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Testing for symmetry about an unknown median is a problem that has attracted the attention 
of statisticians for decades. Many of the existing tests of symmetry are based on the asymptotic 
distribution of a skewness coefficient, which typically is asymptotically normal and centered 
around zero for symmetric distributions. Unfortunately, the asymptotic variance depends on the 
underlying distribution and differs from one symmetric distribution to another one. A possible 
way out is to estimate this asymptotic variance from the sample by means of the bootstrap. In this 
paper, we explore this approach for six different skewness coefficients existing in the literature. 
Extensive experiments are performed for comparing the performance of the six associated tests of 
symmetry to that of two state-of-the-art symmetry tests in terms of preservation of the significance 
level under several symmetric distributions, power under asymmetric distributions and robustness 
in the presence of outliers. Even though the results show no clear best test, we conclude by 
providing some guidelines for choosing a test of symmetry based on the needs of the user.

1. Introduction

The term symmetry refers to the property of an object that is invariant under some geometrical transformation such as a reflection, 
a rotation or a translation, whereas the term asymmetry simply refers to the absence of this property. Since ancient times, the notion 
of symmetry has been linked to venerated ideals such as order, beauty and harmony, while, on the contrary, the notion of asymmetry 
has been known to instill dynamism and excitement. It is not surprising then that artists have used the presence or absence of 
symmetry as a recurring resource in their artworks. For instance, back in the 15th century, Leonardo da Vinci represented in his 
work the Vitruvian Man the ideal human body based on beauty standards such as symmetry and proportionality. On the contrary, the 
19th century painting The Starry Night by Vincent van Gogh shows a clearly asymmetric design that, playing with colors, sizes and 
shapes, still manages to create a feeling of balance.

The notion of symmetry also appears in almost all fields of mathematics. For instance, in mathematical analysis, an even function 
is a function with a graph that is symmetric with respect to the 𝑦-axis and an odd function is a function with a graph that is rotationally 
symmetric with respect to the origin; in linear algebra, a symmetric matrix is a square matrix that is equal to its transpose; and, in 
set theory, a symmetric relation is a binary relation for which if the relation stands from 𝑥 to 𝑦, then it also stands from 𝑦 to 𝑥. In 
the field of statistics, which is the one of interest to this paper, symmetry of a random variable 𝑋 simply means that the distribution 
of the random variables 𝑋 − 𝑥0 and 𝑥0 −𝑋 is the same for some real value 𝑥0. A common example in which this property in fact 
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turns out to be very handy arises when dealing with standard normal distribution tables, where the right-tail probabilities are easily 
computed from the left-tail probabilities due to the symmetry of the standard normal distribution about zero.

There is little doubt that symmetry is regarded as a desirable property for a random variable, either directly or indirectly through 
some more restrictive assumption (e.g., normality). For instance, we refer to two classical hypothesis tests such as Wilcoxon’s signed-
rank test [41] and Student’s t-test [37], which under their most common preliminary assumptions require the underlying distribution 
to be symmetric in the first case and normal (and, thus, symmetric) in the second case. However, real-life data is not always perfect 
and the assumption of the data coming from a symmetric distribution may not always be reasonable. Unfortunately, if indeed the 
data does not come from a symmetric distribution, easy tasks such as data visualization by means of a boxplot [22] and outlier 
detection [21] become more involved, thus stimulating the necessity of designing specific techniques for non-symmetrical data. It is 
for this very reason that testing for symmetry has become an interesting study subject that has attracted the attention of statisticians 
for decades.

Two separate literatures on tests of symmetry exist depending on whether the point of symmetry is known or unknown. Some 
prominent symmetry tests of the former type are due to Butler [7] based on a statistic in the spirit of the Kolmogorov-Smirnov 
goodness-of-fit test, to McWilliams [28] based on a runs statistic, and to Thas, Rayner and Best [38] based on the Wilcoxon signed-
rank statistic. Even though some authors such as Noughabi and Jarrahiferiz [32] or Xiong, Zhuang and Qiu [42] have recently 
proposed alternative approaches to the problem of testing for symmetry about an unknown point of symmetry, the literature on 
the latter type of symmetry tests is typically built around the notion of skewness coefficient, which is a measure of the degree 
of asymmetry of a distribution. The first author to call attention to the need for measuring the skewness of a distribution was 
Pearson [34] back in the 19th century, but a formalization of the notion of skewness coefficient is also the result of some further 
works such as those by van Zwet [40] and Oja [33]. Some prominent tests of symmetry about an unknown symmetry point based 
on the use of skewness coefficients are due to Gupta [17] based on the asymptotic distribution of the moment skewness coefficient, 
to Cabilio and Masaro [8] based on the asymptotic distribution of the nonparametric skewness coefficient, to Mira [30] based on a 
measure of skewness proposed by Bonferroni, and to Miao, Gel and Gastwirth [29] based on a robustification of Cabilio and Masaro’s 
statistic.

A typical problem when dealing with symmetry tests based on the asymptotic distribution of a skewness coefficient is that this 
asymptotic distribution is not distribution-free in the sense that it is not the same for all symmetric distributions. In particular, 
skewness coefficients are typically asymptotically normal and centered around zero for symmetric distributions, yet the asymptotic 
variance usually depends on the underlying distribution. Some authors have proposed to consider a reference distribution (e.g., the 
normal distribution in [1] and the logistic distribution in [3]), however the most dominant approach simply aims at estimating 
said asymptotic variance. In this direction, we propose to resort to the bootstrap for estimating the asymptotic variance for the 
asymptotic distribution of several skewness coefficients. This will result in the introduction of several tests of symmetry that have 
not been explored before in the literature, even though, admittedly, the use of bootstrap techniques has already been considered in 
the context of tests of symmetry for estimating the distribution of the test statistic [26,44].

The remainder of the paper is structured as follows. Section 2 presents some preliminaries related to the notions of symmetry 
and skewness coefficient that will be necessary throughout the paper. Section 3 formalizes the presented bootstrap tests of symmetry 
based on the asymptotic distribution of a skewness coefficient. Six different skewness coefficients are considered and the power of 
the six associated tests of symmetry in different conditions is compared with two state-of-the-art methods in Section 4. A discussion 
on the influence of the number of bootstrap replications and the chosen type of bootstrap is presented in Section 5. We end with 
some conclusions and future work in Section 6.

2. Preliminaries on the notion of symmetry

2.1. A formalization of the notion of symmetry

A random variable 𝑋 is called symmetric about 𝑥0 if the distribution of 𝑋 − 𝑥0 is the same as that of 𝑥0 −𝑋, i.e.,

𝑃 (𝑋 ≤ 𝑥0 − 𝑥) = 𝑃 (𝑋 ≥ 𝑥0 + 𝑥) , for any 𝑥 ∈ℝ .

If 𝑋 is a random variable with cumulative distribution function 𝐹 for which there exists no point 𝑥 ∈ℝ such that 𝑃 (𝑋 = 𝑥) > 0, then 
symmetry about 𝑥0 is equivalently defined by

𝐹 (𝑥0 − 𝑥) = 1 − 𝐹 (𝑥0 + 𝑥) , for any 𝑥 ∈ℝ .

Additionally, if 𝑋 is a continuous random variable with a density function 𝑓 , then symmetry about 𝑥0 is also equivalently defined by

𝑓 (𝑥0 − 𝑥) = 𝑓 (𝑥0 + 𝑥) , for any 𝑥 ∈ℝ .

If one says that a random variable 𝑋 is symmetric, it is meant that there exists 𝑥0 ∈ℝ about which 𝑋 is symmetric. The median (if it 
is unique) and the mean (if it exists) of a symmetric random variable coincide and are necessarily the point at which the symmetry 
occurs.

