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Abstract
In the framework of Samara–Valencia model for heat transfer in dry surface grind-
ing, analytical expressions for the time-dependent temperature field of the workpiece
during the transient regime in which the wheel is engaged (cut-in) and disengaged
(cut-out) from the workpiece are calculated. The main assumption we consider is a
constant heat flux profile along the contact zone between the wheel and the workpiece.
According to the analytical expression obtained for the temperature field, a closed-
form expression for the maximum temperature during the cut-in transient regime has
been obtained. Further, a very rapid method for the numerical evaluation of maximum
temperature during the cut-out is described. This maximum temperature is responsible
of the thermal damage of the workpiece. Experimental evidence shows that the ther-
mal damage risk is greater during the cut-out transient regime. The present analytical
model reproduces this experimental feature. Finally, the analytical results have been
numerically validated using FEM analysis and are intended to be very useful for the
monitoring of the online grinding process in order to avoid thermal damage.

Keywords Dry surface grinding · Thermal damage · Transient regime

Mathematics Subject Classification 35K05 · 44A45 · 33C10 · 33B99

1 Introduction

Surface grinding is a machining process of metallic plates used for polishing a flat
surface by using an abrasive wheel. The grinding wheel rotates at a high speed and
slides over theworkpiece surface, so that the surfacematerial of themetallic plate being
ground is removed. Most of the energy produced in grinding is converted into heat
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due to friction between wheel and workpiece, and this heat is accumulated within the
contact zone between both [1, 2]. The high temperatures reached during thismachining
process may produce an unacceptable decrease in the quality of workpieces, such as
burning or residual stresses [3]. The author has presented and analytical approach
in order to speed up the numerical evaluation of the maximum temperature in the
stationary regime of dry surface grinding for and arbitrary heat flux profile entering
into the workpiece [4]. However, the thermal damage risk is higher in the transient
regime that occurs when the grinding wheel disengages from the workpiece (cut-out)
[5]. A practical way to avoid the latter is to clamp theworkpiece between plates in order
to provide heat conduction at its ends. However, plates should be of the same width
as the workpiece. Also, they have to be adjusted at the same level as the workpiece in
order to control the depth of cut a (see Fig. 1). This disadvantage produces a significant
delay in the online process. Therefore, an analytical expression would be very useful
for the maximum temperature prediction in the transient regime with the workpiece
alone.

The heat transfer in surface grinding is usually modelled by a flat strip heat source
infinitely long along the z-axis andof δwidth (m inSI units), slidingover theworkpiece
surface, and where the Cartesian coordinate system XY Z is fixed to the wheel (see
Jaeger’s model [6]). However, according to Fig. 1, the contact length between the
grinding wheel and the workpiece is given by a circular arc, as it is considered for
deep grinding in [7]. Nevertheless, in usual surface grinding conditions, the radius
of the wheel is much greater than the depth of cut, R � a, thus we can model our
heat source as a flat one, as aforementioned. The workpiece consists of a semi-infinite
solid that is moving with respect to the wheel at a speed of �vd = −vd �i (m s−1).
The temperature field in the workpiece T (t, x, y) has to satisfy the convective heat
equation [8, §1.7(2)]

∂T

∂t
= α

(
∂2T

∂x2
+ ∂2T

∂ y2

)
− vd

∂T

∂x
, (1)

Fig. 1 Setup scheme in dry
surface grinding
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where α is the thermal diffusivity (m2 s−1). Since initially the workpiece is at room
temperature T0 (K), (1) is subjected to the following initial condition:

T (0, x, y) = T0. (2)

According to the Samara–Valencia model [9], the boundary condition is given by

k
∂T

∂ y
(t, x, 0) = b (t, x) [T (t, x, 0) − T0] + d (t, x) , (3)

where k (Wm−1K−1) denotes the thermal conductivity, b (t, x) is the heat transfer
coefficient (Wm−2 K−1) between the workpiece and the environment (i.e. it considers
the heat evacuated by convection due to liquid coolant applied onto the workpiece sur-
face), and d (t, x) takes into account the heat flux (Wm−2) entering into the workpiece
due to friction between wheel and workpiece. It is worth noting that both b (t, x) and
d (t, x) are input functions in themodel and they have to be determined by other means
such as experimental measurements and a partition model for the energy generated by
friction in the contact zone [10].

According to the Samara–Valencia model [9], the solution of the boundary-value
problem stated in (1)–(3) can be split in two terms

T (t, x, y) = T0 + T (0) (t, x, y) + T (1) (t, x, y) , (4)

where

T (0) (t, x, y) = − 1

4πk

∫ t

0

1

s
exp

(−y2

4αs

)

×
{∫ ∞

−∞
d (t − s, ξ) exp

(
− (ξ − x − vds)2

4αs

)
dξ

}
ds, (5)

and

T (1) (t, x, y) = 1

4π

∫ t

0

1

s
exp

(−y2

4αs

){∫ ∞

−∞

(
y

2αs
− b(t − s, ξ)

k

)

× [T (t − s, ξ, 0) − T0] exp

(
− (ξ − x − vds)2

4αs

)
dξ

}
ds. (6)

Notice that T (0) (t, x, y) involves the part of the boundary condition (3) due to fric-
tion, andT (1) (t, x, y) the onedue to convection.Notice aswell that the time-dependent
temperature field T (t, x, y) given in (4) is an integral equation, since T (1) (t, x, y)
involves the surface temperature rise T (t, x, 0) − T0.

