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H I G H L I G H T S

The approach integrates incremental capacity analysis with a Transformer-based model.
The self-attention mechanism identifies most relevant changes in data through cycling.
The model estimates degradation modes and early detects knee points.
The method outperforms state-of-the-art approaches in degradation modes diagnosis.
Results are validated on synthetic data and real data from commercial batteries.
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A B S T R A C T

Accurate diagnosis of lithium-ion battery (LIB) degradation is critical for safe and reliable operation in real-
world applications. In recent years, data-driven approaches powered by Machine Learning algorithms emerged
as a promising solution, among which Deep Learning methods were proven to be effective for various tasks
such as State of Charge and State of Health estimation and Remaining Useful Life prediction, however,
their application for knee point estimation is still at an early stage. While experimental techniques, were
demonstrated to be successful for detecting knees, current methods focus on tracking individual cycles rather
than analyzing the overall trajectory of degradation, which could potentially offer better performance. In this
paper, we introduce ICFormer, a novel Deep Learning model based on a Transformer encoder that leverages
self-attention on the evolution of incremental capacity curves to accurately identify relevant changes in LIB
degradation trajectories. The proposed model not only detects knees, but also anticipates them while also
outperforming state-of-the-art approaches in diagnosing degradation modes. The effectiveness of the model is
validated using both synthetic and experimental data. We demonstrate that the method can provide valuable
knowledge on the factors contributing to capacity loss and offer advanced insights for battery management
and predictive maintenance strategies.
1. Introduction

Lithium-ion battery (LIB) lifetime requirements are becoming in-
creasingly challenging to accelerate decarbonizing energy systems such
as stationary energy storage and electric vehicles [1–3]. As these sys-
tems are used and designed for a vast range of applications worldwide,
their batteries will exhibit performance losses that are path-dependent
and influenced by the usage conditions (e.g., temperature, power rates,
duty cycles, etc.) [4–6]. As a result, LIBs can exhibit degradation
trajectories that are linear, sublinear, or superlinear, with the latter
being commonly referred to as a ‘‘knee’’ curve [7–9]. The accurate
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modeling and prediction of knees present notable challenges necessi-
tating a dedicated and comprehensive framework since, as highlighted
in a recent review by Attia et al. [9], knee ‘‘pathways’’ are intrinsically
linked to the battery degradation mechanisms. Thus, degradation iden-
tification must serve as a key initial stage in detecting and mitigating
the formation of knees to ensure optimal performance and longevity of
LIBs. This feature is lacking in most knee detection methods proposed
so far in the literature [9–15].

To date, several approaches have been proposed to estimate battery
degradation mechanisms, ranging from simple empirical models to
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more sophisticated data-driven and physics-based methods. Physics-
based models were developed to describe the behavior of LIBs based
on physical principles and parameters [16,17]. Despite their advan-
tages, these approaches require accurate knowledge of the parameters
and assumptions used in the models, which is challenging to obtain
in practice without significant experience and experiments. For di-
agnosis purposes, a potential workaround is to focus on degradation
modes rather than mechanisms and to use a mechanistic electrode
model [18,19] for high-fidelity emulation of the voltage response of an
aged cell to the detriment of stress specific information. Data-driven
approaches rely on data collected from LIBs to train models that can
make predictions about battery behavior [20]. These approaches do
not require a priori knowledge of the parameters used in physics-based
models and can be trained using large amounts of data to provide
accurate predictions [21]. They are also well-suited for online applica-
tions because they can be implemented in real-time without the need
for extensive upfront planning or modeling. Within the data-driven
approaches, Machine Learning (ML), and specifically Deep Learning
(DL) approaches are becoming more prominent. In particular, Recur-
rent Neural Networks (RNN) or Convolutional Neural Networks (CNN)
have been proposed to estimate SOH [22,23], predicting remaining
useful life (RUL) [24,25] and quantify degradation modes [26,27].
However, the application of DL methods for knee investigation is still
at an early stage [9,28], although some promising works are starting
to emerge. In [29] the authors introduced a RNN-based S2S (sequence-
to-sequence) method for predicting the whole degradation trajectory
of capacity till the end of life using 100 cycles of data. In [30] the
knee point detection was modeled as a classification problem, where
each training sample belongs to the positive class if it happens before
the knee point, and to the negative if it is after. Then, they employed
recurrent neural networks trained with synthetic data for detecting the
knee. In [31] a CNN-based model was proposed to extract temporal
features from time-series data under variable battery usage to predict
the number of cycles left to reach the knee-point. In [10] the complete
degradation curve is estimated using the data of the first cycle with the
help of a CNN.

Although existing DL approaches for knee detection represent a
valuable advancement in the field, they often fall short in providing a
comprehensive understanding of the internal degradation mechanisms
of the battery, which are essential for unraveling why knees occur.
Moreover, many of these methods rely on common variables such
as current, voltage, or temperature as inputs for their models. While
these variables offer insights, they may not provide the depth and
precision needed for an efficient performance. To shed light on this
issue, it is imperative to delve deeper into the degradation trajectories,
which are currently categorized into knee ‘‘pathways’’ [9]. Some of
these pathways are linked to different combinations of the battery’s
degradation modes, i.e., Loss of Lithium Inventory (LLI) and Loss of
Active Material (LAM) [18,19] for which some could be ‘‘hidden’’ or
‘‘silent’’ and associated with little or no capacity loss until becom-
ing prominent [9,18]. Therefore, the detection of knees under these
pathways cannot be achieved without careful evaluation of cell-level
electrochemical signals. This can be done using tools like the Incremen-
tal Capacity Analysis (ICA), a technique that has been proven successful
in quantitatively estimating degradation modes in most available LIB
chemistries [32]. Since ICA relies solely on the voltage response of
the cell, it is implementable in deployed systems without the need for
additional sensors. It is also highly automatable and is therefore a good
candidate for integration with ML and DL approaches and for knee
points prediction.

However, the applicability of ICA for DL is limited by the nature
of the battery testing data. Typically, the data for ICA analysis is
obtained during Reference Performance Tests (RPTs) carried out at
different stages of the battery cycle-life [32,33]. Although the data
is sequential, there is not a single data point for each RPT as would
occur in a typical time series, but a series of points representing the
2

Fig. 1. Normalized battery capacity plotted against the reference performance test
(RPT) number, where each RPT provides an individual incremental capacity (IC) curve
throughout the battery cycle-life. It is important to note that while a typical time
series have a single data point for each variable at each time step, IC analysis yields
a complete curve representing the incremental capacity versus cell voltage evolution.

IC curves versus cell voltage evolution, as illustrated in Fig. 1. As a
result, the use of DL algorithms for sequential/time series data analysis
like RNNs is constrained since they are not designed to support this
kind of data. Instead, current ML methods for analyzing the evolution
of IC curves rely on independent diagnostics at each RPT (this would
be equivalent to diagnosing each data point independently in a regular
time series) [34–37], which are combined to obtain the final diagnosis,
rather than analyzing the complete degradation trajectory [26,37].
While this approach is valid, independent diagnostics do not rely on
previous data which can lead to some inconsistencies. Besides, since
the models learn the signature of each IC curve their performance can
vary on real data due to cell-to-cell variations as their signature may
not match exactly [38–40]. In contrast, analyzing the evolution of the
IC curves as a whole offers the opportunity to model the temporal
changes of the IC curves, rather than their own signature, which may
be less prone to errors. To the best of our knowledge, despite its
potential advantages, this specific aspect remains unexplored in current
literature.

