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A B S T R A C T

The rapid adoption of Industry 4.0 has seen Information Technology (IT) networks increasingly merged with
Operational Technology (OT) networks, which have traditionally been isolated on air-gapped and fully trusted
networks. This increased attack surface has resulted in compromises of Cyber–Physical Systems (CPS) with
significant economic and life safety consequences. This paper proposes a hybrid model of anomaly detection
of security threats to CPS by blending the signature-based and threshold-based Intrusion Detection Systems
(IDS) commonly used in IT networks, with a Machine Learning (ML) model designed to detect behaviour-
based anomalies in OT networks. This hybrid model achieves more rapid detection of known threats through
signature-based and threshold-based detection strategies, and more accurate detection of unknown threats via
behaviour-based anomaly detection using ML algorithms.
1. Introduction

Cyber–Physical Systems (CPS) are integrated systems that combine
software and physical components [1]. The adoption of Industry 4.0
has driven the rapid growth of CPS, outpacing advancements in cy-
bersecurity, with new threat models and security challenges that lack
a unified framework for secure design, malware resistance, and risk
mitigations [2].

Threat detection and prevention is a mature industry in Information
Technology (IT) networks, but less so in Operational Technology (OT)
networks, largely because traditional Industrial Control Systems (ICS),
have not adjusted to the ubiquitous connectivity of Industry 4.0, and
still largely consider security to be an afterthought [3].

A modern CPS will be comprised not just of OT components, such
as sensors and actuators, but will include IT components with ubiqui-
tous network interconnectivity, which significantly changes the threat
profiles historically faced by the operators of OT networks.

As IT networks and OT networks merged to form CPS, it quickly
became apparent that security policies were inconsistent for different
parts of the CPS. Traditional IT networks have used the so-called CIA
(Confidentiality, Integrity, Availability) triad to define the organiza-
tional security posture, with each facet listed in order of importance. OT
networks reverse that order, with availability being the most important
factor, followed by integrity, with confidentiality the least important
facet of overall system security

IT networks typically deploy Host-based Intrusion Detection Sys-
tems (HIDS), such as signature-based antimalware agents on endpoint
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devices. However, the endpoint devices on OT networks are typically
much more resource-constrained, are unable to run a local HIDS, and
will sometimes opt for a passive Network-based Intrusion Detection Sys-
tem (NIDS), or more commonly, no IDS at all, due to historical design
assumptions of operating on an isolated and fully trusted network.

Threat detection methodologies can be broadly categorized as
signature-based, threshold-based, or behaviour-based. Each of these
methodologies have their own strengths and weaknesses, which proves
challenging in environments that contain both software and hardware
components.

A modern IDS for a CPS must recognize this reality, and provide
anomaly detection for both the Cyber and the Physical portions of the
CPS. This paper is an extension of previous works [4], and further
develops the concepts of a hybrid model of anomaly detection, that
combines the use of Machine Learning (ML) with signature-based,
threshold-based, and behaviour-based methodologies to best balance
the competing goals of low latency, high accuracy, and rapid detection
of threats.

This paper proposes a complementary hybridized security stage at
the network edge, where Machine Learning (ML) methods face only
some part of the potential attacks, relying on IT Security for detecting
a significant part of the possible anomalies. In this way, only normal
messages are analysed, reducing the computational overload on the
edge. The remainder of this study is organized as follows: Section 2
focuses on the state of the art in anomaly detection in CPS. Following
that, the approach presented in this study is detailed in Section 3, while
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Table 1
Summary of related works.
Author Anomaly detection method

Kaur et al Feature weighting of imbalanced data sets to avoid overfitting.
Vuttipittayamongkol How class overlap affects classification accuracy in imbalanced data sets.
Esposito et al Mitigating overfitting in imbalanced data sets with subset stratification.
Ahmin et al Use of one-class classifiers for detection of zero-day threats not present in training data.
Abid et al Distributed intrusion detection on industrial control systems using big data techniques.
Al-Asiri et al Modelling threshold-based detection as a finite state machine.
Altaha et al Improving anomaly detection by combining a rules-based ML algorithm with DPI.
Neshenko et al Using GAN to improve classification accuracy of multivariate data sets.
Siniosoglou et al Improving classification accuracy by encapsulating Deep Learning into a GAN.
Yilmaz et al Improving anomaly detection in resource-constrained environments with Transfer Learning.
As-Shabi et al Improving classification accuracy of imbalanced data sets with LTSM.
Raman et al Improving anomaly detection in CPS with PNN.
Greggio Reducing computational complexity in IDS with GMM.
Section 4 describes the experimental methodology. Section 5 describes
the experiment and results. Finally, conclusions and future works are
detailed in Section 6.