Wet grinding usually considers a constant heat transfer coefficient h on the surface,
i.e. b (t, x) = h. However, in the case of dry grinding (adiabatic case), the convection
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Fig. 2 Regimes in dry surface grinding

on the surface can be neglected, i.e. b (t, x) = 0, and T (0) (t, x, y) = T (1) (t, x, y)
[11], thus (4) becomes

T (t, x, y) = T0 + 2 T (0) (t, x, y)

= T0 − 1

2πk

∫ t

0

1

s
exp

(−y2

4αs

)

×
{∫ ∞

−∞
d (t − s, ξ) exp

(
− (ξ − x − vds)2

4αs

)
dξ

}
ds. (7)

The above result is highly non-trivial and is termed as T (0)-theorem.
Figure2 shows three sequential regimes during grinding for the analysis of the

temperature field: cut-in, stationary regime and cut-out. During the transient regime
of the cut-in, the friction width increases linearly from zero to its stationary regime
value. If the workpiece is long enough (this length depends on the thermal properties
of the workpiece and the grinding conditions), then the temperature field reaches in
practice the stationary regime (i.e. ∂T /∂t ≈ 0). The cut-out transient regime occurs
during disengagement at the end of the grinding pass, decreasing the friction width
from its value in the stationary regime to zero.

On the one hand, the workpiece temperature during the cut-in and cut- out transient
regimes has been evaluated by using FEM analysis [5, 12]. On the other hand, an
analytic model has been derived by the author in [13] considering a linear heat flux
profile in dry surface grinding (i.e. b (t, x) = 0). It is worth noting that an analytical
solution is quite desirable because it needs much less computing resources than the
FEM analysis. Also, from an analytical expression, the parametric dependence of
the temperature field can be analysed directly. The goal of this paper is to extend
the analytic model given in [13] considering a constant heat flux profile. From this
solution, we propose a very rapidmethod to evaluate themaximum temperature during
the transient regime (cut-in and cut-out).
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This paper is organized as follows. Section2 calculates the temperature field (7)
for a continuous-acting constant heat flux profile in the stationary regime. From this
result, an equation for maximum temperature computation is derived. An equation
for the duration of the transient regime (relaxation time) and its approximation are
also presented. Section3 is devoted to the derivation of the temperature field during
the transient regime of the cut-out. From this expression, an equation for the root
searching of maximum temperature at the workpiece edge is derived. Section4 redoes
the calculations of Sect. 3 for the cut-in transient regime. In Sect. 5, some numerical
simulations for the cut-in, cut-out and stationary regimes are presented, as well as the
numerical validation using FEM analysis. The conclusions are summarized in Sect. 6.

2 Stationary regime

2.1 Temperature field

The heat source profile has been modelled as constant [14, 15], triangular [16, 17]
or parabolic profile [18] along the friction zone between wheel and workpiece. As
mentioned before, the transient regime during the cut-in and cut-out has been studied
analytically considering a linear heat flux profile in [13]. In the present study, we
consider a constant heat flux profile, hence we take the following d (t, x) function in
(7)

d (t, x) = −q θ (x) θ (δ − x) , (8)

where θ (x) denotes the Heaviside function [19, Eq. 1.16.13],

θ (x) =
{
1, x > 0
0, x ≤ 0,

(9)

and q is the average heat flux (Wm−2) over the grinding zone, x ∈ [0, δ]. Defining
the Peclet number Pe as (see [1, p. 160]):

Pe = vd δ

4α
,

and considering the following dimensionless variables [20]:

T = πkvd (T − T0)

2qα
, X = vd (x − δ/2)

2α
, Y = vdy

2α
, τ = vd

√
t

2
√

α
, (10)

the time-dependent temperature field T (τ, X ,Y ) for a constant heat flux profile in the
dry case reads as [20]:

T (τ, X ,Y ) = √
π

∫ τ

0
exp

(
− Y 2

4w

)
erf
( u

2w
+ w

)∣∣∣X+Pe

u=X−Pe
dw,
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where the error function is defined as [21, Eq. 40:3:1]:

erf (x) = 2√
π

∫ x

0
e−t2 dt . (11)

Note that the time scaling in (10) is nonlinear, as in the case of the dimensionless
parameter given in [8, Eq. 2.4(4)] for the heat transfer in a semi-infinite solid.

2.2 Maximum temperature

From a physical point of view, the maximum temperature Tmax must be reached in the
stationary regime (τ → ∞), because the longer the heat source is acting, the greater is
the temperature in the workpiece.Moreover, the location of the maximum temperature
rise Xmax must be on the surface (Y = 0), within the contact zone between wheel and
workpiece, Xmax ∈ [−Pe,Pe]. For a mathematical approach to the latter, see [22].
Therefore, let us consider the surface temperature rise in the stationary regime with
dimensionless variablesT (X , 0). According to [23], we have the following expression
for the dry case with a constant heat flux profile,

T (X , 0) = lim
τ→∞ T (τ, X , 0) = Jg0 (u)

∣∣−X+Pe
u=−X−Pe , (12)

being (see [4] for the definition of this function),

Jg0 (x) =
{
xex {K0 (|x |) + sgn (x) K1 (|x |)} , x 
= 0,
0, x = 0,

(13)

where Kν (z) denotes the Macdonald function of order ν. Since T (X , 0) is a differ-
entiable function, a convenient way to evaluate the maximum temperature rise is to
solve numerically all points X∗ that satisfies

