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A B S T R A C T

We present a hybrid discontinuous Galerkin method for the velocity/stress formulation of
Zener’s model in dynamic viscoelasticity. Our approach utilizes a spatial discretization that
enforces strongly the symmetry of the stress tensor, and that allows for efficient handling
of heterogeneous materials comprising both purely elastic and viscoelastic components. We
provide an ℎ𝑝 error analysis of the semidiscrete scheme, which yields quasi-optimal error
estimates for the stress tensor and sub-optimal error estimates for the velocity field in the
𝐿2-norm. Next, we apply the Crank–Nicolson rule as a time-stepping scheme and analyze its
primary convergence properties. Finally, we present the results of numerical experiments to
validate our approach and confirm the theoretical rates of convergence.

. Introduction

Viscoelasticity is the property exhibited by certain materials like biological tissues, elastomers, and polymers, which demonstrate
oth elastic and viscous behavior. The characteristic of viscoelasticity plays a crucial role in designing products that require features
ike flexibility, durability, and resistance to deformation. Additionally, it finds extensive usage in applications that need noise control,
ibration attenuation, and shock absorption. The viscoelastic problem we are examining in this article draws from Zener’s model [1],
ommonly referred to as the standard model. It is known for being the simplest approach that replicates fundamental viscoelastic
ehaviors like stress-relaxation and creep-recovery [2].

In the traditional approach to the mathematical and numerical study of viscoelasticity, the problem is formulated solely in terms
f the displacement field, which leads to a weak formulation that is non-local in time [3,4]. Recently, formulations that prioritize the
tress tensor as the primary unknown have emerged [5–10]. This mixed finite element approach has several advantages, including
ielding purely differential variational formulations and providing a direct and accurate approximation of stress, which is a critical
uantity in many applications. Additionally, it is well-known that stress-based formulations of the elasticity system are immune to
ocking phenomena in the nearly incompressible case [11].

However, mixed finite elements for linear elasticity also present several challenges, such as the preservation of the Cauchy
tress symmetry. This symmetry guarantees the conservation of angular momentum, and achieving it exactly with conforming finite
lements requires a large number of degrees of freedom, see [12,13] and the references therein. To address this issue, one can
elax this constraint by imposing it weakly through a variational equation [14]. This method has been successfully adopted for
iscoelasticity in [6–9]. Alternatively, nonconforming or DG methods can be used to strongly impose the symmetry of the stress
ensor at the discrete level [15–19]. This approach has been recently explored in [10] for the standard model of viscoelasticity.
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Regardless of the approach taken, dealing with tensorial unknowns requires significant computational effort, especially in
iscoelasticity where the global stress variable 𝝈 is represented by two tensors [5]: the elastic component 𝝈𝐸 and the viscoelastic

component 𝜔𝝈𝑉 , with 𝝈 = 𝝈𝐸 +𝜔𝝈𝑉 . The scalar parameter 𝜔 represents the characteristic relaxation time, which indicates the time
for the stress to decay to zero under constant-strain conditions.

An efficient technique to reduce the significant computational effort involved in the mixed finite element approximation of
viscoelasticity is to employ the Fraeijs de Veubeke hybridization strategy [11], as suggested in [7]. This hybrid mixed method is
further improved in [9] by releasing the discrete elastic and viscoelastic components of the stress from any continuity condition
and only requiring their sum 𝝈 to be H(div)-conforming. Using this approach, the number of degrees of freedom is halved at each
mplicit time iteration step when compared to [7].

The Discontinuous Galerkin (DG) method introduced in [10] for viscoelasticity enjoys the desirable properties of DG methods
uch as ℎ𝑝-adaptivity, arbitrary order approximations, local conservation, and flexibility in mesh design. However, despite the

reduction in unknowns resulting from the strong imposition of stress symmetry, this method still suffers from the typical proliferation
of degrees of freedom that DG methods tend to produce in comparison to conforming finite element methods.

In this work, we address this concern by introducing a hybridizable discontinuous Galerkin (HDG) method for viscoelasticity,
hich combines the advantages of DG methods and hybridization techniques. The general concepts behind the hybridization of DG
ethods are detailed in [20,21] for different boundary value problems, and its application to the elasticity system is discussed in [22–
5]. Essentially, the hybridization procedure reduces the number of globally coupled degrees of freedom by enforcing inter-element
ontinuity through additional traces. This feature enables the method to be implemented efficiently using static condensation [26].
t also facilitates parallelization [27,28], which makes it even more attractive for computationally demanding problems.

We present a new HDG space discretization method for the stress/velocity formulation of Zener’s viscoelasticity model. The
ethod utilizes symmetric tensors with piecewise polynomial entries of arbitrary degree 𝑘 ≥ 0 to approximate each stress component

in both 2D and 3D. Additionally, the discrete velocity field and the discrete trace variable defined on the mesh skeleton are piecewise
polynomials of degree 𝑘+1. We provide an ℎ𝑝-version finite element analysis of this mixed HDG semi-discrete scheme. The stability
of the scheme is proven with respect to the discretization parameters ℎ and 𝑘, as well as with respect to the relaxation time 𝜔, which
is assumed to be piecewise constant. This allows for the possibility of composite elastic-viscoelastic structures when 𝜔 vanishes in
certain areas of the domain. Under piecewise regularity assumptions on the exact solution of the problem, we obtain ℎ𝑝 error
estimates in the 𝐿2-norms for the stress and velocity. The convergence rate for the stress variable is quasi-optimal with respect to
the mesh size ℎ, but only suboptimal by half a power with respect to the polynomial degree 𝑘. On the other hand, the ℎ𝑝 error
estimate for the velocity is suboptimal by one power in ℎ, which has been confirmed by numerical results. Additionally, we prove
that the fully discrete scheme relying on the classical second-order implicit Crank–Nicolson method is stable and convergent.

The plan of the paper is as follows. In the remainder of this section, we provide preliminary notational conventions and define
the functional spaces employed in this article. Zener’s model for linear viscoelasticity is introduced in Section 2, along with its
stress/velocity weak formulation, and the results on its unique solvability are reviewed. In Section 3, we compile preliminary
definitions and utilize well-known local ℎ𝑝 approximation estimates to obtain the global approximation estimates required for our
analysis. The definition of the semi-discrete mixed HDG method and its ℎ𝑝 convergence analysis are detailed in Section 4, and the
fully discrete case is treated in Section 5. Finally, several numerical results are presented in Section 6, confirming the expected rates
of convergence for different parameter sets including the nearly incompressible regime.

Recurrent notation and Sobolev spaces. We denote the space of real matrices of order 𝑑 × 𝑑 by M, and let S ∶= {𝝉 ∈ M; 𝝉 = 𝝉𝚝}
be the subspace of symmetric matrices, where 𝝉𝚝 ∶= (𝜏𝑗𝑖) stands for the transpose of 𝝉 = (𝜏𝑖𝑗 ). The component-wise inner product of
two matrices 𝝈, 𝝉 ∈ M is defined by 𝝈 ∶ 𝝉 ∶=

∑

𝑖,𝑗 𝜎𝑖𝑗𝜏𝑖𝑗 .
Let 𝐷 be a polyhedral Lipschitz bounded domain of R𝑑 (𝑑 = 2, 3), with boundary 𝜕𝐷. Along this paper we apply all differential

operators row-wise. Hence, given a tensorial function 𝝈 ∶ 𝐷 → M and a vector field 𝒖 ∶ 𝐷 → R𝑑 , we set the divergence
𝐝𝐢𝐯𝝈 ∶ 𝐷 → R𝑑 , the gradient 𝛁𝒖 ∶ 𝐷 → M, and the linearized strain tensor 𝜺(𝒖) ∶ 𝛺 → S as

(𝐝𝐢𝐯𝝈)𝑖 ∶=
∑

𝑗
𝜕𝑗𝜎𝑖𝑗 , (𝛁𝒖)𝑖𝑗 ∶= 𝜕𝑗𝑢𝑖, and 𝜺(𝒖) ∶= 1

2
[

𝛁𝒖 + (𝛁𝒖)𝚝
]

.

For 𝑠 ∈ R, 𝐻𝑠(𝐷,𝐸) stands for the usual Hilbertian Sobolev space of functions with domain 𝐷 and values in 𝐸, where 𝐸 is either
R, R𝑑 or S. In the case 𝐸 = R we simply write 𝐻𝑠(𝐷). The norm of 𝐻𝑠(𝐷,𝐸) is denoted ‖ ⋅ ‖𝑠,𝐷 and the corresponding semi-norm
⋅ |𝑠,𝐷, indistinctly for 𝐸 = R,R𝑑 ,S. We use the convention 𝐻0(𝐷,𝐸) ∶= 𝐿2(𝐷,𝐸) and let (⋅, ⋅)𝐷 be the inner product in 𝐿2(𝐷,𝐸), for
= R,R𝑑 , S, namely,

(𝒖, 𝒗)𝐷 ∶= ∫𝐷
𝒖 ⋅ 𝒗, ∀𝒖, 𝒗 ∈ 𝐿2(𝐷,R𝑑 ), (𝝈, 𝝉)𝐷 ∶= ∫𝐷

𝝈 ∶ 𝝉 , ∀𝝈, 𝝉 ∈ 𝐿2(𝐷, S). (1.1)

he space of tensors in 𝐿2(𝐷,S) with divergence in 𝐿2(𝐷,R𝑑 ) is denoted 𝐻(𝐝𝐢𝐯 , 𝐷,S). The corresponding norm is given by
𝝉‖2𝐻(𝐝𝐢𝐯 ,𝐷) ∶= ‖𝝉‖20,𝐷 + ‖𝐝𝐢𝐯 𝝉‖20,𝐷. Let 𝒏 be the outward unit normal vector to 𝜕𝐷, the Green formula

(𝝉 , 𝜺(𝒗))𝐷 + (𝐝𝐢𝐯 𝝉 , 𝒗)𝐷 = ∫𝜕𝐷
𝝉𝒏 ⋅ 𝒗 ∀𝒗 ∈ 𝐻1(𝐷,R𝑑 ), (1.2)

an be used to extend the normal trace operator 𝝉 → (𝝉|𝜕𝐷)𝒏 to a linear continuous mapping (⋅|𝜕𝐷)𝒏 ∶ 𝐻(𝐝𝐢𝐯 , 𝐷,S) → 𝐻− 1
2 (𝜕𝐷,R𝑑 ),

here 𝐻− 1
2 (𝜕𝐷,R𝑑 ) is the dual of 𝐻

1
2 (𝜕𝐷,R𝑑 ).

Sobolev spaces for time dependent problems. Since we will deal with a space–time domain problem, besides the Sobolev spaces
2

defined above, we need to introduce spaces of functions acting on a bounded time interval (0, 𝑇 ) and with values in a separable
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Hilbert space 𝑉 , whose norm is denoted here by ‖ ⋅ ‖𝑉 . In particular, 𝐿2
[0,𝑇 ](𝑉 ) is the space of classes of functions 𝑓 ∶ (0, 𝑇 ) → 𝑉

that are Böchner–measurable and such that ‖𝑓‖𝐿2
[0,𝑇 ](𝑉 ) <∞, with

‖𝑓‖2
𝐿2
[0,𝑇 ](𝑉 )

∶= ∫

𝑇

0
‖𝑓 (𝑡)‖2𝑉 d𝑡.

We use the notation 0
[0,𝑇 ](𝑉 ) for the Banach space consisting of all continuous functions 𝑓 ∶ [0, 𝑇 ] → 𝑉 . More generally, for any

𝑘 ∈ N, 𝑘[0,𝑇 ](𝑉 ) denotes the subspace of 0
[0,𝑇 ](𝑉 ) of all functions 𝑓 with (strong) derivatives d𝑗𝑓

d𝑡𝑗 in 0
[0,𝑇 ](𝑉 ) for all 1 ≤ 𝑗 ≤ 𝑘. In what

follows, we will use indistinctly the notations ̇𝑓 ∶= d𝑓
d𝑡 , 𝑓 ∶= d2𝑓

d𝑡2 , and 𝑓 ∶= d3𝑓
d𝑡3 to express the first, second, and third derivatives

with respect to 𝑡. Furthermore, we consider the Sobolev space

𝐻1
[0,𝑇 ](𝑉 ) ∶=

{

𝑓 ∶ ∃𝑔 ∈ 𝐿2
[0,𝑇 ](𝑉 ) and ∃𝑓0 ∈ 𝑉 such that 𝑓 (𝑡) = 𝑓0 + ∫

𝑡

0
𝑔(𝑠)d𝑠 ∀𝑡 ∈ [0, 𝑇 ]

}

.

2. A mixed variational formulation of the Zener model

Our objective is to study the dynamics of a viscoelastic body with mass density 𝜌 governed by the equation of motion:

𝜌𝒅̈ − 𝐝𝐢𝐯𝝈 = 𝒇 in 𝛺 × (0, 𝑇 ],

where 𝛺 is a polygonal or polyhedral Lipschitz domain in R𝑑 (𝑑 = 2, 3), and 𝒇 ∶ 𝛺 × [0, 𝑇 ] → R𝑑 represents the body force acting
over the time interval [0, 𝑇 ]. The vector field 𝒅 ∶ 𝛺 × [0, 𝑇 ] → R𝑑 is the displacement and 𝝈 ∶ 𝛺 × [0, 𝑇 ] → S is the stress tensor. The
linearized strain tensor 𝜺(𝒅) is related to the stress through Zener’s constitutive law for viscoelasticity (see [2]):

𝝈 + 𝜔𝝈̇ = 𝜺(𝒅) + 𝜔𝜺(𝒅̇) in 𝛺 × (0, 𝑇 ], (2.1)

where  and  are two symmetric and positive definite tensors of order 4. To guarantee that the system is dissipative we assume
that  −  is also positive definite, see [5]. Additionally, we assume that the coefficients of the tensors  and , the mass density
𝜌, and the relaxation time 𝜔 are piecewise constant functions. More specifically, we assume that there exists a disjoint partition of
𝛺̄ into polygonal/polyhedral subdomains

{

𝛺̄𝑗 , 𝑗 = 1,… , 𝐽
}

such that 𝑗 ∶= |𝛺𝑗 , 𝑗 ∶= |𝛺𝑗 , 𝜌𝑗 ∶= 𝜌|𝛺𝑗 > 0 and 𝜔𝑗 ∶= 𝜔|𝛺𝑗 ≥ 0
for 𝑗 = 1,… , 𝐽 . According to our assumption on the tensors  and , there exist constants 𝑑+ > 𝑐+ > 0 and 𝑑− > 𝑐− > 0 such that

𝑐−𝜻 ∶ 𝜻 ≤ 𝑗𝜻 ∶ 𝜻 ≤ 𝑐+ 𝜻 ∶ 𝜻 and 𝑑−𝜻 ∶ 𝜻 ≤ 𝑗𝜻 ∶ 𝜻 ≤ 𝑑+ 𝜻 ∶ 𝜻 ∀𝜻 ∈ S, ∀𝑗 = 1,… , 𝐽 . (2.2)

We point out that, in the regions 𝛺𝑗 where the piecewise constant function 𝜔 is zero, the constitutive law (2.1) becomes the familiar
Hooke’s Law. Hence, it is natural to introduce the set of indices 𝐸 ∶=

{

𝑗 ∈ {1,… , 𝐽} ∶ 𝜔𝑗 = 0
}

and 𝑉 ∶=
{

𝑗 ∈ {1,… , 𝐽} ∶ 𝜔𝑗 > 0
}

and to split 𝛺 into a part 𝛺𝐸 ∶= ∪𝑗∈𝐸𝛺𝑗 displaying a purely elastic behavior and a part 𝛺𝑉 ∶= ∪𝑗∈𝑉 𝛺𝑗 exhibiting viscoelastic
properties. The reciprocal 𝜔̃−1 of the relaxation time 𝜔 in 𝛺𝑉 is extended by zero to 𝛺𝐸 , i.e.,

𝜔̃−1
|𝛺𝑗 ∶=

{

𝜔−1
𝑗 if 𝑗 ∈ 𝑉 ,

0 if 𝑗 ∈ 𝐸 ,
𝑗 = 1,… , 𝐽 .

