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RESUMEN (en español) 

La gestión forestal sostenible ayuda a mitigar los efectos del cambio climático y es la base de 
un sector económico crucial. Optimizar las prácticas forestales facilita la sostenibilidad, pero 
requiere disponer de información de los recursos disponibles. Los inventarios tradicionales 
basados en muestreos periódicos del diámetro normal y la altura total seguidos de una 
generalización estadística no cubren las necesidades de información necesarias para una 
gestión sostenible multipropósito.  

Esta tesis doctoral se centra en proporcionar nuevas herramientas para los inventarios 
forestales de precisión a través del desarrollo de algoritmos aplicables a nubes de puntos 
terrestres, que facilitan la obtención de una representación geométrica precisa de los árboles 
en un tiempo razonable. Además, esas mediciones eliminan la subjetividad asociada a los 
métodos tradicionales de inventario forestal. Específicamente, se desarrollaron algoritmos que 
proporcionan soluciones automáticas para aspectos clave de la gestión forestal: 
parametrización de ecuaciones de volumen, estimación de variables de forma del tronco y 
determinación del patrón óptimo de corte. Constituyen un flujo de trabajo secuencial en el 
sentido de que cada algoritmo utiliza datos del anterior para funcionar. 

El primero calcula las variables básicas que caracterizan a los árboles geométricamente: (i) 
diámetros a lo largo del tronco; (ii) coordenadas del centro de la sección (XYZ); (iii) altura total 
del árbol. Los diámetros a lo largo del tronco y la altura se usan luego para parametrizar las 
ecuaciones de volumen. El segundo algoritmo estima variables de forma del tronco dividiéndolo 
en secciones espaciadas uniformemente cuyos diámetros y centros son calculados y se usan 
como variables de entrada para calcular automáticamente la curvatura, sinuosidad e inclinación 
de cada árbol. El tercer algoritmo determina el patrón de corte óptimo para cada fuste, 
maximizando el valor económico de cada árbol en base a una serie de productos comerciales. 
Se basa en el modelado tridimensional de los fustes e incluye el diámetro y la curvatura de 
cada troza. 

El funcionamiento de los algoritmos se evaluó en varias parcelas y las ventajas y desventajas 
de cada uno fueron comparadas con los métodos tradicionales. Las pruebas de validación del 
Algoritmo 1 (parametrización de ecuaciones de volumen de madera) se llevaron a cabo en una 
parcela de Pinus pinaster con pendiente elevada, ramas bajas y sotobosque denso, y el 97% 
de los árboles fueron detectados automáticamente con un error medio cuadrático (RMSE) para 
la altura y las estimaciones de diámetros e 1.52 m y 1.14 cm respectivamente. Una ecuación 
de razón fue seleccionada de forma automática como la mejor opción para la parcela de 
validación. El RMSE de las estimaciones automáticas de volumen fue de 0.0233 m3 y 0.0149 
m3 cuando los diámetros fueron previamente revisados por un operador y las secciones 
anómalas redibujadas. El Algoritmo 2 (estimación de variables de forma) se evaluó en una 
parcela de mejora genética de Pinus pinaster y los resultados obtenidos se compararon con 
mediciones de campo de la rectitud la inclinación basadas en una clasificación visual. La 
metodología se mostró robusta a los errores en la estimación de los centros de las secciones, 
la base para estimar variables de forma. Además, la precisión mejora sustancialmente con 



respecto a las técnicas tradicionales donde la clasificación errónea es frecuente. La evaluación 
del Algoritmo 3 (tronzado óptimo de fustes) se realizó en una parcela de Pinus radiata con 120 
árboles, y los resultados se compararon con los obtenidos al utilizar como datos de entrada 
solo los diámetros estimados con TLS y con funciones de perfil. El uso del TLS incluyendo la 
curvatura proporcionó una solución de tronzado óptimo más realista dando lugar a una 
estimación más baja del volumen comercial 

Los tres algoritmos tienen una aplicación directa en la planificación forestal, respaldando el uso 
del TLS en inventarios forestales de precisión. Son completamente automáticos, pretenden ser 
aplicables a cualquier especie o tipo de nube de puntos terrestres y eliminan la subjetividad en 
las medidas de campo y en la estimación de variables. Aunque todos muestran resultados muy 
prometedores, sería deseable realizar una investigación sistemática en parcelas más grandes 
con distintas técnicas de escaneo y distintas condiciones forestales 

RESUMEN (en Inglés) 

Sustainable forest management helps mitigate climate change and supports a crucial economic 
sector. Optimizing forest management practice facilitates sustainability, but requires quality 
information on available resources. Traditional inventories based on periodic field sampling of 
diameter at breast height and total height and statistical generalization, do not meet current 
information needs for sustainable multipurpose management.  

This doctoral thesis focuses on providing new tools for precision forestry inventories through 
developing algorithms applicable to terrestrial point clouds, which facilitates obtaining accurate 
geometric representations of trees in a reasonable time. Moreover, such measurements avoid 
the observer subjectivity of traditional forest inventory methods. In addition, 3D TLS point clouds 
can be processed automatically, or semi-automatically, by means of mathematical algorithms. 
Specifically, we developed algorithms which provide automatic solutions for three key issues in 
forest management:  volume equation parametrization, stem shape variables estimation and 
optimal bucking pattern determination. They constitute a staged workflow in the sense that each 
algorithm builds on the previous one.  

The first calculates the basic variables that characterize trees geometrically: (i) diameters of the 
sections along the stem; (ii) coordinates of the centre of the section (XYZ) and (ii) total height 
of the tree. Diameters along the stem and height are later used to parametrize wood volume 
equations. The second algorithm estimates stem shape variables by splitting the stem into 
evenly spaced sections whose diameters and centres are calculated and used as input variables 
to automatically calculate the maximum sagitta, sinuosity, and lean of each tree. The third 
algorithm determines the optimal bucking pattern of each stem, maximizing each tree’s 
economic value in terms of several timber products. It is based on the three-dimensional 
modelling of stems and includes the diameter and curvature of each log.  

Algorithm performance was tested in various plots and the advantages and disadvantages of 
each was compared to traditional techniques. Validation tests for Algorithm 1 (wood volume 
equation parametrization) were carried out in a Pinus pinaster plot with steep slopes, low 
branches and dense understory, and 97% of trees were automatically detected and RMSE of 
the height and diameter estimations was 1.52 m and 1.14 cm, respectively. A volume ratio 
equation was automatically selected as the best option for the test dataset. Root mean square 
error (RMSE) in automatic volume estimations was 0.0233 m3 and 0.0149 m3 when diameters 
were previously reviewed by an operator and anomalous sections redrawn. Algorithm 2 (stem 
shape variables estimation) was tested in a breeding trial plot of Pinus pinaster, and the results 
obtained compared with field measurements of straightness and lean based on visual 
classification. The methodology was robust to errors in estimating section centres, the basis for 
calculating shape parameters. Besides, its accuracy compared favourably with traditional field 
techniques, where misclassification is frequent. Testing of Algorithm 3 (optimal bucking of 
stems) was in a Pinus radiata plot of 120 trees, and the results compared with those obtained 
with input data that only consider diameters estimated from TLS measurements and taper 
equations, not take curvature into account. Using TLS and including curvature measurements, 
provided a more realistic optimal bucking solution and tended to result in lower estimations of 
commercial value. 



All three algorithms have a direct application in forest planning, supporting the use of TLS in 
precision forest inventories. They are completely automatic, aim to be applicable to any species 
or terrestrial point cloud type and eliminate subjectivity in field measurements and the estimation 
of variables.  Although all show promising results, the systematic investigation of larger test sites 
with different scanning techniques and forest conditions is desirable. 

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO 
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justification of the thesis followed by the defining of aims.

2) Chapter 2: An algorithm for the automatic parametrization of wood volume equations from

TLS point clouds is presented and tested in a Pinus pinaster plot.

3) Chapter 3: An algorithm for the automatic assessment of individual stem shape parameters

in forest stands from TLS point clouds is developed and tested in a Pinus pinaster plot.

4) Chapter 4: An algorithm for the optimal bucking of stems from terrestrial laser scanning data

is presented and tested in a Pinus radiata plot.

5) Chapter 5: Conclusions.

Bibliography references in this thesis are included at the end of the manuscript to facilitate the 

literature search. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

1.1 JUSTIFICATION 

The European Union recognizes that sustainable forest management can help to mitigate 

climate change while supporting a crucial economic sector. Accordingly, the use and 

management of forest resources must guarantee the sustainability of both environmental and 

economic roles. Sustainability can be ensured by optimizing forest management practices, which 

in turn requires quality information on available resources. In this sense, the proper 

characterization of forest ecosystems and the accurate and updated monitoring of the spatial-

temporal distribution of forest stocks through inventories at the local, regional and global scale 

are crucial to deal with current threats such as the loss of biodiversity, diseases and pests, forest 

fires and global climate change by developing better management plans and mitigation policies. 

Traditional inventories based on periodic field sampling of diameter at breast height (dbh, 

measured at approximately 1.30 m) and total height (h), followed by statistical generalization, 

do not meet current information needs for sustainable multipurpose management. In addition, 

they are costly in both economic and human terms, which is why they are usually limited to 

small areas of forest and a high sampling intensity. Furthermore, traditional field work often 

relies heavily on the skills of the operator, and careless measurements can lead to large errors. 

In this sense, remote sensing data can provide accurate, robust, and spatially explicit data over 

large areas through inexpensive and relatively quick surveys. More specifically, the use of TLS 

(Terrestrial Laser Scanning) allows high-quality information on the structure of trees, and more 

specifically the stems, to be obtained. In the last decade, there has been steady progress in terms 

of the study of the application of TLS in forest inventories. It is already possible to measure 

traditional tree attributes such as dbh and h from point cloud data, but they also offer the 

possibility of getting new data that are not measurable using conventional tools (straightness, 

lean, branches angle insertion, etc.). In this regard, the methods, experiments and techniques 

developed here have demonstrated that TLS can be used in a practical way to accurately collect 

certain tree attributes in sample plots. 

However, after a decade of active research, TLS has not yet been accepted as an operational 

tool in forest inventories. Its application is hampered mainly by difficulties in the automation of 

the point cloud processing that provides convincing measurement results of the most important 

forest inventory parameters. There is still a lack of automatic and accurate methods to detect 

certain important tree attributes such as tree species and height, which needs further study. 

Other important factors that limit the use of this technology include the relatively high cost of 

the instrument, the limited software and the lack of personnel training. Additionally, it should 

be noted that acceptable results obtained from using TLS for forest inventories, from a forester’s 
perspective, have only recently begin to appear. Therefore, it will take some time before 

foresters start using TLS operationally, and sufficient time is required to build the necessary 

software.  

Having tools to process TLS data is essential to be able to transform these data into useful 

information for forest management: tools based on objective measurements and reproducible 

methodologies that allow us to have comparable multitemporal data. In this regard, this 

doctoral thesis is focused on providing new tools for precision forestry inventories through the 

development of algorithms to process terrestrial point clouds. Specifically, we have developed 

algorithms for three key issues in forest management: volume equation parametrization, stem 

shape variables estimation and optimal bucking pattern determination.  
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1.2 HISTORY OF FOREST INVENTORIES 

The term forest inventory refers to the process of collecting information about the extent and 

condition of forest resources within a specified area (Kangas and Maltamo 2006). Interest in 

gathering information about forest resources goes far back in time. In fact, the first regulations 

to protect trees and forests date back to the 14th and 15th centuries, when the first attempts at 

forest inventory were carried out. These attempts were closely related to mining activity, which 

required large amounts of wood for the construction of mine shafts and galleries. Consequently, 

there were severe deforestation problems in areas surrounding mining infrastructures. 

However, these primitive inventories bear no resemblance to those we have now. It was not 

until the 18th when the Enlightenment started to place importance on the study of forests from 

a wider perspective. In times when coal and oil could not be exploited, wood was the only fuel 

that enabled industries to develop (foundries, glass production), as well as the material needed 

to pack merchandise (barrels), leather tanning, the building of factories and cities, the shoring 

of mines and shipbuilding. As such, the forest became a fundamental source of resources for the 

project of social change. But, in order to rationally exploit forests in such a way as to provide all 

these resources in a sustained manner over time and at the same time as they continue to fulfil 

their role as regulators of the hydrological cycle and protector of erosion, it was necessary to 

increase human knowledge of their structure and dynamics. Regarding tree breeding, 

agriculture treatments have been used since Roman times, although there was no knowledge 

about how to quantify and exploit forest resources without completely destroying them. With 

this objective, people began to inventory trees, laying the foundations for modern forest 

inventories: in Spain the first forest inventory was performed in 1748 (Alberdi, Cañellas, and 

Bombín 2017). However, these inventories were not done systematically following a specific 

methodology. 

In fact, it is not until 150 years later, at the beginning of the 20th century, that systematic forest 

inventories started to be carried out. The pioneers in this respect were the Nordic countries and 

from there they spread around the world (Breidenbach et al. 2020). These early forest 

inventories contributed considerably to the development of statistical sampling theory and 

played their part in establishing a standard methodology to facilitate comparisons in both space 

and time. Basically, in a forest inventory, today, fixed plots of similar size and distributed within 

the study area are sampled, and the same kind of measurements taken: number of trees, 

species, the size of trees that exceed a certain diameter, state of regeneration, understory 

species, etc. All this information is very valuable for forest management, planning and 

exploitation because it enhances the characterization of forest stands structure, the calculation 

of wood volume, the state of health and regeneration of the stands and their evolution over 

time, among others.  

Traditionally, forest inventories were primarily carried out to determine the quantity of available 

timber (Smith 2002). Over the years, however, the scope of inventories has been expanded to 

include ecological variables such as measures of the quality of habitat provided by different 

species. Other information relevant to the development of forest management plans includes 

descriptions of forest ownership, access and transport infrastructure, topography, hydrology, 

and soil characteristics. 

Ideally, forest inventory should be based on a complete census. i.e., one that measures every 

tree in a given area. However, this is usually impossible in forestry due to the large areas involved 

(Kangas and Maltamo 2006). Therefore, the acquisition of information is typically based on 

sampling, which means only a small portion of the population is inspected. The measurements 
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for the rest of the population are inferred from this sample. The size and number of such samples 

is defined by the scope of the work and its scale. The largest scale corresponds to global 

inventories that are aimed at determining the extent and status of forest resources at the global 

level (for example, the Forest Resources Assessment carried out by Food and Agriculture 

Organization (FAO) since 1946, which also serves as a mechanism to harmonize terminology and 

definitions). On a smaller scale are the National Forest Inventories (NFIs), whose role is to 

provide continuously updated information regarding the state of a given nation’s forest 
resources, including their timber volumes, species composition and sustainable development 

(Tomppo et al. 2010). Inventories at smaller scales are often carried out for more specific 

purposes, frequently related to forestry planning and operations. These include regional 

inventories (i.e., in Spain, inventories of autonomous regions), reconnaissance inventories (a 

rough analysis of the forest resources of a limited area), diagnostic sampling to guide forest 

management and forestry operations, logging studies (focusing on assessing the availability of 

harvestable wood and planning felling and harvesting operations), post-harvest inventories (to 

analyse regeneration and damage caused by forest harvesting operations), and monitoring of 

forest health (often linked to sanitary felling operations). 

1.3 MEASUREMENT TECHNIQUES IN TRADITIONAL INVENTORIES  

In the 19th century, forest inventories were already an established component of forest planning 

(Kotilainen and Rytteri 2011). Data gathering was based mainly on visual estimation. Since then, 

measurement techniques have been evolving to become increasingly more specific and now 

involve a wide range of measurement devices with different characteristics. Of all the variables 

that can be measured in a forest inventory the most important are dbh and h, although 

measurements of diameters at different heights can also be collected. In the case of h, the most 

common approach is to measure the total height of the tree, although other heights such as first 

live branch (which marks the beginning of the crown) or dominant height (helps to deal with 

issues of site classification) are sometimes measured. From such measurements, a set of forest 

variables of interest are derived, including total volume, basal area and height to diameter ratio. 

Diameter measurements have traditionally been performed by means of a measuring tape, 

diameter tape (pi tape) or callipers. In the case of diameter tape, circular tree stem shape is 

assumed so diameter value is obtained directly in one measurement. From those three options, 

callipers are the most efficient to measure dbh directly whenever there is direct access. In cases 

where taper curve is a variable of interest it is also possible to measure upper diameters along 

the stem at various heights.  

Upper stem diameters are most easily observed on felled trees; however, most of the time it is 

preferable to not cut the tree but to collect measurements on a standing tree (i.e., trees with 

high ecological value and young trees which are not ready to be cut). There are several 

instruments/devices to do this. The simplest is the Finnish parabolic calliper (Figure 1A), which 

consists of a calliper mounted on a pole. It is relatively difficult to transport in the forest because 

the device consists of several callipers and various poles that are put together for the 

measurement. Moreover, for practical reasons, 7 m has been found to be the maximum 

manageable height. Another option is the optical calliper (Figure 1D) which consists of two 

pentaprisms: one fixed, the other movable. Its design allows parallel beams to be generated that 

correspondent to the arms of a mechanical calliper. The sighting is situated at the position of 

the fixed prism and is separated into two parts. Through the upper part, the observer aims 

directly at the left-hand side of the stem.  
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There are also more sophisticated devices which provide more measurements in addition to 

diameters. One of the most well-known due to its versatility is the Bitterlich mirror relascope 

(Bitterlich 1984) (Figure 1B). Apart from diameters, the relascope provides measurements of 

height, slope, distance, and basal area of the stand. Following this line, there is also a more 

modern device the Criterion 400 (Figure 1C). It is a laser instrument manufactured by Laser 

Technology, Inc. (Fairweather 1994) which combines laser technology, a fluxgate compass and 

inclinometer, and software in a hand-held tripod mounted device to facilitate basic trees 

measurements and land survey measurements. The instrument has computing, editing and 

storage capabilities. It offers a flexible alternative for measuring tree diameters at any point 

along the stem because the user does not need to be at specified distance from the tree. 

 

Figure 1. A) Finnish calliper B) Bitterlich relascope C) Criterion D) Optical calliper 

All these techniques have common problems, which is their difficulty of use and the fact that 

the reliability of the measurements depends fundamentally on good training of the personnel 

in charge of them. Besides, even with an experienced field team, according to Salas, Reyes, and 

Bassaber (2005) the Finnish calliper tends to overestimate diameters and the relascope, the 

optical calliper as well as the Criterion have an increasing bias with increasing height.  

Height measurements can be carried out by direct or indirect methods. The direct method 

involves climbing or using height measuring rods. Due to its difficulty of application, it is rarely 

used and then only for small trees. In the case of young trees, the use of a topographic survey is 

also common. As for indirect methods, they can be classified into two groups: one based on 

geometric principle and one based on the trigonometric principle. The most commonly used 

methods are from the second group: hypsometers (Suunto and Silva), altimeters (Haga), and 

clinometers (Blume-leiss). With all of them, the user needs to stand at a fixed horizontal distance 

from the base of the tree and point first at the top of the tree and then at the bottom and then 

read the value. The total height of the tree is calculated as the top reading minus the bottom 
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reading. Nowadays the most extensively employed method is the use of the sonic clinometer 

Vertex® (Haglof; Madison, Mississippi) (Thies and Spiecker 2004), which measures distances 

based on ultrasonic sound and angles. It enables the direct measurement of tree height based 

on the trigonometric principle. For the measurement of distances, a transponder is needed 

which is fixed to the tree and is an active component that emits a signal back to the Vertex. To 

determine the horizontal distance to the tree, the transponder has to be fixed at a certain height 

(default 1.3 metres). 

Regardless of the instrument used, when using the trigonometric principle there are two main 

potential sources of error in height measurement: (i) error due to a failure to correctly identify 

the top of the tree, and (ii), in the case of leaning trees the maximum height is underestimated 

when the tree leans away from the observer, and vice versa.  

From all of the above, it follows that traditional techniques of forest inventorying have several 

problems that need to be resolved: they can be inaccurate, expensive, time-consuming, and 

require a large number of qualified personnel (Apostol et al. 2018). As a result, they are limited 

to statistically established sample plots, resulting in low representativity at larger scales. 

1.4 REMOTE SENSING TECHNIQUES IN FORESTRY: THE DATA REVOLUTION  

The conventional methods of measuring the structural characteristics of the forest can provide 

direct measurement, but the cost of producing them is quite high. In this regard, getting fast 

data at minimal cost has become a necessity (Apostol et al. 2018). To overcome the limitations 

mentioned previously, alternative solutions and measuring methodologies were sought in the 

remote-sensing field (Dobre et al. 2021). In recent decades, fieldwork has been enhanced by 

global satellite positioning systems, automatic measuring devices, field computers and wireless 

data transfer, and modern remote sensing. As a result, cost-efficient spatial digital data that are 

more accurate than ever before are readily achievable (Holopainen and Kalliovirta 2006).  

