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Abstract: Solar energy plays an essential role in the current energy context to achieve sustainable
development while supplying energy needs, creating jobs, and protecting the environment. Many
solar radiation models have provided valid estimates at many different locations, using appropriate
input variables for specific climatic conditions, but predictions are less accurate on a regional scale.
Since radiometric weather stations are relatively dispersed, even in the most developed countries,
it is interesting to develop indirect models based on measurements that are common in secondary
network stations. This paper develops a monthly global solar radiation model based on a simple
neural network structure, using temperature, geographical, and topographical data from 105 me-
teorological stations, representative of the whole of peninsular Spain. A hierarchical clustering
procedure was employed to select the data used to train and validate the model. To avoid functional
dependencies between parameters and variables, which hinder the generality of the model, all input
and output variables are dimensionless. The estimates fit the 1260 monthly data with RRMSE values
of about 6%, which improves results obtained previously, using regression models, and proves that
simplicity is compatible with the generality and accuracy of a model, even in large regions with very
varied characteristics.

Keywords: global solar radiation; general models; temperature-based models; artificial neural
networks; dimensionless variables; hierarchical clustering; Spain

1. Introduction

At the time of writing, the United Nations Climate Change Summit (COP 28) is taking
place, from which increasingly urgent global agreements are expected to mitigate the
decades-long conflict between social development and respect for the environment. In this
context, it is recognised that it is necessary to improve energy efficiency and reduce energy
demand as much as possible, accelerating decarbonisation through the increasing use of
renewable energies [1–3]. Solar energy is thus gaining in importance even in regions where
it has hitherto been considered a resource with insufficient potential [4,5].

Thus, in industrialised countries as well as in less favoured regions, sustainable social
development can definitely depend on the existence of reliable information about the
availability of global solar radiation (GSR). Such data are generally needed on a local
scale, as orographic and microclimatic diversities are particularly influential in project
planning [6,7].

Numerous models have been developed over recent decades that provide acceptable
indirect estimates of GSR on a horizontal surface using various methodologies and input
variables [8]. According to the mathematical methodology, they could be classified as para-
metric, such as the classical Ångström–Prescott (A-P) model [9,10], and non-parametric,
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such as those based on artificial neural network (ANN) methods [11]. Depending on the
input variables, the models are generally classified into sunshine-based, temperature-based,
cloud-based, and other climatic parameters-based models [12,13]. Meteorological satellites
are an alternative source of data, particularly interesting in sparsely populated areas. The
prediction accuracy depends on the quality of the experimental data, the complexity of
the model, i.e., the number and type of influential variables, and the functional relation-
ships. Using site-calibrated coefficients, most models have high accuracy, which generally
increases with the functional complexity of the models, but none outperforms the rest any-
where. The use of dimensionally non-homogeneous equations in many recently compiled
models can lead to unexpected variations of locally calibrated coefficients, even in similar
climates, as these coefficients necessarily depend on variables that are not explicit in the
model [13]. The accuracy of a model does not necessarily imply complexity. Simple models,
using coefficients calculated from general equations valid for large geographical areas,
may be advisable [14]. For sample, a variant of the classical Ångström–Prescott model can
explain roughly 90% of the variability in the data recorded at 59 European stations, using
relative sunshine, elevation and the month index as input variables [15].

Ground stations with long-term time GSR series are necessary to validate both GSR
models and algorithms used for satellite data processing, but the density of radiometric
networks is very low worldwide. For example, in China, GSR data are recorded at just over
15% of meteorological stations [16], while sunshine hours data are available at all stations
in the Iranian province of Kurdistan, although none have GSR records [17]. In contrast,
temperature is measured at all weather stations, since it requires low-cost equipment, but
data on sunshine duration or cloudiness are less available. The ratio of radiometric to
thermometric stations is no greater than 1:100 in the United States and might be as low as
1:500 globally [16,18]. In short, temperature-based GSR models can facilitate the indirect
estimation of solar resources in areas remote from radiometric stations.

