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A B S T R A C T   

At present, although spectral imaging is known to have a great potential to provide a massive amount of valuable 
information, the lack of reference methods remains as one of the bottlenecks to access the full capacity of this 
technique. This work aims to present a staining-based reference method with digital image treatment for spectral 
imaging, in order to propose a fast, efficient, contactless and non-invasive analytical method to predict the 
presence of biofilms. Spectral images of Pseudomonas aeruginosa biofilms formed on high density polyethylene 
coupons were acquired in visible and near infrared (vis-NIR) range between 400 and 1000 nm. Crystal violet 
staining served as a biofilm indicator, allowing the bacterial cells and the extracellular matrix to be marked on 
the coupon. Treated digital images of the stained biofilms were used as a reference. The size and pixels of the 
hyperspectral and digital images were scaled and matched to each other. Intensity color thresholds were used to 
differentiate the pixels associate to areas containing biofilms from those ones placed in biofilm-free areas. The 
model facultative Gram-negative bacterium, P. aeruginosa, which can form highly irregularly shaped and het-
erogeneous biofilm structures, was used to enhance the strength of the method, due to its inherent difficulties. 
The results showed that the areas with high and low intensities were modeled with good performance, but the 
moderate intensity areas (with potentially weak or nascent biofilms) were quite challenging. Image processing 
and artificial neural networks (ANN) methods were performed to overcome the issues resulted from biofilm 
heterogeneity, as well as to train the spectral data for biofilm predictions.   

1. Introduction 

Spectral imaging, also known as hyperspectral imaging (HSI), is a 
powerful technique that provides both spectral and spatial information 
[1,2]. The HIS-generated data can be analyzed using various chemo-
metric algorithms or machine learning methods [3,4]. This makes 
spectral imaging a promising choice for heterogeneous samples, as it 
allows the detection and identification of biological or chemical samples 
as well as specific compounds of interest [5–10]. 

The data characteristics in HSI analyses should lead to modifications 

of aspects related to a reference information, in order to be able to carry 
out the prediction models [5,11]. However, most reference methods are 
designed for average spectra of the entire sample and do not consider the 
spatial variations at the pixel level [5]. Staining is a common practice in 
histology and medical fields [12–22], microbiology [23–38], micro-
plastics [39], etc. It is used to mark and to identify the substances and 
units showing specific features on a given surface or object. An impor-
tant application of this technique, the crystal violet staining for biofilm 
visualization, was developed by Christensen et al. (1985) [40]. Crystal 
violet binds to negatively charged functional groups and molecules in a 
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given biofilm, therefore staining the whole biofilm components [41]. In 
fact, pixelwise information can be obtained by staining such samples 
and then processing them with the use of digital image treatment 
methods [42]. When the spectral images of the samples are acquired 
before staining, the previously referred challenge can be overcome by 
supplying the pixelwise reference information to the spectral 
information. 

In this sense, in the food industry, spectral imaging techniques can be 
used for the detection and monitoring of bacterial biofilms, which are 
organized communities of bacteria embedded in a protective complex, a 
self-produced extracellular polymeric substances matrix (EPS, exopoly-
saccharide; proteins, extracellular DNA) [43]. These biofilm bacteria 
potentially possess an increased resistance to drugs, disinfectants, and 
environmental factors, in comparison with free-living planktonic mi-
crobial cells [44–48] and cause various issues in food processing, such as 
contamination, spoilage, and reduced shelf life of products [49,50]. 
Also, in industrial facilities, conventional microbiology techniques are 
either not applicable or not effective to determine the presence of bio-
films. In addition to this, classically, the manufactured food products are 
tested for several microbiological criteria without prior information of 
the safety of the production line, and the results of these tests usually 
become available after several hours or days. This phenomenon causes 
irreversible damages associated to these food products, in different as-
pects such as economic and public health issues, as the effects of the 
presence of a given biofilm may take place during several days or weeks 
in a production line [51–54]. 

Regarding this, the application of spectroscopic methods is a prom-
ising alternative for rapid analysis, size scalability and its mode transfer 
capabilities (in-line, at-line) along the production process in a given 
factory. A key advantage of imaging techniques is that these can help to 
locate biofilms which are difficult to find in extensive production lines, 
containing several units or large equipment along the production line. 