Back in 1981, Oja [33] introduced some desirable properties for measuring the asymmetry of a random variable, giving raise to a 
2

formalization of the notion of skewness coefficient. In the context of this work, we will say that a skewness coefficient is any function 
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𝛾 ∶  → ℝ assigning to any random variable ( denotes a set of random variables) a measurement of its skewness. Formally, it is 
typically required that a skewness coefficient satisfies the following properties:

(i) 𝛾(𝑋) = 0, if 𝑋 is symmetric;
(ii) 𝛾(𝑎 𝑋 + 𝑏) = 𝛾(𝑋), for any 𝑎 > 0 and 𝑏 ∈ℝ;

(iii) 𝛾(−𝑋) = −𝛾(𝑋).

It should be noted that condition (i) does not require that 𝛾(𝑋) = 0 if and only if 𝑋 is symmetric and, actually, one could find 
asymmetric distributions for which the value of any of the most prominent skewness coefficients equals zero.

Oja further discussed an additional condition concerning skewness-based orderings already discussed by van Zwet [40], but this 
condition is here left out since it is not fulfilled by all skewness coefficients that will be presented right after. Also, some more recent 
axiomatic definitions of skewness [5] aim at introducing an additional condition in which the coefficient is required to be bounded 
and normalized within the interval [−1, 1].

2.2. Skewness coefficients

The most prominent skewness coefficient – hereinafter referred to as the moment skewness coefficient – is typically attributed to 
Pearson [34] (and also to Charlier [10] and Edgeworth [11]) and defined as follows:

𝛾M(𝑋) =
𝐸
(
(𝑋 − 𝜇)3

)
𝜎3

,

where 𝜇 represents the population mean and 𝜎 represents the population standard deviation. A sample version of this coefficient is 
obtained by substituting the population parameters by their sample counterparts.

Another popular skewness coefficient that is oftentimes attributed to Pearson (and also to Yule [43]) – hereinafter referred to as 
the nonparametric skewness coefficient or as Fisher’s moment skewness coefficient – is defined as follows:

𝛾NP(𝑋) = 𝜇 −Me(𝑋)
𝜎

,

where 𝜇 represents the population mean, 𝜎 represents the population standard deviation and Me(𝑋) represents the population 
median. A sample version of the coefficient is also straightforwardly obtained by substituting the population parameters by the 
sample parameters. Note that, for historical reasons, some authors consider the nonparametric skewness coefficient multiplied by a 
constant term 3 since it turns out that for many distributions the difference between the mean and the mode is approximately three 
times the difference between the mean and the median (see page 121 of [43]).

An alternative to the nonparametric skewness coefficient (see, e.g., [16] and [2]) – hereinafter referred to as the Groeneveld-

Meeden skewness coefficient – substitutes the standard deviation in the denominator by 𝐸(|𝑋 −Me(𝑋)|), as follows:

𝛾GM(𝑋) = 𝜇 −Me(𝑋)
𝐸(|𝑋 −Me(𝑋)|) .

A sample version of this coefficient was used by Miao, Gel and Gastwirth [29] for introducing a robust symmetry test:

𝛾GM(𝐱) = 𝐱 −Me(𝐱)
1
𝑛

∑𝑛
𝑖=1 |𝐱𝑖 −Me(𝐱)| .

Note that Miao, Gel and Gastwirth [29] actually considered the multiplicative constant 
√
𝜋∕2 for the term in the denominator in 

order to have an unbiased estimator of the standard deviation at the normal distribution. However, said multiplicative constant does 
not actually play a big role since it just results in a rescaling of the skewness coefficient, thus it is here ignored.

A different skewness coefficient that avoids the need for finite moments is due to Bowley [4]. The Bowley skewness coefficient is 
defined as:

𝛾B(𝑋) =
𝑄3(𝑋) +𝑄1(𝑋) − 2Me(𝑋)

𝑄3(𝑋) −𝑄1(𝑋)
,

where Me(𝑋) represents the population median and 𝑄1(𝑋) and 𝑄3(𝑋) represent the first and third population quartiles.
Note that the Bowley skewness coefficient belongs to a larger class of skewness coefficients introduced by Hinkley [18], parame-

terized by a given 𝑝 ∈]0, 0.5[, as follows:

𝛾𝑝(𝑋) =
(
𝐶1−𝑝(𝑋) −𝐶0.5(𝑋)

)
−
(
𝐶0.5(𝑋) −𝐶𝑝(𝑋)

)
𝐶1−𝑝(𝑋) −𝐶𝑝(𝑋)

,

where 𝐶𝑞(𝑋) represents the quantile of order 𝑞 of 𝑋 for any 𝑞 ∈]0, 1[. The case 𝑝 = 0.25 corresponds to Bowley skewness coefficient. 
The case 𝑝 = 0.125 has also attracted some attention from statisticians [6] and will be considered hereinafter under the name of octile 
skewness coefficient and denoted by 𝛾OCT. It is immediate to obtain a sample version of all coefficients in this family by substituting 
population quantiles by sample quantiles.

A more recent skewness coefficient – referred to as the medcouple skewness coefficient – was introduced by Brys, Hubert and 
3

Struyf [6] in the context of robust statistics. For a sample 𝐱, we define the medcouple skewness coefficient as:
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𝛾MC(𝐱) = Me
𝑥𝑖≤Me(𝐱)≤𝑥𝑗

ℎ(𝑥𝑖, 𝑥𝑗 ) , (1)

where Me represents the median of the list of values and ℎ(𝑥𝑖, 𝑥𝑗 ) is defined as:

ℎ(𝑥𝑖, 𝑥𝑗 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑥𝑗 −Me(𝐱)) − (Me(𝐱) − 𝑥𝑖)
𝑥𝑗 − 𝑥𝑖

, if 𝑥𝑖 ≠ 𝑥𝑗 ,

1 , if 𝑖 > 𝑗 ,

0 , if 𝑖 = 𝑗 ,

−1 , if 𝑖 < 𝑗 ,

⎫⎪⎬⎪⎭ if 𝑥𝑖 = 𝑥𝑗 = Me(𝐱) .

The computation of the medcouple requires to calculate all values ℎ(𝑥𝑖, 𝑥𝑗 ) for all pairs of elements of the sample 𝐱. For the exper-
iments in this paper, the medcouple has been computed by using the function mc() of the R package robustbase [27]. Note that the 
definition of the medcouple in Eq. (1) actually is an estimate of the corresponding population skewness coefficient defined as:

𝛾MC(𝑋) =𝐻−1
𝐹 (0.5) ,

where

𝐻𝐹 (𝑢) = 4

∞

∫
Me(𝑋)

𝐹
(𝑥(𝑢− 1) + 2Me(𝑋)

𝑢+ 1

)
𝑑𝐹 (𝑥) ,

where Me(𝑋) is the median of 𝑋.
With the exception of the medcouple, it has been proven that the sample versions of all the skewness coefficients above are 

asymptotically normal under some regularity conditions (see [17] for the moment skewness coefficient, [8] for the nonparametric 
skewness coefficient, [29] for the Groeneveld-Meeden skewness coefficient and [31] for skewness coefficients of the family introduced 
by Hinkley including the Bowley skewness coefficient and the octile skewness coefficient). Experimental results [5] and the fact that, 
as discussed in [6], the medcouple belongs to the class of incomplete generalized L-statistics of Hössjer [19] also hint at the asymptotic 
normality of the medcouple. Therefore, for any of the coefficients above, we expect that√

𝑛
�̂� − 𝛾𝐹√
𝑉 (𝛾,𝐹 )

⇝𝑁(0,1) ,

where �̂� is the sample version of the skewness coefficient 𝛾 , 𝛾𝐹 is the population value for the skewness coefficient 𝛾 at the distribution 
𝐹 , and 𝑉 (𝛾, 𝐹 ) denotes the asymptotic variance of 𝛾 at the distribution 𝐹 . Note that 𝛾𝐹 = 0 for all symmetric distributions, however 
the asymptotic variance 𝑉 (𝛾, 𝐹 ) is dependent on the underlying distribution and varies even from one symmetric distribution to 
another one.