Modeling the evolution of IC data over time could potentially be
undertaken by novel models capable of processing multidimensional
data effectively, like the Transformer. Transformers [41] are a type of
neural network that have emerged as revolutionary in sequential data
analysis because of their ability to capture long-term dependencies in
the data with the self-attention mechanism that enables the model to
selectively focus on different parts of the input sequence and weigh
their importance. Also, because unlike RNNs, they can process data
in parallel rather than sequentially and handle different types of data,
making them broadly applicable to fields such as language modeling,
computer vision and audio processing [42,43]. Although Transformers
offer significant promise for analyzing battery degradation, they heav-
ily rely on the availability of large, diverse and precise datasets. In
this regard, most available data are limited to small training datasets
(e.g., Oxford [44], NASA [45] or CALCE [46]) consisting of cells tested
under limited unrepresentative conditions and where capacity loss is
mostly linear. This is far from the big amounts of data needed to
make these approaches accurate in deployed systems. Steps in the
good direction were made with the availability of different larger
databases [47,48] and with the emergence of synthetic data [35,49]
computed from high-fidelity models. Therefore, given the current data
availability, it is most likely that the best chance for training DL models
is to rely on synthetic training datasets [49].

Herein, we introduce ICFormer, a novel approach that integrates
ICA with a Deep Learning model for informed battery diagnosis and
early detection of knees. Contrary to previous works on ICA that
analyze each IC curve independently we propose a Transformer archi-

tecture that learns to focus on the most relevant changes in the IC
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curves throughout the complete degradation trajectory. The resulting
model addresses diagnosis through degradation modes quantification
and prognosis by forecasting the occurrence of future knee points.
The model was trained on the HNEI synthetic prognosis dataset [49],
and was validated on both synthetic and experimental data. Addi-
tionally, the model’s performance was compared with state-of-the-art
ML approaches, demonstrating its improved ability to quantify battery
degradation. Overall, the approach presented here shall provide a
promising solution for improving the performance and longevity of
battery systems in real-world applications.

2. Relationship between degradation modes and knee pathways
in lithium-ion batteries

Degradation mechanisms in LIBs are numerous and complex, with
a multitude of different mechanisms induced by the complex inter-
actions between physical and chemical processes [50,51]. Because of
path dependence [7–9], it is well known that each deployed LIBs will
experience a unique mix of these degradation mechanisms, of which
some could create a pathway where a knee could occur [9,52,53].
While some knee pathways are still hypothetical [9], some are well
understood and are known to showcase identifiable changes on the
cell’s electrochemical response [18]. Among those are the two induced
by the loss of active material on the negative and positive electrodes
(LAMNE and LAMPE, respectively). These degradation modes are, for
graphite-based cells, referred to as ‘‘silent’’ or ‘‘hidden’’ because they do
not induce capacity loss in their initial stages, even if cell degradation is
taking place [18,19,32]. Nonetheless, when either LAMs is high enough
to change which electrode is limiting, either at the end of charge or end
of discharge [32], it will eventually play a role in capacity loss, leading
to knee points in the cell’s trajectory either directly in the case of LAMPE
r indirectly via irreversible plating for LAMNE [9,32].

Fig. 2 illustrates the relationship between the degradation modes,
heir silent nature, and their impact on capacity and cell electrochemi-
al response for three case figures with (a–c) LLI > LAMs, (d–f) LAMPE

LLI, and (g–i) LAMNE > LLI. The figure presents the simulations for
/25 charges of a graphite/lithium iron phosphate (LFP) cell performed
sing the ’alawa toolbox mechanistic model [18]. The top row (a,d,g)
howcases individual electrode evolutions, the middle row (b, e, h)
he associated capacity loss and the bottom row (c,f,i) the evolution of
he IC signature. When pristine, commercial LIBs exhibit an excess of
elative capacity for each electrode outside the full cell voltage window,
dentified as the initial offset OFSini and the NE excess (NEex) [32].

OFSini is induced by the lithium consumption during formation of
the solid electrolyte interphase (SEI) upon the first cycles [54,55]. In
addition, since the electrode matching in the mechanistic model is
done after SEI formation, this approach accommodates to diverse cell
manufacturing processes, including novel prelithiation strategies [56,
57]. As for the NE excess, it is the result of standard manufacturing
practices consisting in oversizing the NE to ensure its counterpart with
the whole PE surface to avoid lithium plating [58,59]. These excesses
of relative capacity can be seen as a ‘‘buffer’’ that allows the electrodes
to sustain a certain amount of active material loss before reaching the
voltage window of the full cell and causing direct capacity fade [18,32]
initially and a knee later on. The rate at which this buffer is consumed
is related to the composition of the degradation. For example, when LLI
is the main degradation mode (i.e., LLI > LAMPE and LLI > LAMNE, see
Fig. 2a), the overall slippage of the NE is larger than the PE’s shrinkage
caused by LAMPE, so its effect will never catch up on the full cell.
As the NE’s shrinkage rate is smaller than the slippage (i.e., LAMNE
< LLI) the NE will be shifted towards higher relative states of charge
without affecting the full cell voltage window, and the capacity loss
under these conditions will be solely caused by the effect of LLI, not
producing any knee in the cell trajectory (Fig. 2b). However, when
LAMs are larger than LLI (i.e., LAMPE > LLI and LAMNE > LLI), see
3

Fig. 2(d,g), the rate at which the electrodes shrink is larger than the
NE’s slippage rate. Initially, full cell capacity fade is only caused by
LLI because of the excess of relative capacities. Eventually, there is a
change in the limiting electrode and the LAMs become active within the
cell voltage window and they start to play a role in capacity fade [32].
This is illustrated by a star in Fig. 2(d,e,g,h). From this perspective,
it can be stated that knees generally occur when LAM > LLI, whereas
if LLI is the main degradation mode, LAMs remain silent in terms of
direct capacity loss on the full cell regardless of whether LLI’s and
LAM’s evolution are linear or nonlinear. For clarity, while LAMPE could
induce direct capacity loss, LAMNE cannot if plating is possible in the
considered potential window. When LAMNE > LLI, plating will eventu-
ally occur and only its irreversible part will contribute to capacity loss
as LLI [32,53,60]. Additionally, we should note that if LLI exhibits an
exponential evolution, its rate of capacity loss will be directly reflected
in the capacity evolution.

Although LAMs do not cause direct capacity loss at the beginning,
they do have a traceable impact on the cell’s electrochemical response.
To track these changes, the IC technique can be used, as shown in
Fig. 2(c,f,i). The arrows indicate the main features of interest (FOIs)
that are used to evaluate each of the dominant degradation modes
(i.e., LLI, LAMPE and LAMNE). LAMPE induced capacity loss will always
be accompanied by the gradual disappearance of peak 5 and the
reversible part of the plating will infer a new peak 0 at high voltage.
Those interested in the IC technique coupled with the expert-designed
FOIs in graphite/LFP systems to track degradation modes can refer to
previous works [32,61–64] for detailed insights. These indicators allow
for knee prediction [60] and this emphasizes the potential of using
the IC curves to link silent degradation modes and sensitive features
(i.e., FOIs) to identify knee trajectories.