2. Related work

A brief summary of related works is shown in Table 1, with addi-
tional detail shown below.

Kaur et al. [5] explore the ML challenges related to imbalanced data
sets, comparing different data pre-processing and feature weighting
strategies to avoid overfitting and ML classification accuracy. Imbal-
anced classes are a common challenge in anomaly detection, particu-
larly in CPS when the minority class of attack data is often suppressed
by the CPS operator due to financial and life safety concerns, making
it difficult to obtain accurate source data for ML models.

Vuttipittayamongkol et al. [6] further develop concepts of class
imbalance in ML, focusing on how class overlap can affect classification
accuracy, which is particularly concerning to the operators of CPS,
where misclassification of minority class instances may lead to interrup-
tions of critical infrastructure availability. Class overlap occurs when
outlier data shifts the decision boundary towards the majority class,
leading to ML models skewing towards increased false negative mis-
classifications. Different ML models have varying levels of tolerance for
class overlap, with SVM experiencing significantly more degradation
than KNN.

Esposito et al. [7] continue to develop mitigations for ML classifiers
overpredicting on the majority class in imbalanced data sets. An auto-
mated procedure called GHOST is proposed as a generalized method
that can be applied to any ML method, by stratifying subsets of the
training data to find the optimal decision threshold without needing to
retrain the model.

Ahmin et al. [8] propose a new taxonomy of classifying threats
based on protocol analysis, traffic analysis, and control process analysis.
This has some overlap with the hybrid anomaly detection strategy
proposed in this paper, by offloading the detection of known threats to
a signature-based IDS, and accomplishes much with low computational
requirements, but the AI model suffers from relatively low detection
rates, which is less than optional for OT networks due to potential
economic and life safety issues.

Ahmed et al. [9] investigate the use of one-class classifiers for
anomaly detection in an CPS, noting that the use of unsupervised
learning can be useful in detection of zero-day or previously unknown
threats, but result in an unacceptably high false positive rate, which
potentially affects the availability of the CPS.

Abid et al. [10] propose that traditional signature-based IDS (Snort,
Bro, etc.) are only effective at detecting known threats, and a cloud-
based distributed IDS can leverage AI/ML by utilizing powerful cloud-
based compute resources that are faster than locally available compute
capacity inside the corporate network. This strategy does provide rapid
AI model training, but still uses AI/ML for all threat detection, rather
than offloading simple threats to a threshold-based detection method.
2

Al-Asiri and El-Alfy [11] take the concept of threshold-based de-
tection and describe how the entire CPS can be modelled as a finite
state machine, codifying a set of rules that interrogate the physical
measurements from the CPS and compare those readings against an
expert system of rules, with readings outside of the defined thresholds
in the expert system defined as an anomaly. This can be considered as
an extreme case of a one-class classifier, by defining a comprehensive
ruleset of all permissible states of the CPS, with anything outside those
states defined as a anomalous.

Altaha and Hong [12] further develop the concept of a rules-based
ML algorithm, but focus on the predictability of specific traffic patterns
between nodes in the CPS, coupled with Deep Packet Inspection (DPI)
to obtain a deeper understanding protocol-specific commands passed
between the sensors and actuators in the CPS. An unsupervised DL
model is proposed to capture and define normal behaviour, but this
approach is protocol-specific, making it difficult to generalize across
the various legacy communication protocols employed in CPS.