∂T (X∗, 0)
∂X

= 0, X∗ ∈ [−Pe,Pe] , (14)

and then, the maximum is given by

Tmax = max
X∗
[
T
(
X∗, 0

)]
. (15)

In Sect. 5, we will check numerically that the root X∗ is unique for a constant heat
flux profile, so X∗ = Xmax. According to [23], Eq. (14) is written as

e−PeK0 (|Xmax + Pe|) − ePeK0 (|Xmax − Pe|) = 0,

Xmax ∈ [−Pe,Pe] . (16)
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Finally, according to (10), we have

T Sta
max = T0 + 2qα

πkvd
T (Xmax, 0) (17)

2.3 Relaxation time

As aforementioned, the stationary regime is asymptotically reached at t → ∞. In
dimensionless variables, we have

lim
τ→∞

∂T (τ, X ,Y )

∂τ
= 0. (18)

To avoid thermal damage, the location of the maximum temperature rise Xmax is
the most important one. Therefore, in order to estimate the duration of the transient
regime (relaxation time), we can solve the following equation for τ ∗ > 0:

∂T (τ ∗, Xmax, 0)

∂τ
= η ≈ 0. (19)

According to [20], Eq. (19) is expressed in dimensionless variables as

√
π erf

( u

2τ ∗ + τ ∗)∣∣∣Xmax+Pe

u=Xmax−Pe
= η, (20)

obtaining the following approximated expression for the relaxation time

τ ∗ ≈
√√√√1

2
W

(
8

[
sinh Pe

η eXmax

]2)
, (21)

where W (z) denotes the Lambert-W function [24]. The approximation given in (21)
can be used as starting iteration point for the numerical root searching of (20). Finally,
according to (10 ), we have

t∗ = 4α

v2d

(
τ ∗)2 . (22)

3 Transient regime in the cut-out

3.1 Temperature field

When the workpiece is disengaging from the grinding wheel, it occurs a transient
regime because the workpiece can no longer be treated as infinite in the x direction (as
in the stationary regime), and the friction area betweenwheel andworkpiece is reduced
from its initial width δ to 0. Figure3 shows the relationship between the coordinate
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Fig. 3 Scheme of the transient
regime during the cut-out

system fixed to the wheel XY Z and the one fixed to the workpiece X ′Y ′Z ′, so

x = x ′ + δ − vd
(
t − t∗

)
, (23)

where t∗ is given by (22). Notice that initially (i.e. at t = 0), the system fixed to the
wheel is separated from the final edge of the workpiece a distance δ∗ + δ, being

δ∗ = vdt
∗, (24)

that is, the distance that the workpiece moves with respect to the wheel during the
relaxation time t∗. Therefore, when the leading edge of the friction area reaches the
workpiece edge, the temperature field has already arrived at the stationary regime.

Considering a constant heat flux profile as in (8), we have the following friction
function for the cut-out transient regime,

dout (t, x) = −q θ (x) θ (gout (t) − x) , (25)

where

gout (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ, 0 ≤ t < t∗,

δ − vd (t − t∗) , t∗ ≤ t < t∗ + tp,

0, t ≥ t∗ + tp,

(26)

and tp is the time that the workpiece needs to move a distance δ (i.e. the duration of
the transient regime, both in the cut-in and in the cut-out):

tp = δ

vd
. (27)

Applying the results of the Appendix (A9) and (A11 ), an abbreviated form for the
gout (t) function is

gout (t) = min
(
max

(
δ − vd

(
t − t∗

)
, 0
)
, δ
)
, (28)

where notice that
gout (0) = δ. (29)
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Substituting the friction function (25) into (7), and taking into account the definition
of the error function (11), after some algebra, we arrive at

T out (t, x, y)

= T0 + q
√

α

2
√

πk

∫ t

0

1√
s
exp

(−y2

4αs

)
erf

(
u − x − vds

2
√

αs

)∣∣∣∣
gout(t−s)

u=0
ds. (30)

Notice that (30) provides the temperature field for a semi-infinite solid in the coor-
dinate system fixed to the wheel XY Z . Performing the change of coordinates (23), we
have the temperature field related to the workpiece

T out
w

(
t, x ′, y

) = T out (t, x ′ + δ − vd
(
t − t∗

)
, y
)
. (31)

Now, applying themethod of images [25, Sect. 8.5.8], the temperature rise fieldwith
respect to the initial temperature T0 for a half semi-infinite solid (i.e. the workpiece
shown in Fig. 3) is

T out
w/2

(
t, x ′, y

)− T0 = [
T out

w

(
t, x ′, y

)− T0
]+ [T out

w

(
t,−x ′, y

)− T0
]

= T out (t, x ′ + δ − vd
(
t − t∗

)
, y
)− T0

+T out (t,−x ′ + δ − vd
(
t − t∗

)
, y
)− T0. (32)

Note that T out
w/2

(
t, x ′, y

)
satisfies the boundary condition

∂T out
w/2 (t, 0, y)

∂x ′ = 0, (33)

that is, there is not convection at the workpiece boundary x ′ = 0, as it should be in
the case of dry grinding.

