
Available online at www.sciencedirect.com

c
f
f
a
e
i
p
©
S

K

a
g

a

fi
i

t
o

ScienceDirect

Mathematics and Computers in Simulation 215 (2024) 1–20
www.elsevier.com/locate/matcom

Original articles

A superlinear Scaling Factor Regula Falsi root finder that detects the
simple or multiple character of the root

Julio M. Fernández-Díaza,∗, César O. Menéndez-Pérezb,1

a Department of Physics, University of Oviedo, E.P. de Mieres, C/Gonzalo Gutiérrez Quirós, s/n, 33600, Mieres, Spain
b Department of Mathematics, University of Oviedo, Spain

Received 3 May 2023; received in revised form 31 July 2023; accepted 3 August 2023
Available online 9 August 2023

Abstract

In this work a new method of Scaling Factor Regula Falsi type is developed, by using parabolic interpolation. It has global
onvergence and a high computational efficiency for simple roots. The method, not being a hybrid one, allows changing the
unction used for calculating the scaling factor at every iteration, making possible to switch to other more adequate methods
or multiple roots (e.g., a generalised Illinois one). As an important feature of the method, it allows determining with no
dditional calculations, whether the root is simple or multiple. The developed algorithm has been tested with numerous functions
xtracted from the bibliography, performing, in most cases, better than some routines (like brentq, brenth and toms748) found
n common numerical libraries. Fully operative routines of the new method are provided as supplementary files in four different
rogramming languages: python, lua, C and Fortran90.
2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Root finding; Non-linear equation; Scaling Factor Regula Falsi; Bracketing

1. Introduction

The solution of f (x) = 0 in R is a main task in many engineering and science fields. Therefore, mathematicians
nd computer scientists have done much work on it, by creating methods and routines as efficient as possible, which
ive both the value of a root and information on the circumstances in which a solution has been reached.

A relevant set of methods are those using the Bolzano’s Theorem: If f ∈ C0
[a,b], f (a) f (b) < 0, a, b ∈ R at least

root α ∈ [a, b] exists. They are methods of global convergence.
A wide collection of iterative methods with high convergence order has been developed, sometimes needing

rst and higher order derivatives, and often multipoint. Despite this exuberance of methods, just a few of them are
ncluded in the libraries in use nowadays (we will not comment on the reasons).

In some engineering problems the calculation of f (x) is expensive, and it could be neither convenient nor feasible
he derivative calculation. In those cases methods without derivatives are preferred, even with lower convergence
rder.

∗ Corresponding author.
E-mail addresses: julio@uniovi.es (J.M. Fernández-Dı́az), omar@uniovi.es (C.O. Menéndez-Pérez).

1 Retiree.
https://doi.org/10.1016/j.matcom.2023.08.003
0378-4754/© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
Simulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2023.08.003
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2023.08.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:julio@uniovi.es
mailto:omar@uniovi.es
https://doi.org/10.1016/j.matcom.2023.08.003
http://creativecommons.org/licenses/by/4.0/

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

U

Nevertheless, if the initial guess of the root place is bad it is not possible to reach the theoretical convergence
order of the method, until the successive approximations are near enough the actual root. In this case, several
iterations are consumed before the real power of the method is revealed.

Another subject is the conversion of mathematical derivations into useful algorithms, mainly since infinite
precision is not possible. Nowadays, in scientific calculations, it is customary to use IEEE-754 double precision
floating point [16], with a machine epsilon of about 2.2 × 10−16. This limits the way we design algorithms from
mathematical methods.

No perfect method exists, and every one has its advantages and drawbacks. Often the solving routine, at each
iteration, intermixes various methods depending on some computational parameters during calculations. Therefore,
ultimately they are hybrid methods.

Of this kind are the typical routines appearing in the numerical libraries. For example, in python, inside module
scipy.optimize are toms748, brentq and brenth, here ordered perhaps by increasing efficiency. These routines
perform well for simple roots, but they are far less efficient treating multiple ones, needing several times the number
of function calls (nfun) than bisection.

For this cause, a routine performing like these above-mentioned for simple roots, but with a better handling
of multiple ones, would be welcome. An initial guess for this is the use of Steffensen-like methods, for example,
in [18,24,31]. Terms in the form K (x) = f (x +β f (x))− f (x) appear in these methods, in which β is more or less
constant.

However, in these articles the need of multi-precision (until 1000 significant figures) are compulsory. Otherwise,
the corresponding iterative formulas are not applicable. By naming ϵ the machine epsilon, in an open domain
= {x | |x − α| < δ, |β f (x)| < ϵ|x |}, it is K (x ∈ U) = 0 and the calculation losses precision completely as

multiplicity grows above a small value, typically for m > 3 in double precision.
For all the above, the search of suitable routines (in double precision) that behave well for simple roots and

improve the performance of the state-of-the-art ones (e.g., brentq and brenth) for multiple ones is still an open
work. It should be noted that for multiple roots the recommended method in double precision is bisection. The
problem is that we do not know beforehand whether the root is simple or multiple.

Regula Falsi (RF) is one of the method without derivatives. Since frequently this method and the secant one are
confused (see [22] for a comprehensive explanation), we use the definitions of [30, p. 112] for RF method (also
named False Position), and of [30, p. 118] for the secant one.

RF has global convergence, but it is usually slow. However, some variants of several kinds, known as “Modified
Regula Falsi” are faster, and they do not need to hybridise in order to keep global convergence. A typical
methodology is to modify the ordinate at one bracketing extreme multiplying it by some factor. In [12] it is
demonstrated that methods of this kind, which can be named generically Scaling Factor Regula Falsi (SFRF), form
a bi-parametric family of methods with interesting properties.

In [12] the properties of the scaling factor, γ , are analysed for both the convergence of the successive
approximations of the root and the bracketing interval radius to go to zero. Also, an appealing property is exposed:
after each iteration we can change the way in which γ is calculated, always keeping the global convergence.

In this article we design a new SFRF method, which uses direct parabolic interpolation to calculate the scaling
factor. We call it PRF from “Parabolic Regula Falsi”. We will demonstrate the convergence properties, both for
simple and multiple roots, setting up the working conditions in both cases.

A very important property of PRF method is that it detects whether the root is simple or not, and it will allow
us to treat the multiple root cases in an acceptable way as compared to bisection.

Finally, we will show the goodness of the PRF method, by comparing it to others fully established in the
numerical codes nowadays in use, for a set of functions with simple and multiple roots.

Moreover, in the Supplementary files, full operative implementations of these routines in python, lua, C and
Fortran90 are provided.

2. Scaling Factor Regula Falsi method

The SFRF method can be used to calculate a root α of function f ∈ C0([a, b]) starting with [a, b] under the
conditions of Bolzano’s Theorem, f (a) f (b) < 0. It generates two sequences: one, {xn}, with the approximations to
the root; another with the enclosing intervals {[an, bn]}, such that:
xn ∈ [an, bn] ⊂ [an−1, bn−1] ⊂ · · · ⊂ [a1, b1] ⊂ [a, b], f (ai) f (bi) < 0, i = 1, 2, . . . , n. (1)

2

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

d

D
k

D

D

t
o

i

A
I

(

(

(

(

Fig. 1. (a) The first scaled step in the Scaling Factor Regula Falsi after the initial secant one. Points A, H and B are collinear by cons-

truction. C, J and Ã are also collinear from (3). (b) The SFRF method in transformed coordinates (see the text). (xn, f̃ (xn))
T
−→ (0, g0), (xn−1,

f̃ (xn−1))
T
−→ (1, g1), (c, f (c))

T
−→ (zc, gc), (xn−1, γ f̃ (xn−1))

T
−→ (1, γ g1). Besides, zc = −g0 and the straight line AB has slope of 1. The

ashed line corresponds to p(z), a parabola that crosses points B, C and A, not the function g(z). The straight line r (z) crosses C and A.