The aim of this work is to develop a model that analyzes temporally
the changes in the IC curves and associates them with the current
or future presence of knees. To do so, it is necessary to first identify
and label knee occurrences within the data. While some methods for
knee detection were proposed in the literature [65–67] we elected to a
custom one to take full advantage of the information available within
the synthetic datasets with the capacity loss and the evolution of the
different degradation mode per cycle. The algorithm first checks on the
linearity for the capacity loss. For the non-linear duty cycles, a second
check is done on the degradation modes to decipher if a knee was
present or not, and if that knee was anticipable (i.e., resulting from
the interaction between modes and not from a superlinear behavior).
The latter is a unique aspect of our work that cannot be obtained from
any other methods to the best of our knowledge. More details on the
procedure and the algorithm itself are provided in Appendix A.

It is important to note that this represents an initial approach to
addressing the problem, and further exploration is required in future
work to refine the methodology and address any potential bugs or
limitations.

3. Methods

Transformers are responsible for great advances in AI in recent years
such as GPT [68], GATO [69], ALPHAFOLD [70], or DALL-E [71],
however, they have just started to be explored in the battery field.
This can be due to data scarcity, as explained in the introduction,
since Transformer models require training with significant amounts
of data in order to generalize well to a wide range of task and/or
scenarios, yet data availability in the battery field is still a limitation.
Additionally, the focus on natural language processing (NLP) and image
recognition applications may have led researchers to overlook the po-
tential of Transformers in battery technology. Nevertheless, there have
been recent work in which Transformer encoders were trained for SOH
prediction and RUL estimation (RUL) [72,73], and where researchers
explored the use of an encoder–decoder Transformer for aging-aware
battery discharge prediction [74] and for SOC/SOC estimation [75,76],
however, these works make use of variables different that IC curves
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Fig. 2. Examples of the relationship between battery degradation modes on half-cell perspective (panels a, d, g), their impact on capacity loss (panels b, e, h) and the resulting
incremental capacity curves (panels c, f, i). The half-cell representation illustrates the silent nature of the degradation modes, where the star represents the knee onset. Knees in
capacity trajectory occur when LAM > LLI (panels d–i), while LAMs remain silent if LLI is the dominant degradation mode (panels a–c).
Fig. 3. Examples of the application of attention for text and IC curve analysis, in which the resulting scores will allow paying attention to the most important parts of the sequence
to be analyzed.
such as current, voltage and temperature and are not intended for knee
detection or degradation modes estimation. In any case, as more data
becomes available, it is likely that we will see more applications of
Transformer-based models in battery technology in the future.

Transformers originally emerged as an alternative to RNNs for text
processing to solve the problems of memory collapse and sequential
training, for which attention and positional encoding were proposed as
components of the architecture [41]. The attention mechanism allows
the model to focus on the most important parts of the input sequence
regardless of their position, which enables processing very long data
sequences without losing information. For text, the key idea behind
attention is that each word in a sentence can be related to all other
words and that the strength of these relationships can be learned by
the model. This allows the model to capture complex relationships
between words that may be far apart in a sentence and to effectively
encode long-term dependencies. The upper part of Fig. 3 shows a
simple example of the attention mechanism for text. Each word has
an associated attention score (see Appendix B for more details on
how attention is calculated), which is represented by the intensity of
the color, with white being the lowest score and black the highest.
Thus, attention is placed on words that are relevant to the context like
‘‘animal’’, or ‘‘tired’’ and not so much on other less important such as
‘‘the’’ or ‘‘was’’.
4

Although Transformers were initially oriented to text processing,
they have been adapted to deal with different types of data and mul-
tiple dimensionalities. This have been made possible by the positional
encoding layer, which allows to process all the information at once. The
layer receives a sequence of data and provides positional information
for the model to know the order of the data. In the case of text, different
sentences are fed to the model, they are given a positional encoding and
the resulting information is fed to a Transformer block, which contains
the attention mechanism. In [77], the authors proposed to decompose
images into multiple parts and treat them as a sequence. This sequence
of sub-images, also called ‘‘patches’’, was then passed to the positional
encoding layer to give the model information about the order between
the different parts and then to a standard Transformer. Recently, this
approach has also been investigated in time series processing. In [78],
the authors divided time series data into different parts or patches and
fed that to the positional encoding layer and to a standard Transformer.
In layman’s term, a good analogy could be to see the encoding process
as the creation of a stop-motion film from events that occurred at
different times.

As discussed in the previous section, the analysis of evolution of
the IC curves along cycles is a substantially more complicated task
than the analysis of common variables such as current or temperature
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Fig. 4. Pipeline of the proposed solution. First, the IC curves are processed through a positional encoding layer for giving a sequential order to the input data. Then, the processed
data is fed to 𝑁 encoder layers whose output is passed to two independent MLP layers, one for the identification of knees and the other for quantification of degradation modes.
because they do not form a typical time series but a sequence of curves
(Fig. 1). Analogously to the aforementioned works where images or text
were divided into different parts/patches, in our problem the battery
degradation histories are already divided into different patches, the
RPTs, where each patch has a corresponding IC curve. As a result, the
full set of curves obtained during RPTs could be fed to a positional
encoding layer and subsequently to a Transformer encoder, which
contains the attention layers. The bottom of Fig. 3 shows how this could
be adapted to IC curves. The peak marked in red loses height while
the others remain intact, so the model will pay more attention to that
part of the curve to identify where the changes have occurred. That is,
the model will place more focus on peaks that change during battery
cycling to model the degradation state of the battery.

3.1. Model

The main components of the model are illustrated in Fig. 4. First, IC
curves obtained from a set of cycling conditions are fed to a positional
encoding layer. The resulting representation is then processed by a
traditional Transformer encoder, which is actually made up of several
stacked encoders containing the attention layers (the reader can refer
to Appendix B for specific information on the encoder implementation).
The encoder output contains information that eases the resolution of
other subsequent tasks, which in this case are the identification of
knees in capacity loss and the quantification of degradation modes.
For this, the encoder output can be processed by simpler models such
as multi-layer perceptrons (MLPs). An MLP with a sigmoid activation
function is used to predict whether the battery is undergoing a knee or
a silent degradation that eventually leads to a knee (gray block) and,
equally, another MLP with a linear activation is used to predict the
three degradation modes: LLI, LAMPE, and LAMNE (blue block).