Among the most widely used temperature-based models is the one introduced by
Hargreaves and Samani (H-S) [19] and Richardson [20], which is based on the relationship
between the monthly average of the atmospheric clearness index and the difference be-
tween the monthly average daily maximum temperature and the monthly average daily
minimum temperature, ∆T = Tmax − Tmin. This classical model was modified to obtain a
dimensionally homogeneous equation, after identifying that the elevation z, the distance
to the sea L, and a reference temperature Tref, are influential variables that are implicit in
the coefficients of the original model [21]. Using regression techniques, such an approach
led to satisfactory results at various scales in coastal areas of northern Spain, where it
was compared with other empirical temperature-based models and with meteorological
satellite-based databases [14,21–23]. This homogeneous model was used to identify cli-
matic zones in regions with varied orography and proximity to the sea [24–26], and also
compared with other temperature-based models in two large areas of Spain, with very
different climatology and latitude from those of the northern coast [23]. It was noted that
other models may be more accurate at some locations using locally calibrated coefficients;
however, the new model obtained the best results when the coefficients of each model were
calculated from general equations applicable to the set of stations in each area.

In the present work, a model based on an artificial neural network with a simple
structure is developed to estimate the monthly clearness index, using the same variables
of the aforementioned homogeneous model with the addition of latitude, and a monthly
index, in anticipation of possible seasonal effects. As a case study, the model performance
is analysed using data from the Spanish areas previously studied [23]. The results obtained
show that the model exceeds the accuracy of previous ones, both for statistical indicators
averaged for the set of more than one hundred Spanish stations and for deviations observed
in particular stations, which provides general interest to the procedure.
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2. Materials and Methods
2.1. Meteorological Stations and Experimental Data

In this work, climate data from 105 stations belonging to official Spanish meteorological
networks were considered. The geographical and topographical data of the stations, and
the Köppen–Geiger climate classification of their location are provided in Table A1 of
Appendix A in Supplementary Data.

In the southern region of Andalusia 71 stations are located, with latitudes between
36.29 ◦N and 38.30 ◦N and longitudes between −1.77◦ E and −7.25◦ E, from the Mediter-
ranean coast to the Atlantic coast, with elevations between 4.5 m and 1214 m, and distance
to the sea between 0.03 km and 184.94 km. Another 13 stations are located in a central
area with latitudes between 38.99◦ N and 42.59◦ N and longitudes between −1.16◦ E
and −6.34 ◦E, from the Mediterranean coast to the border with Portugal, with elevations
between 53 m and 1085 m, and distance to the sea between 6.43 km and 322.07 km. Fi-
nally, 21 stations are located in the northern coastal provinces of Spain, with latitudes
between 41.91◦ N and 43.58◦ N and longitudes between 2.76◦ E and −8.42◦ E, from the
Mediterranean coast to the Atlantic coast, with elevations between 12 m and 513 m and
distance to the sea between 0.29 km and 55.30 km. According to the Köppen–Geiger climate
classification, 61 stations are in the Csa zone, 18 stations in the Cfb zone, 12 stations in
the BSk zone, 8 stations in the BSh zone, 5 stations in the Csb zone and a single station in
the BWk zone. The variety of geographical, topographical and climatic characteristics can
be considered representative of the whole of peninsular Spain. At virtually all stations,
records averaged over a minimum of 14 years of the last two decades are used.

For each station, monthly averages over the period of measurements are given as
Table A2 of Appendix A in Supplementary Data for the following variables: daily global
irradiation on a horizontal surface, daily maximum air temperature and daily minimum
air temperature, totalling 3780 data.

2.2. GSR Modelling

Any dimensionally homogeneous physical equation can be rewritten in terms of a
set of non-dimensional groups. When the equation cannot be expressed by means of non-
dimensional groups, it is said to be incomplete, which is due to the lack of some influencing
variable [27]. This procedure is applicable to parametric model equations, but also to
transfer functions used in ANN-based models [13]. There are numerous temperature-
based models that are not homogeneous, such as the H-S model, represented by the
following equation:

H
H0

= a1∆T0.5 (1)

where the coefficient a1 was initially set at 0.17 for arid and semiarid climates, but later
values of 0.16 and 0.19 were recommended, respectively, for inland and near the coast [28].

Using both the explicit variables in the H-S model and the implicit variables noted by
the authors themselves, it was deduced that a complete equation must satisfy the following
functional relationship [21]:

H = f (H0, ∆T, Tref, z, L), (2)

where H is the monthly average of the daily GSR over a horizontal surface, H0 is the
monthly average of the daily extraterrestrial irradiation, and Tref is a reference temperature
required by the dimensional homogeneity.

