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Abstract. Time series anomaly detection plays a pivotal role across di-
verse fields, including cybersecurity, healthcare and industrial monitor-
ing. While Machine Learning and Deep Learning approaches have shown
remarkable performance in these problems, finding a balance between
simplicity and accuracy remains a persistent challenge. Also, although
the potential of NLP methods is heavily expanding, their application in
time series analysis is still to be explored, which could benefit greatly
due to the properties of latent features. In this paper, we propose WE-
TAD, a novel approach for unsupervised anomaly detection based on the
representation of time series data as text, in order to leverage the use of
well-established word embeddings. To showcase the performance of the
model a series of experiments were conducted on a diverse set of anomaly
detection datasets widely used in the literature. Results demonstrate our
approach can compete and even outperform state-of-the-art approaches
with a simple, yet effective model.
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1 Introduction

We are currently immersed in a transition to the fourth industrial revolution, also
known as Industry 4.0. Some terms that we cannot ignore considering their great
relevance nowadays are the Internet of Things (IoT) and Big Data. Through the
use of a large number of sensors, massive amounts of data can be collected,
processed and transmitted in a distributed manner. The failure of one piece of
equipment or machine can affect another machine or process dependent on it,
causing a shutdown of the production line. Such failure can usually be detected
as an anomaly in the data. Stoppages are often associated with huge costs due to
different aspects, such as loss of production, failure to meet delivery deadlines,
deterioration of equipment, etc. Therefore, anomaly detection has experienced a
great increase of interest for obvious economic reasons. Although it is impossible
to eliminate all system failures, it is possible to detect them and, as time permits,
be proactive to solve them or minimize damage.

Anomaly detection techniques have typically used a unsupervised approach
where algorithms learn from a clean dataset and are evaluated over a set with
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anomalous samples. Traditionally, shallow methods based on classical techniques
such as autoregressive models, ARIMA and their variants [27] were employed.
Additionally, tree-based models like Isolation Forest [29], and adaptations of sup-
port vector machines such as One-Class SVM [1], found utility in this domain.
Also, approaches based on dimensionality reduction such as PCA [7] and autoen-
coders have been effectively applied [12]. With the evolution of Deep Learning,
more modern models like Recurrent Neural Networks (RNNs) or Convolutional
Neural Networks (CNNs) combined with other techniques have been proposed
that allow both to improve results and to be applied to larger problems. For ex-
ample, Omnianomaly [24] uses a stochastic RNN and a planar normalizing flow to
generate reconstruction probabilities. MERLIN [18] is a parameter-free method
capable of finding anomaly discords by iterating and comparing neighboring
subsequences of the time series. MAD-GAN [10] relies in a Long Short-Term
Memory network (LSTM) based GAN to model the time series distribution.
MTAD-GAT [28] applies two graph attention layers in parallel to model both
feature and temporal correlations that are fed to a GRU layer to subsequently
pass the outputs to forecasting and reconstruction models. More recent methods,
such as USAD [2] are able to achieve fast training by means of an architecture
based on adversely trained autoencoders. GDN [4] introduces an embedding
vector for each sensor to learn a graph of relationships between data modes and
uses attention-based forecasting and deviation scoring to output anomaly scores.
More recently, in TranAD [26] the authors proposed a new architecture based on
Transformers and is complemented using a two phase adversarial training phase
and Meta Learning.

Although recent works such as [4] or [26] use mechanisms originally applied
to NLP problems like attention, there are still several NLP techniques that could
be useful for anomaly detection problems that have not yet been fully exploited.
Applying NLP techniques to time series problem solving is highly interesting,
since text and time series have a high number of significant similarities. First,
both have a sequential nature: in time series the points are ordered by timestamps
while in text the words are ordered to obtain a meaning. Secondly, both exhibit
temporal dependence: in time series a point depends on its antecedents while in
text, words also often depend on their context. Furthermore, time series usually
exhibit trends and patterns, in the same way that repetition of words or keywords
occurs in text.

In this regard, there are some promising papers. In [21], [13] the authors used
fuzzy logic to discretize time series and applied text mining techniques to identify
patterns related to the health status of aircraft engines. In [19], the method
proposed uses the discretization of the time series into symbols to subsequently
learn word embeddings using Skip-gram. The SAFE framework [25] also proposes
time series classification tasks by means of a new neural network architecture
using word embeddings. In [5], different NLP-based techniques such as SVD,
a Transformer model and an LSTM network with embeddings are applied to
detect anomalies in categorical time series.
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Similarly, in this paper we propose to reformulate the problem of time series
anomaly detection in order to benefit from NLP techniques. Contrary to existing
methods we introduce a novel architecture capable of dealing not only with cat-
egorical time series, but with all types of time series. Moreover, this architecture
differs from other approaches as it exploits a never before proven concepts of
discretization by timestamp and of word similarity by calculating scalar product
between embeddings. Thus, we achieve a simple but effective model that is at
the same time computationally undemanding.