Before describing the algorithm we need some notation.

efinition. The scaling factor for the ordinate γ ∈ R fulfils 0 < γ < 1, and it is in general a function of the data
nown at current iteration. Every SFRF method has a different way to calculate γ .

efinition. We call “ordinate associated to x” some value f̃ (x) that verifies:

0 < | f̃ (x)| = γ | f (x)| ≤ | f (x)|, sign(f̃ (x)) = sign(f (x)). (2)

efinition. At iteration n > 1, we call radius of the interval Rn = |bn − an| where f (an) f (bn) < 0.

Initially x0 = a, f̃ (x0) = f (a), x1 = b, f̃ (x1) = f (b) are taken. Two controlling parameters are used to limit
he iterations: one is the maximum acceptable radius, atol, and the other is the maximum acceptable absolute value
f the function, ftol.

SFRF algorithm, described below, is iterative. In Fig. 1-a the geometric description of a scaled step in the method
s shown. The method consists of a sequence of secant and scaled steps (intermixed depending on some condition).

lgorithm 1. SFRF at step n + 1 (n > 0).
nput: (xn−1, f̃ (xn−1)), (xn, f̃ (xn))

i) Let put

δ = − f̃ (xn)
xn−1 − xn

f̃ (xn−1)− f̃ (xn)
, c = xn + δ. (3)

ii) (Radius control) If |xn − xn−1| < atol then c is an acceptable value for the solution; stop.

iii) (Function control) If | f (c)| < ftol then c is an acceptable value for the solution; stop.

iv) (secant step) If f̃ (xn) f (c) < 0 (sign inversion) then output

(xn+1, f̃ (xn+1)) ← (c, f (c)),

(x , f̃ (x)) ← (x , f̃ (x)).
n n n n

3

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

w

t

a

i

s

3

p

s
λ

m

(v) (scaled step) If f̃ (xn) f (c) > 0, where γ satisfies 0 < γ < 1, then output

(xn+1, f̃ (xn+1)) ← (c, f (c)),
(xn, f̃ (xn)) ← (xn−1, γ f̃ (xn−1)).

(vi) At the end of step n:

(an+1, bn+1)← (min(xn, xn+1), max(xn, xn+1)).

End of algorithm SFRF at step n + 1.

In [12] it is demonstrated that for any SFRF method, coefficient γ must depend at every step on only two
parameters, for example:

ξ =
f (c)

f̃ (xn)
, ζ = −

f (c)

f̃ (xn−1)
, (4)

hich are always positive. Then we put in a general way:

γ = F(ξ, ζ). (5)

The way in which we calculate γ defines the specific SFRF method. For example, by putting γ = 1 we recover
the classic RF. Other known methods are the Illinois one:

γ Ill
=

1
2
, (6)

he Pegasus [11] one:

γ Peg
=

1
1+ ξ

, (7)

nd the Anderson and Björck’s (AB) [4] one:

γ AB
=

{
1− ξ, ξ < 1,
1
2 , ξ ≥ 1.

(8)

When ξ ≥ 1 the first expression of AB gives an invalid value for γ , and the authors use as a commitment solution
the Illinois method because they discovered that the case ξ ≥ 1, seldom appears in the iterations and have little
interest.

in [13], several SFRF methods from various approximations of an auxiliary slope are developed. The one that
interests us the most is the third one, that we name F3. It sometimes gives invalid values when ξ ≥ 1. Therefore it
s convenient to complete F3 in this range, for example:

γ F32
=

{
1− ξ

1+ζ
, ξ < 1,

1
2 , ξ ≥ 1,

(9)

imilarly to AB method.

. A new SFRF method based on parabolic interpolation

In order to achieve a higher convergence rate than that of the secant method, which uses the last two known
oints with no derivative calculations, two methodologies are typically used:

1. Keeping at least three points (xn−2, f (xn−2)), (xn−1, f (xn−1)), and (xn, f (xn)). This allows the use of
approximation functions that depend on three known points.

2. Taking, at each step, some auxiliary points, yn, zn, . . . not included in the main sequence {xn}, but used to
determine xn+1. This requires the calculations of f (yn), f (zn), . . .

The first approach is followed by Muller [20], which uses direct parabolic interpolation to improve the
ecant method. For simple roots Muller obtained an asymptotic convergence order of 1.8393, positive root of
3
− λ2

− λ − 1 = 0. For roots of multiplicity m = 2 a convergence order of 1.2337 is obtained. For higher
ultiplicity the method is always linear.
4

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

b
b

p
w

d

p

m

I

a

T

a

w

The second approach is followed, for example, in [1] with one auxiliary point per step, requiring two function
calls per step. This fact reduces the computational efficiency (see Section 4), which is not so good.

Since these methods sometimes extrapolate outside the actual interval [an, bn], with an = min(xn−2, xn−1, xn),
n = max(xn−2, xn−1, xn), they have no global convergence, so they need to hybridise with other methods (usually
isection) to maintain bracketing.

More recently, Brent [6], in turn based on a previous work by Dekker [9], developed a method based on inverse
arabolic interpolation that has, near the root, the same convergence properties as Muller’s one. It uses hybridisation
ith bisection when the algorithm detects that the advance towards the root is not fast enough.
Some slight improvements of Brent’s procedure have been proposed since then, like the one in [29], but these

o not normally appear in the routines of current numerical libraries.
A hyperbolic interpolation gives rise to another method developed in [7], which has the same convergence

roperties as Muller’s one. It also hybridises with bisection if needed.
Nevertheless, we have said that SFRF methods can be used without hybridisation. We will develop such

ethodologies hereunder.
In order to obtain a suitable function for γ calculation, it is convenient to use a transformed coordinate system.

f we name [xn−1, xn] the actual bracketing interval let us consider the transformation T :

(x, y)
T
−→ (z, w), z =

x − xn

xn−1 − xn
, w =

y

f̃ (xn−1)− f̃ (xn)
. (10)

In this case we have:

f̃ (x)
T
−→ g(z) =

f̃ (x(z))

f̃ (xn−1)− f̃ (xn)
, (11)

If the root of f (x) is in the interval, α ∈ (xn−1, xn), then by (10) 0 < α∗ < 1, α∗ = (α − xn)/(xn−1 − xn), being in
this case g(α∗) = f (α) = 0, so that the new function g(z) also has a root in the interval (0, 1).

With transformations (10) and (11), and the dimensionless parameters defined through (4), we have for abscissas:

xn−1
T
−→ 1, xn

T
−→ 0, c

T
−→ zc =

ζ

ξ + ζ
, (12)

nd ordinates:

f̃ (xn−1)
T
−→ g1 =

ξ

ξ + ζ
, f̃ (xn)

T
−→ g0 = −

ζ

ξ + ζ
, f (c)

T
−→ gc = −

ξζ

ξ + ζ
. (13)

wo properties are interesting:

g1 = 1+ g0, zc = −g0. (14)

The use of expression (3) for a scaled step requires scaling ordinate at xn−1. In transformed coordinates, we have
new ordinate, γ g1, fulfilling:

z p = zc − gc
1− zc

γ g1 − gc
, (15)

hich gives us an improved approximation to the root value.
The main idea of PRF method is to generate an adequate expression for z p by using some superlinear interpolation

method. By equating this new expression with (15) and clearing γ we obtain a formula to calculate this scaling
factor.

In the following we also use a parabola always interpolating, keeping bracketing automatically, without
hybridisation. We need some formula in the form (5). The condition 0 < γ < 1 is fulfilled in all cases.

For determining γ in a scaled step, we begin with the condition f̃ (xn) f (c) > 0 (otherwise a secant step will
follow and γ calculation is not required). With this condition (see Fig. 1-a) we establish:

Lemma 1. Let q(x) be the parabola that passes through points B, C and A of Fig. 1-a. The parabola p(z)

transformed from it by (10) and (11) (see Fig. 1-b) is convex between B and A.