We assume that the viscoelastic body is clamped (𝒅 = 𝟎) at 𝛤𝐷 × (0, 𝑇 ], where the boundary subset 𝛤𝐷 ⊂ 𝛤 ∶= 𝜕𝛺 is of positive
surface measure. Additionally, we assume that it is free of stress (𝝈𝒏 = 𝟎) on 𝛤𝑁 × (0, 𝑇 ], where 𝛤𝑁 ∶= 𝛤 ⧵ 𝛤𝐷 and 𝒏 is the exterior
unit normal vector on 𝛤 . Finally, we impose the initial conditions

𝒅(0) = 𝒅0 in 𝛺, 𝒅̇(0) = 𝒅1 in 𝛺, and 𝝈(0) = 𝝈0 in 𝛺𝑉 . (2.3)

Our aim is to impose the stress tensor 𝝈 as a primary unknown. To this end, we follow [5] and decompose this variable into a
purely elastic component 𝝈𝐸 ∶= 𝜺(𝒅) and a viscoelastic component 𝜔𝝈𝑉 ∶= 𝝈−𝝈𝐸 . Hence, if we adopt the notations  ∶= −1 and
 ∶= ( − )−1, our model problem can be written as follows in terms of 𝒅, 𝝈𝐸 , 𝝈𝑉 and 𝝈 = 𝝈𝐸 + 𝜔𝝈𝑉 (see [9] for more details):

𝜌𝒅̈ − 𝐝𝐢𝐯𝝈 = 𝒇 in 𝛺 × (0, 𝑇 ],

𝝈̈𝐸 = 𝜺(𝒅̈) in 𝛺 × (0, 𝑇 ],

𝜔2𝝈̈𝑉 + 𝜔𝝈̇𝑉 = 𝜔𝜺(𝒅̈) in 𝛺 × (0, 𝑇 ],

𝒅 = 𝟎 on 𝛤𝐷 × (0, 𝑇 ],

𝝈𝒏 = 𝟎 on 𝛤𝑁 × (0, 𝑇 ].

(2.4)

We consider the space 𝐿2
𝑉 (𝛺,S) ∶= {𝝉𝑉 ∈ 𝐿2(𝛺, S); 𝝉𝑉 |𝛺𝐸 = 𝟎} and introduce  ∶= 𝐿2(𝛺,S) ×𝐿2

𝑉 (𝛺,S) endowed with the inner
product

(𝝈, 𝝉) ∶= (𝝈𝐸 , 𝝉𝐸 )𝛺 + (𝜔𝝈𝑉 , 𝜔𝝉𝑉 )𝛺 𝝈 ∶= (𝝈𝐸 ,𝝈𝑉 ), 𝝉 ∶= (𝝉𝐸 , 𝝉𝑉 ) ∈ ,

whose associated norm is ‖𝝉‖2 ∶= (𝝉𝐸 , 𝝉𝐸 )𝛺 + (𝜔𝝉𝑉 , 𝜔𝝉𝑉 )𝛺. By virtue of (2.2), we have that

𝑐∗
𝐽
∑

(‖𝝉𝐸‖20,𝛺𝑗 + 𝜔
2
𝑗‖𝝉𝑉 ‖

2
0,𝛺𝑗

) ≤ ‖𝝉‖2 ≤ 𝑐∗
𝐽
∑

(‖𝝉𝐸‖20,𝛺𝑗 + 𝜔
2
𝑗‖𝝉𝑉 ‖

2
0,𝛺𝑗

) ∀𝝉 ∈ , (2.5)
3

𝑗=1 𝑗=1
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with 𝑐∗ = max{ 1
𝑐− ,

1
𝑑−−𝑐− } and 𝑐∗ = min{ 1

𝑐+ ,
1

𝑑+−𝑐+ }. We denote by

𝐻𝑁 (𝐝𝐢𝐯 , 𝛺,S) ∶= {𝝉 ∈ 𝐻(𝐝𝐢𝐯 , 𝛺,S); ⟨𝝉𝒏, 𝒖⟩𝛤 = 0 ∀𝒖 ∈ 𝐻1
𝐷(𝛺,R

𝑑 )},

the closed subspace of 𝐻(𝐝𝐢𝐯 , 𝛺,S) that incorporates the stress free boundary condition on 𝛤𝑁 . Here, 𝐻1
𝐷(𝛺,R

𝑑 ) ∶= {𝒗 ∈
𝐻1(𝛺,R𝑑 ); 𝒗|𝛤𝐷 = 𝟎} and ⟨⋅, ⋅⟩𝛤 stands for the duality pairing between 𝐻1∕2(𝛤 ,R𝑑 ) and 𝐻−1∕2(𝛤 ,R𝑑 ). The natural energy space
or the pair of tensors 𝝈(𝑡) ∶= (𝝈𝐸 ,𝝈𝑉 ) ∈  representing the elastic and viscoelastic components of the stress 𝝈 ∶= 𝝈𝐸 +𝜔𝝈𝑉 is given

by

+ ∶= {𝝉 ∶= (𝝉𝐸 , 𝝉𝑉 ) ∈ ; 𝝉 ∶= 𝝉𝐸 + 𝜔𝝉𝑉 ∈ 𝐻𝑁 (𝐝𝐢𝐯 , 𝛺,S)}.

It is endowed with the Hilbertian norm ‖𝝉‖2+ ∶= ‖𝝉‖2 + ‖𝐝𝐢𝐯 𝝉‖20,𝛺.
We know from [9, Lemma 3.1] that the embedding + ↪  is dense. We can then consider the dual (+)′ of + pivotal to ,

nd denote by ⟨⋅, ⋅⟩(+)′×+ the corresponding the duality pairing. It is well-known that if 𝝈 ∈ 𝐿2
[0,𝑇 ](

+) is such that 𝝈̇ ∈ 𝐿2
[0,𝑇 ]((

+)′),
hen the identity

d
d𝑡 (𝝈(𝑡), 𝝉) = ⟨𝝈̇(𝑡), 𝝉⟩(+)′×+ ∀𝝉 ∈ +

holds true in the sense of distributions on (0, 𝑇 ). With this property at hand, we can now introduce the Hilbert space

𝑊 (+, (+)′) ∶= {𝝉 ∈ 𝐻1
[0,𝑇 ](

+) ∶ 𝝉̈ ∈ 𝐿2
[0,𝑇 ]((

+)′)},

and consider the following pure-stress variational formulation of problem (2.4) (see [9] for more details): find 𝝈 = (𝝈𝐸 ,𝝈𝑉 ) ∈
𝑊 (+, (+)′) such that

d
d𝑡 (𝝈̇, 𝝉) + (𝝈̇𝑉 , 𝜔𝝉𝑉 )𝛺 + (𝜌−1𝐝𝐢𝐯𝝈,𝐝𝐢𝐯 𝝉)𝛺 = −(𝜌−1𝒇 ,𝐝𝐢𝐯 𝝉)𝛺 ∀𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ +, (2.6)

ith the initial conditions 𝝈(0) = 𝝈0 and 𝝈̇(0) = 𝝈1, where

𝝈0 = (𝝈0
𝐸 ,𝝈

0
𝑉 ) with 𝝈0

𝐸 ∶= 𝜺(𝒅0), 𝝈0
𝑉 ∶= 𝜔̃−1(𝝈0 − 𝝈0

𝐸
)

and
𝝈1 = (𝝈1

𝐸 ,𝝈
1
𝑉 ) with 𝝈1

𝐸 ∶= 𝜺(𝒅1), 𝝈1
𝑉 ∶= 𝜔̃−1(( − )𝜺(𝒅1) − 𝝈0

𝑉
)

.
(2.7)

Theorem 2.1. Assume that the problem data satisfy 𝒅0,𝒅1 ∈ 𝐻1
𝐷(𝛺,R

𝑑 ), 𝝈0 ∈ 𝐻𝑁 (𝐝𝐢𝐯 , 𝛺,S) and 𝒇 ∈ 𝐻1
[0,𝑇 ](𝐿

2(𝛺,R𝑑 )). Then, problem
2.6)–(2.7) admits a unique solution. Moreover, there exists a constant 𝐶 > 0 such that

max
𝑡∈[0,𝑇 ]

‖𝝈(𝑡)‖+ + max
𝑡∈[0,𝑇 ]

‖𝝈̇(𝑡)‖ ≤ 𝐶
(

‖𝒇‖𝐻1
[0,𝑇 ](𝐿

2(𝛺,R𝑑 )) + ‖𝝈0
‖+ + ‖𝝈1

‖

)

. (2.8)

Proof. The result is proved in [9, Theorem 4.1] by resorting to energy estimates and a classical Galerkin procedure. See also [8,29]
for similar strategies applied to mixed formulations in elastodynamics and viscoelasticity. □

We point out that an HDG method based on the primal mixed formulation (2.6) results in a numerical approach that is
imilar to the one presented in [30]. This method approximates the dual flux variable 𝝈𝒏 by a piecewise polynomials on the

interelement boundaries of the mesh that are defined up to sign changes on each facet, which gives rise to some computational
disadvantages. Actually, we use here the variational formulation (2.6) solely as an intermediate step for deducing and analyzing
the velocity/stress formulation [5–7] of problem (2.4). This variational formulation consists in finding a vector field 𝒖 ∈
1
[0,𝑇 ](𝐿

2(𝛺,R𝑑 )) ∩ 0
[0,𝑇 ](𝐻

1
𝐷(𝛺,R

𝑑 )) and a couple of tensors 𝝈 ∈ 𝐻1
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ]() satisfying the first-order system in time

(𝜌𝒖̇, 𝒗)𝛺 − (𝐝𝐢𝐯𝝈, 𝒗)𝛺 = (𝒇 , 𝒗)𝛺 ∀𝒗 ∈ 𝐿2(𝛺,R𝑑 ),

(𝝈̇, 𝝉) + (𝝈𝑉 , 𝜔𝝉𝑉 )𝛺 + (𝒖,𝐝𝐢𝐯 𝝉)𝛺 = 0 ∀𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ +,
(2.9)

nd subject to the initial conditions

𝒖(0) = 𝒅1 and 𝝈(0) = 𝝈0. (2.10)

roposition 2.1. Under the conditions of Theorem 2.1, 𝝈 = (𝝈𝐸 ,𝝈𝑉 ) ∈ 𝑊 (+, (+)′) is a solution of problem (2.6)–(2.7) if and only
f the pair (𝝈, 𝒖) is a solution of problem (2.9)–(2.10), where the velocity field is given by

𝒖(𝑡) ∶= ∫

𝑡

0
𝜌−1(𝒇 + 𝐝𝐢𝐯𝝈)(𝑠) d𝑠 + 𝒅1. (2.11)

roof. Let 𝝈 ∈ 𝑊 (+, (+)′) be the solution of (2.6). We observe that the embeddings

𝐻1
[0,𝑇 ](

+) ↪ 0
[0,𝑇 ](

+) and 𝑊 (+, (+)′) ↪ 0
[0,𝑇 ]()

(see [31, Chapter XVIII, Section 1, Theorem 1]) ensure that 𝝈 belongs to 0
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ](), while the reconstructed velocity

field (2.11) belongs to 1(𝐿2(𝛺,R𝑑 )). Integrating Eq. (2.6) over the time interval [0, 𝑡] with 𝑡 ≤ 𝑇 and considering the initial
conditions (2.7), we easily deduce that

(𝝈̇, 𝝉) + (𝝈 , 𝜔𝝉 ) + (𝒖,𝐝𝐢𝐯 𝝉) = 0 ∀𝝉 = (𝝉 , 𝝉 ) ∈ +. (2.12)
4
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Testing Eq. (2.12) with 𝝉 = (𝜼, 𝟎), where the components of the tensor 𝜼 ∶ 𝛺 → S are indefinitely differentiable and have
compact support contained in 𝛺, we obtain 𝜺(𝒖) = 𝝈̇𝐸 ∈ 0

[0,𝑇 ](𝐿
2(𝛺,S)). Using Korn’s inequality, we further conclude that

𝒖 ∈ 0
[0,𝑇 ](𝐻

1(𝛺,R𝑑 )). Next, testing Eq. (2.12) with 𝝉 = (𝜼, 𝟎), where 𝜼 ∈ 𝐻𝑁 (𝐝𝐢𝐯 , 𝛺,S) and applying Green’s formula (1.2) prove
hat 𝒖 ∈ 0

[0,𝑇 ](𝐻
1
𝐷(𝛺,R

𝑑 )). In summary, 𝝈 ∈ 𝐻1
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ]() and 𝒖 ∈ 1

[0,𝑇 ](𝐿
2(𝛺,R𝑑 )) ∩ 0

[0,𝑇 ](𝐻
1
𝐷(𝛺,R

𝑑 )) are solutions to
(2.9) since they satisfy the second equation of the system by virtue of (2.12) and the first equation of the system is deduced by
taking the time derivative of (2.11), multiplying by 𝜌 and testing the resulting identity with 𝒗 ∈ 𝐿2(𝛺,R𝑑 ). Furthermore, the initial
conditions (2.10) are trivially satisfied.