3.2 Maximum temperature at the edge

According to [5], the risk of thermal damage during the transient regime of the cut-out
is higher than in the stationary regime, because the workpiece material is suddenly
unavailable to dissipate heat. This suggest that the maximum temperature should
be located at the end of the workpiece (i.e. x ′ = 0). Furthermore, similarly to the
stationary regime, the maximum must be reached on the surface (y = 0) within the
friction area between wheel and workpiece. Therefore, since the transient regime of
the cut-out occurs within the time interval t ∈ (t∗, t∗ + tp

)
(see Fig. 3) let us consider

the temperature evolution at the edge of the workpiece, that is, according to (30) and
(32), the following function:

T out
w/2 (t, 0, 0)

= T0 + 2 T out (t, δ − vd
(
t − t∗

)
, 0
)
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= T0 + q
√

α√
πk

∫ t

0
erf

(
u − δ + vd (t − t∗ − s)

2
√

αs

)∣∣∣∣
gout(t−s)

u=0

ds√
s
. (34)

In order to find the maximum temperature T out
max that the workpiece edge reaches,

let us solve the equation:

∂T out
w/2 (tmax, 0, 0)

∂t
= 0, tmax ∈ (t∗, t∗ + tp

)
, (35)

so
T out
max = T out

w/2 (tmax, 0, 0) . (36)

By using the Leibniz’s theorem for differentiation of integrals [19, Eq. 1.5.22]

d

dt

∫ φ2(t)

φ1(t)
f (s, t) ds = f (φ2 (t) , t)

dφ2

dt

− f (φ1 (t) , t)
dφ1

dt
+
∫ φ2(t)

φ1(t)

∂ f (s, t)

∂t
ds. (37)

and applying (29), as well as the property given in the Appendix (A13), so that

d

dt
gout (t − s) = −vd θ

(
δ − vd

(
t − t∗ − s

))
θ
(
vd
(
t − t∗ − s

))
, (38)

after some algebra, we have

∂T out
w/2 (t, 0, 0)

∂t
= 1√

t
erf

(
u + vdt∗

2
√

αt

)∣∣∣∣
δ

u=0

+ vd√
πα

∫ t

0

ds

s

{
exp

(
−
[
gout (t − s) − δ + vd (t − t∗ − s)

2
√

αs

]2)

[
1 − θ

(
δ − vd

(
t − t∗ − s

))
θ
(
vd
(
t − t∗ − s

))]

− exp

(
−
[−δ + vd (t − t∗ − s)

2
√

αs

]2)}
. (39)

Apply now the result given in the Appendix, i.e. (A14), to obtain
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∂T out
w/2 (t, 0, 0)

∂t
= 1√

t
erf

(
u + vdt∗

2
√

αt

)∣∣∣∣
δ

u=0

+ vd√
πα

∫ t

0

ds

s

{
exp

(
−
[
gout (t − s) − δ + vd (t − t∗ − s)

2
√

αs

]2)

[
θ
(−vd

(
t − t∗ − s

))+ θ
(
vd
(
t − t∗ − s

)− δ
)]

− exp

(
−
[−δ + vd (t − t∗ − s)

2
√

αs

]2)}
. (40)

Recall the definition of the gout (t) given in (28) and apply the result given in the
Appendix, i.e. (A17), hence

gout (t − s) − δ + vd
(
t − t∗ − s

)
= min

(
max

(
δ − vd

(
t − t∗ − s

)
, 0
))− (δ − vd

(
t − t∗ − s

))
= − (δ − vd

(
t − t∗ − s

))
θ
(
vd
(
t − t∗ − s

)− δ
)

+vd
(
t − t∗ − s

)
θ
(−vd

(
t − t∗ − s

))
.

However,
θ
(
vd
(
tmax − t∗ − s

)− δ
) = 0, (41)

since the condition δ < vd (tmax − t∗ − s) is never satisfied because the integration
variable is positive s > 0 and, according to (27) and (35), t∗ < tmax < t∗ + δ/vd.

Therefore, (35) is reduced to

0 = 1√
tmax

erf

(
u + vdt∗

2
√

α tmax

)∣∣∣∣
δ

u=0

− vd√
πα

∫ tmax

0

ds

s

[
exp

(
−
[
δ − vd (tmax − t∗ − s)

2
√

αs

]2)

− exp

(
−
[
vd (tmax − t∗ − s)

2
√

αs

]2)
θ
(−vd

(
tmax − t∗ − s

))]
,

tmax ∈ (t∗, t∗ + tp
)
. (42)

4 Transient regime in the cut-in

4.1 Temperature field

During the transient regime associated with the initial engagement of the grinding
wheel to the workpiece, the friction zone increases fromwidth 0 to δ. Figure4 presents
the relationship between both coordinate systems, one fixed to the wheel XY Z and
the other fixed to the workpiece X ′Y ′Z ′. Notice that initially (i.e. at t = 0) the system
fixed to the wheel is separated a distance δ from the final edge of the workpiece.
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Fig. 4 Scheme of the transient
regime during the cut-in

Considering a constant heat flux profile as in (8), we have the following friction
function for the cut-in transient regime:

din (t, x) = −q θ (x − gin (t)) θ (δ − x) , (43)

where

gin (t) =
⎧⎨
⎩

δ − vdt, 0 ≤ t < tp,

0, t ≥ tp.
(44)

According to the definition of the max function given in the Appendix ( A1), since
t ≥ 0, an abbreviated form for the gin (t) function is

gin (t) = max (δ − vdt, 0) , (45)

where notice that
gin (0) = δ. (46)

Substituting the friction function (43) into (7) and taking into account (11), we
arrive at

T in (t, x, y) = T0 + q
√

α

2
√

πk

∫ t

0
exp

(−y2

4αs

)
erf

(
u − x − vds

2
√

αs

)∣∣∣∣
δ

u=gin(t−s)

ds√
s
.