5

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

a

L
s

P

T

t

P
M
i

i
a

t

Proof. The parabola that passes through B, C and A, has a constant second derivative of value:

p′′(z) = 2p[zc, 0, 1],

with p[z1, z2, z3] the second order divided difference. Since g1 > 0, g0 < 0 and gc < 0, we have:

p′′(z) =
2gc

g0g1
> 0,

nd the parabola is convex between B and A. □

From this Lemma, seeing Fig. 1-b, we can demonstrate the following result.

emma 2. The value of γ in the PRF method, which uses direct parabolic interpolation from abscissa z = z p
uch that p(z p) = 0, fulfils 0 < γ < 1.

roof. First, since the parabola is a continuous function, by Bolzano’s Theorem it has the root z p ∈ (zc, 1), because
gc < 0, g1 > 0. Then, γ > 0 because the limit γ = 0 corresponds to z p = 1 (g1 ̸= 0 and the root is not at this
point).

Second, the parabola being convex, the straight line r (z) that passes through C and A, cuts the parabola only at
points C and A, with r (z)− p(z) > 0, z ∈ (zc, 1). The slope s of r (z) is positive since:

s =
g1 − gc

1− zc
,

taking into account (14) we have:

s = 1−
gc

g1
> 0,

because gc < 0, g1 > 0.
Therefore:

z p − zd =
r (z p)− p(z p)

s
> 0.

This implies z p > zd , then γ < 1 because the case γ = 1 corresponds to z p = zd , which is not reached. □

At this point we can obtain the form of F(ξ, ζ) in PRF method.

heorem 1. In the step n + 1 of a SFRF method, knowing (xn−1, f̃ (xn−1)), (xn, f̃ (xn)), f̃ (xn) f̃ (xn−1) < 0, and
(c, f (c)), by using (3), with f̃ (xn) f (c) > 0 (a scaled step is the next), direct parabolic interpolation gives:

γ PRF
= −ζ +

1
2

[
(1− ξ + ζ)+

√
(1− ξ + ζ)2

+ 4ξζ

]
, (16)

aking the positive square root.

roof. For the parabolic interpolation it is better to follow the development of Hildebrand [14] rather than of
uller’s. We use the transformed variables (the result is the same for the original ones, although the development

s more verbose):

p(z) = gk + (z − zk)g[zk, zk−1]+ (z − zk)(z − zk−1)g[zk, zk−1, zk−2], (17)

n which the first and second order divided differences g[zk, zk−1] and g[zk, zk−1, zk−2], respectively, appear. Three
uxiliary parameters are used:

Ωk = (g[zk, zk−1]+ (zk − zk−1)g[zk, zk−1, zk−2])−1,

λk = Ωk g(zk),
Mk = 4Ω2

k g(zk)g[zk, zk−1, zk−2],

hen calculate:

z p = zc −
2λk
√ , (18)
1+ 1− Mk

6

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

t

o

a

s
f

Fig. 2. At left: Graphic representation of the surface γ = F(ξ, ζ), for PRF method by using (16). At right: Diagram of γ vs. ξ for several
values of ζ in the PRF method. The curves for AB and Pegasus methods are also shown.

taking the positive root included in (0, 1). In these expressions we use the equivalence:

zk−2 ≡ 1, zk−1 ≡ 0, zk ≡ zc, gk−2 ≡ g1, gk−1 ≡ g0, gk ≡ gc. (19)

(Expressions for Ωk , λk and Mk , as functions of zk , gk , etc., are not shown for brevity.) By using (15), taking into
account that g1 = 1− zc, then:

z p = zc −
gc

γ PRF −
gc
g1

. (20)

By comparing this to (18), we have:

γ PRF
−

gc

g1
= gc

1+
√

1− Mk

2λk
, (21)

hen:

γ PRF
−

gc

g1
=

1
2

[
1−

gc

g0
−

gc

g1

] ⎡⎣1+

√
1− 4

g2
c

g0g1

[
1−

gc

g0
−

gc

g1

]−2
⎤⎦ , (22)

r:

γ PRF
=

gc

g1
+

1
2

[
1−

gc

g0
−

gc

g1

]
+

1
2

√[
1−

gc

g0
−

gc

g1

]2

− 4
g2

c

g0g1
, (23)

nd because
gc

g0
= ξ,

gc

g1
= −ζ,

expression (16) is obtained. □

When iterating several scaled steps in the PRF method the tuple (ξ, ζ, γ) will evolve on the surface γ = F(ξ, ζ),
shown in Fig. 2. In the same Fig., at right, the curves corresponding to AB method and Pegasus one are also shown.

We must emphasise that this kind of diagram here presented is valid for all SFRF methods (as defined in [12])
but only for these. Other methods that do not fulfil the collinearity of points B, H and A of Fig. 1 would have
similar diagrams but more complex, in which xn−2, xn−1 and xn could also enter as control variables.

The first expression of γ AB in (8) is a particular case of our method (16) for ζ = 0 when ξ < 1. Below we will
ee that in the limit when ξ → 0, AB, F3 and PRF coincide up to O(ξ). Hence, we will use AB and F3 methods

or some important demonstrations of the convergence of PRF method.

7

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

s

F

e

c

T
s
e
w

w

c

T
b
a
t

w

1

T
c

w

4. Convergence properties of PRF method

We use the standard notation for a Taylor series around the root, α:

f (x) =
∞∑

k=1

ck(x − α)k, ck =
f (k)(α)

k!
,

ince f (α) = 0. We call en = xn − α, the error in the n-step. For roots of multiplicity m we have:

fn = f (xn) = cmem
n + O(em+1

n), cm ̸= 0. (24)

The convergence order, r ≥ 1, of a sequence of approximations, xn , towards the root α is defined [28] by:

lim
n→∞

|xn+1 − α|

|xn − α|r
= C > 0. (25)

or r = 1 an additional condition we need is |C | < 1. With the previous notation, asymptotically, we have:

lim
n→∞
|en+1| = C lim

n→∞
|en|

r
= 0. (26)

On the other hand, the methods for roots calculation need at every iteration step, some specific number of function
valuations, nfc. In this regard, Traub [28, appendix C] defines the computational efficiency, p, as:

p = r1/nfc, (27)

as a measure of the computational effort in order to compare different methods.

4.1. Simple root case

SFRF methods combine the secant one, which is equivalent to a step with γ = 1, and another scaled with γ

alculated by some function, in our case with PRF formula (16). Therefore, it is necessary to analyse both.

heorem 2 (Convergence of Secant Method). Let α ∈ [a, b] be a root of f ∈ C2
[a,b] and xn−2 and xn−1 be two

uccessive abscissas belonging to an open domain U (α, δ) = {x | |x − α| < δ} small enough, with their associated
rrors, en−2 and en−1. For simple roots the error in the next step n of iteration, in the secant method, expression (3)
ith f̃ (xn−2) = f (xn−2), f̃ (xn−1) = f (xn−1) fulfils:

en = (c2/c1)en−1en−2 + O(e3). (28)

ith e = max(|en−2|, |en−1|).
The demonstration is set out, for example, in [25, pp. 341–342]. For simple roots, iterated secant method has a

onvergence rate of about 1.6180.

heorem 3 (Convergence of Muller’s Method). Let α ∈ [a, b] be a root of f ∈ C3
[a,b], and xn−3, xn−2 and xn−1

e three successive abscissas belonging to an open domain U (α, δ) = {x | |x − α| < δ} small enough, with their
ssociated errors, en−3, en−2 and en−1. For simple roots, in the next step n of iteration with the Muller’s method,
he error fulfils:

en = −(c3/c1)en−1en−2en−3 + O(e4), (29)

ith e = max(|en−3|, |en−2|, |en−1|).
The demonstration is set out in [20]. For simple roots, iterated Muller’s method has a convergence rate of about

.8393.

The last two Theorems give a superlinear convergence because limn→∞ en = limn→∞ er
n−1 = 0, with r > 1.

herefore, any combination of a scaled PRF (based on Muller’s formula) and secant steps will have superlinear
onvergence for simple roots, and (26) is fulfilled.

The actual convergence order and computational efficiency will be between one of these two methods, and we

ill obtain it below, but previously we need some additional properties.