In this work, spectral imaging is used as primary detection method, 
using crystal violet staining as a reference method for the detection of 
biofilms. We have acquired spectral images of biofilms formed on high- 
density polyethylene coupons (HDPE) in the visible and near-infrared 
(vis-NIR) range. Crystal violet staining was used as a biofilm indicator, 
and the treated digital images of stained biofilms were used as a refer-
ence. Image processing and artificial neural networks (ANN) methods 
have been used to overcome challenges caused by biofilm heterogeneity 
and to train the spectral data for biofilm predictions. 

P. aeruginosa, a model facultative Gram-negative bacterium and a 
priority pathogen, which forms irregular and heterogeneous biofilm 
structures, has been used here to assure the strength of the method 
[45–47,55,56]. The chemical composition at the different layers of this 
bacterium biofilms, and therefore the presence of different substances at 
different locations of the tested samples are known to be different 
because of its complex nitrogen and oxygen metabolism [57–59]. The 
aim of this research is to develop a fast, efficient, and non-invasive 
analytical method to predict the presence of bacterial biofilms. 

2. Materials and methods 

2.1. Preparation of biofilms on coupons 

The freeze dried P. aeruginosa CECT108 strain was reconstituted with 
tryptic soy broth (TSB, Oxoid, United Kingdom) medium in accordance 
with the guidelines from the provider (CECT, Valencia, Spain). Cells 
from overnight grown cultures were dissolved in fresh TSB, including 
20% glycerol (VWR, Belgium)) and stored at − 80 ◦C. Prior to use, these 
stock cryovials (VWR, Belgium) were thawed and used with a sterile 
loop to create a fresh culture on tryptic soy agar (TSA, Oxoid, United 
Kingdom) plates. The plates were incubated at 37 ◦C for 24 h and kept in 
a fridge at 4 ◦C. Isolated single colonies were taken from these plates to 
prepare the overnight cultures. 

Biofilms were formed on the horizontal midline of the high-density 

polyethylene (HDPE, 100mm × 50mm × 3 mm) coupons, just at the 
culture medium-air interphase (Plastiastur, Spain), growing irregularly 
also on their upwards sections. Each overnight Pseudomonas aeruginosa 
CECT108 culture in TSB (at 37 ◦C) was diluted to an absorbance of 0.5 at 
550 nm, using a UV–vis spectrophotometer (Biochrom Libra S60, 
Vidrafoc, Spain) and polystyrene cuvettes (VWR, Belgium). 1 ml of a 
1:100 dilution of the standardized bacterial inoculum was added into 
each individual beaker, which was half-filled with TSB culture medium, 
and then these suspensions were vortexed. Each sterilized coupon was 
placed in these suspension beakers. A total of 29 biofilm samples were 
prepared with this method, and they were incubated at 37 ◦C for 48 h, as 
a closed and static conditions system. The coupons contamination was 
tested with 7 control samples, each for a different beaker, prepared 
according to a similar procedure in which the bacterial inoculum was 
omitted. 

After incubation, the HDPE coupons were washed with sterile water 
for 1 min, and then let to air dry. The biofilms generated with the above 
mentioned shapes remained on the coupons after washing. 

2.2. Bacterial cultures 

For biofilms preparation, 1 ml of 1:106–1:108 dilutions of the stan-
dardized inoculum were cultured on tryptic soy agar plates (TSA, Oxoid, 
United Kingdom), in order to quantify the colony forming units (CFUs) 
in these inocula. These plates were incubated at 37 ◦C for 24 h. Different 
coupons replicates were used for CFUs measurement and for imaging- 
staining. 

After biofilms incubation, 4 randomly chosen biofilm coupons were 
washed with phosphate-buffered saline (PBS, VWR, Belgium) twice. In 
the case of the four biofilm samples to be cultivated for CFUs determi-
nation, 50 mg of cellulase (MP Biomedicals, USA) was added into 9 ml of 
PBS in a plastic bottle. The suspension was vortexed and left for half an 
hour at 37 ◦C to activate the enzyme, as described by Fleming et al. 
(2020) [60]. The biofilm on the coupon was then scraped by a sterilized 
steel razor blade (VWR, Belgium) carrying out 20 downwards strokes 
into the PBS-enzyme mixture; to recover the biofilm biomass. The final 
mixture was vortexed and serially diluted at 1:104–1:108 dilutions. 100 
μL of each dilution was cultured on cetrimide agar (Oxoid, United 
Kingdom) plates and then incubated at 37 ◦C for 24 h. 