It is noteworthy mentioning that not only the IC curves can be
fed to the model but also other available variables such as current,
temperature, or resistance. The methodology for incorporating new
variables is direct, instead of feeding the complete sequences, they are
divided into as many parts/patches as IC curves have been fed to the
model, which we will explore in future work.
5

3.2. Experimental design

The data used for this work is the LFP HNEI synthetic publicly
available prognosis dataset, which is composed of more than 125,000
duty cycles at C/25 charges [49]. It includes capacity and voltage at
most every 200 cycles for each duty cycle, from which the IC curves
were calculated. The synthetic thermodynamic C/25 data provided at
cyclical intervals effectively replicates the information that would be
available from RPT datasets. An added benefit of synthetic data is
its ability to represent any conceivable battery degradation scenario
that could take during the duty cycling scheme, including different
linear degradation rates, linear degradation combined with exponential
variations, or delayed exponential increases. The resolution of the data
is originally 1001 points over the voltage window. In order to avoid
processing very long sequences, the resolution was downscaled to a
point every 2.3 mV per IC curve using a 1-D monotonic cubic interpola-
tion with the Scipy Pchip Interpolator [79], resulting in curves of 128
points. This is similar to what was used in our previous work where
this data reduction was shown to have no impact on peak position,
intensity, nor shape [37] and it thus kept the main FOIs intact while
limiting the curve size.

Since each duty cycle undergoes different degradations, the end of
life of each sample can be reached at different stages, which means that
the size of the overall samples is variable. Although Transformers can
deal with sequences of varying size, it is known that they work best
if all samples have the same length, as this allows for efficient matrix
multiplication and parallelization [41]. To mitigate this issue, a fixed
sequence size was used with a sliding window approach to cover the
entire length of the duty cycles. For each duty cycle within the dataset,
the curves were sampled every 800 cycles, i.e., data are taken first for
cycles 0 to 800, then 200 to 1000 and so on until the end of the life,
as shown in Fig. 5. The 800 cycles width was chosen based on this
particular dataset (200 cycles resolution and little failed cells at cycle
800) and this will need to be adjusted for other datasets. Windows that
contained exactly the same IC curves were discarded in order not to
repeat data. The resulting samples constitute the training set, which
was composed of 293,286 samples from the original 125,000+ different
duty cycles. This data augmentation via the sliding window approach
also reinforces the analysis of degradation patterns that can help the
algorithm to better model the battery behavior.
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Fig. 5. Sliding window on the IC cycling history for one duty cycle. A window size of 800 cycles is applied, in which the first sample extracted would be the history from cycle
0 to 800, the second from 200 to 1000, and so on.
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A standard training/validation/test split protocol was followed to
evaluate the performance of the model. 70% of the 293,286 training
samples were used to train the model and optimize its parameters
while the remaining 30% were used as the validation set. The test set
comprised the three virtual cells introduced in our previous work [37].
These virtual cells were specifically designed to differ from the original
dataset’s cell configurations, thus mitigating the risk of overfitting. In
total, 1000 synthetic duty cycles were generated for three distinct cell
configurations denoted as C1, C2, and C3 covering a wide range of
degradation levels. The parameters used to generate the data in the
’alawa toolbox can be seen in Table 1.

For each sample in the training set, the model is trained to identify
whether it has or will have a knee and to quantify the 3 modes of degra-
dation (LLI, LAMPE and LAMNE). The information on the degradation
modes is already included in the original dataset while the information
on the knees is obtained as a result of applying our custom algorithm,
as explained in Section 2. The metrics chosen to optimize the model
are the binary cross entropy loss for knee identification, as it is a
classification task, and the Mean Squared Error loss for quantification
of degradation modes, as it is a regression task. The model was trained
to satisfy both objectives therefore the error function to be minimized
is the equal sum of both:

 = − 1
𝑁

𝑁
∑
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𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)
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binary cross-entropy
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𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mean Squared Error

The validation set was used to fine-tune the hyperparameters, which
mainly affect the number of encoders and the number of neurons in the
MLP layers (see Appendix B for more details). A grid search approach
was used for hyperparameters search, where we defined a range of
values for each hyperparameter and then trained and evaluated the
model for each combination of hyperparameter values, from which
the best combination was selected to determine the final model. In
addition, to achieve the optimal models’ performance, an early stopping
procedure was used to relegate the training stop condition to the valida-
tion error instead of the number of epochs. Once the hyperparameters
were optimized, we evaluated the performance of the model with the
best set of hyperparameters on the test set. The WandB framework [80]
was used to track all the process.

The test set enabled to thoroughly assess the diagnostic capabilities
of our model in accurately quantifying degradation and providing
prognostic insights regarding knee anticipation. This approach enabled
us to evaluate the model’s performance on unseen data and ensuring
the generalizability of our findings.

4. Results and discussion

To comprehensively evaluate the performance of the proposed
model, this section is structured in three parts. The model’s workflow
to predict knees and estimate degradation modes will be discussed first.
Second, the numerical results for knee identification and degradation
6

s

Table 1
Details about virtual test sets. Three cells, labeled as C1, C2, C3, were generated using
the ’alawa toolbox for each chemistry. The values of LR (Loading Ratio) and OFS
(offset) with which they were generated are included. Parameters used for the training
data are also added to highlight the differences with respect to the test sets.

Training data C1 C2 C3

LR OFS LR OFS LR OFS LR OFS

LFP 0.95 12.5 0.96 11.5 0.94 12.5 0.95 11.5
NCA 1.05 1.5 1.06 0.5 1.04 2.5 1.05 0.5
NMC 0.90 10 0.91 9 0.89 11 0.90 9

odes estimation will be presented with a comparison with state-of-
he-art approaches for the latter. Finally, a detailed case study using
xperimental data from commercial batteries to provide a real-world
alidation of our approach will be provided.

.1. Validation of model workflow

To validate the model workflow, Fig. 6 provides an illustration
f knee prediction and degradation modes quantification using four
epresentative scenarios selected from the 125,000 synthetic duty cy-
les dataset used to train the model. The scenarios correspond to
ifferent predominant compositions for the degradation: LLI > LAM,
AMPE > LLI, LAMNE > LLI, and LLI∼LAMNE. Using the entire IC
urve history (Fig. 6, left column), the model analyzed every 800-cycle
indow and predicted the presence of knees with an assertive, simple

abel (i.e., ‘‘YES’’ or ‘‘NO’’), Fig. 6, central column. It is important to
emember that capacity loss was not used as an input for the model nor
as it part of the predictions. It is shown in Fig. 6 center column for

llustrative purposes only. Finally, the model provides a quantitative
stimation of the evolution of the degradation modes Fig. 6, right
olumn.

