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Abstract. Today, robots can be found in almost any field. Examples
include robots for transporting materials in hospitals and warehouses,
surveillance, intelligent laboratories and space exploration. Whatever the
reason for moving the robot and whatever its location, all robot ap-
plications anywhere require path calculation. In this paper, we address
the problem of collision-free path planning in multirobot environments,
known as Free Multi-Robot Path Planning (MPP). In this paper we pro-
pose a novel approach to solve the MPP problem using multi-objective
optimization, for which we define two functions that has to be minimized.
In experimentation, it is compared with previous approaches to the prob-
lem, improving them in some scenarios. Finally, new lines of research are
proposed to improve this path calculation problem using multi-objective
optimization and to address new and more complex problems in ware-
house environments.

Keywords: Multi-Robot Path Planning, NSGA, Multi-objective opti-
mization

1 Introduction

Nowadays it is common to use robots for the automation of multiple transport
tasks. We can find robots automating transport tasks in different environments,
from hospitals [1, 13, 18] to large logistics centers [3, 9, 17, 19]. In many of these
spaces, the transport tasks are not performed by a single robot, but multiple
robots must collaborate in the same space and move around without colliding
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with each other. The problem of determining the best path for a set of robots
in a shared space without collisions or human intervention is known as Free
Multi-robot Path Panning (MPP).

This MPP problem has applications in multiple fields that can be very dif-
ferent from each other, such as surveillance [22], intelligent laboratories [21, 23],
or space exploration [12]. In current work, the MPP problem is applied in the
field of warehouse logistics [3, 9, 17, 19]. The objective of this study is to provide
a method that calculates the route to be followed by robots within a known
environment in which the location of obstacles and the start and end points of
each robot are known.

In the literature, there are two main approaches to solving the MPP problem.
The first of them is a heuristic approach, which is based on A*. A* [10] is a
search algorithm that has been widely used for route calculation in single-robot
environments, but it does not consider the existence of multiple robots in a shared
space. Some authors have developed heuristic algorithms like Windowed HCA*
[20], D*Lite [16], Field D* [6] or ThetA* [4] that are based on A* and extend it
to solve the path planning problem when there are multiple robots. The other
approach that is largely present in the literature is the use of metaheuristics.
Within this approach, we find works such as the one presented in [2] that solve
the problem using Differential Evolution. Other works of this approach are [8,
24], which solve the problem with other bio-inspired metaheuristics such as Ant
Colony Optimization and Grey Wolf Optimizer.

In this research, we propose a new approach to this problem based on multi-
objective optimization. Our goal is to improve our previous proposals to solve
this problem by employing co-evolutionary algorithms [7, 15].

The structure of this document is as follows. Section 2 explains the proposed
approach for solving MPP. Next, Section 3 gives details of the experimentation,
while Section 4 shows the results and discussion. Finally, Section 5 draws the
conclusions extracted from this study and presents future research lines on this
topic.

2 Non-Dominated Genetic Algorithm approach

This proposal focuses on solving the MPP problem with a multiobjective opti-
mization approach. To do so, it makes use of a metaheuristic well-known in the
literature: NSGA-III [5, 14]. This metaheuristic is based on genetic algorithms
since their behavior is very similar. Like genetic algorithms, it starts from an
initial population and performs an iterative process, in which, in each iteration,
new solutions will be generated using crossover and mutation operators.

The difference between NSGA-III and genetic algorithms are the number
of criteria. Classical genetic algorithms minimize a single criteria called fitness,
while NSGA-III have many objectives to minimize. Having many criteria changes
how we determine whether one solution is better. To consider that a solution
dominates another one, its value must be strictly lower in all the criteria except
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one in which it can be less or equal. For this work, two objectives have been
defined to be minimized:

– Length of the paths. That consist on the number of movements on the path.

– Number of collisions. Taking into account that Xt
i is the position of robot i

at time t. We can define that a collision occurs if:

• Two robots i, j share a tile at the same moment of time. Xt
i = Xt

j

• Two robots i, j exchange positions at two consecutive instants of time.
Xt

i = Xt−1
j and Xt−1

i = Xt
j

To minimize those two objectives using NSGA-III, its necessary to define
three behaviors: how to initialize the first population and how to perform the
crossover and mutation operator. To generate the initial population. It is pro-
posed that we start from a base of k pre-generated routes –being k a parameter
of the algorithm–, in a pseudo-random way and that the solutions are formed
by indicating which of the already calculated routes is used. The following sec-
tions indicate how these routes are generated and how the behaviors required
by NSGA-III will be implemented.