Initially, remote systems were limited to satellite imagery. Five decades have passed since the 

launch of the first international satellite sensor programme designed to monitor Earth’s 
resources (the ERTS) in 1972. Since then, hundreds of Earth Observation Satellites have been 

sent into orbit and they are delivering assorted remotely sensed data from the local to the global 

scale (Wang et al. 2012). The most common sensor mounted on satellites is an optical imaging 

system, which is similar in design and application to a standard digital camera except that it can 

collect data beyond the visible wavelengths (i.e., infrared and thermal wavelengths) across the 

electromagnetic spectrum. According to Boyd and Danson (2005), from the resources 

perspective satellite remote sensing is useful to provide three levels of information. The first 

level refers to information on the spatial extent of forest cover, which can be used to assess the 

spatial dynamics of that cover; the second level comprises information on forest type, and the 

third level provides information on the biophysical and biochemical properties of forests. In the 

last level, forest variables are estimated indirectly by using mathematical models which relate 

spectral response with some forest variable of interest (i.e., above ground biomass, tree height, 

and canopy closure) (Li et al. 2020; Ghosh, Behera, and Paramanik 2020; Zhang et al. 2020; Zhao 

et al. 2019; Xie et al. 2022). Despite the profusion of such variables and its promising evolution, 

passive remote sensing technology still needs the development of innovative approaches to 

address the requirements of ecologically important indicators (Dobre et al. 2021). The main 

disadvantage of most passive remote-sensing systems is the constant need for ground 

measurement calibration. Besides, when fitting regression models assume several assumptions 

regarding the relationship between forest characteristics and image values/digital levels must 
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be made. In cases where these assumptions are incorrect or inaccurate, they can lead to 

important errors in the interpretation of the results (Zhang et al. 2021) 

An alternative or a complement (depending on the situation) to passive remote-sensing systems 

may be active remote-sensing, especially laser scanning technologies, which provide different 

approaches for estimating tree characteristics from point clouds. More specifically, they 

produce tridimensional coordinates directly from the objects that are measured which, by 

themselves or through local geometric variables derived from them (e.g. normal and planarity), 

allow analyses that enable species classification, point cloud segmentation to identify trees or 

stem reconstruction, among other applications (Pascu et al. 2020; Cabo et al. 2018a; Dobre et 

al. 2021). In the 1970s and 1980s, the basic principles of using lasers for remote sensing were 

established, although it was not until the 1990s that the first experiments with laser scanning 

instruments were carried out. LiDAR measurement systems began to join together optical-

mechanical scanning/scanning systems, global positioning elements and inertial measurement 

units, thus constituting the first airborne laser scanners (Bufton 1989). Since then, aerial and 

terrestrial lasers have evolved rapidly, and nowadays laser scanning remote sensing provides 

optimal solutions for describing forest stands through structural indicators based on point cloud 

processing.  

In parallel to the development of new sensors, new platforms on which to mount them have 

appeared in the forestry scenario, gradually gaining visibility. This is the case with the Unmanned 

Aerial Vehicles (UAVs), which can transport both passive and active sensors (mainly laser 

scanners). Regardless of the type of sensor they transport, their strong points are: i) their ease 

of assembly and transportation, which enables the capture of customized data, ii) their ability 

to capture extremely high-resolution data, and iii) their capacity to capture useful imagery /point 

clouds even in the presence of cloud cover. UAVs cannot rival traditional platforms (airplanes or 

satellites) in terms of spatial extent; however, with appropriate processing and analysis 

frameworks, data from UAVs are likely to offer substantial opportunities to augment and 

enhance data collected from these more traditional platforms (Dash, Pearse, and Watt 2018). 

The combination of the different types of sensors and platforms provides a wide variety of 

options for studying forest resources, which have been triggered through the large number of 

scientific contributions related to different aspects of forestry, the most common being: forest 

ecology and management (Lechner, Foody, and Boyd 2020; Roughgarden, Running, and Matson 

1991), land cover analysis (Rogan and Chen 2004; Buján et al. 2012), biomass estimation (Li et 

al. 2020; Kankare et al. 2013), hazard identification (Fraser and Li 2002; González-Olabarria et 

al. 2012), forest structure assessment (Maier, Tiede, and Dorren 2008; Morin et al. 2019) , and 

ecological indicators (Bagaram et al. 2018; Corbane et al. 2015). 

1.5 LIDAR TECHNOLOGY AT THE SERVICE OF FORESTS 

1.5.1 Airborne laser scanning (ALS) 

The term airborne laser is frequently used to distinguish between systems that acquire LiDAR 

data from various types of aircraft and those systems that use spaceborne or terrestrial 

platforms (Maltamo, Næsset, and Vauhkonen 2014). The basis of all ALS systems is the emission 

of a short-duration pulse of laser light and the measurement of the elapsed time between 

emission and detection of the light reflected back to the sensor (Vauhkonen et al. 2014). As the 

speed of light is known, the distance from the point of emission to the underlying object from 

which the light was reflected can be easily calculated. At the same time, the position and the 

orientation of the sensor are recorded using a GPS and INS (Inertial Navigation System) so each 
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point within the point cloud has a set of 3D coordinates (XYZ) that constitute a detailed 

representation of the scanned objects.  

In the specific case of forestry applications, ALS is well known for is its ability to accurately 

characterize the three-dimensional (3D) structure of the forest canopy at medium-large scales. 

More precisely, height and density metrics derived from ALS point clouds provide valuable 

information about the horizontal and vertical distribution of vegetation. Canopy height, 

subcanopy topography, and vertical distributions of canopies (Lim et al. 2003) are the most 

common attributes that can be directly retrieved from LiDAR data (Lim et al. 2003). But probably 

the greatest potential of LiDAR lies in the possibility of estimating a great number of attributes 

that can be predicted using empirical models, including above-ground biomass, basal area, mean 

stem diameter, vertical foliar profiles, and canopy volume, among others. As a consequence, 

there is a rich variety of studies covering topics such as single tree detection (Aubry-Kientz et al. 

2019; Apostol et al. 2020), canopy variables estimation (Andersen, McGaughey, and Reutebuch 

2005; Jarron et al. 2020), biomass estimation (Gonzalez de Tanago et al. 2018; Xu et al. 2021), 

height estimation (Mielcarek, Stereńczak, and Khosravipour 2018; Rodríguez-Puerta et al. 2021), 

and habitat characterization (Bourgouin, Valeria, and Fenton 2022; Santopuoli et al. 2020; Prada 

et al. 2022). 

Finally, more and more countries are starting to acquire LiDAR data from parts of their territory 

(i.e., Italy, Canada and Brazil) or from the whole country (i.e., Finland, France and Germany). In 

most of these countries, these data are available to users at no cost through their national 

cartographic servers. As a consequence, the number of users who can potentially work with 

these data has increased rapidly in recent years. In the specific case of Spain, there is a plan for 

the periodic acquisition of LiDAR data within the framework of the project PNOA-LiDAR. Its 

objective is to cover the entire territory (in a 6-year cycle) through 3D colored point clouds 

obtained through airborne LiDAR sensors. The first coverage was acquired between 2009 and 

2015 and the second began in 2015 and finished in 2021. The point density is 0.5 points/m² in 

the first coverage and 0.5-4 points/m² in the second, with some exceptions where the density is 

even higher (i.e., the autonomous region of Navarra, at 14 points/m2). The availability of 

temporal series of data is a very powerful tool for the study of forest dynamics and evolution 

(including disturbances).  

1.5.2 Terrestrial laser scanning (TLS) 

TLS is based on the same principle as ALS, but in this case the scanning is performed from a 

device placed on the ground, which is why this technique is also known as “Ground Based Lidar 
Technology (Pfeifer and Briese 2007). TLS scanners use tachymetric measurements, which 

combine the measurement of distances and angles. The scanner sweeps its entire field of view 

(FoV), varying the direction of the laser beam in order to scan the different points to be 

measured, either by rotating the device itself or by using a system of rotating mirrors. This last 

method is the most frequently used since mirrors are lighter and can rotate quickly and with 

great precision. The deflection system points the laser beam in the direction to be measured 

after which the laser beam is emitted and the reflected laser light is detected. The accuracy of 

distance measurements depends mainly on the intensity of the reflected laser light and 

therefore directly on the reflectivity of the object surface (Fröhlich and Mettenleiter 2004). The 

reflectivity depends on the angle of incidence and surface properties.  

For each reflected signal, two angles representing distance an intensity (α and θ, respectively) 

are registered. Based on these angles it is possible to define the position of each one of the 
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points of the scene in a polar coordinate system, which is internally transformed to a cartesian 

system. In addition, the intensity of the returned signal is also stored, intensity being a measure 

of the energy received by each point. As a result, TLS creates a point cloud where each point is 

determined by its position (XYZ) (Wilkes et al. 2017). The technique is characterized by high 

measurement repeatability as well as the capacity to map 3D surfaces with millimetric accuracy 

(Van Leeuwen and Nieuwenhuis 2010) which enables the detailed study of the entire scanned 

surface as well as the detection of small features. 

Regarding data acquisition, the equipment is stationed at a fixed point, which greatly simplifies 

the design of sensor required since it is not necessary to have an inertial system. The only thing 

that is needed is the scanner itself mounted on a tripod and a reference instrument that allows 

absolute coordinates to be obtained, generally a GPS (although this is not mandatory as analysis 

can be performed using relative coordinates). There are two different methods that can be used 

in TLS measurement: single-scan and multi-scan. In the single-scan approach, the laser scanner 

is placed at the center of the plot, and one full field-of-view (i.e., 360-degrees-by-310-degrees) 

scan is made, meaning that objects behind the nearest surfaces in the direction of the laser 

beams are missed (Liang and Hyyppä 2013). In the multi-scan method, several scans are made 

simultaneously inside and outside of the sample plot, so it is necessary to establish a series of 

points with known coordinates (sufficient in number of points and coordinates) that are 

identifiable from the scan points. These points are usually marked with spheres or targets whose 

coordinates are recorded in the field with a GPS. This allows the point clouds collected from 

each scan to be merged at a later point and based on the same coordinate system.  

Technological breakthroughs in the field of terrestrial laser scanning area have led to the 

expansion of the stationary laser units which, when bundled with localization and mapping 

systems, can become mobile laser units known either as MLS (Mobile Laser Scanner) or mobile-

TLS (Kukko et al. 2012). A typical MLS system has the capacity to localize and map by itself thanks 

to both the Global Navigation Satellite System (GNSS) receiver and the Inertial Measurement 

Unit (IMU) implemented in it (Liang and Hyyppä 2013). In this regard the performance of MLS is 

more similar to ALS than to TLS.  

1.5.3 ALS vs TLS 

Despite both ALS and TLS both being very valuable tools for assessing canopy structure, each 

has its own advantages and disadvantages. On the one hand, the strongest point of ALS is that 

it can cover large geographical areas and provide detailed information on canopy area and 

canopy height, as well as vegetation strata, due to the capacity of the beam of light to penetrate 

through branches and leaves. However, it is not possible to quantitatively assess interior canopy 

structure (i.e., stem variables such as dbh and branch architecture). Terrestrial devices on the 

other hand, unlike aerial devices, facilitate the observation of parts of trees that are not easily 

accessible from the sky, such as stems, branches and even low vegetation. In addition, the 

density of point clouds and their accuracy is, as a rule, higher with TLS (Fahey et al. 2016). 

Regardless of the type of scanner employed, the point clouds are stored in an internal data 

format and each manufacturer offers product-specific software for data collection. Therefore, 

the customer needs special software which allows the raw data to be read and treated after the 

scanning. However, there are exchange formats, such as .las/.laz and .txt, among others , that 

facilitate the sharing of data captured with different scanners , meaning that they can therefore 

be analyzed with different software. 
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In this doctoral thesis, data captured with a TLS Scanner FAROFocus3D (Faro,2018) and a Leica 

P40 (Leica, 2021) have been used. Chapters 2 and 3 include a more detailed description of each 

of these systems. 

1.6 PRECISION FORESTRY: A REVOLUTION IN THE WOODS 

Digital transformation is reaching all sectors, and forestry is no exception. Inspired by advances 

in agriculture, forest managers globally have started to use new technologies to improve forest 

planning yields. Within the industry, this approach has been termed “precision forestry” which 

can be defined as the use of modern tools and technology to get as much real information as 

possible in order to improve decision making process and to ensure current goals of forest 

management (Kovácsová and Antalová 2010) . The best known and most frequently used tools 

are remote sensing, navigation systems and geographic information systems. The scope of 

precision forestry is very wide, and is constantly expanding, some of the most important topics 

currently being: forest monitoring, wood quality assessment, the fight against illegal logging and 

deforestation, pests and diseases, waste reduction, fighting wildfires, habitat conservation, land 

management and profits increase. One of the strongest aspects of precision forestry is its 

scalability, meaning it has a range of users, from private individuals to organizations and 

companies to regional and national governments. This new approach to forestry aims, in the 

first instance, to improve and complement the traditional system, although in the near future it 

is highly probable that precision forestry becomes established as the dominant mode due to its 

capacity to provide solutions to new challenges (Figure 2).  

 

Figure 2. Change of paradigm in forestry: from traditional inventory devices to precision forestry techniques 

Indeed, according to Fardusi, Chianucci, and Barbati (2017), the use of precision forestry is no 

longer simply a choice in forestry management and the provision of products, it is a necessity. 

However, the forestry industry is not adopting digital technology as quickly as most other 

industries, including agriculture. The explanation for this can be found in certain peculiarities of 

the forestry sector, which faces several challenges in introducing advances in technology in 

terms of forest inventory techniques and in forest management in general (Choudhry and 

O’Kelly 2018). Some of the most serious are explained below.  

In the first place, public-private partnerships in relation to forest management is insufficient; 

consequently, there is little corporate involvement in forestry (76 percent of forests globally are 
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publicly owned, and most of the remainder are held by small-scale private owners who typically 

hold, on average, less than one hectare).  

Secondly, and contrary to what happens in agriculture, commercial forests are located in remote 

and difficult terrains (high slope, hard-to-reach areas, dense understory, etc.), which presents 

many challenges for the adoption of new technologies.  

Finally, the fact that the traditional system has been active for more than 300 years has 

generated a cadence that makes both public and private stakeholders/managers follow the 

conservative management/traditional system. According to Choudhry and O’Kelly (2018) for 

forest managers, precision forestry involves “a paradigm shift, from a highly manual and 

analogue system with broad-brush management prescriptions to a system with digital data 

capture and planning, granular management prescriptions, and tight operational control” based 

on objective and highly accurate data. It is a fact that many forest users lack experience in 

implementing and using accurate forestry technologies. Subsequently, while a wide range of 

precision forestry technologies exists, relatively few practical examples are up and running, but 

only a few seem to know how to take advantage of these technologies in real projects. 

The field of forest inventories, and more specifically the use of terrestrial point clouds for 

inventory variables estimations, is not an exception, and despite their potential to produce 

objective assessments of the 3D forest structure (Van Leeuwen and Nieuwenhuis 2010) the 

technique is not fully implemented. Apart from the previous reasons there are other specific 

ones in the case of terrestrial point clouds, all of which are explained in detail in Chapters 2, 3, 

and 4. As an advance, many researchers agree that affordability (in the broad sense of the word) 

is the main key challenge to be overcome (Molina-Valero et al. 2020). In this context, 

affordability implies the automation of point cloud processing with attainable and easy-to-use 

software able to extract information related to important forest attributes. This is essential and 

must be the roadmap to follow. 

1.7 BACKGROUND ON THE CREATION OF AUTOMATIC TLS-BASED INVENTORIES TOOLS 

The use of TLS devices provides a reliable representation of the structure of the trees within the 

stands at the time when the data are collected (Liang and Hyyppä 2013). The fact that data are 

collected from the ground makes this technology especially suitable for studying stem profiles 

(Dassot et al. 2012). However, due to the large size and complexity of the high resolution three-

dimensional point clouds, there is an increasing demand for methods for the automatic 

measurement of inventory variables, especially those which focus on the estimation of variables 

related to the stem and branches (Ghimire, Xystrakis, and Koutsias 2017). Researchers, and to 

some extent foresters, are trying to meet this demand by creating algorithms and 

methodologies based on terrestrial point clouds that are being applied in different fields of the 

forestry field. A good example of this are the “precision forestry” inventory methodologies that 
go beyond classic inventories, which were mainly focused on dbh (Pfeifer and Winterhalder 

2004; de Conto et al. 2017; Hackenberg et al. 2014; Thies et al. 2004b; You et al. 2016) and h 

estimations (Cabo et al. 2018ab; Hauglin et al. 2014; Ghimire, Xystrakis, and Koutsias 2017). The 

new methodologies not only increase the accuracy of estimations of these to variables, but also 

try to estimate new ones, such as curvature and straightness of the stem, that condition the 

price of the timber in the market. In the case of dbh estimation one of the most important 

studies is that performed by Liang et al. (2018), who detailed a vast range of automatic or semi-

automatic forest inventory methods focused on stem detection and dbh calculations. The high 

accuracy of the diameter estimations obtained in previous studies (RMSE values ranging from 
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0.71 to 2.64 cm; Hollaus, Mokroš, and Wang 2019) confirms that TLS is a suitable technique for 

precision inventories, and also meets the accuracy requirements for the vast majority of 

applications. Although there are many studies where stems are modelled, this number is 

drastically reduced when it comes to extracting diameters at different heights (Torresan et al. 

2021).  

In the case of height, TLS estimations are not as accurate as for diameters, some studies showing 

a tendency toward slight overestimation when comparing TLS measurements against field 

measurements (Olofsson and Holmgren 2016; Hopkinson et al. 2004; Maas et al. 2008). This was 

attributed to the presence of canopy shadow effects and obstructions resulting from complex 

multiple scan positions (Ghimire, Xystrakis, and Koutsias 2017). These results indicate the need 

for the refinement of the current methodologies and the further development of automatic 

feature identification and data extraction techniques.  

The fact that TLS allows the estimation of diameters along the stem and height in a relatively 

simple and objective way broadens the range of variables that can be obtained from the point 

clouds. One of the most useful applications is the direct estimation of tree volume (Dassot et al. 

2012; Saarinen et al. 2017). But in addition to this, it is possible to use the measurements 

obtained with the scanner for the parameterization of volume equations. On the one hand, this 

modus operandi avoids the traditional destructive sampling approach, which has several 

problems (Barker and Pinard 2001), the most evident among them being the destruction of the 

stand. In addition, the resultant volume equations can be used in stands with similar 

characteristics to those of the sample parameterized without the need to scan them, this 

consequently saving of time and money. Despite the great potential of TLS in this field, however, 

very few works have developed in this line (Li et al. 2021; Gabriel 2017; Sun et al. 2016). 

In addition to stem volume, another of the main parameters that influence the use that wood 

obtained from a forest can be used for (and therefore its economic value) are the those related 

to the shape of the stem (straightness, sinuosity, lean, etc.). Specifically, tree stem curve holds 

a significant position in forestry, as it is one of the most important attributes for defining stem 

value (Liang et al. 2016).   

In this same line, TLS also opens the door to quickly and easily measuring parameters that have 

a strong influence on stem value but are not currently measured due to technical difficulties or 

high cost. At the present time there are only a few studies that have focused their efforts on the 

calculation of shape variables such as straightness and lean (Murphy, Acuna, and Dumbrell 2010; 

Hamner, White, and Araman 2007; Dwivedi et al. 2019; Garms et al. 2020) or to the study of the 

presence and distribution of branches (Dassot et al. 2012; Kankare et al. 2013; Raumonen, 

Kaasalainen, Åkerblom, et al. 2013; Zhou et al. 2019) 

The possibility of obtaining diameters along the stem, total heights and also curvature 

parameters open up the possibility of analysing the stem in an integral way with a number of 

variables, something that was unthinkable until recently. In fact, in the last fifteen years, the 

forest industry has shown increasing interest in laser scanning techniques and the performance 

of TLS systems for the volumetric measurement of timber assortments (Kankare et al. 2014). 

One of the main fields of interest is the optimal bucking of stems. In this regard, poor decisions 

in terms of cutting patterns lead to great losses in the value of the products obtained from the 

tree, therefore ruining previous silvicultural efforts to obtain good quality wood. In the field of 

optimal bucking, the number of studies where bucking algorithms are fed with data collected 

with TLS are rare. One of the few authors who has worked in this line is Murphy (2008) who 

determined stand value and log product yields using TLS and optimal bucking, and then 
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compared the results with estimates from actual stem profiles. The study revealed that TLS-

derived estimates of average stand value and log product yields were within 7% of actual 

estimates. Later on, Murphy et al. (2010) collected information of stem profiles using three 

methods: (1) TLS scans, (2) Atlas Cruiser inventory procedure (Atlas Technology, 2010), and (3) 

manual measurements after harvesting. TLS volume and value recovery were within 8% and 7%, 

respectively, of actual harvester recovery, while Cruiser volume and value estimates were both 

within 4% of actual harvester recovery. Apart from this, the most recent study to investigate the 

potential of TLS data for optimising bucking algorithms, to our knowledge, is the one by Kankare 

et al. (2014). This study assessed the accuracy of high-density laser scanning techniques to 

estimate tree-level diameter distribution and timber assortments by combining ALS (Aerial Laser 

Scanning) and TLS for timber assortment estimation. The results showed that accurate tree-level 

timber assortments and diameter distributions can be obtained using TLS or a combination of 

TLS and ALS.  

