed several crucial families of proteins that are involved 

in different key regulation steps such as proteasome reorganization, RNA-associated 
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functions, epigenomic-driven gene regulation, and specific transcription factors previously 

unconnected to heat stress. In addition, histone H2A, alternative splicing, and methyl-cycle 

enzymes seem to be directly linked to the induction of thermopriming, and the active 

remodeling of the transcriptome and proteome that triggers the crucial processes involved 

in high-temperature responses and adaptation. This newly discovered priming-induced 

epigenetic memory may represent a general feature of heat-stress responses in conifers, 

and it may facilitate the development of novel approaches to improving survival of pine 

trees under extreme heat stress in the current context of climate change.  
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4.7 Supplemental information 
 

4.7.1 Supplemental Figures 

 
Supplemental Figure S4.1. Nuclear raw and purified factions images stained with DAPI 

obtained by confocal microscopy. 
 

 
Supplemental Figure S4.2: sPLS based network of IRGA vs. nuclear proteins 
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Supplemental Figure S4.3. Heatmap-Clustering analysis of most relevant categories of 

nuclear proteins species depicted in protein-protein interaction networks  
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4.7.2 Supplemental tables  
 

Supplemental table legends 
 

Supplemental Table S4.1. Nuclear proteins identification, quantification, 

annotation and univariate analysis. 
Supplemental Table S4.2. PCA loadings considering the nuclear proteins in a) all 

the treatments (C, T1, T3, T5, T10, SR and NS); b) Heat-treated groups (C, T1, T3, T5 

and T10) and c) Recovered groups (C, T5, SR and NS).  

Supplemental Table S4.3. Kmeans clustering of anova filtered nuclear proteins 

(qvalue ≤ 0.05) of a) Heat-treated groups (C, T1, T3, T5 and T10) and b) recovered 

groups(C, T5, SR, NS). 

Supplemental Table S4.4. Spare Partial Least Square regression of a) 

transcription regulators network and b) IRGA and nuclear proteins network. 
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CHAPTER V. Integration of nuclear and 
chloroplast proteomes to decipher signaling 
mechanisms under heat stress in Pinus radiata1. 

 
5.1 Abstract 

The recovery and maintenance of plant homeostasis under stressful environments 

are complex processes involving organelle crosstalk for a coordinated cellular response. 

Here, we revealed through nuclear and chloroplast subcellular proteomics, biochemical 

cell profiles and targeted transcriptomics how chloroplasts and nuclei developed their 

responses under increased temperatures in a long-lived species, such as Pinus radiata. 

Parallel to photosynthetic impairment and reactive oxygen species production in the 

chloroplast, a DNA damage response was triggered in the nucleus followed by an altered 

chromatin conformation. In addition, in the nuclei, we found several proteins, such as 

HEMERA or WHIRLY, which change their locations from the chloroplasts to the nuclei 

carrying the stress message. Additionally, our data showed a deep rearrangement of RNA 

metabolism in both organelles, revealing this process as a potential regulator of the 

acclimation mechanisms. Altogether, our study highlights the synchronization among the 

different stages required for thermotolerance acquisition in P. radiata, pointing out the role 

of chromatin conformation and posttranscriptional gene regulation in overcoming heat 

stress and assuring plant survival for the following years.  

 

 
1 Lamelas L, Valledor L, López-Hidalgo C, Cañal MJ, Meijón M. 2022. Nucleus and 

chloroplast: A necessary understanding to overcome heat stress in Pinus radiata. Plant 
Cell and Environment 45: 446–458. 
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5.2 Introduction 
 

Human-induced climate change represents a fundamental challenge for vegetation 

dynamics, being a concern for crop productivity and the sustainability of some ecosystems. 

Moreover, climate models predict average temperatures to rise and heat waves to be 

increasingly frequent (Lesk et al., 2016; O’Neill et al., 2017). Fortunately, as sessile 

organisms, plants have evolved sophisticated molecular mechanisms to perceive and 

cope with environmental stresses like high temperatures and even “learn” from them 

(Bäurle, 2016; Ling et al., 2018). This molecular-based memory represents an essential 

strategy for plants, especially for those species with long life cycles, such as forest trees; 

“with age comes wisdom”. Despite the importance of high temperatures as one of the key 

stressors of forest ecosystems, the cellular mechanisms leading to its perception, signaling 

and molecular memory acquisition are still poorly understood.  

 

Stress acclimation mechanisms rely on the precise coordination between nuclei 

and endosymbiotic organelles (Pfannschmidt et al., 2020). While the nucleus is the main 

regulatory hub of the cell; the chloroplast is the plant-cell defining organelle, which houses 

photosynthesis and the biosynthesis of secondary metabolite precursors (Dobrogojski et 

al., 2020). Its genome codes around 100 proteins (Daniell et al., 2016). Nevertheless, 

thousands of genes now encoded in the nuclear genome were transferred from the 

chloroplast genome during evolution (Dobrogojski et al., 2020). The proteins coded by 

these genes are still required to be imported into the chloroplast for its proper development 

in a process called anterograde regulation (Unal et al., 2020).  

 

On the other hand, the chloroplast can regulate nuclear gene expression via 

organelle-to-nucleus retrograde signaling (Jung & Chory, 2010). Although the coordinated 

expression of chloroplast and nuclear genes regulated by retrograde signaling is 

indispensable for plant growth and development, how the organelle-to-nucleus 

communication takes place is largely unknown (Zhao et al., 2020). Recent studies point 

out that chloroplasts act as thermosensors or thermal alarms (Dickinson et al., 2018; Zhao 

et al., 2020). While photosynthesis is damaged and photorespiration increases (Hu et al., 

2020), ROS and other signals including carotenoid derivatives such as tocopherols, 

isoprenoid precursors, phospho-nucleotides and heme are released into the cytoplasm 

(Zhao et al., 2019, 2020). These signals travel to the nucleus where the main cell response 

can be triggered by, among others, alterations in nuclear gene expression. This 
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coordination is essential to attempt to reach the stress-adapted cell homeostasis required 

for overcoming the stress.  

 

To get a deeper understanding of these signals and how these processes are 

synchronized in this chapter they are integrated two untargeted subcellular proteomics 

studies (nuclear and chloroplast, independently) in a time-course experiment with high 

temperature stressed P. radiata plants.   
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5.3 Material and Methods 
 

5.3.1 Data acquisition 
 

The spectra obtained in the previous Chapters (3 and 4) were used for the 

integrative analysis presented in this Chapter. In brief, nuclear and chloroplast proteomes 

in basal conditions and under a 5-day heat wave with three sampling points at the end of 

the six hour 45ºC stress treatment (Fig S5.1) have been re-analyzed and integrated as 

described below, due to the new availability of the assembly of the Pinus radiata de novo 

transcriptome under heat stress, which was used for an enhanced protein identification.  

 

5.3.2 Proteomics re-analysis 
 

Protein identification was performed with Proteome Discoverer v2.2 

(ThermoFisher). A combined database was compiled with three protein databases and 

used for protein identification, including the Pinus taeda genome v.1.01 

(https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/), UniProt/SwissProt 

Viridiplantae and a novel P. radiata transcriptome under heat stress (Escandón et al., 

2022). The mass spectrometry proteomics data including RAW, msf and pepXML files 

have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol 

et al., 2019) partner repository with the dataset identifier PXD029114. 

 

Identified protein sequences were blasted using the following in silico localization 

tools: BUSCA (Savojardo et al., 2018), Localizer (Sperschneider et al., 2017), YLoc 

(Briesemeister et al., 2010), TargetP (v2.0) (Almagro Armenteros et al., 2019), NucPred 

(Brameier et al., 2007), NLStradamus (Nguyen Ba et al., 2009), NLSdb (Nair et al., 2003) 

and Plant TFDB (v4.0) (Jin et al., 2017). Then, proteins were annotated with sma3s 

(Casimiro-Soriguer et al., 2017) and Mercator MapMan (Lohse et al., 2014) tools.  

 

Finally, we addressed contamination issues by dropping for downstream analyses 

those proteins with less than two matches for their cellular organelle considering in silico 

localization tools or with no positive subcellular location in the annotation according to 

Mercator Mapman or sma3s. 

 

 

 



                                                                                                                                   CHAPTER V 
 

 101 

5.3.3 Statistical analyses 
 

All statistical analyses were performed in R (v 4.0.2) (R Core Team, 2020); 

proteomics datasets were analyzed using pRocessomics R package, (available at 

htttps://github.com/Valledor/pRocessomics) and described in Chapter 2, to perform data 

pre-processing, univariate (Venn) and multivariate analyses (PCA, kmeans, sPLS). Self-

organizing maps (SOM) were built using kohonen R package (Wehrens & Buydens, 2007); 

and T-distributed stochastic neighbor embedding (t-SNE) was calculated with Rtsne 

package (van der Maaten & Hinton, 2008). 

 

In brief, each proteomics dataset was pre-processed independently, keeping those 

proteins that were present in at least 15% of the samples or in all the replicas that 

constituted a treatment; missing values were imputed using Random Forest algorithm. 

After data pre-processing, univariate analyses were performed, and then both datasets 

were z-scaled for multivariate analysis. 

 

Correlation-based networks were inferred using sPLS multivariate analysis, 

independently for each cellular compartment, by splitting each dataset in nuclear- or 

chloroplast-encoded proteins and gathering the correlations between both groups of 

proteins, using a cut-off value of 0.7, networks were depicted using Cytoscape (v3.7.2) 

tool (Shannon et al., 2003), following the recommendations of Escandón et al., (2020). 
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5.4 Results 
 

5.4.1 Proteomics rearrangement as stress indicator 
 

A 5-day heatwave was mimicked, as described in Chapters 3 and 4, in two time-

series experiment to elucidate the coordinated response in nuclei and chloroplasts, mainly 

through their proteomes. The shared experimental design between the previous chapters, 

enables to track the crosstalk between these two organelles from both “points of view  

 

To characterize the molecular mechanisms driving this response, a systems 

biology analysis combining two subcellular bottom-up proteomics assays was performed. 