Reciprocally, let 𝝈 ∈ 𝐻1
[0,𝑇 ](

+)∩1
[0,𝑇 ]() and 𝒖 ∈ 1

[0,𝑇 ](𝐿
2(𝛺,R𝑑 ))∩0

[0,𝑇 ](𝐻
1
𝐷(𝛺,R

𝑑 )) be the solution of (2.9)–(2.10). We deduce
from the first equation of (2.9) that

𝒖̇ = 𝜌−1
(

𝒇 + 𝐝𝐢𝐯𝝈
)

(2.13)

nd computing the time de derivative of the second one in the sense of distributions yields
d
d𝑡 (𝝈̇, 𝝉) + (𝝈̇𝑉 , 𝜔𝝉𝑉 )𝛺 + (𝒖̇,𝐝𝐢𝐯 𝝉)𝛺 = 0. (2.14)

We deduce from Eq. (2.14) that 𝝈 belongs to the space 𝑊 (+, (+)′). Moreover, combining Eqs. (2.13) and (2.14), we can eliminate
he velocity field and prove that 𝝈 solves problem (2.6). Furthermore, the initial conditions (2.7) can be easily inferred from the

second equation of (2.9). □

Remark 2.1. As a consequence of Theorem 2.1 and Proposition 2.1, problem (2.9)–(2.10) is also well-posed. We point out that
the stress/velocity formulation of problem (2.4) can also be analyzed using the theory of continuous semigroups of bounded linear
operators, as demonstrated in [5,7].

3. Finite element spaces and auxiliary results

For the sake of simplicity, we assume from now on that the structure is clamped along its entire boundary, that is, 𝛤𝐷 = 𝛤 . As
a result, we have

+ = {𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈  ∣ 𝝉 ∶= 𝝉𝐸 + 𝜔𝝉𝑉 ∈ 𝐻(𝐝𝐢𝐯 , 𝛺,S)}

and 𝒖 ∈ 0
[0,𝑇 ](𝐻

1
0 (𝛺,R

𝑑 )), with the usual notation 𝐻1
0 (𝛺,R

𝑑 ) ∶= {𝒗 ∈ 𝐻1(𝛺,R𝑑 ), 𝒗|𝛤 = 𝟎}.
Let ℎ be a shape regular triangulation of the domain 𝛺̄ into tetrahedra and/or parallelepipeds if 𝑑 = 3 and into triangles and/or

uadrilaterals if 𝑑 = 2. We allow ℎ to have hanging nodes and assume that it is aligned with the interfaces between different
aterials. Specifically, for any 𝑗 = 1,… , 𝐽 , 𝛺̄𝑗 coincides with the union of the elements of the set ℎ(𝛺𝑗 ) ∶= {𝐾 ∈ ℎ; 𝐾 ⊂ 𝛺̄𝑗}. As
consequence,  and  are constant tensors and 𝜌 and 𝜔 are constant functions within each element of ℎ. We denote by ℎ𝐾 the

iameter of 𝐾 and let the parameter ℎ ∶= max𝐾∈ℎ{ℎ𝐾} represent the size of the mesh ℎ.
We define a closed subset 𝐹 ⊂ 𝛺 to be an interior edge/face if it has a positive (𝑑−1)-dimensional measure and can be expressed

s the intersection of the closures of two distinct elements 𝐾 and 𝐾 ′, i.e., 𝐹 = 𝐾̄ ∩ 𝐾̄ ′. On the other hand, a closed subset 𝐹 ⊂ 𝛺 is
a boundary edge/face if there exists 𝐾 ∈ ℎ such that 𝐹 is an edge/face of 𝐾 and 𝐹 = 𝐾̄ ∩ 𝜕𝛺. We consider the set 0

ℎ of interior
edges/faces and the set 𝜕

ℎ of boundary edges/faces and let ℎ = 0
ℎ ∪ 𝜕

ℎ . We denote by ℎ𝐹 the diameter an edge/face 𝐹 ∈ ℎ and
make the assumption that ℎ is locally quasi-uniform with constant 𝛾 > 0. This means that, for all ℎ and all 𝐾 ∈ ℎ, we have that

ℎ𝐹 ≤ ℎ𝐾 ≤ 𝛾ℎ𝐹 ∀𝐹 ∈  (𝐾), (3.1)

where  (𝐾) represents the set of edges/faces composing the element 𝐾 ∈ ℎ. This condition implies that neighboring elements have
similar sizes.

Throughout the rest of this paper, we shall use the letters 𝐶 and 𝑐 to denote generic positive constants independent of the mesh
size ℎ, the polynomial degree 𝑘 and the relaxation time 𝜔. These constants may stand for different values at its different occurrences.
Moreover, given any positive expressions 𝑋 and 𝑌 depending on ℎ, 𝑘, and 𝜔, the notation 𝑋 ≲ 𝑌 means that 𝑋 ≤ 𝐶 𝑌 .

For all 𝑠 ≥ 0, the broken Sobolev space with respect to the partition ℎ of 𝛺̄ is defined as

𝐻𝑠(ℎ, 𝐸) ∶= {𝒗 ∈ 𝐿2(𝛺,𝐸) ∶ 𝒗|𝐾 ∈ 𝐻𝑠(𝐾,𝐸) ∀𝐾 ∈ ℎ}, for 𝐸 ∈ {R,R𝑑 , S}.

Following the convention mentioned earlier, we write 𝐻0(ℎ, 𝐸) = 𝐿2(ℎ, 𝐸) and 𝐻𝑠(ℎ,R) = 𝐻𝑠(ℎ). We introduce the inner product

(𝜓,𝜑)ℎ ∶=
∑

𝐾∈ℎ

(𝜓,𝜑)𝐾 ∀𝜓,𝜑 ∈ 𝐿2(ℎ, 𝐸), 𝐸 ∈ {R,R𝑑 , S}

and write ‖𝜓‖20,ℎ ∶= (𝜓,𝜓)ℎ . Accordingly, we let 𝜕ℎ ∶= {𝜕𝐾; 𝐾 ∈ ℎ} be the set of all element boundaries and define 𝐿2(𝜕ℎ,R𝑑 )
as the space of vector-valued functions which are square-integrable on each 𝜕𝐾 ∈ 𝜕ℎ. We define

⟨𝒖, 𝒗⟩𝜕ℎ ∶=
∑

⟨𝒖, 𝒗⟩𝜕𝐾 , and ‖𝒗‖20,𝜕ℎ ∶= ⟨𝒗, 𝒗⟩𝜕ℎ ∀𝒖, 𝒗 ∈ 𝐿2(𝜕ℎ,R𝑑 ),
5
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where ⟨𝒖, 𝒗⟩𝜕𝐾 ∶=
∑

𝐹∈ (𝐾) ∫𝐹 𝒖 ⋅ 𝒗. Besides, we equip the space 𝐿2(ℎ,R𝑑 ) ∶=
∏

𝐹∈ℎ 𝐿
2(𝐹 ,R𝑑 ) with the inner product

(𝒖, 𝒗)ℎ ∶=
∑

𝐹∈ℎ
∫𝐹

𝒖 ⋅ 𝒗 ∀𝒖, 𝒗 ∈ 𝐿2(ℎ,R𝑑 ),

and denote the corresponding norm ‖𝒗‖20,ℎ ∶= (𝒗, 𝒗)ℎ .
Hereafter, 𝑚(𝐷) is the space of polynomials of degree at most 𝑚 ≥ 0 on 𝐷 if 𝐷 is a triangle/tetrahedron, and the space of

polynomials of degree at most 𝑚 in each variable in 𝐷 if 𝐷 is a quadrilateral/parallelepiped. The space of 𝐸-valued functions with
components in 𝑚(𝐷) is denoted 𝑚(𝐷,𝐸) where 𝐸 is either R𝑑 , or S. We introduce the space of piecewise-polynomial functions

𝑚(ℎ) ∶= {𝑣 ∈ 𝐿2(ℎ) ∶ 𝑣|𝐾 ∈ 𝑚(𝐾), ∀𝐾 ∈ ℎ}

with respect to the partition ℎ and the space of piecewise-polynomial functions

𝑚(ℎ) ∶= {𝒗̂ ∈ 𝐿2(ℎ) ∶ 𝒗̂|𝐹 ∈ 𝑚(𝐹 ), ∀𝐹 ∈ ℎ}

with respect to the partition ℎ. The subspace of 𝐿2(ℎ, 𝐸) with components in 𝑚(ℎ) is denoted 𝑚(ℎ, 𝐸) for 𝐸 ∈ {R𝑑 , S}. Likewise,
𝑚(ℎ,R𝑑 ) stands for the subspace of 𝐿2(ℎ,R𝑑 ) with components in 𝑚(ℎ). We finally consider

𝑚(𝜕ℎ,R𝑑 ) ∶= {𝒗 ∈ 𝐿2(𝜕ℎ,R𝑑 ); 𝒗|𝜕𝐾 ∈ 𝑚(𝜕𝐾,R𝑑 ), ∀𝐾 ∈ ℎ},

where 𝑚(𝜕𝐾,R𝑑 ) ∶=
∏

𝐹∈ (𝐾) 𝑚(𝐹 ,R𝑑 ). It is worth noting that, by definition, the functions in 𝐿2(𝜕ℎ,R𝑑 ) and 𝑚(𝜕ℎ,R𝑑 ) are
multi-valued on every interior face 𝐹 , whereas the functions in 𝐿2(ℎ,R𝑑 ) and 𝑚(ℎ,R𝑑 ) are single-valued on each face 𝐹 .

In the rest of this section, we recall some well-known local ℎ𝑝 estimates and use them to obtain global ℎ𝑝 estimates that will be
used in the subsequent analysis. we first present the following inverse inequalities, which can be found in [32, Theorem 1] and [33,
Theorem 4.76].

Lemma 3.1. There exists a constant 𝐶 > 0 independent of ℎ and 𝑚 such that
𝑚+1

ℎ
1∕2
𝐾

‖𝑣‖0,𝜕𝐾 + ‖∇𝑣‖0,𝐾 ≤ 𝐶 (𝑚+1)2
ℎ𝐾

‖𝑣‖0,𝐾 ∀𝑣 ∈ 𝑚(𝐾), ∀𝐾 ∈ ℎ, 𝑚 ≥ 0. (3.2)

For any integer 𝑚 ≥ 0 and 𝐾 ∈ ℎ, we denote by 𝛱𝑚
𝐾 the 𝐿2(𝐾)-orthogonal projection onto 𝑚(𝐾). The global projection 𝛱𝑚

 in
𝐿2(ℎ) onto 𝑚(ℎ) is then given by (𝛱𝑚

 𝑣)|𝐾 = 𝛱𝑚
𝐾 (𝑣|𝐾 ) for all 𝐾 ∈ ℎ. Similarly, the global projection 𝛱𝑚

 in 𝐿2(ℎ) onto 𝑚(ℎ) is
given, separately for all 𝐹 ∈ ℎ, by (𝛱𝑚

 𝑣̂)|𝐹 = 𝛱𝑚
𝐹 (𝑣̂|𝐹 ), where 𝛱𝑚

𝐹 is the 𝐿2(𝐹 )-orthogonal projection onto 𝑚(𝐹 ). In the following
lemma, we recall local approximation properties for these projectors.

Proposition 3.1. Let 𝐾 ∈ ℎ and assume that 𝑢 ∈ 𝐻1+𝑠(𝐾), with 𝑠 ≥ 0. There exists a constant 𝐶 > 0 independent of ℎ and 𝑚 such that

‖𝑢 −𝛱𝑚
𝐾𝑢‖0,𝐾 +

ℎ𝐾
(𝑚 + 1)3∕2

‖∇(𝑢 −𝛱𝑚
𝐾𝑢)‖0,𝐾 ≤ 𝐶

ℎmin{𝑠,𝑚}+1
𝐾
(𝑚+1)𝑠+1 ‖𝑢‖𝑠+1,𝐾 𝑚 ≥ 0, (3.3)

nd

‖𝑢 −𝛱𝑚
𝐾𝑢‖0,𝜕𝐾 + ‖𝑢 −𝛱𝑚

𝐹 𝑢‖0,𝐹 ≤ 𝐶
ℎmin{𝑠,𝑚}+1∕2
𝐾
(𝑚+1)𝑠+1∕2

‖𝑢‖𝑠+1,𝐾 ∀𝐹 ∈  (𝐾), 𝑚 ≥ 0. (3.4)

roof. The proof relies on the ℎ𝑝-approximation results provided for two-dimensional elements in [34, Lemma 4.5], which are also
pplicable to three-dimensional elements. Specifically, if 𝑢 ∈ 𝐻1+𝑠(𝐾), with 𝑠 ≥ 0, the result guarantees the existence of a sequence
f polynomials {𝑢𝑚 ∈ 𝑚(𝐾); 𝑚 = 0, 1,…} satisfying

‖𝑢 − 𝑢𝑚‖0,𝐾 + ℎ𝐾
𝑚+1‖∇(𝑢 − 𝑢𝑚)‖0,𝐾 ≤ 𝑐

ℎmin{𝑠,𝑚}+1
𝐾
(𝑚+1)𝑠+1 ‖𝑢‖𝑠+1,𝐾 , (3.5)

ith 𝑐 > 0 independent of ℎ and 𝑚. Due to the optimality of the 𝐿2-projection, it follows immediately that

‖𝑢 −𝛱𝑚
𝐾𝑢‖0,𝐾 ≤ ‖𝑢 − 𝑢𝑚‖0,𝐾 ≤ 𝑐

ℎmin{𝑠,𝑚}+1
𝐾
(𝑚+1)𝑠+1 ‖𝑢‖𝑠+1,𝐾 .

Moreover, it is shown in [35, Corollary 1.3] that

‖∇𝛱𝑚
𝐾𝑤‖0,𝐾 ≲ 𝑚1∕2

‖∇𝑤‖0,𝐾 ∀𝑤 ∈ 𝐻1(𝐾).

Taking 𝑤 = 𝑢 − 𝑢𝑚 in the last inequality and using (3.5) yield

‖∇(𝑢𝑚 −𝛱𝑚
𝐾𝑢)‖0,𝐾 ≲ 𝑚1∕2

‖∇(𝑢 − 𝑢𝑚)‖0,𝐾 ≲
ℎmin{𝑠,𝑚}
𝐾

(𝑚+1)𝑠−1∕2
‖𝑢‖𝑠+1,𝐾 .