2.1 Route Generation

The generation of routes will be performed randomly by means of an iterative
algorithm in which in each iteration the movement to be performed will be
selected pseudo-randomly (Alg. 1).

This algorithm is separated into two parts: i) generation of the initial routes,
and ii) loop elimination (Alg. 2). In the generation of routes, the movements are
chosen randomly from all possible movements at that moment, but taking into
account two restrictions:

– If it is possible to redo the last move, it will have a higher probability of
being chosen to encourage routes to incorporate straight-line sections.

– The movement opposite to the previous one can only be chosen if there is no
other possible movement to avoid the algorithm getting stuck between two
points.

Once the initial path is generated, it is analyzed and two time instants are
searched for in which the robot passes through the same coordinates. If the robot
passes through the same coordinate in two different t instants, it is considered
that there is a loop and all the movements between the two appearances of those
coordinates in the path are eliminated.

To analyze the feasibility of this algorithm to generate routes, the algorithm
has been run 30 times to generate 1000 routes in each run. During this test, the
algorithm was able to generate an average of 930.92 solutions per second, with
a standard deviation of 30.31.
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Algorithm 1 Random search O(n)

Input: origin, dest points
Output: path: Sequence of movements to reach the point dest from the point origin.

current← origin
path← ∅
while current ̸= dest do

if path is not empty & is valid movement(path[-1]) & random < 0.7 then
Add path[-1] to path again ▷ Copy the last movement

else
Calculate available movs
if length(available movs) == 1 then

Add available movs[0] to path
else

Remove oposite(path[-1]) from available movs
next movement← random(available movs)
Add next movement to path

end if
end if
Update current position

end while
Look for loops on path and remove them using Alg. 2
return path

2.2 Initial population

The representation of the solutions is defined as a vector of n positions, where n is
the number of robots in the problem. Each position in the vector will contain an
integer representing which index of the pre-generated paths will be used for that
robot. Figure 1 shows an example of this representation, where robot number
1 will use the path at position 33 in the list of pre-generated paths, the second
robot will use path 15 and the last robot will use the path at position 24.

Fig. 1: Example of the representation of a single solution

The solutions will be generated randomly so that each position of the vec-
tor will contain a random integer generated between 0 and the number of pre-
computed routes.

2.3 Crossover

For the crossover operator we have chosen to use the One-Point Crossover[11].
This operator selects a random cut point in the two parent solutions and gener-
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Algorithm 2 Remove loops O(n2)

Input: path: sequence of movements and points for a robot that could contain loops
Output: path: Sequence of movements and points for a robot without loops

for i← 0 To length(path) do
for j ← length(path) To i Step −1 do

if coords at(i) == coords at(j) then ▷ If a coord appears twice in the route
new path← path[0 : i] + path[j : length(path)]
return remove loops(new path)

end if
end for

end for
return path

ates two daughter solutions in which each part will come from one of the parents.
Figure 2 illustrates this crossover operator.

Fig. 2: Example of crossover operator

2.4 Mutation

The mutation operator will act on each of the elements of a solution. This means
that each of the numbers present in the vector forming an individual will be
evaluated and modified with a probability of pm. The modification to be made
in the mutation operator will be to change the value to a random one. Figure 3
illustrates this mutation operator.

3 Experimentation Setup

The objective of the experimentation is to compare with other methods already
published in previous works to solve the MPP problem [15, 7]. The comparison
replicates the three scenarios proposed in [7]: the first one with a single room
and fixed obstacles; the second one with 4 connected rooms; and the third one
that replicates a warehouse.
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Fig. 3: Example of mutation operator

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Fig. 4: Graphical representation of the scenarios used in the experimentation

Figure 4a shows the first scenario consisting of a closed room of size 10x30
meters. In this first scenario, there are only a few fixed objects inside the room.
The objective in this scenario is for the robot to go from any random starting
point to any random ending point. The number of robots used in this experiment
varies between 3 and 15.

The second scenario, shown in Figure 4b, consists of 4 rooms of the same size
as the first scenario. In this case, the rooms are free of obstacles, but connected
by narrow corridors of length 4, in which only one robot fits. The complication
of this scenario is that the robots are required to end up in a different room
from the starting room, in order to analyze the behavior of the algorithm when
crossing corridors. For this experiment, the number of robots varied between 3
and 6 robots per room.