Neshenko et al. [13] propose an unsupervised ML model for CPS
running critical infrastructure with life safety concerns, using the CPS
sensor readings and actuator states to generate a one-class model of
normal behaviour for the CPS, classifying any activity outside of the
defined class as anomalous. Neshenko et al. further postulate that
the use of a Generative Adversarial Network (GAN) model to rapidly
learn the normal behaviour of a CPS provides improved efficiency and
accuracy, particularly for complex environments with multivariate data
sets.

Siniosoglou et al. [14] further refine the use of GAN models to de-
velop an IDS for anomaly detection, by encapsulating an Autoencoder
Deep Neural Network (DNN) into the structure of a GAN. By combining
these two DNN, the hybrid Autoencoder-GAN can be used for both
anomaly detection and attack classification, providing richer insight
into threats to the CPS.

Yilmaz et al. [15] propose the use of Transfer Learning to improve
anomaly detection on resource-constrained OT components of a CPS,
by generating intrusion detection algorithms for novel attack types
based on knowledge previously learned in a related problem domain.
The extreme heterogeneity of CPS and rapid evolution of IoT protocols
makes the TL methodology attractive for shortening the time between
novel malicious traffic and first detection.

As-Shabi and Abuhamdah [16] propose the use of Deep Learning for
anomaly detection in IoT environments through the use of long short
term memory (LSTM) algorithm to achieve very high accuracy rates for
true positive detections of known threats, but suffers due to a lack of
training data showing anomalous activity.

Raman et al. [17] propose an anomaly detector based on a Prob-
abilistic Neural Network (PNN) using the popular SWaT data set for
validation. PNN is an interesting variant of neural networks that is
particularly effective in anomaly detection on highly imbalanced data
sets, which is typical for CPS environments. Recognizing that threshold-
based anomaly detection techniques require a detailed understanding

of the physical topology and process flow of a CPS, the proposed
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Fig. 1. Logical workflow of data. The IDS for the IT networks follows the standard
guidelines, using either signature-based or threshold-based anomalies sent to the IDS. In
the OT network, threshold-based anomalies based on immutable physical characteristics
of the CPS are sent directly to the IDS, while behavioural anomalies are detected with
an ML model, and then forwarded to the IDS.

PNN model can achieve higher classification accuracy than other algo-
rithms, by leveraging Bayesian strategies for mapping input variables
to class labels, avoiding the requirement for detailed understanding
of the CPS process flow commonly used for threshold-based detection
methodologies.

Greggio [18] further develops the concepts of probabilistic anomaly
detection with an unsupervised learning algorithm that leverages finite
Gaussian Mixture Models (GMM) to provide a compromise between
classification accuracy and computational complexity. This method is
particularly promising for rapid classification of complex data sets
with high dimensionality, but classification accuracy suffers if the data
distribution between the classes changes over time.

3. Machine learning based anomaly detection in OT networks

CPS have unique challenges with using ML for anomaly detection,
as there is frequently a large amount of available data that shows
normal activity, but a lack of real-world data showing anomalous or
malicious activity [19]. The lack of training data for anomalous activity
has frequently been addressed by the use of artificially generated
research data sets, which have varying degrees of fidelity to real-world
environments.

This lack of available training data containing anomalous activity
can be addressed by the use of one-class classifiers [20], which are
used to recognize all benign activity within a single class, and therefore
drawing the conclusion that any detected activity outside of that class
is anomalous by definition. This is an attractive ML solution, as there
is typically a large amount of training data for benign activity, which
allows the learning model to be trained in a rapid and inexpensive
manner.

This research assumes that the IT network IDS filters all malicious
traffic coming from the Internet or even from potentially hostile com-
puters within the organization. Therefore, the CPS security on the
OT networks must focus solely on unexpected traffic that does not
resemble a threat from the IT network perspective. In this sense, this is
a hybridization of the security models, where the IT security services
and the OT security services cooperate through a divide-and-conquer
approach (see Fig. 1). This scheme helps in reducing the computa-
tional effort that the hardware at the edge must bear in detecting
cyber-attacks.