Using the last bound in the triangle inequality

𝑚 𝑚
6

‖∇(𝑢 −𝛱𝐾𝑢)‖0,𝐾 ≤ ‖∇(𝑢 − 𝑢𝑚)‖0,𝐾 + ‖∇(𝑢𝑚 −𝛱𝐾𝑢)‖0,𝐾
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we obtain the estimate corresponding to the 𝐻1–seminorm in (3.3). On the other hand, we deduce from [35, Corollary 1.2] and a
standard scaling argument that

‖𝑤 −𝛱𝑚
𝐾𝑤‖0,𝜕𝐾 ≲

√

ℎ𝐾
𝑚+1‖𝑤‖1,𝐾 ∀𝑤 ∈ 𝐻1(𝐾).

Choosing 𝑤 = 𝑢 − 𝑢𝑚 in the last estimate and keeping in mind (3.5) we get

‖𝑢 −𝛱𝑚
𝐾𝑢‖0,𝜕𝐾 ≲

√

ℎ𝐾
𝑚+1‖𝑢 − 𝑢𝑚‖1,𝐾 ≲

ℎmin{𝑠,𝑚}+1∕2
𝐾
(𝑚+1)𝑠+1∕2

‖𝑢‖𝑠+1,𝐾 . (3.6)

urthermore, due to the optimality of 𝛱𝑚
𝐹 , we have

‖𝑢 −𝛱𝑚
𝐹 𝑢‖0,𝐹 ≤ ‖𝑢 −𝛱𝑚

𝐾𝑢‖0,𝐹 ≤ ‖𝑢 −𝛱𝑚
𝐾𝑢‖0,𝜕𝐾 ,

which proves that estimate (3.4) follows from (3.6). □

We consider 𝒏 ∈ 0(𝜕ℎ,R𝑑 ), where 𝒏|𝜕𝐾 = 𝒏𝐾 is the unit normal vector to 𝜕𝐾 oriented towards the exterior of 𝐾. Obviously,
if 𝐹 = 𝐾 ∩ 𝐾 ′ is an interior edge/face of ℎ, then 𝒏𝐾 = −𝒏𝐾′ on 𝐹 . If 𝒗 ∈ 𝐻𝑠(ℎ,R𝑑 ) and 𝝉 ∈ 𝐻𝑠(ℎ, S), with 𝑠 > 1∕2, the functions
𝒗|𝜕ℎ ∈ 𝐿2(𝜕ℎ,R𝑑 ) and (𝝉|𝜕ℎ )𝒏 ∈ 𝐿2(𝜕ℎ,R𝑑 ) are meaningful by virtue of the trace theorem. For the same reason, if 𝒗 ∈ 𝐻1(𝛺,R𝑑 )
hen 𝒗̂ ∶= 𝒗|ℎ is well-defined in 𝐿2(ℎ,R𝑑 ).

For 𝑘 ≥ 0, we introduce the finite dimensional subspace of  given by

ℎ ∶= 𝑘(ℎ, S) × 𝑉
𝑘 (ℎ,S), where 𝑉

𝑘 (ℎ,S) ∶= {𝝉 ∈ 𝑘(ℎ, S) ∶ 𝝉|𝛺𝐸 = 𝟎}.

It is essential to notice that, for any 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ, 𝝉 = 𝝉𝐸 + 𝜔(𝒙)𝝉𝑉 lies in 𝑘(ℎ, S).

Lemma 3.2. There exists a constant 𝐶 > 0 independent of ℎ, 𝑘, and 𝜔 such that

‖

ℎ
1∕2

𝑘+1 𝝉𝒏‖0,𝜕ℎ ≤ 𝐶‖𝝉‖ ∀𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ with 𝝉 = 𝝉𝐸 + 𝜔𝝉𝑉 . (3.7)

roof. According to (3.2), there exists 𝑐 > 0 independent of ℎ and 𝑘 such that

ℎ
1∕2
𝐾
𝑘+1 ‖𝑣‖0,𝜕𝐾 ≤ 𝑐‖𝑣‖0,𝐾 ∀𝑣 ∈ 𝑘(𝐾).

Applying this discrete trace inequality componentwise we deduce that

‖

ℎ
1∕2

𝑘+1 𝝉𝒏‖

2
0,𝜕ℎ

=
∑

𝐾∈ℎ

ℎ𝐹
(𝑘+1)2 ‖𝝉𝒏𝐾‖

2
0,𝜕𝐾 ≲

∑

𝐾∈ℎ

ℎ𝐾
(𝑘+1)2 ‖𝝉‖

2
0,𝜕𝐾 ≲

∑

𝐾∈ℎ

‖𝝉𝐸 + 𝜔𝝉𝑉 ‖20,𝐾 ,

for all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ, and the result follows from the triangle inequality and (2.5). □

In the sequel, we will continue to use the notation 𝛱𝑚
 to refer to the 𝐿2-orthogonal projection onto 𝑚(ℎ, 𝐸), for 𝐸 ∈ {R𝑑 , S}. It

s important to notice that the tensorial version of 𝛱𝑚
 preserves naturally the symmetry of matrices since it is obtained by applying

he scalar operator componentwise. Similarly, 𝛱𝑚
 will denote indistinctly the 𝐿2-orthogonal projection onto 𝑚(ℎ) and 𝑚(ℎ,R𝑑 ).

We let 𝛱𝑘
 ∶  → ℎ the projection defined by 𝛱𝑘

 𝝉 ∶= (𝛱𝑘
 𝝉𝐸 ,𝛱

𝑘
 𝝉𝑉 ) for all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ .

Lemma 3.3. There exists a constant 𝐶 > 0 independent of ℎ, 𝑘 and 𝜔 such that

‖𝝉 −𝛱𝑘
 𝝉‖ + ‖

ℎ
1∕2

𝑘+1 (𝝉 −𝛱𝑘

 𝝉)𝒏‖0,𝜕ℎ ≤ 𝐶
ℎmin{𝑟,𝑘}+1
𝐾
(𝑘+1)𝑟+1

(

𝐽
∑

𝑗=1
‖𝝉𝐸‖21+𝑟,𝛺𝑗 + 𝜔

2
𝑗‖𝝉𝑉 ‖

2
1+𝑟,𝛺𝑗

)1∕2
, (3.8)

for all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈  such that 𝝉𝐸 ∈ 𝐻1+𝑟(∪𝑗𝛺𝑗 , S) and 𝝉𝑉 ∈ 𝐻1+𝑟(∪𝑗𝛺𝑗 , S), with 𝑟 ≥ 0.

Proof. Given 𝐾 ∈ ℎ(𝛺𝑗 ), 1 ≤ 𝑗 ≤ 𝐽 , we obtain from (3.3) that

‖𝝉𝐸 −𝛱𝑘
𝐾𝝉𝐸‖

2
0,𝐾 + 𝜔2

𝑗‖𝝉𝑉 −𝛱𝑘
𝐾𝝉𝑉 ‖

2
0,𝐾 ≲

ℎ2min{𝑟,𝑘}+2
𝐾
(𝑘+1)2𝑟+2 (‖𝝉𝐸‖21+𝑟,𝐾 + 𝜔2

𝑗‖𝝉𝑉 ‖
2
1+𝑟,𝐾 ).

Moreover, applying (3.4) gives

ℎ𝐾
(𝑘+1)2 ‖(𝝉 −𝛱𝑘

𝐾𝝉)𝒏𝐾‖
2
0,𝜕𝐾 ≲

ℎ2min{𝑟,𝑘}+2
𝐾
(𝑘+1)2𝑟+3 ‖𝝉‖21+𝑟,𝐾 ≲

ℎ2min{𝑟,𝑘}+2
𝐾
(𝑘+1)2𝑟+2 (‖𝝉𝐸‖21+𝑟,𝐾 + 𝜔2

𝑗‖𝝉𝑉 ‖
2
1+𝑟,𝐾 ).

The result is obtained by first summing the last two estimates over all elements 𝐾 in the mesh ℎ(𝛺𝑗 ), and then summing over all
subdomains 𝛺𝑗 for 𝑗 ranging from 1 to 𝐽 . □

In what follows, given 𝒗 ∶= (𝒗, 𝒗̂) ∈ 𝐻𝑠(ℎ,R𝑑 ) × 𝐿2(ℎ,R𝑑 ), with 𝑠 > 1∕2, we define [[𝒗]] ∈ 𝐿2(𝜕ℎ,R𝑑 ) by

[[𝒗]]| ∶= 𝒗| − 𝒗̂| ∀𝐾 ∈  .
7

𝜕𝐾 𝜕𝐾 𝜕𝐾 ℎ
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We introduce the space  ∶= 𝐻1
0 (ℎ,R

𝑑 ) × 𝐿2(0
ℎ ,R

𝑑 ), where

𝐿2(0
ℎ ,R

𝑑 ) ∶= {𝒗 ∈ 𝐿2(ℎ,R𝑑 ); 𝒗|𝐹 = 𝟎, ∀𝐹 ∈ 𝜕
ℎ},

and endowed it with the semi-norm

‖𝒗‖2 = ‖∇𝒗‖20,ℎ + ‖

𝑘+1

ℎ
1∕2


[[𝒗]]‖20,𝜕ℎ ∀𝒗 ∶= (𝒗, 𝒗̂) ∈  , (3.9)

here ℎ ∈ 0(ℎ) is given by ℎ |𝐹 ∶= ℎ𝐹 for all 𝐹 ∈ ℎ. For 𝑘 ≥ 0, we consider the finite dimensional subspace ℎ ∶=
𝑘+1(ℎ,R𝑑 ) × 𝑘+1(0

ℎ ,R
𝑑 ) of  , where

𝑘+1(0
ℎ ,R

𝑑 ) ∶= {𝒗̂ ∈ 𝑘+1(ℎ,R𝑑 ); 𝒗̂|𝐹 = 𝟎, ∀𝐹 ∈ 𝜕
ℎ}.

e introduce the operator 𝛯𝑘+1ℎ ∶  → ℎ given by 𝛯𝑘+1ℎ 𝒗 = (𝛱𝑘+1
 𝒗,𝛱𝑘+1

 𝒗̂), for all 𝒗 = (𝒗, 𝒗̂) ∈  . Moreover, we consider the linear
operator 𝑖 ∶ 𝐻1

0 (𝛺,R
𝑑 ) →  defined, for any 𝒗 ∈ 𝐻1

0 (𝛺,R
𝑑 ), by

𝑖(𝒗) ∶= (𝒗, 𝒗̂) ∈  , with 𝒗̂ ∶= 𝒗|ℎ .

e point out that [[𝑖(𝒗)]] = 𝟎 for all 𝒗 ∈ 𝐻1
0 (𝛺,R

𝑑 ).

Lemma 3.4. There exists a constant 𝐶 > 0 independent of ℎ and 𝑘 such that

‖𝑖(𝒖) − 𝛯𝑘+1ℎ 𝑖(𝒖)‖ ≤ 𝐶 ℎmin{𝑟,𝑘}+1

(𝑘+1)𝑟+1∕2

(

𝐽
∑

𝑗=1
‖𝒖‖22+𝑟,𝛺𝑗

)1∕2
, (3.10)

for all 𝒖 ∈ 𝐻1
0 (𝛺,R

𝑑 ) ∩𝐻2+𝑟(∪𝑗𝛺𝑗 ,R𝑑 ), 𝑟 ≥ 0.

roof. By definition, we have that

‖𝑖(𝒖) − 𝛯𝑘+1ℎ 𝑖(𝒖)‖2 =
∑

𝐾∈ℎ

‖∇(𝒖 −𝛱𝑘+1
𝐾 𝒖)‖20,𝐾 + ‖

𝑘+1

ℎ
1∕2


[[𝑖(𝒖) − 𝛯𝑘+1ℎ 𝑖(𝒖)]]‖20,𝜕𝐾

and it follows directly from (3.3) that

‖∇(𝒖 −𝛱𝑘+1
𝐾 𝒖)‖0,𝐾 ≲

ℎmin{𝑟,𝑘}+1
𝐾
(𝑘+1)𝑟+1∕2

‖𝒖‖2+𝑟,𝐾 ∀𝐾 ∈ ℎ. (3.11)

On the other hand, using in the triangle inequality and (3.1) we get

‖

𝑘+1

ℎ
1∕2
𝐹

[[𝑖(𝒖) − 𝛯𝑘+1ℎ 𝑖(𝒖)]]‖0,𝜕𝐾 ≲ 𝑘+1

ℎ
1∕2
𝐾

‖𝒖 −𝛱𝑘+1
𝐾 𝒖‖0,𝜕𝐾 +

∑

𝐹∈ (𝐾)

𝑘+1

ℎ
1∕2
𝐾

‖𝒖 −𝛱𝑘+1
𝐹 𝒖‖0,𝐹 ,

and it follows from (3.4) that

‖

𝑘+1

ℎ
1∕2
𝐹

[[𝑖(𝒖) − 𝛯𝑘+1ℎ 𝑖(𝒖)]]‖0,𝜕𝐾 ≲
ℎmin{𝑟,𝑘}+1
𝐾
(𝑘+1)𝑟+1∕2

‖𝒖‖2+𝑟,𝐾 ∀𝐾 ∈ ℎ. (3.12)

Summing (3.11) and (3.12) over 𝐾 ∈ ℎ(𝛺𝑗 ) and then over 𝑗 = 1,… , 𝐽 gives the result. □

4. The HDG semi-discrete scheme and its convergence analysis

For all 𝝉 ∈  such that 𝝉 = 𝝉𝐸 + 𝜔𝝉𝑉 ∈ 𝐻𝑠(ℎ, S), 𝑠 ≥ 1∕2, and for all 𝒗 ∈  , we introduce the bilinear form defined by:

𝐵ℎ(𝝉 , 𝒗) ∶= (𝝉 , 𝜺(𝒗))ℎ − ⟨𝝉𝒏, [[𝒗]]⟩𝜕ℎ .

pplying the Cauchy–Schwarz inequality and (2.5), we deduce that

|𝐵ℎ(𝝉 , 𝒗)| ≲ (‖𝝉‖2 + ‖

ℎ
1∕2

𝑘+1 𝝉𝒏‖

2
0,𝜕ℎ

)1∕2‖𝒗‖ . (4.1)

ombining this estimate with the inverse inequality (3.7) we deduce that there exists a constant 𝐶 > 0 independent of ℎ, 𝑘, and 𝜔
uch that

|𝐵ℎ(𝝉 , 𝒗)| ≤ 𝐶‖𝝉‖‖𝒗‖ for all 𝝉 ∈ ℎ and 𝒗 ∈  . (4.2)

We propose the following HDG space discretization method for problem (2.9): find 𝝈ℎ ∶= (𝝈𝐸,ℎ,𝝈𝑉 ,ℎ) ∈ 1
[0,𝑇 ](ℎ) and

𝒖ℎ ∶= (𝒖ℎ, 𝒖̂ℎ) ∈ 1
[0,𝑇 ](ℎ) satisfying

(𝝈̇ℎ, 𝝉) + (𝜌𝒖̇ℎ, 𝒗)ℎ + (𝝈𝑉 ,ℎ, 𝜔𝝉𝑉 )ℎ
+ 𝐵ℎ(𝝈ℎ, 𝒗) − 𝐵ℎ(𝝉 , 𝒖ℎ) + ⟨

(𝑘+1)2
ℎ

[[𝒖ℎ]], [[𝒗]]⟩𝜕ℎ = (𝒇 (𝑡), 𝒗)ℎ
(4.3)

or all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ. We start up problem (4.3) with the initial conditions

𝝈 (0) = 𝛱𝑘 (𝝈0 ,𝝈0 ), 𝒖 (0) = 𝛱𝑘+1𝒅1. (4.4)
8

ℎ  𝐸 𝑉 ℎ 
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Proposition 4.1. Problem (4.3) admits a unique solution.