Spectra were identified employing a new P. radiata database built after heat-stress RNA-

Seq reads (Escandón et al., 2022) allowing a deep characterization of chloroplast 

proteome (belonging to the not-primmed progeny, E, described in Chapter 3,) with 1182 

quantifiable proteins. This database was also employed for reanalyzing available nuclei 

spectra from Chapter 4 enhancing previous protein identification in nucleus proteome, 

obtaining 1451 quantifiable proteins (Table S5.1). Qualitative proteome distributions 

across the time points are shown in the Venn diagram (Fig. 5.1a), showing subtle but 

consistent differences across both organelles.  

 

The biological meaning of proteome quantitative distribution was further studied 

with SOM. The SOMs of both organelles clustered the biological replicates according to 

sampling points in the same cells (Fig. 5.1b). The nuclear proteome was remodeled after 

the first stress exposure, with an increased DNA damage response and multi-process 

regulation MapMan categories. Following the bibliography and previous Chapters, as the 

stress time increased, the nuclear proteome dynamics turned to increased chromatin 

organization (Chapter 4), protein translocation (Krause et al., 2012; Li et al., 2017) and 

vesicle trafficking (Wang et al., 2020) categories. Finally, after 5 days under stress, more 

biological processes became relevant, especially those related to RNA and proteins. 

Meanwhile, in the chloroplast, SOM clusters corresponding to Control (T0) and T1 were in 

non-adjacent cells, indicating a drastic initial response, mainly described by a 

photosynthesis-related proteins depletion in T1. The multi-process regulation category 

was firstly triggered by the stress along with coenzyme and lipid metabolism, which was 

maintained in T3 when secondary metabolism and RNA clusters became more abundant 

until T5, where protein transport and trafficking classifications were the most relevant. 
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Figure 5.1. Proteomics exploratory analysis (a) Venn diagram representing the overlap 

of nuclear and chloroplast proteomes across the experiment. (c) Self-organizing map (SOM) of 
nuclear and chloroplast proteomes. Pie charts inside the cells indicate the relevance of protein 
functional categories according to Mercator MapMan. All procedures were done with four 
biologically independent. 

 

5.4.2 Chloroplast proteome response stopped evolving at midterm heat 
exposure, while nuclear proteome kept changing 
 

After exploring the main mechanisms leading the heat stress response in both 

organelles, Multivariate analyses were employed with a focus on identifying those concrete 

protein candidates that were the most representative of each stress stage. To this end, 

sample clustering unsupervised analysis we performed over the proteome datasets, 

including PCA and t-SNE. 
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Fig. 5.2. PCA Score plot and PC1 and PC2 top-ranked proteins. (a) Nuclear proteome, 

(b) chloroplast proteome and (c) their combination. (a–c) Top 30 scoring loadings (15 highest and 
15 lowest) of PC1 and PC2 are shown by row for each PCA, bar colours indicate the experimental 
condition in which each top-scoring protein is more accumulated. Ellipses show a 75% confidence 
interval. Different colours indicate different experimental conditions (n = 4 biologically independent 
replicates). 

 

PCA allowed the determination of the main sources of variation among our 

sampling points in both proteomic datasets and their combination. In each case (Fig. 5.2, 

Table S5.2), the sum of Principal Components 1 and 2 (PC1, PC2) explained more than 

45% of the variance. In addition, in all analyses, PC1 separated control from stressed 

plants, while PC2 highlighted different processes depending on the organelle. Nuclear 

proteome PC2 gathered the variance related to stress exposure (Fig. 5.2a), whereas 

chloroplast and combined proteomes separated the first stress shock (Fig. 5.2b and c) 

from the other two sampling points. In addition, chloroplast proteome PCA (Fig. 5.2b) was 
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unable to differentiate between T3 and T5 samples. This indicated that, in terms of 

proteome variation, chloroplasts reached in T3 a stationary state, which was maintained 

in T5. To further check sample distribution, t-SNE analysis (Fig. 5.3) was performed, 

known to be insensitive to data collinearity and overfitting. t-SNE corroborated chloroplast 

PCA clustering showing no differences between T3 and T5 and revealed similarities (by 

cluster overlap) between T0 and T5 in the nuclear data set. 

  

Once PCA sample distribution was validated by t-SNE, top-scoring loadings of PC1 

and 2. The proteins showing top positive loadings in PC1 (overaccumulated along with the 

stress) showed, as expected, the relevance of heat shock proteins (HSP) as a common 

heat stress response in both organelles. However, a closer look into the proteins, which 

were more abundant under control conditions, revealed relevant organelle-specific 

processes. These included S-adenosylhomocysteine hydrolase (SAHH), related to the 

methyl cycle in the nucleus (Figure 2a). As well as redox, RNA binding and photosynthesis-

related proteins in the chloroplast (Figure 2b) and in the combined datasets (Figure 2c), 

such as PPD1, PROTOCHLOROPHYLLIDE OXIDASE, ZEAXANTHIN EPOXIDASE, 

FTSH protease 2 and HCF164 proteins, all of them linked to D1 chloroplast protein 

synthesis and assembly (Schult et al., 2007) and to the PSII repair cycle (Kato & 

Sakamoto, 2018), known to be sensitive to stress.  

 

  
Fig. 5.3. Bidimensional non-linear clustering. t-SNE scatterplot of a, Nuclear proteome, b, 

Chloroplast proteome, and c, Theircombination. (a-c) Ellipses show a 75% confidence interval. 
Different colours indicate different experimental conditions (n = 4 biologicallyindependent 
replicates). 
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Figure S1. Bidimensional non-linear clustering. t-SNE scatterplot of a, Nuclear proteome, b, Chloroplast proteome, and c, Their
combination. (a-c) Ellipses show a 75% confidence interval. Different colors indicate different experimental conditions (n = 4 biologically
independent replicates).
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Regarding PC2, in the chloroplast (Fig.5.2b) and combined datasets (Fig. 5.2c), 

samples were clustered distinguishing first versus subsequent stress exposure days. 

Acclimation of photosynthesis to the environment (APE) acclimation factor and other 

proteins related to photosynthesis, such as PSB27, previously linked to PSII-independent 

adaptation to light stress (Hou et al., 2015), showed high negative loadings and an 

overaccumulation in T1 samples. Contrastingly, carbon metabolism proteins (such as 

sucrose synthase or transaldolase), EF-TU translation elongation factor, related to heat 

tolerance (Ristic et al., 2007), ARC5 essential for chloroplast division and biogenesis (Gao 

et al., 2003) and RUVB-LIKE HELICASE, also known as heat-responsive and related to 

thermotolerance in rice (Saifi et al., 2018), presented their highest positive values and 

peaked in longer exposure times (T3 and T5). 

 

The combined analysis of both datasets besides revealed a cluster of proteins with 

high scoring values related to RNA metabolism, such as NSR RNA splicing regulator, 

RPOA RNA polymerase or RNA polymerase V. The latter is a multisubunit plant-specific 

nuclear RNA polymerase required for the normal function and biogenesis of small 

interfering RNA (siRNA) and is involved in the regulation of gene expression by siRNA-

directed DNA methylation (Xie & Yu, 2015).  

 

5.4.3 Dual-located proteins as key players in the coordination of stress 
response mechanisms. 
 

An increasing number of proteins are found dually localized in the plastids and the 

nucleus (Krupinska et al., 2020). Many nuclear transcription factors were shown to be 

controlled by signals generated in the organelles. In addition to the metabolites involved 

in retrograde signaling (Zhao et al., 2020), there is accumulating evidence suggesting a 

role for proteins in plastid-to-nucleus communication. Indeed, several proteins exhibiting a 

dual localization in the plastids and the nucleus are promising candidates for direct signal 

transduction involving regulatory protein storage in the plastids (Krause et al., 2012). In 

this work, 340 proteins were detected in both organelles (Table S5.3). 

 

An overview of the changes in these double agents across the stress in both 

organelles was performed using the k-means algorithm, obtaining 25 different clusters 

according to their abundance profile (Fig. 5.4a). Several clusters showed a similar trend in 

both organelles. An increasing accumulation pattern during stress conditions was shown 

in Clusters 2 and 22. Low levels in T1 and high levels in T3–T5 for Clusters 1 and 19 and 
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a decreasing accumulation in Clusters 18 and 23, where we found HEMERA protein (also 

known as pTAC12 and PAP5). This protein exhibits different functions depending on its 

cellular location; in the nucleus, it is related to phytochrome signaling (Chen et al., 2010), 

and in the chloroplasts, it is required for gene expression (Steiner et al., 2011).  

 

The most recurring trend was an opposite profile (Clusters 5, 7, 8, 11, 12 and 17). 

These organelle-specific accumulated clusters included proteins related to carbohydrate 

metabolism, cell cycle organization, chromatin organization, photosynthesis and cellular 

respiration (Fig. 5.4b), all of these essential processes in plant metabolism. Within these 

groups, DNA/RNA binding protein WHIRLY1 was noteworthy (Cluster 8, Table S4), since 

this protein has been proposed to move from the chloroplast to the nucleus in response to 

environmental cues such as high light intensity, in which a WHIRLY1-dependent increase 

of nuclear microRNAs was reported (Świda-Barteczka et al., 2018). Now, through this 

work, WHIRLY1 was found to follow the same pattern in high-temperature response as 

well.  