2 Experimental Study

2.1 Problem formulation

We start from a multivaluated time series X = {xt}tϵT as an ordered set of k -
dimensional vectors, where each observation is collected in a specific time period
and consists of k observations. It should be noted that an univariate series is
a special case where the parameter k is one. The time series is splitted into
training Xtrain and test sets Xtest, of which the training set is assumed to be
free of anomalies. The task is to predict whether an anomaly occurred at each
time step t in the test set of the time series Xtest.

2.2 Data preprocessing

As usual in any Machine Learning problem, data is normalized to ease model
performance and training stability, for which the min-max normalization was
used:

xkt =
xkt −min(Xtrain

k )

max(Xtrain
k )−min(Xtrain

k ) + ε′
(1)

where xkt is a point in the k channel and in the t timestamp. min(Xtrain
k )

and max(Xtrain
k ) are the minimum and maximum values in the k channel of

the training data. The ranges obtained from the minimum and maximum of
the train set are then applied to the test set. ε′ is a small constant to prevent
zero-division. Knowing the ranges a-priori, we normalize the data to the range
[0, 1). Once the data is normalized, it is necessary to discretize it to convert
the time-series into a sequence of symbols. The discretization is a simplified
version of SAX (Symbolic Aggregate Approximation) [11] where the previous
step of downsampling data with PAA (Piecewise Aggregate Approximation) [8]
is omitted and breakpoints are equidistant. For each channel of the time-series
the normalized range is divided into as many intervals as symbols we selected.
Each point will be discretized as a given symbol according to the range to witch
its value belongs. The number of symbols is an hyperparameter of the model wich
can be tuned depending of the fine-grained discretization pursued (for which we
achieved good results with 7 in our experiments). If the number of symbols is
too low, the discretization will be generic but if the number is high the resulting
discrete time-series will be more complex. Once discretization is complete the
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values of k channels will be concatenated per timestamp. Thus, a single point in
a determined timestamp will be converted into a word consisting of k symbols.
Each of these words will be treated as the i -th discretized value of the time
series. The vocabulary will be formed by the set of words of the train and test
sets. In turn, each of these words will be composed of k symbols. In Figure 1 the
discretization and generation of words for a time series of 3 channels is illustrated
graphically.

Fig. 1. Illustration of the idea behind converting time series to symbolic data (nº of
symbols = 4) and extracting words from it.

2.3 Model architecture

In recent years there has been an overwhelming increase in the popularity of
Deep Learning for anomaly detection, in part guided by the great advances made
in NLP [9]. New models based on techniques such as Attention and specifically
Transformers are beginning to be applied to anomaly detection [2], [26]. However,
the use of embedding-based techniques such as Word2Vec or Glove [15], [22] is
barely explored while they are a key part of NLP.

In [16], the Skip-Gram methodology was proposed, where given a target
word, the model attempts to predict the context, i.e., the neighboring words
by using a context window. In most cases this model is simplified by using a
single word as the context, so that the skipgrams formed are pairs of words. As
explained in the Introduction, there are certain similarities between text and
time series. Thus, starting from the discretized time series, we intend to exploit
these similarities in order to obtain embeddings that allow us to represent the
time series. Subsequently, we aim to detect anomalies, which will correspond to
pairs of words that are not usually found together in the same context.

The proposed architecture is a variation of Skip-Gram proposed by Mikolov
[16] known as Skip-Gram Negative Sampling. Negative sampling emerged as an
improvement to the original model which was computationally very expensive.
This was partially solved with the application of Hierarchical Softmax but def-
initely improved with Negative Sampling, which simplified the problem while
maintaining high quality embeddings.
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In Negative Sampling, a specific number of negatives samples are randomly
drawn from a noise distribution. On the one hand, in the training set there will
be positive samples, which will correspond to pairs for which the context word is
within the window with respect to the target word. These pairs will be labeled
with 1. On the other hand, randomly chosen word pairs will be negative samples
and will be labeled with a 0. Instead of using at the end of the model a layer with a
Softmax function to compute the probability distribution of observing an output
word given an input word, it is replaced by a Sigmoid function, whose output
differentiates pairs belonging to the context (positive samples) from random
(negative samples), which transforms it into a binary classification problem. In
this way, the model will presumably learn embeddings where similar words are
close and therefore whose scalar product is high. For further exemplification, in
a multivariate time series with 3 channels, the "ABA" event may be common
to appear before the "BAB" event, which would result in a high scalar product
between their embeddings, so they can be considered as normal events. On the
contrary, if the event "ACC" is not common to appear before "BAB", this would
mean a low scalar product and may be an anomaly, since during training the
generated embeddings of each words were not similar.

