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Abstract. Primary Progressive Aphasia (PPA) is a syndrome causing
progressive deterioration of language and speech due to brain degener-
ation. Three variants exist: non-fluent variant (nfvPPA), semantic vari-
ant(svPPA) and logopenic variant (lvPPA). While fMRI is the most
accepted diagnostic tool (and neurological exploration), it is expensive
and takes even months to deliver results. Cheaper and faster tools are
needed for earlier diagnosis and treatment initiation. Some studies have
attempted automatic diagnosis using acoustic and linguistic features with
ML and DL techniques. However, none have included Latin language
patients or analyzed the effect of cognitive tests. This work proposes a
methodology based on three main steps: i) a new assessment tool (PPA-
Tool) combining ACE-III and MLSE with three language tasks: verbal
fluency, repetition and naming, and ii) an IDA process to obtain an ML
model trained with our own two-class (PPA/Healthy) dataset, and iii)
ranking the relevance of tasks in PPATool from models performance. The
results obtained after deploying the IDA process on the dataset obtained
from an early-stage clinical trial, show that the verbal fluency data out-
performs the rest of the tasks.

Keywords: Primary Progressive Aphasia · ACE-III · MLSE · Voice
silence removal · Machine Learning Classification · voice features ·
MFCC · Imbalanced datasets

1 Introduction

Primary progressive aphasia (PPA) is a syndrome characterized by a progres-
sive deterioration of language and speech due to the degeneration of language-
related brain systems. Three variants of PPA have been identified: non-fluent
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variant PPA (nfvPPA), semantic variant PPA (svPPA), and logopenic variant
PPA (lvPPA). Diagnosis is typically made by a specialized neurologist using
subjective complaints, observations during the examination, clinical criteria, and
cognitive/neuroimaging tests. However, cheaper and faster tools to support clin-
ical diagnosis are needed for earlier disease diagnosis and treatment initiation.

There are already some studies that have worked on the approach to the
automatic diagnosis of PPA, Fraser et al., 2014 [6], Hoffman et al., 2017 [8],
Cho et al., 2020 [4] and Themistocleous et al., 2021[15]. Most of them include
extracting acoustic and/or linguistic features, different classical Machine Learn-
ing (ML) and Deep Learning (DL) techniques, datasets with up to 100 English
speakers, and tackling two-class (PPA-Healty) and three-class (lvPPA-svPPA-
nfvPPA) problems. But, none included Latin language patients in the study nor
analysed the effect of the typology of cognitive tests in the performance of the
ML technique.

This work proposes a methodology based on three main pillars: 1) design and
deployment of a new assessment tool specific for PPA (PPA-Tool) combining the
screening test ACE-III and the cognitive test MLSE, 2) development of an Intel-
ligent Data Analysis (IDA) process trained with a set of prosodic and spectral
transformations from the recorded tasks to obtain an ML model capable of clas-
sifying between PPA and Healthy patients, and 3) ranking the relevance of the
different tasks defined in the PPA-Tool driven by the performance of the mod-
els obtained in the previous pillar. The proposed methodology aims to provide a
cheaper and faster tool for supporting clinical diagnosis and treatment initiation,
ultimately improving and accelerating the management of PPA patients.

This work is arranged in the following sections; the next section describes the
methodology proposed, including the design of proposed examination tests and
the IDA process to obtain the classification models. The experimental setup and
discussion of the obtained results can be found in Sect. 3. Finally, conclusions
and future work are included.

2 Proposed Methodology

The proposed methodology is composed of three main steps (see Fig. 1): i)
Designing of the assessment tool (PPA-Tool), ii) Intelligent data analysis, and
iii) Ranking the PPA-Tool’ tasks.

2.1 Design of the Assessment Tool

Two tests were selected for assessing the participants: the ACE-III, a cognitive
screening test widely used for the neuropsychological evaluation of patients and
the Mini Linguistic State Examination (MLSE), a specific PPA test.

The ACE-III is a test in which all cognitive domains (orientation, atten-
tion, memory, visuospatial skills, executive functions and language) are assessed.
ACE-III helps to rule out the presence of dementia and also offers a fairly com-
prehensive cognitive profile



Ranking of PPA assessment tool tasks through ML 325

Fig. 1. The overall process of this proposal.

The MLSE is a specific test to classify the different variants of PPA recently
developed [11], which evaluates the key linguistic domains affected by PPA
according to diagnostic criteria[7]. It consists of eleven subtests that assess the
following language skills: naming, word and sentence repetition, word and sen-
tence comprehension, semantic association, reading, writing and a connected
speech task. The MLSE is the only PPA-specific test with a Spanish version
recently adapted [9].