2.3. Acquisition of spectral images 

The samples were subjected to HSI with a SPECIM FX-10 camera 
(400–1000 nm, 5.5 nm spectral resolution, 1024-pixel spatial resolution 
and 448 spectral bands) (Konica, Finland) (Supplementary Fig. S1). The 
camera was mounted on a LabScanner (Specim, Konica, Finland) scan-
ner, which had a mobile tray. This configuration was decided to facili-
tate the camera to work using the push broom line scanning technique: 
the image lines were captured one by one at a constant speed. HDPE 
boards with a total thickness of 20 mm were placed under the coupons, 
to allow that the background of the moving tray was the same material 
as in the coupons. The hyperspectral line acquisition speed was 50 FPS. 
The height of the hyperspectral camera above the samples was 227 mm. 
To calculate the optimum integration time, the Specim White Calibra-
tion Tile reference (Konica, Finland) was chosen, in a way that the 
photon counts at the wavelength where the maximum was near 90% of 
the detector saturation. The integration time used was 13 ms. The 
lighting used consisted of two lines of three halogen spotlights of 35 W 
each, with a total power of 210 W. These lines of lamps were placed on 
both sides of the hyperspectral camera at an angle of 45◦ over the line of 
sight of the camera, so that the light reaching the hyperspectral camera 
had a diffusive origin. 

The capture of the HSIs was carried out using the Lumo Scanner 
Software (Specim, Konica, Finland) to operate the hyperspectral camera 
and the scanner. The HSI of two coupons were taken at the same time, to 
save hard disk memory (100 acquired hyperspectral lines: 80 Mb). 25 
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samples were imaged and 13 HSIs were taken (12 pairs and 1 individual 
one). All HSIs were taken in dark conditions. The white imaging refer-
ence provided by the manufacturer was used to determine the reference, 
and the shutter of the camera was closed to prevent the entry of light and 
to determine dark current. In both cases, 100 spectral lines were taken 
and averaged, obtaining two vectors of average values that were used to 
obtain the reflectance values of this HSI by means of: 

Reflectance=
Measurement − Dark Current

Reference − Dark Current
(1)  

2.4. Crystal violet staining 

Biofilm samples were stained to locate the biofilms on the coupons 
after imaging. Also, the control samples were stained to cross check for 
eventual contamination. 

After the HSI step, the coupons were incubated at 42 ◦C for 1 h to fix 
the biofilms. They were stained with a solution of 1.8% crystal violet 
solution of Gram stain (BioMérieux, France) for 5 min, washed with 
distilled water three times and let to air dry. During this drying step, the 
coupons were placed in the same position (the previously liquid sub-
merged incubation section on the lower side and the aerial section on the 
upper side) as they were being incubated, therefore, some of the excess 
water was dripping downwards from the coupon. 

2.5. Acquisition of digital photographs 

DPs (RGB) of the crystal violet-stained biofilm samples were taken 
with a Canon EOS 1200D camera (Canon, Spain) (Supplementary 
Figs. S2–S5). The resolution of the photographs was 1920 × 1280. The 
photographic camera was placed in the scanner in the same position as 
the hyperspectral camera was. In this case, the mobile tray of the 
scanner was not used, but the coupons were placed perpendicular to 
their position when the HSIs were taken, and just below the projection of 
the camera. The rest of the elements were arranged exactly in the same 
position. In this way, it was possible to place the ROI of each coupon in 
the area where the light from the lamps was homogeneous, resulting in a 
uniform light intensity in a ROI of 60 mm × 45 mm. 

2.6. Optical density (OD) measurements 

After DP, the stained biofilms were recovered with 33% glacial acetic 
acid (Labkem, Barcelona, Spain). The optical densities of these dye so-
lutions were measured at 570 nm with a UV–vis spectrophotometer 
(Biochrom Libra S60, Vidrafoc, Spain), to have an overview of the total 
biomass of the biofilms that were analyzed by spectral imaging. 

2.7. Data treatment and prediction models development 

Once the experimental work was carried out and the HSIs and the 
DPs of the stained biofilms were obtained, we proceeded to treat and to 
extract the necessary information from those images, in order to create 
the prediction models for the presence or absence of biofilms. In Fig. 1, a 
diagram is given for the process of developing the classification models. 