There are certain anomaly detection classes that this paper will
intentionally avoid using ML for detection. The IT portions of the
CPS are assumed to be already protected by a Host-based Intrusion
Detection System (HIDS), such as an antimalware agent, which employs
3

signature-based detection techniques for known malicious activity, and
threshold-based detection techniques for operational parameters of the
CPS running outside of the defined tolerance limits. This paper focuses
on the OT portions of the CPS, particularly behaviours that can be
modelled with ML.

Certain OT components of the CPS also make use of threshold-
based anomaly detection techniques, especially with regard to the
physical components of the CPS, which will have defined operational
tolerances for physical characteristics such as operating temperature,
pressure, vibration, frequency of actuator duty cycles, etc. The design
tolerances of these physical characteristics are typically based on life
safety regulations that cannot be modified by the operators of the CPS.
Since these characteristics can be considered immutable, they can be
rapidly and accurately validated by a simple threshold-based anomaly
detection strategy, avoiding the time-consuming and costly training of
an ML model for this type of threat.

To contrast, the endpoint devices on OT networks are much more
varied and heterogeneous than on IT networks, which makes accurate
anomaly detection more difficult. To describe that another way, IT
networks are much closer to a monoculture, with large numbers of iden-
tical systems (i.e. Windows, Linux, etc.), while OT networks are usually
very different from organization to organization. This is where we will
use ML to train a model to understand what ‘‘normal’’ behaviour looks
like for the OT portion of the CPS, and alert on anomalous activity that
falls outside the training model.

Moreover, in this study, we assert that the problem of anomaly
detection in CPS must be modelled as one-class problems [21], that is,
problems where the available data are almost completely gathered from
normal operation, implying that there are almost no instances from the
anomaly class. Learning two-class models with this highly unbalanced
data would lead to generating a balanced data set by replicating a
short amount of instances, thereby inducing a bias on the models.
Additionally, it may lead to learning models with poor generalization
capabilities, rendering them incapable of facing cyber-attacks that were
not present in the training data.

However, modelling anomaly detection as a one-class problem leads
to learning a model for normal traffic, which would be easily adaptable
to changes in the operational procedures of the CPS. In this research, we
propose the use of one-class K-Nearest Neighbours (KNN) and one-class
Support Vector Machines (SVM) as candidates for modelling the normal
traffic because they can easily be deployed on computing devices on the
edge. Nevertheless, other more complex modelling techniques, such as
one-class Deep Learning models could be used as well for this task. In
this latter case, not only data transformations can be utilized, but the
network traffic itself can be used directly as the inputs of the learning
model.

To merge the two methods, the OT threshold-based and the ML-
based IDS, we propose using the any-vote ensemble method, where an
alarm due to any of the CPS IDS methods is directly signalled to the
system operator in order to follow the corresponding security response
procedure. Therefore, for the sake of simplicity, in this research we
focus only on the ML part in order to evaluate whether the one-class
approach performs better than the two-class solution or not.

4. Methodology

Threat detection methodologies can be broadly categorized as
signature-based, threshold-based, or behaviour-based. Traditional an-
tivirus programs are an example of a signature-based threat detection
methodology, using a centralized and regularly updated database of
signatures of malicious files or traffic to trip an alarm on an IDS and/or
IPS. Signature-based detection works well on IT networks thanks to
standardized communication protocols and low levels of heterogeneity
but suffers from high levels of false negatives on OT networks due to
their proprietary communication protocols and heterogeneous physical
components.
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Threshold-based methodologies rely on known ranges of acceptable
operation, which are relatively easy to define on IT networks. Examples
of threshold-based threat detections for IT networks include network
link utilization, communication latency, processor utilization levels,
etc. However, OT networks have proven more difficult to accurately
define known ranges of acceptable operation, due to real-world envi-
ronmental fluctuations. For example, a wireless mesh network of air
quality sensors in a smart city environment may have communication
latency impacted by fog or rain, making the thresholds of acceptable
operation differ based on unpredictable weather conditions.