Taking into account Buckingham’s theorem and accepting the functional form of the
original H-S model, the following model was proposed as a particular case of Equation (2):

H
H0

= a1

(
∆T
Tref

)0.5
(3)

where a1 = f (z/L) is a characteristic coefficient of each locality.
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Equation (3) was used in previous GSR analyses using locally calculated coefficients
and identifying the reference temperature as Tmin from experimental results. It was also
deduced that a1 can be calculated by the following general equation at locations with not
very different latitudes:

a1 = a − b e−cz/L, (4)

where a, b and c are characteristic parameters of the region under consideration [21,23].
As mentioned above, the procedure based on Equations (3) and (4) provided acceptable

results in each of the three broad Spanish areas previously studied [23]. To extend the
model to all three areas, it is necessary to include latitude ϕ in the list of influential variables,
as well as an index of the mean monthly day d associated with each datum, in anticipation
of possible seasonal influences. Therefore, the extended model is based on the following
functional relationship:

H = f (H0, ∆T, Tmin, z, L, ϕ, d), (5)

from which Buckingham’s theorem gives the following equivalent expression:

H
H0

= f
(

∆T
Tref

,
z
L

, ϕ, d
)

. (6)

This functional relationship is the basis of the ANN developed in this work, with
∆T/Tref, z/L, ϕ and d as input variables and H/H0 as output variable. The final structure
of the network is determined using data from representative stations in each area for
training various configurations. For each configuration, the evaluation of results is based
on optimising the statistical indicators averaged for the set of training stations. Finally, the
averaged statistical indicators are evaluated for the total of training and test stations, as
well as the deviations obtained for monthly values at certain stations.

2.3. Hierarchical Clustering of Data

Clustering techniques allow the selection of representative stations to be used for
neural network training, so that acceptable errors are obtained at each station during the
validation process.

Among the different clustering algorithms available in the literature, a bottom-up
hierarchical clustering was selected to classify the stations [29,30]. The clustering process
was performed assuming that the representativeness of a weather station is independent of
the seasonality, i.e., disregarding the influence of the monthly day index, d. Consequently,
based on Equation (6), a Euclidean metric in three-dimensional space was defined to cal-
culate the distance between stations, using annual averages of ∆T/Tref, z/L and ϕ as the
coordinates. Due to the huge differences between the ranges of variation of these coordi-
nates, the variables were normalised to the interval [0, 1] using the following equations:

(
∆T
Tref

)∗

i
=

(
∆T
Tref

)
i
− min

j=1...n

{(
∆T
Tref

)
j

}
max
j=1...n

{(
∆T
Tref

)
j

}
− min

j=1...n

{(
∆T
Tref

)
j

} (7)

( z
L

)∗
i
=

( z
L
)

i − min
j=1...n

{( z
L
)

j

}
max
j=1...n

{( z
L
)

j

}
− min

j=1...n

{( z
L
)

j

} (8)

ϕ∗
i =

ϕi − min
j=1...n

{
ϕj
}

max
j=1...n

{
ϕj
}
− min

j=1...n

{
ϕj
} (9)
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In these equations, n is the number of stations, and (∆T/Tref)i is the annual average
value for i-th station, which is obtained from the monthly average values (∆T/Tref)

m
i by

means of the following equation:(
∆T
Tref

)
i
=

1
12

12

∑
m=1

(
∆T
Tref

)m

i
, (10)

Thus, the normalised distance dij between stations was computed using the usual
Euclidian metric, i.e.:

dij =

√√√√(( ∆T
Tref

)∗

i
−
(

∆T
Tref

)∗

j

)2

+

(( z
L

)∗
i
−
( z

L

)∗
j

)2
+
(

ϕ∗
i − ϕ∗

j

)2
. (11)

2.4. ANN Characteristics

According to its biological definition, a neuron is a living cell placed within a network
of them which is given inputs or excitations and finally yields an output or interpretation
based on internal processes [31]. Regarding the case of an ANN, a neuron can be classified
into three groups, as shown in Figure 1. The input layer acts as the entrance of the numerical
data of the variables of interest x1, . . . , xn used to estimate the values a1, . . . , ak of the
network, and provides information to the neurons located within the hidden layers, whose
inputs and outputs are not accessible from the outside. A neural network can present
as many hidden layers as necessary to achieve the expected behaviour, although the
complexity of its structure increases with the number of neurons and hidden layers and
thus, the time needed for the optimisation process.
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Figure 1. Architecture of an artificial neural network.