Before starting to process the images, the HSIs and DPs data from 7 
coupons data were separated from the 25 samples generated. These 
coupons were not used at any point in the prediction model creation 
process, but only when the models were developed, for final model 
testing purposes. The remaining 18 coupons were used for building the 
prediction models. Specifically, the steps to transform the information 
from these images into the prediction models were the following ones: 
points correspondence, homographic transformation and HSIs resizing; 
collection of the data from the DPs and the transformed HSIs; and 
application of machine learning algorithms to build the binary classifi-
cation models using neural networks. 

2.7.1. Points correspondence, homographic transformation and HSIs 
resizing 

The issue about creating a relationship among the HSIs and the DPs 
data is that they are not present in the same position, nor do they have 
the same resolution. The objective of transforming the HSIs is to achieve 
a voxels coincidence in the position with the pixels of the stained bio-
films DPs. With this transformation, a one-to-one correspondence of the 
spectral voxels with the pixels of the DPs was achieved, and two images 
were obtained where each spectrum had its corresponding “analytical” 
value of one of two-color channels: in this case, the green and red 
channels of the DP images were studied. The study of the blue channel 
was dismissed because in the preliminary tests of the prediction models, 
the results of this channel were notably poorer than the other two. 

To achieve a mapping of the points of the HSIs on the DPs, the HSIs 
were transformed using homography [61], a perspective transformation 
between two planes through linear mapping. In a 3D space, by means of 
the so-called homographic matrix, it is possible to transport images 
between two planes of the space. The source plane was the one corre-
sponding to the HSI’s and the destination plane was the one corre-
sponding to the DP’s. This homographic matrix was a 3 × 3 matrix, with 
nine terms, but 8◦ of freedom (one term was a function of the rest). The 
transformation between the coordinates of the origin plane and the 
destination plane was calculated using the following: 
⎡
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where xi are the source coordinates (HSIs), x’i are the destination co-
ordinates (DPs) and hij are the parameters of the homographic trans-
formation matrix. 

To specify this matrix, 4 common points were needed from each of 
the planes (origin and destination). These points were chosen to be the 
four corners of the biofilm coupons in both the HSIs and the DPs images 
(Fig. 2). The coordinates of these points were taken manually. In the case 
of the HSIs, the monochrome image generated from one wavelength was 
used. Both the calculation of the homographic transformation matrix 
and its subsequent use were carried out using the Python openCV 
package [62]. In addition to apply the homographic transformation to 
each spectral channel of the HSI, the resolution of the HSI was changed 
so that it had the same resolution as the digital image and thus it was 
achieved a correspondence between voxels and pixels. To achieve the 
change in resolution, two common methods were used: the bilinear and 
the bicubic interpolation methods. In the bilinear interpolation, in order 
to know the value of each pixel of the interpolated image, the values of 
four adjacent pixels were used and the value of the new pixel was 
calculated as the weighted average of these four pixels. The bicubic 
interpolation is the natural evolution of the bilinear interpolation when 
more pixels are used in the interpolation. In this study, the closest 4 × 4 
pixels were used (16 pixels in total). The value of the new pixels from 
two cubic interpolations (horizontal and vertical) were obtained by this 
interpolation method. 

After these operations, on one side, there was a set of DPs and on the 
other, a set of transformed HSIs with the same resolution as the digital 
images, and where the data occupy the same coordinates as the DPs. 

2.7.2. Collecting data from the DPs and the transformed HSIs 
The next step was to collect voxels from all the images to create a 

training data set for mathematical modelling. For this, it was necessary 
to set a region of interest (ROI) on each coupon, which was the place 
where the voxels were extracted. This region of interest was a rectan-
gular area of the coupon that was 2.5 mm from the short sides (5% 
longer in their right and left directions) and 20 mm from the long sides 
(20% longer areas in upper and lower sides), to avoid the edges of the 
coupon, since crystal violet easily adheres to edges and tears, even in the 
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absence of biofilm, consequently causing false positives in these images 
(Fig. 3). The long side of the coupon was reduced to a greater extent than 
the short side because it was rare to find biofilm at the ends of the long 
side of the coupon (biofilm was usually found in the center of the 
coupon, at the culture medium/air interphase), and by removing this 
part, it was possible to focus on a mixed area with the pixels, where 
biofilm was found and where it was not. Thus, this ROI was a rectangle 
60 mm long and 45 mm wide that was centered on the coupons (Fig. 3). 
In order to delimit this area, a mask was applied that eliminated 
everything that was outside this ROI. All the voxels that were within the 
ROI of the coupons were likely to be chosen to carry out the prediction 
model. The voxel selection process was carried out independently for the 
green and red channels, obtaining as a result data sets for both channels. 