 

Strictly increasing and decreasing clusters were mainly composed of redox 

homeostasis and photosynthesis proteins, respectively (Fig. 5.4b); while the profile of 

Clusters 1 and 19, with low levels in T1 and high levels in T3–T5, which could be connected 

to acclimation processes and possibly to signaling or memory acquisition. These clusters 

essentially collected proteins from RNA metabolism and protein biosynthesis (Fig. 5.4b), 

as RNA splicing regulator, RH3 plastid RNA basal splicing factor and ribosomal proteins 

(Table S5.3). 
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Fig. 5.4. Pattern-clustering of dual localized proteins. (a) k-means analysis of the 

abundance of dual located proteins across the stress. Three hundred forty proteins showing dual 
localization were identified, scaled in each data set, and k-means clustered yielding 25 groups. 
Colours indicate the cellular location; nuclear in light blue and chloroplast in green. Continuous lines 
indicate mean values for each protein at each experimental condition (n = 4 biologically independent 
replicates) and bold lines indicate mean values for each cluster at each experimental condition. 
(b) Pie charts of most abundant function annotation classifications for each cluster and cellular 
location. Different colours indicate different protein functional annotation classification according to 
Mercator Mapman. 
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5.4.4 Nuclear-chloroplast crosstalk, a two-way road 
 

Both nuclei and chloroplasts contain proteins whose DNA is encoded in the 

genomes of other organelles. These ‘non-native’ proteins are known to play a role in 

organellar communication along with the dually located proteins already identified. To 

further explore this crosstalk, we performed an integrative analysis by evaluating the 

correlations among the proteins quantified. To do so, each data set was independently 

divided into ‘native’ (encoded in this organelle genome) and ‘nonnative’ proteins, and the 

correlations among them were evaluated using sPLS algorithm and depicted as two 

protein–protein networks (Fig. 5.5, Table S5.4). The relations between nuclear-encoded 

proteins found in the chloroplast proteome might give insights related to anterograde 

communication, and the relations between chloroplast-encoded proteins found in the cell 

nucleus might be related to retrograde communication. 

 

Anterograde communication traces (Fig. 5.5a) were found in the chloroplasts, 

where the ubiquitous HSPs and RNA chaperones were transcribed in the cell nuclei and 

sent to the chloroplasts, probably as the desirable consequence of the gene expression 

alterations at cell nuclei as a defense shield against stress. These proteins are known to 

be essential to maintain chloroplast functionality, along with redox enzymes (APX, 

thioredoxins, SOD) also highlighted in chloroplast PCA loadings (Fig. 5.2b, PC2), which 

have a role in counteracting the electron transfer flux disruption and redox imbalance 

triggered by the hyperthermal stress (Fang et al., 2019). Furthermore, this network 

provided potential candidates and indicated that RNA metabolism rearrangement is also 

required in the chloroplasts and was at least partially driven from the cell nucleus, with the 

opposite abundance changes of organelle RRM domain-containing protein 6 (Fu et al., 

2007) and RNA binding protein CP29B linked to photosynthesis and RNA metabolism 

(Hackett et al., 2017). 
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Figure XX. Reconstruction of nuclei-chloroplasts communication by sPLS networks. (a) Anterogr 
ade communication-related network, was built using chloroplast targeted proteins, which were 
divided according to their gene localization (nuclear or chloroplast genome), network links depict 
the correlations found among nuclear-encoded proteins and chloroplast-encoded proteins. 
(b) Retrograde communication-related network, was built following the same schema, being this 
time nucleus targeted proteins divided according to their gene localization. Triangles indicate 
chloroplast-encoded proteins and circles nuclear-encoded proteins. Node colours indicate Mercator 
MapMan classification according to the legend. Edge colour indicated inversely proportional 
(negative) relations in red and proportional (positive) relations in blue. Edges below a 0.75 cutoff 
were removed. T0, T1, T3 and T5 subnetworks in the bottom represent the proteins' abundance 
distribution across the control and heat-stress treatments. All models were built using four 
biologically independent replicates 
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On the other hand, retrograde communication (Fig. 5.5b) seems to be linked to 

chloroplast-encoded RNA polymerases, whose expression were altered concomitantly 

with histones and RNA splicing factor MAC3, transcription factors (C3H Zinc Finger, Triple 

Helix and jumonji) and protein metabolism (processome components and ribosomal 

subunits such as SWA1(Shi et al., 2005) and RACK1 (Guo et al., 2011)).  

 

Taken together, both networks covered potential players of the nucleus-chloroplast 

communication, involving chromatin organization, photosynthesis, redox, RNA and protein 

metabolisms.  
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5.5 Discussion 
 

An important unanswered question in stress plant biology is how signaling 

coordination between organelles takes place and what experimental approach can be 

used to address these molecular mechanisms. Here, we show that subcellular untargeted 

proteomics is a powerful strategy to provide insights into how plants orchestrate 

physiological responses. 

 

5.5.1 The acclimation stage seems to be reached firstly in the chloroplast 
and then in the nucleus 
 

The employed experimental design allowed to monitor organelle responses after 

one, three and five consecutive days of heat stress. Chloroplasts exhibited a more drastic 

proteomic variation after the first day of stress (Fig. 5.1b), while their proteomic profiles 

varied slightly from T3 to T5 (Figs. 5.2b and 5.3), suggesting that a new homeostatic state 

was reached at mid-term stress exposure. Taken globally, these results showed various 

pieces of evidence indicating an acclimation process at mid-term stress exposure. The 

APE acclimation factor, triggered in T1, may be key to survive to the following days, given 

that Arabidopsis thaliana ape mutants showed a defective acclimation response (Walters 

et al., 2003). Additionally, the chloroplast protein synthesis elongation factor EF-TU raised 

in T5 was found to be implicated in heat tolerance in maize (Ristic et al., 2007) revealing 

a possible long-term thermotolerance acquisition process placed in the chloroplast. Also, 

the over-accumulation of ARC5 in T5, which is essential for chloroplast division (Gao et 

al., 2003) gave insights into chloroplast heat-stress-overcoming mechanisms. 

 

Meanwhile, the nucleus triggered after the first heat shock a DNA damage 

response (Fig. 5.1b). The third stress exposure caused an accumulation of chromatin 

organizing proteins as histone isoforms (Fig. 5.1b and, 5.5b), and after five days 

transcription and translation metabolism-related proteins were over-accumulated (Figs. 

5.2a and, 5.2c), coupled to a whole-cell FAA increase, suggesting a deep proteomic 

rearrangement towards thermotolerance acquisition. These processes were coupled to an 

upregulation of PTGS complexes through microRNA and AGO1 over-accumulation in the 

fifth consecutive exposure day (Figs. 5.5b), when plants finally seemed to be acclimated 

to the applied stress. This co-occurrence might imply an up-regulation of microRNAs 

metabolism as a result of an acclimated state; Post Transcriptional Gene Silencing (PTGS) 
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could function as a protection mechanism against an exaggerated response, which is no 

longer needed in the new homeostatic state. 

 

5.5.2 Heat and light stresses seem to reprogram nucleus-chloroplast 
crosstalk through pigments in a similar way 
 

In previous studies, it was observed that heat stress provoked a moderate and 

maintained decrease in PSII maximum efficiency. Interestingly, the decreased abundance 

of photosynthetic pigments, such as chlorophyll and carotenoids, matched the decrease 

Fv/Fm only in short and midterm heat exposures (Chapter 3). The mismatch found after 

five days between these measurements lead us to the chloroplast proteome, where it was 

found that D1 protein was depleted along with the enzymes related to the PSII repair cycle. 

Hence, PSII impairment likely explains the Fv/Fm drop. Additionally, since photosynthetic 

machinery is in part controlled by nuclear genome gene expression (Unal et al., 2020), 

these may indicate a reprogramming of basal communications between the two organelles 

during the stress.  

 

The chlorophyll depletion in short- and midterm stress can be due to different 

phenomena mainly including chlorophyll being used as a source for other metabolites, 

chlorophyll biosynthesis pathway downregulation or a combination of both processes. This 

latter option was likely to occur in different phases of each day stress exposure. As 

chlorophyll has been proposed to be a source for the biosynthesis of tocopherol through 

the phytol recycling pathway (Muñoz & Munné-Bosch, 2019), which is a signaling 

metabolite (Jung & Chory, 2010; Fang et al., 2019; Serrano et al., 2019), the pigment 

decrease could be linked to a heat-warning signal. In addition, tocopherol has an essential 

role in avoiding the propagation of lipid peroxidation (Muñoz & Munné-Bosch, 2019), so 

the MDA content maintenance along with the stress further supports a phytol recycling 

pathway-based-signaling towards stress. In addition, carotenoids serve as precursors of a 

wide variety of signaling molecules (Moreno et al., 2021); their depletion after six hours of 

stress on the first and third days seems to indicate that they acted as a source for other 

metabolites.  

 

On the other hand, in the proteome, we found some clues about the pigment 

changes, such as the under accumulation of protochlorophyllide oxidoreductase (Fig. 5.2b, 

PC1), an enzyme implicated in chlorophyll biosynthesis. In any case, free chlorophyll 

usually generates phototoxic catabolites; thus, the decrease in this pigment content may 
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prevent a further toxic effect. Simultaneously, zeaxanthin epoxidase was also depleted 

under heat stress (Fig. 5.2b, PC1), which may imply a xanthophyll shift towards an 

increased zeaxanthin amount, one well-known photoprotective pigment under high-light 

conditions (Jahns et al., 2009).  

 

Interestingly, several candidates involved in chloroplast heat reprogramming, such 

as the APE acclimation factor, PSB27, HEMERA and WHIRLY  were previously linked to 

light adaptation (Walters et al., 2003; Chen et al., 2010; Krause et al., 2012; Foyer et al., 

2014; Hou et al., 2015; Krupinska et al., 2020). However, these candidates have not been 

related so far to heat stress or heat tolerance. The relevance of these proteins in both 

stresses could be explained by the assumption that in natural conditions light and heat 

stress are often simultaneous, and that these candidates are related to the signaling of 

photosynthetic damage through ROS, which is a shared signaling pathway for several 

abiotic stressors. Among them, WHIRLY and HEMERA showed dual localization, probably 

acting as messengers between the two organelles.  