8

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

P

s

F
s

L
t

P

B

t
c
t
f
e

i
m
(

4

e
c

h

m
e

L
s

P

Lemma 3. In the PRF method, for simple roots, limn→∞ ξn = 0.

roof. From Theorems 2 and 3, for simple roots we have (24) with m = 1 and (26), and from the definition of ξ :

lim
n→∞

ξn = lim
n→∞

fn

fn−1
= lim

n→∞

en

en−1
= lim

n→∞
C |en−1|

r−1
= 0,

ince r > 1. □

This property will be used as a discriminant, separating cases with simple roots from the multiple ones.
In order to determine the computational efficiency of the PRF method we will first demonstrate that the method

3 is the limit of our PRF when ξ → 0, therefore, the asymptotic properties in this limit of both methods are the
ame.

emma 4. For simple roots, in the limit when n→∞, the scaling factors of methods PRF and F3 are the same,
hat is, limn→∞ γ PRF

= γ F3, therefore they share the same computational efficiency.

roof. By developing expression (16) as a Taylor series around ξ = 0 we have

γ PRF
= 1−

1
1+ ζ

ξ + O(ξ 2) = γ F3
+ O(ξ 2), (30)

y using Lemma 3:

lim
n→∞

γ PRF
= lim

ξ→0
γ PRF

= γ F3. □ (31)

Ford [13, pp. 16–18] demonstrated that his method F3 also fulfils expression (29). This allows us to study
he sequence of secant and PRF methods in practice. Ford [13, pp. 18–20] points out that, asymptotically, when
3/c1 < 0 the typical sequence has an F3 step followed by two secant steps with en+3 ∝ e5

n (asymptotically), and
herefore the computational efficiency is p = 51/3

≈ 1.7100. For c3/c1 > 0 the typical sequence has two F3 steps
ollowed by two secant ones, with en+4 ∝ e8

n (asymptotically), obtaining p = 81/4
≈ 1.6818. Therefore, when

n → 0, since Lemma 4 showed that both methods are equivalent, these properties apply also to our PRF method.
We can affirm that for simple roots PRF has an asymptotic computational efficiency between 1.6818 and 1.7100

n the normal cases. In general, it lies between 1.6180 and 1.8393. The first number corresponds to iterate the secant
ethod (when a function sign inversion happens at every step), the second one to iterate the parabolic interpolation

when no sign inversion is produced in the step sequence).

.2. Multiple root case

For multiple roots all methods cited before advance slowly because the function shape near the root does not fit
ither straight lines, hyperbolas or parabolas well. As Muller [20] demonstrated for multiplicity m = 2 the order of
onvergence of his method is 1.2337. However, for m = 2 the requirement of bracketing forces a discontinuity in
f ′′′(x) at x = α, so in this case the PRF method degrades to linear convergence.

For m > 2 all methods based on polynomial interpolation with a memory of at most two points (as in our case)
ave linear convergence [28]. For any method of linear convergence be actually convergent

en+1 = Cen + O(e2
n), |C | < 1, (32)

ust be fulfilled. Actually any SFRF method verifies at every scaled step |C | < 1 because 0 < en+1/en < 1, as
stablished in Lemma 2 of [12].

emma 5. In the PRF method, for roots with finite multiplicity m > 1, in the limit when n→∞, a sequence of
caled steps fulfils limn→∞ ξn = Cm , with 0 < |C | < 1.

roof. From the definition of ξ we have:

ξn =
fn

,

fn−1

9

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

w
v

W

and by using (24) and (32):

lim
n→∞

ξn = lim
n→∞

fn

fn−1
= lim

n→∞

(
en

en−1

)m

= Cm > 0. □

Obviously, the value of C is function-dependent, but combining Lemmas 3 and 5 allows us to distinguish cases
ith simple roots from cases with multiple ones. Besides, this facilitates the change of the SFRF formula when the
alues of ξ begin to stall.

For example, we can use the generalised Illinois method (see [12]) with a small value for γ when a multiple root
is detected. In [12] an analysis of this method shows that it performs well for multiplicity m ≤ 4, with a behaviour
near the bisection method.

We detach that combining PRF with SFRFm [12], prepared for multiple roots, is not suitable because we do not
know previously the multiplicity of the searched root. Therefore, we can begin with the PRF formula, but when the
values of ξ stall, not tending to 0, we switch to the generalised Illinois method with a small constant value for γ ,
because a multiple root is detected. Below we show out the way.

5. Translating PRF into a practical routine

First, a note on performance is convenient. Since our method uses in (16) a square root of a positive argument
(then no complex arithmetic involved) some might think that an overload in the calculation time is involved.

However, in modern computers the calculation of a square root in double precision, normally implemented as
a specific CPU instruction, is fast (a little slower than floating point division). Therefore, the above-mentioned
problem is of little importance.

5.1. Some notes on abscissa tolerance control

Mainly due to the limitations imposed by the floating point representation, this task needs some cautions.
The first one has to do with the abscissa tolerance. This can be expressed both through absolute, xtol, and relative

(to the value of α), rtol, ones. Following [6, pp. 51], a radius control tolerance is used:

atol = max(xtol, 4ϵ)+max(rtol, 4ϵ) max(|c|, ϵ), (33)

also protecting the case in which c = 0. This avoids some trouble with round-off errors.
The second caveat is for avoiding tiny steps towards the root. In some simple roots cases a sequence of scaled

steps in the vicinity of α with very small δ values in (3) appears. In this case the interval radius hardly decreases
because one extreme is not changing anymore. This can be cured by avoiding these tiny δ, by using an “effective”
value:

δe = sign(δ) max
(
|δ|,

1
2

atol
)

. (34)

hen |δ| < 1
2 atol, PRF method ensures that c = xn+δ ∈ (a, b), otherwise we have to test if c = xn+δe ̸∈ (an, bn).

When this c lies outside the bracketing interval we take α = xn (the error is obviously less than atol).
A third improvement of the step (ii) (Radius control) of Algorithm 1 is possible. After determining c in (3),

before we calculate f (c), the radius control can be:

max(|an − c|, |bn − c|) < atol. (35)

In this case we can stop the iterations before calculating f , which could be expensive. This is valid for both simple
and multiple roots. Nevertheless, we have checked this occurs occasionally and the simple |an − bn| < atol is almost
equally effective.

5.2. Strategy to treat multiple roots

From Lemma 5 we know in which conditions the root is perceived as multiple, that is, m > 1: when successive

scaled steps with PRF formula give ξ values differing in a small positive value and they do not tend to zero. We

10

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

b
w

c

b
S

5

s
t
t
c

a

store the value ξold of the previous step, and it is compared to the current one. The root is considered multiple if
in MAXFAIL steps it is:

ξ < 1− Eξ and ξ > Eξ and |1− ξold/ξ | < Erξ , (36)

oth Eξ and Erξ being small values (we have chosen 0.01 for both). The first condition avoids problems in cases
hen the function varies slowly near an interval extreme.
In order to avoid consuming many iterations with little advance towards the root, a small value of MAXFAIL is

onvenient (we use MAXFAIL = 3).
For the rest of iterations we can use γ = 0.1 (GIll01), as exposed in [12]. Another option is to switch to

isection method after the values of ξ stall. These two possibilities are programmed in the computer routines in the
upplementary files.

.3. Description of the algorithm arlos

We implement PRF methodology, and we call arlos method (from “Advanced Root Locator On Segment”) the
trategy sets out in two versions. The first, arlos0, is a direct application of (16). The second, arlos1, differs from
he first in which two consecutive secant steps are forbidden, following a modification proposed in [17, p. 424] for
he Pegasus method. This gives robustness to the method, improving the convergence in practice. However, the
odification of the algorithm is more complex.

Besides, another routine, arlos2, after detecting the multiple character of the root, replaces GIll01 in arlos1

by bisection. Note that the use of bisection after the PRF method might not be called hybridisation, since the two
methods are not intermixed in each iteration, but applied one after the other.

The algorithm has as input parameters: the function f , the initial bracketing interval (a, b), the absolute tolerance
in abscissas xtol, the relative tolerance in abscissas rtol, the absolute value of the function to stop the iterations ftol,
and the maximum accepted number of function calls nfunmax.

The algorithm gives as results: the estimation of the root, the total number of function calls used, a message
bout how convergence is reached, and finally whether the root is simple or not.