The first step in choosing the pixels was to create a database con-
taining all the information regarding the pixels (of the stained biofilm 
DPs) of ROIs of all the coupons. This information included coupon 
identity, image coordinates (X–Y) of the pixels in the image, and color 
intensity values in the green or red channel. 

Then, a threshold was chosen that separated the classes (with biofilm 
and without biofilm), so that the pixels with values lower than this 
threshold were labelled as “positive” for the presence of biofilm and 
those with higher values were labelled as “negative” for the absence of 

biofilm. The range of thresholds for which the data sets were constructed 
was uniformly distributed (Fig. 4) in the area where the lowest intensity 
values of the histograms of the coupons without biofilm (control) were 
found. At the lower values of these intensities, pixels with stained bio-
film were found. There was an overlapped area between both regions, 
which was the study area. The following three thresholds were chosen 
for each color channel:  

• Green: 105, 110, 115  
• Red: 175, 180, 185 

Each color threshold separated its corresponding histogram into two 
regions with their associated pixels. The ROI data set for all coupons was 
divided into two sets. These sets did not have the same number of pixels. 
They varied in the number of elements depending on the threshold 
value, being especially unbalanced for the lower thresholds. 

When this classification model was being created, it was recom-
mended to balance the data at different classes. In this case, since the 
number of available pixels was very high, it was decided to extract a 
sample of sufficiently large data, in a way that they were representative 
of the complete set of data. These sets contained 250,000 pixels for each 
of the positive and negative classes. The pixels were chosen uniformly 

Fig. 1. Overview of the data analysis methodology.  

Fig. 2. Representation of size matching between HSI and DP.  
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for all the color intensities present in each class, representative of the 
intensity range. 

As a summary, at the end of this pixel sampling process, a data set 
(500,000 positive/negative labels and spectra pairs) was obtained for 
each of the two-color channels. Two interpolation methods and three 
thresholds applied to each color. In total, 12 sets of spectra with their 
corresponding values of presence/absence of biofilm were used to create 
the machine learning models. 

2.7.3. Machine learning algorithms to build the binary classification 
models: neural networks 

A neural networks method was used to establish the relationship 
between the spectra of the voxels of the HSIs and the presence or absence 
of a biofilm, as a function of the thresholds of color channels of the DPs 
of the stained biofilms. 

The first step in the creation of these prediction models was to divide 
the training set into two prediction and validation model development 
subsets, with 70% and 30% of the data, respectively. The data were 
divided randomly, but in a stratified way, based on the class. The neural 
networks were trained with the training data and the validation set was 
used to know the error in a set of pixels not used in the neural network 
training. The difference with the data from the test coupons was that 
validation pixels came from the same coupons than the pixels that were 
extracted for training neural networks. They could be considered as an 
internal test of the prediction model. 

The training of the neural networks has been carried out using the 
tools provided by the Scikit-Learn package [63]. For data pre-treatment, 
a standardization was used, obtaining independent variables with a 
mean value of zero and a standard deviation of value of one (the typical 
pre-treatment of neural networks). In the preliminary tests, more types 
of pre-treatments such as standard normal variate (SNV), multiplicative 
scatter correction (MSC), Detrending or Savitzky-Golay derivative [64] 
were tested, but no improvements were obtained. The neural network 
model developed to perform the classification was a multilayer per-
ceptron, with a hidden layer of 30 hidden neurons. Neural architectures 
with more hidden neurons were tested, but better results were not 
achieved in those cases. The hidden neurons had rectified linear units 
(ReLU) activation function, and the output neuron had the sigmoid 
function as activation function. To perform the optimization of neuronal 
weights, the Adam optimization algorithm [65] was used. 

The following four metrics were used in order to assess the perfor-
mance of neural networks models both for training and test:  

• Accuracy, as a fraction of correct predictions (both positive and 
negative biofilm): 

Accuracy=
TP + TN

TP + TN + FP + FN
(3)    

• Precision, as a fraction of positive (biofilm positive) predictions that 
are correct: 

Precision=
TP

TP + FP
(4)    

• Recall, as a fraction of actual positives that are correct: 

Recall=
TP

TP + FN
(5)    

• Specificity, as a fraction of actual negatives (biofilm negative) that 
are correct: 

Specificity=
TN

TN + FP
(6)   

3. Results and discussion 

Control samples did not show any turbidity in the incubated medium 
nor biofilm-like stained areas on the coupons. The standardized over-
night suspension contained 6.4 × 108 CFU/ml. The cultured four bio-
films replicas had an average of 6.5 × 107 CFU/ml and standard 
deviations of 1.74, 2.49, 1.59 and 0.79. The OD values of the stained 
samples are provided in supplementary information, Table S1.. 