 

5.5.3 RNA metabolisms seem to be involved in organelle communication 
 

As depicted in the anterograde network (Fig. 5.5a), plastid-encoded RNA 

polymerases seem to be actively involved in stress response. Unexpectedly, we found 

plastid-encoded RNA polymerases along with other ten chloroplast-encoded proteins in 

the cell nucleus (Fig. 5.5b, Table S5.4). This finding should be taken cautiously, as to date 

there is no precedent record of chloroplast-encoded proteins targeted to the cell nucleus. 

Despite this fact, the presence of nuclear localization signals in these protein sequences 

may suggest them as potential dual-targeted proteins, which may enter the cell nucleus 

after chloroplast membrane disruption or fluidization, which is known to happen in heat 

stress conditions (Hu et al., 2020). Another plausible option is the direct protein export 

from the chloroplasts to the nucleus, which has been proven to be possible through 

stromules, which are tubular channels that allow metabolite and protein exchange (Köhler 

et al., 1997; Hanson & Sattarzadeh, 2013). Moreover, ROS production in the chloroplasts 

triggers plastid movement towards the nucleus and stimulates stromules formation (Kwok 

& Hanson, 2004; Brunkard et al., 2015; Hu et al., 2020; Mullineaux et al., 2020), which 

may be intended to communicate the stress signal avoiding cytoplasmic diffusion. 

However, further studies are required to test the extent and functionality of this physical 

communication. 
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In the nucleus, RNA metabolism also exhibited a characteristic profile in the last 

stress exposure (Figs 5.1b and, Fig.5.2). The main role of PTGS and microRNA previously 

linked to organelle crosstalk under stress conditions (Fang et al., 2019; Zhao et al., 2019, 

2020), as well as our results related to dual located proteins (Figs. 5.4a and, b), support 

the idea of a central role of RNA metabolism in heat stress response. Besides, 

apocytochrome proteins were found to be correlated to RNA metabolism through 

microRNA biogenesis, exoribonuclease and AGO1 proteins, which are shown to be the 

main players in stress signaling by directing gene repression (Fang et al., 2019) from the 

central regulatory hub of the cell. 

 

To sum up, in this Chapter, untargeted -omics approaches were combined to 

decipher the biochemical signals relative to stress acclimation, revealing how finely-tuned 

these sequential mechanisms are, covering ROS detoxifying, chromatin remodeling and 

their downstream consequences as RNA and protein metabolism reprogramming, which 

lead to stable changes that allow plants to survive to heat stress. These results increase 

our understanding of how plants adapt to challenging environments in long-lived species, 

such as Pinus radiata, which need to acclimate and survive for years to endure as species.  
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5.7 Supplemental information 
 

5.7.1 Supplemental figures 
 

 
Supplemental Figure S5.1. Experimental design mimicking a heatwave. Temperature 

tanked from 15 ºC to 25 ºC (night/day) in control conditions and from 15 ºC to 45 ºC under stress, 
night periods are shadowed. Selected sampling points from previous chapters to conform the 
integrative analysis between nuclei and chloroplast are indicated with circles. 
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Figure S1. Experimental design. Temperature ranked from 15 ºC to 25 ºC in
control conditions and to 45ºC in stress conditions. Sampling points are
indicated with circles and night periods are shadowed.
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5.7.2 Supplemental tables 
 

Supplemental table legends 
 

Supplemental Table S5.1. Protein re-identification, subcellular location, 

preprocessed proteome abundances, univariate analysis and annotations of nucleus and 

chloroplast proteome datasets 

Supplemental Table S5.2. PCA explained variance, loadings and annotations 

considering nuclear proteome, chloroplast proteome and the concatenation of both them. 

Supplemental Table S5.3. Mean abundances, description, functional annotation 

and kmeans clustering of proteins showing dual location in the nucleus and the chloroplast 

Supplemental Table S5.4. Explained variance and multiblock loadings of 

anterograde and retrograde communication sPLS networks. 
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CHAPTER VI. Epigenetic (thermo)memory in 
Pinus radiata 

 

6.1 Abstract 
 

Plants are sessile organisms that usually need to face recurrent weather extremes 

in order to persist. Fortunately, molecular memory represents a promising mechanism for 

plant survival. However, despite its relevance, how plants remember stress remains poorly 

understood, particularly in long-lived species as Pinus radiata. To fill this gap, in this 

chapter, molecular memory has been explored from three epigenetic perspectives 

covering DNA methylation, studied through SAM synthase and SAHH gene expression 

and 5-methylcytosineC (5mC) detection; histone variants H2A and H2B, and microRNAs 

as miR160 and miRNA396. The evaluated candidates were selected accordingly to the 

previous chapters of this thesis and tracked along different experimental designs covering 

trans- and intra- generational memory development in seeds and seedlings. This newly 

discovered priming-induced epigenetic memory may represent a general feature of heat-

stress responses in forests species Thus, providing a panel of heat memory biomarkers 

that enhance our current knowledge on (thermo)primming field, and could represent a 

major advance for tolerant genotypes selection to be further studied by breeders. 

. 
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6.2 Introduction 
 

It has been established that environmental challenges to a maternal plant can 

affect the quantity and composition of starch reserves, epigenetic status, microRNAs, 

mRNAs, proteins, hormones, and other primary and secondary metabolites packaged into 

seeds (Herman & Sultan, 2011) leading to altered seed provisioning (Zas et al., 2013). 

These changes are expected to produce a more resistant phenotype showing an 

adaptational mechanism. This effect is called transgenerational memory (Liu et al., 2022a), 

and it has been shown that this kind of transmittable memory persists over generations 

and may explain the differences between isogenic subpopulations based, at least partially, 

on epigenetic mechanisms in model species (Adrian-Kalchhauser et al., 2020) as well as 

in forest trees (Carbó et al., 2019; García-Campa et al., 2022). Regarding epigenetic 

mechanism, microRNAs have been shown to play a main role in the maintenance of 

heritable molecular information from the parents to their offspring (Locato et al., 2018; 

Houri-Zeevi et al., 2021).  

 

In recent years, it has been reported that chloroplast retrograde signaling could 

involve the regulation of microRNA biogenesis in Arabidopsis thaliana (Lin et al., 2018; 

Świda-Barteczka et al., 2018; Fang et al., 2019; Ravichandran et al., 2019). However, the 

link between both processes is quite little-known, and even less so in long-lived species 

such as forest trees. MicroRNAs have been also established as key players in vital cellular 

aspects through microRNA-guided post-transcriptional gene silencing (PTGS). A few 

studies have claimed the relevance of PTGS in the heat stress response in other plant 

species, mainly through alterations in antioxidant activity and redox homeostasis (Guerra 

et al., 2015; Fang et al., 2019; Ravichandran et al., 2019), although it remains unknown 

whether this process is related to damage, signaling, or acclimation. However, it is still 

unclear, especially for woody plants, how this molecular process reprograms gene 

expression and whether they have a role in inherited memory.  

 

Besides microRNAs, other epigenetic components in the development of the 

memory are Histones and DNA methylation (Iwasaki & Paszkowski, 2014; Vriet et al., 

2015; Wibowo et al., 2016; Liu et al., 2022b). Hence, and in relation to nuclear proteins 

relevance when driving heat stress adaptation, it has been described the key role of 

epigenetic regulation and histone modifications to keep the memory of the stress (Bäurle, 

2016; Lämke et al., 2016) that lead to priming mechanism (Martinez-medina et al., 2016).  
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Priming involves a first training stress, a latent phase and a second stress event; 

in this later stress, the plant will be able to react in a more efficient way than previously, 

due to the information stored as chromatin structural changes and histone modifications 

(Gutzat and Scheid, 2012; Pastor et al., 2013; Asensi-Fabado et al., 2017). According to 

these findings, the epigenetic mechanisms, and particularly DNA methylation and 

nucleosome occupancy, seem to be main players on priming establishment. The 

epigenetic mechanisms involve covalent modifications of DNA and histones, which affect 

transcriptional activity of chromatin (Valledor et al., 2007). Since chromatin states can be 

propagated through cell divisions, epigenetic mechanisms are thought to provide heritable 

‘cellular memory’ (Iwasaki & Paszkowski, 2014). 

 

In this chapter, several types of molecular memory have been explored, including 

transgenerational memory, short term memory and stable memory acquisition processes 

by the combination of different experimental schemes. To characterize these changes 

leading to more resistant plants, throughout this chapter, the relative accumulation of 

microRNAs was analyzed in parallel to targeted transcriptomics analysis to elucidate the 

role of microRNAs in retrograde signaling and memory acquisition and maintenance 

processes. In addition, DNA methylation dynamics in basal conditions, during the stress 

and after plants were recovered was studied in the seedlings. And finally, in a second 

round of stress DNA methylation and histone isoforms related candidates to play a key 

role in the thermopriming processes were tested by RT-qPCR (reverse transcription 

quantitative real-time PCR). This approach included seeds, seedlings and saplings so a 

deep coverage of the epigenetic mechanism was achieved to enhance the understanding 

of these vital processes given the critical environmental situation we are currently facing. 
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6.3 Material and Methods 
 

6.3.1 Plant material and heat stress treatments 
 

Field-collected seeds belonging to the isogenic subpopulations described in 

Chapter 3 (E and T), were weighted, their area was measured using imageJ (Schindelin 

et al., 2012) and, dissected; embryos were used for (micro)RNA extraction; and the 

endosperms were lyophilized and used for physiological profiling (see below). Seeds from 

each progeny were divided into four pools that constituted the independent biological 

replicates in this study.  

 

Additionally, seeds belonging to both subpopulations were grown in 1 dm3 pots in 

a climate chamber (Fitoclima 1200, Aralab) under the following control day/night 

conditions: 16/8 h photoperiod (400 μmol m−2 s−1), 25/15 °C and 50/60% relative humidity 

(RH). Eight-month-old seedlings of the two progenies (height 25 ± 0.3 cm, showing no 

growth difference between them, t test, P>0.05) were used for mi(RNA) extraction and 

physiological profiling. 