2.3. Skewness-based goodness-of-fit tests

As discussed in [6], a natural skewness-based goodness-of-fit test within a location-scale distribution family can be sketched as 
follows. Consider the following null and alternative hypothesis:

𝐻0 ∶ 𝑋 belongs to the location-scale distribution family  ,

𝐻1 ∶ 𝑋 does not belong to the location-scale distribution family  .

Since skewness coefficients are location and scale invariant, it holds that 𝛾𝐹 = 𝛾𝐹 ′ and 𝑉 (𝛾, 𝐹 ) = 𝑉 (𝛾, 𝐹 ′), for any 𝐹 , 𝐹 ′ ∈  . Addition-
ally, it follows for any asymptotically normal skewness coefficient that 

√
𝑛

�̂�−𝛾𝐹√
𝑉 (𝛾,𝐹 )

⇝𝑁(0, 1) under the null hypothesis (i.e., for any 
𝐹 ∈  ), independently of the values of the location and scale parameters. Therefore, it suffices to compute 𝛾𝐹 and 𝑉 (𝛾, 𝐹 ) in order to 
define a rejection region based on the sampled value of �̂� . Formally, the rejection region will be defined as follows:

𝑅𝑅 =

{
𝐱 ∈ℝ𝑛

|||||| |𝛾(𝐱) − 𝛾𝐹 | > √
𝑉 (𝛾,𝐹 )√

𝑛
𝑧1−𝛼∕2

}
,

where 𝑧1−𝛼∕2 is the quantile of order 1 − 𝛼∕2 of a normal distribution.
As an example presented in [6], for a normality test based on the medcouple skewness coefficient, we need to consider 𝛾𝜙 = 0 and 

𝑉 (𝛾MC, 𝜙) = 1.25. Therefore, we can define a normality test at significance level 𝛼 by means of the following rejection region:

𝑅𝑅 =

{
𝐱 ∈ℝ𝑛

|||||| |𝛾MC(𝐱)| > √
1.25√
𝑛

𝑧1−𝛼∕2

}
.

Unfortunately, skewness-based goodness-of-fit tests tend to exhibit a low power. For this very reason, it is common to further consider 
4

a test statistic that combines a skewness coefficient and a kurtosis coefficient. Two prominent examples of goodness-of-fit tests based 
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on the combination of a skewness coefficient and a kurtosis coefficient are that of Jarque-Bera [24,25] and its robust alternative [14], 
which are specifically designed for testing for normality.

3. Symmetry tests based on skewness coefficients

A more elaborated statistical test could be built by establishing some hypothesis on the value of the chosen skewness coefficient 𝛾 :

𝐻0 ∶ 𝛾(𝑋) = 𝛾0 ,

𝐻1 ∶ 𝛾(𝑋) ≠ 𝛾0 .

In particular, setting 𝛾0 = 0 allows to present a symmetry test based on the skewness coefficient 𝛾 . It is important at this point that the 
reader bears in mind that the null hypothesis actually is more general than that of symmetry since there may exist non-symmetrical 
distributions for which the skewness coefficient takes the value zero.

A cumbersome problem for the definition of this type of tests is that, as has already been mentioned, the test statistic 
√
𝑛

�̂�−𝛾𝐹√
𝑉 (𝛾,𝐹 )

is not distribution-free since the asymptotic variance 𝑉 (𝛾, 𝐹 ) still depends on the underlying distribution of 𝑋.
In order to solve this problem, some authors have proposed to consider a reference distribution for which to compute 𝑉 (𝛾, 𝐹 ). For 

instance, as brought to attention by Cabilio and Masaro [8], the normal distribution [1] and the logistic distribution [3] have already 
been used for this purpose. A more elaborate solution consists in estimating 𝑉 (𝛾, 𝐹 ) based on the obtained sample. For instance, 
Gupta [17] proposed such an estimation for the test based on the moment skewness coefficient and Cabilio and Masaro [8] proposed 
such an estimation for the test based on the nonparametric skewness coefficient. However, the estimation of the asymptotic variance 
is typically designed specifically for each skewness coefficient and relies on estimations of the value of the density function at the 
symmetry point.

In this paper, we propose to use the bootstrap [12,13] to estimate the asymptotic variance of the test statistic. Although the 
bootstrap has already been considered within the context of tests of symmetry for the estimation of the distribution of some skewness 
coefficients such as the moment skewness coefficient (see, e.g., [26,44]), to the best of our knowledge it has not yet been considered 
in the context of the estimation of the asymptotic variance for most skewness coefficients presented in this paper.

Formally, the procedure for the bootstrap estimation of the asymptotic variance of the test statistic works as follows:

Input: A sample 𝐱 of size 𝑛.
Step 1. Obtain 𝐵 bootstrap samples 𝐱(1), … , 𝐱(𝐵) of size 𝑛 by sampling with replacement from 𝐱.
Step 2. For each bootstrap sample 𝐱(𝑖), compute 𝑡𝑖 =

√
𝑛
(
𝛾(𝐱(𝑖)) − 𝛾(𝐱)

)
.

Step 3. Estimate 𝑉 (𝛾, 𝐹 ) by 𝑉 ∗(𝛾, 𝐱) = Var
(
𝑡1, … , 𝑡𝐵

)
.

Output: 𝑉 ∗(𝛾, 𝐱).

Ultimately, the associated rejection region is defined as follows:

𝑅𝑅 =

{
𝐱 ∈ℝ𝑛

|||||| |𝛾(𝐱) − 𝛾0| > √
𝑉 ∗(𝛾,𝐱)√

𝑛
𝑧1−𝛼∕2

}
,

where, again, 𝑧1−𝛼∕2 is the quantile of order 1 − 𝛼∕2 of a normal distribution.
Note that the bootstrap is here only used for the estimation of a parameter of the distribution of the test statistic, therefore 

yielding a method that relies strongly on the goodness of the asymptotic normality but not so strongly on the representativeness of 
the sample.

4. Experimental setup

In this section, we provide an experimental analysis of the power of the proposed symmetry tests under different circumstances. 
We work at significance level 𝛼 = 0.05. The power of the different tests is estimated by Monte Carlo simulation (104 replications) 
and the number of bootstrap replications is set to 𝐵 = 103. Different sample sizes are explored (𝑛 ∈ {25, 50, 100, 200}). All tests are 
performed on the same samples and the asymptotic variances 𝑉 (𝛾, 𝐹 ) are estimated for all considered skewness coefficients 𝛾 based 
on the same bootstrap samples in order to minimize the influence of the sampling process. As a baseline, we compare the here-
presented symmetry tests with the tests by Cabilio and Masaro [8] and Miao, Gel and Gastwirth [29], considering their 𝑚-out-of-𝑛
bootstrap counterparts implemented in the R package lawstat [23] (with the default options 𝐵 = 103 and 𝑞 = 8∕9). Non-bootstrap 
implementations of the three tests considering a reference distribution for the computation of the asymptotic variance are not 
considered here due to their inefficiency at maintaining the significance level and/or excessively low power at many symmetric 
distributions. In all tables concerning the power of the different tests, the third to eighth columns correspond to the bootstrap tests 
associated with the skewness coefficient at the header considering the notation introduced in Section 2, whereas the ninth and tenth 
5

columns correspond to the Cabilio and Masaro test (CM) and the Miao, Gel and Gastwirth test (MGG).
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Table 1

Power of the different tests at symmetric distributions. Values within the 95% confidence interval [0.0458, 0.0545] are highlighted in boldface.