(47)

Similarly to (32), the temperature rise field of a half semi-infinite solid in the
coordinate system fixed to the workpiece is

T in
w/2

(
t, x ′, y

)− T0 = T in (t, x ′ + δ − vdt, y
)− T0

+T in (t,−x ′ + δ − vdt, y
)− T0. (48)
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4.2 Maximum temperature at the edge

Similarly to the cut-out case, let us consider the temperature evolution at the edge of
the workpiece, that is to say, according to (47) and (48), the following function:

T in
w/2 (t, 0, 0) = T0 + 2 T in (t, δ − vdt, 0)

= T0 + q
√

α√
πk

∫ t

0
erf

(
u − δ + vd (t − s)

2
√

αs

)∣∣∣∣
δ

u=gin(t−s)

ds√
s
. (49)

In order to find the maximum temperature T in
max that the workpiece edge reaches,

let us solve the equation
∂T in

w/2 (tmax, 0, 0)

∂t
= 0, (50)

so
T in
max = T in

w/2 (tmax, 0, 0) . (51)

By using again Leibniz’s theorem for differentiation of integrals (37), and applying
the result given in the Appendix, i.e. (A7), so that

d

dt
gin (t − s) = d

dt
max (δ − vd (t − s) , 0) = −vd θ (δ − vd (t − s)) , (52)

we arrive at

∂T in
w/2 (t, 0, 0)

∂t

= vd√
πα

∫ t

0

ds

s

{
exp

(
−
[
vd (t − s)

2
√

α s

]2)

+ exp

(
−
[
gin (t − s) − δ + vd (t − s)

2
√

α s

]2)
[θ (δ − vd (t − s)) − 1]

}
.

Applying (A15), i.e.

θ (δ − vd (t − s)) − 1 = θ (vd (t − s) − δ)

= θ
(
vd
(
t − tp − s

))
,

and the result given in the Appendix (A5), i.e.

gin (t − s) − δ + vd (t − s) = max (δ − vd (t − s) , 0) − [δ − vd (t − s)]

= max (vd (t − s) − δ, 0)

= max
(
vd
(
t − tp − s

)
, 0
)
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we arrive at

∂T in
w/2 (t, 0, 0)

∂t

= vd√
πα

∫ t

0

ds

s

{
exp

(
−
[
vd (t − s)

2
√

α s

]2)

− exp

⎛
⎝−

[
max

(
vd
(
t − tp − s

)
, 0
)

2
√

α s

]2⎞
⎠ θ

(
vd
(
t − tp − s

))
⎫⎬
⎭ . (53)

Theorem 1 The maximum temperature in the cut-in is reached at

tmax = tp = δ

vd
, (54)

thus
T in
max = T in

w/2

(
tp, 0, 0

)
. (55)

Proof On the one hand, for t < tp, we have that vd
(
t − tp − s

) − δ < 0, since the
integration variable is positive, s > 0. Therefore, θ

(
vd
(
t − tp − s

)) = 0 and (53)
reduces to

∂T in
w/2 (t, 0, 0)

∂t

∣∣∣∣∣
t<tp

= vd√
πα

∫ t

0
exp

(
−
[
vd (t − s)

2
√

α s

]2) ds

s
> 0. (56)

Consequently, T in
w/2 (t, 0, 0) is an increasing function for t < tp, thus the maximum

temperature is not found for t < tp.
On the other hand, for t > tp, we have that

θ
(
vd
(
t − tp − s

)) =
{
1, s < t − tp,
0, s > t − tp,

(57)

thus

F (t) :=
√

πα

vd

∂T in
w/2 (t, 0, 0)

∂t

∣∣∣∣∣
t>tp

=
∫ t

0
exp

(
−
[
vd (t − s)

2
√

α s

]2) ds

s

−
∫ t−tp

0
exp

⎛
⎝−

[
vd
(
t − tp − s

)
2
√

α s

]2⎞
⎠ ds

s
. (58)

Perform now the changes of variables σ = v2d s/ (4α), ξ = v2d t/ (4α), and ξp =
v2d tp/ (4α), to obtain

F (ξ) = u (ξ) − u
(
ξ − ξp

)
, (59)
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where we have defined

u (ξ) = e2ξ
∫ ξ

0
exp

(
−ξ2

σ
− σ

)
dσ

σ
. (60)

Notice that performing the change of variables w = ξ2/σ we have that

∫ ξ

0
exp

(
−ξ2

σ
− σ

)
dσ

σ
=
∫ ∞

ξ

exp

(
−ξ2

w
− w

)
dw

w
, (61)

so that, applying the property (61) and the integral representation of K0 (z) [19, Eq. 
10.32.10], we have

K0 (2ξ) = 1

2

∫ ∞

0
exp

(
−ξ2

σ
− σ

)
dσ

σ

= 1

2

{∫ ξ

0
exp

(
−ξ2

σ
− σ

)
dσ

σ
+
∫ ∞

ξ

exp

(
−ξ2

σ
− σ

)
dσ

σ

}

=
∫ ξ

0
exp

(
−ξ2

σ
− σ

)
dσ

σ
.