For the purpose of this report, some of the tasks of the ACE-III and the
MLSE were pooled for joint analysis, keeping the following tasks (now on PPA-
Tool):

– Fluency: the verbal fluency tasks of the ACE-III.
– Repetition: the repetition of words and sentences of both tests.
– Naming: the picture naming of the MLSE.

The verbal fluency task involves three subtests: Phonological, semantic and
actions. In these tasks, participants have to generate as many words of each
category as they can in one minute of time (words beginning with “p”, animals
and actions, respectively).

The picture naming test is a standard task used to assess language disorders
normally. It is based on the presentation of 20 images, and the participant must
generate the name of the picture being shown.

Finally, the repetition task involves both word and sentence repetition. In
this test, the examiner states each item and the patient is required to repeat
them as accurately as possible.

2.2 Intelligent Data Analisys

After carrying out the PPA-Tool tasks, one voice file per patient/participant
will be obtained. To obtain an optimal classification model to identify automat-
ically PPA recordings, the following steps are proposed: i) Data preparation, ii)
Preprocessing, ii) Voice features, and iv)Classification models training.
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Data Preparation: Tasks Segmentation and Labelling. The first step is
to separate the audios into smaller audios that correspond to the three different
tasks chosen in the PPA-Tool: fluency, naming and repetition. Although the
proposed PPA-Tool just considers these 3 tasks, this splitting step could be
valid for any number of tasks. In this stage of our research, this process will
be deployed manually, but in the future could be run through any automatic
segmentation technique.

As the number of patients in this stage of the PPA clinical trial is just six:
four PPAs and two controls, a multi-class (the three variants of PPA) problem
will be discarded, and just a two-class problem will be dived: PPA and Healthy
classes.

Preprocessing: Silence Removing. This study aims to use prosodic and
spectral features of voice waveforms to distinguish between patients with
PPA impairment and healthy individuals. In long recordings, it is common to
encounter sound fragments other than voice, such as unvoiced segments and
silence. Since the recordings were conducted in a controlled environment, there
were few or no unvoiced events present, necessitating a silence removal algorithm.
The most widely accepted algorithms for silence removal rely on thresholding
the Short Time Energy (STE) and Zero Crossing Rate (ZCR) features, as well
as the statistical behaviour of background noise, as reported in the literature
[12] (Fig. 2).

Fig. 2. left) RMS for each kind of sound event, right) Silence threshold computing.

This work proposes a simplified approach based on thresholding the Root
Mean Square (RMS) feature. A representative silence reference fragment is man-
ually selected from the beginning of each patient recording, and the mean and
standard deviation of the RMS in dBFS are calculated for this segment. Con-
sequently, the silence threshold is determined for each patient recording using
Eq. 1.

SilenceTHp = mean(RMSp) − std(RMSp) (1)

Finally, the calculated SilenceTH is applied using an overlapped window
of size Silence-WD, removing any sample windows that exceed this threshold.
Figure 3 illustrates an example of silence removal, where the original recording
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Fig. 3. Example of silence removal: Silence-WD=30ms (top), Silence-WD=3 s (mid-
dle), ORIGINAL (bottom)

(ORIGINAL) is processed with the proposed algorithm with Silence-WD, 3 s and
30ms obtaining the two subfigures Silence-WD=3 s and Silence-WD=30ms. It
can be observed in this case that Silence-WD=30ms obtains a much more clean
recording than Silence-WD=3 s.

It is important to note that PPA patients may exhibit mumbling in certain
parts of the recording, which can be considered as silence. However, the applied
silence-removal algorithm does not eliminate these revised mumble fragments.

Preprocessing: Framing. Window framing in voice applications has three
relevant fields: Automatic Speech Recognition (ASR), Automatic Diseases Iden-
tification (ADI), and Speech Emotion Recognition (SER) [1,5,10]. ASR typically
utilizes a narrow window length of approximately 25ms, prioritizing changes over
time and achieving a higher time resolution. In contrast, for SER, a wider win-
dow length of around 65ms up to 2–3 s [2] can be used, resulting in frames with
greater frequency information and higher frequency resolution. Concerning ADI
applications, a crucial problem in the acoustical analysis of pathological voices
is the correct Pitch Period (To) evaluation since most of the voice parameters
are computed using the already determined values of To. As it’s stated in [1], a
window of two, even three To are suitable to segment the signal (typically 2 To
correspond to 30ms).

In this case, in order to reduce the computational cost of the training algo-
rithms, two conservative window sizes taken from the SER field have been
selected: 100ms and 3 s, with a sliding size of 50ms and 1 s, respectively.