Behaviour-based methodologies are the most difficult to accurately
define on IT networks and are even more challenging for OT networks.
Defining an accurate baseline of normal behaviour on an IT network
requires a thorough understanding of what normal system activity looks
like, and it is rare that IT networks are completely unchanged over their
entire lifecycle, making any definition of normal behaviour a moving
target at best. These challenges are exacerbated on OT networks, which
tend to be even more dynamic due to environmental factors such as
weather-related variations in temperature, humidity, ambient light, etc.
Additionally, the negative impact of a false positive or false negative de-
tection on an OT network has more significant consequences, including
physical equipment damage and life safety concerns.

This study seeks to maximize the strengths and minimize the weak-
nesses of each of the above threat detection methodologies through a
hybrid model that is described in more detail in the following sections.

5. Experiment and results

5.1. Description of the data sets

An assortment of research data sets in the field of anomaly detec-
tion for OT networks already exist (SWaT [22], WADI [23], CSE-CIC-
IDS2018 [24]), but focus heavily on IT networks rather than OT be-
havioural patterns. None of the existing data sets are optimized for one-
class classifier models, and none consider the use of a hybrid anomaly
detection strategy that combines signature-based and threshold-based
anomaly detection strategies with an AI learning model.

For these reasons, a new data set was generated programmatically
using only benign data, and labelled in a semi-automated manner for
loading into the learning model. In this research, we take advantage
of an available CPS installation depicted in Fig. 2. A logical view of
the data collection workflow in the testbed has already been shown in
Fig. 1.

This testbed is based on a scaled-down pilot system for a commercial
greenhouse facility, and each sensor and actuator is accessible via either
ethernet or serial connectivity, which allows for observability of all
components of the CPS. Sensory systems include temperature and soil
moisture sensors and transmitters. Telemetry information from each
of component in the CPS is forwarded to a centralized log collector
for analysis and anomaly detection. Equipment in the testbed can
be broadly classified as resource-rich (personal computers, ethernet
switches, firewalls, etc.), or resource-constrained (sensors, actuators,
microcontrollers, etc.). Single-board computer (SBC) devices such as
a Raspberry Pi and ESP32-based microcontrollers are also used for
emulation of simple sensors and actuators.

These distinctions between resource-rich and resource-constrained
are primarily useful for determining the appropriate method of anomaly
detection. Resource-rich devices are typically able to run a resource-
intensive agent to collect health metrics and operational characteristics,
while the resource-constrained components such as sensors and actua-
tors are often unable to be queried directly, and must rely on passive
observation of network activity to determine their health state.

The data set was generated through direct observation of a proto-
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type/testbed environment using a combination of real and emulated
processes to generate activity on the sensors and actuators. A small de-
gree of randomness was introduced to the observed data to account for
the non-deterministic speed of wifi and ethernet-based communication,
as well as environmental fluctuations such as sunlight for photovoltaic
power generation, and ambient humidity and temperature affecting
the OT components of the CPS. This provided an acceptable range of
behaviour considered normal by the learning model, without being
overly discriminatory for expected environmental fluctuations. The
generated data set includes 2000 instances of normal traffic and 200
instances of potential cyber-attacks. This unbalanced nature of the data
set reflects the actual scenario, where cyber-attacks are intrinsically
rare and, thus, scarce data is available; conversely, normal traffic is
more common by far, although we have included a 10 to 1 ratio
only.

The raw data was then transformed programmatically using min–
max normalization to scale all the data to values between 0 and 1, in
order to avoid features in the data set with larger numerical values from
unduly influencing the learning model.

5.2. Experiment setup

Given the unbalanced nature of the data, anomaly detection must
be modelled as a one-class problem, where the model learns from data
corresponding to the normal class and, when deployed, identifies those
instances that do not belong to this class. To our knowledge, this is not
the common method used in the literature, where the problem is mod-
elled as a two-classes problem. Therefore, a completed experimentation
is designed to evaluate whether one-class modelling performs better or
not than two-classes modelling for the anomaly detection of network
traffic in OT networks. As long as KNN and SVM are proposed as the
one-class models, the same techniques are proposed for the comparison;
therefore, two-classes KNN and SVM will be trained and evaluated to
obtain a fair comparison of the results.

