
Expert Systems With Applications 233 (2023) 120916

A
0
n

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Surrogate model for memetic genetic programming with application to the
one machine scheduling problem with time-varying capacity
Francisco J. Gil-Gala ∗, María R. Sierra, Carlos Mencía, Ramiro Varela
Department of Computer Science, University of Oviedo, Campus de Viesques s/n, Gijón, 33271, Spain

A R T I C L E I N F O

Keywords:
Evolutionary computation
Surrogate model
Scheduling
Hyper-heuristics

A B S T R A C T

Surrogate evaluation is a useful, if not the unique, technique in population-based evolutionary algorithms
where exact fitness calculation is too expensive. This situation arises, for example, in Genetic Programming
(GP) applied to evolve scheduling priority rules, since the evaluation of a candidate rule amounts to solve a
large number of problem instances acting as training set. In this paper, a simplified model is proposed that relies
on finding and then exploiting a small set of small problem instances, termed filter, such that the evaluation
of a rule on the filter may help to estimate the performance of the same rule in solving the training set. The
problem of finding the best filter is formulated as a variant of the optimal subset problem, which is solved by
means of a Genetic Algorithm (GA). The surrogate evaluation of a new candidate rule consist in solving the
instances of the filter. This model is exploited in combination with a Memetic Genetic Program (MGP); the
resulting algorithm is termed Surrogate Model MGP (SM-MGP). An experimental study was performed on the
problem of scheduling a set of jobs on a machine with varying capacity over time, denoted (1, 𝐶𝑎𝑝(𝑡)||

∑

𝑇𝑖).
The results of this study provided interesting insights into the problems of filter and rules calculation, and
showcase that the priority rules evolved by SM-MGP outperform those evolved by MGP.
1. Introduction

In many population-based evolutionary algorithms, where fitness
evaluation is the most time-consuming part, surrogate or simplified
models are often used to improve their performance (Bhattacharya,
2008; Branke & Schmidt, 2005; Hussein & Deb, 2016; Zeiträg et al.,
2022; Zhou et al., 2007). In the literature, these models have been
learned by means of different techniques, for example, regression anal-
ysis or neural networks (He et al., 2023). Some of these methods are
based on predicting the performance of an individual without the need
for evaluating it, whereas others use a simplification of the real fitness
function.

For example, in Hildebrandt and Branke (2015), the authors present
a technique for evaluating fitness in GP. Instead of directly assessing
the fitness, they propose a strategy where the fitness of the new
rule is determined based on the most similar rule found in previous
generations of the GP. To facilitate this approach, the authors intro-
duce a phenotype characterisation method that efficiently computes
a numerical representation of the phenotype. The paper demonstrates
the effectiveness of this approach by achieving the elimination of
duplicates and reducing the number of expensive fitness evaluations
required. Consequently, the proposed technique improves the speed

∗ Corresponding author.
E-mail addresses: giljavier@uniovi.es (F.J. Gil-Gala), sierramaria@uniovi.es (M.R. Sierra), menciacarlos@uniovi.es (C. Mencía), ramiro@uniovi.es

(R. Varela).

and quality of GP, particularly in the context of the dynamic Job Shop
Scheduling Problem.

An alternative approach is taken in Nguyen et al. (2017), where the
authors propose using simplified models of the problem. They consider
the dynamic Job Shop Scheduling Problem and analyse four simplified
models under the assumption that ‘‘if rule 𝑎 is better than rule 𝑏 based
on the absolute performance, the simplified model should also show
that 𝑎 is better than 𝑏’’. Therefore, they checked the rank-correlation
between performances of rules on the original and simplified models
using the Spearman’s rank coefficient (Kendall, 1938, 1970; Spearman,
1904), and showed that the simplified model was the best one.

Building on these ideas, in Zeiträg et al. (2022), the authors ex-
tended these surrogate models to enhance the optimisation process
in the multi-objective variant of the DJSSP. They proposed two ap-
proaches: one based on a simplified problem and the other based on
machine learning techniques using samples of fully evaluated individ-
uals based on the proposals by Hildebrandt and Branke (2015) and
Nguyen et al. (2017).

In Gil-Gala et al. (2020b) proposed an exhaustive method incorpo-
rating simplified models called ‘‘filters’’ to eliminate evaluations for
low-performing rules. This approach competes favourably with GP,
vailable online 1 July 2023
957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.eswa.2023.120916
Received 14 March 2023; Received in revised form 7 June 2023; Accepted 26 June
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:giljavier@uniovi.es
mailto:sierramaria@uniovi.es
mailto:menciacarlos@uniovi.es
mailto:ramiro@uniovi.es
https://doi.org/10.1016/j.eswa.2023.120916
https://doi.org/10.1016/j.eswa.2023.120916
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120916&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

a
r
s
f
i
a
d
b
e
n
e
o
t

p
t
o
b
e
o
c
r
e

n
t
t
e
p
w
S
r
m
f
M
w
o
r
o
p
m
i
w
a

2

s
o
c
p
r

2

mainly when applied to limited-depth expression trees. These stud-
ies collectively emphasise the importance of surrogate evaluation in
tackling the challenges posed by expensive fitness evaluations and
enhancing the efficiency and effectiveness of GP in various problem
domains.

In this work, we consider the Memetic Genetic Programming (MGP)
approach proposed in Gil-Gala et al. (2021c) to evolve priority rules for
the problem of scheduling jobs on a single machine with variable capac-
ity over time, denoted (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖). MGP extends the GP approach
developed in Gil-Gala et al. (2019) with a Local Search Algorithm
(LSA) specifically designed to compute dimensionally-aware priority
rules (Keijzer & Babovic, 1999). In these algorithms, the evaluation of
a candidate rule, coming either from recombination in GP or from a
neighbourhood structure in LSA, requires solving a set of instances of
the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem, which is termed the training set. For the
evaluation to be accurate, the number of instances in the training set
and their size must be sufficiently large; therefore, fitness evaluation
may be a very time-consuming process.

In order to reduce this computation time, we propose in this work
a surrogate model (SM) relying on the hypothesis that, given a training
set, it is possible to calculate another set, containing just a few instances
of smaller size than those in the training set, so that the performance of
a priority rule on this reduced set may estimate the performance of the
rule on the training set. More specifically, given two candidate rules 𝑎
nd 𝑏, if 𝑎 is better than 𝑏 on the reduced set, then it is likely that the
ule 𝑎 will be better than 𝑏 on the training set as well. These reduced
ets of instances are called filters herein. The calculation of filters is
ormulated as the Optimal Filtering Set Problem (OFSP). This problem
s solved by a Genetic Algorithm (GA); the first version of this algorithm
nd some preliminary results on the application of filters in GP were
iscussed in Gil-Gala et al. (2021b). The purpose of this method is to
alance the use of exact and surrogate evaluation. From these previous
xperiments, it is clear that the best method consists in generating a
umber of offspring from each pair of mated chromosomes, which are
valuated on the filter. Then, only the offspring with the best estimation
n the filter is evaluated on the training set. The resulting algorithm,
ermed SM-GP (Surrogate Model GP), outperformed the original GP.

Additionally, this paper presents a significant contribution by
roposing a range of strategies to enhance the use of filters within
he local search (LSA) component of the MGP algorithm. The use
f filters allows LSA to discard many unpromising candidate neigh-
ours. The resulting algorithms, collectively referred to as SM-MGP,
xhibit remarkable improvements over existing state-of-the-art meth-
ds. Specifically, the extensive analysis conducted to explore different
ombinations of LSA and SM, showcases that the evolved priority
ules obtained are generally smaller and more effective than the rules
volved by GP and MGP.

The remaining sections of the paper are organised as follows. In the
ext section provides the necessary background information, including
he definition of the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem and detailed explana-
ions of the MGP approach introduced in Gil-Gala et al. (2021c) to
volve priority rules for this problem. In Section 3, we describe the
roposed surrogate model, which is based on notion of filter; besides,
e formulate the calculation of filters as a variant of the Optimal
ubset Problem (OSP), and propose a Genetic Algorithm (GA) for its
esolution. Section 4 presents different combinations of the surrogate
odel with MGP and the proposed general Genetic Programming (GP)

ramework. We explain how the surrogate model is integrated into the
GP approach and discuss the modifications made to the GP frame-
ork to incorporate the surrogate model. The experimental design is
utlined in Section 5, where we provide details on the setup and pa-
ameters used for conducting the experiments. The results and analyses
f these experiments are reported in Sections 6 and 7, respectively. We
resent the obtained results and compare them with the state-of-the-art
ethods. Additionally, we conduct in-depth analyses to gain insights

nto the performance of the proposed algorithms. Finally, in Section 8,
e summarise the main conclusions of this work and propose potential
2

venues for future research.
. Background and previous results

In this section we give the background necessary to understand the
urrogate model proposed in this paper. We start with the definition
f the sequencing problem of jobs on one machine with time-varying
apacity, and then describe how to solve this problem by means of
riority rules. Finally, we review the methods proposed to learn these
ules, namely Genetic Programming (GP) and Memetic GP.

.1. The (1, 𝐶𝑎𝑝(𝑡)∥
∑

𝑇𝑖) problem

In the (1, 𝐶𝑎𝑝(𝑡)∥
∑

𝑇𝑗) problem, 𝑛 jobs, all of them available at time
𝑡 = 0, must be scheduled on a single machine whose capacity varies
over time as 𝐶𝑎𝑝(𝑡) ≥ 0, with 𝑡 ≥ 0.