In this doctoral thesis three algorithms for precision forestry inventories based on terrestrial 

point clouds are developed that involve volume equation parametrization, stem shape variables 

estimation and the optimal bucking of stems. In Chapters 2, 3 and 4 all the limitations and 

possible improvements of previous studies dealing with these three topics are considered and 

discussed in detail, as are the theoretical and computational aspects of the three algorithms 

developed, the tests carried out to validate them, and the results obtained.  
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1.8 OBJECTIVES  

This doctoral thesis is focused on providing new tools for precision forestry inventories. 
Specifically, three algorithms applicable to terrestrial point clouds which provide automatic 
solutions for three key issues in forest management were developed: volume equation 
parametrization, stem shape variables estimation and optimal bucking pattern determination. 

In order to achieve this, the general objective was divided into the following specific objectives: 

1) To design, implement, and test a fully automated algorithm for the parametrization of 
stem volume equations (stem taper and/or volume ratio equations). This is 
accomplished using data from TLS point clouds to automatically detect individual trees 
and measure diameters along the stem (di) and total height (h) at the individual tree 
level. 

2) To design, implement, and test a fully automated algorithm that allows the estimation 
of straightness (maximum sagitta and sinuosity) and lean at the individual tree level 
from data captured with TLS.  

3) To implement the two previous methodologies in a bucking algorithm for the optimal 
bucking of stems, based on their external characteristics (diameters and curvature), 
which maximize the economic value of a stand using data from TLS point clouds.  

4) To analyse the advantages and disadvantages of the performance of each algorithm 
compared to traditional techniques 
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CHAPTER 2: AN ALGORITHM FOR THE AUTOMATIC PARAMETRIZATION OF 

WOOD VOLUME EQUATIONS FROM TLS POINT CLOUDS: APPLICATION IN 

PINUS PINASTER 

2.1 INTRODUCTION 

Estimating merchantable volume as accurately as possible is essential in forest management in 

order to know the amount of wood available for the various uses that industry demands. There 

are basically two different methodologies for determining merchantable volume: stem taper 

equations and volume-ratio equations (Álvarez González, Gadow, and Real Hermosilla 2001; 

Trincado, Von Gadow, and Sandoval 1997). Stem taper equations rely on the mathematical 

relationships between diameters along the stem and the height at which they are located 

(Newnham 1992), while volume ratio equations estimate the volume of the tree up to a certain 

point in the stem (defined by its diameter or height) as a percentage of its total volume (Cao, 

Burkhart, and Max 1980; Van Deusen, Sullivan, and Matvey 1981). In both cases, tree stems are 

divided into logs which are assimilated as a cylinder, and the top section is modelled as a cone. 

Total stem volume is obtained by summing the log volumes and the volume of the top section. 

In the few published studies where the two methodologies are compared, no significant 

differences between them have been obtained (Parresol, Hotvedt, and Cao 1987; Trincado, Von 

Gadow, and Sandoval 1997). In order to develop these types of equations, large and 

comprehensive mass data is required to ensure that variability in the population, as well as in 

the geographic areas, is covered, so that the models can be applied in different stand typologies 

(Picard, Saint-André, and Henry 2012). Traditionally, to obtain such measurements, destructive 

techniques have been used, according to which a number of suitable trees (not forked nor 

excessively branched) that provide a representative distribution of diameter and height classes 

are selected and felled. They are then cut into logs of variable length and two perpendicular 

diameters are measured for each cross section (Menéndez-Miguélez et al. 2014) up to a top 

diameter of 7 cm. These techniques are resource-intensive (Corral-Rivas et al. 2007; Crecente-

Campo, Alboreca, and Diéguez-Aranda 2009), since they require the felling of trees and 

consequently, stem-volume models for many tree species are non-existent and/or have only 

been developed for certain specific geographical areas, thus limiting their applicability.  

The use of remote sensing techniques, more specifically, Terrestrial Laser Scanning (TLS), is 

gaining great importance in the estimation of variables related to stems and branches. This is 

mainly due to the high resolution and precision of the information it provides at the plot level, 

making possible the 3D modelling (Zong et al. 2021) and reconstruction of the trees (Liang et al. 

2016) without the need for felling. As a result, since the early 2000s the possibilities offered by 

TLS in the forestry sector are increasingly being recognized for research and commercial ends 

(Fröhlich and Mettenleiter 2004), particularly in terms of compiling forest inventories (Hollaus, 

Mokroš, and Wang 2019). Although manual extraction processes are still sometimes used 

(Holopainen et al. 2011; Kankare et al. 2014) the general trend is to use automatic procedures 

(Liang et al. 2012; Raumonen et al. 2015). Liang et al. (2018) detail a wide range of automatic or 

semi-automatic forest inventory methods focused on stem detection and diameter at breast 

height (dbh) calculations.  

Regarding parameter extraction, most studies focus on the estimation of stem variables such as 

diameters (di) at different height positions, including dbh and h (Cabo et al. 2016; de Conto et 

al. 2017; Hackenberg et al. 2014; Hauglin et al. 2014; Henning and Radtke 2006; Pfeifer and 

Winterhalder 2004; Thies et al. 2004; You et al. 2016) but there are some authors who have also 
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studied crown variables (Jung et al. 2011; Mohammed, Majid, and Izah 2018). In the case of dbh, 

TLS-based estimations have provided RMSE values ranging from 0.71 to 2.64 cm (Hollaus, 

Mokroš, and Wang 2019) which fulfil the requirements of many practical applications, e.g., 
national forest inventories (Liang et al. 2018). This high accuracy makes TLS a suitable technique 

to develop locally adjusted merchantable volume equations (Sun et al. 2016; Trincado and 

Burkhart 2006). 

Although there are many studies where stems are modelled, this number is drastically reduced 

when it comes to extracting diameter at different heights for merchantable volume equations. 

There are, in addition, only a few studies evaluating the performance of TLS in contrast to field 

data in the measurement of stem taper (Henning and Radtke 2006; Liang et al. 2014; Maas et 

al. 2008; Mengesha, Hawkins, and Nieuwenhuis 2015). That said, some authors have put their 

efforts into the use of TLS for the estimation of variables of great importance for the wood 

industry such as branch architecture (Laurin et al. 2016), solid wood volume (Dassot et al. 2012) 

and taper equation construction (Gabriel 2017; Olofsson and Holmgren 2016; Sun et al. 2016).  

The consistent increase in popularity of LiDAR devices, linked to their decreasing cost and rapid 

developments in their associated computer hardware and scanner technology in recent years, 

will make 3D point cloud data easily available for a wider range of users. Indeed, robust, time 

efficient and flexible software for data processing is already being demanded (de Conto et al. 

2017), especially in the field of forestry. Within this context, the automated processing of TLS 

forestry data remains a challenge, particularly in regard to the efficient storage and analysis of 

voluminous merged scan data, the filtering of noise and unwanted data, and methods for 

dealing with the partial and complete occlusion that is common in forest plots (Calders et al. 

2020; Li et al. 2020; Pitkänen, Raumonen, and Kangas 2019). Another challenge is to reduce the 

time invested in data collection and processing to make it similar to or less than the time 

required to parametrize conventional volume equations. This depends largely on the level of 

automation that can be attained by the software-aided analysis of the scanned plots (Thies et 

al. 2004).  

The aim of this study is to design, implement and test a fully automated methodology for the 

parametrization of stem volume equations (stem taper and/or volume ratio equations). This is 

accomplished using data from TLS point clouds to automatically detect individual trees and 

measure diameters along the stem (di) and total height (h) at the individual tree level.  

2.2 METHODOLOGY 

Figure 3 shows a workflow of the methodology detailing the steps involved the automatic 

parametrization of volume equations, including the input/output data needed and the 

procedures to be followed. In Section 2.2.1, the procedure for obtaining h and di in a fully 

automatic way from the TLS point cloud is explained in detail, including the identification and 

individualization of the stems, and the subsequent estimation of their geolocation. Section 2.2.2 

details the procedure followed for the parametrization of the volume equations.  
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Figure 3.Workflow of the methodology proposed for the volume equations parametrization from TLS point clouds 

(Input/output data are shown in yellow and procedures in green) 

2.2.1 Automatic estimation of dendrometric variables 

2.2.1.1 Preprocessing of point cloud data 

This part of the methodology encompasses all the steps that need to be followed to process the 

3D point cloud prior to the automatic estimation of di and h: the aim is to automatically detect 

individual trees in the plot, then isolate and identify all points belonging to each tree and extract 

those points which are along the stem. The workflow can be itemized as follows (see Figure 4).  

1) Construction of a digital elevation model (DEM) to define the ground. 

2) Height normalization of the point cloud to obtain Z coordinate, which refers to the 

ground (Znorm). 

3) Selection of candidate point groups along a horizontal strip (equal height from the 

horizontal ground), and where no scrub or branches are expected, on the basis of 

clustering of points using the DBSCAN algorithm (Birant and Kut 2007). The consistency 

of the groups in the horizontal strip is checked according to the methods described in 

Cabo et al. (2018ab). 

4) Location of stem axis through the determination of the centroid and PC1 of detected 

stems: The methodology assumes that candidate tree stems are essentially linear 

features. As such, in the principal component (PC) analysis of the XYZ coordinates of 

each stem-candidate point group, the first PC (PC1) aligns with the direction of the 

maximum variance from the XYZ coordinates of each group. Then, PC1 is used to define 

the direction of each stem axis. The other two principal components (PC2 and PC3) are, 

by definition, perpendicular to each other and to PC1 (Oviedo-de la Fuente et al. 2021) 

and can therefore be used as local/tree coordinate axes to calculate the distance of any 

point from the PC1 axis. 

5) Calculation and storage of distances from each point to the closest axis: Daxis. This has 

various applications, but the most obvious is that it allows the points of each tree to be 

filtered by their distance from the axis, making the separation of the main parts of each 

individual tree into crown/branches and stem relatively straightforward.  

6) Tree individualization. All the points are assigned and linked to their closest axis (Tree 

Id)  
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Figure 4. Workflow for the identification of tree stems prior to automatic estimation of di and h. 1) DEM generation 

2) Point cloud normalization (Znorm) 3) Strip on the height normalized point cloud where the groups of candidate 

points likely to be tree stems are identified 4) Tree stem axes resulting from PCA analysis, where the PC1 is 

represented by a red line 5) Axis distance mapping of each tree (Daxis) 6) Tree individualization procedure, where all 

the points are labelled with a tree identifier (Tree Id) 

2.2.1.2 Tree height estimation 

The estimation of tree height is based on the determination of the highest point in the crown in 

the proximity of each stem axis. For this, the points belonging to each tree (Figure 5A) are first 

clustered. From the resulting groups, those that are few in number and far from the stem, which 

may correspond to noise, artifacts, or canopy from higher neighbour trees, are automatically 

removed. The remaining points are filtered by distance from the tree axis in order to only 

consider those closest to the axis for the tree height estimation. This is done based on a 

threshold distance that delimits a cylinder around the top part of the tree, and can be varied for 

different species, conditions or environments. h is finally estimated as the elevation above the 

ground of the highest point inside the cylinder (Figure 5B), which reduces the probability that h 

corresponds to the top of another higher tree, and allows appropriate estimations, even for 

tilted trees (Figure 5C). A default distance threshold value can be set as half of the average 

distance between neighbour trees in the plot. However, this value can be altered, generally 

reduced, if the stems are essentially straight and/or there is a high diversity in terms of tree 

height within the plot. 
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Figure 5. Tree height estimation procedure, where h is estimated for each individualized tree (A) as the highest point 

within the area of a delimited cylinder around the tree axis after noise filtering (B) and which is also valid for tilted 

trees (C) 

2.2.1.3 Diameter estimation along the stem  

The tree stem is initially segmented by extracting the points that are within a certain distance of 

each axis. This distance is set as the maximum stem radius expected in the plot. Then, diameters 

at different heights along each stem (di) are measured at a user defined interval starting from 

the ground (Figure 6A). To do so, each di is measured in a slice, which comprises all the points in 

a thin horizontal section of stem of uniform thickness. The maximum height with points in these 

sections strongly depends on the quality of the results obtained in the stem filtering step, which, 

in turn, is mainly dependent on occlusions, the point cloud density and the presence of artifacts 

around the stem, such as branches or understory. These three factors are interrelated and their 

influence on the resulting di is expected to be stronger in the upper sections of the stem. As well 

as the height interval for slice extraction, the thickness of the slices and the upper height limit 

can be specifically set for different species and/or conditions, environments or studies (Figure 

6B). 

For the initial diameter estimation, the algorithm computes the diameters by fitting a circle to 

the points in each slice in each tree stem (Figure 6C). The circle fitting method is described in 

detail in Cabo et al. (2018ab). The algorithm calculates the diameter and the X and Y coordinates 

of each section center, thus their position along the stem is defined and stored.  



CHAPTER 2                                                                       Automatic parametrization of wood volume equations 

19 
 

 
Figure 6. A) Cross-sections along the stem B) Detail of stem slices showing height interval for their extraction, and 

their thickness C) Circle fitting to the points of a stem slice 

Automatic identification and labelling of anomalous sections.  

Frequently, the horizontal sections at different heights used to fit the circles contain points that 

do not belong to the stem but to other parts of the tree, such as branches, leaves or other 

artifacts. In those cases, the circle fitting may result in an erroneous estimation of the stem 

radius (r). The algorithm includes two complementary functions that allow, on the one hand, the 

identification and labelling of the anomalous sections, and, on the other, automatic correction 

in those cases where it is possible. Both functions are explained in detail below: 

Inner circle (IC): this function was presented for the first time in Cabo et al. (2018a). Here, a 

concentric inner circle with radius r’ = r/2 is set up in the fitted section (Figure 7). If the position 

and size of the circle fitted is correct, no points are expected inside the inner circle.  

Sector occupancy (SO): this function is based on the assumption that the points within a section 

follow a close-to-circular distribution and, except in cases of very severe occlusions, almost half 

of each tree section should be covered by points if it is measured from only one TLS setup, but 

more if it its measured from several setups. In order to verify that the circle fitting is compatible 

with this point coverage around the stem sections, an annulus divided into sectors is created 

around the position of each initially fitted circle (Figure 7). The width of the annulus can be varied 

if irregularities on the stem/bark are expected. If the position and size of the circle fit is correct, 

at least half minus one of the sectors should be occupied by points: this also allows circle fittings 

in stem sections that are only reached from one scan position, while the shape of the point group 

is continuously checked.  
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Figure 7. Checking functions of the circle fitting step in each section (IC +SO) showing an example of an ideal case, 

where the section would be labelled as correct. 

If in the first circle fitting of a section there are no points in the inner circle, and there are 

sufficient sectors occupied, the diameter estimation is considered correct. However, if there are 

points within the inner circle, or there are not sufficient sectors occupied in the annulus, it is 

highly probable that the diameter fitting is not correct. To resolve this, all the points within the 

section are clustered based on the distance between them. Then, the circle fitting is carried out 

again using only the cluster with the largest number of points, which is more likely to contain a 

higher percentage of points on the stem (Cabo et al. 2018a). This gives a new estimation for the 

diameter and position of the section of the stem. The new circle fitting is then checked again 

(i.e., IC and SO).  

If a section passes the validation functions (either in the first or second round), it is labelled as 

“correct (C)”. If both the first and second round of validation functions fail, the section is labelled 
as “flagged (F)”. If in the first or the second round of validation functions there are not enough 

points to perform the circle fitting, the section is labelled as “not enough data (ND)”.  



CHAPTER 2                                                                       Automatic parametrization of wood volume equations 

21 
 

 
Figure 8. Algorithm for diameter estimation performance when labelling sections. Sections can be classified into 4 

categories, TP) True positives: labelled as C when they indeed are; TN) True negatives: labelled as F when they 

indeed are; FP) False positives: labelled as C when they should be F; and FN) False Negative: labelled as F when they 

should be C. 

Figure 8 shows 10 different hypothetical section scenarios and the behaviour of the circle fitting 

and validation functions in each case. They are classified into four groups: True positives (TP), 

True negatives (TN), False positives (FP) and False negatives (FN). TP are correct estimations 

(from the first or second fitting round) and they are automatically stored as correct diameters 

(Figure 8. (A, B, C, D)). TN (i.e., those sections correctly labelled as F or ND) can be either left to 

be inspected visually by an operator or eliminated straightaway (Figure 8. (E, F, G, H)). FP and 

FN correspond to rare situations in which the algorithm would wrongly classify the results. For 

example, Figure 8I correspond to an irregular stem section, while Figure 8J represents a branch 

with a quasi-circular section. However, these specific misassignments could be avoided by 

changing the parameters of the checking functions/tests (diameter of the inner circle, annulus 

width, and/or minimum number of occupied sectors). 

2.2.2 Parametrization of volume equations  

The merchantable volume can be calculated using different types of volume equations: mainly 

stem taper and volume-ratio equations, which are similar in terms of accuracy with respect to 

merchantable volume. In order to parametrize either of them, it is necessary to have a 

longitudinal data structure, that is, multiple diameter measurements for each individual at 

different heights along the stem (di, hi) as well as the total height (h). The estimated dbh, di and 

h obtained from TLS data following the methodology described are used as input values to 

estimate merchantable volume using volume equations. For each type of volume equation, a 

large number of models (i.e., different specific expressions of the general volume equation) and 

parameter estimation approaches have been proposed in recent decades (Westfall and Scott 

2010).  

The first type of equation, a system of taper and volume equations, describe stem taper by 

providing (i) a taper equation with the diameter at any point along the stem or the height of the 
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stem for a fixed diameter (eq.1), (ii) merchantable volume to any top diameter and from any 

height or individual volume for logs of any length at any height above the ground (eq.2) and (iii) 

total volume by integration of taper equation (eq.3). Taper equations can be classified into: 

simple taper equations, segmented taper equations and variable exponent taper equations. Of 

these, segmented taper equations have the greatest flexibility, as well as the capacity to 

describe the total volume efficiently (Pang et al. 2016). Ideally, a taper equation should be 

compatible, meaning that the volume computed by integration of the taper equation should be 

equal to that calculated by a total volume equation (Clutter 1980; Demaerschalk 1972). The 

specific model included in this work, that proposed by Fang et al (2000), meets this requirement 

as it include a segmented taper equation (specific to f1, eq.1), and complementary formulations 

to directly calculate total and merchantable volumes (specific to f2, eq.2; specific to f3, eq.3). 𝑑𝑖 = 𝑓1(𝑑𝑏ℎ, ℎ, ℎ𝑖) eq. 1 𝑣𝑖 = 𝑓2(𝑑𝑏ℎ, ℎ, 𝑑𝑖) eq. 2 𝑣 = 𝑓3(𝑑𝑏ℎ, ℎ) eq. 3 

It is important to consider that, in spite of the versatility and accuracy of stem taper equations, 

their practical use is limited unless they are embedded within a computer program (Larsen 

2017). Moreover, when the data source is TLS, it is highly probable that the convergence in the 

iterations needed to calibrate the taper equation could be compromised due to the difficulty 

of di extraction in the upper stem because of branch occlusions in the crown, which leads to poor 

delimitation of the stem profile. 

The second type of equations, volume ratio equations are, in contrast to taper equations, 

directly targeted at estimating wood volume up to a predefined diameter depending on its 

merchantable volume. They are very easy to both develop and use (Crecente-Campo, Alboreca, 

and Diéguez-Aranda 2009), and a hypothetical lack of upper stem data would not have a strong 

influence on their parametrization. Volume estimations from volume ratio equations, whose 

general expression is shown in eq. 4-6, are based on the combined use of two equations—a total 

volume equation (𝑣) (eq. 4) and a ratio equation, Ri (eq. 5)—to estimate the portion of volume 

up to a certain point (limit diameter di or height hi) with values from 0 to 1, and, as such, the 

merchantable volume (𝑣𝑖) is their product (eq. 6): 𝑣 = 𝑔1(𝑑𝑏ℎ, ℎ) eq. 4 𝑅𝑖 = 𝑔2(𝑑𝑏ℎ, 𝑑𝑖) eq. 5 𝑣𝑖 = 𝑣 ∙ 𝑅𝑖 eq. 6 

The algorithm developed in the current work, includes five total volume models (v; specific to 

g1, eq.4) and four ratio models (Ri; specific to g2, eq.5). The five specific total volume models (v, 

g1) are the linearized allometric model and four other models proposed by Spurr (1952): 

combined variable, generalized combined variable, quadratic and cubic polynomial. The four 

ratio models (Ri; g2, eq.5) included are the ones described in Burkhart (1977); Clark and Thomas 

(1984); Reed and Green (1984); Van Deusen, Sullivan, and Matvey (1981). Finally, the algorithm 

processes all the models and selects and integrates one of the total volume models (eq.4) and 

one of the ratio models (eq.5) into a volume ratio equation (eq.6), based on statistical criteria. 