The neuron output is obtained by applying Equation (12). The parameter yj depicts the
output value of the j-th neuron, which is calculated as the outcome of a certain activation
function f , given a linear combination of the output values of the previous layer. Thus, xn
is the input of the n-th neuron of the layer, wnj is the weight or gain factor of each excitation
from the previous layer, and k j is the independent term. According to the literature, the
activation function could be, among other options, an arctangent, a ramp, or a sigmoid
function [32], being the ramp the one used in this work since the values of solar radiation
can only be positive. The foundation behind its usage is to introduce a non-linear behaviour
in the system.

yj = f

(
n

∑
i=1

wijxi + k j

)
(12)

Consequently, the nodes of the output layer provide the calculation of the whole ANN
using the outputs of the outermost hidden layer. These final values are computed in the
same way as in any other node.

Considering the structure of an ANN, the number of variables involved in the network
is big enough to make it unfeasible to find directly the best configuration. Therefore, an
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optimisation or training process is required to reach the final one. During this process, it
is necessary to define a certain cost function and to use a convergence algorithm, whose
objective is to obtain for each neuron the weights and biases defined in Equation (12),
that optimise the function. The overall behaviour of the results should be evaluated by
comparing the ANN output with the objective values using a statistical indicator.

There are several algorithms that can be used during the process, such as genetics or
gradient variants. In general, no algorithm could be regarded as explicitly better than the
rest, although, given the characteristics of an ANN, some may achieve the solution quicker
than others, or be more suitable for more complex configurations. In this sense, genetic
algorithms may be more adequate for the latter since they are likelier to avoid getting
stuck in a local optimum of the cost function. Nonetheless, the scope of this work does not
lie within the study of the best optimisation algorithm, but to analyse the feasibility of a
unique solar radiation model for a certain climatic diverse territory, like Spain, using an
ANN. Therefore, a gradient algorithm is utilized to find the final parameters of the ANN
during the training process. In this process, a step variable is defined and then, in each
iteration, this value is summed or subtracted from a random weight or independent term.
If the cost function is improved, the modification is kept. Furthermore, to avoid a possible
overfitting of the ANN, the number of optimal neurons and hidden layers are pending
further adequacy analysis, based on the results obtained for the test data. The stopping
criterion was improving the performance of the previous regression models or reaching a
certain number of iterations based on the complexity of the ANN.

2.5. Statistical Indicators

Many statistical indicators have been used in the literature to assess the fit between
measurements and model predictions [33]. Since the percentage results facilitate inter-
pretations, in this article the performance of the models is assessed using dimensionless
statistical indicators, namely the relative root mean square error RRMSE, the relative mean
bias error RMBE, and the coefficient of determination R2. To facilitate comparisons with
results from other authors, the normalised values of the root mean square error and mean
bias error, NRMSE and NMBE, have also been calculated, using the mean values of the
experimental data as references.

However, none of the statistical indicators provides complete information by itself [34],
thus, in this work the values of RRMSE and R2 are used as main indicators for model
comparison. The information is completed with the normalised centred pattern root mean
square error, E′

n, calculated as follows:

E′
n =

√
1 + σ2

sn − 2σsnR. (13)

This equation and the law of cosines are the basis for a variant of the Taylor dia-
gram [35] using dimensionless variables, which allows the performance of different models
to be compared graphically at once and with maximum generality. As can be seen in
Figure 2, the performance of a model increases with its proximity to the reference, for which
the model estimates would match the experimental data, i.e., σsn = R = 1 and E′

n = 0.
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Following the methodology of previous works [13,14,21,23], the RRMSE value was
used as the cost function in the optimising algorithm. Nevertheless, the assessment of the
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goodness-of-fit of the model for the set of stations using the above-mentioned statistical
indicators is complemented by a local error analysis at each station using monthly data.

3. Results
3.1. Number of Clusters and Selection of Training and Testing Data

At the beginning of the bottom-up hierarchical clustering procedure, each station
forms a cluster by itself and the normalised distance between each station and the others
is calculated. The two closest stations are merged into a new cluster, which is assumed to
have the mean coordinates of the two original stations, and the sequence is repeated until
all stations are merged into a single cluster.