Figure 2 illustrates the model architecture. It has two inputs, one for the word
context and another for the target. The first layer consists of two embeddings,
one for each word, which will be in charge of encoding the "information" of the
symbols/words fed to the model. There are different methodologies to select the
size of the embeddings, but in our case for the used datasets reasonable results
were achieved with a size of 300 dimensions as recommended by Melamud et al.
[14]. However, for the selection of this value, successive tests were performed by
increasing the size of the embeddings by 50. Therefore, the embeddings are two
large matrix of real numbers of size vocab_size× 300.

Given a pair of input words and once their respective embeddings are ob-
tained, the next step is to perform a dot product between the selected em-
beddings. The result will finally be passed to the last layer where the Sigmoid
function is applied. At the output of the model a score between [0, 1] is obtained
which would model the probability that the two words appear in the same con-
text (close to each other) or not. A score, called perplexity1, which is the inverse
of this estimated probability is used for detecting anomalies: word/symbol pairs
that have a low perplexity value will be considered normal, while a high per-
plexity will be associated with an anomaly.

Once the time series was discretized, the vocabulary size is obtained to initial-
ize the embeddings of the model. After that, the pairs of skipgrams are generated
from the training set, generating positive and negative samples. The model is
trained using Negative Sampling. For evaluation, the pairs of symbols are gener-
ated using contiguous symbols. Once the scores are obtained, the perplexity score
is calculated for each word and POT [23] is applied to detect possible anomalies
through the analysis of extreme values. POT is a statistical method that uses
“extreme value theory” to fit the data distribution with a Generalized Pareto

1 Disambiguation: Do not confuse with the classical meaning in NLP.
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Distribution and identify appropriate values at risk to dynamically determine
threshold values.

Regarding the parameters used, as already mentioned in the previous section,
the number of letters to perform the discretization of the time series was 7, the
dimensionality of the embeddings was 300 and the window size for the generation
was 7.

2.4 Datasets

The datasets used for benchmarking, are widely used in the anomaly detection
literature and are open and publicly available. The set is composed of one uni-
variate time series (UCR) and five multivariate time series (MBA, SMD, MSL,
SMAP and MSDS), which contain a very low percentage of anomalous data.
SMD, MSL and SMAP are multi-entity datasets, which are made up of different
entities, corresponding to different physical units of the same type. For these, a
different model per entity has been trained to finally aggregate the results by
adding true positives, false positives, etc. and calculating the precision, recall
and F1 score.

– Hexagon ML/UCR Time Series [3] is a large collection of univariate
time series which has been growing and being updated over the years.

– MIT-BIH Supraventricular Arrhythmia Database (MBA) [17] is a
collection of electrocardiogram recordings from four patients, containing mul-
tiple instances of two different kinds of anomalies. This dataset has been used
for benchmarking purposes in both medical and anomaly detection articles.

– Soil Moisture Active Passive (SMAP) [6] is a compilation of data and
telemetry from a NASA space mission that measures and maps Earth’s soil
moisture and freeze/thaw state from a satellite.

– Mars Science Laboratory (MSL) [6] is similar to SMAP dataset, but
the data and telemetry are collected from the Curiosity rover during its
exploration of the planet Mars. Authors such as [18] have analyzed this
dataset and the previous one, detecting a large number of trivial sequences,
so as in [26] the non-trivial sequences have been chosen.

– Server Machine Dataset (SMD) [24] is a dataset collected over 5 weeks
from a large Internet company and contains resource utilization traces from
28 different machines in a cluster of computers. Similar to the previous ones,
we have chosen to use non-trivial traces.

– Multi-Source Distributed System (MSDS) [20] is a recent high-quality
multi-source data composed of distributed traces, application logs, and met-
rics from a complex distributed system.

3 Results

For the experimentation, the chosen metrics were the precision, recall and the
F1-score. Since the data in anomaly detection problems are usually imbalanced it



WETAD 7

Fig. 2. Architecure for the proposed model.

Table 1. Summary of dataset characteristics used in this paper. Obtained from [26]

Dataset Train size Test size Nº of
channels

% of
anomalies

UCR 1600 5900 1 1.88
MBA 100000 100000 2 0.14
SMD 135183 427617 38 4.16
MSL 58317 73729 55 10.72
SMAP 135183 427617 25 13.13
MSDS 146430 146430 10 5.37

is recommended to use metrics like ROC. However, since F1-score is widely used
in the literature, we consider that this metric in combination with precision and
recall allow us to evaluate WETAD properly against other approaches. Table
1 compares the best precision, recall and F1-score obtained with our proposed
method, labeled as WETAD (Word Embeddings for Time series Anomaly Detec-
tion), with the results obtained by 7 anomaly detection methods (described in
the Introduction). These methods are TranAD [26], GDN [4], MTAD-GAT [28],
USAD [2], MAD-GAN [10], OmniAnomaly [24] and MERLIN [18]. It should be
pointed that the experiments have been performed using the implementations
available in the Github repository of [26].