In the Supplementary files, full operative implementations of these routines in python, lua, C and Fortran90

are provided.

6. Numerical experiments

The computational efficiencies cited before have been deduced under iteration conditions near the root. Besides,
each function will have different multiplicative coefficients in the convergence rates (they depend on the derivatives
of some orders at the root). In practice, every case (function and initial a and b) has enough particularity to produce
significant differences as compared with the theoretical convergence rates, because n cannot tend to infinity.

Therefore, we analyse several functions, 50 with simple roots (see Table 1) and 10 with multiple ones of various
multiplicity values (see Table 2), many of them chosen from the bibliography. None of the methods cited above are
specifically designed to treat the multiple root case, then we have not exposed many examples.

We must point out a note about the functions with even multiplicity of Table 2: to achieve bracketing (and to
be able to apply our method) some functions found in the bibliography have been converted from cases without
bracketing into another with bracketing by multiplying the original function by sign(x − α), in every case. It is not
common to find these functions in practice, but it is the only option we have to analyse the behaviour of various
methods for functions with even multiplicity at the root.

The choice of the test functions will obviously influence the results, and some functions might cause problems
to some methods. Nevertheless, the functions in our Tables have been chosen to have a wide range of possibilities,
with no intention to benefit any particular method.

All calculations have been conducted using double precision with python-3.10.6, numpy-1.21.5 and, for
some routines, scipy-1.8.0 in an i5-7400 computer at a frequency of 2.7 GHz, with 8 GB of RAM, and Linux
Ubuntu 22.04 LTS as operating system.

The methods used for comparison with our arlos0, arlos1 and arlos2 are: brentq, brenth, toms748 and

ridder (by directly using the specific functions in scipy.optimize).

11

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

i

A

c

Table 1
Function definitions for simple root cases. For some of them, indicated as “new limits”, a and b have been redefined (from the reference)
n order to create asymmetric intervals around the root. The column headed with i is a number for function labelling.

i f (x) a b Reference

1 x3
− 1 −0.40 1.50 [2], #1, new limits

2 11x11
− 1 0.10 1.00 [2], #3

3 log x 0.50 5.00 [32], #1
4 arctan x −1.00 5.00 [32], #2
5 x − exp(sin x)+ 1 1.00 4.00 [32], #3
6 x exp(−x)− 0.1 0.00 1.00 [32], #4
7 x1/3

− 1 0.00 5.00 [32], #5
8 x2

− sin2 x − 1 −1.00 2.00 [27], #15
9 3x2

− 11.12x + 9.1389 −30.00 2.00 [23], #2
10 x6

− 36x5
+ 450x4

− 2400x3
+ 5400x2

− 43200x + 720 10.00 22.00 [23], #4
11 x2(x2/3+

√
2 sin x)−

√
3/18 0.10 1.00 [2], #2

12 x3
+ 1 −1.80 0.00 [2], #4

13 x3
− 2x − 5 0.00 3.00 [21], Group A 18

14 2x exp(−5)+ 1− 2 exp(−5x) 0.00 1.00 [4], Ex. 2 (n = 5)
15 2x exp(−10)+ 1− 2 exp(−10x) 0.00 1.00 [4], Ex. 2 (n = 10)
16 2x exp(−20)+ 1− 2 exp(−20x) 0.00 1.00 [4], Ex. 2 (n = 20)
17 (1+ (1− 52))x2

− (1− 5x)2 0.00 1.00 [4], Ex. 3 (n = 5)
18 (1+ (1− 102))x2

− (1− 10x)2 0.00 1.00 [4], Ex. 3 (n = 10)
19 (1+ (1− 202))x2

− (1− 20x)2 0.00 1.00 [4], Ex. 3 (n = 20)
20 x2

− (1− x)5 0.00 1.00 [4], Ex. 4 (n = 5)
21 x2

− (1− x)10 0.00 1.00 [4], Ex. 4 (n = 10)
22 x2

− (1− x)20 0.00 1.00 [4], Ex. 4 (n = 20)
23 (1+ (1− 5)4)x − (1− 5x)4 0.00 1.00 [4], Ex. 5 (n = 5)
24 (1+ (1− 10)4)x − (1− 10x)4 0.00 1.00 [4], Ex. 5 (n = 10)
25 (1+ (1− 20)4)x − (1− 20x)4 0.00 1.00 [4], Ex. 5 (n = 20)
26 (x − 1) exp(−5x)+ x5 0.00 1.00 [4], Ex. 6 (n = 5)
27 (x − 1) exp(−10x)+ x10 0.00 1.00 [4], Ex. 6 (n = 10)
28 (x − 1) exp(−20x)+ x20 0.00 1.00 [4], Ex. 6 (n = 20)
29 x2

+ sin(x/5)− 1/4 0.00 1.00 [2], #10 (n = 5)
30 x2

+ sin(x/10)− 1/4 0.00 1.00 [2], #10 (n = 10)
31 x2

+ sin(x/20)− 1/4 0.00 1.00 [2], #10 (n = 20)
32 sin x − x3

− 1 −2.00 −1.00 [30], p. 118, ex. 3a
33 x − log x − 3 2.00 6.00 [30], p. 118, ex. 3b
34 (x − 1)(x − 2)(x − 3)(x − 4)(x − 5)(x − 6) 3.10 4.50 [21], Group A 1d
35 sin x 1.00 6.00 [21], Group A 2a
36 (x2

+ 1) sin x − exp(
√
|x |)(x − 1)(x2

− 5) 0.00 1.00 [21], Group A 3
37 x+1

x2+2
−2.30 0.50 [21], Group A 4, new limits

38 x2
− 1 −1.50 0.00 [21], Group A 5a

39 x9
+ x −0.75 0.50 [21], Group B-II 1c

40 x19
+ x −0.75 0.50 [21], Group B-II 1d

41 x5
+ x + 0.0001 −0.75 0.50 [21], Group B-II 3b

42 4 cos(x)− exp(x) −1.00 3.00 [13], #1 range 2
43

∑10
i=1 {exp(xti)− exp(5ti)} , where ti = 0.1i 4.00 6.50 [13], #2 range 1

44 1010x1/x
− 1 0.08 0.50 [13], #6 range 3

45
√

x − 3− 1/x 5.00 30.00 [8], #7
46 (15x − 1)/(14x) 0.01 1.00 [4], Ex. 7 (n = 15)
47 (20x − 1)/(19x) 0.01 1.00 [4], Ex. 7 (n = 20)
48 x1/5

− 51/5 1.00 100.00 [3], #12 (n = 5)
49 x1/10

− 101/10 1.00 100.00 [3], #12 (n = 10)
50 x1/20

− 201/20 1.00 100.00 [3], #12 (n = 20)

In the Tables with values of the total function calls, nfun, obtained by different methods, we take ftol = 10−100.
lso we take the smaller value for the relative tolerance, rtol = 4ϵ.
We treat several functions with different bracketing intervals. For avoiding the effect of the initial radius, we

hose xtol proportional to the initial |b − a|, with two different cases.
12

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

p

Table 2
Function definitions for multiple root cases. Some functions have been modified from the original, multiplying by sign(x−α). The multiplicity
is m. The column headed with i is a number for function labelling.

i f (x) m a b reference

51 (log x)2 sign(x − 1) 2 0.50 5.00 [12]
52 (x2 exp(x)− sin(x)+ x) sign(x) 2 −0.20 5.00 [15], f3 modified
53 x3 3 −0.50 1/3 [27], #17

54
[

arctan
√

5
2 − arctan

√
x2 − 1+

√
6

(
arctan

√
x2−1

6 − arctan
(

1
2

√
5
6

))
−

11
63

]3

3 1.50 2.00 [26], ex. 3, modified

55 x2 sin2 x sign(x) 4 −2.00 1.00 [12]
56 sign(x − 2)(x − 2)4/((x − 1)2

+ 1) 4 1.50 2.40 [24], ex. 1, modified
57 x5 5 −0.50 1/3 [27], #18
58 (exp(−x)− 1+ x/5)5 5 4.00 5.20 [5], ex. 4, modified
59 x3 sin3 x sign(x) 6 −1.00 0.50 [12]
60 sign(x − 2)(x − 2)6/((x − 1)2

+ 1) 6 1.90 2.20 [24], ex. 1, modified

In order to try avoiding rounding issues, a commitment value for xtol/|b − a| is 2×10−14 (that is, 100 times the
machine epsilon in double precision in python). This small value is convenient for numerical convergence studies
(see results in Tables 3 and 5).