The graphical representation of the clustering procedure is the dendrogram shown in
Figure 3. The best choice of the number of clusters is the number of vertical lines in the
dendrogram cut by a horizontal line that can transverse the maximum distance vertically
without intersecting a cluster [29]. Therefore, the dendrogram leads to four clusters,
composed of the stations listed in Table 1. Figure 4 shows the representation of the stations
in clusters using normalised coordinates in the 3D space.
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Table 1. Distribution of stations in each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

91, 92, 103 24 85, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 100 Rest of stations

Half of the stations in each cluster were randomly selected for training or valida-
tion, amounting to a total of 53 training stations and 52 testing stations. Table 2 lists the
distribution of the training stations in the clusters.
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Table 2. Distribution of training stations in each cluster.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

91, 103 24 86, 88, 90, 93, 95, 97, 99 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
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3.2. Selection of the ANN Architecture

Different configurations were tested ranging from one to three hidden layers and
having between 1 and 15 neurons in each one of them. The best RRMSE values obtained
for the training stations correspond to an ANN with 3 hidden layers and 15 neurons in
each layer, so this configuration was adopted, pending the results for the testing stations.

Figure 5a provides a graphical comparison between RRMSE and R2 values obtained
with all configurations analysed, while Figure 5b provides an immediate comparison
between configurations using three hidden layers.
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of neurons and hidden layers; (b) Taylor diagram for three hidden layers.



Sustainability 2024, 16, 1293 9 of 14

Figure 6 shows the comparison between the experimental monthly data and the model
predictions. As can be seen, most of the results are within the dashed lines of ±15% relative
error, which is in agreement with the RRMSE value close to 6% obtained for the total of
636 monthly data, as indicated in Table 3.
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Figure 6. Comparison between experimental data and ANN estimates for training stations.

Table 3. Summary of statistical indicators for several ANN configurations.

Neurons 1 2 3 4 5 7 10 12 15

One hidden layer

RRMSE (%) 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.10 8.15
NRMSE (%) 7.97 7.98 7.97 7.97 7.97 7.97 7.97 7.94 7.97
RMBE (%) −0.66 −0.66 −0.66 −0.66 −0.66 −0.66 −0.66 −0.66 −0.66
NMBE (%) −1.25 −1.25 −1.25 −1.25 −1.24 −1.25 −1.25 −1.23 −1.25

R2 0.7621 0.7616 0.7624 0.7621 0.7621 0.7621 0.7621 0.7635 0.7621
σsn 0.898 0.897 0.898 0.898 0.898 0.898 0.898 0.898 0.898

E′
n(%) 48.83 48.88 48.83 48.83 48.83 48.83 48.83 48.69 48.83

Two hidden layers

RRMSE (%) 17.84 8.15 8.15 8.15 8.15 7.74 8.06 8.15 7.94
NRMSE (%) 16.48 7.97 7.97 7.97 7.97 7.67 7.92 7.97 7.79
RMBE (%) −3.18 −0.66 −0.66 −0.66 −0.66 −0.60 −0.65 −0.66 −0.63
NMBE (%) −5.84 −1.24 −1.24 −1.24 −1.24 −1.13 −1.22 −1.24 −1.18

R2 0.0869 0.7621 0.7621 0.7621 0.7621 0.7786 0.7650 0.7621 0.7725
σsn 0.260 0.898 0.898 0.898 0.898 0.909 0.898 0.898 0.904

E′
n(%) 95.62 48.84 48.84 48.84 48.84 47.12 48.53 48.84 47.78

Three hidden layers

RRMSE (%) 17.87 17.93 8.08 8.73 8.05 8.10 6.36 7.60 6.18
NRMSE (%) 16.51 16.54 7.83 8.50 7.91 7.94 5.82 7.42 5.74
RMBE (%) −3.19 −3.21 −0.82 −1.00 −0.65 −0.66 −0.41 −0.58 −0.38
NMBE (%) −5.85 −5.89 −1.50 −1.82 −1.22 −1.24 −0.73 −1.07 −0.68

R2 0.0820 0.082 0.7726 0.7350 0.7653 0.7635 0.8720 0.7934 0.8758
σsn 0.253 0.240 0.869 0.832 0.898 0.898 0.957 0.918 0.965

E′
n(%) 95.77 95.92 47.70 51.54 48.50 48.69 35.85 45.57 35.36

For further validation, ANN performance was studied with data from test stations,
with similar results to those obtained using training data, as shown in Table 4. Figure 7 pro-
vides the graphical comparison between ANN estimates and experimental data, showing
that, for both training and testing data, most monthly results have a relative error of less
than ±15%, which is consistent with the RRMSE value of close to 6%. During the training
process, no regularization technique was used. The reason for this decision was to use the
same cost function as in the case of the linear regression models. Since the results of the
testing process are similar to the training results, it is observed that the decision did not
lead to an apparent over-fitting.