Therefore

u (ξ) = e2ξ K0 (2ξ) . (62)

Note that
u′

(ξ) = 2 e2ξ [K0 (2ξ) − K1 (2ξ)] < 0, (63)

because K0 (x) < K1 (x) due to the integral representation [19, Eq. 10.32.9]

Kν (z) =
∫ ∞

0
exp (−z cosh t) cosh (νt) dt . (64)

Since u (ξ) is a decreasing function, according to (59), we have F (ξ) < 0. Therefore,
according to (58), T in

w/2 (t, 0, 0) is a decreasing function for t > tp, i.e.

∂T in
w/2 (t, 0, 0)

∂t

∣∣∣∣∣
t>tp

< 0. (65)

From (56) and (65),we conclude that themaximum temperature is reached at tmax = tp,
as we wanted to prove. ��

5 Numerical results

5.1 Analytic simulation

Table 1 shows three sets of parameters (in SI units) for the numerical simulations.
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Table 1 Simulation parameters in SI units and dimensionless Peclet number

Material Data 1 Data 2 Data 3
Titanium Steel Sapphire

Workpiece k 13 60.5 46

α 4.23 × 10−6 1.77 × 10−5 1.51 × 10−5

δ 2.66 × 10−3 1.4 × 10−3 2.5 × 10−3

Grinding q 5.89 × 107 1.4 × 107 1.8 × 107

Regime vd 0.53 3.3 × 10−2 3.3 × 10−2

T0 300 300 300

Peclet num. Pe 83.4 0.65 1.36

Table 2 Characteristic times in the transient regime

Data 1 Data 2 Data 3

t∗ (approx.) [s] 1.02 × 10−2 0.435 0.452

t∗ (exact) [s] 6.52 × 10−3 0.434 0.448

tp [s] 5.02 × 10−3 4.24 × 10−2 7.58 × 10−2

Data set 1 considers a titanium alloy VT20 workpiece, whose thermal properties are
given in [26]. The grinding regime for this simulation can be found in [9]. Data set 2
considers carbon steel and data set 3 aluminium oxide Al2O3 (sapphire) as workpiece
materials, both in creep feed grinding regime [27], i.e. “low speed condition” since
Pe ≈ 1 (see [1, pp. 159–160]).

Table 2presents the characteristic times for the three data sets.Wehaveused (21) and
(22) to compute an approximated value of t∗. It is worth noting that the relaxation time
approximation yields very accurate results for data sets 2 and 3. The approximation
given in (21) for τ ∗ has been used as starting iteration point of Newton’s method in the
root searching of (20), where we have taken η = 10−3 for all data sets. According to
(10) and the order of magnitude of the parameters given in Tables 1 and 2, a value of
η = 10−3 indicates that ∂T /∂t ≈ 1 K s−1, i.e. a practically null slope (see Figs. 7 and
6), which is consistent with (19). Also, notice that t∗ is much larger in creep feeding
(data sets 2 and 3) than in the case of data set 1.

Figure5 shows the surface temperature in the stationary regime for the three data
sets. Note that for data set 1 (titanium) there is not temperature rise in front of the
leading edge because of the high speed of the grinding feed, just the opposite to data
sets 2 (steel) and 3 (sapphire), where we have creep feeding.

Figure6 shows the absolute temperature at the workpiece edge for the three data
sets during the cut-out transient regime, T out

w/2 (t, 0, 0). Note that now the graphs do
not begin at room temperature T0 because when the grinding wheel reaches the end of
the workpiece, the temperature field is almost in the stationary regime, t > t∗. Notice
as well that the maximum temperature falls within the interval

(
t∗, t∗ + tp

)
, according

to (35).
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Fig. 5 Surface temperature in the stationary regime

Fig. 6 Temperature evolution at the edge workpiece during the cut-out transient regime

Figure7 shows the evolution of the absolute temperature at the workpiece edge
for the three data sets during the cut-in transient regime, i.e. T in

w/2 (t, 0, 0). Note that
all the graphs depart from room temperature T0, since that is the temperature of the
workpiece at t = 0. Notice as well that the maximum temperature occurs at tmax = tp,
according to Theorem 1.

5.2 FEM analysis

In order to solve the heat transfer boundary problem during the transient regime using
a numerical approach, we have considered the Cartesian coordinate system fixed to the
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Fig. 7 Temperature evolution at the edge workpiece during the cut-in transient regime

workpiece (i.e. X ′Y ′Z ′ in Figs. 3 and 4). Therefore, we have to solve the heat equation

∂T

∂t
= α

(
∂2T

∂x ′2 + ∂2T

∂ y′2

)
, (66)

subjected to the initial condition

T
(
0, x ′, y′) = T0. (67)

and a boundary condition given by

k
∂T

∂ y

(
t, x ′, 0

) = d
(
t, x ′) , (68)

where now the heat source is moving over the surface of the workpiece. The friction
function d

(
t, x ′) for the cut-in and cut-out is,respectively,

din
(
t, x ′) = −q θ

(
x ′ − max (vdt − δ, 0)

)
θ
(
vdt − x ′) ,

dout
(
t, x ′) = −q θ

(
x ′ − min

(
vd
(
t − t∗

)− δ, 0
))

θ
(
min

(
vd
(
t − t∗

)
, 0
)− x ′) .