The first degradation scenario (LLI > LAM) is shown in the first row
f Fig. 6. By analyzing the IC curves, the model did not predict any
nee appearance throughout cycling, as indicated by the label, ‘‘NO’’.
he primary degradation mode predicted by the model is linear LLI,
ith a degradation rate that matches that of the normalized capacity.
his indicates that both LAMs remain silent in terms of capacity fade,
nd all capacity loss is directly caused by LLI. The second degradation
cenario (LAMPE > LLI) is shown in the second row of Fig. 6. Based
n the evolution of the IC curves in the first 800 cycles, the model
ccurately predicts that a knee will appear at some point during cycling,
hich is the case at cycle 1200. The predicted degradation modes

eveal a higher rate of LAMPE, which initially remains silent before
ventually catching up to create a knee in the capacity trajectory. The
hird degradation scenario (LAMNE > LLI) is shown in the third row of
ig. 6. While the algorithm does not immediately identify the knee, it
s detected in the window corresponding to cycles (400–1200), before
he knee takes place. In this scenario, LAMNE initially remains silent
efore catching up to cause direct capacity fade. The last degradation
cenario (LLI∼LAM ) is shown in the fourth row. Contrary to the
NE
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Fig. 6. Model performance in four representative degradation scenarios. The left column shows the IC curves to be analyzed and the two adjacent columns show the model
redictions: knee identification and estimated degradation modes. The model predictions are made for each 800-cycle window every 200 cycles, so the intensity of the red/green
olors is only due to the overlap of each prediction window, for example from cycles 200–600 of the first window from 0 to 800 and the second from 200 to 1000. In the case
f degradation modes, the final predictions are shown, which are taken as the average of predictions in the overlapping windows. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
revious scenarios, in this example, the algorithm does not predict
he knee appearance until it already takes place. The model predicts

similar degradation rate for LAMNE and LLI during the first 2000
cycles. Since both degradation rates are similar and there is no knee
in capacity evolution, this is an indication that capacity fade is caused
by LLI while LAMNE and LAMPE remain silent. However, at cycle 2200
a sudden increase of LLI takes place, rapidly surpassing the degradation
rate of LAMNE. As LLI is producing direct capacity fade and does not
nduce any silent incubation, the model cannot predict this sudden
hange of LLI rate, yet still provides an indicator that a knee is taking
lace. Additional examples on the training data illustrating the impact
f degradation modes at different cycling stages on the emergence of
nees and their relation to degradation modes can be found in Fig. D.8,
nd the model’s performance using real experimental data will be
resented in Section 4.3.

.2. Numerical results

In order to test the performance of our approach, the diagnosis
ccuracy was tested versus five state-of-the-art methods. The methods
ested in this study were the same that were used in our previous
ork [37,81] with a Random Forest Regressor [82], a 1D Convolu-

ional Neural Network (1DConv) [35], a Feed-forward Neural Network
FNN) [36], and our Dynamic Time Warping Convolutional Neural
etwork (DTW-CNN) [37]. More details on the methods can be found
7

n [37], which are publicly available. These five methods are only
intended to predict degradation modes and do not directly provide any
information on the existence of knees. To the best of our knowledge,
there is no other model that enables both simultaneously.

Table 2 presents the diagnosis accuracy in terms of RMSE for
the quantification of the three degradation modes at five different
cycles (200, 400, 600, 800, and 1000) for the 1000 duty cycles of
the three test cells C1, C2 and C3. The best performing method for
each degradation mode is highlighted in bold. Our method exhibits
a more evenly distributed dispersion among the different degradation
modes, which is also noticeable in the standard deviation (see Table 3).
Notably, our model demonstrates superior diagnosis performance with
an average error of 2.33% versus errors from 3.12 to 6.85% for the
other approaches. This highlights the effectiveness of our model in
accurately predicting degradation modes by analyzing the evolution
of the IC curves. Specifically, it is worth noting that predicting LAMPE
in graphite/LFP systems with the other methods presents unique chal-
lenges because the flat voltage response of LFP results in almost no
discernible peaks on the IC curves [32], making the detection of LAMPE
more difficult. Additionally, the intrinsic stability of LFP [83] further
contributes to this challenges, as any potential degradation in such
stable systems tends to be relatively small and therefore, difficult to
determine. However, this is not the case for the ICFormer. This phe-
nomenon is directly attributed to the difference between analyzing the
history of IC curve patterns and analyzing their individual signatures.
When curves are analyzed independently there is a risk of prediction
errors, which may penalize one mode and favor others (in this case

LAMPE over LLI and LAMNE), because different degradation modes may
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Table 2
RMSE results for each degradation mode and cycle for the tested cells.

LLI LAMPE LAMNE

RF
C1 3.62 3.23 5.28 7.02 9.21 3.15 5.16 7.06 8.26 9.13 3.82 6.24 9.36 10.39 11.83
C2 3.64 3.14 5.22 7.03 9.22 3.17 4.97 7.30 8.42 9.79 3.82 6.38 8.99 10.31 11.55
C3 3.62 3.20 5.19 7.10 9.13 3.15 5.07 7.22 8.27 9.37 3.82 6.18 9.18 10.30 11.66

FNN
C1 1.82 1.67 2.31 3.26 3.91 3.28 3.58 5.51 8.09 11.11 2.10 2.15 2.80 4.34 6.31
C2 1.81 1.55 2.25 3.08 3.67 2.73 3.46 5.54 8.30 11.32 2.77 2.35 2.85 4.31 6.19
C3 1.68 1.73 2.39 3.35 4.02 3.52 3.78 5.65 8.27 11.31 2.64 2.44 2.93 4.38 6.37

1DConv
C1 1.06 1.68 2.39 2.87 3.21 2.80 3.38 5.10 7.49 10.73 1.71 2.83 4.01 5.04 6.60
C2 1.11 1.62 2.25 2.68 3.15 2.62 3.50 5.21 7.72 10.85 2.36 2.86 3.85 4.88 6.58
C3 0.96 1.75 2.40 2.91 3.35 2.95 3.44 5.17 7.60 10.86 2.07 2.93 3.92 4.96 6.61

DTW-CNN
C1 1.16 1.31 1.59 2.28 2.47 2.67 3.59 4.90 6.40 8.64 1.98 1.93 1.87 2.51 3.86
C2 1.18 1.32 1.55 2.00 2.15 3.22 3.92 5.19 6.63 8.89 1.11 1.41 1.82 2.62 4.01
C3 0.95 1.12 1.45 2.20 2.58 2.72 3.67 5.10 6.45 8.63 1.43 1.64 1.73 2.41 3.94

ICFormer
C1 1.05 1.11 1.29 1.61 2.27 1.40 1.70 2.42 3.25 4.18 1.74 2.13 2.65 3.29 4.14
C2 1.00 1.06 1.23 1.54 2.19 1.35 1.72 2.54 2.48 4.49 1.83 2.32 2.94 3.70 4.70
C3 1.03 1.08 1.25 1.58 2.27 1.52 1.77 2.46 3.29 4.22 1.87 2.32 2.91 3.65 4.61

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Table 3
RMSE results summary calculated as the average and the standard deviation of
predictions in all cycles for all cells.

RF FNN 1DConv DTW-CNN ICFormer

Mean ± std 6.85 ± 1.31 4.20 ± 1.95 4.0 ± 1.86 3.12 ± 1.97 2.33 ± 0.8

result in similar IC curves or because the same degradation modes may
have different effects depending on the cell configuration. An example
of this limitation is provided in Appendix D.