Distribution 𝑛 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

Normal

25 0.0652 0.0174 0.0167 0.0036 0.0169 0.0086 0.0298 0.0313
50 0.0809 0.0269 0.0265 0.0152 0.0298 0.0158 0.0293 0.0315

100 0.0739 0.0366 0.0355 0.0278 0.0360 0.0247 0.0426 0.0467

200 0.0654 0.0420 0.0414 0.0363 0.0425 0.0330 0.0419 0.0458

Cauchy

25 0.4092 0.1329 0.2136 0.0105 0.0531 0.0262 0.2673 0.0304
50 0.4185 0.1527 0.2216 0.0281 0.0633 0.0323 0.3638 0.0421

100 0.4189 0.1511 0.2090 0.0389 0.0640 0.0356 0.4314 0.0563
200 0.4216 0.1407 0.1980 0.0360 0.0584 0.0359 0.4231 0.0453

Student’s 𝑡2

25 0.2966 0.0623 0.0779 0.0042 0.0269 0.0133 0.0837 0.0322
50 0.3316 0.0813 0.0879 0.0183 0.0388 0.0173 0.1050 0.0438

100 0.3258 0.0869 0.0818 0.0266 0.0433 0.0235 0.1189 0.0656
200 0.3136 0.0923 0.0785 0.0365 0.0451 0.0311 0.1091 0.0681

Student’s 𝑡3

25 0.2272 0.0381 0.0438 0.0038 0.0184 0.0114 0.0485 0.0304
50 0.2472 0.0535 0.0528 0.0150 0.0338 0.0157 0.0492 0.0347

100 0.2253 0.0597 0.0563 0.0274 0.0397 0.0221 0.0679 0.0567
200 0.1969 0.0568 0.0512 0.0326 0.0441 0.0312 0.0564 0.0502

Student’s 𝑡5

25 0.1433 0.0271 0.0290 0.0037 0.0193 0.0103 0.0356 0.0309
50 0.1624 0.0380 0.0378 0.0175 0.0316 0.0163 0.0360 0.0330

100 0.1530 0.0439 0.0423 0.0276 0.0392 0.0235 0.0477 0.0483

200 0.1177 0.0459 0.0442 0.0324 0.0413 0.0279 0.0438 0.0442

Student’s 𝑡8

25 0.1110 0.0217 0.0227 0.0031 0.0191 0.0091 0.0345 0.0303
50 0.1281 0.0356 0.0346 0.0159 0.0314 0.0157 0.0349 0.0332

100 0.1158 0.0391 0.0382 0.0284 0.0361 0.0261 0.0446 0.0470

200 0.0906 0.0408 0.0403 0.0334 0.0411 0.0304 0.0415 0.0430

Logistic

25 0.1108 0.0198 0.0192 0.0023 0.0163 0.0086 0.0299 0.0261
50 0.1268 0.0363 0.0358 0.0155 0.0299 0.0171 0.0351 0.0329

100 0.1144 0.0384 0.0377 0.0279 0.0373 0.0228 0.0415 0.0453
200 0.0902 0.0425 0.0422 0.0338 0.0407 0.0315 0.0437 0.0447

Laplace

25 0.1653 0.0343 0.0372 0.0045 0.0253 0.0127 0.0401 0.0299
50 0.1586 0.0435 0.0428 0.0196 0.0366 0.0171 0.0394 0.0360

100 0.1474 0.0492 0.0475 0.0328 0.0438 0.0241 0.0516 0.0488

200 0.1147 0.0485 0.0479 0.0356 0.0456 0.0301 0.0486 0.0480

Uniform

25 0.0308 0.0248 0.0235 0.0038 0.0269 0.0134 0.0480 0.0553
50 0.0445 0.0422 0.0403 0.0228 0.0453 0.0287 0.0499 0.0554

100 0.0492 0.0484 0.0462 0.0301 0.0491 0.0387 0.0590 0.0714
200 0.0494 0.0521 0.0502 0.0391 0.0535 0.0463 0.0525 0.0604

Beta(2,2)

25 0.0296 0.0145 0.0155 0.0024 0.0171 0.0082 0.0332 0.0361
50 0.0443 0.0328 0.0319 0.0183 0.0385 0.0213 0.0378 0.0409

100 0.0408 0.0418 0.0404 0.0283 0.0395 0.0297 0.0459 0.0544

200 0.0523 0.0460 0.0454 0.0357 0.0462 0.0382 0.0481 0.0526

Beta(3,3)

25 0.0342 0.0140 0.0144 0.0027 0.0179 0.0093 0.0312 0.0365
50 0.0498 0.0297 0.0287 0.0145 0.0306 0.0175 0.0337 0.0390

100 0.0505 0.0385 0.0373 0.0271 0.0375 0.0258 0.0451 0.0537

200 0.0517 0.0431 0.0429 0.0328 0.0404 0.0347 0.0443 0.0459

Beta(4,4)

25 0.0403 0.0142 0.0146 0.0026 0.0157 0.0071 0.0313 0.0343
50 0.0535 0.0327 0.0319 0.0190 0.0333 0.0205 0.0349 0.0379

100 0.0502 0.0363 0.0356 0.0278 0.0376 0.0256 0.0406 0.0522

200 0.0555 0.0415 0.0409 0.0357 0.0405 0.0331 0.0426 0.0456

4.1. Size of the tests

In this subsection, we analyze the preservation of the significance level (𝛼 = 0.05) at different symmetric distributions and present 
the results in Table 1. For historical reasons, we use the symmetric distributions considered by Cabilio and Masaro in [8] (note that 
contaminated normal distributions are presented in a later subsection concerning experiments on the robustness of the tests in the 
presence of outliers).

Since the experimentation is performed at significance level 𝛼 = 0.05, the power of the different symmetry tests must be around 
this value under the null hypothesis of symmetry. Analyzing the third column in Table 1 for the Cauchy, Student’s t, Logistic and 
Laplace distributions, we notice that the powers of the test based on the moment skewness coefficient 𝛾M are considerably higher 
6

than 𝛼 = 0.05, specially in the case of the Cauchy distribution where the powers reach the value 0.4 for all sample sizes. This means 
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Table 2

Combinations of parameters for the eight considered members of the generalized lambda 
distribution family.

Distribution 𝜆1 𝜆2 𝜆3 𝜆4

GLD7 0.000000 1.000000 1.400000 0.250000
GLD8 0.000000 1.000000 0.000070 0.100000
GLD9 3.586508 0.043060 0.025213 0.094029
GLD10 0.000000 −1.000000 −0.007500 −0.030000
GLD11 −0.116734 −0.351663 −0.130000 −0.160000
GLD12 0.000000 −1.000000 −0.100000 −0.180000
GLD13 0.000000 −1.000000 −0.001000 −0.130000
GLD14 0.000000 −1.000000 −0.000100 −0.170000

that this test will reject the null hypothesis of symmetry in these families of probability distributions more often than it should do. 
This situation is due to the fact that the mean is not properly defined for the Cauchy distribution and, thus, the moment skewness 
coefficient 𝛾M is also not properly defined. Additionally, one should note that the moment skewness coefficient 𝛾M is also not properly 
defined for the Student’s t distribution with 2 and 3 degrees of freedom, therefore justifying the obtained powers at these distributions. 
Similarly, all other tests based on statistics that are obtained as a function of the mean will typically come to an incorrect conclusion 
at the Cauchy distribution. For instance, it is shown in Table 1 that the power of the symmetry tests based on the nonparametric 
skewness coefficient 𝛾𝑁𝑃 and the Groeneveld-Meeden skewness coefficient 𝛾𝐺𝑀 are around 0.15 and 0.2, respectively, at the Cauchy 
distribution.