Table 4. Statistical indicators of the performance of the training and testing data.

RRMSE (%) NRMSE (%) RMBE (%) NMBE (%) R2 σsn E’
n (%)

Training 6.18 5.74 −0.38 −0.68 0.8758 0.9646 35.36
Testing 6.63 6.10 −0.25 −0.48 0.8519 0.9950 39.16
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Figure 7. Comparison between experimental data and ANN estimates for training and testing stations.

4. Discussion

The hierarchical clustering procedure, based on annual averages of the relative tem-
perature difference, the ratio between elevation and distance to the sea, and latitude, led to
four clusters to classify the 105 stations located in three areas of peninsular Spain. Cluster 1
contains stations No. 91, 92 and 103, all of them located close to the sea on the northern
coast of Spain, with the highest z/L values. Cluster 2 consists only of station No. 24, which
also has a high z/L value. These clusters, formed by a few stations, present peculiarities,
either from a climatic, geographical or topographical point of view.

The model of Equation (3) was compared for the first time with 13 other temperature-
based models of low or moderate functional complexity [23], using the same stations and
meteorological data of the present article. The coefficients of each model were calculated as
a function of the z/L ratio using equations obtained by regression techniques from the total
data in each area. Table 5 shows in bold characters the best statistical averages calculated
by this procedure for the set of stations in each area. Depending on the area, these results
were obtained by means of Equations (1) and (3), or the model proposed by Adaramola for
various locations in Nigeria [36], which is expressed by the following equation:

H
H0

= a1 + a2Tm (14)

Table 5. Comparison between best-performing models in each area using coefficients derived from
regression equations [23].

Stations No. 1–71 Stations No. 72–84 Stations No. 85–105

Model RRMSE (%) E’
n(%) RRMSE (%) E’

n(%) RRMSE (%) E’
n(%)

Equation (1) 9.10 23.36 7.00 14.31 9.94 23.50
Equation (3) 9.54 24.23 7.29 15.16 8.91 20.15
Equation (14) 4.51 10.08 11.18 23.42 12.41 29.52

With the data and procedure used, there is no doubt that the model of Equation (14)
outperforms other regression models for the 71 stations in Andalusia, while the models
based on Equations (1) and (3) are more appropriate for the other two regions. In this
comparison, it should be noted that each equation has numerically different coefficients in
each of the three regions, which were derived by calibration using data from all stations
in each region. Averaging the model errors of Equations (1), (3) and (14) for the total of
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105 stations leads to RRMSE values of 9.05%, 9.16% and 7.75%, respectively. Therefore, the
ANN-based model shows acceptable accuracy for the total of 105 stations, with an RRMSE
value close to 6% and moderate local monthly GSR errors, as deduced from Figures 6 and 7,
and Table 4. It should also be noted that the results of Adaramola’s model are favoured in
Andalusia because the z/L ratio is high only at station No. 24, where this model obtains
an annual averaged value of RRMSE = 50.32% and is therefore not acceptable from the
perspective of local performance [23]. This previous observation is consistent with the fact
that station No. 24 is not included in the same cluster as other stations in Andalusia, and
shows that averages calculated with station distributions in different z/L ratio ranges can
mask unacceptable local results.

Regarding the ANN performance at the local scale, Table 6 and Figure 8 show the
number of monthly GSR estimates with relative error less than a given value, and the
percentage of the total 1260 training and test data. It follows that almost 90% of local
monthly values have a relative error of less than 10% and that no value exceeds 30%. It
can be observed in Tables B1 and B2 of Appendix B in Supplementary Data that most local
monthly GSR estimates have relative errors within ±5%, without remarkable differences
between training and testing values. The monthly relative errors are above 15% for 7 train-
ing stations and 11 testing stations, which are plotted in Figure 9. As can be seen, these
errors cannot be associated with certain ranges of the z/L ratio or the latitude ϕ, since these
variables fall, respectively, in the intervals 2.97 ≤ z/L ≤ 239.09 and 40.959◦ ≤ ϕ ≤ 43.531◦

for the training stations, and 1.90 ≤ z/L ≤ 333.3 and 37.060◦ ≤ ϕ ≤ 43.584◦ for the
testing stations.