In the analytic approach, we have considered that the workpiece is infinite (a quad-
rant in Cartesian coordinates). However, for the numerical solution of (66)–(68), we
have to consider a finite region. According to Fig. 3, the length of the workpiece L has
to be at least δ∗ + δ, thus we have set

L = vdt
∗ + δ. (69)

Also, it is known that the depth of thermal penetration δp is very shallow beneath the
surface of the workpiece. In order to estimate δp, we have used the 1D approximation
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Fig. 8 FEM mesh and temperature field at t = tmax for the cut-out transient regime, considering data set 2

given in [28]:

δp = 2
√

α tp g
−1 (p) ,

where

g (x) = e−x2 − √
π x erfc (x) ,

and p is the fraction between the temperature rise at δp below the surface and the
temperature rise on the surface. For the FEM analysis, we have set the workpiece
depth H as

H = δ0.01.

Also, it is known that the temperature field gradient is very high nearby the contact
zone between the grinding wheel and the surface [29]. Consequently, in order to obtain
an accurate solution using FEManalysis, we need to use ameshwithmore nodeswhere
the gradient is higher. As an example of the latter, Fig. 8 shows the temperature field
during the cut-out for data set 2 at t = tmax as well as the mesh used.

For the time interval used in the FEM analysis, we have used t ∈ (0, 2 tp + t∗
)
for

the cut-out, and t ∈ (0, 2 tp) for the cut-in.
Finally, according to (69), note that we need to estimate the relaxation time t∗

(hence the calculation of Xmax) in order to apply FEM analysis to the transient regime.
Therefore, the analytic approach is essential to solve the transient regime, although
we use a numerical approach.
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Table 3 Maximum temperature
Tmax [K] Data 1 Data 2 Data 3

Cut-out

FEM

T
out, piece
max 1064.43 546.95 815.49

Analysis

T
out, edge
max 1063.87 546.95 815.49

Analytic T out
max 1064.57 545.70 815.29

Cut-in

FEM

T
in, piece
max 1043.97 482.29 717.26

Analysis

T
in, edge
max 1023.08 467.44 679.95

Analytic T in
max 1022.86 466.86 679.10

Stationary regime T Sta
max 1042.23 490.98 726.06

5.3 Analytic vs. numeric approach

Table 3 shows the maximum temperature Tmax evaluated for the different regimes
considered (i.e. stationary regime, and cut-out and cut-in transient regimes) by using
both analytic and FEM approaches. For the FEM analysis, we have computed the
maximum temperature at the edge both during cut-out and cut-in (i.e. T out, edge

max and
T in, edge
max ), and at the whole workpiece (i.e. T out, piece

max and T in, piece
max ). For this pur-

pose, we have applied NMaximizeMATHEMATICA command, using the Differential
Evolution method [30], which seems to be quite efficient in this case. Using this
numerical method, it is worth noting that the location of the maximum temperature
in the cut-out (tnum, xnum, ynum) is extremely near to the analytical approach, i.e.
(tnum, xnum, ynum) ≈ (tmax, 0, 0).

Within the analytic approach, the computation of the maximum temperature in
the stationary regime T Sta

max has been evaluated solving ( 16) with Newton’s method,
where we have taken X = 0 as starting iteration point. Once Xmax is evaluated, we
compute the maximum temperature in the stationary regime applying (17). For the
computation of the maximum temperature during the cut-out T out

max, Brent’s method
[31] has been used for the root finding of tmax in (42) since the root interval is known.
Once tmax is numerically evaluated, T out

max is computed applying (36). Finally, the
maximum temperature at the edge during the cut-in T in

max is computed with (55).

Notice that T out, edge
max ≈ T out

max and T in, edge
max ≈ T in

max for all data sets, which validates
the analytic model described above for the calculation of the maximum temperature at
the edge during the transient regime.Moreover, T out, piece

max ≈ T out
max for all data sets, thus

the analytic model also predicts the maximum temperature during the cut-out, which
occurs at the final edge of the workpiece. Notice as well that T out

max > T Sta
max for all data

sets, so that the analytic model predicts a higher risk of thermal damage during the
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Table 4 Computation times of
the maximum temperature,
tcomp [s]

Data 1 Data 2 Data 3

Cut-out

FEM 108.3 106.0 133.5

Analytic 0.248 0.127 0.131

Cut-in

FEM 137.0 21.36 46.96

Analytic 0.022 0.013 0.014

cut-out, which agrees with [32]. However, notice that T in
max < T in, piece

max � T Sta
max for all

data sets. This means that the thermal damage risk during the cut-in transient regime is
lower than in the stationary regime. Moreover, since the numerical time interval used
in the FEM analysis for the cut-in is t ∈ (0, 2 tp) and, according to Table 2, 2 tp > t∗

for data set 1, we have T in, piece
max ≈ T Sta

max in this case. However, 2 tp < t∗ for data sets

2 and 3, so that T in, piece
max < T Sta

max.
The great advantage of the analytical approach is its great speed in evaluating

the maximum temperature in the transient regime. Table 4 shows the computation
times tcomp of the maximum temperature Tmax for both the analytical and numerical
approaches. In the case of FEManalysis, tcomp is the sumof the computation time of the
numerical evaluation of T (t, x, y) and its maximum Tmax, as well as the computation
time of t∗ and Xmax. In the case of the analytical approach, tcomp is the sum of the
computation time of Xmax, t∗ and Tmax. It is apparent that the analytical approach is
extremely faster than the numerical one (≈ 1000 times faster). Note also that tcomp
is much smaller for the cut-in than for the cut-out in the analytic approach because
we have to numerically solve (42) in the former, but tmax = tp in the latter, due to
Theorem 1. Further, the numerical evaluation of t∗ is very fast since the approximation
given in (21) is quite good according to Table 2.