Voice Features. This study focuses on using common features in Speech Emo-
tion Recognition (SER) to characterize voice events, drawing from existing lit-
erature [3]. SER commonly utilizes prosodic and spectral features, which are
combined for improved performance. Prosodic features, such as intonation and
rhythm, are perceptible to humans, while spectral features capture vocal tract
characteristics. Spectral features are obtained by transforming the time domain
signal into the frequency domain using Fourier transform. Among the spectral
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features, Mel Frequency Cepstral Coefficient (MFCC) is particularly useful for
SER.

Segmental transformations, rather than spectrographic ones, were consid-
ered in this research. Two groups of segmental features were chosen: ProSodic
Features (PSF) to capture the rhythm and SpecTral Features (SPF) to cap-
ture frequency. The selected features include Root-mean-square (PSF), MFCC
(SPF), Chroma stft (SPF), Spectral centroid (SPF), Spectral bandwidth (SPF),
Spectral rolloff (SPF), and Zero crossing rate (SPF).

To create the dataset, each feature is computed for each frame. For MFCC,
specific parameters are required:

– n mfcc: number of MFCCs (mel coefficients) to be returned.
– n fft: length of the FFT window in samples or milliseconds.
– hop length: number of samples between successive frames.

Typical values for MFCC applied to Automatic Speech Recognition (ASR) are
n mfcc = 13, n fft = 12ms, and hop length = 12ms (non-overlapping frames).

Additionally, this proposal considers the mean and standard deviation of
MFCC coefficients for each frame, resulting in a total of 7 + nmfcc ∗ 2 = 33
features.

ML Classification Algorithms. This work only focuses on a good PPA
screening test design based on an ML technique’s result to rank these tasks.
So, eleven representative Classification Machine Learning Techniques (CML),
belonging to well-known classification typologies like linear (L), Tree-based (T),
Probabilistic (P), Nearest neighBor (NB), Embeddings (EB) and Neural Net-
works (NN), have been deployed on the PPA/Healthy dataset.

The set of selected algorithms was: BernoulliNB (P-Ber), DecisionTree (T-
DT), RandomForestClassifier (T-RF), ExtraTrees (T-XT), KNeighbors (NB-
KN), RidgeClassifierCV (L-RC), SVC(L-SVC), AdaBoost (EB-AB), Gradient-
Boosting (T-GB), Multi-Layer Perceptron (NN-MLP) and XGB.

3 Numerical Results

3.1 Material and Methods

Inclusion and Exclusion Criteria. As this is a preliminary study for a run-
ning clinical trial, just six participants have been selected for this project. Four
were diagnosed with PPA in two variants, and the other two were healthy con-
trols. The patients with PPA ranged in age from 65 to 79 years, and were diag-
nosed by a specialized neurologist. The two control subject were aged 67 and 73
years, with no history of neurological pathology and a normal neuropsychological
profile. All participants gave informed consent before participating in the study.
The ethics committee of the Principality of Asturias has approved this research.
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AudioCapture Issues. AYotto YDM-20 USBmicrophone connected to aMac-
Book Pro was used to collect the participants’ recordings. All recordings were
taken using a frequency 44100Hz and mono-micro.

Validation Strategy Y Scoring Metric. All the experiments have been dep-
loyed using a repeated 5× 2CV validation strategy, using as a scoring metric the
geometric mean of the sensitivity and specificity of a two-class problem with PPA
and Healthy classes (See Eq. 2).

GeometricMean(SE, SP ) =
√

Sensitivity · Specificity (2)

3.2 Results

Tasks Splitting. The voice recording for each patient has been split manually,
by an experimental psychologist, into the three tasks stated in the PPA-Tool(see
Sect. 2.1). Most of the interviewer fragments were removed, but some short parts
contain a mixture of both voices: interviewer and patients. It’s assumed these
parts will not affect the results. Finally, 2045 s (34mins) have been obtained with
a minimum of 136, 69 and 28 s for the corresponding tasks (see Table 1).

Table 1. Recorded time in secs per task (Fluency, Repetition and Naming) and patient
(pac1, pac2, pac3, pac4, cont1 and con2)

Task pac1 pac2 pac3 pac4 cont1 cont2 Subtotal

Fluency 191 182 181 136 181 181 1046

Repetition 238 209 98 112 79 69 791

Naming 176 75 217 45 31 28 568

Subtotal 605 466 496 293 291 278 2405

Silence Removal. After splitting the recording, the silence was removed using
the method proposed in Subsect. 2.2. Four windows and sliding size configura-
tions were deployed: i) 3 s with an overlapping size of 1 s, ii) 3 s without overlap-
ping, iii) 30ms with an overlapping size of 10 s, and iv) 30ms without overlap-
ping. For the shake of space, just the results of the best window configuration
have been included in Table 2 (30ms without overlapping). It can be stated that
an average of 32% of samples were removed as silence, paying attention to the
task Fluency that included a 42% of silence since it’s the task where the patients
have more freedom to talk, so it’s more probable finding silence fragments. On
the side, it can be remarked that control #1 recordings were reduced by 61%.
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Table 2. Tasks time in secs per task and patient before and after silence removal
deployment