Data pairs of spectra extracted from the HSIs, and the true/false 
biofilm labels extracted DPs of the 18 coupons were first randomly 
resampled to obtain equal number of “yes” and “no” reference data for 
biofilm presence. Then, with a split of 70% training and 30% validation 
data, they were subjected to ANN model building. The results between 
12 groups (2 types of color channels, red and green, from which the 
stained biofilm coupon pixel intensity values were extracted, the 2 types 
of interpolation method performed in the transformation of the HSIs, 
and the 3 thresholds for each channel) were compared in terms of 
metrics as accuracy, precision, recall and specificity (Supplementary 
Table S4). With use of bilinear interpolation, better models were ach-
ieved. These results are represented in Supplementary Table S5 and Fig. 
S6. Another point to mention here is that the models may present low 
overfitting because the data used in the training of neural networks 
(70%) and the data used in validation (30%) present very similar metrics 
in all the models created. 

The bilinear interpolation models were chosen to be applied on the 7 
previously unused test coupons, as this method was demonstrated to be 
better than bicubic interpolation. The entire dataset from all the voxels 
of ROIs in the 7 training coupons was used for testing (each voxel of the 
entire test coupons individually, unbalanced data). The average metrics 
from these 7 unbalanced test coupons and from 18 unbalanced training 
data was obtained for comparison. The red channel showed similar but 
slightly better metrics than the green channel. Similar results were also 
obtained from the three thresholds used. The details of these results are 
presented in Tables 1 and 2. To simplify the representation and 

Fig. 3. Selection of ROI and masking of DPs.  
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interpretation of results, the following discussion from here onwards is 
focused on the red channel and the threshold value of 180. 

Fig. 5 shows such results at the referred settings (red channel, 

threshold value of 180 and bilinear method), using unbalanced data split 
from all pixels in the ROIs. The Supplementary Fig. S7 shows the values 
for green channel. Supplementary Information Tables S2 and S3 show 

Fig. 4. Histograms of green and red color channels in the ROI of coupons for contamination control free of biofilms (upper) and biofilms (lower).  

Table 1 
Green channel results (DP) using bilinear interpolation for the unbalanced 
voxels of individual test coupons (mean for training and testing).  

Coupon Threshold Accuracy Precision Recall Specificity 

1 105 0.944 0.684 0.947 0.944 
1 110 0.938 0.725 0.898 0.945 
1 115 0.925 0.787 0.801 0.952 
2 105 0.921 0.931 0.669 0.987 
2 110 0.890 0.951 0.587 0.990 
2 115 0.842 0.951 0.518 0.988 
3 105 0.925 0.958 0.713 0.990 
3 110 0.911 0.973 0.681 0.993 
3 115 0.899 0.981 0.670 0.995 
4 105 0.635 0.393 0.998 0.522 
4 110 0.636 0.420 0.996 0.507 
4 115 0.652 0.467 0.991 0.504 
5 105 0.950 0.786 0.987 0.942 
5 110 0.955 0.823 0.976 0.950 
5 115 0.954 0.841 0.961 0.953 
6 105 0.869 0.847 0.813 0.905 
6 110 0.865 0.852 0.827 0.893 
6 115 0.843 0.836 0.822 0.861 
7 105 0.931 0.888 0.796 0.971 
7 110 0.915 0.918 0.739 0.977 
7 115 0.892 0.913 0.707 0.971 
Mean Test 105 0.883 0.785 0.846 0.895 
Mean Test 110 0.873 0.810 0.814 0.894 
Mean Test 115 0.859 0.826 0.781 0.890 
Mean Training 105 0.900 0.750 0.843 0.913 
Mean Training 110 0.892 0.777 0.823 0.914 
Mean Training 115 0.873 0.789 0.801 0.905  

Table 2 
Red channel results (DP) using bilinear interpolation for unbalanced voxels of 
individual test coupons (mean for training and testing).  