Considering all the above, the steps implemented in the algorithm are synthesized as follows: 
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1) In the first step, outliers in the stem analysis data (di, hi) are detected following the 

systematic procedure proposed by Bi and Long (2001). A nonparametric taper curve is 

fitted using local regression with a typical smoothing factor value (0.25). Then, those 

values which fall below a point equivalent to the lower quartile minus twice the 

interquartile range, or above a point corresponding to the upper quartile plus twice the 

interquartile range were removed owing to the fact that most of these data points 

correspond to stem deformations, and volume equations are not intended for deformed 

trees (Rodríguez, Lizarralde, and Bravo 2015). 

2) The models implemented in the methodology (stem taper equation and the volume 

ratio models) are fitted and the algorithm calculates the values and significance of 

parameters (fitting by generalized least squares for non-linear models), the goodness-

of-fit statistics of every model (coefficient of determination R2, root mean square error 

RMSE, Akaike´s information criterion, AIC) are used to select the best model and 

measure the quality of the fittings, which can also be checked by graphical analysis 

(residual versus predicted values and predicted versus observed values and a scatterplot 

of relative diameter (di/dbh) vs relative height (hi/h)). 

3) After the debugging of the data set, total volume is calculated using a cone equation for 

the top section and, for each log, the Smalian equation (a formula that calculates the 

volume for each log by multiplying the average of the areas of the two end cross-

sections by the section’s length). This total volume then becomes the dependent 
variable in the parametrization of the different equations. 

4) The algorithm automatically selects the model with the lowest AICd (that is, the smallest 

AIC value in the set of models) where all parameters are significant as its candidate for 

the final merchantable volume equation. The user can either accept the algorithm 

choice or reject it and select any of the other proposed models according to their own 

preferences or specific requirements on the basis of all the goodness-of-fit statistics and 

graphical behaviour of each model. 

2.3. CASE STUDY 

2.3.1 Study area and data 

The methodology explained above was tested in a coniferous stand (Pinus pinaster) located in 

the autonomous region of Asturias (Figure 9A), where Pinus pinaster is the third species in terms 

of wood volume logging, representing 21% of total coniferous wood felled in Asturias (SADEI 

2018). 

The study plot, which has an approximate area of 5700 m2 (Figure 9B), is part of a breeding 

program where the growth of different families and provenances of Pinus pinaster is being 

evaluated (RTA2017-00063-C04-02, 2017). Initially, in 2005, 900 trees were planted following a 

gridded distribution. A thinning treatment was made in 2018, reducing the number of trees to 

428. Regarding the stand characteristics, density is 806 trees/ha with an average dbh and h of 

18 cm and 10.5 m, respectively while average canopy cover fraction is 44%. The terrain is 

irregular with a slope of 60% and dense cover of different species of scrub such as Ulex, Ericas, 

Pteridium among others (average height is 50 cm, canopy cover is 80%) (Figure 9C).  
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Figure 9.A) Location of the study area B) Schema of the real distribution of the scans and the spheres in the test case 

plot C) Pinus pinaster stand and understory within the test case plot D) 3D representation of size and slope of the 

test case plot 

Data acquisition was carried out in November 2018 with a TLS model FAROFocus3D (Faro 2018). 

In total, 24 scans were necessary to ensure the full coverage of the study area and minimize the 

effect of occlusions. With the aim of merging the point clouds of individual scans into a unified 

coordinate system, polystyrene spheres of 25 cm diameter fixed to surveying rods were used. 

Also, the position of the spheres was measured in the field using GNSS (Global Navigation 

Satellite System), which has an accuracy of 1 cm, thereby ensuring that the unified point cloud 

had absolute coordinates. The RMSE of the registration was 4 mm, and the final matched point 

cloud obtained for all scans was approximately 150 million points, after removing duplicates 

within 6 mm. The scanning distribution is shown in Figure 9B. Finally, for all trees within the plot, 

dbh was measured in the field with a calliper (dbhf) to the nearest 1 mm and total height (hf) to 

the nearest 10 cm, using a digital hypsometer (Vertex IV 360º).  

2.3.2 Assessing algorithm performance 

The performance of the algorithm was assessed from two perspectives: tree detection rates and 

deviation in the estimation of diameters and tree heights. Tree detection rates were evaluated 

in terms of completeness and correctness with respect to the tree locations measured with the 

GNSS+Total station. Completeness was computed as the proportion of the trees within the plot 

that were detected by the algorithm (number of correctly detected trees divided by the total 

number of trees in the dataset) and Correctness was calculated as the proportion of elements 

identified as trees by the algorithm that were actual trees (number of correctly detected trees 

divided by the total number of elements detected as trees in the dataset). The deviation in the 
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estimation of both diameter measurements, dbh and di, and height, h, was evaluated by 

comparing the results obtained from the algorithm and the values obtained using (i) traditional 

inventory methods and (ii) manual/visual measurements of the point cloud data.  

In order to obtain the manual/visual measurements, a graphic interface was designed and 

implemented.  

1) For manual tree height estimations (hm) each tree is always shown from two different 

perspectives and the user can identify the highest point from both perspectives before 

selecting which to use, ensuring misassignments are avoided (i.e., if ‘Perspective 1’ in 
Figure 10A was the only available perspective of that specific tree, the hm estimation 

would be wrong). The elevation of the selected point above the ground is stored as the 

total height of each individual.  

2) For manual diameter (dm) estimations, the horizontal distribution of the points included 

in each section is graphically displayed on the screen. Over each section, the user can 

draw 3 points (A, B, C) along the section contour, so that a circumference is 

automatically fitted to them (Figure 10B), after which the diameter and the coordinates 

of the fitted circle are stored. In the case of dbh, the deviation in the diameter estimated 

by the algorithm is also calculated by comparing it with the direct measurements in the 

field made with a calliper (428 sections: one per tree). In the case of the diameters along 

the stem, the algorithm estimations are compared with the manual measurements from 

the point cloud (9844 sections: 428 trees X 23 sections). 

3) With the aim of minimizing the influence of the operator on the estimations, all height 

measurement and diameter fitting processes were conducted twice, each time by a 

different operator (Op1 and Op2).  

 

Figure 10. A) Manual total height estimation in the point cloud by marking the highest point in the cloud from two 

different perspectives B) Manual estimation diameter at different heights in the point cloud, by drawing 3 points (A, 

B, C) around the section contour. 
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2.3.3 Experimental results for automatic estimation of dendrometric variables 

2.3.3.1 Stem detection rate 

All the features detected as trees were actual trees with no false positives present, therefore 

the correctness of the algorithm is 100% for the dataset. As regards completeness, only 14 trees 

of the total 428 remained undetected, giving a value of 97%. 

2.3.3.2 Total height 

The algorithm automatically measured the total height of 98% of the trees. The average values 

obtained by the algorithm (h), by traditional inventory methods (hf) and by manual 

measurement in the point cloud (hm) as well as their standard deviation, are shown in Table 1. 

RMSE obtained when comparing h with hf was 1.52 m. 

Table 1. Mean and standard deviation (in metres) of the total height obtained from: algorithm (h), traditional 

inventory methods (hf) and manual measurements of the point cloud data (hm). 

 h hf hm 

Mean 8.78 10.29 8.72 

Standard deviation 1.44 1.48 1.43 

Figure 11A shows the differences analysed tree by tree. More precisely, it shows probability 

density functions for the differences between h, hf, and hm. The differences between h and the 

hm are less than 0.5 m for 83% of the trees, and less than 1 m for 94%, meaning that the operator 

and the algorithm each estimate a very similar height in the vast majority of cases. Although 

differences between hf and hm are higher, they are less than 2 metres in 80% of cases. 

 
Figure 11. A) Probability density functions for height differences comparing hm versus h (blue line) and hf versus hm 

(orange line). 

2.3.3.3 Diameters along the stem  

In this dataset, due to the complexity of the forest stand structure (young trees with a great 

number of branches, along with high stand density and steep terrain; Figure 12A), the automatic 

estimation of diameters was carried out from 0.5 to 4.9 m in height (i.e., from the average height 

of the dense understory to approximately half the average height of the trees in the plot; Figure 

12B). The circle fittings were computed for sections with a thickness of 5 cm and spaced 20 cm 

apart vertically (i.e., 23 sections per tree; Figure 12C) 
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Figure 12. Visual results obtained by the algorithm for the diameter fitting in the study plot: A) initial point cloud B) 

clean stems C) detail of circle fitting along the stem. 

Regarding dbh, the algorithm measured it fully automatically in 93% of the trees within the plot, 

while in the remaining 7%, diameter fitting was not possible or was labelled as F or ND by the 

validation functions. The dbh average value was 17.27 (±3.2 cm) and the RMSE was 1.14 cm 

when compared with dbhf,. In absolute terms, 56% of the trees have an error value lower than 

1 cm, and this increases to 82% for an error value of less than 2 cm. The distribution of the size 

of the differences in diameter estimation is shown in Figure 13. 

 
Figure 13. Probability density functions for diameter at breast height differences comparing dbhm versus dbh (blue 

line) and dbhf versus dbh (pink line). 

Figure 14 shows the comparison of the diameters along the stem estimations obtained by the 

algorithm and the manual measurements carried out by the two operators. This comparison has 

a double aim: (i) comparing Op1 and Op2 provides information about the disparity of the different 

reference measurements and allows the identification and elimination of outliers (in cases 

where the differences between operators are high) and (ii) the comparison between the 

algorithm and the operators provides an estimation of the accuracy of the method while 

allowing the subjectivity associated with the operators’ measurements to be considered. 
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Specifically, Figure 14A shows the differences between the estimations of the two operators in 

those sections where both were able to see and draw a circle. These differences are 

approximately of the same order and remain constant along the whole stem: they show 

apparent symmetric distributions and no bias at any specific height.  

Figure 14B and 14C show the differences between the diameter estimations along the stems as 

calculated by the operators and by the algorithm in the sections that were not flagged for review 

or elimination by the algorithm. The differences between the two operators are very small 

according to the average interquartile range (8.2 mm) and remain constant along the stem. 

However, when the estimations of each operator are compared to those from the algorithm, 

the interquartile range is slightly higher (Op1-Alg: 11.2 mm and Op2-alg: 24.0 mm) and the 

difference increases with the height of the section. Specifically in the case of dbh, RMSE was 

1.02 cm when compared with dbhm and the distribution of the size of the differences in diameter 

estimation is shown in Figure 13 (blue line). On the right of each boxplot the blue line represents 

the proportion of sections that were used to build the boxplots for each section. The general 

tendency in each of the 4 boxplots is for the number of sections to decrease with height. This is 

to be expected because of the presence of low branches and the high density of trees, a 

combination which makes diameter fittings more difficult higher up the stem, particularly when 

the branches of the crown begin to appear (at around 2.5 m in this test case). 

 
Figure 14. Boxplots of the differences between A) manual estimation of Operator 1 (Op1) and Operator 2 (Op2); B) 

and C) comparison of the manual estimation of Op1 and Op2, respectively, with algorithm estimation excluding 

sections flagged as candidates for review. Q1 and Q2 represent the percentiles, and min and max refer to 1.5 times 

the interquartile range in mm from the upper and lower quartiles respectively. On the right of each boxplot the blue 

line represents the number of sections (as a percentage) that were used to build the boxes for each section. 
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Anomaly detection in stem sections.  

Figure 15 shows the distribution of the sections along the stem in terms of how the algorithm 

classifies them: correct sections (C: grey), flagged (F: magenta), and those where there was not 

enough data to compute the circle fitting (ND: blue). Also, to assess the performance of the 

algorithm when identifying ND, and to compare the results with the manual estimations, ND 

sections have been subdivided into NDa (not enough points for either circle fitting or 

visual/manual estimation: dark blue) and NDb (not enough points for circle fitting, but sufficient 

for visual/manual estimation by the operators: pale blue).  

As demonstrated in Figure 15, in general terms, the proportion of both F and ND sections is 

lowest around breast height (1.2-1.6 m) where stems are less affected by occlusions from 

understory or tree branches, and, in addition, the incidence angle of the LiDAR beams is in 

general more favourable. In these sections, more than 90% of the diameter estimations are 

labelled as C, and less than 2% as ND. 

The proportion of F sections increases steadily on either side of breast height (i.e., below 1.1. 

and above 1.5 m), and remains stable above approximately 2.5 m, the average height of the first 

branches. Conversely, the proportion of ND increases constantly with height from breast height 

(same increase rate for NDa and NDb up to the last two sections, where NDa becomes much 

larger than NDb) 

 

Figure 15. Labelling results obtained by the algorithm expressed in terms of percentage of sections classified into 

each category 

2.3.4 Experimental results for parametrization of volume equations 

Selected taper and volume ratio equations were fitted using two datasets that include the 

following variables for each tree: di, hi and h. The data sets differ in the way in which these three 

variables have been calculated. In the first (hereafter, “Automatic”), all the variables were 
estimated automatically by the algorithm. The second (hereafter, “Supervised”), contains the 
same data as the Automatic, but those sections it labelled as F or ND were substituted by the 

diameter manually estimated by an operator, i.e., the data from Op1 and Op2 that was also used 

to evaluate the automatic diameter estimations. There were a small number of measurements 
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which were very different between the operators, and these were considered outliers, and 

removed from the dataset. However, in general, measurements from the two operators were 

very close (<5 mm) so the use of data from either of them would provide virtually the same 

result. On this basis, the diameter from either Op1 or Op2 was selected randomly for each 

section. 

Figure 16 shows the scatter plot of the relative diameters (di /dbh) vs relative heights (hi/h) that 

were used for the parameterization of the merchantable volume equations. In both cases there 

is a reduction in the number of sections that were available for the model parametrization in 

the upper part of the stems, especially in the top third of the stem. For the Supervised data the 

situation is slightly better than in the Automatic, because there are more sections in the band 

of relative height (hi/ha), corresponding to 0.60 to 0.80 whereas in the Automatic data there are 

virtually no sections in that interval. Moreover, there are more sections providing results in the 

Supervised data and a smaller proportion of outliers than in the Automatic data (7384 vs 5362 

sections and a proportion of outliers of 9.7% vs 11.6.%, respectively). 

 

Figure 16. Scatterplots of relative diameter (di/dbh) vs relative height (hi/h), with a local regression smoothing curve 

(red line) for the two datasets used in fitting merchantable volume equations Note: point (1,0) represents the final 

section of the stem, where di=0 (di/d=0) and hi=h (hi/h=1). 

For both datasets, the algorithm offered the following outputs: parameter estimation, 

goodness-of-fit statistics and graphical analysis (residual and predicted vs. observed data) of the 

merchantable volume equations. Looking first at the taper equation system, it did not converge 

in either of the two data sets due to the lack of sections in the upper third of the stem. From 

among the volume ratio equations, the algorithm selected for each data set was that with the 

lowest AICd and where all parameters were significant, which in this particular case was the 

allometric volume equation (eq. 7) and the ratio equation proposed by Clark and Thomas (1984) 

(eq. 8).  𝑣 = 𝑏0 𝑑𝑏ℎ𝑏1 ℎ𝑏2  eq. 7  𝑅𝑖 = 𝑒𝑥𝑝 (𝑏3 𝑑𝑖𝑏4𝑑𝑏ℎ𝑏5 ) eq. 8 

where v is total over bark stem volume (m3), calculated as the sum of the volume of all the logs 

within the stem, and the top of the tree; Ri is the proportion of total volume accounted for at 

diameter (di); dbh is diameter at breast height (cm); di over bark diameter at height hi (cm); h is 

total tree height in m, and b0, b1, b2, b3, b4 and b5 are the parameters to be estimated. 
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Table 2 shows the number of sections used and the comparison of the goodness-of-fit statistics 

for the volume ratio equation selected by the algorithm, for each of the datasets. 

Table 2. Goodness-of-fit statistics of the model fitted in the different data sets. 

 Data set n P RMSE R
2 

      

Total volume equation 
Supervised 7382 3 0.0149 0.8480 

Automatic 5362 3 0.0233 0.6714 

Ratio equation 
Supervised 7384 3 0.1630 0.6759 

Automatic 5362 3 0.1747 0.6382 

Note: n is the number of sections used for the equation fitting, P is the number of 

parameters in the model, RMSE root mean square error, and R2 is the coefficient of 

determination. 

The Supervised dataset gives better results than the Automatic, especially in the case of the total 

volume equation. The results demonstrate that a low number of sections, and more specifically 

their absence in the upper third of the tree, is what is responsible for the drop in the values of 

the model statistics. Finally, Table 3 shows the estimation of the model parameters which were 

significant at the 5% level in the two datasets.  

Table 3. Parameter estimated for the models fitted in the different data sets. 

Data set Total volume equation Ratio equation 

 b0 b1 b2 b3 b4 b5 

Supervised 0.00008 1.833 0.7875 -0.5664 4.044 -3.797 

Automatic 0.000091 1.659 0.9396 -0.7997 3.946 -3.814 

       Note: b0, b1, b2, b3, b4 and b5 are the estimated parameters in the volume ratio equations. 

2.4. DISCUSSION 

Comparing the performance of the methodology employed in this work with previous studies is 

not straightforward as plot size, tree density, forest structure, etc. vary between trials (Cabo et 

al. 2018a) and all have a strong influence on the results. Moreover, the test case plot has the 

additional difficulties of high slope, young, and therefore small trees, a tendency of the trees to 

tortuosity and, particularly, the high density of branches and understory. Despite this, it is 

possible to establish a range of values obtained by other authors for each dendrometric variable 

and for volume equations that can serve as a reference for discussion. Regarding tree detection, 

it is strongly influenced by stem density (Liang and Hyyppä 2013; Thies et al. 2004): the lower 

the tree density in the sample plot, the higher the detection rate of the stems (Chen et al. 2009). 

According to Liang et al. (2016), in sparse forests (100–200 stems/ha), the detection rate may 

reach 100%, while in a forest with a stem density of over 1000 stems/ha, the stem detection 

rate is generally around 70%. The results obtained in this study for stem individualization are 

extremely good, with 97% success in a plot with 806 stems/ha. The approach of selecting only 

the points close to the projection of the stem, based on the estimation of a linear axis for each 

tree, indeed outperforms previous works by some of the authors (Cabo et al. 2018ab) as it 

reduces the probability of assigning a tree the height of a higher neighbour tree and eliminates 

points from branches, leaves or other features around the stem for a more effective diameter 

estimation.  

Regarding the results obtained for the calculation of h, most of the differences between the 

algorithm estimations and the field measurements are between 1 to 2 m. Tree height 

underestimation using TLS datasets is a common issue (Olofsson and Holmgren 2016), explained 
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by the fact that the light beam of the sensor is not capable of reaching the top of the crowns, 

due to foliage obstruction, so the treetops are very often not well defined in the resulting point 

cloud. Nevertheless, when comparing h with hm, the differences are barely noticeable (6 cm of 

difference between average values), which indicates that the limitation does not lie with the 

algorithm, but rather in the nature and quality of the data itself. In cases where h needs to be 

estimated with high accuracy TLS data could be complemented with aerial data, such as LiDAR 

(Hadas et al. 2017; LaRue et al. 2020; Puletti et al. 2020) or photogrammetric data (Aicardi et al. 

2016; Tian et al. 2019) or with a subsample of field measurements in those cases where no 

remote sensing data is available.  

Concerning the dbh versus dbhf comparison, RMSE was 1.14 cm, which is compatible with the 

values of between 0.71 and 2.64 cm reported in previous studies (Hollaus et al. 2019). The 

difference between Automatic and manual procedures as diameters along the stem increases is 

also consistent with previous research (Henning and Radtke 2006; Maas et al. 2008) and can be 

attributed to low point density in higher parts of the stem, the smaller object surface area and 

obstructions caused by branches and foliage (Liang and Hyyppä 2013). This fact also explains 

why the most accurate estimations occur in the intermediate part of the tree (between 0.7 and 

2.9 m, approximately), which is the interval considered to be “occlusion free”. The distribution 

of anomalous sections (F and ND) follows the same pattern, that is, they are more frequent in 

the lowest and highest parts of the stem. This problem with diameter estimation in the upper 

and lower sections could possibly be improved by scanning at higher resolutions, which could 

lead to better penetration of the foliage, and more laser points. However, any improvement 

would probably be limited because higher resolutions would still not reduce the occlusion effect 

(Liang et al. 2016). Stem profile measurement could also be improved by combining diameter 

measurements retrieved from different sources, or, as shown in the Supervised method used in 

the test case, by incorporating visual checking or manual fitting in challenging sections if very 

high accuracy is needed. This might include the possibility of selecting the trees to be used in 

the parametrization of the equations. 