Task pac1 pac2 pac3 pac4 cont1 cont2 Subtotal

D1.Fluency before 191 182 181 136 181 181 1052

D1.Fluency after 116,4 137,1 89,9 74,3 38,3 151,4 607,5

% Removed 39 25 50 45 79 16 42

D2.Repetition before 238,0 209,0 98,0 112,0 79,0 69,0 805,0

D2.Repetition after 175,1 151,5 86,7 101,7 57,9 65,9 638,8

% Removed 26 28 12 9 27 5 21

D3.Naming before 176,0 75,0 217,0 45,0 31,0 28,0 572,0

D3.Naming after 103,8 45,9 161,9 38,4 18,7 26,3 395,0

% Removed 41 39 25 15 40 6 31

Subtotal before 605,0 466,0 496,0 293,0 291,0 278,0 2429,0

Subtotal after 395,3 334,5 338,5 214,4 114,9 243,6 1641,3

% removed 35 28 32 27 61 12 32

3.3 Features Computing, Framing and Datasets Naming

All the selected features (see Sect. 2.2) were computed for the two framing con-
figurations proposed obtaining two datasets including the three tasks Fluency,
Repetition and Naming (now on D1, D2 and D3 respectively):

– DatasetA: with a window size of 3 s with an overlapping size of 1 s.
– DatasetB: with a window size of 100ms with an overlapping size of 50 s.

Pay attention that DatasetB deploys some oversampling, obtaining a factor
by 20 of DatasetA (1 s divided by 50ms). Synthetic new data using classical
oversampling techniques like SMOTE or ADASYN has not been included in this
work.

3.4 Classification Models Training, Results Discussion and Tasks
Ranking

The selected CML techniques (see Sect. 2.2) have been run with the default hyper-
parameters provided by sklearn1 and XGB Library2, on each task data separately
obtaining the three boxplots per CML algorithm and dataset (see Fig. 4).

On one side, the main finding is that D1.Fluency is the task that allows a
good classification performance for most ML techniques in both datasets, A and
B. In addition, it can be observed that the dispersion of the results of Tree-based

1 https://scikit-learn.org/.
2 https://xgboost.readthedocs.io.

https://scikit-learn.org/
https://xgboost.readthedocs.io


Ranking of PPA assessment tool tasks through ML 331

Fig. 4. left) Boxplot representing geometric mean for DatasetA, right) Boxplot repre-
senting geometric mean for DatasetB

techniques is quite reduced for DatasetB, improving the robustness of the winner
models (D1-RF, D1-XT and D1-XGB).

On the other side, since DatasetA (Window/Sliding size: 3 s/1 s) is relatively
smaller than DatasetB (Window/Sliding size: 100ms/50ms), it can be observed
that Tree-Base techniques outperform the remaining ones, but the linear model
ReagerC. That issue reveals the presence of multicollinearity in the data since
a feature selection was not carried out. Concerning DatasetB, the Tree-Based
and Embedding models outperform the rest of the models, but in this case, the
RigerC obtains worse performance, but MLP performance has improved since the
size of the Tasks-datasets is bigger. Thus, it can be stated that after increasing
the sampling frequency (window reduced to 100ms/50ms), there exists more
variability in each task/class dataset, so it’s needed a model capable of extracting
these no-linear relations (Tree-based models).

4 Conclusions and Future Work

Regarding the PPA-Tool tasks, the chosen verbal fluency task demands high cog-
nitive effort and engages extensive brain regions [13], involving executive func-
tions, semantic memory, and language processes. Participants rely on their own
lexical-semantic system in this semi-directed task with a significant spontaneous
language component. In contrast, the picture naming task limits spontaneity by
providing specific pictures, while the repetition task is entirely guided, requiring
patient comprehension and phonological production.

In summary, the verbal fluency task yields the best results as it assesses semi-
spontaneous language, allowing participants to utilize their cognitive resources
and generate fewer psycholinguistically distinct words [14]. Analyzing patients’
voices offers new prospects for evaluating and diagnosing PPA, comparable to
psycholinguistic analysis.

Additional language tasks from the tests used can be included to improve
classification and develop more specific language assessment tests for accurate
speech classification.

From a computational perspective, addressing the following is necessary: i)
conducting an in-depth study on new voice features specific to PPA, ii) exploring
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silence removal and diarization techniques to obtain a clean signal for training,
and iii) advancing CML and DL algorithms, including AutoML.

Finally, completing the clinical trial with more patients, including a bal-
anced representation of different PPA variants, is essential to obtain a three-class
dataset.
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