The goal is to allocate starting times 𝑠𝑡𝑗 , 1 ≤ 𝑗 ≤ 𝑛, to the jobs such
that:

1. at any time 𝑡 ≥ 0 the number of jobs that are processed in parallel
on the machine, 𝑋(𝑡), cannot exceed the capacity of the machine,
i.e., 𝑋(𝑡) ≤ 𝐶𝑎𝑝(𝑡), and

2. the processing of jobs on the machine cannot be preempted,
i.e., 𝐶𝑗 = 𝑠𝑡𝑗 + 𝑝𝑗 , where 𝐶𝑗 is the completion time of job 𝑗 and
𝑝𝑗 is its duration.

The objective function is the total tardiness, which must be minimised.
It is defined as ∑

𝑗=1,…,𝑛 max(0, 𝐶𝑗 − 𝑑𝑗), where 𝑑𝑗 is the due date of
job 𝑗. Due to the fact that the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑗) problem is an extension
of the Parallel Identical Machines Problem (Koulamas, 1994), which
is NP-hard, it follows that the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem is NP-hard as
well (Mencía et al., 2019).

The (1, 𝐶𝑎𝑝(𝑡)∥
∑

𝑇𝑖) problem was introduced in Hernández-Arauzo
et al. (2015) in the context of scheduling the charging times of a large
fleet of Electric Vehicles. Solving the above Electric Vehicle Charging
Scheduling Problem (EVCSP) amounts to solving a number of instances
of the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem over time. Due to the computational
intractability and the tight real-time requirements of the EVCSP, on-line
scheduling represents the only suitable approach to the problem.

2.2. Using priority rules for solving the (1, 𝐶𝑎𝑝(𝑡)∥
∑

𝑇𝑖)

Algorithm 1 shows a schedule builder proposed in Hernández-
Arauzo et al. (2015) for the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem. It is a greedy al-
gorithm that in each step has to chose non-deterministically one among
of a set of candidate jobs to be scheduled next. This choice may be done
by means of a priority rule: the rule is evaluated for all options and the
option taking the highest priority is chosen. In Hernández-Arauzo et al.
(2015), the authors exploited the well-known Apparent Tardiness Cost
(ATC) rule. However, many other rules could be exploited instead.

2.3. Evolving scheduling priority rules

The above ATC rule was designed from the intuition of experts
in scheduling with due date objectives, and as with any other single
rule, it may or may not be the best choice for a particular problem.
According to the No-Free-Lunch theorem (Wolpert & Macready, 1997),
it is expected that the same rule is not the best for any possible
situation. For instance, in work by Sels et al. (2012), the simple Earliest
Due Date (EDD) rule achieves better results than the ATC rule in some
well-known instances of the Job Shop Scheduling Problem. To deal
with the above issue, priority rules may be automatically designed
and adapted to the structure of a given problem by means of some
learning mechanism, which will hopefully be able to capture some
problem characteristics that may not be intuitive for experts. In this
context, Genetic Programming (GP) (Koza, 1992; Poli et al., 2008)
stands out as a suitable approach due to the fact that priority rules
may be naturally represented as expression trees, which may be evolved

by GP outperforming other learning techniques, such as Neural Net-

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

w

e
r

d
o
p
s
s
s
a
o
s

t
M
p
i
w
p
T
s
i
a
a
o
s
a
t
n
i
G
e
f
i

a
i
b
a
a
t
t
s

Algorithm 1 Schedule Builder.
Data: A (1, 𝐶𝑎𝑝(𝑡)||

∑

𝑇𝑗) problem instance .
Result: A feasible schedule 𝑆 for .
𝑈𝑆 ← {1, 2, ..., 𝑛};
𝑋(𝑡) ← 0, 𝑡 ≥ 0;
hile 𝑈𝑆 ≠ ∅ do

// Calculate 𝛾(𝛼) as the earliest starting time for the next job
𝛾(𝛼) ← 𝑚𝑖𝑛{𝑡′|∃𝑢 ∈ 𝑈𝑆;𝑋(𝑡) < 𝐶𝑎𝑝(𝑡), 𝑡′ ≤ 𝑡 < 𝑡′ + 𝑝𝑢};
// Determine all jobs that can start at 𝛾(𝛼)
𝑈𝑆∗ ← {𝑢 ∈ 𝑈𝑆|𝑋(𝑡) < 𝐶𝑎𝑝(𝑡), 𝛾(𝛼) ≤ 𝑡 < 𝛾(𝛼) + 𝑝𝑢;
Select a job 𝑢 ∈ 𝑈𝑆∗ using a priority rule;
// Schedule job 𝑢 at 𝛾(𝛼)
𝑠𝑡𝑢 ← 𝛾(𝛼);
𝑋(𝑡) ← 𝑋(𝑡) + 1, 𝑠𝑡𝑢 ≤ 𝑡 < 𝑠𝑡𝑢 + 𝑝𝑢;
𝑈𝑆 ← 𝑈𝑆 − {𝑢};

nd
eturn The schedule 𝑆 = (𝑠𝑡1, 𝑠𝑡2, ..., 𝑠𝑡𝑛);

works (Branke et al., 2015). When GP is used to perform that task, it is
classified as a hyper-heuristic based on heuristic generation, according
to the taxonomy proposed by Burke et al. (2019).

The use of GP requires establishing a grammar to build priority
rules, which includes a set of terminal and function symbols and
some grammar rules. The terminal symbols represent attributes of the
problem, such as job durations or due dates, and usually some numeric
constants. The function symbols usually include basic arithmetic oper-
ators and some unary and binary functions. The grammar rules restrict
the combinations of symbols to form feasible expressions. Additionally,
a number of constraints are commonly considered to limit the size of
the expression trees or to prevent the use of some partial expressions,
relying on knowledge from the problem domain.

The use of GP also has its drawbacks, the most relevant one being
the time required to evaluate the candidate rules. This procedure
usually requires solving a large number of real instances of the problem
at hand to assign a fitness value to each rule, which will be proportional
to the performance shown by the rule on these instances. This approach
was taken to deal with a number of optimisation problems, such as the
Job Shop Scheduling Problem (Tay & Ho, 2008; Zhang et al., 2022),
some variants of the Single Machine Scheduling Problem (Dimopoulos
& Zalzala, 2001; Gil-Gala et al., 2019; Jakobović & Marasović, 2012),
Unrelated Parallel Machines Scheduling (Durasević & Jakobović, 2018;
Durasević et al., 2016; Jaklinović et al., 2021), Resource Constrained
Project Scheduling (Chand et al., 2018; Dumić et al., 2018; Guo et al.,
2021; Lin et al., 2020; Luo et al., 2022), Travelling Salesman (Duflo
et al., 2019; Gil-Gala et al., 2022b), Arc Routing (MacLachlan et al.,
2020; Wang et al., 2021), Electric Vehicle Routing (Gil-Gala et al.,
2022a) or Bin Packing (Burke et al., 2012) problems, among others.

2.3.1. The search space of rules
The way in which GP based on hyper-heuristic generation is specif-

ically applied to solve a particular optimisation problem is via an
alphabet of symbols that are used to compose rules. Thus, the key
element in GP is to define a grammar that establishes the constraints
between the symbols in the alphabet; therefore, the grammar is in
charge of defining the search space of rules. The other component
that defines the search space is the maximum size of rules, i.e., the
maximum number of nodes in the expression tree associated with the
rule. In this work, we define it as 𝑆 = 2 −1, where is the maximum
depth of expression trees.

In Gil-Gala et al. (2019), a GP approach was proposed to evolve
priority rules for the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑗) problem. The grammar explored
in Gil-Gala et al. (2019) generates dimensionally compliant expressions
under the assumption that they are more rational than just arithmeti-
cally correct expressions. Two examples of rules are 𝑝𝑗 + 0.5 and
3

𝑝𝑗 + 𝑑𝑗 , where only the second one is a dimensionally compliant
Table 1
The alphabet of symbols composed by the functional and terminal sets used to build
expression trees.

Binary functions – + ∕ × 𝑚𝑎𝑥 𝑚𝑖𝑛

Unary functions – 𝑝𝑜𝑤2 𝑠𝑞𝑟𝑡 𝑒𝑥𝑝 𝑙𝑛 𝑚𝑎𝑥0 𝑚𝑖𝑛0
Terminal symbols 𝑝𝑗 𝑑𝑗 𝛾(𝛼) �̄� 0.1 … 0.9

expression. In addition, it drastically reduces the search space, making
it possible to use alternative paradigms to GP, such as local search or
state-space search (Gil-Gala et al., 2020a), and the classical rules are
usually dimensionally compliant expressions as well. One of these rules
is the ATC rule; one possible expression tree for encoding this rule is
represented in Fig. 1, where 𝑔 is a parameter that has to be superseded
by any non-null numeric constant between 0.0 and 1.0.

Table 1 shows the terminal and function symbols used in Gil-Gala
et al. (2019, 2021c) that compose the alphabet proposed in this work.
On the one hand, the terminal symbols are the processing time 𝑝𝑗 and
ue date 𝑑𝑗 of each unscheduled job, while �̄� is the average duration
f the unscheduled jobs at a given time and 𝛾(𝛼) denotes the earliest
ossible starting time of the next job to be scheduled. Furthermore,
ome numeric constants are considered. On the other hand, the function
ymbols are restricted to the most basic ones in order to reduce the
earch space. Furthermore, some of them were selected because they
re also contained in the ATC rule, and the rest due to being the
pposite of them, such as 𝑒𝑥𝑝 is of 𝑙𝑛, and 𝑚𝑎𝑥0 is of 𝑚𝑖𝑛0. Note that the
ymbol ‘‘-’’ is considered in unary and binary versions, and 𝑚𝑎𝑥0 and
𝑚𝑖𝑛0 return the maximum and minimum between any given expression
and 0.