Regarding all other tests and distributions, we observe that, in general, all powers are close to the significance level 𝛼. In fact, 
the bigger the considered sample size is, the closer the power is to the significance value. This situation is to be expected as the 
asymptotic distributions for the statistics will tend to be more accurate as the sample size increases. Unfortunately, most skewness 
coefficients exhibit a slow convergence at most distributions as can be concluded from the fact that most values in Table 1 do not 
belong to the classical confidence interval [0.0458, 0.0545] with confidence level 0.95 for the Bernoulli distribution for samples of size 
104 with mean 0.05, even for large values of 𝑛. It should be pointed out that the uniform distribution is the distribution at which 
the powers adjust the best to the significance level 𝛼 for most tests and sample sizes. Among the two tests used for control, the 
Cabilio and Masaro test (CM) does not succeed in maintaining the significance level for some distributions, whereas the Miao, Gel 
and Gastwirth test (MGG) does succeed in maintaining the significance level at almost all distributions.

4.2. Power under asymmetry

In this subsection, we compare the power of the different tests for asymmetric distributions.

4.2.1. The generalized lambda family

For historical reasons, we firstly study eight asymmetric distributions already considered by Cabilio and Masaro in [8]. In par-
ticular, those eight distributions are members of the generalized lambda family discussed in [35]. This family is modeled by four 
parameters (𝜆1, 𝜆2, 𝜆3, 𝜆4) and its members are defined in terms of their inverse cumulative distribution function:

𝐹−1(𝑢) = 𝜆1 +
𝑢𝜆3 − (1 − 𝑢)𝜆4

𝜆2
,

for 0 < 𝑢 < 1. The eight considered distributions are listed as types seven to fourteen in [36] and correspond to the combinations of 
parameters shown in Table 2. Note that the first six types of distributions listed in [36] are symmetric and, therefore, not considered 
here.

Table 3 presents the power of the different tests at the eight mentioned members of the generalized lambda distribution. As the 
considered distributions are asymmetric, high powers are expected.

As a first comparative result, it should be pointed out that the power of the symmetry test based on the Bowley skewness 
coefficient 𝛾B at all distributions is much lower than the powers of all other symmetry tests at the same distribution, which reveals a 
suboptimal performance of the former test for detecting asymmetry. Since the distributions have a different type of behavior in terms 
of its asymmetry, for a more detailed comparison of the other symmetry tests we will discuss these distributions in three separate 
groups. The first group will be formed by GLD8, GLD13 and GLD14, whereas the second group will be formed by GLD7, GLD9, 
GLD10 and GLD12. Finally, GLD11 will be studied apart.

For the first group of distributions (GLD8, GLD13 and GLD14), most powers are higher than 0.75 when 𝑛 = 50, 𝑛 = 100 and 𝑛 = 200, 
however the tests based on the octile coefficient 𝛾OCT and the medcouple coefficient 𝛾MC (robust skewness coefficients) lead to powers 
that are a little lower than 0.75. For the smallest sample size 𝑛 = 25, we observe a considerable decrease in power for all tests except 
for the one based on the moment skewness coefficient 𝛾M, whose powers are around 1 for all sample sizes. Note that the two tests 
used for control exhibit a lower power than the tests based on the skewness coefficients 𝛾M, 𝛾NP and 𝛾GM.

For the second group of distributions (GLD7, GLD9, GLD10 and GLD12), we can also highlight the test based on the moment 
skewness coefficient 𝛾M since it obtains the highest powers. On the contrary, some of the other tests do not reject the null hypothesis 
7

of symmetry as many times as they should. For example, at GLD7, the powers range from 0.0534 to 0.1056 when 𝑛 = 25, and from 
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Table 3

Power of the different tests at asymmetric distributions. The three most powerful tests for each distribution and sample size are highlighted in boldface.

Distribution 𝑛 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

GLD7

25 0.2585 0.1056 0.1010 0.0106 0.0935 0.0534 0.1346 0.1355

50 0.5975 0.2485 0.2340 0.0602 0.2315 0.1427 0.2387 0.2514

100 0.9077 0.4273 0.4129 0.1250 0.4238 0.2902 0.4623 0.4867

200 0.9976 0.6839 0.6763 0.2292 0.7041 0.5111 0.7320 0.7411

GLD8

25 0.8351 0.4148 0.4113 0.0351 0.2903 0.1662 0.4124 0.3548
50 0.9927 0.7548 0.7397 0.1612 0.6250 0.3856 0.7491 0.7248

100 1.0000 0.9506 0.9457 0.3363 0.8996 0.6643 0.9719 0.9715

200 1.0000 0.9981 0.9980 0.6201 0.9937 0.9135 0.9995 0.9998

GLD9

25 0.3894 0.1187 0.1199 0.0067 0.0795 0.0381 0.1329 0.1176
50 0.6908 0.3056 0.2976 0.0528 0.2201 0.1160 0.2715 0.2650

100 0.9272 0.5597 0.5506 0.1113 0.4379 0.2345 0.5691 0.5719

200 0.9955 0.8420 0.8366 0.2244 0.7259 0.4466 0.8664 0.8656

GLD10

25 0.5967 0.2185 0.2260 0.0133 0.1323 0.0648 0.2235 0.1841
50 0.8789 0.5007 0.4903 0.0762 0.3293 0.1726 0.4593 0.4336

100 0.9876 0.7995 0.7901 0.1799 0.6325 0.3691 0.8141 0.8080

200 0.9998 0.9732 0.9711 0.3489 0.8995 0.6410 0.9819 0.9815

GLD11

25 0.2097 0.0410 0.0449 0.0038 0.0255 0.0150 0.0477 0.0355
50 0.2550 0.0727 0.0718 0.0196 0.0462 0.0239 0.0657 0.0566

100 0.2676 0.1064 0.1026 0.0362 0.0703 0.0410 0.1107 0.1024
200 0.2929 0.1680 0.1622 0.0468 0.1021 0.0585 0.1672 0.1630

GLD12

25 0.3781 0.1136 0.1250 0.0078 0.0601 0.0302 0.1188 0.0849
50 0.5497 0.2603 0.2562 0.0417 0.1437 0.0741 0.2317 0.1999

100 0.7081 0.4696 0.4544 0.0805 0.2777 0.1420 0.4676 0.4486
200 0.8597 0.7633 0.7520 0.1528 0.5164 0.2891 0.7676 0.7600

GLD13

25 0.9443 0.6180 0.6246 0.0537 0.4334 0.2432 0.6108 0.4539
50 0.9995 0.9186 0.9134 0.2447 0.7809 0.5206 0.9167 0.8817

100 1.0000 0.9960 0.9953 0.4899 0.9772 0.8132 0.9983 0.9977

200 1.0000 1.0000 1.0000 0.7947 0.9996 0.9727 1.0000 1.0000

GLD14

25 0.9500 0.6687 0.6781 0.0702 0.4711 0.2726 0.6581 0.4750
50 0.9995 0.9393 0.9358 0.2651 0.8185 0.5577 0.9394 0.8991

100 1.0000 0.9977 0.9978 0.5308 0.9811 0.8385 0.9988 0.9974
200 1.0000 0.9999 1.0000 0.8286 0.9998 0.9813 1.0000 0.9999

0.5111 to 0.7041 when 𝑛 = 200. Again, we note how sample size largely affects the obtained powers. Note that the two tests used for 
control show an intermediate behavior, exhibiting a lower power than the test based on the moment skewness coefficient 𝛾M but a 
higher power than all other presented tests.