For the parametrization of the merchantable volume equations, the number of sections 

available, especially in the upper third of the stem, clearly influences the convergence of the 

stem taper equation and the accuracy of volume estimations. In this particular test case, the use 

of Supervised data improves on the results obtained with the Automatic data, resulting in an 

increase of R2 both in the stem volume equations (from 0.67 to 0.85) and in the ratio equations 

(from 0.64 to 0.68), as well as the reduction of RMSE (from 0.0233 to 0.0149 m3). When these 

results are compared with those obtained by destructive techniques in Pinus pinaster, where R2
 

for stem volume equations ranges between 0.91 and 0.98 (Alegria and Tomé 2011; Yousefpour 

et al. 2012) and for volume-ratio equations is between 0.80 and 0.89 (Teshome 2005), the values 

for the same parameter obtained in this study might seem to be low. However, a comparison in 

absolute terms is not realistic because: (i) in destructive techniques only healthy and standard 

shaped trees for which there is a full range of measurements along the stem are considered and 

(ii) in contrast to this study, where all the trees in the plot were considered, in destructive 

sampling, young trees with erratic growth are generally excluded. Consequently, it is only to be 

expected that results would be better in study plots with adult trees, low density understory, 

and the reduced presence of branches.  

In terms of time, destructive sampling is by far the most time-consuming step involved in the 

parametrization of volume equations by means of traditional techniques (Yu et al. 2013). In the 

case of TLS sampling, only one day would be necessary for a sample of 100-150 trees, which is 

the number of trees commonly used to adjust merchantable volume equations (Crecente-
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Campo et al. 2009). The authors have estimated that only 3 minutes per tree (16GB RAM, i7 4-

core 8G processor) is needed to obtain the parametrized volume-ratio equation (including 

scanning field work), which is a substantial improvement in time compared to destructive 

methods. Furthermore, in the case of the Supervised dataset, only 20 seconds was necessary to 

review a complete tree (i.e., 2.5 hours of intense work for all the trees in the test plot). 

Consequently, the Supervised option is cost-effective in terms of time invested vs improvement 

in the merchantable volume equations.  

This study is eminently methodological, and it has been applied and evaluated in a specific plot 

of Pinus pinaster to assess the performance of the method. The results from a single study plot 

can be transferred to others as long as they have similar characteristics to the test case plot. 

However, the strong point of the methodology presented here is that it provides the possibility 

of parametrizing the volume equations of any tree species or stand typology. The only 

requirement, is to scan an adequate number of trees (in one or several plots, depending on the 

scope of the application of the volume equations) so that the algorithm has the necessary input 

diameters and tree heights (from TLS point clouds) to parametrize the volume equations, after 

which the algorithm selects the most suitable equation for each case.  

From the point cloud processing perspective, the basic principles of tree detection and diameter 

estimation have already been tested in plots with different characteristics in benchmark studies 

(Liang et al. 2018; Hollaus, Mokroš, and Wang 2019). These studies describe how more than 20 

different algorithms work in a wide variety of scenarios (i.e., different point cloud and vegetation 

densities, plot configurations and point cloud technologies) and provide very good results when 

compared with traditional field measurements. However, it is possible that fully automatic 

approaches for diameter estimations give poorer results in stands with very complex structural 

or orographic conditions (Liang et al. 2018; Cabo et al. 2018ab; Hollaus, Mokroš, and Wang 

2019). In this sense, the methodology here offers contingency alternatives for such complex 

scenarios: it automatically analyses the coherence of the tree measurements (diameters along 

the stem), flags anomalous estimations and includes the possibility of the visual checking and 

correction of flagged measurements. Furthermore, this can be also applied in not-so-complex 

scenarios, when, for instance, there are few trees available in the TLS datasets and thus 

problematic or anomalous sections cannot be discarded. What is more, while the methodology 

selects the most appropriate option (based on statistical indicators: AICd), it also offers the 

possibility of selecting a different model, when, for instance, the reliability of a specific model 

has been demonstrated to be better for a particular species and/or plot configurations (Westfall 

and Scott 2010; Menéndez-Miguélez et al. 2014; Saarinen et al. 2019).    

Regarding the management of possible measurement errors, in forest inventory modelling it is 

usual to assume that the independent variables are free of measurement error (Morales-

Hidalgo, Kleinn, and Scott 2017). Also, some studies have compared the impact of measurement 

errors on the parametrization of taper functions when using direct traditional methods and 

indirect non-destructive methods like TLS (Rodriguez et al. 2014; Marchi et al. 2020; Torresan et 

al. 2021). Most of these studies concluded that the errors are similar or that they are smaller 

when using indirect (i.e., remote and non-destructive) measurements. Nevertheless, 

considering an error model for the independent variables could reinforce the analysis, so this 

may be something worth exploring in future studies. In the specific case of this study, using error 

models for the independent variables would, however, affect the automation of the method, as 

it would involve the need for a specific error model for each scanner and/or stand characteristic, 

which would potentially impact the simplicity and usability of the method. 
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CHAPTER 3: AUTOMATIC ASSESSMENT OF INDIVIDUAL STEM SHAPE 

PARAMETERS IN FOREST STANDS FROM TLS POINT CLOUDS: APPLICATION 

IN PINUS PINASTER 

3.1. INTRODUCTION 

Stem shape is a hugely relevant factor to consider in forestry, as it is closely related to wood 

quality and has a strong influence on sawmill performance, that is, on the percentage of 

profitable volume with respect to the volume of the log (Masuda et al. 2021). Consequently, it 

strongly conditions the use that can be made of a forest stand and its economic sustainability. 

The term “stem shape” is usually used generically to refer to a wide range of characteristics, 

including straightness, conicity, tapering, lean, and even the presence of defects such as 

bracketing fork and prominences caused by the presence of knots. All these characteristics have 

great importance in forestry, but the specific importance of straightness and lean is widely 

recognized from both the scientific and technical perspective (Del Rio et al. 2004; Benneter et 

al. 2018; MacDonald, Mochan, and Connolly 2009). Stem straightness is particularly significant 

in forestry because it provides critical information for harvesting and sawing. Stems’ bucking 
optimization requires the very accurate determination of their shape to enable the cutting 

points along the stem to be established and to determine merchantable volumes according to 

particular specifications (Liang et al. 2014). Furthermore, straightness is an important variable 

in trials, where selecting the straightest provenances is the basis for developing a tree breeding 

program (MacDonald, Mochan, and Connolly 2009). In the case of lean, its importance was made 

clear in Thies et al. (2004) and is based on the fact that it influences quality through increasing 

the proportion of reaction wood (Boschetti et al. 2017); also it is, an expression of the adaptive 

growth of a tree (Mattheck and Bethge 1998) and a reaction to external loads (i.e., snowfall, 

stones…) that influences tree growth. Reaction wood (which forms in place of normal wood as 

a response to gravity meaning its cambial cells are oriented other than vertically) usually has a 

higher density. Although its mechanical properties are not reduced, it undergoes greater 

deformations during the drying processes and tends to break more easily; the reason being it is 

undesirable for wood processing purposes (Murphy, Acuna, and Dumbrell 2010).  

To measure the straightness of a stem the most commonly used parameter is sweep, which is 

traditionally defined as the maximum sagitta per meter of the stem (Hamner, White, and 

Araman 2007). However, sweep is not the only indicator of straightness; there are others such 

as sinuosity which are also of great interest. Sinuosity is expressed as the quotient between the 

line (not necessarily straight) which defines the axis of the stem and the Euclidean distance 

(straight line) between the end points of the stem (Dwivedi et al. 2019). As for the case of lean, 

it is defined as the angular deviation of a tree stem from a vertically upright position (Garms et 

al. 2020).  

Fieldwork approaches to collecting data on such variables range from visual classifications made 

by one or more observers that group trees according to predefined categories, a very common 

methodology in tree breeding programs, to more evolved systems which use measurements 

(from calipers, measuring tapes and hypsometers) mainly based on the deviation or lean of the 

tree axis (Hamner, White, and Araman 2007). However, even with methods that use actual field 

measurements, results are still subject to observer´s interpretation, which is highly influenced 

by their experience and the criteria used, as well as by the characteristics of the stand. In the 

specific case of stem straightness, data on standing trees can also be obtained from localized or 

national stem curve models (Liang et al. 2014), but their wide scope of application makes them 
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too imprecise to get accurate results at the individual tree level. Due to all the above, it is difficult 

to accurately measure complex stem shapes using conventional field investigation methods (del 

Rio et al. 2004) which is why stem shape variables are not habitually measured as part of regular 

inventories (Maas et al. 2008). This lack of measurements is especially notable in tree breeding 

programs of conifers in general (pines in particular) despite stem shape and branch angle 

assessment being very important (Weng et al. 2017; Wu et al. 2008). In addition to these 

difficulties, and despite their relevance, in most cases it is not possible or practical to measure 

the variables implicated in straightness for every single tree in a plot using traditional fieldwork 

approaches since individual tree measurement is costly and labor intensive (Hyyppä et al. 2020). 

The use of remote sensing techniques, and more specifically the use of TLS (Terrestrial Laser 

Scanning) can be very valuable in the estimation of stem shape. TLS acquires high resolution 

three-dimensional point clouds of the study area, which provides a reliable representation of 

the structure of the trees within the stands at the time when data were collected (Liang et al. 

2018). The fact that data are collected from the ground makes this technology especially suitable 

for studying stem profiles. In spite of this, there are only a few studies that have focused their 

efforts on the calculation of shape variables such as straightness and lean (Murphy, Acuna, and 

Dumbrell 2010; Warensjo and Rune 2004; Liang and Hyyppä 2013; Olofsson and Holmgren 2016) 

or to the study of the presence and distribution of branches (Dassot et al. 2012; Kankare et al. 

2013; Raumonen, Kaasalainen, Åkerblom, et al. 2013; Zhou et al. 2019) . This may be explained 

by a combination of issues such as the high price of most scanning devices (Stovall and Atkins 

2021) and the lack of algorithms and software applications to calculate shape variables 

automatically (Molina-Valero et al. 2020) and which also requires expert knowledge to obtain 

reliable results. However, the general trend is slowly changing, equipment prices are gradually 

falling (Krok, Kraszewski, and Stereńczak 2020), and the proliferation of methodological 

developments which automatize data processing and analysis tasks is well under way (Brolly et 

al. 2021; Disney et al. 2019; Pitkänen, Raumonen, and Kangas 2019). Presumably, then, TLS will 

be a fundamental technology in forest inventories in the near future (Calders et al. 2020) and 

will make the automatic measurement of shape variables, such as straightness and lean, possible 

in regular inventories with minimal effort. For this to happen in a cost-effective and simple way, 

the automation of point cloud processing with readily available and easy-to-use software 

capable of extracting information related to important forest attributes is essential (Masuda et 

al. 2021; Molina-Valero et al. 2020). 

The aims of this study are two-fold: (i) To develop a methodology that allows the measurement 

of straightness (maximum sagitta and sinuosity) and lean automatically at the individual tree 

level from data captured with TLS; and (ii) to compare the results obtained with measurements 

made in the field by traditional methods (categorical visual classification that groups trees into 

classes). 

3.2. MATERIALS AND METHODS 

3.2.1. Data Collection and Inventory 

The study area is located in the autonomous region of Asturias (Northern Spain) (Figure 15A), 

characterized by an oceanic climate, with abundant rainfall throughout the year and mild 

temperatures in both winter and summer. The soils are siliceous. The plot where the study was 

carried out belongs to a network of trials for the National Tree Breeding program of Pinus 

pinaster, a species with a particular tendency to tortuosity. It has an approximate area of 5700 

m2. The terrain is irregular with high slope (>60%) and the presence of various shrub species 
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such as Ulex, Ericas, and Pteridium, among others (Figure 15B). Both these characteristics 

contribute to making this study area a challenging one. It was planted in 2005 following an 

experimental design of four randomized blocks, where 225 families were planted, each family 

in a row of four trees. Some of the families are from the region of the plantation (Asturias) while 

others are from various places within Italy, France, Spain, Portugal, and the north of Africa. A 

genetic thinning (where also fallen trees were removed) was carried out in 2018 resulting in the 

current number of trees which is 408 (806 stems/ha).  

Data acquisition was accomplished in November 2018 using a TLS FAROFocus3D (Faro, 2018). 

Twenty-four scanning paths were necessary to ensure full coverage and minimize the effect of 

occlusions. Polystyrene spheres of 25 cm diameter fixed to surveying rods were used to merge 

the point clouds of individual scans into a unified coordinate system (Figure 17C). Moreover, the 

position of the spheres was measured in the field using GNSS (Global Navigation Satellite 

System), thereby ensuring that the unified point cloud had absolute coordinates. The resulting 

point cloud had approximately 150 million points after removing redundant points within 6 mm 

(average density ~26,300 points/m2). 

 

Figure 17.A) Plot situation in northern Spain (Longitude 6°32′33.25 “; Latitude 43°25′18.06″ B) Pinus 

pinaster stand and understory within the plot. C) Polystyrene spheres used for the point cloud 

georeferentiation. D) Three-dimensional representation of size and slope of the plot. 

The point cloud (Figure 17D) was analysed with the methodology for the automatic estimation 

of dbh and h described in Chapter 2 (Cabo et al. 2018a; Prendes et al. 2021). As a result, for each 

tree, measurements of the diameters of the sections along the stem (spaced 20 cm apart, from 

0.5 over the ground to 4.9 m) as well as their centers (defined by XYZ coordinates) were 

automatically obtained (Figure 18A).  

Some of the trees did not have the complete range of sections mainly due to (i) the number of 

points in a section being insufficient to perform the circle fitting or (ii) sections presented 

anomalies that the methodology detected automatically. In this regard, the methodology 
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includes several filters to detect anomalies (Cabo et al. 2018a; Prendes et al. 2021) so the 

potentially ‘wrong’ sections are flagged for revision by a human operator who checks whether 
the fitting is correct and/or if it is possible to fit the circle manually.  

Moreover, as described in Chapter 2 (Prendes et al. 2021) to have a reference for the data 

calculated by the algorithm, diameter fitting was manually conducted in the point cloud twice 

for the same section, each time by a different operator (Op1 and Op2). As a result, the centers of 

the sections for all the individual trees within the plot were available and served two purposes: 

(i) as reference data to assess the performance of the algorithm and (ii) to correct those sections 

which were labeled as anomalous by the algorithm (Figure 18A) to ensure data used to estimate 

stem shape variables were free of outliers (Figure 18B). If a circle obtained and flagged by the 

algorithm was incorrect but there were enough points to visually estimate its size and position, 

the operator fitted the circle manually. 

 

Figure 18. A) Stem sections, defined by their center (XYZ) and radius, automatically calculated by the 

algorithm presented in [32,33]. In red, the sections labelled as anomalous by the algorithm. B) Stem 

sections after the correction of the anomalous cases. 

In parallel to TLS data acquisition, dbh was measured in the field with a caliper, to the nearest 1 

mm, and h, to the nearest 10 cm, using a digital hypsometer (Vertex IV 360°). As a complement 

to this inventory data, all the tree stems within the plot were also geo-positioned using the same 

GNSS as used for the TLS spheres and a total station. This allowed the inventoried trees to be 

related to those in the point cloud, making comparisons between the two data sources possible. 

The average dbh and h for the plot were 17.6 cm and 10.20 m respectively. 

Regarding conducting inventories of shape variables in the field (as mentioned in Section 3.1) in 

tree breeding programs, visual classifications that group the trees according to predefined 

categories have been widely used as selection criteria over the years to assess stem straightness 

and lean. In this study, these variables were visually assessed at an individual tree level by a field 

observer using the classification proposed by del Rio et al. (2004) for Pinus pinaster which is 

detailed in Table 4. 
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Table 4. Scale of values used as a reference to measure stem shape variables in the field. 

Category Straightness Lean 

1 Straight Lean not appreciable at first sight 

2 Curved in the intermediate or basal zone and 
less than twice the dbh 

Lean appreciable up to 15° (referred to 
the vertical) 

3 Curved in the intermediate or basal zone and 
more than twice the dbh 

Lean greater than 15° referred to the 
vertical) 

3.2.2. Stem Shape Variables Estimation from TLS Data 

As shown in Figure 19, our method automatically calculates the lean angle and straightness 

parameters (maximum sagitta and sinuosity) from the exact location of the centers of the 

sections along the stems in a plot. The coordinates of all the sections available for each stem are 

used to define a polyline that allows the estimation of deviations from ideal straight and/or 

vertical stem axes.  

 

Figure 19. Workflow of the methodology for the automatic estimation of lean and straightness (maximum sagitta 

and sinuosity) from the coordinates of the section centers along the stems. 

The centers of the stem sections for each tree are the only input data necessary for straightness 

and lean estimations. Each coordinate (XYZ) is stored in an independent array with as many rows 

as trees in the plot, and as many columns as sections. The workflow for straightness and lean 

estimations has been implemented in a script written in Python, which enables these variables 

to be automatically obtained for each individual tree. Consequently, the methodology can be 

applied in datasets with different characteristics (i.e., species, stand conditions, slope) in a 

simple and fast way. 

3.2.2.1. Straightness 

For straightness assessment, the calculation of two variables, maximum sagitta and sinuosity, 

has been implemented in the methodology. The steps needed for their calculation are explained 

in detail below. 

Maximum sagitta  

For each tree, the reference for the sagitta is taken from the straight line segment connecting 

the centers of the end sections. The sagitta of each section is then calculated as the distance 
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between the center of the section (Figure 20A) and the straight line segment. The maximum 

sagitta (hereafter, Smax), as well as its position in the stem is identified (Figure 20B).  

As explained in Section 3.2.1, some trees do not have data along the full height range (i.e., 23 

sections over 4.4 m: from 0.5 to 4.9 m from the ground). In these cases, the sagitta is 

standardized to the highest height obtained for the dataset (hereafter, standardized height 

range, i.e., 4.4 m) so that the results obtained for each individual tree within the plot are 

comparable. To do this, the centers are considered to be distributed around a circumference of 

radius R (Figure 20C). R is calculated using the formula that relates the radius of a circumference 

with the sagitta of its arc and the length of the chord that connects the two ends of the arc. In 

this case, the sagitta is the Smax and the chord is the height range for each tree. From these two 

variables, R can be estimated as in eq.2. Once the value of R is known for each tree, the 

maximum standardized sagitta (hereafter SSmax) can be obtained for the standardized height 

range, this time, by isolating the variable in eq.9. 

  

Figure 20. A) Stem sections defined by their center (XYZ) and radius. B) Sagittas calculated for each stem 

section, defined as the distance from the center of the section to the straight line segment. C) Maximum 

standardized sagitta calculation considering the centers of the sections to be distributed around a 

circumference of radius R. 

R = (𝑆𝑚𝑎𝑥𝐴𝐵) + (𝐻𝑒𝑖𝑔𝑡ℎ 𝑟𝑎𝑛𝑔𝑒/2)22 ∗ (𝑆𝑚𝑎𝑥𝐴𝐵)  eq. 9 

 

Sinuosity 

The sinuosity of a line is calculated as the quotient between its length and the length of a 

reference line. In the case of a tree, that reference line is the straight line segment that joins the 

end points of the stem, and its length (L) is calculated as the sum of the rectilinear segments 
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that connect the centers of the stem sections, as in eq.10. According to this, the minimum value 

for sinuosity is 1, which means no sinuosity. 𝑆𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 = 𝐿𝐻𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑛𝑔𝑒 eq. 10 

3.2.2.2. Lean 

A principal component analysis (PCA) based on the XYZ coordinates of section centers was 

carried out. When this type of analysis is applied to a 3D point cloud, three principal components 

(directions), which can be considered as three perpendicular coordinate axes, are created (PC1, 

PC2, and PC3) (Figure 21A). By definition, PC1 will follow the direction with the greatest variance 

possible. Since tree stems are eminently linear objects, the direction of the first component 

follows the direction of the tree axis, and from there, the lean, or lack of verticality, is calculated 

as in eq. 11 (Figure 21B). 

 

α = 𝑎𝑟𝑐𝑡𝑎𝑛 |∆z|√∆x2 +  ∆y2  eq. 11 

 

 

Figure 21.A) Coordinate axis resulting from PCA analysis applied to the stem section centers (B) Calculation of lean 

angle (α) from PC1 with respect to the vertical. 

3.2.3. Validation procedure 

The only input data that the methodology uses to estimate the shape variables are the XYZ 

coordinates of the centers of the sections, and errors will be transmitted to the same variables. 