 

The non-primmed progeny (E) was selected for the heat stress treatment, which 

was applied in an identical manner to previous chapters. In brief, plants were exposed to 

a 45 ºC maximum temperature, during five days, mimicking a heat wave in a climate 

chamber (Fitoclima 1200, Aralab). Needles from these plant (four independent pools, 

made of three plants each) were used for micro(RNA) extraction.  

 

After the heat stress, E progeny seedlings were allowed to recover in control 

conditions (described above) during one month, and sampled again, sections of needles 

(from T0, T1, T3, T5 and SR) were fixed in 4% paraformaldehyde for further 5-mdC 

immunolocalization analysis. Five months later, (six month after the first heat stress) E 

progeny saplings were heat-stressed again, together with plants of same age (14 months) 

without any prior stress exposure. The application of the heat stress was done in an 

identical manner as the first time (five consecutive days, 45 ºC, 6 hours/day). Needles 

were sampled for RNA extraction and physiological profiling. 
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6.3.2 Physiological profiling 
 

Quantification of Chlorophyll a, Chlorophyll b, Carotenoids, Malondyaldehyde 

(MDA), Free Amino Acids (FAA), Total Soluble Sugars (TSS), Starch (STA), Total 

Flavonoids (TFL), and Total Phenolics Compounds (TPC) were performed according to 

López-Hidalgo et al. (2021). This analysis was performed for T0 sampling points and both 

progenies starting from 10 mg of lyophilized needles. FAA, TSS, STA, TFL and TPC were 

also quantified in seeds of both progenies, starting from 20 mg of lyophilized endosperms. 

  

6.3.3 Immunolocalization of 5-mdC 
 

Methylated DNA was monitored in samples T0, T1, T3, T5, and SR (Stress 

Recovered) by 5-mdC immunolocalization according to the procedure described by 

(Meijón et al., 2010). Briefly, fixed needles were sectioned at 50 µm thickness using a CH 

1510-1 cryomicrotome (Leica Microsystems). The samples were permeabilized, blocked 

with bovine serum albumin and incubated with anti-5-mdC mouse antibody (Eurogentec, 

Belgium) diluted 1 : 50 in 1% blocking solution. Alexa Fluor 488-labelled anti-mouse 

polyclonal antibody (Invitrogen) diluted 1 : 25 was used as secondary antibody for detection 

of 5-mdC. The slides were counterstained with DAPI. Fluorescence was visualized using 

a TCS-SP2-AOBS confocal microscope (Leica). Maximal projection from a stack of six 

slides per sample was acquired using the Fiji software (Schindelin et al., 2012). 

  

6.3.4 (micro)RNA extraction, quantification, cDNA synthesis and 
quantitative reverse transcription PCR 
 

A set of common microRNA sequences previously identified in Pinus pinaster 

(Rodrigues et al., 2019), were blasted against miRbase (Release 22.1) (Kozomara et al., 

2019). Those sequences conserved in other tree species were kept and blasted against 

the transcripts sequences corresponding to the nuclear and chloroplast proteins, which 

were found to be significantly accumulated when comparing control to stress conditions 

as described in Chapter 5, using psRNATarget tool (Dai et al., 2018).  

 

The (micro)RNA extraction was performed according to Valledor et al., (2014), with 

minor modifications to enrich microRNA concentration: absolute ethanol was added to 

RNA-containing supernatant and then passed through the silica columns. RNA and 

microRNA were quantified using Qubit Assay Kits (Thermo Scientific, RNA cat. no. 
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Q33223; miRNA cat. no. Q32880), and a total amount of 500 ng were retro-transcribed 

using mi-X-RNA kit (Takara, cat. no. 638315). 

 

The qPCR reactions were performed in a CFX Connect Real-Time PCR machine 

(Bio-Rad) with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad), using three 

biological and three analytical replicates. Normalized Relative Quantities (NRQ) and 

Standard Errors of RQ were determined according to Hellemans et al., (2007). Expression 

levels of ACTIN (ACT) and GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE 

(GAPDH) were used as endogenous controls for mRNA quantification and U6 snRNA 

expression levels for microRNA quantification as recommended in mi-X-RNA kit (Takara, 

cat. no. 638315). Detailed information about the primers used for RT-qPCR experiments 

is available in Table S6.1.  
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6.4 Results 
 

6.4.1 Seeds belonging to two wild isogenic subpopulations already 
exhibited differences in weight, shape, composition and gene 
expression according to their maternal provenance 
 

In Chapter 3, two subpopulations were compared under heat stress, but 

interestingly, Fv/Fm, EL, TSS, and STA exhibited differences prior to the stress exposure 

(T0; P < 0.05, t test, Fig S6.1). To check whether these differences found in basal 

conditions could be detected already in the seeds belonging to each subpopulation, their 

weight, area,  and several physiological biomarkers of the seed endosperms (FAA, TSS, 

STA, TPC, and TFL) were measured. In addition, to further explore the underlying causes 

of these differences a targeted transcriptome profile including mRNAs (SAM synthase, 

SAHH and H2A) and miRNAs (miRNA 947, miRNA 396, miRNA 160, and miRNA 1131) 

was performed in seed embryos.  

 

As shown in Fig. 6.1a, the results confirmed the differences in seed provisioning 

between the progenies of both subpopulations. E progeny presented higher weight and 

lower area. For this reason, the rest of the measured parameters were scaled to dry 

weight. E progeny showed a higher amount of FAA and TFL, and potentially primed 

progeny (belonging to T subpopulation) showed an increase in starch and total phenolics 

content.  

 

The expression levels of three genes related to epigenetics: S-Adenosylmethionine 

(SAM) Synthase and S-Homocysteine Hydrolase (SAHH), required for DNA methylation, 

and the histone variant H2A.X linked to heat stress memory and recovery, as described in 

Chapter 4, as well as, biotic stress tolerance in pine species (Amaral et al., 2021) were 

measured. The expression of the heat-responsive microRNAs miR947, miR396, miR160 

and miR1131 was also evaluated (Fig. 6.1b). These microRNAs were found to be involved 

in the inhibition of H2A, APX, eIF3G and GUN4, covering epigenetics, ROS signaling, 

translation, and chloroplast-to-nucleus signaling (Table S6.2). Additionally, miR160 is 

related to plant development and heat stress response triggering (Lin et al., 2018).  

 

All mRNAs exhibit significant differences between seeds belonging to the two 

subpopulations. Those differences were however buffered in the seedlings, eight months 

after germination (Fig. S6.1b) when there were no growth differences between the two 
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progenies. On the other hand, miRNA expression also shifted from a lower abundance in 

the seeds to increased levels in T subpopulation seedlings for miR396, miR160 and 

miR1311 (Fig. S6.1b). 

 

 
Fig. 6.1. Seeds characterization. a) Seeds weight, area, and physiology profile including 

Free Amino Acids (FAA), Total Soluble Sugars (TSS), starch (STA), Total Flavonoids (TFL) and 
Total Phenolic compounds (TPC) and b) mRNA and microRNA relative expression of selected 
candidates. For both progenies. Asterisks indicate significance according to Wilcox non-parametric 
test; * pvalue < 0.05; ** pvalue < 0.01; *** pvalue < 0.001. 

 

6.4.2 microRNA contents raised at long-term heat stress exposure 
 

To further investigate the role of RNA modulation in the stress response, microRNA 

abundances were quantified in basal and under stress conditions (Fig 6.2a). The obtained 

results showed an increasing trend along with stress and a significant change in T5. 
 
In addition, we aimed to find concrete microRNAs and mRNA pairs relevant to heat 

stress acclimation mechanisms. To do so, transcripts from nuclear-encoded proteins, 

which exhibited significant variations in nuclear or chloroplast proteomes, were blasted as 

targets against conserved microRNA (Table S6.2). The in silico identified target-microRNA 

pairs were filtered to keep the most probable pairs.  
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Figure 7. Seeds characterization. a) Seeds weight, area, and physiology profile including Free Amino Acids (FAA), Total Soluble Sugars (TSS), starch (STA),
Total Flavonoids (TFL) and Total Phenolic compounds (TPC) and b) mRNA and microRNA relative expression of selected candidates. For both progenies.
Asterisks indicate significance according to Wilcox non-parametric test; * pvalue < 0.05; ** pvalue < 0.01; *** pvalue < 0.001.
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Fig. 6.2. microRNAs biogenesis across heat stress and correlation to candidate target mRNA and 
relative protein levels. (a) Normalized microRNA abundance, (b) candidate microRNAs levels, fold 
change of their targeted mRNA expression and correlative protein abundance. Proteins are 
represented in bars (grey) and mRNA (light blue) and microRNA (dark blue) in lines. (a,b) Different 
letters indicate significant changes according to HSD test (p < 0.05) four biologically independent 
replicates were used for proteomics analysis and, three independent biological replicates were used 
for gene expression measurements. 
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miR396_1, RNA helicase; miR162). miR160 has been previously linked to acquired 

thermotolerance (Lin et al., 2018) and miR162, miR394, miR396 and miR482 have been 

linked to heat stress, with no common pattern among different species or experimental 

designs, and none of them has been monitored for more than 24 h under stress (reviewed 

by Liu et al., 2015).  

 

Proteins, mRNAs and their potential microRNAs change folds are shown in Fig 

6.2b. As expected, in some cases the discrepancy between protein and mRNA 

abundances can be explained with microRNA expression changes, especially in long-term 

heat-treated samples. elF3G, H2A, SAHH, CP29B, HEMERA transcripts were upregulated 

along with their proposed microRNA pairs, and the protein abundance decreased, while 

for the other pairs, their relation is not clear. These results indicate possible additional 

regulatory layers that complicate the interpretation of the results and reveal a complex 

network involved in their regulation. 