Proof. The algebraic differential equation (4.3) can be written as follows

(𝝈̇ℎ, 𝝉) + (𝜌𝒖̇ℎ, 𝒗)ℎ + (𝝈𝑉 ,ℎ, 𝜔𝝉𝑉 )ℎ + (𝝈ℎ, 𝜺(𝒗))ℎ − (𝝉 , 𝜺(𝒖ℎ))ℎ − ⟨𝝈ℎ𝒏, 𝒗⟩𝜕ℎ
+⟨[[𝒖ℎ]],

(𝑘+1)2
ℎ

𝒗 + 𝝉𝒏⟩𝜕ℎ = (𝒇 (𝑡), 𝒗)ℎ ∀𝝉 ∈ ℎ, ∀𝒗 ∈ 𝑘+1(ℎ,R𝑑 )

⟨

(𝑘+1)2
ℎ

𝒖̂ℎ, 𝒗̂⟩𝜕ℎ = ⟨

(𝑘+1)2
ℎ

𝒖ℎ − 𝝈ℎ𝒏, 𝒗̂⟩𝜕ℎ ∀𝒗̂ ∈ 𝑘+1(0
ℎ ,R

𝑑 ).

(4.5)

t follows from the second equation of (4.5), that for all 𝑡 ∈ (0, 𝑇 ], 𝒖̂ℎ(𝑡) can be expressed as follows:

𝒖̂ℎ(𝑡) =
{{

𝒖ℎ
}}

(𝑡) − ℎ
(𝑘+1)2

{{

𝝈ℎ𝒏
}}

(𝑡)

where
{{

𝒖ℎ
}}

(𝑡) and
{{

𝝈ℎ𝒏
}}

(𝑡) are defined in 𝑘+1(0
ℎ ,R

𝑑 ) by
{{

𝒖ℎ
}}

|𝐹 ∶= 1
2 (𝒖ℎ|𝐾 + 𝒖ℎ|𝐾′ )|𝐹 and

{{

𝝈ℎ𝒏
}}

|𝐹 ∶= 1
2 (𝝈ℎ|𝐾𝒏𝐾 +

ℎ|𝐾′𝒏𝐾′ )|𝐹 , respectively, for all 𝐹 ∈ 0
ℎ with 𝐹 = 𝐾 ∩ 𝐾 ′. We can then eliminate 𝒖̂ℎ and end up with the system of ordinary

differential equations

(𝝈̇ℎ, 𝝉) + (𝜌𝒖̇ℎ, 𝒗)ℎ + (𝝈𝑉 ,ℎ, 𝜔𝝉𝑉 )ℎ + (𝝈ℎ, 𝜺(𝒗))ℎ − (𝝉 , 𝜺(𝒖ℎ))ℎ − ⟨𝝈ℎ𝒏, 𝒗⟩𝜕ℎ
+⟨𝒖ℎ − (

{

𝒖ℎ
}

− ℎ
(𝑘+1)2

{

𝝈ℎ𝒏
}

), (𝑘+1)
2

ℎ
𝒗 + 𝝉𝒏⟩𝜕ℎ = (𝒇 (𝑡), 𝒗)ℎ ∀𝝉 ∈ ℎ, ∀𝒗 ∈ 𝑘+1(ℎ,R𝑑 ),

(4.6)

with the initial conditions (4.4). We observe that (⋅, ⋅) and (𝜌⋅, ⋅)ℎ are inner products in the finite dimensional function spaces
ℎ and 𝑘+1(ℎ,R𝑑 ), respectively. By selecting a suitable set of basis functions for these function spaces, we can represent the
semidiscrete problem (4.6) as a conventional first-order system of differential equations. As a result, the solution to (4.3) exists and
is unique. □

Let us verify now that the HDG scheme (4.3) is consistent with problem (2.9).

Proposition 4.2. Let

𝝈 ∶= (𝝈𝐸 ,𝝈𝑉 ) ∈ 𝐻1
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ]() and 𝒖 ∈ 1

[0,𝑇 ](𝐿
2(𝛺,R𝑑 )) ∩ 0

[0,𝑇 ](𝐻
1
0 (𝛺,R

𝑑 ))

e the solutions of (2.9) and assume that the stress tensor 𝝈 = 𝝈𝐸 + 𝜔𝝈𝑉 belongs to 0
[0,𝑇 ](𝐻

𝑠(ℎ, S) ∩𝐻(𝐝𝐢𝐯 , 𝛺,S)), with 𝑠 > 1∕2. Then, it
holds true that

(𝝈̇, 𝝉) + (𝜌𝒖̇, 𝒗)ℎ + (𝝈𝑉 , 𝜔𝝉𝑉 )ℎ
+ 𝐵ℎ(𝝈, 𝒗) − 𝐵ℎ(𝝉 , 𝑖(𝒖)) + ⟨

(𝑘+1)2
ℎ

[[𝑖(𝒖)]], [[𝒗]]⟩𝜕ℎ = (𝒇 (𝑡), 𝒗)ℎ
(4.7)

for all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ.

Proof. We point out that, as [[𝑖(𝒖)]] = 𝟎, we have that

𝐵ℎ(𝝉 , 𝑖(𝒖)) = (𝝉 , 𝜺(𝒖))ℎ ∀𝝉 ∈ ℎ.

Moreover, the continuity of the normal components of 𝝈 across the interelements of ℎ gives

𝐵ℎ(𝝈, 𝒗) = (𝝈, 𝜺(𝒗))ℎ − ⟨𝝈𝒏, [[𝒗]]⟩𝜕ℎ = (𝝈,∇𝒗)ℎ − ⟨𝝈𝒏, 𝒗⟩𝜕ℎ ∀𝒗 = (𝒗, 𝒗̂) ∈ ℎ. (4.8)

Applying now an elementwise integration by parts to the right-hand side of the last identity followed by the substitution 𝐝𝐢𝐯𝝈 = 𝜌𝒖̇−𝒇
yields

𝐵ℎ(𝝈, 𝒗) = −(𝐝𝐢𝐯𝝈, 𝒗)ℎ = −(𝜌𝒖̇, 𝒗)ℎ + (𝒇 (𝑡), 𝒗)𝛺 . (4.9)

By virtue of (4.8) and (4.9), it holds true that

(𝝈̇, 𝝉) + (𝜌𝒖̇, 𝒗)ℎ + (𝝈𝑉 , 𝜔𝝉𝑉 )ℎ + 𝐵ℎ(𝝈, 𝒗) − 𝐵ℎ(𝝉 , 𝑖(𝒖)) + ⟨

(𝑘+1)2
ℎ

[[𝑖(𝒖)]], [[𝒗]]⟩𝜕ℎ

= (𝝈̇, 𝝉) + (𝝈𝑉 , 𝜔𝝉𝑉 )ℎ − (𝝉 , 𝜺(𝒖))ℎ + (𝒇 , 𝒗)ℎ , (4.10)

for all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ. Moreover, applying Green’s formula (1.2) in the second equation of (2.9) and keeping
in mind the density of the embedding + ↪  we obtain

(𝝈̇, 𝝉) + (𝝈𝑉 , 𝜔𝝉𝑉 )𝛺 = (𝜺(𝒖), 𝝉)𝛺 ∀𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ .

Substituting back this identity in (4.10) gives the result. □

We begin now the convergence analysis of the HDG method (4.3) by considering the splitting 𝝈(𝑡) − 𝝈ℎ(𝑡) = 𝝌(𝑡) + 𝝅ℎ(𝑡) of
he error in the stress variable with 𝝌(𝑡) = 𝝈(𝑡) − 𝛱𝑘

 𝝈(𝑡) and 𝝅ℎ(𝑡) = 𝛱𝑘
 𝝈(𝑡) − 𝝈ℎ(𝑡). Likewise, we introduce the decomposition

(𝒖(𝑡)) − 𝒖ℎ(𝑡) = 𝒒(𝑡) + 𝒆ℎ(𝑡) of the error in the velocity variable with 𝒒(𝑡) = 𝑖(𝒖(𝑡)) − 𝛯𝑘+1 𝑖(𝒖(𝑡)), and 𝒆ℎ(𝑡) = 𝛯𝑘+1 𝑖(𝒖(𝑡)) − 𝒖ℎ(𝑡). Hence,
he components of the projected errors 𝝅ℎ ∶= (𝝅𝐸,ℎ,𝝅𝑉 ,ℎ) ∈ 1(ℎ) and 𝒆ℎ ∶= (𝒆ℎ, 𝒆̂ℎ) ∈ 1(ℎ) are given by

𝑘 𝑘 𝑘+1 ̂ 𝑘+1𝒖̂ − 𝒖̂ ,
9

𝝅𝐸,ℎ = 𝛱 𝝈𝐸 − 𝝈𝐸,ℎ, 𝝅𝑉 ,ℎ = 𝛱 𝝈𝑉 − 𝝈𝑉 ,ℎ and 𝒆ℎ = 𝛱 𝒖 − 𝒖ℎ, 𝒆ℎ = 𝛱 ℎ
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where we recall that 𝒖̂ = 𝒖|ℎ . We also have that 𝝌 = (𝝌𝐸 ,𝝌𝑉 ) and 𝒒 = (𝒒, 𝒒̂) with

𝝌𝐸 = 𝝈𝐸 −𝛱𝑘
 𝝈𝐸 , 𝝌𝑉 = 𝝈𝑉 −𝛱𝑘

 𝝈𝑉 and 𝒒 = 𝒖 −𝛱𝑘+1
 𝒖, 𝒒̂ = 𝒖̂ −𝛱𝑘+1

 𝒖̂.

Moreover, we will write 𝝅ℎ ∶= 𝝅𝐸,ℎ + 𝜔𝝅𝑉 ,ℎ and 𝝌 ∶= 𝝌𝐸 + 𝜔𝝌𝑉 .

Lemma 4.1. Under the conditions of Proposition 4.2, there exists a constant 𝐶 > 0 independent of ℎ, 𝑘 and 𝜔 such that

max
[0,𝑇 ]

‖𝝅ℎ(𝑡)‖
2
 + max

[0,𝑇 ]
‖𝒆ℎ(𝑡)‖20,ℎ + ∫

𝑇

0
‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖
2
0,𝜕ℎ

d𝑡 ≤ 𝐶 ∫

𝑇

0

(

‖𝒒‖2ℎ + ‖

ℎ
1∕2

𝑘+1𝝌𝒏‖

2
0,𝜕ℎ

)

d𝑡. (4.11)

roof. Using the consistency property (4.7) it is straightforward that

(𝝅̇ℎ, 𝝉) + (𝜌𝒆̇ℎ, 𝒗)ℎ + (𝝅𝑉 ,ℎ, 𝜔𝝉𝑉 )ℎ + 𝐵ℎ(𝝅ℎ, 𝒗) − 𝐵ℎ(𝝉 , 𝒆ℎ) + ⟨

(𝑘+1)2
ℎ

[[𝒆ℎ]], [[𝒗]]⟩𝜕ℎ

= −(𝝌̇ , 𝝉) − (𝜌𝒒̇, 𝒗)ℎ − (𝝌𝑉 , 𝜔𝝉𝑉 )ℎ − 𝐵ℎ(𝝌 , 𝒗) + 𝐵ℎ(𝝉 , 𝒒) − ⟨

(𝑘+1)2
ℎ

[[𝝌]], [[𝒗]]⟩𝜕ℎ

= ⟨𝝌𝒏, [[𝒗]]⟩𝜕ℎ + 𝐵ℎ(𝝉 , 𝒒) − ⟨

(𝑘+1)2
ℎ

[[𝒒]], [[𝒗]]⟩𝜕ℎ

(4.12)

or all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ. The last identity follows from orthogonal properties and from the fact that the
coefficient parameters are piecewise constant. Indeed, taking into account that (𝒙)𝑘(ℎ, S) ⊂ 𝑘(ℎ, S), (𝒙)𝑘(ℎ,S) ⊂ 𝑘(ℎ, S),
and 𝜔(𝒙)𝑘(ℎ, S) ⊂ 𝑘(ℎ, S) we deduce that

(𝝌̇ , 𝝉) + (𝝌𝑉 , 𝜔𝝉𝑉 )ℎ = (𝝈̇𝐸 −𝛱𝑘
 𝝈̇𝐸 ,𝝉𝐸 ) + (𝝈̇𝑉 −𝛱𝑘

 𝝈̇𝑉 , 𝜔
2𝝉𝑉 )

+ (𝝈𝑉 −𝛱𝑘
 𝝈𝑉 , 𝜔𝝉𝑉 )ℎ = 0 ∀𝝉 ∈ ℎ.

imilarly, because 𝜌(𝒙)𝑘+1(ℎ,R𝑑 ) ⊂ 𝑘+1(ℎ,R𝑑 ) we also have

(𝜌𝒒̇, 𝒗)ℎ = (𝒖̇ −𝛱𝑘+1
 𝒖̇, 𝜌𝒗)𝛺 = 0 ∀𝒗 ∈ 𝑘+1(ℎ,R𝑑 ).

Finally, as 𝜺(𝑘+1(ℎ,R𝑑 )) ⊂ 𝑘(ℎ, S), it turns out that

𝐵ℎ(𝝌 , 𝒗) = (𝝈 −𝛱𝑘
 𝝈, 𝜺(𝒗))ℎ − ⟨𝝌𝒏, [[𝒗]]⟩𝜕ℎ = −⟨𝝌𝒏, [[𝒗]]⟩𝜕ℎ ∀𝒗 ∈ ℎ.