2.4. Memetic Genetic Programming

As far as we know, the Memetic Genetic Programming (MGP)
approach proposed in Gil-Gala et al. (2021c), shown in Algorithm
2, represents the state-of-the-art in evolving priority rules for the
(1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖) problem. It is a generational evolutionary algorithm
hat starts from an initial population of #𝑝𝑜𝑝𝑠𝑖𝑧𝑒 random individuals.
GP iterates over a number of #𝑔𝑒𝑛 generations using a selection

rocedure (line 4) in which the individuals are randomly organised
nto pairs of parents. The crossover and mutation operators (line 5),
ith probabilities 𝑝𝑐 and 𝑝𝑚 respectively, are applied over each pair of
arents undergoing crossover and the resulting offspring are mutated.
hese genetic operators are the well-known one point crossover and
ub-tree mutation that were adapted from the classical ones described
n Koza (1992) to always generate feasible expression trees, i.e., they
lways generate dimensional compliant expressions. Then, the gener-
ted offspring are evaluated (line 6), assigning a fitness value to each
f them. In the next step (line 7), each individual is improved by local
earch with probability 𝑝𝐿𝑆 , which is the main difference between GP
nd MGP. Finally, the replacement operator (line 8) passes the best
wo individuals from each pair of parents and their offspring to the
ext generation, but it always includes, at least, one of the offspring
n order to avoid premature convergence as was proposed in Gil-
ala et al. (2019). In that way, it always keeps the best individual in
ach generation, which represents a form of elitism. Additionally, it
orces that the next population is always composed of, at least, 25% of
ndividuals from the previous population.

MGP uses two classical local search algorithms: Hill Climbing (HC)
nd Gradient Descent (GD). The difference between both is that, in each
teration, HC explores the neighbourhood until if finds a neighbour
etter than the current solution (priority rule), whereas GD evaluates
ll the neighbours and selects the best one of them. In both cases, the
lgorithm terminates when there is not any neighbour that improves
he current solution. In Gil-Gala et al. (2021c) it was concluded that
here were clear differences between HC and GD in favour of the
econd one, so in this work, we focus only on GD. The union of two

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.
Fig. 1. Expression tree representing the ATC rule.
Algorithm 2 Memetic Genetic Program
Data: A set of instances of the (1, 𝐶𝑎𝑝(𝑡)||

∑

𝑇𝑖) problem. Parameters:
crossover probability 𝑝𝑐 , mutation probability 𝑝𝑚, number of generations
#𝑔𝑒𝑛, population size #𝑝𝑜𝑝𝑠𝑖𝑧𝑒, local search probability 𝑝𝐿𝑆 .

Result: An expression tree representing a priority rule for the (1, 𝐶𝑎𝑝(𝑡)||
∑

𝑇𝑖)
problem.

1: Generate the initial population (0) with #popsize expression trees;
2: Evaluate (0) on the set ;
3: for all t=1 to #gen-1 do
4: 𝐒𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧: organise the expression trees in (𝑡 − 1) into pairs of parents

at random;
5: 𝐑𝐞𝐜𝐨𝐦𝐛𝐢𝐧𝐚𝐭𝐢𝐨𝐧: mate each pair of parent expression trees and mutate

the two offspring in accordance with 𝑝𝑐 and 𝑝𝑚;
6: 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧: evaluate the resulting expression trees on the set ;
7: 𝐋𝐨𝐜𝐚𝐥𝐒𝐞𝐚𝐫𝐜𝐡: apply local search algorithm to the offspring in accordance

with 𝑝𝐿𝑆 ;
8: 𝐑𝐞𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭: make a tournament selection of two expression trees from

every two parents and their offspring to build the population in the next
generation (𝑡);

9: 𝐫𝐞𝐭𝐮𝐫𝐧 The best expression tree reached;

neighbourhood structures generates neighbours. The first structure is
based on changing a single symbol in the rule, whereas the second
structure changes a sub-tree in a similar way to what was proposed
in Nguyen et al. (2019). However, MGP limits the neighbourhood only
to generate dimensionally aware neighbouring rules. Additionally, the
candidate expression to be changed in the second structure is limited
to only those with a maximum depth of 2 and 3 symbols, such that
they are also dimensionally compliant expressions. Despite using these
constraints, the number of neighbours may be too high to be fully
explored. Consequently, another version of MGP was proposed based
on limiting the number of evaluated neighbours, which is termed
MGPl. An exhaustive experimental analysis, in Gil-Gala et al. (2021c),
concluded that the best configuration proposed was based on the
union of both structures and limiting the number of neighbours to
about 50, which are taken randomly and processed with GD. In this
work, our hypothesis is that a suitable alternative approach is to use
surrogate models to evaluate the whole neighbourhood, and only the
best neighbouring rules are fully evaluated.

2.4.1. The learning model
When GP is used to perform the task of evolving priority rules, it

is actually used as a machine learning algorithm, where the fitness
function is the implementation of a learning model. Specifically, in-
dividual evaluation needs to solve a large pool of instances of the
(1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇) problem, the training set, and then the fitness value
4

𝑖

is calculated as the inverse of the sum of the total tardiness values
obtained for all the instances, breaking ties in favour of rules with
smaller size. Then, as usual, another set of unseen instances, the test set,
is used to assess the performance of the best rule on the training set, in
order to assess whether the rule generalises well or it is over-fitted to
training data.

In the experimental studies reported in Gil-Gala et al. (2019, 2021c),
the training set included 50 instances with 60 jobs each, which required
large amounts of evaluation time, being quite similar to other works
where GP has been used to calculate rules in other settings, such as
Unrelated Machine Environment (Durasević & Jakobović, 2020) or Job
Shop Scheduling (Nguyen et al., 2019).

3. Surrogate evaluation

As mentioned in Section 1, the use of surrogate models is a common
and effective strategy to address the computational challenges posed
by expensive fitness evaluations in evolutionary computation. These
models may provide computationally efficient approximations of the
fitness function, enabling faster optimisation and the exploration of
more complex problem domains.

In Gil-Gala et al. (2020a), an exhaustive method was proposed to
enumerate expression trees from the grammar described in Gil-Gala
et al. (2019) for the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑗) problem. In order to reduce the
number of actual evaluations on the training set, this method uses a
simplified model that consists of 5 instances of 10 jobs each (instead of
the 50 instances with 60 jobs of the training set). These small sets of
instances were called filters, as they were used to filter each candidate
priority rule so that if a rule is not better than another reference rule on
at least 4 of the 5 instances, it is discarded. Otherwise, the rule is fully
evaluated on the training set. In this way, most of the low-performing
rules are not evaluated, and, as a result, the enumeration method is
quite competitive with GP when the search is restricted to expression
trees of limited depth. In this way, they were able to prevent their
algorithm from evaluating most of the low performing rules so that the
enumeration method is quite competitive with GP when the search is
restricted to expression trees of limited depth.

In this work, we build on the idea presented in Gil-Gala et al.
(2020a) and Nguyen et al. (2017) about the correlation between per-
formance measures between real and simplified models and propose
a method to obtain a good filter in the following terms: given a set
of priority rules and their performances on both the training set and
another set of simplified instances, the objective is to come up with
a small set of simplified instances (that is, a filter), such that the
correlation between the performances of the rules in the training set
and the filter is maximised. The problem is referred to as the Optimal
Filtering Set Problem, and it is formulated in the next section. To solve
this problem, we propose a genetic algorithm, also described in the next
sections.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

c
t
e
o
ℎ
𝐹

t
f
t
b
w

E
t
t
w
i
i
a
t

3.1. The optimal filtering set problem

This section provides the formal definition of the Optimal Filtering
Set Problem (OFSP), and how to use genetic algorithms to evolve filters.
The Optimal Filtering Set Problem (OFSP) may be defined as a variant
of the Subset Selection Problem as follows.

Given are:

• A problem .
• An ordered set of heuristics 𝐻 = {ℎ1,… , ℎ𝑛} to solve .
• Two ordered sets 𝑅 = {𝑅1,… , 𝑅𝑟} and 𝑆 = {𝑆1,… , 𝑆𝑠} of

instances of .
• 𝑋𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟, the performance measure of heuristic ℎ𝑖

on the instance 𝑅𝑗 .
• 𝑌𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, the performance measure of heuristic ℎ𝑖

on the instance 𝑆𝑗 .
• A parameter 𝑘 > 0.

The goal is to find a subset 𝐹 ⊂ 𝑆, 𝐹 = {𝑆[1],… , 𝑆[𝑘′]}, 𝑘′ ≤ 𝑘, where
[𝑖], 1 ≤ [𝑖] ≤ 𝑠, 1 ≤ 𝑖 ≤ 𝑘′, is the index of the 𝑖th instance of 𝐹 in 𝑆,
such that

1. The correlation between the paired observations 𝑋 = {𝑋1,… , 𝑋𝑛}
and 𝑌 = {𝑌1,… , 𝑌𝑛}, where

𝑋𝑖 =
∑

𝑗=1,…,𝑟
𝑋𝑖𝑗 ,

𝑌𝑖 =
∑

[𝑗]=1,…,𝑘′
𝑌𝑖[𝑗],

(1)

is maximised.
2. 𝑘′ is minimised.

These two objective functions are considered hierarchically in the order
they are declared, i.e., we will try to maximise the correlation, and only
in the case of ties will we prefer the set 𝐹 with the lowest cardinality.