 

6.4.3 5-mdC immunolocalization in needles under heat stress and recovery 
showed hypomethylation during the heat stress response and 
hypermethylation in the latent phase 
 

Epigenetic reorganization related to adaptation was further studied by 

immunolocalization analysis of 5-mdC in the needles collected during the heat stress 

experiments (Fig. 6.3, negative control showed in Fig. S6.2). From T0 to T3, the signal of 

5-mdC massively decreased in cell nucleus, focusing the scarce signal in the vascular 

tissue. In T5 signal of 5-mdC start to rebound, reaching in recovered plants (SR) the 

highest levels of DNA methylation. These results align with the accumulation patters of 

SAM synthase and SAHH obtained in Chapter 4, corroborating the hypothesized relaxed 

chromatin status under the applied heat stress. 
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Fig. 6.3. 5-methylcytosine (5-mC) immunolocalization in transversal sections of needles. 

Differential interference contrast (DIC) image of a transversal needle section is showed in the first 
image; fluorescence signal from confocal microscope across the treatments is showed in the 
following images: a) T0; b) T1; c) T3; d) T5; e) SR. Sub-numbers Labeling: (1) nuclei mark from 
DAPI (blue signal) and (2) 5-mC mark (green signal). Black bar = 100 µm. 

 

6.4.4 Targeted transcriptome analysis and photosynthesis measurements 
supported the better performance of primed plants upon a second 
round of stress. 
 

To further validate the potential acquisition of memory after stress exposure, the 

photochemical performance,  some physiological biomarkers and the gene expression of 

nuclear candidates highlighted in Chapter 4 and 5 in heat primed and non-primed plants 

were measured following the experimental design showed in Fig. 6.4. 

 

Heat primed and non-primed plants showed significant differences during and after 

the heat stress (Fig. 6.5, Fig. S6.3). The plants subjected to first stress exposure suffered 

higher photosynthetic damage in comparison with thermoprimed plants. On the other 

hand, TSS and total phenolics  showed significant higher levels in primed plants which 

indicates a physiological preconditioning to stress (Jesus et al., 2015). This provided 

insights of a stable acquired thermotolerance, that lasted at least six months. 
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Molecular responses of these plants were further studied analysing expression 

levels of genes coding for some of the key proteins previously described according to 

multivariate analyses, covering DNA methylation (SAM SYNTHASE and SAHH), splicing 

(LSM3A), DNA repair (NEDD 8 E1), and nucleosome assembly (H2A and H2B). First 

stressed and primed plants (second stress) followed the same gene expression profile 

across the stress time points, with the exception of SAM SYNTHASE. However, higher 

values of gene expression were found in first stressed plants for most of the genes and 

times. SAM SYNTHASE showed a particular behaviour, required for DNA methylation, 

exhibited control-like expression in ST5 treatment in thermoprimed plants, while in first 

stress its levels continued dropping. 

 

The better performance of thermoprimed plants when looking to the photosynthetic 

activity coupled to the lower expression of candidate genes and the recovery of methyl 

cycle enzymes expression during the stress supports the hypothesis of stable acquired 

thermotolerance guided by epigenetic events. 

 

 

 
Fig. 6.4 Outline of experimental set up for long term memory testing. Control plants were 

divided in two plant sets. Primmed plants were heat stressed at 45 ºC during 6 hours/day, during 
five days. Meanwhile, the rest of the seedlings were allowed to grow in control conditions, as a 
control line. Both sets were kept under control conditions during six months. Finally, both plant sets 
were heat treated (equally to the previous stress for primmed plants), in order to check whether 
long-term memory had been developed by trained plants by comparing previously Stressed plants, 
(primmed plants) SC, ST1, ST3 and ST5, and (non-primed plants) Not previously Stressed plants 
denoted as NSC, NST1, NST3 and NST5. 
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Fig. 6.5 a)Maximum yield of Photosystem II (PSII) Fv/Fm b) TSS content c) Phenolic 

compounds content d) Relative quantification of gene expression of candidate genes selected 
according to multivariate and integrative analysis. All the procedures were measured on heat 
primed and non-primed plants of experimental phase II. Different letters indicate statistically 
significate differences (p< 0.05). 
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6.5 Discussion 
 

Basal conditions in seeds and seedlings exhibited transgenerational 
memory 

 

The physiological analysis of seed endosperms showed a shift between STA and 

TPC content. Interestingly, there is a direct relation between these two parameters as it is 

known that phenolic compounds act as inhibitors of starch digestion (Kandil et al., 2012; 

Zhu, 2015). Concomitantly with this, the FAA raise in non-primed progeny seeds 

suggested that in these seeds (E progeny) was higher metabolic activity. This matches the 

weight difference found, since T seeds were lighter, hence probably drier since water 

content is indispensable for metabolic activity. These effects may then be transmitted to 

the progeny, making them less keen to germinate and more tolerant to long term 

perdurance, maybe in order to ensure a prolonged time in a suitable soil environment (as 

water content) to start the germination process.  

 

Additionally, we found differences in miR160 expression profile, which was higher 

in E progeny in the seeds while in T progeny in the seedlings. Overexpression of miR160 

provokes improved germination in the seeds and better heat stress tolerance in the 

seedlings in Arabidopsis (Lin et al., 2018). This fact aligns with our hypothesis of difficulties 

in seed germination and improved seedling heat stress performance in T progeny. Also, 

miR160 is known to target AUXIN RESPONSE TRANSCRIPTION FACTORS (ARF) 

(Mallory et al., 2005; Dai et al., 2021; Hao et al., 2022), suggesting a complex interplay in 

the heritable memory including hormones and highlighting the role of miR160 as a valuable 

biomarker for tolerance testing.  

 

Despite the differences found in seed weight and composition, seedlings grew to 

the same height. Therefore, under optimal conditions (before the stress treatment) we 

could not detect any energy cost associated to the memory retained according to Herman 

& Sultan, (2011), maybe due to the enhanced FvFm and increased accumulation of 

photosystems related proteins verified in T progeny. 

 

Hence, it was found that the changes between the more sensitive and more 

tolerant isogenic subpopulations may be previously detected and predicted by analyzing 

the seeds. This strategy may represent an advance for early classifying seed primming 
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status without the requirement of grow the seedlings, representing a cost and time efficient 

screening method. 

6.5.1 miRNAs as the main heritable epigenetic mechanisms in the memory 
acquisition process 
 

Plant transgenerational memory seems to provide general coping mechanisms to 

overcome previously known and/or unknown stresses in a more effective way, allowing 

primed plants to adapt to their environment and constitute populations. The relevance of 

epigenetic mechanisms such as DNA methylation, histone variants and microRNAs has 

been determined during the establishment of life-time memory under stress in different 

plant species (Dubin et al., 2015; Li et al., 2019).  

 

However, there are still some open questions in regard to its heritability. It has been 

suggested and discussed that this acquired tolerance is rooted epigenetically through 

methylome for some abiotic stresses (Kou et al., 2011; Wibowo et al., 2016), but DNA 

methylation studies show no clear arguments in response to heat or drought stress 

(Ganguly et al., 2017). We focused on the understudied miRNA-based mechanisms, 

providing evidence of a molecular reprogramming in basal conditions in the dry seeds that 

is then shifted in the seedlings. These altered paths are known to control gene expression 

and according to be plausible players and subjects of the memory acquisition related 

processes (Locato et al., 2018). 

 

6.5.2 Life-time thermomemory seems to be rooted epigenetically, by DNA 
methylation and thermolabile histones 
 

DNA hypermethylation levels in long-term treatments and recovered plants, whose 

adaptation to heat stress had started, also correlated with the high expression level of SAM 

synthase quantified in primed plants. Moreover, according to bibliography, stress-induced 

demethylation has been found to relax chromatin structure, thereby allowing enhanced 

transcription and proteasomal rearrangement (Shilatifard, 2006; Santos et al., 2011), 

which has been linked to heat-tolerant genotypes in other plant species (Gao et al., 2014). 

This behaviour remarks the pivotal role of epigenetics. 

 

Changes in gene expression and alternative splicing in primed and non-primed 

plants revealed that alternative splicing functions as a novel component of heat shock 

memory in Arabidopsis thaliana (Ling et al., 2018). Similar results were found through this 
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work where primed seedlings also showed higher levels of LSM3A expression and faster 

evolution in the heat stress response.  

Additionally, in the targeted transcriptome analysis those thermolabile histones 

were found to be upregulated, providing an insight of the importance of nucleosome 

occupancy and DNA accessibility in non-primed and primed response. However, 

thermoprimed plants showed a more moderated increase of H2A y H2B expression during 

the second round of stress confirming this the essential role of nucleosome regulation in 

priming process 

 

6.5.3 The epigenetics cornerstones seem to be deeply and tightly linked 
among them 
 

The nucleosome stoichiometric changes that were tracked between the primmed 

versus non-primmed plants seemed lead to thermomemory acquisition, as stated in other 

works (Bäurle, 2016; Lämke et al., 2016), driving the cell to a new primed status. This 

epigenetic memory based in methylation changes (SAHH) and H2A histone variant could 

be regulated by microRNA (Figure 5b) since their profile of mRNA expression is not 

sufficient to explain their protein abundance. Those mismatches provide a proof of concept 

to the wide variety of functions that microRNA can regulate. In this work, we provided 

several mRNA-microRNA potential pairs and a strong evidence of the relevance of this 

post-transcriptional gene modulation mechanism, which seems to be relevant to come 

back to “the new normal” after the first days of stress and to acquire heat stress tolerance 

and long-term memory. We delved into microRNA-mRNA balance and provided for the 

first time in this species a set of validated microRNA sequences, a new family of heat-

sensitive microRNAs, including miR947 (H2A), and the time-series pattern that these heat-

sensitive miRNAs followed during the stress stages.  