It is worth noting that while these methods aimed to quantify the
different degradation modes, they did not directly address knee predic-
tions. While some methods attempting to predict knees are available
in the literature, they are not directly comparable to our approach.
For instance, the methods proposed in [7,66,67] necessitate the entire
capacity loss trajectory, which differs from our approach of predicting
them online. Other recent studies, such as [84,85] predict the capacity
trajectory, which may be associated with the occurrence of knees. Oth-
ers [10] combine knee identification with complete degradation curve
estimation to achieve similar results. However, these approaches do not
encompass any classification task nor address the online anticipation of
knees. The data associated with the 1000 cycles of the three test cells
included in this work could be used as a benchmark dataset for future
methods to be compared against. For the approach proposed herein,
precision, recall and F1-score are provided in Table 4 (see Appendix C
for a detailed description of the metrics). The test cell data was divided
into two classes with on one side the knee-less samples and on the other
the samples with knees. The precision for the knee-less class indicates
that the model 95% of the time was accurately predicting its absence.
For the knee class, the precision was around 0.90. Similarly, the model
achieved high recall scores for which it correctly identified around 97%
of the knee-less class samples and 85% of the knee samples. The F1-
scores, which provide a combined measure of precision and recall, were
also high, with a score of 0.96 for the knee-less class and around 0.88
for the knee class.

Overall, these results indicate that our model is effective in predict-
ing whether the degradation path of a battery has a knee in capacity
loss. Furthermore, the 0.94 accuracy indicates that it correctly classified
94% of the samples. However, this is only a baseline and there is still
work to be done in terms of improving the model’s ability to identify
the knee class. The lower metrics in this class are mainly due to the
fact that many of the samples do not have knees but are labeled as
such because their degradation conditions indicate that there would be
if the battery were still cycled for a longer period. This type of situation
can be easily confused with other trajectories that do not have a knee
8

at any point of their cycle-life because the evolution of the IC curves
is very similar, therefore the anticipation in these cases is complicated.
As future work we intend to improve the knee labeling algorithm or
propose a new metric to quantify these situations. In any case, it is
important to note that the predictions are not erroneous in terms of
knee identification because once a knee appears the model correctly
identifies it, but it does fail sometimes in terms of anticipating the knee.
While this is not of concern as the knee has not yet occurred, anticipat-
ing those knees have significant implications for battery management
and some further improvements are needed.

4.3. A case of study: validation on real battery data

In this section, the proposed model’s performance is evaluated on
experimental battery data to demonstrate its practical applicability.
The challenge of this task is compounded by the scarcity of datasets
featuring real batteries exhibiting knees. To the best of our knowledge,
only one dataset, as presented in [86], is available. However, this
dataset lacks the necessary RPTs at C/25, rendering it incompatible
with the data we used for training our model. Instead, two commer-
cial high-power graphite/LFP cells manufactured by A123 Systems:
CReal#1 (ANR26650M1a, 2.3 Ah) and CReal#2 (ANR26650M1b, 2.5
Ah) were used. Both cells were subjected to an electric vehicle driving
scheme test, i.e., dynamic stress testing (DST) during their duty cycling
schemes, and exhibited knees in capacity loss. To provide the ther-
modynamic conditions from which the aging modes can be estimated,
sequential RPTs with included C/25 cycles were carried out. While
CReal#1 was previously studied in detail in [60], this paper presents
data on CReal#2 for the first time. The testing procedures for both
cells were identical, except for the DST schedule, which was scaled
from 400 W/kg for CReal#1 to 800 W/kg for CReal#2. The testing
equipment, data sampling, testing temperatures, and RPTs that include
C/25 charge/discharge cycles were the same for both cells, and were
described in [60]. The raw experimental data is shown in Fig. D.10.

The results for CReal#1 during C/25 charging are presented in
the first row of Fig. 7. The algorithm analyzed the C/25 IC curve
history from the processed data (left) and provided knee predictions
(center) and degradation mode estimations (right). Our model ac-
curately predicted the onset of the knee point in the battery aging
trajectory in advance when evaluating the first 800 cycles (see ‘‘YES’’
label in Fig. 7b). In terms of degradation modes evaluation, the model
predicted an overall LAMNE rate larger than that of LLI throughout
cycling without LAMPE. Furthermore, the LLI exhibited two distinct
evolution rates, with an inflection point at the knee cycle (i.e., within
cycle 800–1000) where the degradation rate increases likely because of
irreversible plating. From a qualitative perspective, our model provided
support for the conceptual interpretations made in Section 2 that a

knee will eventually occur when LAMNE > LLI, as the model output
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Table 4
Classification results for knee identification for the tested cells.

C1 C2 C3

precision recall F1-score Accuracy precision recall F1-score Accuracy precision recall F1-score Accuracy

knee-less 0.95 0.97 0.96 0.95 0.98 0.96 0.95 0.97 0.96
knee 0.90 0.85 0.87 0.93 0.85 0.89 0.90 0.83 0.87

0.94 0.95 0.94
Fig. 7. Model performance validation for the experimental testing results from CReal#1 and CReal#2. The left column displays the IC curves derived from the experimental testing
data at C/25, while the two adjacent columns show the model’s predictions, including knee identification and estimated degradation modes. Note that predictions for LAMPE for

Real#1 are hardly visible given the model predicted values near zero for all data points.
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redicted. Additionally, the experimental IC curves exhibited a relative
ncrease in Peak 1 and the appearance of Peak 0 (see Fig. D.10, left)
hich is a documented sign of LAMNE and plating [32,60,87,88].

For a quantitative analysis, the model’s predicted degradation
odes were compared with the diagnosis reported in our previous

tudy [60], Fig. D.11 and their evolutions were similar. The model pre-
icted a final degradation for LAMNE of 32% and LLI of 22% which is
ithin a 3% difference from previous study’s diagnosis. Similarly, both
nalyses reveal that the degradation trajectory for LLI is divided into
wo well-defined stages, with the second stage exhibiting a steeper rate.
his changing rate of LLI occurs at the knee point and is caused by the
ccurrence of both irreversible lithium plating [60]. The degradation
ate of LLI before and after the knee point is about a factor of four
ncrease which also matches the results in previous studies. The model
herefore provided a useful quantitative estimation of the detrimental
ffect of lithium plating. For LAMNE, the overall evolution trend also
atched quite well, with some deviations during the first cycles, but
ltimately resulting in the same final degradation percentage.

The results for CReal#2 during C/25 charging are presented in the
econd row of Fig. 7. The model again predicted the onset of knee
9

ppearance when analyzing the data between cycles 200 and 1000,
hich is confirmed by a knee occurring at cycle 1250 (see Fig. 7e).
egarding the degradation modes prediction (cf. Fig. 7f), the model
learly distinguishes two stages with the degradation rates, i.e., before
nd after the onset of knee appearance. The degradation modes before
nee appearance are within the same rate, although LAMPE appears
ore prominent during the first 500 cycles and plateaus thereafter,
hile LAMNE rate slightly increases above LLI at around cycle 750.
t the knee occurrence point (i.e., cycle 1250), both LAMNE and
LI rates increase substantially, while LAMPE only slightly increases
owards the end of cycling. The comprehensive analysis of CReal#2 is
nder preparation and will be published elsewhere. In the meantime,
nterested readers can access the data in the following public repository
ttps://github.com/NahuelCostaCortez/ICFormer. A qualitative analy-
is of the degradation modes reveals that during the first 500 cycles,
apacity fade on the full cell is solely caused by LLI, despite LAMPE

LLI (see Fig. 7f). Although the degradation rate for LAMPE almost
oubles those of LLI, the initial offset on the PE (OFSini) acts as a
uffer, which typically accounts for 10%–15% of total capacity for this

https://github.com/NahuelCostaCortez/ICFormer
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type of cell [89]. Therefore, degradation on the PE does not directly
impact the full cell, and no knee in the capacity trajectory is shown or
detected by the algorithm. At cycle 750, a change in the trajectory of
the degradation modes is observed as LAMNE becoming higher than LLI
(see Fig. 7f). Once again, degradation on LAMNE remains silent on cell
capacity, in this case thanks to the initial excess acting as a buffer. How-
ever, since the NE excess is minor in this technology, typically NEEX
< 5% [89,90], even though both degradation modes are similar, NE
shrinkage eventually catches up and yields to thermodynamic lithium
plating, leading to a knee in capacity evolution and an acceleration rate
of both degradation modes LAMNE and LLI, as observed in Figs. 7d,f.
Again, the inner degradation and its complexity remains transparent to
the final user, as the model accurately predicted and indicated with a
simple ‘‘YES’’ the appearance of a knee well before it takes place.