Coupon Threshold Accuracy Precision Recall Specificity 

1 175 0.950 0.643 0.971 0.948 
1 180 0.946 0.662 0.960 0.944 
1 185 0.944 0.720 0.917 0.948 
2 175 0.938 0.948 0.678 0.992 
2 180 0.908 0.954 0.604 0.992 
2 185 0.850 0.958 0.500 0.991 
3 175 0.934 0.876 0.738 0.977 
3 180 0.932 0.927 0.731 0.985 
3 185 0.924 0.954 0.718 0.989 
4 175 0.681 0.385 0.998 0.603 
4 180 0.651 0.381 0.998 0.555 
4 185 0.622 0.386 0.997 0.505 
5 175 0.943 0.744 0.988 0.935 
5 180 0.947 0.764 0.989 0.938 
5 185 0.957 0.814 0.983 0.951 
6 175 0.864 0.837 0.745 0.926 
6 180 0.862 0.835 0.776 0.911 
6 185 0.856 0.834 0.804 0.892 
7 175 0.940 0.875 0.792 0.974 
7 180 0.938 0.873 0.809 0.970 
7 185 0.926 0.876 0.787 0.967 
Mean Test 175 0.893 0.759 0.844 0.908 
Mean Test 180 0.884 0.772 0.838 0.900 
Mean Test 185 0.869 0.793 0.815 0.893 
Mean Training 175 0.923 0.759 0.847 0.935 
Mean Training 180 0.913 0.771 0.831 0.931 
Mean Training 185 0.899 0.793 0.805 0.929  
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the values for training coupons, individually. The mean values of the 
metrics for the training set (validation set of neural network models, 
referred as “mean training” in the histogram) and those of the test set 
(external test, referred as “mean test”) had similar values, indicating that 
the model is able to generalize to test predictions. The expected change 
was observed in the case of the coupons resampled with random pixel 
selection (to get a balanced amount of data for “yes” and “no” classes of 
biofilm presence) with respect to these same coupons evaluating all the 
voxels in the ROIs in training (unbalanced) coupons. Unbalancing the 
data actually increased the accuracy and the specificity, and also 
decreased the precision and the recall. 

Regarding the metrics of the individual coupons in Fig. 5, it was 
observed that they had a lot of variability with respect to the average 
metrics. In the test set, coupons 3, 5, 6 and 7 showed similar or slightly 
different values to the average. The other cases showed more significant 
deviations, obtaining higher values of recall and lower precision, as in 
the cases of coupons 1 and 4; or high precision and low recall, as in the 
case of coupon 2. The greatest source of impact on this variability of the 
metric values may be crystal violet staining, which is a qualitative 
method and depends on the treatment carried out on each specific 
coupon. In addition, another source of variability may be that having 
more or fewer pixels with values close to the threshold, these pixels may 
become more susceptible to misclassification than coupons with pixels 
further away, after using the neural network model. 

In Fig. 6, three ROI images for each of the 7 test coupons are shown: 
the real image (red channel, left image), the image obtained after 
applying the class separation threshold (for the red color channel) 
(center image), and after applying a class prediction of HSI using the 
corresponding neural network model (180 threshold) (right image). The 
models were trained with resampled data as randomized and balanced 
data split; tested on the entire test coupons. The areas with biofilms are 
visible in the central region of the coupons images (blue color in the left 
images). These images can be used to track how the metrics were 
influenced by the developed method. 

The accuracy provides the total prediction successes (positive and 
negative) of the model in the ROI of the image, as a general metric. 
There are two relationships that provide information that are used to 
evaluate the model when applied to an HSI: the precision and recall 
relationship, and the recall and specificity relationship. The relationship 
between precision and recall in this case is related to the predictions of 
the positive class (biofilm presence). Thus, when one (precision or 
recall) decreases the other increases, and vice versa. The variation in this 
relationship is evident, especially in the area where the biofilms are 

found. Also, even more positive class predictions are made, as a com-
parison of the number of brighter pixels in the predicted image (right 
images) and to the bright pixels in the threshold reference image (center 
image). As the precision increases, fewer false predicted positives will be 
seen in the biofilm area. 

As the recall increases, the density of pixels that are true positives 
will increase. The relationship between recall and specificity is the 
balance between accuracy among true positives and accuracy among 
true negatives. In this case, the specificity is usually more stable than the 
precision, and its value begins to decrease only when false positives 
appear in areas away from the biofilm. The precision/recall relationship 
is like “fine-tuning” (the biofilm area) detection, and the recall/speci-
ficity relationship is a more general description. 