Taking 𝝉 = 𝝅ℎ and 𝒗 = 𝒆ℎ in (4.12) and using the Cauchy–Schwarz inequality together with (4.2) yields

1
2

d
d𝑡

{

(𝝅ℎ,𝝅ℎ) + (𝜌𝒆ℎ, 𝒆ℎ)ℎ
}

+ ‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖
2
0,𝜕ℎ

≤ ⟨𝝌𝒏, [[𝒆ℎ]]⟩𝜕ℎ + 𝐵ℎ(𝝅ℎ, 𝒒) − ⟨

(𝑘+1)2
ℎ

[[𝒒]], [[𝒆ℎ]]⟩𝜕ℎ

≤ ‖

ℎ
1∕2

𝑘+1𝝌𝒏‖0,𝜕ℎ‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖0,𝜕ℎ + 𝐶‖𝝅ℎ‖‖𝒒‖ + ‖

𝑘+1

ℎ
1∕2


[[𝒒]]‖0,𝜕ℎ‖
𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖0,𝜕ℎ .

We notice that because of assumption (4.4), the projected errors satisfy vanishing initial conditions, namely, 𝝅ℎ(0) = (𝟎, 𝟎) and
ℎ(0) = 𝟎. Hence, integrating over 𝑡 ∈ (0, 𝑇 ] and using again the Cauchy–Schwarz inequality we deduce that

‖𝝅ℎ(𝑡)‖
2
 + ‖𝜌1∕2𝒆ℎ(𝑡)‖20,ℎ + ∫

𝑡

0
‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖
2
0,𝜕ℎ

d𝑠 ≲ max
[0,𝑇 ]

‖𝝅ℎ(𝑡)‖ ∫

𝑇

0
‖𝒒‖d𝑡

+
(

∫

𝑇

0
(‖

ℎ
1∕2

𝑘+1𝝌𝒏‖

2
0,𝜕ℎ

+ ‖

𝑘+1

ℎ
1∕2


[[𝒒]]‖20,𝜕ℎ )d𝑡
)1∕2(

∫

𝑇

0
‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖
2
0,𝜕ℎ

d𝑡
)1∕2

,

for all 𝑡 ∈ (0, 𝑇 ]. We conclude, by a simple application of Young’s inequality, that

max
[0,𝑇 ]

‖𝝅ℎ(𝑡)‖
2
 + max

[0,𝑇 ]
‖𝒆ℎ(𝑡)‖20,ℎ + ∫

𝑇

0
‖

𝑘+1

ℎ
1∕2


[[𝒆ℎ]]‖
2
0,𝜕ℎ

d𝑡

≲ ∫

𝑇

0

(

‖

ℎ
1∕2

𝑘+1𝝌𝒏‖

2
0,𝜕ℎ

+ ‖

𝑘+1

ℎ
1∕2


[[𝒒]]‖20,𝜕ℎ

)

d𝑡 +
(

∫

𝑇

0
‖𝒒‖ d𝑡

)2
,

nd the result follows. □

heorem 4.1. Let

𝝈 ∶= (𝝈𝐸 ,𝝈𝑉 ) ∈ 𝐻1
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ]() and 𝒖 ∈ 1

[0,𝑇 ](𝐿
2(𝛺,R𝑑 )) ∩ 0

[0,𝑇 ](𝐻
1
0 (𝛺,R

𝑑 ))

e the solutions of (2.9). Assume that 𝝈𝐸 ,𝝈𝑉 ∈ 0(𝐻1+𝑟(∪𝑗𝛺𝑗 , S)) and 𝒖 ∈ 0(𝐻2+𝑟(∪𝑗𝛺𝑗 ,R𝑑 )), with 𝑟 ≥ 0. Then, there exists a constant
𝐶 > 0 independent of ℎ, 𝑘, and 𝜔 such that

max
[0,𝑇 ]

‖(𝝈 − 𝝈ℎ)(𝑡)‖ + max
[0,𝑇 ]

‖(𝒖 − 𝒖ℎ)(𝑡)‖0,ℎ +

(

∫

𝑇

0
‖

𝑘+1

ℎ
1∕2


[[𝑖(𝒖) − 𝒖ℎ]]‖
2
0,𝜕ℎ

d𝑡
)1∕2

≤ 𝐶
ℎmin{𝑟,𝑘}+1
𝐾
(𝑘+1)𝑟+1

(

𝐽
∑

(max
[0,𝑇 ]

‖𝝉𝐸‖21+𝑟,𝛺𝑗 + 𝜔
2
𝑗 max
[0,𝑇 ]

‖𝝉𝑉 ‖21+𝑟,𝛺𝑗 + max
[0,𝑇 ]

‖𝒖‖22+𝑟,𝛺𝑗 )
)1∕2

∀𝑘 ≥ 0.
10

𝑗=1
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Proof. It follows from the triangle inequality and (4.11) that

max
[0,𝑇 ]

‖(𝝈 − 𝝈ℎ)(𝑡)‖
2
 + max

[0,𝑇 ]
‖(𝒖 − 𝒖ℎ)(𝑡)‖20,ℎ + ∫

𝑇

0
‖

𝑘+1

ℎ
1∕2


[[𝑖(𝒖) − 𝒖ℎ]]‖
2
0,𝜕ℎ

d𝑡

≤ max
[0,𝑇 ]

‖𝝌(𝑡)‖2 + max
[0,𝑇 ]

‖𝒒(𝑡)‖20,ℎ + 𝐶 ∫

𝑇

0

(

‖𝒒‖2ℎ + ‖

ℎ
1∕2

𝑘+1𝝌𝒏‖

2
0,𝜕ℎ

)

d𝑡,

nd the result follows directly from the error estimates (3.8) and (3.10). □

emark 4.1. The energy norm error estimates provided by Theorem 4.1 are quasi-optimal in ℎ and suboptimal by a factor of
1∕2 in 𝑘 for the stress variable. This issue has been previously addressed in the literature, as shown in [36,37], where similar
ounds were obtained for stationary (scalar) second-order elliptic problems. However, the error estimate for the velocity field is
urrently suboptimal in ℎ by one order, and it remains unclear how the duality argument of Aubin–Nitsche can be applied to obtain
quasi-optimal error estimate in ℎ for this variable in the 𝐿2-norm.

. The fully discrete scheme and its convergence analysis

Given 𝐿 ∈ N, we consider a uniform partition of the time interval [0, 𝑇 ] with step size 𝛥𝑡 ∶= 𝑇 ∕𝐿 and nodes 𝑡𝑛 ∶= 𝑛 𝛥𝑡, 𝑛 = 0,… , 𝐿.
The midpoint of each time subinterval is represented as 𝑡𝑛+1∕2 ∶=

𝑡𝑛+1+𝑡𝑛
2 . For any finite sequence {𝜙𝑛, 𝑛 = 0,… , 𝐿} of real numbers,

we define {𝜙𝑛} ∶= 𝜙𝑛+1+𝜙𝑛
2 and introduce the discrete time derivative 𝜕𝑡𝜙𝑛 ∶=

𝜙𝑛+1−𝜙𝑛
𝛥𝑡 . We adopt the same notation for sets of vectors

or tensors.
In what follows we utilize the Crank–Nicolson method for the time discretization of (4.3)–(4.4). Namely, for 𝑛 = 0,… , 𝐿− 1, we

seek 𝝈𝑛+1ℎ ∶= (𝝈𝑛+1𝐸,ℎ ,𝝈
𝑛+1
𝑉 ,ℎ ) ∈ ℎ and 𝒖𝑛+1ℎ ∶= (𝒖𝑛+1ℎ , 𝒖̂𝑛+1ℎ ) ∈ ℎ solution of

(𝜕𝑡𝝈𝑛ℎ, 𝝉) + (𝜌𝜕𝑡𝒖𝑛ℎ, 𝒗)ℎ + (
{

𝝈𝑛𝑉 ,ℎ
}

, 𝜔𝝉𝑉 )ℎ

+ 𝐵ℎ(
{

𝝈𝑛ℎ
}

, 𝒗) − 𝐵ℎ(𝝉 ,
{

𝒖𝑛ℎ
}

) + ⟨

(𝑘+1)2
ℎ

[[
{

𝒖𝑛ℎ
}

]], [[𝒗]]⟩𝜕ℎ = (
{

𝒇 (𝑡𝑛)
}

, 𝒗)ℎ
(5.1)

or all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ. we assume that the scheme (5.1) is initiated with

𝝈0
ℎ = 𝛱𝑘

 (𝝈
0
𝐸 ,𝝈

0
𝑉 ), 𝒖0ℎ = 𝛯𝑘+1 𝑖(𝒅1). (5.2)

We point out that at each iteration step of (5.1) we need to solve the square system of linear equations whose matrix is associated
to the bilinear form 𝐴ℎ(⋅, ⋅) ∶ ℎ × ℎ → R defined by

𝐴ℎ((𝝈ℎ, 𝒖), (𝝉ℎ, 𝒗ℎ)) ∶=
1
𝛥𝑡 (𝝈ℎ, 𝝉ℎ) + 1

𝛥𝑡 (𝜌𝒖ℎ, 𝒗ℎ)ℎ +
1
2 (𝝈𝑉 ,ℎ, 𝜔𝝉𝑉 )ℎ

+ 1
2𝐵ℎ(𝝈ℎ, 𝒗ℎ) −

1
2𝐵ℎ(𝝉ℎ, 𝒖ℎ) +

1
2 ⟨

(𝑘+1)2
ℎ

[[𝒖ℎ]], [[𝒗]]⟩𝜕ℎ .

It is straightforward that the null space of this bilinear form is trivial which demonstrates the well-defined nature of the scheme
(5.1)–(5.2).

Our objective is to establish the stability of the fully discrete scheme (5.1) by estimating the projected errors 𝝅𝑛ℎ = 𝛱𝑘
 𝝈(𝑡𝑛) − 𝝈𝑛ℎ

nd 𝒆𝑛ℎ = 𝛯𝑘+1 𝑖(𝒖(𝑡𝑛)) − 𝒖𝑛ℎ in terms of 𝝌𝑛 ∶= 𝝌(𝑡𝑛), 𝒒𝑛 ∶= 𝒒(𝑡𝑛) and consistency quantities arising from the time discretization. We
ecall that, according to our notations, the components of the projected errors 𝝅𝑛ℎ ∶= (𝝅𝑛𝐸,ℎ,𝝅

𝑛
𝑉 ,ℎ) ∈ ℎ and 𝒆𝑛ℎ ∶= (𝒆𝑛ℎ, 𝒆̂

𝑛
ℎ) ∈ ℎ are

iven by

𝝅𝑛𝐸,ℎ = 𝛱𝑘
 𝝈𝐸 (𝑡𝑛) − 𝝈𝑛𝐸,ℎ, 𝝅𝑛𝑉 ,ℎ = 𝛱𝑘

 𝝈𝑉 (𝑡𝑛) − 𝝈𝑛𝑉 ,ℎ
𝒆𝑛ℎ = 𝛱𝑘+1

 𝒖(𝑡𝑛) − 𝒖𝑛ℎ, 𝒆̂𝑛ℎ = 𝛱𝑘+1
 𝒖̂(𝑡𝑛) − 𝒖̂𝑛ℎ,

here 𝒖̂ = 𝒖|ℎ . likewise, by definition, it holds that 𝝌𝑛 = (𝝌𝑛𝐸 ,𝝌
𝑛
𝑉 ) and 𝒒𝑛 = (𝒒𝑛, 𝒒̂𝑛) with

𝝌𝑛𝐸 = 𝝈𝐸 (𝑡𝑛) −𝛱𝑘
 𝝈𝐸 (𝑡𝑛), 𝝌𝑛𝑉 = 𝝈𝑉 (𝑡𝑛) −𝛱𝑘

 𝝈𝑉 (𝑡𝑛)

𝒒𝑛 = 𝒖(𝑡𝑛) −𝛱𝑘+1
 𝒖(𝑡𝑛), 𝒒̂𝑛 = 𝒖̂(𝑡𝑛) −𝛱𝑘+1

 𝒖̂(𝑡𝑛).

e also use the notations 𝝅𝑛ℎ ∶= 𝝅𝑛𝐸,ℎ + 𝜔𝝅
𝑛
𝑉 ,ℎ and 𝝌𝑛 ∶= 𝝌𝑛𝐸 + 𝜔𝝌𝑛𝑉 .

emma 5.1. Let

𝝈 ∶= (𝝈𝐸 ,𝝈𝑉 ) ∈ 𝐻1
[0,𝑇 ](

+) ∩ 1
[0,𝑇 ]() and 𝒖 ∈ 1

[0,𝑇 ](𝐿
2(𝛺,R𝑑 )) ∩ 0

[0,𝑇 ](𝐻
1
0 (𝛺,R

𝑑 ))

e the solutions of (2.9) and assume that 𝝈 = 𝝈𝐸 + 𝜔𝝈𝑉 ∈ 0
[0,𝑇 ](𝐻

𝑠(ℎ, S) ∩𝐻(𝐝𝐢𝐯 , 𝛺,S)), with 𝑠 > 1∕2. There exists a constant 𝐶 > 0
independent of ℎ, 𝑘 and 𝜔 such that

max
𝑛

‖𝝅𝑛ℎ‖
2
 + max

𝑛
‖𝜌1∕2𝒆𝑛ℎ‖

2
0,ℎ

+ 𝛥𝑡
𝐿−1
∑

𝑛=0
‖

(𝑘+1)

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖20,𝜕ℎ ≤ 𝐶
(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖𝜕𝑡𝝈(𝑡𝑛) −

{

𝝈̇(𝑡𝑛)
}

‖

2


+ 𝛥𝑡
𝐿−1
∑

‖𝜌1∕2(𝜕𝑡𝒖(𝑡𝑛) −
{

𝒖̇(𝑡𝑛)
}

)‖20,ℎ + 𝛥𝑡
𝐿−1
∑

‖

ℎ
1∕2

𝑘+1 {𝝌

𝑛}𝒏‖20,𝜕ℎ + 𝛥𝑡
𝐿−1
∑

‖

{

𝒒𝑛
}

‖

2


)

.