Even though the Spearman’s coefficient could be used as it was
done in Nguyen et al. (2017), we opted to use the Kendall Tau-b (𝜏𝑏)
coefficient (Kendall, 1938) to measure the correlation. The reason for
this is that it is generally accepted that Kendall’s coefficient is more
robust than Spearman’s (Colwell & Gillett, 1982), and that 𝜏𝑏 has a
direct interpretation in terms of the probability of observing concordant
or discordant pairs of observations; however, both tests usually yield
a nearly identical result (Agresti, 2010; Croux & Dehon, 2010). Given
two observations 𝑋 and 𝑌 , the 𝑛 pairs of values, (𝑋𝑖, 𝑌𝑖) and (𝑋𝑗 , 𝑌𝑗),
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, are concordant iff the expressions (𝑋𝑖 −𝑋𝑗) and (𝑌𝑖 − 𝑌𝑗)
are both greater than 0 or lower than 0; they are discordant iff one of
them is greater than 0, and the other is lower than 0, and they have
tied iff at least one of them is 0. The Kendall Tau-b coefficient is defined
as:

𝜏𝑏 =
(𝑛𝑐 − 𝑛𝑑)

√

(𝑛0 − 𝑛1) ∗ (𝑛0 − 𝑛2)
(2)

where

• 𝑛0 = 𝑛 * (𝑛 - 1) / 2 is the number of pairs of observations.
• 𝑛𝑐 is the number of concordant pairs.
• 𝑛𝑑 is the number of discordant pairs.
• 𝑛1 is the number of tied pairs on 𝑋.
• 𝑛2 is the number of tied pairs on 𝑌 .

Values of 𝜏𝑏 range from −1 to +1, where −1 is 100% negative asso-
iation, +1 is 100% positive association, and a value of zero indicates
he absence of association. In this way, a set 𝐹 maximising 𝜏𝑏 may be
xpected to be a good filter for the set of heuristics 𝐻 solving the set
f instances 𝑅, in the sense that if we consider two heuristics ℎ𝑖 and
𝑗 in 𝐻 such that ℎ𝑖 is better than ℎ𝑗 in solving the set of instances
5

, then it may be expected that ℎ𝑖 will be better than ℎ𝑗 in solving p
he instances in 𝑅 as well. Besides, if we develop a new heuristic ℎ
ollowing a similar method to that used to develop the heuristics in 𝐻 ,
hen a similar behaviour may be expected for ℎ, and so the set 𝐹 could
e used for surrogate evaluation of new heuristics on the set 𝑅, which
ould be particularly useful if the instances in the set 𝑆 are (much)

smaller than those instances in 𝑅 and the cardinality of 𝐹 is (much)
lower than that of 𝑅.

As pointed in Hamo and Markovitch (2005), decision problems
associated with subset selection are typically NP-hard or NP-complete.
The decision version of the OFSP, given a correlation threshold and
a value of 𝑘, is in NP. Besides, the search space is exponential in the
size of 𝑆; therefore, in spite of the absence of a formal proof that some
NP-hard problem may be polynomially reduced to OFSP, we will treat
it as if it was NP-complete, and so its optimisation version NP-hard.

3.1.1. The genetic algorithm for the OFSP
Genetic algorithms have been recently applied to solve some vari-

ants of the optimal subset problem (Kromer et al., 2018). In this work,
we propose a genetic algorithm (GA) to solve the OFSP. A preliminary
version of this algorithm was presented in Gil-Gala et al. (2021a). The
main components of GA were chosen as follows.

Coding scheme. Chromosomes are given by variations with repetition of
instances from 𝑆 taken 𝑘 by 𝑘; so, there are 𝑠𝑘 different chromosomes
in all. Allowing for repetitions, a chromosome actually represents a
subset 𝐹 ⊂ 𝑆 with 𝑘′ ≤ 𝑘 instances, namely, the set of instances in
the chromosome. In this way, 𝐹 is a candidate solution to the OFSP.

Initial population. Initial chromosomes are random variations taken
uniformly. However, other strategies could be used as well, for exam-
ple, giving each rule a probability proportional to the average value of
the solutions obtained by that rule on the training set, i.e., the fitness
value of the rule in the GP proposed in Gil-Gala et al. (2019).

Crossover. Given two parent chromosomes and assuming that their 𝑘
elements are sorted in each chromosome as they are in 𝑆, a random
binary string of length 𝑘 is generated, taking each bit uniformly in
{0, 1}. Then, one offspring is generated, taking the elements of the
first parent in the positions where the binary string has 0s and the
elements of the second parent in the positions where the string has
1s; analogously, a second offspring is generated, swapping the roles of
0s and 1s. In this way, the offspring has the same chance to inherit
characteristics from both parents.

Mutation. This operator has an important role as it is in charge of
including new instances from the set 𝑆 in the chromosomes, namely,
the new genetic material in the population. The mutation operator we
use here changes a number of instances, between 1 and 𝑘∕2, of the
chromosome by new instances chosen uniformly from 𝑆.

Evaluation. The fitness value of the chromosome is the 𝜏𝑏 value cal-
culated by Eq. (2) between two arrays 𝑋 and 𝑌 , which in turn are
calculated by Eq. (1). In this case, 𝑋 and 𝑌 represent the performances
of the rules on the sets of instances 𝑅 and 𝐹 , respectively.

volutionary scheme. We use a generational GA with a random selec-
ion of parents, conventional mating and mutation, and replacement by
ournament among every two mated parents and their two offspring,
hich confers the GA an implicit form of elitism, and which was

nitially proposed in Vela et al. (2010). A similar evolutionary scheme
s summarised in Algorithm 2, however, GA does not use a local search
lgorithm as another operator. Additionally, it does not always enforce
o include one of the offspring; thus, both parents could pass to the next

opulation if both offsprings are worse than them.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

p
a
f
i
o

∑

a
j
p
a
c
t
t
u
m
t
t

i
r
1

4. Using filters for surrogate evaluation in Genetic Programming

As a first approximation, we have used the Surrogate Model (SM)
based on the use of filters in combination with the GP devised in Gil-
Gala et al. (2019) to evolve priority rules for the (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖)
roblem. The resulting algorithm is termed SM-GP. To assess the vi-
bility of this approach, we start considering the following setting:
irst, a filter is calculated in a preprocessing step, and then this filter
s exploited along the evolution of GP to evaluate chromosomes. To
btain the filter, we start from a set of instances 𝑅 = {𝑅1,… , 𝑅𝑟}

of current interest, another set of smaller instances 𝑆 = {𝑆1,… , 𝑆𝑠},
a set of rules 𝛥 = {𝛥1,… , 𝛥𝑛} gathered, for example, from previous
executions of the GP, and a parameter 𝑘 > 0. We also assume that the
performance of these rules on the instances in 𝑅 and 𝑆 is known. From
these data, a filter 𝐹 = {𝑆[1],… , 𝑆[𝑘′]}, 𝑘′ ≤ 𝑘 is calculated.

In some preliminary experiments discussed in Gil-Gala et al.
(2021b), the filters were exploited for surrogate evaluation in
accordance with one of the following three strategies:

• 𝑆1. The whole evolution process is guided by surrogate evalua-
tion. So, the evaluation of every chromosome, namely expression
tree representing a priority rule, is performed by SM. In other
words, the fitness of a candidate rule is assigned from the tar-
diness values produced by the rule on the instances of the filter
𝐹 . In this setting, only the best individual in each generation will
be fully evaluated on the training set to visualise the evolution of
the algorithm and establish the final solution.

• 𝑆2. The same as 𝑆1, but with a different mating strategy: each
pair of selected chromosomes are mated a number of times to
produce a set of 𝑁 feasible new candidates, which SM evaluates.
Then, the candidate with the best estimation is selected to make a
tournament among the two parents and another child generated
in the same way.

• 𝑆3. Similar to 𝑆2, but the selected chromosome is fully evaluated
on the set 𝑅. So, only in this case, the evolution is guided by
actual evaluation.

Since 𝑆1 and 𝑆2 generate a number of 𝑁 candidate rules, it is likely
that one of them may be syntactically identical to one of its parents
or at least semantically equivalent. For this reason, when a candidate
rule solves the instances of 𝐹 producing the same tardiness as one of its
parents, we opted to select the next best candidate rule in solving the
instances of 𝐹 . The experiments carried out in Gil-Gala et al. (2021b)
indicate that only 𝑆3 is able to achieve better results than GP.

In the present study, we consider a number of previous approaches
for the purpose of comparison, specifically:

1. GP, which is based on the framework proposed by Koza (1992).
Still, it is delimited to the search space of dimensionally aware
rules (Keijzer & Babovic, 1999) and using an alternative evo-
lutionary scheme (Vela et al., 2010), which is based on a se-
lection between each pair of parents and their offspring. Clas-
sical genetic operators (the punctual mutation and one-point
crossover) are adapted only to generate dimensionally compliant
expressions. More details are provided in Gil-Gala et al. (2019).

2. MGP, which combines GP with LSA as done in Algorithm 2. In
this approach, all the neighbouring rules are fully evaluated;
in this way, MGP spends most of the time doing local search,
so it hardly evolves for a few generations. More details of this
algorithm are provided in Gil-Gala et al. (2021c).

3. MGP-N, an extension of MGP with a limit of 𝑁 neighbouring
solutions, is termed MGPl in Gil-Gala et al. (2021c). This allows
MGP-N to evolve for a larger number of generations than MGP,
taking both at the same time. The exhaustive experimental anal-
ysis reported in Gil-Gala et al. (2021c) showed that about 50 to
200 neighbours (without statistical difference in this range) are
good values of 𝑁 to balance the execution time between LSA
and the other genetic operators.
6

c

4. SM-N-GP, which is an extension of GP that uses a crossover
operator implementing the strategy 𝑆3, as in Gil-Gala et al.
(2021b).