Table 6. Number of monthly GSR estimates with relative error less than a given value and percentage
relative to total training and testing data.

x 3.0% 6.0% 10.0% 12.5% 15.0% 17.5% 20.0% 22.5% 27.5% 30.0%
Number of values 515 905 1108 1162 1202 1236 1246 1252 1259 1260

P (RE < x) 40.9% 71.8% 87.9% 92.2% 95.4% 98.1% 98.9% 99.4% 99.9% 100.0%
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Figure 8. Cumulative frequency of stations versus local monthly relative errors.

Therefore, the ANN-based model turns out to be more accurate than those based on
regression techniques, because, with the same variables, it not only provides acceptable
statistical averages for the three areas studied as a whole, but also lower monthly relative
errors at the local scale. Since the inclusion of the parameter z/L and latitude ϕ makes it
possible to account for local characteristics, the proposed model acquires generality. As
future work, it is planned to immediately evaluate the extension of the model to the whole
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Iberian Peninsula and, at a later stage, to other regions, as well as research on the inclusion
of additional input variables to reduce the monthly relative errors.
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Nomenclature

ai Empirical parameter
E′

n Normalised centred pattern RMSE =
√

1 + σ2
sn − 2σsnR

H Global solar irradiation on horizontal surface (kWh/m2)
H0 Extraterrestrial global solar irradiation on horizontal surface (kWh/m2)
KGCC Köppen−Geiger climate classification
L Distance to the sea (km)
MBE Mean bias error (kWh/m2) = ∑n

i=1(si − oi)/n
NMBE Normalised mean bias error = (∑n

i=1(si − oi)/n)/oi

NRMSE Normalised root mean square error =
(√

∑n
i=1(si − oi)

2/n
)

/oi

oi Observed value

R2 Coefficient of determination =

[
∑n

i=1 (si − si)(oi − oi)/
√

∑n
i=1(si − si)

2∑n
i=1(oi − oi)

2
]2

RMSE Root mean square error (kWh/m2) =
√

∑n
i=1(si − oi)

2/n
RMBE Relative mean bias error = ∑n

i=1((si − oi)/oi)/n

RRMSE Relative root mean square error =
√

∑n
i=1((si − oi)/oi)

2/n

https://doi.org/10.17632/9b5tt79s6y.1
https://doi.org/10.17632/9b5tt79s6y.1
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si Simulated value
Tm Mean air temperature (K)
Tmax Maximum air temperature (K)
Tmin Minimum air temperature (K)
Tref Reference air temperature (K)
z Elevation above sea level (m)
∆T Temperature difference (K) = Tmax − Tmin
ϕ Latitude (◦)
λ Longitude (◦)

σo Standard deviation of experimental data =

√(
∑n

i=1(oi − oi)
2
)

/n

σs Standard deviation of simulated data =

√(
∑n

i=1(si − si)
2
)

/n

σsn Normalised standard deviation = σs/σo

References
1. Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev.

2011, 15, 2149–2163. [CrossRef]
2. Izam, N.S.M.N.; Itam, Z.; Sing, W.L.; Syamsir, A. Sustainable Development Perspectives of Solar Energy Technologies with Focus

on Solar Photovoltaic—A Review. Energies 2022, 15, 2790. [CrossRef]
3. Le, H.P.; Sarkodie, S.A. Dynamic linkage between renewable and conventional energy use, environmental quality and economic

growth: Evidence from Emerging Market and Developing Economies. Energy Rep. 2020, 6, 965–973. [CrossRef]
4. Maka, A.O.M.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean. Energy 2022, 6, 476–483.

[CrossRef]
5. Perpiña-Castillo, C.; Batista e Silva, F.; Lavalle, C. An assessment of the regional potential for solar power generation in EU-28.

Energy Policy 2016, 88, 86–99. [CrossRef]
6. Amri, F. Intercourse across economic growth, trade and renewable energy consumption in developing and developed countries.

Renew. Sustain. Energy Rev. 2017, 69, 527–534. [CrossRef]
7. Krishnan, N.; Kumar, K.R.; Inda, C.S. How solar radiation forecasting impacts the utilization of solar energy: A critical review. J.