 

The newly discovered priming-induced epigenetic memory may represent a 

general feature of heat stress responses in conifers. Furthermore, this finding could 

facilitate the development of novel approaches to improve pine survival under extreme 

heat stress in the current context of climate change. 
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6.7 Supplemental information 
 

6.7.1 Supplemental figures 

 
Supplemental Figure S6.1. Seedlings characterization in basal conditions. a)Height, FvFm 

and, physiology profile including Chlorophyll b, Chlorophyll a, Carotenoids, Free Amino Acids 
(FAA), Total Soluble Sugars (TSS), starch (STA), malonaldehide (MDA), Electrolyte leakage, Total 
Flavonoids (TFL) and Total Phenolic compounds (TPC) and b) mRNA and microRNA relative 
expression of selected candidates. For E and T progenies. Asterisks indicate significance according 
to Wilcox non-parametric test; * pvalue < 0.05; ** pvalue < 0.01; *** pvalue < 0.001. 

 

Supplemental Figure S6.2. Negative control of 5-mC immunolocalization analysis. a) 
Differential interference contrast (DIC) in control plants; b) Blue signal of DAPI; c) Green signal of 
5-mC monoclonal antibody and d) DAPI and 5-mC merged in transversal needle section. 
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Supplemental Fig S6.3. Representative pine seedlings from previously primmed and non-

primmed plants before and after the heat stress corresponding to SC, ST5, NSC and NST5 
sampling points. Apical bud of not primed plants showed a decay after the stress exposure (NST5) 
along with damaged needle tips and dry needles, while previously stressed plants (ST5) manifested 
no signs of severe impairment, showing damage only in few needle tips. 
  

Previously
stressed
plants
Set I

Not
stressed
plants
Set II

Before
Phase II
stress

After
Phase II
stress

Figure Supplementary 6: Representative pine seedlings from Set I (previously
stressed) and Set II (not previously stressed) before and after Phase II stress
corresponding to SC, ST5, NSC and NST5 sampling points. Apical bud of not
primed plants showed a decay after the stress exposure (NST5) along with
damaged needle tips and dry needles, while previously stressed plants (ST5)
manifested no signs of severe impairment, showing damage only in few needle
tips.
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6.7.2 Supplemental tables 
 

Supplemental table legends 
 

Supplemental Table S6.1.  List of the primers used in this chapter. 

Supplemental Table S6.2. miRNA - mRNA pairs in silico identification. miRNA and 

mRNA target accesion, target description, alignment and inhibition type. 
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CHAPTER VII. Conclusions 
 

7.1 Conclusions 
 

• pRocessomics, the developed R package for single or multiple omics data analysis 

coupled to the proposed pipeline enabled the exploration of the experimental data 

obtained in this thesis, in order to deeply characterize P. radiata subcellular heat 

stress responses.  

 

• Chloroplast proteome in basal and under heat stress conditions allowed to 

distinguish between isogenic P. radiata subpopulations whose parents were 

exposed to different environments, providing a molecular proof of heritable memory 

and adaptation mechanisms that are able to avoid the epigenetic resetting. 

 

• Nuclear response to heat stress is in short-term driven by a major DNA methylation 

loss tracked by methyl cycle enzymes depletion and validated by 5mC 

immunolocalization; while in the long term heat seemed to be directed by post 

transcriptional gene silencing since the occurrence of an overaccumulation of AGO1 

and an upregulation in microRNAs abundance.  

 

• Acclimation to high temperature required a broad and synchronized remodeling of 

the subcellular proteomes that was triggered by specific photosynthetic impairment 

in the chloroplasts provoking disturbances in the redox signals which were 

transmitted to the nucleus in order to reprogram the regulation of the transcription 

via splicing and ribosomal rearrangement leading to a new homeostatic state. 

 

• Intragenerational memory ‘learned’ during a first stress exposure endured long-term 

and enhanced the performance of P. radiata seedlings during a second exposure 

via changes in the methylation enzymes expression and histone thermolabile 

isoform upregulation. 

 

• Transgenerational memory shaped the transcriptional regulation through several 

interrelated epigenetic mechanisms as microRNAs and DNA methylation, that could 

be already assessed in the seeds through microRNA160 and, SAM SYNTHASE and 

SAHH expression levels.  
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• The combination of the subcellular proteomics approach together with developed 

analysis tool and the targeted transcriptomics employed along this thesis, permitted 

the definition of a reliable biomarker panel for the selection of heat primmed plants. 

The accuracy of this approach was endorsed by the identification of SAM 

SYNTHASE, one of the most promising biomarker proved to be a main player in 

trans- and intra- generational memory acquisition as well as a driver of the stress 

response. 



                                                                                                                                CHAPTER VIII 
 

 

  

149 

CHAPTER VIII. Resumen 
 

8.1 Introducción 
 

El cambio climático ha provocado un aumento en la frecuencia y severidad de los 

llamados eventos climatológicos extremos, entre ellos, destacan las olas de calor, que se 

definen como días especialmente cálidos en los que se supera para lugar determinado la 

temperatura habitual. El estrés por altas temperaturas es uno de los más perjudiciales 

para las plantas, limitando tanto su crecimiento como su producción, por lo que la 

respuesta de las plantas al estrés térmico por alta temperatura es considerado un tema 

de gran relevancia. 

 

Afortunadamente, y debido a su naturaleza sésil, las plantas han desarrollado 

mecanismos moleculares de un alto grado de sofisticación y complejidad, a menudo 

redundantes entre sí, para hacer frente a los diversos estreses o eventos climáticos a los 

que se enfrentan a lo largo de su ciclo de vida.  

 

A pesar de lo ampliamente estudiado del tema, la respuesta al estrés por alta 

temperatura en plantas es muy compleja y variada, incluyendo varios niveles de 

organización diferentes y pobremente comprendida en especies forestales, cuyos ciclos 

de vida son largos y puede que por sus diferencias con otras plantas no compartan los 

mismos componentes en la respuesta y especialmente en el proceso de adquisición de 

memoria. 

 

Los bosques son esenciales en los ecosistemas, proporcionando alimentos y 

materias primas para las industrias. Para satisfacer las demandas actuales y futuras de 

estos productos, las especies de rápido crecimiento, como Pinus radiata D. Don, son una 

clara opción para aumentar la productividad de las plantaciones y la sostenibilidad a largo 

plazo. Sin embargo, varios informes recientes han descrito que los efectos potenciales 

del cambio climático antropogénico podrían poner en entredicho la viabilidad comercial 

de las plantaciones en varios países. Se han logrado progresos significativos en la 

elucidación de los mecanismos fisiológicos y moleculares subyacentes a esta respuesta 

térmica, aunque en especies leñosas, su respuesta y adaptación está poco estudiada. 
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Los árboles han desarrollado sofisticados mecanismos de percepción del estrés y 

transducción de señales. En respuesta a estos estreses, se activan multitud de procesos 

que permiten a las plantas hacer frente a la nueva situación. Estos incluyen la activación 

de procesos para la protección frente al daño oxidativo, cambios en la fluidez de la 

membrana, estimulación del metabolismo secundario, activación de la señalización 

(hormonal, ROS, lipídica…), la alteración de la expresión de los genes relacionados con 

estrés y la producción de proteínas de estrés, entre muchos otros.  

 

Otro factor crucial y de los más ampliamente estudiados en la respuesta al calor 

es la inducción de proteínas de choque térmico (HSPs). Las HSP son una familia de 

proteínas muy conservada evolutivamente, que se inducen en todos los organismos en 

respuesta a estrés ambiental y también en procesos de desarrollo. En plantas, las HSP 

pueden clasificarse en cinco grupos en base a su masa molecular: HSP20 que incluye las 

más pequeñas entre 16-42 kDa (también conocida como sHSPs), la familia HSP60, 

HSP70, HSP90 y HSP100. Estas familias de HSP desempeñan una función esencial 

como chaperonas que controlan el plegamiento y desplegamiento de la estructura terciara 

de las proteínas. Las HSP ayudan a la célula a conservar las proteínas desnaturalizadas, 

uniéndose a ellas para evitar que se agreguen, o manteniéndolas desplegadas en un 

estado semi-funcional, para que una vez que el estrés haya cedido, puedan volver al 

plegamiento inicial y recuperar por lo tanto su función. 

 

  



                                                                                                                                CHAPTER VIII 
 

 

  

151 

8.2 Planteamiento y objetivos 
 

El actual marco del rápido cambio climático subraya la urgencia de generar 

conocimiento aplicable que tenga un alcance global, y que contraste y describa la 

capacidad de adaptación de los organismos y ecosistemas frente a las olas de calor. Para 

poder comprender la magnitud, el alcance y la vulnerabilidad de las plantas, se deben 

realizar los ensayos imitando las olas de calor de una forma estandarizada y controlada. 

Es por ello de suma importancia establecer un sistema experimental que tenga en cuenta 

tanto las condiciones climáticas futuras (como las olas de calor) como los actores más 

relevantes en el desencadenamiento de la respuesta y en el establecimiento de la posible 

memoria consecuencia de una o varias exposiciones al estrés térmico en una especie de 

ciclo de vida largo como Pinus radiata. 

 

Por ello, en esta tesis se ha establecido un tratamiento que imita una ola de calor 

aplicándose este estrés de la misma manera en todos los experimentos realizados. Dicha 

exposición consistió en al menos 5 días con una temperatura máxima de 45 ºC mantenida 

durante 6 horas al día, y representa un tratamiento de estrés térmico lo suficientemente 

severo como para permitir la caracterización del respuesta al estrés por calor. 

 

Para estudiar más a fondo estos mecanismos, se ha empleado un enfoque de 

proteómica no dirigida a nivel nuclear y cloroplástico, ambos subproteomas se 

demostraron útiles debido a la importancia central de los cloroplastos como transducción 

de señales de calor y la relevancia de los núcleos en la orquestación de respuestas y los 

procesos de adquisición de memoria. Además, debido a los múltiples componentes y tipos 

de memoria molecular, es de gran importancia enfocar el análisis en una población de 

Pinus radiata sin un componente preexistente de primado al calor u otros estreses, que 

pueda introducir ruido y producir resultados irreproducibles en poblaciones no primadas. 