For the GLD11 distribution, the reader may be surprised by the information provided in Table 3, as the powers obtained for this 
distribution are lower than 0.2929 for all sample sizes and tests. However, these results are due to the fact that this distribution is 
just slightly asymmetric.

4.2.2. The Weibull family

Additionally, we explore the power of the tests for varying sample size at the Weibull distribution 𝑊 (𝜆, 𝑘), where 𝜆 is the scale 
parameter and 𝑘 is the shape parameter. Since changes of scale do not affect skewness, we set without loss of generality 𝜆 = 1 and 
simply explore the power of the different tests for varying values of 𝑘 from 0.5 to 5 considering steps of 0.5. Table 4 presents the 
obtained powers for sample sizes 𝑛 = 25 and 𝑛 = 200.

As discussed in [15], the skewness of the Weibull distribution decreases as 𝑘 increases. More precisely, the skewness is clearly 
positive for values of 𝑘 smaller than 3, is close to zero for values of 𝑘 within the interval [3, 4], and is clearly negative for values of 
𝑘 greater than 4. In particular, it is stated in [15] that the value at which the median and the mean coincide (and, thus, the value 
at which the nonparametric skewness coefficient 𝛾NP and the Groeneveld-Meeden skewness coefficient 𝛾GM equal zero) is found 
numerically to be 𝑘 = 3.3125 and the value at which the moment skewness coefficient 𝛾M equals zero is found numerically to be 
𝑘 = 3.6023. These expected results can be confirmed by looking at Table 4, where the power of all tests is initially very high for 
𝑘 = 0.5, quickly decreases as 𝑘 approaches the value 3, and slightly increases again when 𝑘 > 4. It is observed that the symmetry test 
based on the moment skewness coefficient 𝛾M exhibits the highest power at this distribution for all values of 𝑘 and 𝑛.

4.3. Robustness in the presence of outliers

In this subsection, we study the robustness of the different tests in the presence of outliers. For such purpose, we recreate the 
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presence of outliers by considering a Tukey-Huber contamination model (see [39] and [20]). This model assumes that the distribution 
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Table 4

Power of the different tests at the Weibull distribution. The three most powerful tests for each value of the shape parameter 
𝑘 and sample size are highlighted in boldface.

𝑛 𝑘 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

25

0.5 0.9965 0.9537 0.9604 0.3465 0.8892 0.6727 0.9599 0.5126
1.0 0.8950 0.5099 0.5107 0.0412 0.3539 0.2015 0.5041 0.4045
1.5 0.5627 0.1701 0.1725 0.0109 0.1055 0.0554 0.1853 0.1684
2.0 0.2524 0.0591 0.0590 0.0060 0.0429 0.0210 0.0770 0.0748

2.5 0.1100 0.0283 0.0287 0.0036 0.0243 0.0121 0.0460 0.0453

3.0 0.0548 0.0174 0.0178 0.0028 0.0186 0.0085 0.0326 0.0365

3.5 0.0472 0.0137 0.0145 0.0028 0.0145 0.0084 0.0276 0.0293

4.0 0.0608 0.0160 0.0177 0.0021 0.0198 0.0088 0.0330 0.0317

4.5 0.0733 0.0208 0.0212 0.0028 0.0194 0.0088 0.0360 0.0362

5.0 0.0956 0.0233 0.0248 0.0041 0.0246 0.0105 0.0424 0.0415

200

0.5 1.0000 0.9991 1.0000 0.9989 1.0000 0.9998 1.0000 0.9993
1.0 1.0000 0.9998 0.9998 0.7221 0.9993 0.9515 1.0000 1.0000

1.5 1.0000 0.9299 0.9259 0.2658 0.8343 0.5907 0.9544 0.9552

2.0 0.9874 0.5428 0.5354 0.0999 0.3798 0.2332 0.5636 0.5652

2.5 0.7085 0.1847 0.1809 0.0519 0.1286 0.0797 0.1880 0.1927

3.0 0.2228 0.0657 0.0647 0.0357 0.0525 0.0391 0.0664 0.0686

3.5 0.0608 0.0401 0.0394 0.0326 0.0414 0.0303 0.0413 0.0426

4.0 0.1096 0.0596 0.0598 0.0407 0.0569 0.0429 0.0616 0.0659

4.5 0.2574 0.0980 0.0969 0.0438 0.0881 0.0590 0.1010 0.1047

5.0 0.4095 0.1446 0.1430 0.0494 0.1183 0.0726 0.1504 0.1535

Table 5

Power of the different tests at different contaminated distributions for sample size 𝑛 = 25. Values within the 95% confidence 
interval [0.0458, 0.0545] are highlighted in boldface.

Cont. 𝜀 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

(a)

0.00 0.0639 0.0178 0.0180 0.0031 0.0174 0.0092 0.0315 0.0321
0.01 0.0877 0.0185 0.0197 0.0028 0.0177 0.0080 0.0315 0.0285
0.05 0.1528 0.0245 0.0263 0.0028 0.0155 0.0077 0.0341 0.0299
0.10 0.1997 0.0353 0.0369 0.0028 0.0198 0.0109 0.0407 0.0325
0.20 0.2244 0.0374 0.0419 0.0029 0.0196 0.0102 0.0444 0.0316

(b)

0.00 0.0656 0.0158 0.0158 0.0031 0.0183 0.0073 0.0285 0.0305
0.01 0.0915 0.0179 0.0208 0.0037 0.0161 0.0086 0.0380 0.0300
0.05 0.1805 0.0232 0.0383 0.0030 0.0167 0.0092 0.0618 0.0270
0.10 0.2582 0.0340 0.0563 0.0031 0.0169 0.0088 0.0876 0.0265
0.20 0.3653 0.0556 0.1002 0.0029 0.0178 0.0112 0.1482 0.0258

(c)

0.00 0.0665 0.0170 0.0173 0.0030 0.0154 0.0088 0.0313 0.0323
0.01 0.1476 0.0257 0.0286 0.0032 0.0192 0.0095 0.0365 0.0307
0.05 0.4738 0.1058 0.1143 0.0047 0.0352 0.0184 0.1084 0.0741
0.10 0.7436 0.2698 0.2903 0.0097 0.1358 0.0515 0.2755 0.2178
0.20 0.7629 0.5590 0.5828 0.0619 0.4604 0.2160 0.5912 0.5333

function 𝐹 of the contaminated distribution is given by 𝐹 = (1 −𝜀) 𝐺+𝜀 𝐻 , where 𝐺 is the distribution function of the uncontaminated 
distribution, 𝐻 is the distribution function of the contamination model and 0 ≤ 𝜀 < 1 is a small value representing the probability 
that a single observation is contaminated. For control, we set the uncontaminated distribution to be the standard normal distribution 
and vary the contamination model to be (a) a normal distribution with mean zero and standard deviation three (as in [8]); (b) a 
standard Cauchy distribution; (c) a normal distribution with mean five and standard deviation one. Note that the first two resulting 
contaminated distributions are symmetric (the second one being heavy-tailed), whereas the third resulting contaminated distribution 
is slightly asymmetric. Therefore, we expect the power to be similar to the significance level at the first two distributions, whereas 
the power at the third distribution shall be close to the significance level for robust tests but large for tests that are sensitive to 
outliers. We explore varying values of 𝜀, and restrict to 𝑛 = 25 (see Table 5) and 𝑛 = 200 (see Table 6).

On the one hand, the first five rows of both tables make reference to the (symmetric) distribution (a), in which no big differences 
can be appreciated for each sample size when increasing 𝜀. In particular, all tests keep the power under the significance level 𝛼, 
except for the test based on the moment skewness coefficient 𝛾M for which values up to 0.22 (𝑛 = 25) and 0.13 (𝑛 = 200) are obtained 
when 𝜀 = 0.2. A comparison of the powers of every test for both sample sizes reveals that all powers are closer to the significance 
level when 𝑛 increases.