Based on that, the methodology´s performance is assessed in terms of error propagation, from 

the position of the centers of the sections, to the maximum standardized sagitta, sinuosity, and 

lean. Manual measurements of the centers of the sections (Xop, Yop) (see Section 3.2.1.2) have 
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been considered as ground truth for the comparisons through the workflow explained in Figure 

22. In this figure Op1, Op2 refer to manual measurements made by two different operators. Op 

refers to a random choice between diameters from Op1 or from Op2 that is used to minimize 

potential biases by either of the operators that might be imperceptible to the naked eye. 

The differences between the two operators (Op1-Op2) and between the operators and the 

algorithm (Op-Alg) in positioning the sections’ centers were calculated. A bootstrap analysis was 

conducted to study the propagation of the errors from the center of the sections to maximum 

sagitta, lean, and sinuosity, considering that the distribution of these errors was not known. 

First, the initial values of these three variables were calculated for each tree given the 

coordinates (X, Y). Then, 1000 bootstraps samples of dimension N x M (N and M being the 

number of stems and number of sections, respectively) were constructed by resampling with 

replacement the initial values of the errors for each section. Then, the errors were obtained for 

each case and added to the initial X, Y coordinates of the centers estimated by the algorithm. 

With the new coordinates as a starting point, the maximum standardized sagitta, sinuosity, and 

lean of all the trees were recalculated. Finally, the results obtained were compared with the 

original estimates of the algorithm. From the differences between them, the density function of 

the differences was represented graphically, for each scenario and variable (distances between 

the centers of the sections, maximum standardized sagitta, sinuosity, and lean).  

 

Figure 22. Workflow for the algorithm performance assessment. In yellow: X, Y coordinates of the centers of the 

sections. In blue: straightness and lean parameters calculated by the algorithm. In green: differences between 

operators and algorithm in the position of the center of the sections, and in the straightness and lean calculations. 
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Regarding traditional estimations, comparing a continuous variable (from TLS data) and a 

categorical one (from a field inventory) is not straightforward due to their different natures. 

However, it is possible to evaluate if the categorization of the trees in the field as per their 

straightness and lean follows a similar pattern to that obtained with TLS. The procedure consists 

of grouping the trees on the plot following the traditional method (Table 4), and then calculating 

the two shape variables for each tree in each category using the TLS observations. Then, the 

probability density functions for each variable and for each category were compared. The 

comparison was done both visually and numerically. Numerical analysis was carried out by 

analysing the statistics of both variables and through a Tukey-Kramer test (Tukey 1949; Seidel 

et al. 2021) that compares the individual means from an analysis of variance of several samples 

with different characteristics. 

3.3. RESULTS 

3.3.1. Stem Shape Variables from TLS 

Once the methodology was tested in the plot, the shape variables were obtained for 385 of the 

initial 408 trees. The missing trees were either poorly defined in the point cloud or had a very 

small number of sections. In the first case, it was not possible to apply the methodology to them, 

while in the second case the results obtained were unreliable. Table 5 summarizes the minimum, 

maximum, mean, standard deviation, median, and mode of the shape variables estimated by 

the methodology.  

Table 5.Descriptive statistics of shape variables estimated from the TLS point cloud. 

 Minimum Maximum Mean Deviation Median Mode 

Lean 0.150 14.100 4.010 2.604 3.686 1.000 

Maximum standardized sagitta (m) 0.020 0.390 0.104 0.058 0.092 0.094 

Sinuosity (adimensional) 1.000 1.250 1.008 0.018 1.004 1.003 

The range of the lean values was low (14°); the maximum value corresponded to a tree classified 

as not leaning in the field. These results demonstrate that the trees were mostly slightly inclined. 

The standard deviation was around 0.5°, with lean values not widely dispersed around the mean. 

According to the median and mode values, the distribution had negative skew, and the range 

was small, which means that there was little variability in the lean values. 

Regarding maximum standardized sagitta statistics, the trees in the plot can be considered as 

straight in most cases given their average value of 10.4 cm, which was very close to the average 

radius of the trees within the plot (8.8 cm). Standard deviation was approximately equivalent to 

half the mean value, and the distribution negatively skewed in terms of the median and mode 

values. The range was around 37 cm, indicating considerable variation in the maximum sagitta 

values. Regarding sinuosity, average values were close to 1 (no sinuosity), while the standard 

deviation was low, indicating an overall reduced stem tortuosity. The distribution shows 

negative skewness, and the range is small, which means that there was little variability in the 

sinuosity values. Figure 23 shows the spatial distribution of the stem-shaped variables obtained 

in the study plot.  
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Figure 23. Spatial distribution of the stem-shaped variables (lean, maximum sagitta, and sinuosity) within the study 

plot. Top: 3D representation of the plot. Bottom: top views of the trees represented by a colored point indicating the 

stem shape value according to a color scale (blue: lowest value and red highest value within the study plot). 

3.3.2. Validation Results 

The results of assessing the methodology’s performance are shown in Figure 24. The probability 

density functions obtained as in the procedure explained in Section 3.2.3, were grouped 

according to the assessed variable and the comparison between operators (Op1-Op2) and 

operators-algorithm (Op-Alg).  

Regarding the discrepancies between the centers of the sections (Figure 24A), the trend was 

similar in the two comparisons, with low values in general terms. As expected, the lowest values 

(less than 2% in 97% of the estimations) were obtained when comparing the estimations of the 

two operators. When the operator estimations were compared with the algorithm (Op-Alg), the 

discrepancies were slightly higher but still less than 4 cm in 90% of the estimates. The trend was 

similar for the results obtained for lean (Figure 24B) and maximum standardized sagitta (Figure 

24C). For lean, discrepancies were extremely low when comparing Op1 and Op2, with less than 

0.25° in 99% of the estimates. Regarding Op-Alg, the differences were a little higher, but they 

were still only between −0.5 and 0.5 °, in 95% of the cases, so they were practically insignificant. 
The same occurred with the maximum standardized sagitta, where the lowest differences were 

computed for Op1-Op2, with 99% of differences in the estimates being below 5 cm. There was a 
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slight bias in this case showing TLS tended to estimate bigger sagittas than the operators. The 

comparison between Op-Alg showed 92% of differences in the estimates to be below 10 cm. 

Finally, in the case of sinuosity (Figure 24D), differences between operators were practically 

negligible (very close to 0) on most occasions, while the differences between algorithm and 

operators were mostly around −0.015. The distribution was relatively uniform but still had a 
slight negative bias. 

 

Figure 24. Probability density functions of the error transmission from the centers of the sections to the shape 

variables as follows: A) Distance between centers (B) Lean C) Maximum Standardized Sagitta (SSmax), D) Sinuosity. 

As for the comparison with traditional estimations, Figure 25 shows the probability density 

functions obtained for the trees within the study plot: one for each of the three categories under 

study established following the criteria in Table 4. Specifically, Figure 25A shows the three curves 

corresponding to the SSmax and Figure 25B shows those relative to the lean. In the case of the 

SSmax there was a high degree of overlap among the three categories, especially 2 and 3, which 

is an indicator that the boundaries between them were not well defined.  

There was a tendency for SSmax to increase as category value increased. In category 1, most of 

the trees were around 5 cm, while in the other two categories, the peak of the density function 

was slightly shifted to the right, indicating a greater frequency of higher SSmax values. In the case 

of lean, the results were very similar. The curves show a high degree of overlap and reveal a 

slight decrease in the lean value as the category number increases. Moreover, it is observed that 

the peak of the distribution is very close to 0° in class 1 and slightly displaced to the left in classes 

2 and 3.  
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Figure 25. Probability density functions representing the values for SSmax (1) and lean (2) obtained by means of the 

methodology/TLS using the classification from field inventory so that the three categories of trees shown in the 

graphic could be established. 

Table 6 summarizes the descriptive statistics (mean, median, and standard deviation) of the 

maximum standardized sagitta and lean by category. In view of the results, the trend previously 

detected in the probability density functions is confirmed by the descriptive statistics. In the 

case of SSmax, mean values increase with the category number. Between categories 1 and 2 the 

increase is 4.4 cm, while between 2 and 3, it is only 0.5 cm.  

In the case of lean, the situation also follows a clear trend: there is a decrease in its value as the 

field category number increases, which indicates that, in general terms, the trees are more 

inclined in the higher categories than in the first. The biggest increment in the mean value is 

between category 1 and 2 (2.28°), while between categories 2 and 3 it is only 1.39°. 

Table 6. Maximum standardized sagitta (SSmax) and lean statistics obtained for the different categories 

shown in the probability density functions. 

 Maximum Standardized Sagitta (m) Lean (⁰) 
 NS

1 Mean Deviation Minimum Maximum NL
1 Mean Deviation Minimum Maximum 

1 260 0.095 0.060 0.020 0.355 272 3.352 2.068 0.149 11.573 

2 120 0.139 0.080 0.047 0.390 108 5.633 3.051 0.206 14.102 

3 5 0.144 0.075 0.074 0.256 5 7.026 2.651 4.870 11.314 
1 Note: NS, NL are the number of trees included in each category of straightness and lean respectively according to 

field inventory. 

Similar conclusions were obtained by performing a Tukey-Kramer test to compare the means 

between the three categories. For a significance level α = 0.05, the test result showed that it is 

not possible to assert that there are significant differences between the three categories for 

SSmax. Regarding lean, there was only a significant difference between category 1 and the other 

two. 

3.4. DISCUSSION 

This study presents a methodology for the automated measurement of straightness (maximum 

standardized sagitta and sinuosity) and lean at the individual tree level from data captured with 

TLS. The results obtained were compared with measurements made in the field employing a 

categorical visual classification that groups trees into classes according to their degree of 

straightness and lean. 

The methodology performance was assessed in terms of error propagation from the centers of 

the sections to the maximum standardized sagitta, sinuosity, and lean values. The probability 

density functions (Figure 24) for comparison between Op1-Op2 showed the lowest values of 

error, as expected. It has been graphically demonstrated that for both comparisons made (Op1-
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Op2 and Op-Alg), the errors have little influence on shape variable estimations, revealing that 

small errors that may potentially be made regarding the position of the centers of the sections 

hardly affected the estimation of shape variables. Based on the results, the values obtained for 

these variables from TLS point clouds with the methodology presented in this study can be 

considered reasonable. Regarding their spatial distribution, straightness, lean, and sinuosity 

values do not show any pattern; thus, the differences between trees are mainly associated with 

genetic factors and not with environmental factors as reported in previous works (Yun et al. 

2019; Wang et al. 2019). 

In the case of the comparison between the variables obtained by the methodology and those 

obtained by the categorical classification performed in the field inventory, the results show that 

there is a clear misclassification between the categories established in the field. Although the 

results achieved show the mean values tend to increase slightly as the category number 

increases, (see Table 6) as expected, the statistical analysis shows that there are no differences 

between any of the groups in the case of straightness and there are only significant differences 

in the case of group 1 and the other groups in the case of lean. This fact suggests that traditional 

methods involve constraints which make them unsuitable for accurate analysis at individual tree 

level, especially in a tree breeding plot, like the one used in this study, where it is crucial to have 

reliable measurements of the tree’s morphology for the correct estimation of individual and 

family heritability and their genetic correlation between traits.  

These results are not entirely unexpected, as several authors have pointed out that manual 

assessment of stem shape parameters in standing trees is complicated, time-consuming, and 

costly (Liang and Hyyppä 2013; Mengesha, Hawkins, and Nieuwenhuis 2015). Moreover, 

comparisons between the results of different studies are difficult due to the variety of methods 

used to evaluate stem straightness and lean (particularly those based on subjective scales), 

compounded with variation in testing environments, species, and age at the time of evaluation. 

These are the main reasons why numerical measurements of quality parameters in standing 

trees are not yet common for most forest inventories (Mengesha, Hawkins, and Nieuwenhuis 

2015). All the above is in line with the high degree of subjectivity in estimates when using 

exclusively visual classifications that do not rely on any measuring device, thus increasing the 

risk of error. In the case of the genus Pine, when using visual classifications, high heritability in 

characters related to stem straightness has been reported by several authors. This, however, 

contrasts with other authors who have reported low heritability (Alia and Majada 2013) in the 

same characters. Using our methodology on TLS datasets provides, for each shape variable, a 

numerical value that quantifies it in an absolute and precise manner. Consequently, the 

subjectivity and ambiguity associated with other alternatives, such as establishing visual 

categories in the field, disappear, allowing comparisons between different plots, species, or time 

periods. Besides, based on the results obtained with TLS data, thresholds could be established 

to define categories if desired. Some authors such as (Garms et al. 2020; Warensjo and Rune 

2004) defined a lean value beyond which a tree can be considered as inclined, and the same 

procedure could be applied to other shape variables. Moreover, the methodology provides 

estimations for sinuosity, which is difficult to measure in the field by traditional methods. In 

some studies, such as (Middleton et al. 1989; Espinoza 2009), sinuosity of standing trees was 

measured by using a combination of visual scoring and assessing the displacement of sections 

of the stem from the initial direction of growth. Due to the wide range in values, they were 

averaged and relativized to represent a sinuosity rating for a plot; a very costly and subjective 

method. However, the methodology presented in this study estimates sinuosity in a very fast 

and accurate manner.  
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In this case, a simple characterization of the stems has been made with an eminently practical 

approach focused on the stem shape variables which are traditionally evaluated. However, the 

use of TLS point clouds is an extremely powerful tool that offers a three-dimensional 

reconstruction of the forest at the moment of the scan, which has many advantages (Pitkänen, 

Raumonen, and Kangas 2019; Cabo et al. 2018b; Torresan et al. 2021). The most obvious is that 

TLS forest data are permanently available, so multitemporal studies with various objectives can 

be performed (Liang and Hyyppä 2013; Srinivasan et al. 2014), as well as making it easy for new 

variables of interest to be studied retrospectively. Moreover, future work could focus on 

estimating other stem shape variables, like curvature or taper, with the same input data used in 

this study (i.e., position and diameter of sections along the stems of a forest plot). 

Finally, this study provides a new methodology that contributes to the potential availability of 

information on stem shape and quality in preharvest inventories. On the one hand, this type of 

information (i) makes possible better value estimations of stems based on a desired 

specification, (ii) allows the consideration of traits related to stem shape, which influence the 

yield of merchantable volume, (iii) serves as a starting point for an automated procedure to 

estimate merchantable volume in standing trees, considering not only diameters at different 

heights and total height but also stem shape variables, and (iv) facilitates the planning of the 

bucking of stems into logs using more detailed stem shape data and thereby improves the 

overall profit that can be obtained from each tree (Garms et al. 2020; Warensjo and Rune 2004; 

Acuna and Murphy 2005). On the other hand, it has wide applications in the field of tree 

breeding, where stem straightness and lean are key variables when selecting the best 

provenances according to wood quality criteria.  
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CHAPTER 4: OPTIMAL BUCKING OF STEMS FROM TERRESTRIAL LASER 

SCANNING DATA TO MAXIMIZE FOREST VALUE 

4.1 INTRODUCTION 

To facilitate subsequent processing and maximize merchantable value and volume recovery, 

trees that are felled in the forest are usually cut into smaller logs (Kivinen 2007). This operation, 

known as “bucking”, is a critical step in transforming standing timber into final products and 
plays a fundamental role in determining the profitability of a forestry business (Acuna and 

Murphy 2005). Bucking decisions at harvest time impact the characteristics, quantity and value 

of the products (log-types) that can be obtained from the stems. Consequently, poor decisions 

at this stage may result in substantial value losses, which has been demonstrated in several 

studies (Labelle and Huß 2018; Pilkerton, Sessions, and Kellogg 2013; Spinelli, Magagnotti, and 

Nati 2011; G. Murphy 2008; Boston and Murphy 2003). 

The allocation of cutting patterns and their implementation through optimal bucking taking into 

account the individual characteristics of each stem is one of the main goals of, and challenges 

for forest operation managers. According to Arce et al. (2004), the bucking task is carried out 

almost exclusively by processor/chainsaw operators based on their experience and intuition, 

poor decisions compromising the profitability of the forestry business (Silva et al. 2020). Several 

authors have therefore emphasized the need for a more analytical approach so that bucking 

patterns are obtained and allocated based on objective measurements that consider the species 

involved and the characteristics of the stems. Optimal bucking at the individual tree level can be 

accomplished with various techniques, including dynamic programming (DP), network 

programming, simulation, and integer linear programming (Pvnematicos and Mann, 1972; 

Briggs, 1980; Sessions, 1988). Among them, DP is the most common mathematical technique 

used by researchers and foresters to optimize stem cutting in commercial forests (Jingxin Wang, 

LeDoux, and McNeel 2004) and it has recently been used in a wide range of studies and 

applications (Akay 2017; Erber, Stelzer, and Stampfer 2021; Silva et al. 2020; Vanzetti et al. 

2019). 

One of the main limitations of bucking models is that the input data needed to obtain good 

results is often unavailable or difficult to collect (Mederski et al. 2018). Usually, preharvest 

inventory systems provide detailed descriptions of the stems (i.e., diameters) from a small 

sample of standing or felled trees. However, these sampling procedures are time-consuming, 

labour intensive, and expensive (Sullivan et al. 2018), and may generate inaccurate data when 

the sample data are generalised to the whole stand. Moreover, external tree features associated 

with wood quality, such as curvature and branchiness, may not be appropriately collected by 

traditional inventory systems (Bukauskas et al. 2019). Modern mechanized harvesters fitted 

with sensors can also measure stem dimensions at harvest time (da Silva et al. 2022) with the 

assistance of onboard computers. They can optimally buck each stem according to its 

dimensions and qualities, log prices, and certain desired specifications to maximize value 

(Sandak et al. 2019). However, based on market prices, optimally bucking individual stems is 

unlikely to provide yields that meet order book constraints at the level of the harvest unit or 

forest stand. Thus, as an alternative adaptive control heuristics imbed an individual stem optimal 

bucking procedure in an algorithm that can be adjusted to incorporate relative prices and 

minimum small-end diameter specifications in order to meet order book constraints (Murphy, 

Marshall, and Bolding 2004). As such, the level of representativeness of the sample data in the 

case of manual and destructive methods used in pre-harvesting inventories, and the accuracy of 
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the measurements obtained with sensors as harvesting equipment fells and processes stems 

will determine the bucking decisions of the remaining stems (Murphy 2008). 

Apart from manual and destructive sampling, other alternatives that capture stem data in the 

field to feed optimal bucking systems also exist. These include, for example, the use of stem 

taper models (Ko et al. 2019; Zapata-Cuartas, Bullock, and Montes 2021), which are 

mathematical equations that allow diameters at different heights along the stem to be 

estimated on the basis of the diameter at breast height (dbh) and the total height of the tree (h) 

or stem (Boczniewicz, Mason, and Morgenroth 2022; Ulak et al. 2022). In addition, these models 

can estimate the height of the stem up to which a specific diameter is to be found, the volume 

of wood between two diameters or sections of the stem, and the volume up to a particular 

diameter or commercial height. However, all the above is only possible because a simplification 

of the stem profile is assumed. For example, where the description of the stems does not include 

any tree quality feature such as curvature and branchiness, and they are assimilated to a 

geometric body whose diameter decreases as height increases. Alternatively, the use of remote 

sensing techniques, more specifically TLS, has proven to be very useful for the estimation of 

stem attributes (Cabo et al. 2018; Pitkänen, Raumonen, and Kangas 2019; Prendes et al. 2021; 

Saarinen et al. 2017). The fact that the scanner captures data from the ground enables the 

acquisition of a high-resolution and accurate point cloud of the stem structure at the individual 

tree level (Zong et al. 2021).This ability, in turn, makes it possible to measure different attributes 

along the stem (diameters, heights, branching, etc.) as well as shape variables (straightness, fork, 

lean, etc.) without the need to fell trees (Liang et al. 2016). These variables of interest are then 

used directly and efficiently in bucking systems.  

In the last fifteen years, there has been increasing interest from the forest industry in laser 

scanning techniques and the performance of TLS systems for volumetric measurements of 

timber assortments (Kankare et al. 2014). However, studies where data collected with laser 

sensors are fed into optimal bucking systems or algorithms are scarce. In the particular case of 

TLS, Murphy (2008) determined stand value and log product yields using TLS and optimal 

bucking and then compared the results with estimates from actual stem profiles. The study 

revealed that TLS-derived estimates of average stand value and log product yields were within 

7% of actual estimates. Later on, Murphy et al. (2010) collected information of stem profiles 

using three methods: (i) TLS scans, (ii) Atlas Cruiser inventory procedure (Atlas Technology, 

2010) and (iii) manual measurements after harvesting. TLS volume and value recovery were 

within 8% and 7%, respectively, of actual harvester recovery, while cruiser volume and value 

estimates were both within 4% of actual harvester recovery. More recently, Kankare et al. (2014) 

compared the accuracy of high-density laser scanning techniques to estimate tree-level 

diameter distribution and timber assortments by combining ALS and TLS for timber assortment 

estimation. The results showed that accurate tree-level timber assortments and diameter 

distributions can be obtained using TLS or a combination of TLS and ALS. After the study of 

Kankare et al. (2014), to our knowledge, no other studies have investigated the potential of TLS 

data for optimising bucking algorithms. Our study contributes to filling this knowledge gap by 

investigating the integration of TLS measurements (including log curvature) in an optimal 

bucking system and providing a tool to measure a forest stand’s economic value accurately. The 

aims of this study are two-fold: (i) to develop and test a non-destructive, fully automated 

methodology for the optimal bucking of stems, based on their external characteristics 

(diameters and curvature), which maximize the economic value of a stand using data from TLS 

point clouds; and (ii) to compare the results obtained by the methodology when TLS-derived 

curvature is excluded, and when diameters are estimated with a taper equation. 