Clean. Prod. 2023, 388, 135860. [CrossRef]
8. Antoñanzas, F.; Sanz, A.; Martínez-de-Pisón, F.J.; Perpiñán, O. Evaluation and improvement of empirical models of global solar

irradiation: Case study northern Spain. Renew. Energy 2013, 60, 604–614. [CrossRef]
9. Ångström, A. Solar and terrestrial radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–125.
10. Prescott, J.A. Evaporation from water surface in relation to solar radiation. Trans. Roy. Soc. Aust. 1940, 64, 114–118.
11. Wan, K.K.W.; Tang, H.L.; Yang, L.; Lam, J.C. An analysis of thermal and solar zone radiation models using an Angstrom–Prescott

equation and artificial neural networks. Energy 2008, 33, 11115–11127. [CrossRef]
12. Chen, J.-L.; He, L.; Yang, H.; Ma, M.; Chen, Q.; Wu, S.-J.; Xiao, Z.-L. Empirical models for estimating monthly global solar

radiation: A most comprehensive review and comparative case study in China. Renew. Sustain. Energy Rev. 2019, 108, 91–111.
[CrossRef]

13. Prieto, J.I.; García, D. Global solar radiation models: A critical review from the point of view of homogeneity and case study.
Renew. Sustain. Energy Rev. 2022, 155, 111856. [CrossRef]

14. Prieto, J.I.; García, D.; Santoro, R. Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global
Solar Radiation Models: Application to the Solar Map of Asturias. Sustainability 2022, 14, 6749. [CrossRef]

15. Paulescu, M.; Stefu, N.; Calinoiu, D.; Paulescu, E.; Pop, N.; Boata, R.; Mares, O. Ångström–Prescott equation: Physical basis,
empirical models and sensitivity analysis. Renew. Sustain. Energy Rev. 2016, 62, 495–496. [CrossRef]

16. Zang, H.; Xu, Q.; Bian, H. Generation of typical solar radiation data for different climates of China. Energy 2012, 38, 236–248.
[CrossRef]

17. Noorollahi, Y.; Mohammadi, M.; Yousefi, H.; Anvari-Moghaddam, A. A Spatial-Based Integration Model for Regional Scale Solar
Energy Technical Potential. Sustainability 2020, 12, 1890. [CrossRef]

18. Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of
temperature, humidity, and precipitation. Agric. For. Meteorol. 1999, 93, 211–228. [CrossRef]

19. Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain Eng. ASCE 1982, 108, 225–230. [CrossRef]
20. Richardson, C.W. Weather simulation for crop management models. Trans. ASAE 1985, 28, 1602–1606. [CrossRef]
21. Prieto, J.I.; Martínez-García, J.C.; García, D. Correlation between global solar irradiation and air temperature in Asturias, Spain.

Sol. Energy 2009, 83, 1076–1085. [CrossRef]
22. Prieto, J.I.; Martínez, J.C.; García, D.; Santoro, R.; Rodríguez, A. Solar Map of Asturias; Consorcio de Empresas ARFRISOL: Gijón,

Spain, 2009. (In Spanish)

https://doi.org/10.1016/j.rser.2011.01.007
https://doi.org/10.3390/en15082790
https://doi.org/10.1016/j.egyr.2020.04.020
https://doi.org/10.1093/ce/zkac023
https://doi.org/10.1016/j.enpol.2015.10.004
https://doi.org/10.1016/j.rser.2016.11.230
https://doi.org/10.1016/j.jclepro.2023.135860
https://doi.org/10.1016/j.renene.2013.06.008
https://doi.org/10.1016/j.energy.2008.01.015
https://doi.org/10.1016/j.rser.2019.03.033
https://doi.org/10.1016/j.rser.2021.111856
https://doi.org/10.3390/su14116749
https://doi.org/10.1016/j.rser.2016.04.012
https://doi.org/10.1016/j.energy.2011.12.008
https://doi.org/10.3390/su12051890
https://doi.org/10.1016/S0168-1923(98)00126-9
https://doi.org/10.1061/JRCEA4.0001390
https://doi.org/10.13031/2013.32484
https://doi.org/10.1016/j.solener.2009.01.012


Sustainability 2024, 16, 1293 14 of 14

23. Prieto, J.I.; García, D. Modified temperature-based global solar radiation models for estimation in regions with scarce experimental
data. Energy Convers. Manag. 2022, 268, 115950. [CrossRef]

24. Attia, S.; Lacombe, T.; Rakotondramiarana, H.T.; Garde, F.; Roshan, G.R. Analysis tool for bioclimatic design strategies in hot
humid climates. Sustain. Cities Soc. 2019, 45, 8–24. [CrossRef]

25. Praene, J.P.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-based approach to identify climatic zoning: A
hierarchical clustering on principal component analysis. Build. Environ. 2019, 164, 106330. [CrossRef]
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