On the other hand, considering now the (symmetric) distribution (b), we notice that some tests do not succeed at maintaining the 
significance level 𝛼, specially the one based on the moment skewness coefficient 𝛾M, since as has been explained in Subsection 4.1
the mean is not defined for the Cauchy distribution. In addition, we note significant differences between both tables because powers 
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are, generally, greater for large values of 𝑛 (i.e., in Table 6) since the presence of Cauchy tails becomes more patent as the sample 
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Table 6

Power of the different tests at different contaminated distributions for sample size 𝑛 = 200. Values within the 95% confidence 
interval [0.0458, 0.0545] are highlighted in boldface.

Cont. 𝜀 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

(a)

0.00 0.0673 0.0412 0.0408 0.0363 0.0419 0.0324 0.0414 0.0415
0.01 0.0755 0.0461 0.0456 0.0372 0.0417 0.0332 0.0453 0.0460

0.05 0.1481 0.0455 0.0430 0.0323 0.0392 0.0285 0.0446 0.0459

0.10 0.1540 0.0469 0.0445 0.0346 0.0369 0.0303 0.0463 0.0449
0.20 0.1305 0.0475 0.0470 0.0332 0.0373 0.0304 0.0501 0.0476

(b)

0.00 0.0700 0.0369 0.0364 0.0319 0.0429 0.0304 0.0387 0.0407
0.01 0.1391 0.0491 0.0456 0.0327 0.0438 0.0320 0.0645 0.0426
0.05 0.3558 0.0824 0.0735 0.0328 0.0421 0.0328 0.1391 0.0444
0.10 0.4479 0.0994 0.1000 0.0319 0.0417 0.0284 0.2122 0.0439
0.20 0.4503 0.1346 0.1523 0.0322 0.0405 0.0307 0.3093 0.0597

(c)

0.00 0.0684 0.0427 0.0427 0.0364 0.0404 0.0345 0.0434 0.0443
0.01 0.4099 0.0886 0.0826 0.0308 0.0420 0.0331 0.0829 0.0838
0.05 0.9954 0.6845 0.6692 0.0430 0.0955 0.0675 0.6744 0.6640
0.10 1.0000 0.9832 0.9819 0.0772 0.3048 0.2448 0.9842 0.9819
0.20 1.0000 1.0000 1.0000 0.3170 0.9967 0.9118 1.0000 1.0000

size increases. Additionally, it is necessary to mention that the tests based on robust coefficients such as 𝛾B, 𝛾OCT and 𝛾MC succeed 
in maintaining the significance level 𝛼, independently of the value of 𝜀. It should be mentioned that, among the two tests used for 
control, the Cabilio and Masaro test (CM) does not succeed in maintaining the significance level whereas the Miao, Gel and Gastwirth 
test (MGG) does succeed in maintaining the significance level.

Finally, considering now the (asymmetric) distribution (c), we clearly observe that all powers considerably increase when increas-
ing the probability of contamination 𝜀. As can be seen in Table 6, except for the test based on the Bowley skewness coefficient 𝛾B, all 
powers are near 1 when considering 𝜀 = 0.2 and 𝑛 = 200, which points out that the null hypothesis of symmetry is clearly rejected. 
If we consider lower values of 𝜀 instead, the power of all tests decreases and the rejection of the null hypothesis is actually not so 
strong for some of the tests. For instance, tests based on robust skewness coefficients (such as 𝛾B, 𝛾OCT and 𝛾MC) must be mentioned 
as they are not so sensitive to the outliers and do not reject the null hypothesis of symmetry for small values of 𝜀 (and in those cases 
all powers are closer to the significance level 𝛼). For example, when 𝜀 = 0.05 and 𝑛 = 200, these tests attain powers ranging from 
0.043 (for 𝛾B) to 0.0955 (for 𝛾OCT) while all other tests attain a power of at least 0.6, even 0.99 for the one based on the moment 
skewness coefficient 𝛾M. In case 𝑛 = 25 (shown in Table 5), for almost all tests the powers are close to the significance level 𝛼 when 
𝜀 ≤ 0.01 and considerably greater than the significance level 𝛼 when 𝜀 ≥ 0.1. For the case 𝜀 = 0.05, all tests based on robust skewness 
coefficients have a power that is close to the significance level 𝛼, whereas all other tests lead to a higher power. It must be remarked 
that the test based on the medcouple skewness coefficient 𝛾MC succeeds in maintaining the significance level up to a percentage of 
contamination of 𝜀 = 0.1, whereas the test based on the Bowley skewness coefficient 𝛾B succeeds in maintaining the significance level 
up to a percentage of contamination of 𝜀 = 0.2.

In summary, depending on the test used, the presence of outliers will have a different influence on the decision of rejecting 
or maintaining the null hypothesis of symmetry. More precisely, tests based on non-robust skewness coefficients will detect the 
asymmetry for small values of 𝜀 and 𝑛, whereas tests based on robust skewness coefficients will tend to maintain the null hypothesis 
of symmetry even for large values of 𝜀 or 𝑛. It thus remains as a personal decision for the user whether to consider robust or 
non-robust skewness coefficients.

5. Final considerations on the bootstrap

5.1. Number of bootstrap replications

Almost all of the presented tests positioned favorably with respect to the Cabilio and Masaro test [8] when considering its 𝑚-
out-of-𝑛 bootstrap counterpart implemented in the R package lawstat [23]. Interestingly, the Miao, Gel and Gastwirth test [29] (also 
considering its 𝑚-out-of-𝑛 bootstrap counterpart implemented in the R package lawstat [23]) exhibited an intermediate behavior
among the here-presented tests as it succeeded at maintaining the significance level at all symmetric distributions, led to a moderate 
power at asymmetric distributions and exhibited certain robustness in the presence of outliers. The main difference between the 
Cabilio and Masaro and the Miao, Gel and Gastwirth tests and the tests presented in this paper is that the former do not rely on 
an asymptotic distribution but, instead, rely more strongly on the bootstrap estimation. In this direction, one may note that the 
here-presented tests only consider the bootstrap for the estimation of a parameter and still behave reasonably in case the number of 
bootstrap replications is greatly reduced (e.g., 𝐵 = 10). On the contrary, the Cabilio and Masaro test and the Miao, Gel and Gastwirth 
test are no longer able to maintain the significance level in such case under the null hypothesis of symmetry, as can be seen in 
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Table 7.
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Table 7

Power of the different tests at symmetric distributions when 𝐵 = 10. Values within the 95% confidence interval [0.0458, 0.0545]
are highlighted in boldface.