CHAPTER 4                                                                                                                           Optimal bucking of stems 

50 

 

4.2 MATERIAL AND METHODS 

4.2.1 Site description and data collection 

The study area is located in Villaviciosa, a locality in the autonomous region of Asturias, Northern 

Spain (43°4′5.00″N 11°27′17.46″W) (Figure 26A). It was established as a pruning trial in winter 

2005–2006, on a monospecific, even-aged Pinus radiata stand. It was deliberately chosen to 

represent a young stand (7–11 years old) without previous pruning or thinning treatments and 

where tree diameters were suitable for pruning interventions. It has an approximate area of 

5,000 m2 with clay-sandy soil, an average slope of 22.3°, and a light presence of shrubs such as 

Ulex and Pteridium. A total of 120 trees were measured in the study plot. They had an average 

dbh and h of 22.6 cm and 17.7 m, respectively. 

 

Figure 26. A) Location of the study area B) Leica P40 laser scanner used for data acquisition C) Pinus radiata stand 

within the study plot D) Wooden targets used for point cloud georeferentiation 

Data acquisition on the 120 trees was carried out in February 2018 using a TLS Leica P40 (Leica, 

2018) (Figure 26B). Several 12x20 cm targets on surveying rods (Figure 26D) were used to merge 

individual scan point clouds into a unified coordinate system. Their position was measured using 

a differential GNSS (Global Navigation Satellite System) Leica Viva GS14 3.75G Performance 

(Leica, 2021) with dual frequency and centimetric accuracy, thereby providing accurate 

geolocation for possible future comparisons. The Root Mean Square Error (RMSE) of the 
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registrations was 5 mm and the final unified point cloud had approximately 75 million points, 

after removal of duplicates within 6 mm of each other. 

For all trees in the plot, dbh and h were measured; dbh to the nearest 1 mm with a calliper, and 

h to the nearest 10 cm, using a digital hypsometer (Vertex IV 360⁰). All individual trees within 
the plot were also geo-positioned, using the same GNSS used for the TLS targets and a total 

station, to complement the inventory data. 

4.2.2 Diameter estimations along the stem  

Diameters along the stem are the primary input of the optimal bucking algorithm, so the 

resulting bucking pattern is strongly dependent on their values. These diameters were obtained 

for the trees within the study plot in two different ways: (i) from a stem taper model (ii) from 

point cloud data collected in the field with the TLS. Both approaches are explained in detail 

below. A statistical analysis was then carried out to compare the diameters obtained from the 

two procedures as well as the impact of diameter estimates on the bucking results. 

4.2.2.1 Taper model 

Diameters along the stem were estimated using the taper model in Canga et al. (2008); a model 

specifically developed for Pinus radiata stands in north-western Spain. The equation builds on 

the model in Fang et al. (2000) which consists of a compatible system formed by a taper model, 

a total volume equation, and a merchantable volume equation. The taper model is segmented 

with two attachment points and three shape factors for each segment. In this context, 

“compatible” means that the volume computed by the integration of the taper model should be 
equal to that calculated by a total volume equation (Menéndez-Miguélez et al. 2014). By 

embedding dbh and h (from the field inventory) in the taper model, diameters every 10 cm for 

a height interval between 0.2 and the total height of each tree are obtained as outputs.  

4.2.2.2 TLS 

In addition, tree point cloud data collected with TLS in the study plot was processed and analysed 

for the automated estimation of dbh and h as per the methodology described in Chapter 2 (Cabo 

et al. (2018a); Prendes et al. (2021)). 

As a result, measurements of tree diameters along the stem (spaced 10 cm apart, between 0.2 

over the ground and 10 m) and their centers (defined by XYZ coordinates) were automatically 

obtained. In several cases it was impossible to fit a circle to estimate dbh for some stem sections, 

primarily due to an insufficient number of points or to anomalies present in the stem. In the 

latter case, a filter-based methodology was developed to detect the anomalies automatically 

(Cabo et al. 2018; Prendes et al. 2021) such that the potentially wrong sections were flagged for 

further revision. Available diameters above or below those anomalous sections were used to 

estimate the missing or flagged sections. Estimating diameters was also problematic in the upper 

sections of the tree (above 10 m) due to the low definition of the stem contour in areas near the 

crown, so diameters above that height were completed with the taper model (see Section 

4.2.4.6 for more details). 

4.2.3.    Optimal stem bucking 

4.2.3.1 General aspects of the bucking algorithm 

Dynamic Programming (DP) was used to optimally buck the stems in our study; it is the most 

common mathematical technique researchers and foresters use to optimize stem cutting in 

commercial forests because DP bucking algorithms, in most cases, provide better solutions in 
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comparison to those generated by a sequential bucking system. The latter procedure is, 

however, commonly used by field operators, who first try to cut the log with the highest value 

(i.e., veneer logs). If no extra logs can be cut from this type, they continue with the second-

highest value log, then with the third-highest value product, and so on, until the whole stem has 

been processed. The sequential bucking system only considers the dimensions of the logs and 

the specifications of the timber products. At the same time, the relative or absolute value of the 

logs cut is used to guide the priority of the products1 that will be cut along the stem.  

4.2.3.2 Input and output data  

Regarding input data, two different files are required to run the DP bucking algorithm: one that 

provides detailed information on the stems and another that specifies the requirements of each 

log type (product) that can be cut from the stem. In the first case, the stem file contains 

information including diameter, volume, and quality (defined by curvature), which are generally 

detailed for segments of a certain length (i.e., every 10 cm along the stem). This information can 

be obtained from inventories (manual measurements or collected by sensors) or estimated from 

taper models. In the second case, the product requirement file specifies the logs’ characteristics 
of each log type. These include large and small end diameters (LED and SED, respectively), 

market prices (absolute or relative) for each log type, feasible lengths (one or multiple lengths), 

and maximum allowable log curvature. This study did not include branchiness and knot size as 

log type requirements. 

4.2.3.3 Bucking optimization 

Following the terminology and methodology presented by Taha (2017), the DP recursive 

computations can be expressed mathematically based on a network representation using stages 

and states (nodes). A node is regarded as the information that links the stages together so that 

the optimal decisions for the remaining stages can be made without re-examining the decisions 

from previous stages. The proper definition of a node under this approach allows the 

consideration of each stage separately, guaranteeing that the solution is feasible for all the 

stages (Taha, 2017). In the stem bucking, the nodes contain the information of the feasible 

products that can be cut from the stem at a particular stage or position in the stem.  

In the mathematical nomenclature of DP, 𝑋𝑖  refers to the node of the system at stage i. Thus, 

let 𝑓𝑖(𝑋𝑖) be the best value to node 𝑋𝑖  at stage i, and define 𝑉(𝑋𝑖−𝑗, 𝑋𝑖) as the value of the 

variable of interest (i.e., economic value) from node 𝑋𝑖−𝑗 to node 𝑋𝑖; then 𝑓𝑖 is computed from 𝑓𝑖−𝑗 (j<=i), using the following forward recursive equation (eq. 12): 𝑓𝑖(𝑋𝑖) = max{[𝑓𝑖−𝑗(𝑋𝑖−𝑗) + 𝑉(𝑋𝑖−𝑗, 𝑋𝑖)]}, ∀𝑖 ∈ 𝑖, 𝑗 ∈ 𝐽 | 𝑗 ≤ 𝑖  𝑎𝑛𝑑 𝑗 > 0            eq. 12 

Notice that in eq.12, 𝑓𝑖(𝑋𝑖) must be evaluated for all feasible (𝑋𝑖−𝑗,𝑋𝑖) links. Also, starting at i = 

1, the recursion sets 𝑓0(𝑋0) = 0. 

Figure 27 shows a practical bucking example with these definitions. The stem has been divided 

into 6 sections, each 1 m long. Seven stages (S0 to S6) represent potential cutting points where 

feasible products (represented by nodes) can be cut. Also, A and B represent the quality of each 

section (A being higher than B), which is determined, for example, by the curvature, presence 

of branches or stem damage. In the example, at stage 2 (S2), four products (candidate nodes in 

Figure 27) can be cut, two products of 2 m each (defined by node 4 (Product 1) and node 5 

 
1 A product is also referred to as a log type, so both terms are used interchangeably throughout the text. 
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(Product 2) and two products of 1 m each (defined by node 3 (Product 3) and node 6 (Product 

4). Each of these four nodes (products) represents a state in S2, and the maximum value from 

these four cutting alternatives will be considered the best solution at that stage as per eq.12.  

 

Figure 27. Simplified stem bucking example with the description of stages (S0 to S6) and nodes (states) 

Thus, for example, the four equations to be evaluated at stage 2 are as follows eq. 13-16:  𝑓2(𝑋2 = 3) = {[𝑓1(𝑋1 = 1) + 𝑉(𝑋1 = 1, 𝑋2 = 3)]}            eq. 13 𝑓2(𝑋2 = 6) = {[𝑓1(𝑋1 = 1) + 𝑉(𝑋1 = 1, 𝑋2 = 6)]}            eq. 14 𝑓2(𝑋2 = 4) = {[𝑓0(𝑋0 = 0) + 𝑉(𝑋0 = 0, 𝑋2 = 4)]}            eq. 15 𝑓2(𝑋2 = 5) = {[𝑓0(𝑋0 = 0) + 𝑉(𝑋0 = 0, 𝑋2 = 5)]}            eq. 16 

From the four equations, the one with the maximum value for 𝑓2(𝑋2) will determine the best 

decision (potential products to be cut) at stage 2. The same procedure must be carried out for 

the rest of the stages. Notice that under this modelling approach, only one node represents the 

best solution at each stage (best value nodes in Figure 27). In case there is a ‘tie’ in value 

between one or more nodes, some criteria need to be established to determine which is to be 

considered the maximum value node. Thus, only the arcs that come from best value nodes must 

be assessed at each stage. In the example, the best value nodes are node 0 (S0), node 1 (S1), 

node 4 (S2) node 8 (S3), node 11 (S4), node 13 (S5), and node 15 (S6). Also, some arcs between 

nodes are not feasible since they are associated with logs that do not meet the specifications of 

a certain product (i.e., quality or SED). Like in the case of arcs coming from non-best value nodes, 

these arcs are also not assessed.  

The optimal bucking solution for the whole stem is constructed by connecting the best value 

nodes, starting from the final stage. In the example, starting from S6, the optimal solution is 

given by Product 1 of 2 m (arc connecting nodes 15 and 11), a second Product 1 of 2 m (arc 

connecting nodes 11 and 4) and a Product 2 of 2 m (arc connecting nodes 4 and 0). The optimal 

solution only includes best value nodes. However, a best value node may not always be part of 

the optimal bucking solution, as is the case with nodes 1, 8, and 13 in Figure 27. 
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4.2.4.4 Implementation of the bucking algorithm 

The bucking algorithm used in this study corresponds to a variant of the DP algorithm presented 

in Pnevmaticos and Mann (1972) and Acuna and Murphy (2005) which uses recursive equations 

to guide the optimization, as described in the previous section.  

In the present study, the DP bucking algorithm was programmed in Python language and 

implemented with a graphical interface using the PyQt5 library. For each type of timber product 

the system returns the total value, volume, number of logs, as well as average diameters and 

lengths. It also calculates the total volume and value resulting from the optimal bucking of single 

or multiple stems. Figure 28 shows a flow diagram of the steps of the programming and 

implementing of the algorithm for the bucking of a single stem. These steps are summarised 

below: 

0) After importing the product specification and market files, all the variables that are used 

in the algorithm are initialized. These include the number of log types, log lengths per 

log type, number of segments, and length of each segment (i.e., 10 cm). A segment is 

equivalent to a section as presented in the practical example in 2.4.3. Also, the 

temporary stage (variable TS in Figure 28) is initially set to 0 (the base of the tree).   

1) Starting from the base of the tree, a log of the first product is assessed. Also, a new TS 

is calculated by adding the current temporary length and the length of the log being 

assessed. Since some log types accept more than one valid length, these lengths and 

their corresponding TSs are evaluated one by one. At a specific TS, there could be more 

than one product and length, and these correspond to the nodes in the DP terminology. 

2) If the TS calculated in (1) exceeds the commercial height of the stem, a log of the next 

product is assessed; otherwise, the process moves to Step (3).  

3) The SED and curvature of the log being assessed are checked. In the procedure, for each 

individual log that can potentially be cut, the reference for the sagitta is taken from the 

straight line segment connecting the centers of the end sections (Prendes et al., 2022). 

The sagitta of each section is then calculated as the distance between the center of the 

section and the straight line segment. Subsequently, the maximum sagitta is identified 

and compared to the maximum allowable curvature.  

4) The value (VAL) of the log being assessed at the current TS is calculated using the 

recursive equation presented in 4.2.4.3. If VAL is higher than the current best value 

(BVAL) at that TS, BVAL and best log are updated; otherwise, the process moves to Step 

(5). 

5) If there are still valid lengths for the log being assessed, a new valid length is assessed 

starting from Step (1); otherwise, the process moves to Step (6). 

6) If there still log types to be assessed, a new log type and its corresponding valid lengths 

are assessed starting from Step (1); otherwise, the process moves to Step (7). 

7) If the current segment exceeds the number of stem segments, the algorithm stops; 

otherwise, the procedure is repeated for the next segment commencing from Step (1). 
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Figure 28. Flow diagram of the DP bucking algorithm implemented in the study. 
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4.2.4.5 Log types (timber products) incorporated in the optimal bucking algorithm 

The optimal bucking algorithm included some of the most common log types produced in 

Asturias (Spain) for Pinus radiata trees as input. Their characteristics are shown in Table 7. The 

specifications of the log types and prices were obtained from the “Observatory of forest 
products prices” report, which was prepared by COSE (Confederation of Forestry Organizations 
of Spain) as part of the RedFor project (García-Márquez, 2014). As for the log type Fibre 

(pulpwood), this is not a very common product for Pinus radiata in Asturias. However, it was 

included in the study since it represents a potential future commercial opportunity for Asturias 

and other provinces in northern Spain (ASPAPEL, 2021). The price of this log type was estimated 

based on personal communications with local sawmill managers and the authors’ own 

knowledge. All the stem wood that could not be included in any of the five log types was 

considered waste, with an economic value equal to 0. 

Table 7. Market log specifications for Pinus radiata logs in Asturias 

Log-type Min SED (cm) Valid lengths (m) Max curvature* (cm) Price (€/m3) 

Veneer 28.0 2.5/3.0 5.0 60.0 

Saw log 1 25.0  2.5/3.0/5.0/6.0 2.0 50.0 

Saw log 2 22.0 2.5/3.0/5.0 3.0 45.0 

Saw log 3 20.0 2.5/3.0 3.0 40.0 

Fibre 6.0 

Variable length 

between 2.5-5.0 m in 

multiples of 10 cm 

0.0 25.0 

Waste                 NA NA 0.0 

4.2.4.6 Datasets analysed and compared 

Three stem input data sets were used to feed the bucking algorithm. One was generated using 

a taper model (dataset A), and two were obtained from a point cloud acquired from TLS, one 

where curvature was excluded, the other where it was included (datasets B and C, respectively). 

1. Dataset A: the diameters of each stem were estimated every 10 cm using the taper model 

presented in section 4.2.2.1 (Figure 29A). For this data set, trees were assumed to be completely 

straight  

2. Dataset B: the diameters of each stem were estimated every 10 cm from the TLS point cloud 

as explained in section 4.2.2.2 (Figure 29B). Due to the low definition of the stem contour in 

areas near the crown, the diameters were completed using estimates provided by the taper 

equation above 10 m. For this data set, trees were also assumed to be completely straight. This 

dataset resembles the measurement of trees on the ground after they are felled, where 

diameters but not shape measurements are recorded, and it also represents the simplest input 

data which can be obtained with TLS, that is, diameters. 

3. Dataset C: This data set is similar to dataset B, but with the addition of the coordinates of the 

center (XYZ) for each stem section/diameter (Figure 29C). This new parameter enabled the 

inclusion of a maximum curvature constraint (Table 7) for each log type in the bucking algorithm, 

so the trees/logs here are not considered to be straight.  
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Figure 29. Profile of the trees for datasets A, B, C used to feed the optimal bucking algorithm 

4.3.2.6 Comparing the optimal bucking results from the three datasets 

Diameters along the stem are one of the critical parameters in the optimal bucking algorithm. 

Consequently, differences in diameter between the TLS point cloud (hereafter dTLS) and the taper 

model (dtaper) were assessed in terms of (i) a PDF (Probability Density Function) of the differences 

between dTLS – dtaper (ii) a double line plot representing average diameter value per stem section 

obtained through the taper model and from TLS. It is worth mentioning that the PDF is used to 

specify the probability of the random variable (in this case, the difference in diameter) falling 

within a particular range of values. 

After completing the runs of the optimal bucking algorithm on datasets A, B and C, the results 

were compared in terms of number of logs, length of the logs, total volume, and total 

merchantable value. This comparison provided insights into the impact of using different 

techniques of estimating diameters along the stem, especially when including curvature 

constraints. Special attention was paid to the LED and SED of each log type (the difference 

between them being related to taper) and the curvature value in the case of dataset C. The 

analysis was performed by conducting a Tukey-Kramer test (Seidel et al. 2021; Tukey 1949) that 

compared the differences of the individual means from the LED and SED for each log type and 

identified any significant differences among the three datasets. 

Finally, all the logs of one type within the same tree were added in order to have one value per 

log type and tree. Subsequently, a PDF for the volume and value per tree and dataset type was 

calculated for each of the 120 trees within the study plot. This also allowed comparisons by log 

type and dataset.  

 

 

 

 

,
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4.3. RESULTS 

4.3.1 Difference in diameter estimated with the taper model and the TLS 

The PDF curve for the difference between dTLS and dtaper is shown in Figure 30. The curve has a 

normal distribution and reveals minor differences in diameter measurements using the two 

systems, with most of the differences ranging between -0.05 and +0.05 m. In percentage terms, 

43.5% of the sections presented a diameter difference below or equal to 1 cm. That percentage 

increased to 72.5 % for differences below or equal to 2 cm and 87% for differences lower than 

or equal to 3 cm. The RMSE was 2.68 cm. 

 

Figure 30. PDF for the difference between diameters estimated using TLS and taper model 

The curves in Figure 31 show the average diameter value per section obtained using the taper 

model (yellow) and TLS (blue). At first glance, it is evident that the curve for the TLS diameters 

is smoother than in the case of the taper model. Unlike the taper model (yellow) curve, the small 

peaks of the blue line indicate that as the height increases, diameter does not in fact decrease 

in a constant manner, and indeed they sometimes increase in comparison to the previous data 

point.  
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Figure 31. Line plot representing average diameter value per section obtained using the 

taper model (yellow) and TLS (blue). Q1 and Q3 refer to the dotted lines which 

represent Quartile 1 and 3 respectively for the taper model (yellow) and TLS (blue) 

Compared to the TLS curve, the taper model tends to overestimate diameters in the bottom 

sections of the stem (between 0-1.8 m) and underestimate diameters in the upper sections of 

the stem (6 -10 m). As for the rest of the stem (1.9–5.9 m), the differences are quite low, with 

diameters estimated by the taper model being very close to those obtained with TLS. 

4.3.2 Optimal economic value and volume estimated for each dataset 

The optimal bucking algorithm only considered those sections with a diameter greater than 6 

cm; below that they were considered waste. Regarding the results of the bucking algorithm, on 

average, 17% and 83% of the stem length corresponded, respectively, to waste and commercial 

timber. In the case of datasets B and C, not all diameters along the stem were obtained from the 

TLS point cloud due to the low definition of the stem contour in areas near the crown (see 

4.2.4.6). On average, 40% of all diameters in B and C were estimated with the taper model (upper 

sections of the stems), while the remaining 60% of the stem diameters were calculated from the 

TLS point cloud. 