 

En conclusión, el objetivo principal de esta tesis es identificar los mecanismos de 

adquisición de memoria y señalización de respuesta a alta temperatura más relevantes 

en Pinus radiata empleando un enfoque de proteómica subcelular y usando como diseño 

experimental un escenario realista de aumento de temperatura alta para proporcionar un 

conjunto de indicadores confiables. y biomarcadores útiles para la selección temprana de 

árboles y semillas termotolerantes o primados. Para lograr este objetivo principal, se 

definió el siguiente conjunto de objetivos parciales: 
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6 Desarrollo de un protocolo universal para el análisis e integración de datos 

(prote)ómicos (Capítulo 2). 

 

7 Caracterización del proteoma del cloroplasto en dos poblaciones isogénicas silvestres 
cultivadas en diferentes ambientes en condiciones óptimas y bajo ola de calor 

controlada. Exploración de la memoria transgeneracional a través del cloroplasto. 

(Capítulo 3). 

 

8 Caracterización del proteoma nuclear en respuesta al estrés por calor, antes, durante 

y después de la exposición al estrés por calor en una población de P. radiata no 

cebada. (Capítulo 4) 

 

9 Integración y evaluación de la sincronización de proteomas nucleares y cloroplásticos 

en respuesta al estrés calórico previo y durante una ola de calor controlada. (Capítulo 

5) 

 

10 Identificación de un panel de biomarcadores de termotolerancia y termomemoria en 

semillas y plántulas en respuesta a altas temperaturas en Pinus radiata (Capítulo 6). 
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8.3 Resultados y discusión 
 

El sistema experimental de esta tesis fue diseñado para caracterizar la respuesta 

subcelular de Pinus radiata al estrés térmico por altas temperaturas, incluyendo el uso de 

técnicas proteómicas, que a pesar de su amplia aplicabilidad y crecimiento en los últimos 

años, aún presentan algunas barreras de entrada. Probablemente, la más frecuente sea 

la dificultad de analizar los conjuntos de datos generados, cada vez mayores, lo que 

representa un gran obstáculo. Por ello y con el objetivo de poder analizar los datos 

experimentales de esta Tesis, se ha desarrollado un paquete de R, pRocessomics, que 

puede utilizarse para preprocesar, analizar (incluyendo análisis estadísticos uni y 

multivariante) así como integrar conjuntos de datos ómicos.  

 

Además, teniendo en cuenta el enfoque subcelular, también se ha desarrollado un 

protocolo de purificación de núcleos y cloroplastos (Apéndice I) compatible con 

espectrometría de masas, que ha sido necesario para la elaboración de esta Tesis. 

 

El análisis del perfil fisiológico y proteoma del cloroplasto de las progenie de dos 

subpoblaciones clonales de Pinus radiata que provenían de diferentes entornos, permitió 

distinguir las diferentes estrategias adoptadas por las dos subpoblaciones. Una de las 

diferencias más representativas del análisis bioquímico fue el aumento y el mantenimiento 

de la concentración de azúcares solubles en las acículas de la progenie primada tras 

cinco días de tratamiento de estrés por alta temperatura. Los azúcares solubles son 

osmolitos, moléculas de señalización y también desempeñan un papel esencial en la 

protección de la estabilidad de la membranas frente al estrés térmico. Además, previenen 

los daños causados en estreses abióticos como la sequía o la salinidad y, en algunos 

casos, estabilizan las biomoléculas.  

 

Además, se encontró que la integridad de la membranas se mantenía más estable 

en la progenie de la subpoblación primada, este hecho junto con el aumento del contenido 

de clorofila a largo plazo, puede indicar un mejor estado de salud de las plantas de la 

progenie primada al final del experimento, lo que sugiere una mayor tolerancia.  

 

A pesar de observar en ambas progenies un aumento de las proteínas choque 

térmico en ambos conjuntos de plantas, se encontraron diferencias en las subfamilias 

más acumuladas tras cinco días de estrés, en las que en la progenie de la subpoblación 

primada predominaban las HSP90 y en la progenie no primada las sHSP. Las sHPS son 
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las encargadas de prevenir la agregación proteica mientras que las HSP90 intervienen en 

el proceso de volver a plegar las proteínas desnaturalizadas y consumen ATP. Por ello, 

este resultado también apunta a una mejor respuesta de la progenie primada avalando la 

hipótesis de la memoria transgeneracional heredada.  

 

Dicha memoria transgeneracional parece proporcionar estrategias y mecanismos 

para superar estreses previamente conocidos y/o desconocidos de una manera más 

eficaz, lo que permite a las plantas preparadas adaptarse a su entorno y constituir 

poblaciones. Se ha determinado la relevancia de mecanismos epigenéticos como la 

metilación del ADN, variantes de histonas y microARNs durante el establecimiento de la 

memoria transgeneracional bajo estrés en diferentes especies vegetales. Sin embargo, 

aún quedan algunas cuestiones abiertas en cuanto a su heredabilidad.  

 

A pesar de la relevancia potencial de los mecanismos epigenéticos en la memoria 

transgeneracional, los datos obtenidos mostraron que, especialmente durante el estrés, 

esta memoria retenida se puede rastrear a través de los cloroplastos, donde observamos 

los rastros de una señalización retrógrada alterada a través de ROS y genes GUN, junto 

con un refuerzo de la proteína fotosistema II, la sobreacumulación de las familias HSP90 

y HSP60 y el aumento del contenido de clorofila en las condiciones de estrés. Los 

resultados también indicaron que las plantas de la progenie primada eran más proclives 

a recuperar la señalización basal cloroplasto-núcleo y el plegamiento de proteínas, lo que 

conducía a una mayor tolerancia cruzada al estrés. Más adelante, se comprobó que los 

cambios entre las subpoblaciones isogénicas más sensibles y más tolerantes pueden 

detectarse y predecirse previamente mediante el análisis de las semillas. Esta estrategia 

puede representar un avance en la clasificación del estado de imprimación de las semillas 

sin necesidad de cultivar las plántulas de una manera eficiente en cuanto a costes y 

tiempo.  

 

Para poder estudiar la memoria intrageneracional, se seleccionó la subpoblación 

no primada y se realizó el análisis del proteoma nuclear, durante el estrés y después de 

la recuperación. Mostrando por primera vez la dinámica del proteoma nuclear relacionada 

con la respuesta al estrés térmico y el proceso de primado térmico a lo largo del ciclo de 

vida de la planta. La profundidad que se consiguió con el enfoque subcelular, permitió la 

descripción de este proceso, revelando varias familias cruciales de proteínas implicadas 

en diferentes pasos clave de regulación, como la reorganización del proteasoma, las 

funciones asociadas al ARN, la regulación génica impulsada por la epigenómica y factores 

de transcripción específicos previamente desconectados del estrés térmico y asociados 
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a los cambios lumínicos. Además, la histona H2A, el splicing alternativo y las enzimas del 

ciclo de la metilación parecen estar directamente relacionados con la inducción del 

primado térmico. En último término, estas remodelaciones activas del transcriptoma y el 

proteoma detectadas desencadenan los procesos cruciales implicados en la respuesta y 

adaptación a altas temperaturas. La memoria epigenética inducida por el primado puede 

representar una característica general de las respuestas al estrés térmico en coníferas. 

Además, este hallazgo podría facilitar el desarrollo de nuevos enfoques para mejorar la 

supervivencia de los pinos en condiciones de estrés térmico severo en el contexto actual 

de cambio climático.   
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8.4 Conclusiones 
 

• pRocessomics, el paquete de R desarrollado para el análisis de datos de una o 

multiples capas ómicas unido a la esquema propuesto permitió la exploración de los 

datos experimentales obtenidos en esta tesis, para caracterizar en profundidad las 

respuestas subcelulares de Pinus radiata frente al estrés térmico.  

 

• El proteoma del cloroplasto en condiciones basales y de estrés térmico permitió 

distinguir entre dos poblaciones isogénicas de Pinus radiata cuyos padres fueron 

expuestos a diferentes entornos, proveyendo una prueba molecular de memoria 

heredable y mecanismos de adaptación que son capaces de evitar el reseteado 

epigenético. 

 

• La respuesta nuclear al estrés térmico está dirigida a corto plazo por una importante 

pérdida de metilación del ADN monitorizada por la disminución de las enzimas de 

ciclo de la metilación y validada por la inmunolocalización de 5mC; mientras que a 

calor a largo plazo parecía estar dirigida por le silenciamiento génico 

postranscripcional debido a la sobreacumulación de AGO1 y la sobrerregulación en 

la abundancia de microARNs. 

 

• La aclimatación a las altas temperaturas requirió una remodelación amplia y 

sincronizada de los proteomas subcelulares que fue desencadenada por un 

deterioro fotosintético específico en los cloroplastos provocando alteraciones en las 

señales redox que se transmitían al núcleo para reprogramar la regulación de la 

transcripción vía splicing y reordenamiento ribosomal que condujo a un nuevo 

estado homeostático . 

 

• La memoria intrageneracional 'aprendida' durante una primera exposición al estrés 

perduró a largo plazo y mejoró el rendimiento de las plántulas de P. radiata durante 

una segunda exposición a través de cambios en la expresión de enzimas de 

metilación y la regulación positiva de isoformas termolábiles de histonas 

 

• La memoria transgeneracional dio forma a la regulación transcripcional a través de 

varios mecanismos epigenéticos interrelacionados como los microARNs y la 

metilación del ADN, que pudo evaluarse en las semillas a través de los niveles de 

expresión de microARN160 y SAM SINTASA y SAHH..  
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• La combinación del enfoque de la proteómica subcelular junto con la herramienta 

de análisis desarrollada y la transcriptómica dirigida empleada a lo largo de esta 

tesis, permitió la definición de un panel de biomarcadores certero para la selección 

de plantas primadas con calor. La precisión de este enfoque fue respaldada por la 

identificación de SAM SINTASA, uno de los biomarcadores más prometedores que 

demostró ser un actor principal en la adquisición de memoria trans e 

intrageneracional, así como un impulsor de la respuesta al estrés. 

 



 