6 Conclusions

By using the T (0) Theorem [11] of the Samara–Valencia model [9], we have given
analytical expressions for the evolution of the temperature field during the cut-in (48)
and cut-out (32) transient regimes in surface grinding with adiabatic conditions (dry
case), considering a constant heat flux profile within the contact zone between wheel
and workpiece. For this purpose, we have used (22) in order to estimate the relaxation
time of the stationary regime, turning out that is quite accurate for different grinding
regimes (see Table 2). Also, we have numerically validated this analytic model for the
transient regimes using FEM analysis. In this sense, we have obtained an excellent
agreement for the maximum temperature during the cut-out. This is very useful for
the prediction of thermal damage risk since the maximum temperature during the
cut-out is higher than in the stationary regime. Further, the model predicts that this
maximum is always located at the final edge of the workpiece. In addition, the model
predicts that the maximum temperature at the initial edge during the cut-in is lower
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than the maximum temperature in the stationary regime. These predictions agree with
the experimental evidence [5].

The great advantage of the analytical approach described in this paper is that we
can compute very rapidly the maximum temperature, both in the transient and in
the stationary regimes. Further, theorem 1 allows to compute extremely rapid the
maximum temperature at the initial edge during the cut-in. As aforementioned, all the
analytical results presented in this paper are intended to offer a very useful analytical
tool for monitoring online the grinding process in order to predict thermal damage
risk during the transient regime. The graphs and results given in this paper have been
performed with MATHEMATICA, and they are available at https://rb.gy/wffdne.
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Appendix A: Themax andmin functions

The max (x, y) and min (x, y) functions are defined as

max (x, y) =
⎧⎨
⎩
x, x ≥ y,

y, x ≤ y,
(A1)

and

min (x, y) =
⎧⎨
⎩
x, x ≤ y,

y, x ≥ y.
(A2)
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According to [33, p. 16], these functions can be expressed as

max (x, y) = x + y + |y − x |
2

, (A3)

min (x, y) = x + y − |y − x |
2

. (A4)

From (A3) and (A4), it is very easy to prove that

f (x) − max ( f (x) , 0) = min ( f (x) , 0) . (A5)

Also, from (A2), we have

d

dx
min ( f (x) , a) =

⎧⎨
⎩

f ′ (x) , f (x) > a,

0, f (x) < a,

f (x) 
= a, (A6)

that is
d

dx
min ( f (x) , a) = f ′ (x) θ ( f (x) − a) , f (x) 
= a. (A7)

Theorem 2 If a, b ∈ R and a < b, then

d

dx
min (max ( f (x) , a) , b) = f ′ (x) θ ( f (x) − a) θ (b − f (x)) . (A8)

Proof Consider the function

F (x) = min (max ( f (x) , a) , b) , a < b. (A9)

According to (A2), we have

F (x) =
⎧⎨
⎩
max ( f (x) , a) , max ( f (x) , a) ≤ b,

b, max ( f (x) , a) ≥ b.
(A10)

Since a < b, then the condition max ( f (x) , a) ≤ b (or max ( f (x) , a) ≥ b) is
equivalent to f (x) ≤ b (or f (x) ≥ b), thus, applying now ( A1) to (A10) we have

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (x) , a ≤ f (x) ≤ b,

a, f (x) ≤ a,

b, f (x) ≥ b.

(A11)
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Performing the derivative in (A11)

F ′ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′ (x) , a ≤ f (x) ≤ b,

0, f (x) ≤ a,

0, f (x) ≥ b,

f (x) 
= a, b, (A12)

thus
F ′ (x) = f ′ (x) θ ( f (x) − a) θ (b − f (x)) , f (x) 
= a, b. (A13)

��
Theorem 3 If a, b ∈ R and a < b, then

1 − θ ( f (x) − a) θ (b − f (x)) = θ (a − f (x)) + θ ( f (x) − b) . (A14)

Proof According to [21, Eq. 9:5:1], we have

θ (a − f (x)) = 1 − θ ( f (x) − a) . (A15)

Thereby,

1 − θ ( f (x) − a) θ (b − f (x)) = 1 − [1 − θ (a − f (x))] [1 − θ ( f (x) − b)]

= θ (a − f (x)) + θ ( f (x) − b) ,

since
θ (a − f (x)) θ ( f (x) − b) = 0, (A16)

for a < b. ��
Theorem 4 If f (x) is a real function and a, b ∈ R with a < b, then

min (max ( f (x) , a) , b) − f (x)

= θ (a − f (x)) [a − f (x)] + θ ( f (x) − b) [b − f (x)] . (A17)

Proof Indeed, according to (A9) and (A11), we have

F (x) − f (x) = min (max ( f (x) , a) , b) − f (x)

=

⎧⎪⎨
⎪⎩
0, a ≤ f (x) ≤ b,

a − f (x) , f (x) ≤ a,

b − f (x) , f (x) ≥ b.

(A18)

Therefore, we can rewrite (A17) as (A18). ��
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