After optimally bucking the 120 trees, the total value amounted to €1467.71, €1467.38, and 
€1379.14 for datasets A, B, and C, respectively. Table 8 shows the descriptive statistics of volume 

and value per tree for the three datasets (i.e., excluding waste). According to the results, both 

value and volume per tree were greater for dataset A than for datasets B and C. As expected, 

dataset C gave the lowest value and volume per tree due to the additional curvature constraint 

included in this scenario. 
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Table 8. Descriptive statistics of volume and value per tree from the three datasets evaluated A) Taper model B) TLS 

and C) TLS + curvature 

Dataset 
Volume (m3/tree) Value (€/tree) 

Mean Median Dev Min Max Mean Median Dev Min Max 

A 0.364 0.331 0.174 0.058 0.916 12.23 9.86 8.73 1.33 44.27 

B 0.351 0.314 0.164 0.059 0.907 12.22 9.60 8.20 1.33 44.27 

C 0.346 0.314 0.162 0.059 0.907 11.49 9.44 7.71 1.33 44.27 

4.3.2.1 Optimal bucking by log type 

Table 9 summarizes the average values of the main attributes of each log type in datasets A, B 

and C. Specifically, it contains: the average log SED and LED, the difference between their values 

(LED-SED), their position in the stem with respect to the ground (ZSED, ZLED), and log length. For 

dataset C, the mean curvature and its range (in cm) are also shown. 

Table 9. Average values of log attributes in datasets A, B, C 

Dataset  Veneer Saw log 1 Saw log 2 Saw log 3 Fibre 

A 

LED (cm) 38.2 33.1 28.8 25.0 16.8 

SED (cm) 29.1 26.0 23.1 20.5 12.1 

LED-SED (cm) 9.1 7.1 5.7 4.5 4.7 

ZSED 3.9 4.1 4.7 5.7 10.7 

ZLED 0.6 1.2 1.9 2.9 7.1 

Length (cm) 3.34 3.34 3.36 3.35 3.35 

B 

LED (cm) 29.4 27.8 26.1 23.2 16.2 

SED (cm) 29.2 26.2 22.9 20.6 11.3 

LED-SED (cm) 0.2 1.6 3.2 2.6 4.9 

ZSED 3.9 4.6 5.1 5.7 11.3 

ZLED 0.7 1.8 2.3 3.1 7.7 

Length 2.5 3.08 3.08 3.11 3.15 

C 

LED (cm) 29.2 27.0 26.3 23.1 16.7 

SED (cm) 29.1 26.0 23.3 20.6 11.9 

LED-SED (cm) 0.1 1 3 2.5 4.8 

ZSED 4.0 5.3 4.9 5.4 10.9 

ZLED 1.1 2.7 2.2 2.8 7.2 

Length 3.13 2.95 3.12 3.15 3.16 

Curvature (cm) 3.20[0-14.2] 1.38 [0-1.8] 2.26 [0-3.0] 2.08 [0-3.0] 2.09 [0-12.3] 

The difference between SED and LED can be considered a proxy of the taper/conicity of the 

different log types. In comparison to datasets B and C, larger differences between SED and LED 

were obtained in dataset A for all log types except for the log type Fibre (pulpwood). The most 

significant differences in dataset A were observed for the two most valuable log types (Saw log 

1 and Veneer) since these products are mostly cut from the bottom sections of the stem (see 

ZSED and ZLED values). For a significance level of α = 0.05, the Tukey test showed statistically 

significant differences in SED and LED between datasets A and B and between datasets A and C, 

but not between datasets B and C. In the case of the log type Fibre, there were no significant 

differences between any dataset because most logs are obtained from the upper parts of the 

stem, where diameters are the same irrespective of the dataset. For the 120 trees within the 

study plot, the results obtained after running the bucking algorithm on datasets A, B and C are 

presented in Figures 32 and 33.  
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Figure 32. A) Number of logs per product obtained for datasets A, B and C. B) Average length per log type (m). Note 

the double horizontal line represents a break in the vertical scale to make the figure easier to understand. 

Figure 32A compares the number of logs obtained for each product. The numerical results were 

as follows: 

-  Dataset A: 534 logs in total (Veneer: 6; Saw log 1: 18; Saw log 2: 45; Saw log 3: 67; 

Fibre:398) 

-  Dataset B: 546 logs in total (Veneer: 12; Saw log 1: 21; Saw log 2: 62; Saw log 3: 84; 

Fibre:367)  

-  Dataset C: 536 logs in total (Veneer: 14; Saw log 1: 6; Saw log 2: 61; Saw log 3: 69; Fibre: 

386). 

Regarding the average length of the logs (Figure 32B), the longest logs were obtained for dataset 

A, followed by datasets B and C, irrespective of the log type. In the case of the log type Fibre, 

the length of the logs was almost the same in the three datasets. 

Similarly, Figure 33A compares the total volume by log type obtained in each dataset. When all 

the products were included, the total volume obtained for datasets A, B, and C were, 

respectively, 43.2, 41.2, and 40.7 m3. Regardless of the dataset used, most of the volume was 

related to the log type Fibre, followed by the log types Saw log 2 and Saw log 3. The volume of 

log type Fibre was more than three times larger than that of log types Saw log 2 and Saw log 3, 

and more than seven times larger than that of log types Saw log 1 and Veneer. The same trend 

was observed when quantifying the total value by log type (Figure 33B). In this case, the total 

value of log type Fibre was about twice as much as that of log types Saw log 2 and Saw log 3 and 

about six times greater than that of log types Saw log 1 and Veneer. 
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Figure 33. A) Total volume per log type obtained for datasets A, B and C. B) Total value per log type in euros. Note 

the double horizontal line represents a break in the vertical scale to make the figure easier to understand 

As can be seen in Figures 32A and 32B, except for the log type Fibre, more logs were obtained 

for dataset B than for dataset A. Likewise, except for log types Saw log 1 and Fibre, the volume 

and value were greater for dataset B than for dataset A. In the case of log type Saw log 1, the 

increased number of logs in the dataset B did not result in a greater volume or value than in 

dataset A since the logs of this type in the former dataset were shorter and had smaller 

diameters. In the case of dataset C, both the total value and volume were lower than in datasets 

A and B. As expected, the inclusion of a curvature restriction in the bucking algorithm resulted 

in a reduced volume and value of log types Saw log 1, Saw log 2, and Saw log 3 in comparison to 

datasets A and B. However, in contrast to dataset B, it also resulted in more logs and a greater 

volume and value for log types Veneer and Fibre, which had the least stringent curvature 

constraints.  

Figure 34 shows the distribution of the PDFs of volume and value by log type and dataset. The 

peaks in the PDF curves indicates the most frequent value. Overall, the volume and value in each 

dataset follow a very similar distribution with a peak (or two in the case of dataset A) and some 

overlap between curves. The overlap between curves of different categories (log types) is more 

evident for volume than for value, and it is more pronounced in the case of dataset C. In contrast, 

dataset A has less overlap, which is reflected in a wider range of values across the log volume 

and log value spectrum. This is particularly true in the case of the log type Veneer and to a lower 

extent in the case of the log type Saw log 1. These are the two most valuable products, and also 

those with a greater variation in their distributions among the datasets.  
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Figure 34. PDF distribution of volume (left side) and value (right side) by log type in the three datasets evaluated 

 4.4 DISCUSSION 

This study presents a methodology for the optimal bucking of stems based on TLS data. Designed 

as a procedural workflow, it automatically estimates the external variables needed for stem 

bucking (i.e., diameters and curvature of the logs) and implements a DP-based optimal bucking 

algorithm.  

The bucking results obtained for dataset C, which comprised TLS data and log curvature, were 

compared with the those obtained for data estimated from a taper model (dataset A) and data 

collected with a TLS but that excluded log curvature from the bucking algorithm (dataset B). The 

total value was practically the same for datasets A and B, and it declined slightly (6%) for dataset 

C. However, the number of logs, their length, and total value and volume associated with each 

product presented differences between the three datasets. The origin of these differences lies 
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fundamentally in: (i) the values of the diameters that feed the bucking algorithm and (ii) the 

consideration or not of the curvature constraint in the bucking algorithm.  

Regarding stem diameters, differences between the taper equation and TLS were minor, with 

an RMSE of only 2.68 cm. However, the distribution of the differences along the stem was not 

homogeneous. In comparison to TLS, on average, the taper equation overestimated diameters 

in the bottom parts of the stem and underestimated them in the top parts. This is explained 

because the taper equation used in this study (Canga et al. 2008) is a mathematical model which 

likens the stem to a cone frustum for all the trees within the plot and therefore, it does not 

reflect in detail the variability of their morphology (see Figure 29A). Conversely, in the case of 

TLS, the point cloud is a three-dimensional representation of the trees within the plot obtained 

from their direct measurement without intermediate models or assumptions (Gollob, Ritter, and 

Nothdurft 2020). As confirmed by previous studies such as (Hollaus, Mokroš, and Wang 2019; 
Liang et al. 2016), the diameters obtained with TLS are more reliable and realistic than those 

estimated by a taper equation. In addition, our methodology includes the section centers, which 

is a big development compared with other studies that only report the diameters (Heinzel and 

Huber 2017; Oveland et al. 2017; Pitkänen, Raumonen, and Kangas 2019b). Knowing the XYZ 

coordinates of the section centers provides valuable information on the curvature of the stem, 

which represents a key parameter in bucking algorithms that facilitate improved cutting 

decisions. 

In the specific case of the study plot, the better definition of diameters along the stem provided 

by TLS allows the algorithm to identify a larger number of logs, but which are shorter, in dataset 

B than in dataset A, except for log type Fibre. Particularly at the base of the tree, the larger 

diameters estimated by the taper model (dataset A) lead to a greater proportion of longer logs 

for the most valuable log types: Saw log 1 and Veneer (see Table 9, dataset A). In dataset A, the 

algorithm also maximized value by cutting longer logs in all the product categories, and more 

logs in the Fibre category since this product is the least restrictive regarding minimum SED.  

The inclusion of a curvature constraint in dataset C notably affected the results, leading to a 

substantial reduction in the number of log types that involve greater curvature restriction. This 

is exemplified by the reduced number of Saw log 1 logs (max. curvature < 2cm) in dataset C 

compared to dataset B, while the number of the less restrictive log types (Fibre and Veneer) is 

higher. Because of the more restrictive curvature constraint associated with all saw log types, 

the bucking algorithm maximises each tree's value by cutting more logs in the Fibre and Veneer 

categories, and shorter logs in all the saw log categories.  

The wood volume in a product category is closely related to the number and diameter of logs in 

that category and, to a lesser extent, to length. When the volume and value distribution are 

assessed by log type (see Figure 33), minor differences in diameters result in notable differences 

in the proportions of the different products. Using taper equations (dataset A), the range of 

value and volume is slightly greater than in the other two datasets, and logs of more volume and 

value are reported due to the volume overestimation in the bottom sections of the stem. The 

latter also has implications for other products, such as Veneer, which shows a higher volume 

and value than in the datasets using TLS data (B and C). The inclusion of the curvature constraint 

(dataset C) reduces the volume and value of the most restrictive log type (Saw log 1), which 

shows an overlap with Saw log 2 in the distribution curve (see Figure 34). However, on the plus 

side, logs that would be cut as Saw log 2 using datasets A and B are cut as Saw log 1 in dataset C 

as they meet the curvature constraint, which results in an increased total value. Several authors 

(Liang et al. 2018; Malinen et al. 2007) have pointed out that log shape is a critical factor that 
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significantly conditions the use timber is put to as well as its processing. More specifically, the 

bucking optimization of logs requires the accurate determination of curvature that allows the 

cutting points along the stem and the commercial volume to be determined according to 

particular specifications (Erber et al. 2021). Thus, including curvature restrictions in the bucking 

algorithm contributes to obtaining a more realistic total value that is not overestimated 

(Rummukainen et al. 2021).  

Despite the important benefits discussed, the empirical results reported here should be 

considered in light of certain limitations. Firstly, the optimal bucking algorithm was tested in a 

single plot consisting primarily of young homogeneous trees, which resulted in a low number of 

high-value log types. A better understanding of the performance of bucking algorithms will 

require that our methodology is tested in a wider range of forest conditions. This should include 

different species and forest management regimes, with trees of various sizes (i.e., height and 

diameter) and quality features (i.e., tree form and branchiness). Secondly, tree defects such as 

heavy branches or multiple stems were not included in the bucking algorithm. Future studies 

should include these tree quality parameters, since they represent a critical aspect to consider 

in optimal bucking procedures because of their impact on the value of timber assortments and 

volume recovery (Malinen et al. 2007; Marenče et al. 2020).  
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CHAPTER 5: CONCLUSIONS  

5.1 CONCLUSIONS (IN ENGLISH) 

In this PhD thesis three algorithms based on TLS point clouds for use in precision forestry 

inventories were developed. They cover key issues in forestry, namely: volume equation 

parametrization, stem shape variables assessment and optimal bucking. They also share some 

common characteristics which favour their use in forest inventory and planning tasks: (1) they 

aim to be applicable to any terrestrial point cloud, irrespective of the sensor used to acquire the 

data; (2) they are applicable to any species; (3) they are scalable, so can be applied to a single 

tree, a plot or a whole forest; and (4) they are written in Python programming language, a 

widespread open-source language, which facilitates  their use by multiple users.  

The algorithms presented here allow the construction of extremely accurate 3D single tree 

models. As a result, the variables needed for precision forestry inventories are obtained 

automatically and without the intervention of an operator, thus avoiding the subjectivity 

associated with traditional measurement techniques. The diameter of the stem and center 

coordinates (XYZ) of any section along the stem are calculated automatically from TLS 

measurements. The only limitation is the impossibility of obtaining diameter measurements for 

the top part of trees because of laser range (in the case of tall trees) and/or a very leafy crown. 

What is more, the total height of the tree can be measured with an acceptable error range. 

Of the variables estimated from TLS data with the algorithms developed, two in particular, 

diameter along the stem and height, are the main inputs for parametrizing volume equations. 

Consequently, the availability of accurate diameters strongly influences both the type of 

merchantable volume equation that can be fitted and the degree of uncertainty in their 

estimation. The algorithm specifically developed to estimate these two variables issues a 

warning when uncertainty in the calculation of a diameter is high. As expected, the manual 

review of flagged sections for review or elimination improved the volume estimation, although 

the results obtained with the fully automatic approach are still suitable for parametrizing 

equations when a high degree of accuracy in the merchantable volume estimation is not 

necessary.  The proposed methodology and the algorithm developed to implement it are robust 

to errors in estimating the centers of the sections, which, together with diameters along the 

stem, constitutes the basis for estimating two variables that characterize the shape of the tree: 

straightness and lean. The estimated values of these two variables provided by our approach 

clearly outperform those obtained by means of classical field techniques, to the point of opening 

a door to the integration of shape variables in standard forest inventories 

Finally, making available accurate estimations of variables that describe stems in detail in terms 

of diameter, height and shape has great applicability in the optimal bucking of stems, and is a 

big step forward compared with existing methodologies such as taper models. The low capacity 

of traditional methodologies to reflect variability in morphological characteristics at the 

individual tree level suggests that their use should be restricted to situations where TLS data are 

not accessible, and/or to estimate diameters in the upper sections of trees when point cloud 

data is not available. The results of the study constitute a starting point towards automatic 

optimal bucking in standing trees in an operational environment, which is of great interest in 

forestry organizations.  

In general terms, the algorithms presented in this PhD have shown very promising results and 

demonstrate the convenience of using laser scanner point cloud-based models over traditional 
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field methods for forest inventory in terms of speed of data collection, data volume, accuracy 

and reliability of the estimated variables. 

Future lines of work 

The algorithms developed in this work have been tested in single plots of species of the Pinus 

genus, so the systematic investigation of larger test sites with different scanning techniques, 

forest species and conditions is desirable. In addition to this, in the case of the optimal bucking 

algorithm, future work should consider parameters connected to the quality of wood such as 

branchiness or presence of knots in the wood. 

Finally, testing the algorithms’ performance in other types of terrestrial point clouds such as 

photogrammetric and/or mobile laser scanner point clouds would also be advisable. 
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5.5 CONCLUSIONES (EN ESPAÑOL) 

En esta tesis doctoral se desarrollaron tres algoritmos basados en nubes de puntos TLS para su 

uso en inventarios forestales de precisión. Todos ellos se centran en asuntos claves de la ciencia 

forestal , como son: la parametrización de ecuaciones de volumen, la estimación de variables de 

forma del tronco y el tronzado óptimo de los fustes. También comparten algunas características 

comunes que favorecen su uso en tareas de inventario y planificación forestal: (1) pretenden ser 

aplicables a cualquier nube de puntos terrestre, independientemente del sensor utilizado para 

adquirir los datos; (2) son aplicables a cualquier especie; (3) son escalables, por lo que se pueden 

aplicar a un solo árbol, una parcela o un bosque completo; y (4) están escritos en lenguaje de 

programación Python, un lenguaje de código abierto muy extendido, lo que facilita su uso por 

parte de usuarios con diferentes perfiles. 

Los algoritmos presentados en esta tesis, permiten la creación de modelos 3D de árbol individual 

extremadamente detallados Como resultado, las variables necesarias para los inventarios 

forestales de precisión se obtienen de forma automática y sin la intervención de un operador, 

evitando así la subjetividad asociada a las técnicas de medición tradicionales. El diámetro del 

fuste y las coordenadas del centro (XYZ) de cualquier sección a lo largo del mismo se calculan 

automáticamente a partir de las mediciones realizadas con el TLS. La única limitación es la 

imposibilidad de obtener medidas de diámetros en la parte superior de los árboles debido al 

rango de alcance del láser (que es insuficiente en el caso de árboles altos) y/o la existencia de 

una copa muy frondosa. Además, la altura total del árbol se puede medir con un margen de 

error aceptable. 

De las variables estimadas a partir de los datos TLS con los algoritmos desarrollados, dos en 

particular, el diámetro a lo largo del fuste y la altura, son las principales entradas para 

parametrizar las ecuaciones de volumen. En consecuencia, la disponibilidad de diámetros 

precisos influye fuertemente tanto en el tipo de ecuación de volumen comercial que se puede 

ajustar como en el grado de incertidumbre en su estimación. El algoritmo desarrollado 

específicamente para estimar estas dos variables dispone de un sistema para etiquetar aquellas 

secciones donde la incertidumbre en el cálculo del diámetro es alta. Como era de esperar, la 

revisión manual de las secciones marcadas para su revisión o eliminación mejoró la estimación 

del volumen, aunque los resultados obtenidos con el enfoque completamente automático 

siguen siendo adecuados para parametrizar ecuaciones cuando no es necesario un alto grado 

de precisión en la estimación del volumen comercial. La metodología propuesta y el algoritmo 

desarrollado para implementar dicha metodología son robustos a los errores en la estimación 

de los centros de las secciones, lo que, junto con los diámetros a lo largo del fuste, constituye la 

base para estimar dos variables que caracterizan la forma del árbol: la rectitud y la inclinación. 

Los valores estimados de estas dos variables proporcionados por nuestro enfoque superan 

claramente a los obtenidos mediante técnicas de medición clásicas, hasta el punto de abrir un 

camino hacia la integración de la medición de variables de forma en los inventarios forestales 

estándar. 

Finalmente, el hecho de disponer de estimaciones precisas de variables que describen los fustes 

en detalle en términos de diámetro, altura y forma tiene una gran aplicabilidad en el tronzado 

óptimo de los fustes y es un gran paso adelante en comparación con las metodologías existentes, 

como las funciones de perfil. La baja capacidad de las metodologías tradicionales para reflejar la 

variabilidad en las características morfológicas a nivel de árbol individual sugiere que su uso 

debería restringirse a situaciones en las que los datos TLS no son accesibles y/o a la estimación 

de diámetros en las secciones superiores de los fustes cuando no hay nubes de puntos 
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disponibles. Los resultados del estudio constituyen un punto de partida hacia la implementación 

del tronzado óptimo automático en árboles en pie en un entorno operativo, que es de gran 

interés para las organizaciones forestales. 

En términos generales, los algoritmos presentados en esta tesis doctoral han mostrado 

resultados muy prometedores y demuestran la conveniencia de usar modelos basados en nubes 

de puntos de escáner láser sobre los métodos de campo tradicionales para el inventario forestal 

en términos de velocidad de recopilación de datos, volumen de datos, precisión y fiabilidad de 

las variables estimadas. 

Líneas futuras de trabajo 

Los algoritmos desarrollados en este trabajo se han evaluado en parcelas individuales 

compuestas por especies del género Pinus, por lo que sería deseable la investigación sistemática 

en parcelas más grandes con diferentes técnicas de toma de datos, especies y condiciones 

forestales. Además de lo anterior, en el caso del algoritmo de tronzado óptimo, el trabajo futuro 

debería considerar parámetros como la ramificación de los fustes o la presencia de nudos puesto 

que están muy relacionados con la calidad de la madera. 

Finalmente, también sería recomendable evaluar el comportamiento de los algoritmos en otro 

tipo de nubes de puntos terrestres, como las nubes fotogramétricas y/o las procedentes de 

escáneres láser móviles. 
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