The procedure is shown in Fig. 3. Both the normal traffic and the
anomaly traffic data are downsampled to, on the one hand, keep some
anomaly traffic for the final validation stage; on the second hand, the
downsampling allows us to obtain a balanced data set for training the
two-classes problems. The remaining data not used in the training and
testing of the models is preserved for the final validation stage.

Once the data is downsampled, it is normalized and a 10-fold cross-
validation is carried out independently for the two-classes problem and
for the one-class problem, although the same random seed is used to
obtain the same partitions in each case for comparison reasons. In
the two-classes problem, all the partitions may include normal and
anomaly instances. However, in the one-class problem, the partitions
are prepared only with the normal traffic instances; the anomaly in-
stances are used to measure the performance of the models obtained
for each fold. Interestingly, the normalization for the one-class problem
is determined exclusively with data from normal traffic only.

A final validation stage includes all the data that has not been
used in training and testing; this is an unbalanced data set containing
instances from normal traffic and from anomalies. The aim of this
validation stage is to compare the behaviour of the different mod-
elling techniques included in this comparison, so conclusions could be
extracted.

In order to avoid drawing conclusions from biased data, the whole
procedure is repeated 10 times from the random downsampling to the
final validation stage; the obtained partial results will be aggregated.

To measure the quality of the models the Accuracy, Sensitivity,
Specificity, and the Geometric Mean measurements [25] will be used.
The Accuracy will give some ideas of the performance on the bal-
anced data set, while Sensitivity and Specificity will help in the final

validation stage, where the data will be clearly unbalanced.
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Fig. 2. Schema of the CPS installation used as a prototype for this research.
5.3. Results and discussion

Results from the experimentation are shown in Table 2 for the
cross-validation training and Table 3 for the final validation stage.

To evaluate the experimental results, the accuracy, sensitivity, and
specificity of each model was calculated and compared.

The 1-class SVM model had the lowest accuracy, with 68%. This
model suffered from high false positives (37%) and high false negatives
(32%) due to overfitting from assumptions the model makes about
linearity when the class ratios are unbalanced.

The 2-class SVM model fared better, with 77% accuracy. The true
positive detection was very good (100%), but this model suffers from
high false negatives (18%), which are particularly undesirable for
operators of CPS, as failing to detect actual attack activity can have
significant financial and life safety consequences.

The 2-class KNN model had slightly better accuracy than 2-class
SVM, with 82%. This model also suffers from high false negatives (18%)
due to outliers affecting the decision threshold, although to a lesser
extent than 2-class SVM.

The 1-class KNN model provided the best accuracy (98%), thanks
to its higher tolerance of distribution shift in the ratio of the data set
classes. While accuracy is high, this model does predict excessive false
positives due to overlap in the data points in the unbalanced classes, as
5

well as scarcity of data points in the anomaly class. While false positives
are undesirable, the operators of CPS are much more concerned with
false negatives (i.e. missing a legitimate cyberattack), and this model
does provide the lowest (1%) false negative rate. This supports the
original hypothesis that because attack data for CPS is intrinsically rare,
anomaly detection for Cyber–Physical Systems should be approached as
a 1-class problem.

6. Conclusions and future works

Threat detection in CPS faces unique challenges, with the differ-
ing security postures of IT and OT networks making it difficult to
provide a unified threat detection strategy. This paper proposes a
hybrid methodology that leverages signature-based detection strategies
for known attack patterns, threshold-based detection strategies for im-
mutable properties of the CPS, and the use of one-class ML algorithms
for behaviour-based detection of anomalies.

This paper details experimentation with 1-class and 2-class ML
algorithms against an unbalanced data set, starting from the hypothesis
that because malicious activity in CPS was a very small minority of
the available data set, greater accuracy can be obtained by using 1-
class classifiers to recognize the majority class of benign activity, with
any detected activity outside of the majority class as anomalous. The
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Fig. 3. Experimental setup followed in this research. The normal traffic (green) and the anomaly traffic (red) data are randomly downsampled to balance the train/test data set.
This balanced data set is used for training and testing the collection of models. The remaining data is used in the final validation.
Table 2
Cross-validation results for the 1-Class and 2-Class KNN and SVM models.