Compared to CRreal#1, CReal#2 does not display the appearance
of Peak 0, and Peak 2 height remains higher than that of Peak 1 in
the last cycles, while the opposite is true for CReal#1 (see Fig. D.10).
The difference in the degradation modes observed in both cells can
be attributed to the slight variation in cell configuration and, more
importantly, to the difference in cycling scheme power, where CReal#2
was cycled at twice the power rate (i.e., 800 W/kg) with maximum
currents reaching 8C-rate during discharge and 4C during charge. This
could be the main reason why CReal#2 exhibits LAMPE while CReal#1
shows no degradation on the LFP material. It is essential to note
that online quantifying LFP degradation in this type of technology is
challenging [50,61,90] and its true extent is usually only obtainable
in post-mortem studies [89,91,92]. Therefore, the detection of LAMPE
with our model is a promising development for accurate online diagno-
sis and prognosis even under most challenging scenarios. Moreover, it
is noteworthy that the algorithm can detect the appearance of a knee
caused by thermodynamic lithium plating without the appearance of
Peak 0, as shown in CReal#2 (and contrary to CReal#1, where Peak
0 appears on the IC curves). This result also indicates that lithium
plating under this scheme appears to be almost 100% irreversible
leaving no visible traces on Peak 0 of the IC curves during charge.
Finally, our testing and simulation results suggest that the new version
of the tested cell, CReal#2 (M1b), is indeed an improved new version.
Despite doubling the power testing scheme, the capacity fade at 80% of
CReal#2 remains nearly as that of the older version, CReal#1 (M1a),
while the knee appearance is delayed by at least 250 cycles.

It should also be acknowledged that despite the notable advantages
of our approach in modeling changes in IC curves when applying it
directly to real data some preprocessing steps are required to ensure
optimal performance. The data was normalized in the same way as
was done with the training dataset and an interpolation was performed
in those cycles where data was not available to meet the algorithm’s
requirement of having an IC curve every 200 cycles. Thus, we suc-
cessfully aligned the real data with the expected format, enabling the
application of our model. In future work, we intend to further refine
our methodology and explore additional approaches to narrow the gap
between real and simulated curves.

5. Concluding remarks and future work

Accurate diagnosis and knee detection of LIB degradation trajec-
tories are critical for ensuring safe and reliable use in real-world
applications. However, accurate LIB degradation modes estimation and
prediction of knees pose notable challenges, highlighting the need for
a dedicated and comprehensive model framework. Degradation modes
tracking can provide a direct link to knee formation, and experimental
techniques such as ICA have proven effective for quantifying them. In
this paper, we highlighted some limitations of the application of Deep
Learning algorithms to experimental data where current methods focus
on independent diagnostics of the battery at different cycling stages,
rather than analyzing the complete degradation trajectory, which could
be an advantage in the automation of ICA. To this end, we presented
10

i

a novel Transformer-based Deep Learning model that leverages self-
attention to identify relevant changes in the evolution of the IC curves
through cycling. The model was trained with synthetic data from the
HNEI prognosis dataset and shows that it was able not only to identify
knees but also to anticipate them while also outperforming state-of-
the-art approaches in the estimation of degradation modes with RMSE
errors around 2% on average for 1000 duty cycles for 3 different cells.
We also included a report on the application of the model to experi-
mental data from commercial batteries to illustrate its performance in
a real-world scenario.

All in all, the model demonstrates that it meets the proposed expec-
tations. The information it provides is of critical importance in many
real-world applications, as it enables proactive maintenance, helps
prevent unexpected failures and downtime, and allows for potential
second-life use of the battery in less demanding applications. The model
offers an informed prediction of the battery health from which different
types of users can benefit. On the one hand, knee identification can
satisfy those who simply want to know whether the battery should
be replaced or proactive maintenance should be taken on it. On the
other, the model provides an accurate estimation of degradation modes
that offers detailed insight into the electrochemical performance of the
battery, which provides valuable information that can be used both by
battery specialists and researchers.

Our work can be extended in multiple ways. First, the data used
still has room for improvement. The motivation for the use of IC curves
is driven by the current gap in terms of degradation history analysis,
but this opens new opportunities to monitor other types of variables
that may also have an influence on the discovery of knees. It is known
that LAM failures can lead to knees, but as discussed in the paper, not
all knees can be identified in this way. In this sense, including other
variables such as impedance or coulombic efficiency may provide more
information regarding this type of defect. In addition, the dataset used
assumes a C/25 charge rate, whereas it would be of interest to analyze
the impact on the predictions in variable rates, and also with noise
in the measurements and with a narrower characterization voltage
window, which can be doable with synthetic data. For these reasons,
we believe that the choice of a Transformer for our architecture is
promising since it will allow us to scale easily in the future as it is
designed to support more variables as inputs for analysis. Moreover, the
potential of the model can be extrapolated to other tasks beyond knee
identification and prediction of degradation modes such as estimation
of RUL or prediction of future capacity.

Also, an ablation study on the attention weights may provide valu-
able insights into the state of degradation of the batteries. Finally, there
are still some limitations on applying models trained on synthetic data
to real data, as they have significant differences that may limit their
integration in real environments. We leave the exploration of these
open directions to future work.
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ppendix A. Knee labeling

The knee labeling strategy proposed in this work is as follows:
ssuming knowledge of the capacity loss curve profile and the asso-
iated degradation modes for each duty cycle, as is the case with the
ataset utilized in this study [49], first, the algorithm checks on the
inearity for the capacity loss. For the non-linear duty cycles, each cycle
s examined to determine if the primary degradation mode was LLI and
f the knee occurs within the history up to that cycle (through another
inear fit). For those cases, it is implied that the knee was caused by
xponential LLI degradation, making knee anticipation unfeasible due
o the immediate impact on capacity loss. Conversely, if the primary
egradation mode was LAM and a knee occurs in a subsequent cycle,
t indicates the presence of a latent effect that will eventually lead to a
nee. Consequently, knee anticipation is possible before the knee fully
anifests. The corresponding cycle is labeled accordingly, enabling the

lgorithm to identify knee occurrences and anticipate them.