And we are considering the following new proposals:

5. MGP-SM-N, which is as MGP-N, but the 𝑁 neighbours are se-
lected exploiting the SM estimated fitness.

6. SM-N-MGP-N is combined with LSA considering only 𝑁 neigh-
bours chosen at random.

7. SM-N-MGP-SM-N, which enhances the above with a heuristic
selection of the 𝑁 neighbours by SM.

Furthermore, the last four strategies will be considered taking ran-
dom filters (R) or filters calculated by GA (see Section 3.1.1). So, we
have 11 variants in all.

Fig. 2 illustrates a flowchart outlining the main phases of the
proposed GP framework. Initially, a population of rules is randomly
generated using the Ramped Half-n-Half method introduced by Koza
(1992). Next, the population is randomly organised, and two parents
are selected. These parents can either undergo the crossover operator,
resulting in two offspring, or they can be cloned to create two new
individuals. During the crossover operator, the surrogate evaluation can
be invoked to generate a set of 𝑁 individuals, from which the one
with the highest estimated fitness in the surrogate model is selected.
Following that, the mutation operator may be applied to the two new
individuals, after which they are evaluated. After that, the local search
operator can be used further to improve the two new individuals in the
next step. In the local search operator, the surrogate evaluation can
be invoked again to discard unpromising neighbouring solutions, and
only the top 𝑁 individuals are fully evaluated. Finally, a tournament
selection is performed using the resulting two individuals and the two
parents. The best new individual automatically becomes part of the new
population, while the second one is determined by comparing the other
new individual with the two parents. This entire process is repeated
until the new population is created and the stopping condition is met.

5. Experimental design

In this study, we aim to analyse the performance of GA in solving
the OFSP and then to study how the calculated filters may improve
the performance of the proposed GP variants. All the algorithms were
implemented in Java 8, and the target machine was a Linux cluster
(Intel Xeon 2.26 GHz. 128 GB RAM) that is able to perform up to
28 executions in parallel. To ensure statistical significance, a number
of independent runs were performed for each algorithm and instance
considered and when required, the Kruskal–Wallis test was used with
the post-hoc Dunn test to assess statistically significant differences in
the results.

5.1. The benchmark set

We consider the training and test sets of instances of the (1, 𝐶𝑎𝑝(𝑡)∥
𝑇𝑖) problem proposed in Gil-Gala et al. (2020b), which include 50

nd 1000 instances, respectively. These are large instances with 60
obs each and a maximum machine capacity of 10 jobs. The generation
rocedure is described in Gil-Gala et al. (2020b). We also consider
nother set of 1000 small instances (10 jobs and maximum machine
apacity of 3) generated by the same procedure. The training set plays
he role of the set 𝑅 in the OFSP, while the small instances give
he set 𝑆. The test set is only used to evaluate the rules evolved on
nseen instances to assess if they are over-fitted to the training set. The
aximum size of the filters is taken as 𝑘 = 5; in this way, we observed

hat the ratio between the time taken to evaluate a candidate rule on
he set 𝑅 and a filter is about 60∕1.

The set of rules 𝛥 is composed of 600 rules with different character-
stics (100 for each group), as described in Table 2. We consider random
ules (R) and the best rules evolved by Genetic Programming (GP) in
00 runs. In both cases, rules with a maximum depth of 4, 6 and 8 are

onsidered.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.
Fig. 2. Flowchart of the proposed GP framework.
Table 2
Characteristics of the 600 rules in the set 𝛥: generation method,
maximum depth and average performance (tardiness values) on the
training and test sets.

gen. Method max. Depth Training Test

R
4 6859.43 6828.84
6 6375.84 6340.91
8 5448.26 5395.74

GP
4 1755.07 1732.57
6 1679.36 1646.11
8 1671.72 1630.91

5.2. GP and GA parameters

In this study, the parameters of GP and GA were set to the values
reported in Table 3. These are in fact, rather conventional values, taken
from some previous experiments reported in Gil-Gala et al. (2021b,
2021c). The short length of the chromosomes in GA is due to the
maximum size of the filters being 𝑘 = 5. But this fact does not make
the problem easy, as there can be 10005 different chromosomes (given
7

Table 3
Parameters values for GA and GP.

Parameter GA GP

Population size 500 200
Crossover rate 0.8 1.0
Mutation rate 0.2 0.02
Chromosome length 5 2 − 1
Stopping condition 500 gen. 1 h

that we consider 1000 small instances in the set 𝑆), so the search
space is very large. As the length of the chromosomes in GP is 2 − 1,
the maximum depth of the expression trees is , which is tested for
values 4, 6 and 8. A time limit gives the stopping condition, instead
of a number of generations to obtain comparable results, that was
established in 1 h per run. Besides, GP uses the same filter in each
run, which is chosen randomly from the 30 filters calculated by GA
in 30 independent runs. Apart from comparing the different versions
of GP, we also performed some preliminary experiments, in which SM-
GP is considered with the three strategies, 𝑆1, 𝑆2 and 𝑆3, described in
Section 4.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

p
w

Table 4
Fitness values of random filters and filters generated by GA. 30
filters were considered in each case with 𝑘 = 5.

Best Avg. Worst SD

R 0.7862 0.7037 0.5884 0.0502
GA 0.8839 0.8834 0.8828 0.0004

Table 5
Results from GP and SM-GP with different 𝐹 and 𝑁 new feasible candidate solutions
roduced by the crossover operator. For each, 28 independent runs were performed
ith a time limit of 1 h. 𝐵𝑒𝑠𝑡𝑇 is the result of the best in training on the test.
Method 𝑁 𝐹 Training Test

Best Avg SD Best 𝐵𝑒𝑠𝑡𝑇 Avg SD Size

GP 1617.22 1692.27 50.17 1637.63 1642.55 1722.18 52.17 42.30

𝑆1 1 R 1736.84 1840.21 55.61 1758.79 1758.79 1866.21 58.96 22.10
GA 1625.92 1732.13 78.14 1642.48 1642.48 1746.16 79.98 24.60

𝑆2

10 R 1649.48 1771.16 85.15 1656.13 1656.13 1789.65 93.18 22.60
GA 1621.22 1726.08 98.91 1638.33 1641.28 1759.11 103.12 21.80

50 R 1643.76 1714.86 53.94 1661.93 1668.90 1730.10 58.91 21.80
GA 1633.50 1660.61 21.63 1642.01 1662.30 1675.93 19.17 20.50

200 R 1643.76 1729.49 71.78 1661.45 1668.90 1742.81 72.23 16.20
GA 1648.08 1668.38 44.96 1641.43 1659.04 1678.94 42.05 16.60

500 R 1712.68 1777.63 56.16 1728.72 1728.72 1787.44 49.92 20.60
GA 1697.14 1792.12 62.04 1700.51 1700.51 1786.74 65.18 23.00

𝑆3

10 R 1611.60 1624.16 11.98 1637.96 1643.02 1652.97 14.99 31.96
GA 1600.13 1620.05 23.47 1640.06 1640.06 1652.68 21.17 37.90

50 R 1618.62 1639.04 24.32 1637.01 1637.01 1660.58 28.11 21.40
GA 1610.87 1617.64 4.13 1637.74 1645.37 1643.98 4.67 31.40

200 R 1649.13 1698.12 26.10 1670.29 1670.29 1722.13 25.98 22.00
GA 1641.66 1672.87 22.12 1672.98 1674.13 1698.10 24.96 15.10

500 R 1753.46 1804.19 33.54 1763.16 1772.19 1811.31 38.20 26.10
GA 1658.17 1788.87 67.29 1673.51 1674.68 1798.13 71.58 22.20

Fig. 3. Evolution of the average and best solution averaged for 30 independent runs
of GA.

6. Analysis of the results

In this section, we first analyse the results achieved by GA and
then the performance of the GP variants executed under the conditions
above.

6.1. Results of GA on the OFSP

Table 4 shows the best, average, worst and standard deviation
(SD) of the fitness of the solutions, i.e. filters, reached by GA over 30
independent runs, together with the values obtained from a set of 30
random filters, which represent a baseline for comparison with GA.1

1 Remember that the fitness values in GA range in the interval [−1,1].
8

Fig. 4. Box-plots for each maximum depth tested (4, 6 and 8) with the 11 proposed
GP variants solving the test set. They are sorted by their position on the Rank Mean
for the results obtained by the Kruskal–Wallis Test. The number on the top of each
box-plot is the 𝑝-value produced by the Kruskal–Wallis test.

Fig. 3 shows the evolution of the best and average fitness values
averaged for the 30 runs. We can observe that random filters produce
a large fitness (about 0.7 on average), showing that the performance
of the rules in 𝛥 on the instances of even a random filter offers a
high correlation with the performance of the rules on the training set.
However, the filters evolved by GA show better fitness values, and they
are much more stable, as indicated by the SD values. We conjecture that
so low SD values may be due to the fact that the solutions are close to
the optimal ones. At the same time, we can observe a good convergence
pattern showing a low improvement after the first 50 generations. The
most time-consuming part is solving the 𝑅 and 𝑆 instances sets with
all rules in 𝛥. When it is done, the execution of GA is negligible (just
needs some seconds), in contrast with GP, which needs a large number
of minutes, in some cases even though hours (Durasević et al., 2016;

Gil-Gala et al., 2019; Nguyen et al., 2019), to calculate the rules.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

6

w
𝑆
o

Fig. 5. Evolution of the best rule (averaged from 28 runs) on the test set over time (0–60 min) using a filter calculated by the Genetic Algorithm (GA) or randomly generated
(R) in the search space defined by the values of (4, 6 and 8).
.2. Analysis of the SM strategies 𝑆1, 𝑆2 and 𝑆3

To assess the viability of the proposed surrogate evaluation model,
e conducted experiments with SM-GP exploiting each of the strategies
1, 𝑆2 and 𝑆3. We considered a time limit of 60 min, different values
f 𝑁 in 𝑆2 and 𝑆3 (10, 50, 200 and 500) and rules with depth =8.