Some of the issues related to the difficulty in modelling around the 
established threshold values can be due to the presence of nascent (or 
weak) biofilms. The more biofilm is present on the coupons, the darker 
the pixel intensity (crystal violet) is. Therefore, the stronger the biofilm 
was in these experiments, the easier it was to be detected. Also, from the 
microbiological side, the accumulative effects of substances present in 
the biofilm extracellular matrix and in the bacterial cells, as well as the 
metabolism and interaction of some of these substances (containing 
nitrogen, oxygen, hydrogen, etc.) might have contributed to the overall 
spectral profiles in visible and near infrared region. All the samples were 
expected to contain an aerobic Pseudomonas aeruginosa biofilm layer. In 
the case of a thicker biofilm matrix, the lower layers were expected to be 
anaerobic, according to previously reported studies [57–59]. 

In addition, as Pseudomonas aeruginosa biofilms seemed to form 
biofilms of differing thickness or intensity, location-wise, therefore, the 
spectral samples differed even within the same coupon sample. There-
fore, the varying thicknesses of the anaerobic P. aeruginosa biofilm layer 
(deeper layers) and the aerobic layer (surface layers) might have caused 
changes in the compositions of bacterial metabolism input and outputs, 
proteins and polymers present in the biofilms. This may have affected 
the content of chemical bonds made of organic substances location-wise, 
and thus the spectra of the pixels on hyperspectral images. 

Finally, crystal violet staining might have led to false reference labels 
at some pixels. Namely, some of the false positives may be the result of 
an excess of water slightly mixed with the dye, due to the presence of 
strong biofilm areas, which used to drop downwards on the coupon and 
to dry on the non-biofilm area, during samples drying step. A similar 
phenomenon can be encountered when the HDPE polymer absorbs 
media and/or crystal violet. Conversely, given that crystal violet stain-
ing is a qualitative method, some false negatives may have been 

Fig. 5. Metrics for ANN model results (unbalanced data) of the red channel with a threshold value of 180 for the test coupons, their mean values and the mean values 
for training set. 
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generated from the areas with a biofilm matrix, as sessile cells can be 
slightly removed during the washing steps in the staining process, 
together with the excess dye. This may have occurred, even though the 
coupons have been subjected to a heat pretreatment step (att 42 ◦C). 
This generation of false negatives has been already reported by Azeredo 
et al. (2017) [36]. However, even if these last three issues may have 
occurred, they did not pose a significant problem in the overall predic-
tion performance of the developed method (weak biofilms or intensities 
aside). 

4. Conclusion and future perspectives 

In overall, the described method allows to predict the presence of 
biofilm in each voxel of a spectral image from a HDPE surface, via a 
mathematical model. 

Although P. aeruginosa is a well-researched bacterium in biofilm 
studies, due to its importance and ability to easily form strong biofilms 
on various surfaces, including HDPE, it may not be the easiest one to 
generate the machine learning models in spectroscopic detection studies 
like this. The reason for this can be summarized as the presence of high 
sample-to-sample irregularities, because of the P. aeruginosa biofilm 
structure, the background interference of the plastic polymeric surface 
(HDPE) to the biofilm polymers and the noise associated to the remote 
sensing settings of the camera. However, the generated models in this 
work are able to tackle these issues well and they have a good prediction 
ability. Therefore, the modelling results of this work show that the 
method has been able to perform well even in the presence of these 
intrinsic issues. 

The described method is found promising to further extend the 
development of biofilm detection methods to other bacterial species 

Fig. 6. ROI of the test coupons, left: real image, middle: DP data subjected to class separation of red color channel pixels at the intensity of 180 (threshold), right: 
class predictions on spectral data by neural network model. 1: Test coupon 1; 2: test coupon 2; 3: test coupon 3; 4: test coupon 4; 5: test coupon 5; 6: test coupon 6; 7: 
test coupon 7. 
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(Escherichia coli, Salmonella enterica, Bacillus cereus) and substrates 
(stainless steel, glass). In the case of biofilms, a model building strategy 
for the prediction of the presence of a specific matrix component or a 
specific microorganism, can be tested using spectral imaging. Lastly, this 
method might further be useful in cases where it may be feasible to stain 
samples, whether they are biofilms or not. 
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