Nevertheless, in engineering and scientific practice some greater values are sometimes used. We also take
xtol/|b − a| = 0.5 × 10−6, that is, 6 significant figures of improvement compared to the initial radius (see results
in Tables 4 and 6).

6.1. Simple root cases

Results of the total function calls, nfun, for simple root cases are presented in Tables 3 and 4. We show in
boldface the best results for each function. Many times several methods have the same nfun value.

The average of nfun is usually used for comparing among different methods: the lower this value the better. In
our case we have ordered by goodness: arlos1 (and arlos2), arlos0, brenth, brentq, toms748 and ridder.

We begin with the analysis of results in Table 3, for xtol/|b − a| is 2×10−14. For simple roots, the new methods
have been beaten clearly (difference in nfun greater than 1) only for functions with hyperbolic form (#46, #47) by
brenth, and others occasionally (#2, #27) by brentq, and #2 by brenth, and #7 by toms748. In the rest of cases
our methods either tie or win.

The standard deviation values for nfun, also shown in Table 3, approximately show the robustness of each method:
a small value indicating very robust, and a large one, little robust. With this measure, we classify: brenth, arlos1
(and arlos2), brentq, arlos0, ridder and toms748, in that order, with no much difference. Therefore, in this
regard all analysed methods behave almost the same.

The similar values of the iterations average number of nfun for all methods, except ridder, are a byproduct
of the superlinear interpolation formulas applied in the methods. The small differences among them are, in part,
probably due to the initial iterations not close to the root. The ridder method uses an exponential approximation,
and it performs worse in all cases.

Although the use of the average is customary in comparing among numerical methods, in [19] a better
methodology is exposed, by defining a benchmark in terms of a set P of problems, a set S of solvers, and a
convergence test T . We use a performance measure nfunp,s > 0 (in our case the number of function evaluations
required to satisfy the desired convergence) obtained for each p ∈ P , s ∈ S. For any tuple (p, s) the performance
ratio is defined by:

rp,s =
nfunp,s

min{nfunp,s | s ∈ S}
. (37)

The performance profile of a solver s ∈ S is the probability distribution for the ratio rp,s . It is the fraction of
roblems where the performance ratio is at most ω, that is:

ρs(ω) =
size{p ∈ P | rp,s ≤ ω}

. (38)

size{p ∈ P}

13

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
Table 3
Results of the numerical experiments for simple roots by different methods. ftol = 10−100, xtol = 2×10−14

|a − b|,
rtol = 4ϵ. Bisection method needs 48 function calls in every case.

i ridder toms748 brentq brenth arlos0 arlos1 arlos2

1 16 12 11 10 11 10 10
2 14 17 12 11 15 14 14
3 14 10 10 9 9 8 8
4 20 11 9 9 9 10 10
5 16 13 13 13 12 10 10
6 14 9 9 9 9 9 9
7 14 7 10 11 11 11 11
8 18 11 11 11 12 11 11
9 24 15 19 19 5 5 5

10 14 18 13 13 14 12 12
11 16 10 13 12 12 11 11
12 12 11 10 10 11 10 10
13 16 11 11 11 11 11 11
14 12 11 10 10 10 10 10
15 12 11 12 12 10 10 10
16 12 12 12 12 12 11 11
17 16 9 10 10 5 5 5
18 16 8 10 9 5 5 5
19 16 8 9 9 5 5 5
20 14 11 9 10 10 10 10
21 16 12 10 11 11 11 11
22 16 13 13 12 13 13 13
23 12 8 8 8 9 9 9
24 12 11 7 7 8 8 8
25 14 7 7 7 7 8 8
26 14 12 9 9 9 9 9
27 16 13 9 11 11 11 11
28 16 17 13 14 12 13 13
29 12 10 11 10 8 7 7
30 12 10 10 10 8 7 7
31 12 10 10 10 8 6 6
32 14 10 9 9 8 8 8
33 12 10 8 7 7 8 8
34 14 12 10 10 10 10 10
35 16 13 10 10 10 10 10
36 16 9 9 9 9 9 9
37 12 10 11 11 10 9 9
38 14 8 10 9 4 4 4
39 8 8 8 8 8 8 8
40 8 7 7 7 7 7 7
41 10 9 9 9 8 8 8
42 12 10 12 11 11 10 10
43 12 10 10 9 10 9 9
44 20 20 20 20 19 17 17
45 12 8 8 9 8 8 8
46 18 18 13 8 12 12 12
47 18 18 14 9 12 13 13
48 14 10 11 11 10 10 10
49 14 11 11 11 10 10 10
50 14 11 11 10 10 10 10
Mean 14.3 11.2 10.6 10.3 9.7 9.4 9.4
Std dev 2.9 3.0 2.5 2.4 2.7 2.5 2.5

It is a non-decreasing, piecewise constant function, continuous from the right at each breakpoint. The best method

at any value of ω is the one with higher ρs . The value of ρs(1) is the probability that the solver will win over the

14

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
Table 4
Results of the numerical experiments for simple roots by different methods. ftol = 10−100, xtol = 0.5 ×
10−6
|a − b|, rtol = 4ϵ. Bisection method needs 23 function calls in every case.

i ridder toms748 brentq brenth arlos0 arlos1 arlos2

1 12 11 10 9 10 9 9
2 12 13 10 10 13 12 12
3 12 9 9 8 8 8 8
4 14 9 8 8 8 8 8
5 12 11 12 12 10 9 9
6 10 9 8 8 8 8 8
7 12 7 9 9 9 9 9
8 12 9 9 9 10 10 10
9 20 13 18 17 5 5 5

10 10 14 12 11 12 11 11
11 12 10 12 11 10 10 10
12 10 10 9 9 9 9 9
13 12 11 10 9 10 9 9
14 10 11 9 9 9 9 9
15 12 11 10 10 10 9 9
16 12 11 11 11 10 10 10
17 12 7 9 8 5 5 5
18 12 7 8 8 5 5 5
19 12 7 8 7 5 5 5
20 12 9 8 8 9 9 9
21 12 10 9 9 10 10 10
22 14 12 12 11 12 11 11
23 10 7 7 7 7 7 7
24 10 7 6 6 7 7 7
25 10 7 6 6 7 6 6
26 12 10 8 8 8 8 8
27 14 11 8 10 9 9 9
28 14 13 11 12 11 11 11
29 10 9 9 9 8 7 7
30 10 9 10 9 7 7 7
31 10 9 9 9 6 6 6
32 10 9 8 8 8 8 8
33 10 7 7 7 7 7 7
34 12 11 9 9 9 10 10
35 12 11 9 9 9 9 9
36 12 9 7 7 7 7 7
37 10 9 10 10 9 7 7
38 10 8 9 8 4 4 4
39 8 7 7 7 7 7 7
40 8 7 6 6 6 6 6
41 10 9 7 8 7 7 7
42 10 9 10 10 10 9 9
43 10 10 9 8 9 8 8
44 18 16 18 18 17 15 15
45 10 7 7 8 8 8 8
46 14 17 11 8 11 11 11
47 16 16 13 9 11 11 11
48 12 9 10 10 9 9 9
49 12 10 10 10 9 9 9
50 12 10 10 9 10 9 9

Mean 11.7 9.9 9.4 9.1 8.7 8.4 8.4
Std dev 2.2 2.4 2.4 2.2 2.3 2.0 2.0

rest of the solvers. Then, if we are interested solely in the number of wins, we need only to compare the values of

ρs(1) for all solvers [10].