(5.3)
11
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Proof. It follows from the consistency Eq. (4.7) and the orthogonality properties employed in the proof of Lemma 4.1 that the
projected errors 𝝅𝑛ℎ ∈ ℎ and 𝒆𝑛ℎ ∈ ℎ satisfy the equation

(𝜕𝑡𝝅𝑛ℎ, 𝝉) + (𝜌𝜕𝑡𝒆𝑛ℎ, 𝒗)ℎ + (
{

𝝅𝑛𝑉 ,ℎ
}

, 𝜔𝝉𝑉 )ℎ + 𝐵ℎ(
{

𝝅𝑛ℎ
}

, 𝒗) − 𝐵ℎ(𝝉 ,
{

𝒆𝑛ℎ
}

)

+ ⟨

(𝑘+1)2
ℎ

[[
{

𝒆𝑛ℎ
}

]], [[𝒗]]⟩𝜕ℎ = (𝜕𝑡𝝈(𝑡𝑛) −
{

𝝈̇(𝑡𝑛)
}

, 𝝉) + (𝜌(𝜕𝑡𝒖(𝑡𝑛) −
{

𝒖̇(𝑡𝑛)
}

), 𝒗)ℎ

+ ⟨{𝝌𝑛}𝒏, [[𝒗]]⟩𝜕ℎ + 𝐵ℎ(𝝉 ,
{

𝒒𝑛
}

) − ⟨

(𝑘+1)2
ℎ

[[
{

𝒒𝑛
}

]], [[𝒗]]⟩𝜕ℎ

(5.4)

or all 𝝉 = (𝝉𝐸 , 𝝉𝑉 ) ∈ ℎ and 𝒗 = (𝒗, 𝒗̂) ∈ ℎ. Selecting 𝝉 =
{

𝝅𝑛ℎ
}

and 𝒗 =
{

𝒆𝑛ℎ
}

in Eq. (5.4), taking into account that the bilinear form
associated with the tensor  is non-negative and applying (4.2) and the Cauchy–Schwartz inequality to the terms on the right-hand
side we derive the estimate

1
2𝛥𝑡

(

‖𝝅𝑛+1ℎ ‖

2
 + ‖𝜌1∕2𝒆𝑛+1ℎ ‖

2
0,ℎ

− ‖𝝅𝑛ℎ‖
2
 − ‖𝜌1∕2𝒆𝑛ℎ‖

2
0,ℎ

)

+ ‖

𝑘+1

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖20,𝜕ℎ

≤ ‖𝜕𝑡𝝈(𝑡𝑛) −
{

𝝈̇(𝑡𝑛)
}

‖‖

{

𝝅𝑛ℎ
}

‖ + ‖𝜌1∕2(𝜕𝑡𝒖(𝑡𝑛) −
{

𝒖̇(𝑡𝑛)
}

)‖0,ℎ‖𝜌
1∕2 {𝒆𝑛ℎ

}

‖0,ℎ

+ ‖

ℎ
1∕2

𝑘+1 {𝝌

𝑛}𝒏‖0,𝜕ℎ‖
𝑘+1

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖0,𝜕ℎ + ‖

{

𝝅𝑛ℎ
}

‖‖

{

𝒒𝑛
}

‖ + ‖

𝑘+1

ℎ
1∕2


[[
{

𝒒𝑛
}

]]‖0,𝜕ℎ‖
𝑘+1

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖0,𝜕ℎ .

Next, employing a standard summation procedure and taking into account that the projected errors vanish identically at the initial
step we get

max
𝑛

‖𝝅𝑛ℎ‖
2
 + max

𝑛
‖𝜌1∕2𝒆𝑛ℎ‖

2
0,ℎ

+ 𝛥𝑡
𝐿−1
∑

𝑛=0
‖

(𝑘+1)

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖20,𝜕ℎ

≲ max
𝑛

‖𝝅𝑛ℎ‖
(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖𝜕𝑡𝝈(𝑡𝑛) −

{

𝝈̇(𝑡𝑛)
}

‖

)

+ max
𝑛

‖𝜌1∕2𝒆𝑛ℎ‖0,ℎ
(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖𝜌1∕2(𝜕𝑡𝒖(𝑡𝑛) −

{

𝒖̇(𝑡𝑛)
}

)‖0,ℎ
)

+ 𝛥𝑡
𝐿−1
∑

𝑛=0
‖

ℎ
1∕2

𝑘+1 {𝝌

𝑛}𝒏‖0,𝜕ℎ‖
𝑘+1

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖0,𝜕ℎ + max
𝑛

‖𝝅𝑛ℎ‖
(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖

{

𝒒𝑛
}

‖

)

+ 𝛥𝑡
𝐿−1
∑

𝑛=0
‖

𝑘+1

ℎ
1∕2


[[
{

𝒒𝑛
}

]]‖0,𝜕ℎ‖
𝑘+1

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖0,𝜕ℎ .

inally, applying repeatedly Young’s inequality 2𝑎𝑏 ≤ 𝑎2

𝜖 + 𝜖𝑏2, with a suitable 𝜖 > 0 in each instance, and subsequently applying
he Cauchy–Schwartz inequality for the summation terms, we obtain (5.3). □

Performing a Taylor expansion centered at 𝑡 = 𝑡𝑛+1∕2 we obtain the identity

𝜕𝑡𝜑(𝑡𝑛) −
{

𝜑̇(𝑡𝑛)
}

=
(𝛥𝑡)2

16 ∫

1

−1
𝜑⃛(𝑡𝑛+1∕2 +

𝛥𝑡
2 𝑠)(|𝑠|

2 − 1)d𝑠 ∀𝜑 ∈ 3([0, 𝑇 ]), 0 ≤ 𝑛 ≤ 𝐿 − 1.

Hence, if we add to the regularity assumptions imposed in Lemma 5.1 to the exact the solutions of (2.9) the time regularity
assumptions 𝝈 ∈ 3

[0,𝑇 ]() and 𝒖 ∈ 3
[0,𝑇 ](𝐿

2(𝛺,R𝑑 )), we deduce from (5.3) that

max
𝑛

‖𝝅𝑛ℎ‖ + max
𝑛

‖𝜌1∕2𝒆𝑛ℎ‖0,ℎ +
(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖

(𝑘+1)

ℎ
1∕2


[[
{

𝒆𝑛ℎ
}

]]‖20,𝜕ℎ

)1∕2

≲ (𝛥𝑡)2
(

max
[0,𝑇 ]

‖𝝈⃛‖ + max
[0,𝑇 ]

‖𝒖⃛‖0,ℎ
)

+ max
𝑛

‖

ℎ
1∕2

𝑘+1𝝌

𝑛𝒏‖20,𝜕ℎ + max
𝑛

‖𝒒𝑛‖ .

(5.5)

heorem 5.1. Assume that the solution (𝝈, 𝒖) of (2.9) satisfies the time regularity assumptions 𝝈 ∶= (𝝈𝐸 ,𝝈𝑉 ) ∈ 𝐻1
[0,𝑇 ](

+) ∩
3
[0,𝑇 ](), 𝒖 ∈ 3

[0,𝑇 ](𝐿
2(𝛺,R𝑑 )) ∩ 0

[0,𝑇 ](𝐻
1
0 (𝛺,R

𝑑 )) and the piecewise space regularity conditions 𝝈𝐸 ,𝝈𝑉 ∈ 0(𝐻1+𝑟(∪𝑗𝛺𝑗 , S)) and
𝒖 ∈ 0(𝐻2+𝑟(∪𝑗𝛺𝑗 ,R𝑑 )), with 𝑟 ≥ 0. Then, there exists a constant 𝐶 > 0 independent of ℎ, 𝑘, and 𝜔 such that

max
𝑛

‖𝝈(𝑡𝑛) − 𝝈𝑛ℎ‖ + max
𝑛

‖𝒖(𝑡𝑛) − 𝒖𝑛ℎ‖0,ℎ +

(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖

𝑘+1

ℎ
1∕2


[[𝑖(𝒖(𝑡𝑛)) − 𝒖𝑛ℎ]]‖
2
0,𝜕ℎ

d𝑡
)1∕2

≤ 𝐶
ℎmin{𝑟,𝑘}+1
𝐾
(𝑘+1)𝑟+1

(

𝐽
∑

𝑗=1
(max
[0,𝑇 ]

‖𝝉𝐸‖21+𝑟,𝛺𝑗 + 𝜔
2
𝑗 max
[0,𝑇 ]

‖𝝉𝑉 ‖21+𝑟,𝛺𝑗 + max
[0,𝑇 ]

‖𝒖‖22+𝑟,𝛺𝑗 )
)1∕2

+ 𝐶(𝛥𝑡)2
(

max
[0,𝑇 ]

‖𝝈⃛‖ + max
[0,𝑇 ]

‖𝒖⃛‖0,ℎ
)

∀𝑘 ≥ 0.
12
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Table 6.1
Error progression is shown for a sequence of uniform refinements in space and over-refinements
in time. The errors are measured at 𝑇 = 1.5, with 𝜌 = 𝜔 = 1 and by employing the Lamé
coefficients defined in Eq. (6.3). The exact solution is provided by Eq. (6.1) by imposing pure
Dirichlet boundary condition.
𝑘 ℎ 𝚎𝐿ℎ𝑘(𝝈) 𝚛𝐿ℎ𝑘(𝝈) 𝚎𝐿ℎ𝑘(𝒖) 𝚛𝐿ℎ𝑘(𝒖)

0

1/4 1.65e+00 * 3.54e−01 *
1/8 7.91e−01 1.06 8.78e−02 2.01
1/16 3.64e−01 1.12 2.14e−02 2.04
1/32 1.81e−01 1.01 5.56e−03 1.94

1

1/4 6.42e−02 * 4.18e−03 *
1/8 1.47e−02 2.13 4.96e−04 3.07
1/16 3.31e−03 2.15 5.43e−05 3.19
1/32 8.20e−04 2.01 7.48e−06 2.86

2

1/2 2.98e−02 * 2.25e−03 *
1/4 1.64e−03 4.18 5.38e−05 5.39
1/8 1.78e−04 3.21 2.79e−06 4.27
1/16 1.91e−05 3.22 1.42e−07 4.30

3
1/2 1.15e−03 * 6.20e−05 *
1/4 2.55e−05 5.50 6.26e−07 6.63
1/8 1.35e−06 4.24 1.50e−08 5.38

Proof. Applying the triangle inequality in (5.5) we deduce that

max
𝑛

‖𝝈(𝑡𝑛) − 𝝈𝑛ℎ‖ + max
𝑛

‖𝒖(𝑡𝑛) − 𝒖𝑛ℎ‖0,ℎ +

(

𝛥𝑡
𝐿−1
∑

𝑛=0
‖

𝑘+1

ℎ
1∕2


[[𝑖(𝒖(𝑡𝑛)) − 𝒖𝑛ℎ]]‖
2
0,𝜕ℎ

d𝑡
)1∕2

≲ max
𝑛

‖𝝌𝑛‖ + max
𝑛

‖

ℎ
1∕2

𝑘+1𝝌

𝑛𝒏‖20,𝜕ℎ + max
𝑛

‖𝒒𝑛‖ + 𝐶(𝛥𝑡)2
(

max
[0,𝑇 ]

‖𝝈⃛‖ + max
[0,𝑇 ]

‖𝒖⃛‖0,ℎ
)

and the result is a direct consequence of the error estimates (3.8) and (3.10). □

6. Numerical results

The numerical results presented in this section have been implemented using the finite element library Netgen/NGSolve [38].

Accuracy verification

To confirm the decay of error as predicted by Theorem 5.1 with respect to the parameters ℎ, 𝛥𝑡 and 𝑘, we compare the computed
solutions at different levels of refinement to a closed-form exact solution of problem (2.9) obtained from a displacement field given
by

𝒅(𝑥, 𝑦, 𝑡) ∶=
(

cos(𝑡) sin(𝑥)𝑒−𝑦

𝑒𝑡+𝑥 cos(𝑦)

)

in 𝛺 × [0, 𝑇 ], (6.1)

where 𝛺 = (0, 1)2. We assume that the medium characterized by (2.1) is isotropic in the sense that the fourth-order elastic and
viscoelastic tensors are defined by

𝝉 = 2𝜇𝜻 + 𝜆 tr(𝜻)𝐼 𝜻 = 2𝜇𝝉 + 𝜆 tr(𝜻)𝐼, (6.2)

in terms of Lamé coefficients 𝜇 > 0, 𝜆 > 0, 𝜇 > 0, and 𝜆 > 0. The exact displacement (6.1) is used to construct exact elastic and
viscous stresses as well as appropriate initial conditions (5.2) and non-homogeneous boundary conditions.

The time interval [0, 𝑇 ] is equally divided into sub-intervals of length 𝛥𝑡. Since the error from the Crank–Nicolson method is
𝑂(𝛥𝑡2), we choose 𝛥𝑡 ≃ 𝑂(ℎ(𝑘+2)∕2) so that the error from the time discretization does not pollute the order of convergence of the
space discretization. For tables and figures presenting accuracy verification, we use the following notation for the 𝐿2−norms of the
errors:

𝚎𝐿ℎ𝑘(𝝈) ∶= ‖𝝈(𝑇 ) − 𝝈𝐿ℎ ‖ , 𝚎𝐿ℎ𝑘(𝒖) ∶= ‖𝒖(𝑇 ) − 𝒖𝐿ℎ ‖0,𝛺 .

he rates of convergence in space are computed as

𝚛𝐿ℎ𝑘(⋆) = log(𝚎𝐿ℎ𝑘(⋆)∕𝚎̃
𝐿
ℎ𝑘(⋆))[log(ℎ∕ℎ̃)]

−1 ⋆ ∈ {𝝈, 𝒖},

where 𝚎𝐿ℎ𝑘(⋆), 𝚎̃
𝐿
ℎ𝑘(⋆) denote errors generated on two consecutive meshes of sizes ℎ and ℎ̃, respectively.