Distribution 𝑛 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC CM MGG

Normal

25 0.1079 0.0460 0.0453 0.0265 0.0482 0.0372 0.1793 0.2003
50 0.1183 0.0590 0.0573 0.0445 0.0583 0.0437 0.1774 0.1997

100 0.1076 0.0676 0.0669 0.0583 0.0673 0.0547 0.1768 0.1912
200 0.0978 0.0708 0.0700 0.0642 0.0661 0.0634 0.1827 0.1875

Cauchy

25 0.4303 0.1867 0.2408 0.0393 0.0928 0.0525 0.4593 0.2037
50 0.4316 0.2037 0.2492 0.0573 0.0943 0.0593 0.5343 0.2200

100 0.4380 0.2014 0.2351 0.0666 0.0933 0.0630 0.5410 0.1860
200 0.4328 0.1996 0.2285 0.0696 0.0885 0.0635 0.5246 0.1674

Logistic

25 0.1592 0.0481 0.0489 0.0231 0.0456 0.0336 0.1739 0.1945
50 0.1609 0.0622 0.0607 0.0406 0.0573 0.0458 0.1712 0.1947

100 0.1442 0.0671 0.0654 0.0553 0.0660 0.0563 0.1830 0.1869
200 0.1303 0.0693 0.0688 0.0643 0.0704 0.0590 0.1871 0.1886

Laplace

25 0.2092 0.0668 0.0670 0.0320 0.0547 0.0384 0.1901 0.1883
50 0.1973 0.0705 0.0712 0.0469 0.0668 0.0439 0.1862 0.1865

100 0.1809 0.0757 0.0763 0.0595 0.0757 0.0538 0.1948 0.1903
200 0.1466 0.0810 0.0803 0.0657 0.0775 0.0595 0.1976 0.1896

Uniform

25 0.0650 0.0621 0.0592 0.0306 0.0623 0.0484 0.2111 0.2489
50 0.0745 0.0841 0.0794 0.0546 0.0801 0.0645 0.2082 0.2536

100 0.0788 0.0862 0.0833 0.0629 0.0827 0.0760 0.1998 0.2204
200 0.0787 0.0872 0.0853 0.0716 0.0850 0.0812 0.1965 0.2019

5.2. Type of bootstrap

In all previous experiments the most basic bootstrap has been considered for the estimation of the asymptotic variance of the 
skewness coefficient. In this section, we explore two alternative types of bootstrap for some selected distributions and sample sizes. 
In particular, we follow the spirit of [9] and, instead of resampling from the original sample 𝐱, we resample from the symmetrized 
sample 𝐱′ = (𝐱, 2𝐱 − 𝐱), where 𝐱 denotes the arithmetic mean of 𝐱. In this way, we assure ourselves that we are computing the 
distribution of the test statistic under the null hypothesis. More specifically, we consider a symmetrized version of the bootstrap 
presented in this paper for computing the asymptotic variance of the skewness coefficient while still considering its asymptotic 
distribution and, additionally, we simply consider the classical bootstrap for the estimation of the whole distribution of the test 
statistic.

The obtained results are presented in Table 8. On the one hand, we have considered two symmetric distributions (normal and 
uniform). It can be seen that the basic bootstrap leads to powers that are closer to the significance level than the other two types 
of bootstrap. On the other hand, we have considered two asymmetric distributions (GLD7 and GLD8). It can be seen that the basic 
bootstrap leads to powers that are higher than the other two types of bootstrap, specially for small sample sizes. Overall, the use of 
the basic bootstrap is slightly encouraged over the two other alternatives.

6. Conclusions and future work

In this paper, six tests of symmetry based on the asymptotic distribution of a skewness coefficient have been presented. Exper-
imental results have shown that the test based on the moment skewness coefficient 𝛾M exhibits the highest power at asymmetric 
distributions, yet it does not succeed in maintaining the significance level at some symmetric distributions such as Student’s t distri-
butions with 1 (Cauchy), 2 and 3 degrees of freedom. The tests based on both the nonparametric skewness coefficient 𝛾NP and the 
Groeneveld-Meeden skewness coefficient 𝛾GM also exhibit a high power at asymmetric distributions, and only fail to maintain the 
significance level at the Cauchy distribution among all analyzed symmetric distributions (also noting a slightly greater power at the 
Student’s t distribution with 2 degrees of freedom for the test based on the nonparametric skewness coefficient 𝛾NP). On the contrary, 
tests based on robust skewness coefficients such as the Bowley skewness coefficient 𝛾B, the octile skewness coefficient 𝛾OCT and the 
medcouple skewness coefficient 𝛾MC typically succeed at maintaining the significance level at symmetric distributions, but exhibit 
a lower power at asymmetric distributions. It should be borne in mind that the latter tests are also more robust, meaning that they 
will tend to maintain the significance level in the presence of a small number of outliers, even when those outliers are only present 
at one of the tails of the distribution (thus making the distribution slightly asymmetric).

Overall, it remains a personal decision for the user to consider a skewness coefficient that will result in a greater power at 
asymmetric distributions or, on the contrary, a skewness coefficient that will succeed at maintaining the significance level at heavy-
tailed symmetric distributions and/or contaminated symmetric distributions. In case the former goal is favored, the user should 
resort to the test based on the moment skewness coefficient 𝛾M, whereas in case the latter goal is favored the user should resort to 
the test based on the octile skewness coefficient 𝛾OCT. In any case, the use of the test based on the Bowley skewness coefficient 𝛾B is 
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discouraged since it is clearly less powerful than all the other five presented tests at all studied asymmetric distributions.
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Table 8

Comparison of the different types of bootstrap at selected distributions and sample sizes. For the normal and uniform dis-
tributions, values within the 95% confidence interval [0.0458, 0.0545] are highlighted in boldface. For the GLD7 and GLD8 
distributions, the type of bootstrap leading to the most powerful test for each distribution, skewness coefficient and sample size 
are highlighted in boldface.

Distribution 𝑛 Type 𝛾M 𝛾NP 𝛾GM 𝛾B 𝛾OCT 𝛾MC

Normal

25
Basic 0.0652 0.0174 0.0167 0.0036 0.0169 0.0086
Symmetrized 0.0156 0.0035 0.0062 0.0067 0.0100 0.0044
Classical 0.0158 0.0066 0.0102 0.0102 0.0145 0.0080

200
Basic 0.0654 0.0420 0.0414 0.0363 0.0425 0.0330
Symmetrized 0.0457 0.0233 0.0245 0.0257 0.0329 0.0200
Classical 0.0485 0.0307 0.0319 0.0291 0.0363 0.0253

Uniform

25
Basic 0.0308 0.0248 0.0235 0.0038 0.0269 0.0134
Symmetrized 0.0315 0.0050 0.0068 0.0051 0.0111 0.0056
Classical 0.0342 0.0130 0.0186 0.0094 0.0186 0.0091

200
Basic 0.0494 0.0521 0.0502 0.0391 0.0535 0.0463

Symmetrized 0.0512 0.0259 0.0267 0.0286 0.0347 0.0224
Classical 0.0452 0.0297 0.0305 0.0294 0.0369 0.0256

GLD7

25
Basic 0.2585 0.1056 0.1010 0.0106 0.0935 0.0534

Symmetrized 0.1908 0.0276 0.0422 0.0063 0.0346 0.0135
Classical 0.1906 0.0528 0.0723 0.0100 0.0575 0.0256

200
Basic 0.9976 0.6839 0.6763 0.2292 0.7041 0.5111
Symmetrized 0.9959 0.6904 0.6941 0.1724 0.6934 0.4856
Classical 0.9965 0.7051 0.7089 0.1803 0.7056 0.5119

GLD8

25
Basic 0.8351 0.4148 0.4113 0.0351 0.2903 0.1662

Symmetrized 0.3777 0.1275 0.2184 0.0048 0.1170 0.0402
Classical 0.4920 0.1669 0.2771 0.0090 0.1757 0.0612

200
Basic 1.0000 0.9981 0.9980 0.6201 0.9937 0.9135
Symmetrized 0.9966 1.0000 1.0000 0.5839 0.9983 0.9433
Classical 0.9983 0.9996 0.9996 0.6053 0.9981 0.9529

As future work, the authors highlight the study of tests of symmetry based on different skewness coefficients belonging to the 
class introduced by Hinkley [18] in which a parameter 𝑝 ∈]0, 0.5[ models the robustness of the skewness coefficient in the presence 
of outliers. As it has already been discussed, both the Bowley skewness coefficient (𝑝 = 0.25) and the octile skewness coefficient 
(𝑝 = 0.125) belong to this class. Since both skewness coefficients exhibit a very different behavior, it becomes natural to study, as 
a function of 𝑝, the performance of the symmetry tests associated with skewness coefficients belonging to the class introduced by 
Hinkley.
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