15

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20

p

f
i

b
b

a
i
fi
m

n

e
i

Table 5
Results of the numerical experiments for multiple roots by different methods. ftol = 10−100, xtol = 2 ×
10−14

|a − b|, rtol = 4ϵ. Bisection method needs 48 function calls in every case.

i ridder toms748 brentq brenth arlos0 arlos1 arlos2

51 66 89 67 67 40 40 53
52 80 94 123 126 41 42 58
53 78 99 117 117 46 46 56
54 80 71 118 134 43 43 55
55 68 112 118 120 51 51 57
56 68 108 115 113 53 53 56
57 72 118 117 112 64 64 56
58 74 109 115 121 63 63 57
59 84 126 139 138 77 77 56
60 78 116 144 143 77 76 55

Mean 75 104 117 119 56 56 56
Std dev 5.8 15 19 20 13 13 1.3

Table 6
Results of the numerical experiments for multiple roots by different methods. ftol = 10−100, xtol = 0.5 ×
10−6
|a − b|, rtol = 4ϵ. Bisection method needs 23 function calls in every case.

i ridder toms748 brentq brenth arlos0 arlos1 arlos2

51 30 51 30 32 20 22 28
52 38 59 51 52 22 22 33
53 38 49 54 56 25 25 32
54 40 49 53 61 25 25 31
55 32 49 57 51 29 29 33
56 34 54 52 55 28 28 32
57 36 52 50 37 35 35 32
58 36 54 56 55 34 34 32
59 36 60 60 58 40 40 31
60 38 60 66 67 40 40 31

Mean 36 54 53 52 30 30 31
Std dev 2.9 4.3 8.9 10 6.8 6.5 1.4

An important property of performance profiles is that they are insensitive to large changes in the results of a few
roblems of the set. Moreover, they are also largely unaffected by small changes in results over many problems [10].

In Fig. 3 the performance profiles for some root finders for the simple root cases included in Table 1, calculated
rom data in the corresponding columns of Table 3, are exposed. Obviously other set of functions, initial bracketing
ntervals and specific tolerances would give somewhat different results.

In regard to ρs(1), the values shown at right in Fig. 3-a are very clear: arlos1 (and arlos2) is the best, followed
y arlos0. The rest of the methods are worse. As we can see arlos1 and arlos2 have a probability of 70% of
eating the rest of the methods, and they will be the normal root finding choice.

For xtol/|b − a| is 0.5× 10−6 the results are shown in Table 4. We see only an improvement of about 11% for
ll methods, except for ridder (18%). This small value shows the superlinear character of the methods: only an
ncrease of 1 in nfun is usually necessary for passing from 0.5× 10−6 to 2× 10−14, nearly doubling the significant
gures. We have to detach that the actual errors of the returned approximations to the root (not shown) are often
uch smaller than the requested tolerance.
Analysing the robustness of the methods indicated by the standard deviation of nfun, arlos1 and arlos2 are

ow the best, and the results are now slightly lower than the previous ones.
In regard to ρs(1), the values exposed at right in Fig. 3-b show that, as before, arlos1 and arlos2 are the best,

ven improving a little the results (now a probability of 76%). Both parts of Fig. 3 show similar graphs, which
ndicates that the conclusions are little dependent on the requested tolerance.
16

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
Fig. 3. Cumulative distribution for the performance profile of simple root cases for ridder, toms748, brentq, brenth, arlos0 and
arlos1. arlos2 have the same behaviour as arlos1 for simple roots. The values at performance ratio equal to 1 is shown at right for
better understanding. (a) for results in Table 3. (b) for results in Table 4.
17

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
6.2. Multiple root cases

The analysis of multiple root cases presented in Tables 5 and 6 is not deep, because none of the routines here
developed (nor the ones in scipy.optimize) are specifically designed for it. Hence, we present results only as a
sample, and the conclusions about the behaviour of our methods for multiple roots are approximate.

For multiple roots the results show that, even in this difficult case, arlos0 and arlos1, not specifically designed
for it, perform better than the standard routines in scipy.optimize, at least when m ≤ 6. For m ≤ 4 it appears that
arlos0 or arlos1 would be the choice, but arlos2 would be the best choice for unknown multiplicity: very good
for simple roots and reliable for multiple ones. On average only 8 function calls more than bisection are needed in
our examples both for xtol = 2× 10−14

|a − b| and xtol = 0.5× 10−6
|a − b|.

Actually, arlos2 consumes some iterations detecting the character of the root, with no much radius reduction.
When it detects the root is multiple it switches to bisection in a reduced interval (compared to the initial one).
Therefore, nfun becomes approximately non-dependent on multiplicity when m > 1 for arlos2.

A comment on ridder method: for simple roots it is the worst of the methods in scipy.optimize, but it is
the best for multiple roots (apart from bisection). In any case the new method arlos2 is better that ridder for
multiple roots.

The robustness of these methods through the standard deviation is in the following order: Bisection (not shown)
has a value or 0 for it; arlos2 is the next with a value about 1.4, followed by ridder and the rest of methods
with a similar worse behaviour.

The effect of the multiplicity in the results deserves a comment. arlos2 is not much affected, but arlos0 and
arlos1 methods have increasing nfun values as multiplicity increases. For m ≥ 6 (results not shown) it seems more
economic to use arlos2. Obviously, more studies have to be done for treating better multiple root cases, with the
aim of improving the routines arlos.

7. Conclusions

We have developed a new SFRF method based on direct parabolic interpolation (named PRF). Global convergence
is ensured because the method maintains bracketing, as all SFRF methods.

The developed methodology detects whether the root is simple or not, with no additional work, by analysing
the successive values of a parameter calculated at every step in the iteration. This is an important feature not found
normally in the routines appearing in the current numerical libraries.

For simple roots it has a high computational efficiency, between 1.6818 and 1.7100 in the typical cases. In the
worst case this is 1.6180, corresponding to iterations of the secant method, and in the best case this is 1.8393,
corresponding to iterations of the parabolic interpolation.

For multiple roots it has linear convergence, but the above-mentioned determination of root character can be used
to switch as desired to other SFRF methods. This allows to improve the performance in this difficult case when
double precision is used, and not multiprecision. Effectively, by combining the PRF with the generalised Illinois
method (with a constant scaling factor 0.1) we have designed an algorithm (arlos) that keeps the advantages of
both methods (each in their own “environment”). Another strategy is passing to bisection after detecting the multiple
character of the root.

Finally, we have analysed many functions, both with simple and multiple roots, by using several methods. For
simple roots our method arlos (in three versions) is equal or better than the hybrid methods appearing in the
currently used numerical libraries, while it is better for multiple roots up to multiplicity six, on average only a little
worse than bisection.

For all these reasons, these new routines can be used, with advantage, as a substitute for those considered as
state-of-the-art, such as brenth, brentq, toms748 and others.

CRediT authorship contribution statement

Julio M. Fernández-Dı́az: Conceptualization, Formal analysis, Methodology, Writing – original draft, Computer
programming. César O. Menéndez-Pérez: Conceptualization, Formal analysis, Methodology, Writing – original

draft.

18

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
Acknowledgements

The authors would like to thank the anonymous reviewers for their help to improve the final version of this
manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.matcom.2023.08.
003.

References
[1] G.E. Alefeld, F.A. Potra, On two higher order enclosing methods of J.W. Schmidt, ZAMM Z. Angew. Math. Mech. 68 (1988) 331–337,

http://dx.doi.org/10.1002/zamm.19880680802.
[2] G.E. Alefeld, F.A. Potra, Some efficient methods for enclosing simple zeros of nonlinear equations, BIT 32 (1992) 334–344,

http://dx.doi.org/10.1007/BF01994885.
[3] G.E. Alefeld, F.A. Potra, Y. Shi, Algorithm 748: Enclosing zeros of continuous functions, ACM Trans. Math. Software 221 (1995)

http://dx.doi.org/10.1145/210089.210111.
[4] N. Anderson, Å. Björck, A new high order method of regula falsi type for computing a root of an equation, BIT 13 (1973) 253–264,

http://dx.doi.org/10.1007/BF01951936.
[5] R. Behl, A. Cordero, J.R. Torregrosa, A new higher-order optimal derivative free scheme for multiple roots, J. Comput. Appl. Math.