The SM model was applied with a random filter (R) and with a filter
calculated by GA (in this case, one of the 30 filters evolved by GA was
chosen at random). For each combination, 28 independent runs were
performed.

The results are summarised in Table 5. From these results, we may
draw the following conclusions:

• In every case, a filter evolved by GA performs better than a
random one.

• The only combinations that are able to outperform GP are 𝑆2 and
𝑆 , with 𝑁 taking the values 50 and 200. For larger values of 𝑁 ,
9

3

i.e. 500, SM-GP only completes a small number of generations in
the given time, and so it is unable to converge to good solutions.
On the other side, choosing the best estimated of just 10 offspring
does not produce enough selective pressure for a proper conver-
gence, in particular when using 𝑆2, which relies on surrogate
evaluation only.

• 𝑆3 is better than 𝑆2, which is reasonable due to the exact eval-
uation of the best estimated offspring. It seems clear that SM-GP
exploiting 𝑆3 with a filter evolved by GA and 𝑁 = 50 is the best
one of the evaluated options.

6.3. Results of the GP variants

This section reports the results achieved by the 11 variants of
GP described in Section 4. The stopping condition was established in
60 min, and the maximum depth was set to the values 4, 6 and 8.
Each experiment was performed considering both a random filter (R)

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

f
t
w
e
t
h
v
a
o
t
t
i
a
s
e

7

t
w
b
w
s
r
t

7

o
a
c
r
f
i
c
o

7

s
a
a
l
n
e
s

Table 6
Adjusted p-values for N ×1 comparisons of test control algorithm, for different values
of (4, 6 and 8), with the Bonferroni algorithm for the Dunn‘s post-hoc test on
test executions. Cells with ‘‘✓’’ express that there are significant statistical differences,
empty cells mean that there are not.

Algorithm Bonferroni adjusted

𝐷 = 4 𝐷 = 6 𝐷 = 8
MGP-SM-N-R MGP-SM-N-GA SM-N-MGP-SM-N-GA

GP ✓ ✓ ✓

MGP ✓ ✓

MGP-N ✓ ✓ ✓

SM-N-GP-R ✓ ✓

SM-N-GP-GA ✓

MGP-SM-N-R –
MGP-SM-N-GA –
SM-N-MGP-N-R ✓ ✓

SM-N-MGP-N-GA
SM-N-MGP-SM-N-R ✓

SM-N-MGP-SM-N-GA –

and a filter evolved by the genetic algorithm (GA). When appropriate,
𝑁=50 for both the number of neighbours and the number of chromo-
somes generated by the crossover operator. For each configuration, 28
independent runs were performed, and the best rule from each run was
registered.

The results are summarised in Fig. 4, which shows the box-plots
produced by the 28 rules on the test set for each value of . In each
igure, the methods are sorted from left to right in accordance with
he ranking established by the Kruskal–Wallis test. At a first glance,
e may observe that the methods that combine the surrogate and
xact evaluation of some chromosomes are the best ones. To assess
he statistical differences between the methods, we performed a post-
oc analysis using the Dunn test with Bonferroni correction for each
alue of with the best algorithm in the ranking as the test control
lgorithm. The result of this analysis is shown in Table 6, where we can
bserve that, in general, there are no significant differences between
he methods that exploit the surrogate model for neighbouring estima-
ion and offspring selection. In particular, none of the analysed methods
s statistically better than SM-N-MGP-SM-N-GA, which combines all the
bove options. So, the results confirm the usefulness of the proposed
urrogate model to improve the performance of a genetic program in
volving scheduling rules.

. Further analyses

In order to gain a better understanding of the differences among
he proposed GP variants, a time-based analysis of algorithm evolution
as conducted. At intervals of 1 min, ranging from 0 to 60 min, the
est-performing rule in the training set from the current population
as recorded. Subsequently, these rules were evaluated on the test

et. Furthermore, a tuning parameter analysis was carried out, and the
untime required for applying the surrogate model (SM) was compared
o that of the full fitness evaluation.

.1. Evolution with random and GA filters

Fig. 5 shows the convergence patterns averaged for the three values
f (4, 6 and 8) over the time points 0 to 60 min, for each algorithm
nd value of , with both random (R) and GA filters. In general, we
an observe similar convergence patterns. However, the final values
eached using GA filters are always better than those achieved using R
ilters. Besides, in most cases, the convergence produced by GA filters
s faster than that produced by R filters without causing premature
onvergence. These results confirm a slight superiority of GA filters
ver random ones.
10

t

Fig. 6. Convergence patterns of all versions of GP, with GA filters, averaged for each
value of .

.2. Evolution of GP variants

Fig. 6 shows the convergence patterns of all versions of GP (re-
tricted to those with GA filters when they are used in any way)
veraged for each value of (4, 6 and 8). We can observe that GP
lone is the worst method in all three cases. The methods that exploit
ocal search without neighbouring estimation outperform GP. And fi-
ally, the methods exploiting surrogate evaluation and neighbouring
stimation are those that perform the best. All of them reach rather
imilar average results at the end but show significant differences over
he first half of the time limit.

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

7

S

a
t
s
M
s
d

7

f
s
t
f

7

i
o
p
a

Fig. 7. Results obtained by GP, MGP and MGP-SM-N on the test set using different values of population size (200 or 1000), crossover ratio (1.0 and 0.7) and mutation ratio (0.02
and 0.3).
Fig. 8. Comparison of time in microseconds required to solve the filter and training sets using 10 000 priority rules with varying numbers of symbols.
.3. Parameter tuning analysis

Fig. 7 showcases the results obtained from GP, MGP, and MGP-
M-N on the test set. The experiments were conducted with a fixed
=4, and variations were made in the population size, mutation ratio,
nd crossover ratio. The results reveal that while there are varia-
ions in performance based on different parameter values, the ob-
erved differences do not attain statistical significance. Additionally,
GP-SM-N emerges as the standout approach, consistently demon-

trating improved performance and generating solutions with reduced
ispersion.

.4. Run-time analysis

The run-time (in microseconds) required by 10 000 rules with dif-
erent sizes (number of symbols) when solving the filter and training
ets is shown in Fig. 8. Notably, the computation time needed to solve
he filter set is approximately 25 times shorter than that required for
ull evaluation.

.5. Discussion

The above results highlight the effectiveness of the local search
n MGP for achieving superior performance compared to GP, which
nly uses the crossover and mutation operators for search space ex-
loration. Moreover, the introduction of surrogate evaluation, aimed
t eliminating the worst neighbouring solutions, enables MGP-SM-N to
11
converge faster than MGP while maintaining the quality of the solutions
obtained. When considering the other two variants that incorporate
surrogate evaluation, namely SM-N-MGP-N and SM-N-MGP-SM-N, it
becomes evident that combining all the aforementioned options does
not yield any advantages. Furthermore, the effectiveness of surrogate
evaluation is more pronounced in the local search operator than the
crossover operator, as demonstrated by the superior results obtained by
MGP-SM-N compared to SM-N-GP and SM-N-MGP-N. In relation to the
filter employed, it was observed that the use of filters evolved through
GA results in faster convergence of MGP-SM-N in comparison to ran-
dom filters. However, there are no statistically significant differences
in the final outcomes.

To sum up, the integration of filters into GP can significantly
enhance its efficiency. This approach involves discarding the least
promising individuals during surrogate evaluation and prioritising the
evaluation of the most potential candidates. By utilising a surrogate
model, the time required to estimate fitness is drastically reduced,
approximately 25 times faster than real fitness estimation. As a result,
a considerable amount of computational time is allocated to evaluating
the most promising solutions, leading to improved convergence of the
algorithm while maintaining solution quality.

8. Conclusions and future work

We have seen that the proposed surrogate model (SM) based on
small subsets of simple instances, which are called filters herein, may be
effective to evolve scheduling priority rules via Genetic Programming

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.
(GP). The key point is to come up with a filter so that the performance
of the candidate rules on the filter resembles their performance on the
actual training set, which commonly contains a (much) larger number
of (much) larger instances of the problem.

The problem of calculating the best filter was formulated as a vari-
ant of the optimal subset problem and solved by a Genetic Algorithm
(GA), which requires the availability of a pool of candidate instances for
the filters and a pool of rules previously evaluated on these instances
and on the test set. However, the method could be applied in settings
where the pool of rules is not previously available. For example, the
filters could be evolved by GA in coevolution with GP so that the pool of
rules in each generation of GA may be taken from the rules previously
evaluated by GP on the training set and the candidate instances for the
filters. Besides, these instances may be obtained as simplifications of
those in the training set.

Another key point is how to exploit the filters as a surrogate model
in GP. In this regard, the best of the strategies we studied consists in
using the filter to select the best among a series of offspring and then
evaluate only the selected ones on the training set, and select the most
promising neighbours generated with a local search algorithm, which
was integrated into GP. The resulting algorithm clearly outperforms GP
in evolving priority rules for the one machine scheduling problem with
variable capacity, denoted (1, 𝐶𝑎𝑝(𝑡)∥

∑

𝑇𝑖).
This work leaves open some interesting lines of research, in partic-

ular, how to obtain simplified instances of the (1, 𝐶𝑎𝑝(𝑡)∥
∑

𝑇𝑖) problem
bearing resemblance with the training set or, more generally, how to
apply the proposed method to other scheduling problems (Zhou et al.,
2022, 2021).