Algorithm 1 Knee Labeling
1: 𝑘𝑛𝑒𝑒𝐿𝑎𝑏𝑒𝑙𝑠 ← []
2: for 𝑠𝑎𝑚𝑝𝑙𝑒 in dataset do
3: 𝑘𝑛𝑒𝑒𝐿𝑎𝑏𝑒𝑙𝑠𝑆𝑎𝑚𝑝𝑙𝑒 ← [] ⊳ in each cycle is marked whether or

not a knee is present
4: if knee in sample then ⊳ if there is knee, check from which

cycle to label it
5: for 𝑐𝑦𝑐𝑙𝑒 in sample do
6: 𝑓𝑙𝑎𝑔𝑘𝑛𝑒𝑒 ← 𝐹𝑎𝑙𝑠𝑒
7: if 𝑚𝑎𝑖𝑛𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒 == 𝐿𝐿𝐼

and knee in QLossUpToCycle then
8: 𝑓𝑙𝑎𝑔𝑘𝑛𝑒𝑒 ← 𝑇 𝑟𝑢𝑒 ⊳ there is a knee caused by

exponential LLI
9: else

10: if knee in FutureQLoss then
11: 𝑓𝑙𝑎𝑔𝑘𝑛𝑒𝑒 ← 𝑇 𝑟𝑢𝑒 ⊳ there is going to be a knee

caused by a silent mode (LAM)
12: end if
13: end if
14: 𝑘𝑛𝑒𝑒𝐿𝑎𝑏𝑒𝑙𝑠𝑆𝑎𝑚𝑝𝑙𝑒[𝑐𝑦𝑐𝑙𝑒] ← 𝑓𝑙𝑎𝑔𝑘𝑛𝑒𝑒
15: end for
16: end if
17: 𝑘𝑛𝑒𝑒𝐿𝑎𝑏𝑒𝑙𝑠[𝑠𝑎𝑚𝑝𝑙𝑒] ← 𝑘𝑛𝑒𝑒𝐿𝑎𝑏𝑒𝑙𝑠𝑆𝑎𝑚𝑝𝑙𝑒
8: end for
11

c

Appendix B. Model details and hyperparameters

The model has three main components: the positional encoding
layer, the Transformer encoder and the MLP layers. The positional
encoding layer is used to introduce the notion of order of the input
sequence to the model. The original Transformer used fixed positional
embeddings, combining sine and cosine functions and did not change
during training. However, more recent Transformer implementations
use learnable positional embeddings, which are learned during training
along with other model parameters. This allows the model to adapt the
embeddings to the specific task and dataset, rather than using fixed
embeddings that may not be optimal [94]. In this work, a 5 × 128 shape
tensor containing IC curves representing the degradation history of cells
was fed into a learnable positional embedding layer with dimension h,
resulting in a 5×h-dimensional tensor. 5 was the number of IC curves
chosen for each sample (that correspond to a 800-cycle window) and
128 was the size of the IC curves. This tensor was fed to a standard
Transformer encoder, which in turn is made up of several encoders that
contain the attention layers.

The formula for attention is as follows:

Attention(𝑄,𝐾, 𝑉 ) = softmax(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉

𝑄 (Query), 𝐾 (Key) and 𝑉 (Value) are three vectors derived from the
ositional embeddings using fully connected layers that are modified
uring training, and each serves a different purpose in the attention
alculation. The attention mechanism starts by computing the similarity
cores between the 𝑄 and 𝐾 vectors. This is done by taking the dot
roduct of the 𝑄 vector with each 𝐾 vector. To mitigate the effects of
arge values in the dot product, the result is divided by the square root
f the dimension of the Key vector (𝑑𝑘). This scaling helps stabilize
he gradients during training. The scaled similarity scores are then
assed through a softmax function, which normalizes the scores and
onverts them into a probability distribution. The softmax operation
nsures that the attention weights sum up to 1, allowing the model to
llocate proper importance to different positions in the input sequence.
inally, the softmax probabilities are used to compute a weighted sum
f the 𝑉 vectors. The weights obtained from the softmax represent the
mportance assigned to each 𝑉 vector. The weighted sum generates
he context vector, which captures the relevant information from the

vectors based on the attention scores.
Each encoder consists of an attention layer, whose output is a tensor

ith shape 5 × 128 representing the attended parts of the IC curves, and
fully connected layer, whose output results in a h-dimensional tensor.
he output of the last encoder layer was fed to two MLP heads, one
hat returns a 5 𝑥 3-dimensional tensor containing the prediction of the
egradation modes (LLI, LAMPE and LAMNE) for the five ICs curves and
o another that returns the output of a sigmoid that predicts whether
r not a knee exists.

The hyperparameters taken into account and their final values were:

• batch_size: 64
• learning_rate: 0.001
• num_encoders: 4
• ff_dim: 28
• mlp_units: 128
• mlp_dropout: 0.2
• dropout: 0.2

ppendix C. Classification metrics

Metrics used for the binary classification problem of knee identifi-
ation. The classes are ‘‘knee-less’’ (positive class) and ‘‘knee’’ (negative

lass).
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Fig. D.8. Effect of the degradation modes at different cycling stages on the appearance of knees. It is observed that predominant LAM modes (i.e., LAMs > LLI) lead to knees,
and these appear earlier the higher the intensity of degradation, while LLI generally does not produce knees unless its evolution is highly exponential.
Fig. D.9. Similarities between IC curves for different cell configurations and degradation modes.
Fig. D.10. Experimental data for CReal #1 (left) and CReal #2 (right).
Precision: measures the proportion of correctly predicted positive
instances out of the total predicted positive instances. It provides an
indication of the model’s ability to avoid false positives.

Precision = True Positives
True Positives + False Positives

Recall: also known as sensitivity or true positive rate, measures the
proportion of correctly predicted positive instances out of the total
12
actual positive instances. It provides an indication of the model’s ability
to avoid false negatives.

Recall = True Positives
True Positives + False Negatives

The F1 score: combines precision and recall into a single value. It
is the harmonic mean of precision and recall, providing a balanced
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Fig. D.11. Analysis of cell degradation evolution for CReal #1 as estimated in [60].
This figure serves as a comparison to the results presented in Fig. 7.

evaluation of a classifier’s performance.

F1 Score = 2 × Precision × Recall
Precision + Recall

Accuracy: measures the proportion of correctly predicted instances
(both positive and negative) out of the total instances. It provides an
overall assessment of the model’s correctness.
Accuracy

=
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives

Appendix D. Supplementary figures

Fig. D.9 illustrates a limitation of analyzing each IC curve inde-
pendently. For instance, consider the curves on the left side. Due to
variations in cell configurations (C0 referring to the training configu-
ration and C3 referring to test cell 3), the resulting IC curves exhibit
slight differences and this could prove problematic as these differences
could be interpreted as a degradation. Similarly, the center and right
figures showcase extremely similar IC curves for different combinations
of the degradation modes. As a result, methods that diagnose each IC
curve independently are prone to prediction errors since they were
trained with signatures of IC curves under different degradation modes
combinations. Consequently, when presented with a single IC curve,
these methods may predict a plausible degradation mode that, within
the context of the cell’s degradation history, is not entirely accurate
or relevant. This explains the high errors in LAMPE in Table 2 and the
more distributed errors in our approach, given that it takes into account
the complete degradation history.
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