404 (3) (2022) 113773, http://dx.doi.org/10.1016/j.cam.2021.113773.
[6] R.P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.
[7] J.C.P. Bus, T.J. Dekker, Two efficient algorithms with guaranteed convergence for finding a zero of a function, ACM Trans. Math.

Software 1 (1975) 330–345, http://dx.doi.org/10.1145/355656.355659.
[8] C. Chun, M.Y. Lee, A new optimal eighth-order family of iterative methods for the solution of nonlinear equations, Appl. Math.

Comput. 223 (2013) 506–519, http://dx.doi.org/10.1016/j.amc.2013.08.033.
[9] T.J. Dekker, Finding a zero by means of successive linear interpolation, in: B. Dejon, P. Henrici (Eds.), Constructive Aspects of the

Fundamental Theorem of Algebra, Wiley-Interscience, London, 1969, pp. 37–48.
[10] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213, http:

//dx.doi.org/10.1007/s101070100263.
[11] M. Dowell, P. Jarratt, The Pegasus method for computing the root of an equation, BIT 12 (1972) 503–508, http://dx.doi.org/10.1007/

BF01932959.
[12] J.M. Fernández-Díaz, C.O. Menéndez-Pérez, A common framework for modified Regula Falsi methods and new methods of this kind,

Math. Comput. Simulation 205 (2023) 678–696, http://dx.doi.org/10.1016/j.matcom.2022.10.019.
[13] J.A. Ford, Improved Algorithms of Illinois-Type for the Numerical Solution of Nonlinear Equations, Technical Report CSM-257,

University of Essex, 1995.
[14] F.B. Hildebrand, Introduction to Numerical Analysis, second ed., Dover Pub., Inc., New York, 1987.
[15] J. Hueso, E. Martínez, C. Teruel, Determination of multiple roots of nonlinear equations and applications, J. Math. Chem. 53 (2015)

880–892, http://dx.doi.org/10.1007/s10910-014-0460-8.
[16] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, IEEE STD 754-2019, IEEE, ISBN: 978-1-5044-5924-2, 2019,

http://dx.doi.org/10.1109/IEEESTD.2019.8766229.
[17] R.F. King, An improved Pegasus method for root finding, BIT 13 (1973) 423–427, http://dx.doi.org/10.1007/BF01933405.
[18] R.F. King, A secant method for multiple roots, BIT 17 (1977) 321–328, http://dx.doi.org/10.1007/BF01932152.
[19] J.J. Moré, S.M. Wild, Benchmarking derivative-free optimization algorithms, SIAM J. Optim. 20 (1) (2009) 172–191, http://dx.doi.org/

10.1137/080724083.
[20] D.E. Muller, A method for solving algebraic equations using an automatic computer, MTAC 10 (1956) 208–215, http://dx.doi.org/10.

2307/2001916.
[21] D. Nerinckx, A. Haegemans, A comparison of non-linear equation solvers, J. Comput. Appl. Math. 2 (2) (1976) 145–148, http:

//dx.doi.org/10.1016/0771-050X(76)90017-6.
[22] J.M. Papakonstantinou, R.A. Tapia, Origin and evolution of the secant method in one dimension, Amer. Math. Monthly 120 (2013)

500–518, http://dx.doi.org/10.4169/amer.math.monthly.120.06.500.
[23] P.K. Parida, D.K. Gupta, An improved regula-falsi method for enclosing simple zeros of nonlinear equations, Appl. Math. Comput.

177 (2006) 769–776, http://dx.doi.org/10.1016/j.amc.2005.11.034.
[24] P.K. Parida, D.K. Gupta, An improved method for finding multiple roots and it’s multiplicity of nonlinear equations in R, Appl. Math.

Comput. 202 (2008) 498–503, http://dx.doi.org/10.1016/j.amc.2008.02.030.
[25] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, second ed., Dover Pub., Inc., New York, 2001.
[26] J.R. Sharma, S. Kumar, I.K. Argyros, Development of optimal eighth order derivative-free methods for multiple roots of nonlinear

equations, Symmetry 11 (6) (2019) http://dx.doi.org/10.3390/sym11060766.
[27] A. Suhadolnik, Combined bracketing methods for solving nonlinear equations, Appl. Math. Lett. 25 (2012) 1755–1760, http:

//dx.doi.org/10.1016/j.aml.2012.02.006.

[28] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

19

https://doi.org/10.1016/j.matcom.2023.08.003
https://doi.org/10.1016/j.matcom.2023.08.003
https://doi.org/10.1016/j.matcom.2023.08.003
http://dx.doi.org/10.1002/zamm.19880680802
http://dx.doi.org/10.1007/BF01994885
http://dx.doi.org/10.1145/210089.210111
http://dx.doi.org/10.1007/BF01951936
http://dx.doi.org/10.1016/j.cam.2021.113773
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb6
http://dx.doi.org/10.1145/355656.355659
http://dx.doi.org/10.1016/j.amc.2013.08.033
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb9
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb9
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb9
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/BF01932959
http://dx.doi.org/10.1007/BF01932959
http://dx.doi.org/10.1007/BF01932959
http://dx.doi.org/10.1016/j.matcom.2022.10.019
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb13
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb13
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb13
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb14
http://dx.doi.org/10.1007/s10910-014-0460-8
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1007/BF01933405
http://dx.doi.org/10.1007/BF01932152
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.2307/2001916
http://dx.doi.org/10.2307/2001916
http://dx.doi.org/10.2307/2001916
http://dx.doi.org/10.1016/0771-050X(76)90017-6
http://dx.doi.org/10.1016/0771-050X(76)90017-6
http://dx.doi.org/10.1016/0771-050X(76)90017-6
http://dx.doi.org/10.4169/amer.math.monthly.120.06.500
http://dx.doi.org/10.1016/j.amc.2005.11.034
http://dx.doi.org/10.1016/j.amc.2008.02.030
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb25
http://dx.doi.org/10.3390/sym11060766
http://dx.doi.org/10.1016/j.aml.2012.02.006
http://dx.doi.org/10.1016/j.aml.2012.02.006
http://dx.doi.org/10.1016/j.aml.2012.02.006
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb28

J.M. Fernández-Dı́az and C.O. Menéndez-Pérez Mathematics and Computers in Simulation 215 (2024) 1–20
[29] G. Wilkins, M. Gu, A modified Brent’s method for finding zeros of functions, Numer. Math. 123 (2013) 177–188, http://dx.doi.org/
10.1007/s00211-012-0480-x.

[30] D.M. Young, R.T. Gregory, A Survey of Numerical Mathematics, Dover Pub., Inc., New York, 1988.
[31] B.I. Yun, A derivative free iterative method for finding multiple roots of nonlinear equations, Appl. Math. Lett. 22 (2009) 1859–1863,

http://dx.doi.org/10.1016/j.aml.2009.07.013.
[32] Y. Zhu, X. Wu, A free-derivative iteration method of order three having convergence of both point and interval for nonlinear equations,

Appl. Math. Comput. 137 (2003) 49–55, http://dx.doi.org/10.1016/S0096-3003(02)00029-2.
20

http://dx.doi.org/10.1007/s00211-012-0480-x
http://dx.doi.org/10.1007/s00211-012-0480-x
http://dx.doi.org/10.1007/s00211-012-0480-x
http://refhub.elsevier.com/S0378-4754(23)00329-4/sb30
http://dx.doi.org/10.1016/j.aml.2009.07.013
http://dx.doi.org/10.1016/S0096-3003(02)00029-2

	A superlinear Scaling Factor Regula Falsi root finder that detects the simple or multiple character of the root
	Introduction
	Scaling Factor Regula Falsi method
	A new SFRF method based on parabolic interpolation
	Convergence properties of PRF method
	Simple root case
	Multiple root case

	Translating PRF into a practical routine
	Some notes on abscissa tolerance control
	Strategy to treat multiple roots
	Description of the algorithm arlos

	Numerical experiments
	Simple root cases
	Multiple root cases

	Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References