In terms of F1-score our method outperforms the other approaches in UCR,
MBA, MSL, SMAP and MSDS datasets. Only in SMD TranAD obtains a higher
F1-score and in SMAP it draws with the same method with a F1-score of 0.914.
In the average ranking both methods also draw with a 1.8 position. The worst
method by far seems to be MERLIN which, lacking parameters, seems to have
a hard time adapting, especially to high-dimensional multivariate time series.

It is noteworthy mentioning that WETAD on some datasets such as MSDS
and MSL reverses the trend of the other models, slightly decreasing precision
or recall to improve the inverse metric. This may be due to the fact that there
may be certain words that in one context are considered anomalous while in
another may be normal, which would decrease precision but increase recall. For
exemplification, in collective type anomalies, where all points in a sub-sequence
of the time series, a word may appear repeatedly. However, the word may also
appear in another non-anomalous context. In this case, the problem would be
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that the word in the non-anomalous context could be detected as a false positive,
leading to alterations in the metrics.

Our method in general seems to be quite stable both in precision and in
recall which makes it get good results. The combination of the perplexity score
together with the dynamic thresholding of POT seems to have an effect, since it
allows to adjust the threshold helps set more accurate values by also considering
the localized peak values in the data sequence. OmniAnomaly and MTAD-GAT
seem unable to detect anomalies in the only univariate time series set, perhaps
because they focus on the complex dependencies between different channels. Un-
like other methods that use computationally expensive techniques such as CNNs
or Transformers, WETAD achieves competitive results with a simple model.

Table 2. Precision, Recall and F1-scores of all models with POT dynamical thresh-
olding.

UCR MBA SMD
Prec Rec F1 Prec Rec F1 Prec Rec F1

WETAD 0.634 0.957 0.763 0.981 0.985 0.983 0.979 0.410 0.578
TranAD 0.649 0.472 0.547 0.957 1.000 0.978 0.927 0.646 0.761
GDN 0.049 0.043 0.045 0.844 1.000 0.915 0.717 0.495 0.586
MTAD-GAT 0.000 0.000 0.000 0.901 1.000 0.948 0.805 0.628 0.705
USAD 0.346 0.477 0.401 0.895 1.000 0.945 0.710 0.646 0.676
MAD-GAN 0.595 0.949 0.731 0.940 1.000 0.969 0.520 0.489 0.504
OmniAnomaly 0.000 0.000 0.000 0.859 1.000 0.924 0.775 0.555 0.646
MERLIN 0.374 0.698 0.487 0.985 0.049 0.094 0.132 0.539 0.213

MSL SMAP MSDS Avg.
Prec Rec F1 Prec Rec F1 Prec Rec F1 Ranking

WETAD 0.960 0.653 0.777 0.841 1.000 0.914 0.825 1.000 0.904 1.8
TranAD 0.247 1.000 0.396 0.842 1.000 0.914 1.000 0.803 0.890 1.8
GDN 0.241 1.000 0.389 0.848 0.985 0.912 1.000 0.803 0.890 4.2
MTAD-GAT 0.144 1.000 0.252 0.782 1.000 0.878 1.000 0.611 0.758 5.0
USAD 0.239 1.000 0.385 0.819 1.000 0.900 1.000 0.796 0.886 4.2
MAD-GAN 0.232 1.000 0.377 0.821 1.000 0.901 1.000 0.611 0.758 4.3
OmniAnomaly 0.237 1.000 0.383 0.818 1.000 0.900 1.000 0.796 0.887 4.8
MERLIN 0.140 0.372 0.204 0.157 0.999 0.273 0.726 0.311 0.435 6.7

4 Conclusions and future work

In this paper we propose WETAD, a new approach based on NLP techniques
to identify anomalies in time series. We first apply a discretization on the time
series and then train a Skip-Gram Negative Sampling model by generating word
pairs and attempting to learn representations of these using word embeddings.
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Experiments on a large set of datasets and a selection of state-of-the-art algo-
rithms have shown that our method can compete with current techniques of
much higher complexity and even improve results. In future work, we aim to
improve the model by adding more advanced NLP techniques such as Attention
combined with the discretized time series. It may also be of interest to test the
model with SAX discretization, the inclusion of fuzzy logic or the improvement
of signal preprocessing as in [21]. Another aspect to consider for future work
is the use of other metrics also suited for imbalanced datasets (such as ROC
score) in combination with those currently included. Finally, since WETAD is a
straightforward model, it is easy to install in real environments, so an analysis
on training times and computational complexity could be performed in view of
implementations in power-limited industrial IoT devices.
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