Figure 4c shows the last scenario, which replicates a warehouse in which there
are two clearly differentiated zones. The large area at the top with a pattern of
aisles and square obstacles corresponds to the storage area of the workshop. The
square obstacles would be the shelves where the products are stored. Analogous
to the second scenario, only one robot is considered to fit in each aisle. The
smaller area at the bottom of the map with no obstacles inside is considered
a working area for the robots to move around in as needed. The goal of this
experiment is for the robots to move from a random point in the work zone to a
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Table 1: Parameters used during the experimentation.
Crossover probability 0.7
Mutation probability 0.3
Max number of iterations 200
Population size 50
Pre-generated routes (k) 100
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Fig. 5: Comparative graphs of the evolution of the execution time concerning the
number of robots for each method for scenario 1.

random point in the shelving area. In this scenario, the experimentation started
with 10 robots and was increased by 5 to reach 30 robots.

Up to 10 runs of each algorithm and scenario will be run to estimate the
statistics of the performances. During the experimentation, the parameters in
Table 1 were used. These parameters were chosen among the best after several
runs with different parameters.

4 Results and discussion

Three metrics were used during the experimentation: the execution time, the
length of the longest path and the sum of the lengths of all paths.

Table 2 shows the runtime results compared to the two previous works: [15]
and [7]. The new method obtains better results in the first scenario, since for 15
robots it produces results up to ten times better. Figure 5 graphically represents
the evolution in execution time as a function of the number of robots for these
three methods. In the case of the last two scenarios, it is observed that the
proposed method does not perform as well, since it has much longer execution
times than [7]. However, it does improve on [15], as it is able to solve these
scenarios with almost any number of robots.

The other two metrics corresponding to the length of the longest path and
the aggregated length are shown in Table 3.

The result from the experimentation shows that the new method gives better
results in both time and path length when we are in a simple environment with
few robots like in scenario 1. In more complex scenarios –scenario 2 and scenario
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Table 2: Mean (MN) and standard deviation (SD) of the path-planning time in
seconds for each method and scenario. The gray cells represent the experiments
for which the method could not find a collision-free path.

No. robots Morteza2022[15] Garcia2023[7] NSGA-III
MN SD MN SD MN SD

Scenario 1

6 3.8313 1.4861 4.7479 3.5449 4.9712 0.3330
7 11.2127 5.4879 9.6416 4.3064 5.3837 0.4022
8 75.8119 41.5637 14.3116 8.0995 5.7193 0.3323
9 303.3389 203.8299 32.8010 12.7689 8.3554 4.6203
10 1255.6156 459.5965 59.7161 24.0424 12.0660 6.6266
11 3958.5166 1954.4560 95.2412 46.1279 13.7042 8.0799
12 121.2675 72.5481 23.9644 0.8502
13 198.7366 101.0648 25.1462 0.2680
14 271.5449 124.6219 27.6918 1.0077
15 571.3999 585.3738 53.2227 0.5877

Scenario 2

3 per room 41384.1716 14851.4483 0.3939 0.0663 5.4058 0.5484
4 per room 0.2327 0.0536 14.7859 1.5257
5 per room 0.4368 0.0162 60.5659 1.2013
6 per room 1.2399 0.0183

Scenario 3

10 0.1558 0.0106 13.5677 2.2207
15 0.1999 0.0524 23.9452 3.1946
20 0.1730 0.0121 36.2394 4.1399
25 0.1810 0.0160 52.8438 4.9216
30 0.2105 0.0081 69.6164 5.5152

3–, with a larger number of robots, the new approach takes longer to find results,
reaching paths that are longer than those provided by the method with which
we are compared.

5 Conclusion and future work

This paper proposes a new approach to the MPP problem. In the experimenta-
tion, we compare with another work that tries to solve the same problem using
co-evolutionary algorithms. The newly proposed method outperforms the pre-
vious one in simple scenarios with few robots, but it is not able to beat the
benchmark method in more complicated environments with more robots.

Future work will try to improve this approach in more complex scenarios,
and we will combine the MPP and the TSP problem. To improve this approach,
we will consider two possible lines: i) the improvement of the path generation
algorithm, and ii) the development of a local search algorithm that obtains new
solutions from those with few collisions. Regarding the combination of the MPP
with other known problems in the literature, we will try to solve the MPP
problem in environments where there is not only one starting point and one
destination point; the main idea is that the robot must visit multiple waypoints
before reaching the destination.
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