CRediT authorship contribution statement

Francisco J. Gil-Gala: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Visualization. María R. Sierra: Visualiza-
tion, Validation, Data curation, Software. Carlos Mencía: Conceptu-
alization, Writing – review & editing. Ramiro Varela: Conceptualiza-
tion, Investigation, Analysis, Methodology, Writing – review & editing,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research has been supported by the Spanish State Agency for
Research (AEI) under research project PID2019-106263RB-I00.

References

Agresti, A. (2010). Statistical methods and applications, Analysis of ordinal categorical data.
New York: John Wiley & Sons.

Bhattacharya, M. (2008). Reduced computation for evolutionary optimization in noisy
environment. In GECCO’08: Proceedings of the 10th annual conference on genetic
and evolutionary computation 2008 (pp. 2117–2122). http://dx.doi.org/10.1145/
1388969.1389033.

Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2015). Hyper-heuristic evolution of
dispatching rules: A comparison of rule representations. Evolutionary Computation,
23, 249–277. http://dx.doi.org/10.1162/EVCO-a-00131.

Branke, J., & Schmidt, C. (2005). Faster convergence by means of fitness estimation.
Soft Computing, 9, 13–20. http://dx.doi.org/10.1007/s00500-003-0329-4.
12
Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Woodward, J. R.
(2019). A classification of hyper-heuristic approaches: Revisited. In Handbook of
metaheuristics (pp. 453–477). Springer International Publishing Volume 272 of
International Series in Operations Research & Management Science, http://dx.doi.
org/10.1007/978-3-319-91086-4_14.

Burke, E. K., Hyde, M. R., Kendall, G., & Woodward, J. (2012). Automating the packing
heuristic design process with genetic programming. Evolutionary Computation, 20,
63–89. http://dx.doi.org/10.1162/EVCO_a_00044.

Chand, S., Huynh, Q., Singh, H., Ray, T., & Wagner, M. (2018). On the use of genetic
programming to evolve priority rules for resource constrained project scheduling
problems. Information Sciences, 432, 146–163. http://dx.doi.org/10.1016/j.ins.2017.
12.013.

Colwell, D. J., & Gillett, J. R. (1982). Spearman versus kendall. The Mathematical
Gazette, 66, 307–309. http://dx.doi.org/10.2307/3615525.

Croux, C., & Dehon, C. (2010). Influence functions of the spearman and kendall
correlation measures. Statistical Methods & Applications, 19, 497–515.

Dimopoulos, C., & Zalzala, A. (2001). Investigating the use of genetic programming
for a classic one-machine scheduling problem. Advances in Engineering Software, 32,
489–498. http://dx.doi.org/10.1016/S0965-9978(00)00109-5.

Duflo, G., Kieffer, E., Brust, M. R., Danoy, G., & Bouvry, P. (2019). A gp hyper-heuristic
approach for generating tsp heuristics. In IPDPSW’19: IEEE international parallel
and distributed processing symposium workshops (pp. 521–529). http://dx.doi.org/10.
1109/IPDPSW.2019.00094.

Dumić, M., Šišejkovic, D., Čorić, R., & Jakobović, D. (2018). Evolving priority rules for
resource constrained project scheduling problem with genetic programming. Future
Generation Computer Systems, 86, 211–221. http://dx.doi.org/10.1016/j.future.2018.
04.029.

Durasević, M., & Jakobović, D. (2018). Evolving dispatching rules for optimising many-
objective criteria in the unrelated machines environment. Genetic Programming and
Evolvable Machines, 19, 9–51. http://dx.doi.org/10.1007/s10710-017-9310-3.

Durasević, M., & Jakobović, D. (2020). Automatic design of dispatching rules for
static scheduling conditions. Neural Computing and Applications, http://dx.doi.org/
10.1007/s00521-020-05292-w.

Durasević, M., Jakobović, D., & Knežević, K. (2016). Adaptive scheduling on unrelated
machines with genetic programming. Applied Soft Computing, 48, 419–430. http:
//dx.doi.org/10.1016/j.asoc.2016.07.025.

Gil-Gala, F. J., Durasević, M., & Jakobović, D. (2022a). Genetic programming for
electric vehicle routing problem with soft time windows. In Proceedings of the genetic
and evolutionary computation conference companion GECCO ’22 (pp. 542–545). New
York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/
3520304.3528994.

Gil-Gala, F. J., Durasević, M., Sierra, M. R., & Varela, R. (2022b). Building heuristics
and ensembles for the travel salesman problem. In J. M. Ferrández Vicente, J.
R. Álvarez-Sánchez, F. de la Paz López, & H. Adeli (Eds.), Bio-inspired systems
and applications: From robotics to ambient intelligence (pp. 130–139). Cham: Springer
International Publishing..

Gil-Gala, F. J., Mencía, C., Sierra, M. R., & Varela, R. (2019). Evolving priority rules for
on-line scheduling of jobs on a single machine with variable capacity over time.
Applied Soft Computing, 85, Article 105782. http://dx.doi.org/10.1016/j.asoc.2019.
105782.

Gil-Gala, F. J., Mencía, C., Sierra, M. R., & Varela, R. (2020a). Exhaustive search of
priority rules for on-line scheduling. In Proceedings of the 2020 conference on ECAI
2020: 24th European conference on artificial intelligence. http://dx.doi.org/10.3233/
FAIA200365.

Gil-Gala, F. J., Mencía, C., Sierra, M. R., & Varela, R. (2021a). Learning ensembles of
priority rules for on-line scheduling by hybrid evolutionary algorithm. Integrated
Computer-Aided Engineering, 28, 65–80. http://dx.doi.org/10.3233/ICA-200634.

Gil-Gala, F. J., Sierra, M. R., Mencía, C., & Varela, R. (2020b). Combining hyper-
heuristics to evolve ensembles of priority rules for on-line scheduling. Natural
Computing, http://dx.doi.org/10.1007/s11047-020-09793-4.

Gil-Gala, F. J., Sierra, C., Mencía, María R., & Varela, R. (2021b). The optimal filtering
set problem with application to surrogate evaluation in genetic programming. In
GECCO’21: Proceedings of the 2021 on genetic and evolutionary computation conference.

Gil-Gala, F. J., Sierra, M. R., Mencía, C., & Varela, R. (2021c). Genetic programming
with local search to evolve priority rules for scheduling jobs on a machine with
time-varying capacity. Swarm and Evolutionary Computation.

Guo, W., Vanhoucke, M., Coelho, J., & Luo, J. (2021). Automatic detection of
the best performing priority rule for the resource-constrained project scheduling
problem. Expert Systems with Applications, 167, http://dx.doi.org/10.1016/j.eswa.
2020.114116.

Hamo, Y., & Markovitch, S. (2005). The compset algorithm for subset selection. In
IJCAI’05: Proceedings of the 19th international joint conference on artificial intelligence
(pp. 728–733).

He, C., Zhang, Y., Gong, D., & Ji, X. (2023). A review of surrogate-assisted evolutionary
algorithms for expensive optimization problems. Expert Systems with Applications,
217, http://dx.doi.org/10.1016/j.eswa.2022.119495.

Hernández-Arauzo, A., Puente, J., Varela, R., & Sedano, J. (2015). Electric vehicle
charging under power and balance constraints as dynamic scheduling. Computers
& Industrial Engineering, 85, 306–315. http://dx.doi.org/10.1016/j.cie.2015.04.002.

http://refhub.elsevier.com/S0957-4174(23)01418-5/sb1
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb1
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb1
http://dx.doi.org/10.1145/1388969.1389033
http://dx.doi.org/10.1145/1388969.1389033
http://dx.doi.org/10.1145/1388969.1389033
http://dx.doi.org/10.1162/EVCO-a-00131
http://dx.doi.org/10.1007/s00500-003-0329-4
http://dx.doi.org/10.1007/978-3-319-91086-4_14
http://dx.doi.org/10.1007/978-3-319-91086-4_14
http://dx.doi.org/10.1007/978-3-319-91086-4_14
http://dx.doi.org/10.1162/EVCO_a_00044
http://dx.doi.org/10.1016/j.ins.2017.12.013
http://dx.doi.org/10.1016/j.ins.2017.12.013
http://dx.doi.org/10.1016/j.ins.2017.12.013
http://dx.doi.org/10.2307/3615525
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb9
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb9
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb9
http://dx.doi.org/10.1016/S0965-9978(00)00109-5
http://dx.doi.org/10.1109/IPDPSW.2019.00094
http://dx.doi.org/10.1109/IPDPSW.2019.00094
http://dx.doi.org/10.1109/IPDPSW.2019.00094
http://dx.doi.org/10.1016/j.future.2018.04.029
http://dx.doi.org/10.1016/j.future.2018.04.029
http://dx.doi.org/10.1016/j.future.2018.04.029
http://dx.doi.org/10.1007/s10710-017-9310-3
http://dx.doi.org/10.1007/s00521-020-05292-w
http://dx.doi.org/10.1007/s00521-020-05292-w
http://dx.doi.org/10.1007/s00521-020-05292-w
http://dx.doi.org/10.1016/j.asoc.2016.07.025
http://dx.doi.org/10.1016/j.asoc.2016.07.025
http://dx.doi.org/10.1016/j.asoc.2016.07.025
http://dx.doi.org/10.1145/3520304.3528994
http://dx.doi.org/10.1145/3520304.3528994
http://dx.doi.org/10.1145/3520304.3528994
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb17
http://dx.doi.org/10.1016/j.asoc.2019.105782
http://dx.doi.org/10.1016/j.asoc.2019.105782
http://dx.doi.org/10.1016/j.asoc.2019.105782
http://dx.doi.org/10.3233/FAIA200365
http://dx.doi.org/10.3233/FAIA200365
http://dx.doi.org/10.3233/FAIA200365
http://dx.doi.org/10.3233/ICA-200634
http://dx.doi.org/10.1007/s11047-020-09793-4
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb22
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb22
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb22
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb22
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb22
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb23
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb23
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb23
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb23
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb23
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://dx.doi.org/10.1016/j.eswa.2020.114116
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb25
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb25
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb25
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb25
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb25
http://dx.doi.org/10.1016/j.eswa.2022.119495
http://dx.doi.org/10.1016/j.cie.2015.04.002

Expert Systems With Applications 233 (2023) 120916F.J. Gil-Gala et al.