Fold 1C-KNN 1C-SVM

Acc Sens Spec GM Acc Sens Spec GM

1 0.9432 0.3750 1.0000 0.6124 0.7500 0.6875 0.8125 0.7474
2 0.9602 0.5625 1.0000 0.7500 0.6875 0.6875 0.6875 0.6875
3 0.9489 0.4375 1.0000 0.6614 0.7500 0.7500 0.7500 0.7500
4 0.9545 0.5000 1.0000 0.7071 0.7188 0.8125 0.6250 0.7126
5 0.9545 0.5000 1.0000 0.7071 0.6250 0.5625 0.6875 0.6219
6 0.9659 0.6250 1.0000 0.7906 0.6562 0.6250 0.6875 0.6555
7 0.9716 0.6875 1.0000 0.8292 0.5938 0.5000 0.6875 0.5863
8 0.9545 0.5000 1.0000 0.7071 0.7500 0.8125 0.6875 0.7474
9 0.9716 0.6875 1.0000 0.8292 0.5938 0.6250 0.5625 0.5929
10 0.9375 0.3125 1.0000 0.5590 0.7188 0.8125 0.6250 0.7126

Mean 0.9562 0.5188 1.0000 0.7153 0.6844 0.6875 0.6813 0.6814
Median 0.9545 0.5000 1.0000 0.7071 0.7032 0.6875 0.6875 0.7001
Std 0.0114 0.1252 0.0000 0.0888 0.0633 0.1102 0.0688 0.0637

Fold 2C-KNN 2C-SVM

Acc Sens Spec GM Acc Sens Spec GM

1 0.8750 0.9375 0.8125 0.8728 0.9062 1.0000 0.8125 0.9014
2 0.9375 0.9375 0.8750 0.9057 0.9062 1.0000 0.8125 0.9014
3 0.9062 0.9375 0.8125 0.8728 0.9062 1.0000 0.8125 0.9014
4 0.8750 0.8750 0.8750 0.8750 0.9375 1.0000 0.8750 0.9354
5 0.8438 0.8750 0.8125 0.8432 0.9062 1.0000 0.8125 0.9014
6 0.8750 0.8750 0.8750 0.8750 0.8750 0.9375 0.8125 0.8728
7 0.8750 0.8750 0.7500 0.8101 0.8750 0.9375 0.7500 0.8385
8 0.9375 0.8750 0.8750 0.8750 0.9375 0.9375 0.8750 0.9057
9 0.7812 0.9375 0.6250 0.7655 0.7812 0.9375 0.5625 0.7262
10 0.8438 0.9375 0.7500 0.8385 0.8125 0.9375 0.6250 0.7655

Mean 0.8750 0.9063 0.8063 0.8534 0.8844 0.9688 0.7750 0.8650
Median 0.8750 0.9063 0.8125 0.8728 0.9062 0.9688 0.8125 0.9014
Std 0.0466 0.0329 0.0804 0.0406 0.0511 0.0329 0.1029 0.0682
6

Table 3
Final validation results for the 4 types of models. TP, TN, FP and FN stand for True
Positive, True Negative, False Positive and False Negative, correspondingly.

Method Acc Sens Spec GM TP TN FP FN

1C-KNN 0.9782 0.4500 0.9897 0.6673 0.0096 0.9686 0.0101 0.0117
1C-SVM 0.6803 0.6250 0.6815 0.6526 0.0133 0.6670 0.3117 0.0080
2C-KNN 0.8191 0.9250 0.8168 0.8692 0.0197 0.7995 0.1793 0.0016
2C-SVM 0.7734 1.0000 0.7685 0.8766 0.0213 0.7521 0.2266 0.0000

experiment results supported that hypothesis, with the KNN algorithm
being the most robust, due to its higher tolerance for unbalanced data
sets.

Future works include continued investigation into increasing accu-
racy through the use of more complex learning models, including GAN
for large and heterogeneous environments, decision threshold tuning to
minimize misclassification in unbalanced data sets, and further devel-
opment of complementary detection methodologies that combine ML
algorithms for OT networks with signature-based and threshold-based
detection strategies for the IT components of CPS.
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