In our first test we apply a pure Dirichlet boundary condition, which results in an empty set for 𝛤𝑁 while 𝛤𝐷 corresponds to the
entire boundary 𝛤 . The Lamé coefficients are chosen as
13

𝜇 = 1, 𝜆 = 3, 𝜇 = 2, and 𝜆 = 4. (6.3)
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Table 6.2
Error progression is shown for a sequence of uniform refinements in space and over-refinements in
time. The errors are measured at 𝑇 = 1.5, with 𝜌 = 𝜔 = 1 and by employing the Lamé coefficients
resulting from (6.4). The exact solution is provided by Eq. (6.1) by imposing a Dirichlet-Neumann
boundary condition.
𝑘 ℎ 𝚎𝐿ℎ𝑘(𝝈) 𝚛𝐿ℎ𝑘(𝝈) 𝚎𝐿ℎ𝑘(𝒖) 𝚛𝐿ℎ𝑘(𝒖)

0

1/8 8.93e+03 * 1.36e+04 *
1/16 4.80e+03 0.90 3.07e+03 2.14
1/32 2.38e+03 1.01 7.55e+02 2.03
1/64 1.00e+03 1.25 1.85e+02 2.03

1

1/4 1.21e+03 * 6.77e+02 *
1/8 2.08e+02 2.54 7.50e+01 3.17
1/16 5.26e+01 1.98 7.75e+00 3.28
1/32 1.24e+01 2.09 9.59e−01 3.01

2

1/4 2.28e+01 * 8.82e+00 *
1/8 2.17e+00 3.39 4.69e−01 4.23
1/16 2.45e−01 3.14 2.25e−02 4.38
1/32 2.97e−02 3.05 1.39e−03 4.01

3
1/4 3.79e−01 * 9.82e−02 *
1/8 1.91e−02 4.31 2.45e−03 5.33
1/16 8.92e−04 4.42 5.44e−05 5.49

Table 6.3
Computed errors for a sequence of uniform refinements in time with ℎ = 1∕16 and 𝑘 = 4. The
errors are measured at 𝑡 = 𝑇 = 1, with 𝜌 = 𝜔 = 1 and by employing the Lamé coefficients defined
in Eq. (6.3). The exact solution is provided by Eq. (6.1) by imposing pure Dirichlet boundary
condition.
𝛥𝑡 𝚎𝐿ℎ𝑘(𝝈) 𝚛𝐿ℎ𝑘(𝝈) 𝚎𝐿ℎ𝑘(𝒖) 𝚛𝐿ℎ𝑘(𝒖)

1/32 3.24 × 10−4 * 1.72 × 10−5 *
1/64 8.30 × 10−5 +1.96 4.78 × 10−6 +1.85
1/128 2.10 × 10−5 +1.98 1.25 × 10−6 +1.94
1/256 5.28 × 10−6 +1.99 3.17 × 10−7 +1.97
1/512 1.32 × 10−6 +2.00 8.00 × 10−8 +1.99

Additionally, we set 𝜔 = 1 and 𝜌 = 1 for the remaining parameters. Table 6.1 displays the errors with respect to the mesh size
ℎ for four different polynomial degrees 𝑘. We observe that the convergence in the stress field attains the optimal rate of 𝑂(ℎ𝑘+1).
Furthermore, as mentioned earlier in Remark 4.1, the velocity demonstrates a convergence rate of 𝑂(ℎ𝑘+2), which is one order
superior to what is stated in Theorem 5.1.

To verify the accuracy and stability of the scheme in the nearly incompressible limit we repeat the same experiment and consider
this time material parameter sets (Young’s modulus and Poisson ratio)

𝐸 = 0.49, 𝜈 = 100, 𝐸 = 0.4999, 𝜈 = 1000, (6.4)

hich give Lamé constants 𝜆⋆ = 𝐸⋆𝜈⋆
(1+𝜈⋆)(1−2𝜈⋆)

and 𝜇⋆ = 𝐸⋆
2(1+𝜈⋆)

, ⋆ ∈ {,}. We recall that the dissipativity condition requires that
 > 𝜇 and 𝜆 > 𝜆 . We also impose in this second test a Dirichlet boundary condition on the bottom side 𝛤𝐷 = (0, 1) × {0}
nd a Neumann boundary condition on the remaining three sides of the unit square. The error decay for this case is collected in
able 6.2. These results demonstrate the ability of the proposed HDG scheme to produce accurate approximations also in the nearly

ncompressible viscoelasticity regime.
On the other hand, Table 6.3 portrays the convergence results obtained after fixing the mesh size to ℎ = 1∕16 and the polynomial

egree to 𝑘 = 4 and varying the time step 𝛥𝑡 discretizing the time interval [0, 𝑇 ], with 𝑇 = 1. The rates of convergence in time, are
omputed as

𝚛𝐿ℎ𝑘(⋆) = log(𝚎𝐿ℎ𝑘(⋆)∕𝚎̃
𝐿
ℎ𝑘(⋆))[log(𝛥𝑡∕𝛥𝑡)]

−1 ⋆ ∈ {𝝈, 𝒖},

here 𝚎𝐿ℎ𝑘, 𝚎̃
𝐿
ℎ𝑘 denote errors generated on two consecutive runs considering time steps 𝛥𝑡 and 𝛥𝑡, respectively. In this example, we

onsider the same manufactured solution obtained from (6.1) with 𝛤𝐷 = 𝛤 . The remaining parameters are given by 𝜔 = 1, 𝜌 = 1,
nd (6.3). The expected convergence rate of 𝑂([𝛥𝑡]2) is attained as the time step is refined.

Finally, we fix the space mesh size ℎ = 0.25 and the time mesh size 𝛥𝑡 = 10−6 and let 𝑘 vary from 0 to 5. In Fig. 6.1 we report
he error 𝚎𝐿ℎ𝑘(𝝈) in the stress variable and the error 𝚎𝐿ℎ𝑘(𝒖) in velocity at 𝑇 = 0.5 as a function of the polynomial degree 𝑘 + 1 in a
14
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Fig. 6.1. Computed errors versus the polynomial degree 𝑘 with ℎ = 1∕4 and 𝛥𝑡 = 10−6. The errors are measured at 𝑡 = 𝑇 = 0.5, with 𝜌 = 𝜔 = 1 and by employing
the Lamé coefficients defined in Eq. (6.3). The exact solution is provided by Eq. (6.1) by imposing pure Dirichlet boundary condition.

Fig. 6.2. On the left, we present the meshed domain, while the next three figures depict snapshots of the viscoelastic body’s deformed configurations at times 2 s,
3.5 s, and 4.5 s, respectively. The color map in each figure indicates the distribution of von Mises stresses. The results are obtained by employing the boundary
conditions (6.5) and the viscoelastic material parameters defined in (6.6), and by setting ℎ = 0.3, 𝑘 = 3, and 𝛥𝑡 = 0.05. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Comparative of mechanical behavior in 3D: elastodynamic and dynamic/quasi-static viscoelasticity testing of a perforated brick

We use our HDG method to solve a three-dimensional model problem where an exact solution is unavailable. The objective is to
simulate the transient behavior of a viscoelastic perforated brick under dynamic and quasi-static conditions, including purely elastic
behavior.

The computational domain 𝛺 is a rectangular cuboid with dimensions (0, 1) × (0, 0.6) × (0, 3)m3 containing three right circular
cylindrical holes centered at (0.5, 0, 0.5), (0.5, 0, 1.5), and (0.5, 0, 2.5). These cylindrical holes are oriented parallel to the 𝑦-direction
and have radii of 0.25 and heights of 0.6. We refer to Fig. 6.2 for a visual representation of this geometry.

We assume that the solid represented by 𝛺 has mass density of 𝜌 = 1 kg/m3. At 𝑡 = 0.5 s, an instantaneous traction of 1 Pa is
applied in the negative 𝑧 direction on the upper face 𝛤 1

𝑁 , which lies in the plane 𝑧 = 1. This traction is maintained for a duration of
2.5 s, after which it is abruptly released. The boundary face 𝛤𝐷 at 𝑧 = 0 is clamped, while the remaining boundary 𝛤 2

𝑁 ∶= 𝜕𝛺⧵𝛤𝐷∪𝛤 1
𝑁

is left stress-free. Summing up, we are imposing to problem (2.4) vanishing initial data with the following loading and boundary
conditions:

𝒇 = 𝟎 in 𝛺 × (0, 𝑇 ], 𝒅 = 𝟎 on 𝛤𝐷 × (0, 𝑇 ],

𝝈𝒏 =

{

−1 if 0.5 ≤ 𝑡 ≤ 3
0 otherwise

on 𝛤 1
𝑁 × (0, 𝑇 ], 𝝈𝒏 = 𝟎 on 𝛤 2

𝑁 × (0, 𝑇 ].
(6.5)

We consider again tensors  and  given by (6.2) with material parameters

𝜆 = 6Pa, 𝜇 = 9Pa, 𝜆 = 9Pa, 𝜇 = 15Pa, 𝜔 = 0.7 s. (6.6)
15
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Fig. 6.3. The transients of the 𝑧-component of displacement at coordinates (0.5, 0.3, 3.0) are shown on the left, while the 𝐿2-norm of the global stress tensor
is displayed on the right. The results are presented for three cases: purely elastodynamic (represented by a line with the marker ⋅−), dynamic viscoelastic
(represented by a dashed line), and quasi-static viscoelastic (represented by a continuous line). These results are obtained using the boundary conditions (6.5),
the Lamé coefficients provided in (6.6), and setting ℎ = 0.2, 𝑘 = 1, and 𝛥𝑡 = 0.1. The values of 𝜌 and 𝜔 corresponding to each case are indicated in the figure.

We obtain an approximate solution of the problem by using the numerical method (5.1) with a polynomial degree 𝑘 = 3, a
mesh size ℎ = 0.3 and a time step of 𝛥𝑡 = 0.05 s. In Fig. 6.2, we illustrate the meshed domain and we show three snapshots (at
times 2 s, 3.5 s, and 4.5 s) representing the von Mises stresses portrayed on the deformed domain. For this purpose, the approximate
displacements are post-processed from the velocity field using the formula

𝒅𝑛+1ℎ = 𝒅𝑛ℎ + 𝛥𝑡 (𝒖
𝑛+1
ℎ + 𝒖𝑛ℎ)∕2.

In Fig. 6.3, we present a comparison between the results obtained using Zener’s model for dynamic and quasi-static viscoelasticity,
and also the results obtained in the purely elastodynamic case. To simulate the standard viscoelastic model without inertia, we
impose a small mass density 𝜌 (specifically, in the results depicted in Fig. 6.3, we set 𝜌 = 10−12 kg/m3) while keeping the other
parameters unchanged. The purely elastic scenario is achieved by setting 𝜔 = 0 across the entire domain. In all three cases, we
conducted the tests until 𝑡 = 15 s with 𝑘 = 1, ℎ = 0.2 and 𝛥𝑡 = 0.1. We depict the evolution of the third components of the
approximate displacement fields at (0.5, 0.3, 3) on the left panel, and the 𝐿2-norms of the approximate stress tensors on the right
panel in Fig. 6.3.

The displacement profile observed under quasi-static conditions exhibits the expected behavior associated with creep phenomena,
as described in previous works such as [6, Section 6.2.2 and Figure 6] and [10, Figure 6.3], which employed 2D and 3D numerical
tests for stress formulations of Zener’s viscoelastic model. Additionally, the dynamic viscoelastic case demonstrates a clear dissipative
character when compared to the elastodynamic case. The same conclusion applies to the plots displaying the 𝐿2-norms of the stress
tensors.

Wave propagation in a composite material

In order to test the capability of our approach in considering composite materials with mixed viscoelastic properties we employ
an illustrative example inspired by [5, Section 5.2.2]. However, while the reference focuses on simulating wave propagation in
distinct domains featuring either elastic or viscoelastic properties, our experiment explores the dynamics of an elastic wave within
a hybrid medium combining both viscoelastic and purely elastic regions.

We consider a domain 𝛺 = (−8, 8)2 representing a solid with viscoelastic properties in 𝛺𝑉 = (−8, 0) × (−8, 8) and purely elastic
behavior in 𝛺𝐸 = (0, 8) × (−8, 8). The physical parameters considered in each medium are indicated in Fig. 6.4. We take the initial
data equal to 0 and impose an homogeneous Dirichlet boundary condition on 𝛤 .

We consider a compactly supported volume force 𝒇 (𝑥, 𝑦, 𝑡) ∶= 𝒈(𝑥, 𝑦)𝑝(𝑡), where

𝒈(𝑥, 𝑦) =

{

(1 − 4‖𝒓‖2) 𝒓
‖𝒓‖ if ‖𝒓‖ < 1∕2

0 otherwise
and 𝑝(𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

d
d𝑡 [𝑒

−(15𝜋)2(𝑡− 1
15 )

2
] if 𝑡 < 2

15
0 otherwise

with 𝒓 ∶= (𝑥, 𝑦)𝚝. Graphic representations of the vector field 𝒈 and the function 𝑝 are given in Fig. 6.4.
We numerically solve problem (5.1) using the data described earlier, employing a mesh size of ℎ = 0.1, a time step of 𝛥𝑡 = 0.01,

and a polynomial degree of 𝑘 = 2. Fig. 6.5 illustrates the magnitude of the displacement field obtained at various time intervals:
0.5 s, 1 s, 1.5 s, and 2 s. Notably, we observe distinct behaviors in the wave propagation within the composite medium. Specifically,
the wave propagates at a faster rate and experiences more significant damping in the viscoelastic region.
16
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Fig. 6.4. The partition of the computational domain 𝛺 into a part 𝛺𝐸 with purely elastic behavior and a 𝛺𝑉 with viscoelastic properties (left). We indicate the
Lamé coefficients, the mass density and the relaxation time corresponding to each region. Graphical representations of the vector field 𝒈 and the scalar function
𝑝 defining the body force by 𝒇 = 𝑝(𝑡)𝒈(𝑥, 𝑦) (right).

Fig. 6.5. Snapshots of the displacement magnitude at times 0.5 s, 1 s, 1.5 s, 2 s. The results are obtained with vanishing initial data, utilizing the coefficients
provided in Fig. 6.4 and the source term 𝒇 = 𝑝(𝑡)𝒈(𝑥, 𝑦). Homogeneous Dirichlet boundary conditions were applied, and the numerical parameters were set as
follows: ℎ = 0.1, 𝑘 = 2, and 𝛥𝑡 = 0.01.

7. Conclusion

We have introduced a parameter-free hybrid discontinuous Galerkin (HDG) method for the stress-velocity formulation of Zener’s
viscoelasticity model. Taking advantage of the inherent hybridization strategy of the HDG framework, the method enables a
substantial reduction in globally coupled degrees of freedom, thereby enhancing computational efficiency without compromising
accuracy. The method employs symmetric tensor-valued piecewise polynomials of arbitrary degree to provide accurate stress
approximations in both two- and three-dimensional domains. Moreover, the method’s versatility extends to heterogeneous materials
with composite elastic-viscoelastic components.

We have presented an ℎ𝑝-finite element analysis that establishes the stability of the proposed HDG semi-discrete scheme with
respect to the discretization parameters ℎ and 𝑘, as well as the characteristic relaxation time 𝜔. We have derived error estimates
proving quasi-optimal convergence of the stress variable in terms of mesh size, alongside suboptimal convergence of the velocity.
Furthermore, we have applied the Crank–Nicolson rule as a time-stepping scheme to the proposed HDG method, and shown the
stability of the resulting fully-discrete scheme and analyzed its convergence properties. The numerical results corroborate our
theoretical predictions.
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