K
K

M

N

P
S

S

Hildebrandt, T., & Branke, J. (2015). On using surrogates with genetic programming.
Evolutionary Computation, 23, 343–367. http://dx.doi.org/10.1162/EVCO_a_00133.

Hussein, R., & Deb, K. (2016). A generative kriging surrogate model for constrained
and unconstrained multi-objective optimization. In GECCO’16: Proceedings of the
genetic and evolutionary computation conference 2016 (pp. 573–580). http://dx.doi.
org/10.1145/2908812.2908866.

Jaklinović, K., Durasević, M., & Jakobović, D. (2021). Designing dispatching rules with
genetic programming for the unrelated machines environment with constraints.
Expert Systems with Applications, 172, Article 114548. http://dx.doi.org/10.1016/j.
eswa.2020.114548.

Jakobović, D., & Marasović, K. (2012). Evolving priority scheduling heuristics with
genetic programming. Applied Soft Computing, 12, 2781–2789. http://dx.doi.org/
10.1016/j.asoc.2012.03.065.

Keijzer, M., & Babovic, V. (1999). Dimensionally aware genetic programming. In
GECCO’99: Proceedings of the 1st annual conference on genetic and evolutionary
computation. Vol. 2 (pp. 1069–1076).

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30, 81–93.
http://dx.doi.org/10.1093/biomet/30.1-2.81.

endall, M. G. (1970). Rank correlation methods. London: Griffin.
oulamas, C. (1994). The total tardiness problem: Review and extensions. Operations
Research, 42, 1025–1041. http://dx.doi.org/10.1287/opre.42.6.1025.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of
natural selection. MIT Press.

Kromer, P., Platos, J., Nowakova, J., & Snasel, V. (2018). Optimal column subset
selection for image classification by genetic algorithms. Annals of Operations
Research, 265, 205–222.

Lin, J., Zhu, L., & Gao, K. (2020). A genetic programming hyper-heuristic approach
for the multi-skill resource constrained project scheduling problem. Expert Systems
with Applications, 140, http://dx.doi.org/10.1016/j.eswa.2019.112915.

Luo, Jingyu, Vanhoucke, Mario, Fernandes da Silva Coelho, José, & Guo, Weikang
(2022). An efficient genetic programming approach to design priority rules for
resource-constrained project scheduling problem. Expert Systems with Applications,
198, 20.

acLachlan, J., Mei, Y., Branke, J., & Zhang, M., Vehicle Collaboration (2020). Genetic
programming hyper-heuristics with for uncertain capacitated arc routing problems.
Evolutionary Computation, 28, 563–593.

Mencía, C., Sierra, M. R., Mencía, R., & Varela, R. (2019). Evolutionary one-machine
scheduling in the context of electric vehicles charging. Integrated Computer-Aided
Engineering, 26, 1–15. http://dx.doi.org/10.3233/ICA-180582.

Nguyen, S., Mei, Y., Xue, B., & Zhang, M. (2019). A hybrid genetic programming
algorithm for automated design of dispatching rules. Evolutionary Computation, 27,
467–496. http://dx.doi.org/10.1162/evco_a_00230.
13
guyen, S., Zhang, M., & Tan, K. C. (2017). Surrogate-assisted genetic programming
with simplified models for automated design of dispatching rules. IEEE Transactions
on Cybernetics, 47, 2951–2965. http://dx.doi.org/10.1109/TCYB.2016.2562674.

oli, R., Langdon, W. B., & McPhee, N. F. (2008). A field guide to genetic programming.
els, V., Gheysen, N., & Vanhoucke, M. (2012). A comparison of priority rules for

the job shop scheduling problem under different flow time- and tardiness-related
objective functions. International Journal of Production Research, 50, 4255–4270.
http://dx.doi.org/10.1080/00207543.2011.611539.

pearman, C. (1904). The proof and measurement of association between two things.
American Journal of Psychology, 15, 72–101. http://dx.doi.org/10.2307/1412159.

Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers & Industrial
Engineering, 54, 453–473. http://dx.doi.org/10.1016/j.cie.2007.08.008.

Vela, C. R., Varela, R., & González, M. A. (2010). Local search and genetic algorithm
for the job shop scheduling problem with sequence dependent setup times. Journal
of Heuristics, 16, 139–165. http://dx.doi.org/10.1007/s10732-008-9094-y.

Wang, S., Mei, Y., Zhang, M., & Yao, X. (2021). Genetic programming with niching
for uncertain capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation, 1. http://dx.doi.org/10.1109/TEVC.2021.3095261.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1, 67–82. http://dx.doi.org/10.1109/
4235.585893.

Zeiträg, Y., Figueira, J. R., Horta, N., & Neves, R. (2022). Surrogate-assisted automatic
evolving of dispatching rules for multi-objective dynamic job shop scheduling using
genetic programming. Expert Systems with Applications, 209. http://dx.doi.org/10.
1016/j.eswa.2022.118194.

Zhang, F., Mei, Y., Nguyen, S., Tan, K. C., & Zhang, M. (2022). Instance rotation
based surrogate in genetic programming with brood recombination for dynamic
job shop scheduling. IEEE Transactions on Evolutionary Computation, http://dx.doi.
org/10.1109/TEVC.2022.3180693.

Zhou, S., Jin, M., Liu, C., Zheng, X., & Chen, H. (2022). Scheduling a single batch
processing machine with non-identical two-dimensional job sizes. Expert Systems
with Applications, 201, http://dx.doi.org/10.1016/j.eswa.2022.116907.

Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., & Lum, K. Y. (2007). Combining
global and local surrogate models to accelerate evolutionary optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37,
66–76. http://dx.doi.org/10.1109/TSMCC.2005.855506.

Zhou, S., Xing, L., Zheng, X., Du, N., Wang, L., & Zhang, Q. (2021). A self-adaptive
differential evolution algorithm for scheduling a single batch-processing machine
with arbitrary job sizes and release times. IEEE Transactions on Cybernetics, 51,
1430–1442. http://dx.doi.org/10.1109/TCYB.2019.2939219.

http://dx.doi.org/10.1162/EVCO_a_00133
http://dx.doi.org/10.1145/2908812.2908866
http://dx.doi.org/10.1145/2908812.2908866
http://dx.doi.org/10.1145/2908812.2908866
http://dx.doi.org/10.1016/j.eswa.2020.114548
http://dx.doi.org/10.1016/j.eswa.2020.114548
http://dx.doi.org/10.1016/j.eswa.2020.114548
http://dx.doi.org/10.1016/j.asoc.2012.03.065
http://dx.doi.org/10.1016/j.asoc.2012.03.065
http://dx.doi.org/10.1016/j.asoc.2012.03.065
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb32
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb32
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb32
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb32
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb32
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb34
http://dx.doi.org/10.1287/opre.42.6.1025
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb36
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb36
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb36
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb37
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb37
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb37
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb37
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb37
http://dx.doi.org/10.1016/j.eswa.2019.112915
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb39
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb40
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb40
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb40
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb40
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb40
http://dx.doi.org/10.3233/ICA-180582
http://dx.doi.org/10.1162/evco_a_00230
http://dx.doi.org/10.1109/TCYB.2016.2562674
http://refhub.elsevier.com/S0957-4174(23)01418-5/sb44
http://dx.doi.org/10.1080/00207543.2011.611539
http://dx.doi.org/10.2307/1412159
http://dx.doi.org/10.1016/j.cie.2007.08.008
http://dx.doi.org/10.1007/s10732-008-9094-y
http://dx.doi.org/10.1109/TEVC.2021.3095261
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.eswa.2022.118194
http://dx.doi.org/10.1016/j.eswa.2022.118194
http://dx.doi.org/10.1016/j.eswa.2022.118194
http://dx.doi.org/10.1109/TEVC.2022.3180693
http://dx.doi.org/10.1109/TEVC.2022.3180693
http://dx.doi.org/10.1109/TEVC.2022.3180693
http://dx.doi.org/10.1016/j.eswa.2022.116907
http://dx.doi.org/10.1109/TSMCC.2005.855506
http://dx.doi.org/10.1109/TCYB.2019.2939219

	Surrogate model for memetic genetic programming with application to the one machine scheduling problem with time-varying capacity
	Introduction
	Background and previous results
	The (1,Cap (t) ∥ ∑Ti) problem
	Using priority rules for solving the (1,Cap (t) ∥ ∑Ti)
	Evolving scheduling priority rules
	The search space of rules

	Memetic Genetic Programming
	The learning model

	Surrogate evaluation
	The optimal filtering set problem
	The genetic algorithm for the OFSP

	Using filters for surrogate evaluation in Genetic Programming
	Experimental design
	The benchmark set
	GP and GA parameters

	Analysis of the results
	Results of GA on the OFSP
	Analysis of the SM strategies S1, S2 and S3
	Results of the GP variants

	Further Analyses
	Evolution with random and GA filters
	Evolution of GP variants
	Parameter tuning analysis
	Run-time analysis
	Discussion

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

