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A B S T R A C T   

This paper studies the influence of spatial spillovers on energy intensity growth and convergence across 153 
countries from 1999 to 2018. The inclusion of spatially lagged variables allows the study of the influence of 
trade, technological diffusion and policy mimicry on these two processes. Contrary to previous literature, we 
consider different spatial specifications and weight matrices to test whether spatial spillovers are exogenous or 
endogenous, as well as their range of influence. Our study finds the spatial lag of X model (SLX), with local 
spatial weight matrices, fits better to the data. Convergence is found for the world as a whole, conditional to the 
spatial distribution of countries and several long-term economic characteristics. In this sense, clusters of nearby 
countries present higher rates of convergence. Besides, domestic capital accumulation, total factor productivity 
growth and renewable energy consumption significantly determine the characteristics of clubs of convergence. 
Furthermore, spatial spillovers associated to capital accumulation, population growth and renewable energy 
consumption also contribute to the definition of these clubs.   

1. Introduction 

The last sixth assessment report on climate change of the IPCC (IPCC, 
2021) calls again for immediate action to avoid the excessive long-term 
costs associated with unpredictable and extreme natural phenomena. 
Human action relates to global warming through anthropogenic GHG 
emissions, which have likely increased the global temperature by >1 ◦C 
with respect to the 1850–1900 period, and under all scenarios, the 
temperature reaches the level of a 2 ◦C increase by the end of the XXI 
century. Moreover, climate change seems to have accelerated in recent 
decades, likely due to a feedback effect existing between the short-term 
effects of global warming, which seem to diminish the effectiveness of 
land and ocean carbon sinks, and the global temperature. One of the 
major conclusions is the need for net zero CO2 emissions, and to reach 
this goal, policymakers must pay attention to energy consumption, since 
it is the major driver of carbon emissions (The World Bank, 2021). 

To achieve the objective of net zero CO2 emissions related to energy 
consumption, two possibilities emerge: substitution by nonpolluting 
sources and improvements in energy efficiency levels. At an aggregate 
level, the latter measures technical innovations in the quality of energy 
flows and/or more efficient production processes in other sectors that 
lead to lower gross energy consumption. Moreover, endogenous changes 
in productivity can be linked to shifts in the demand for substitute 

goods, and vice versa, as posed by models such as those of “directed 
technical change” (e.g., Acemoglu, 2002; Eriksson, 2018), thus studying 
the evolution of energy intensity (a proxy for energy inefficiency) is very 
likely to explain the long-term sustainability of modern economies. 
Besides, previous works have also found a strong and positive correla-
tion between levels of energy intensity and CO2 emissions (Cole and 
Neumayer, 2004; Poumanyvong and Kaneko, 2010; Du et al., 2012; Liu 
et al., 2015; Wang et al., 2017; Balado-Naves et al., 2018; Danish, 2020). 

According to the available data from the World Development In-
dicators Database (The World Bank, 2021) and the Energy Statistics 
Database (United Nations Statistics Division, 2018), the 1999–2018 
period presents a steady decrease in worldwide energy intensity levels 
(see Fig. 1). Knowing whether this pattern is driven only by “clubs” of 
countries is important for long-term sustainability and supranational 
policies, such as the EU Emissions Trading System, given that it might 
change as less developed countries intensify their energy consumption 
due to strong industrialization processes. Herrerias (2012), for instance, 
stresses the importance of achieving international agreements between 
developing and developed countries that will foster environmentally 
friendly institutions and technological diffusion. 

Moreover, the existence of convergent paths in energy intensity 
levels allows the use of energy intensity growth as a proxy variable of 
how well the world as a whole is dealing with climate change (Mielnik 
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and Goldemberg, 2000). In this sense, Duro et al. (2010) find strong 
evidence that energy intensity convergence drives energy consumption 
convergence for OECD countries. Therefore, if countries converge in 
their patterns of energy consumption, forecasts on the effect of new 
regulations or public policies directed to control excessive consumption 
will gain superior accuracy. For all these reasons, the study of worldwide 
energy intensity convergence is crucial for policymaking aimed at 
environmental sustainability. 

Energy intensity convergence studies can be divided into two major 
branches. The first one stems from seminal works on per capita income 
β-convergence (Barro, 1991; Barro and Sala-i-Martin, 1992), which tests 
the existence of a “catch-up” phenomenon across countries in terms of 
energy intensity growth rates. That is, countries presenting initial low 
levels of energy intensity are expected to grow faster (at a decreasing 
rate) than energy-intensive economies. Most of these studies focused on 
OECD countries, considering periods of time within the interval 
1970–2010, and finding favorable and strong support in favor of con-
ditional β-convergence (Miketa and Mulder, 2005; Markandya et al., 
2006; Mulder and De Groot, 2007; Mulder and De Groot, 2012; Liddle, 
2010, 2012; Voigt et al., 2014; Csereklyei et al., 2016). 

The second branch focuses on σ-convergence and time-series ana-
lyses, as well as nonparametric techniques aimed at tackling Galton’s 
Fallacy, which is likely to appear in β-convergence analyses given the 
expected emergence of multimodal distributions, as emphasized in Quah 
(1993, 1996). These works find mixed results compared to β-conver-
gence estimations (Le Pen and Sévi, 2010; Kiran, 2013; Apergis and 
Christou, 2016; Bulut and Durusu-Ciftci, 2018), absolute convergence 
between developing and developed countries (Nielsson, 1993; Gold-
emberg, 1996), and conditional convergence towards different clubs 
(Ezcurra, 2007; Duro et al., 2010; Herrerias, 2012). 

As aforementioned, previous works have already found strong evi-
dence of the existence of clubs of convergence on energy intensity. 
Nevertheless, the spatial dimension of this issue has been widely 
ignored. For instance, Miketa and Mulder (2005) comment on the need 
to explore worldwide technological diffusion since technological change 
is a major source of energy-productivity growth, while Liddle (2010) 
detects geographical barriers determining convergence in energy in-
tensity within clubs of countries. In addition, Mussini (2020) poses that 
policymakers may be interested in the geographical space where energy 
intensity convergence takes place, which ``is especially true for coun-
tries that are members of an international organization, such as the EU, 
in which regional groups of countries with initially different levels of 

energy intensity are present”. 
Spatial clubs of convergence may emerge due to different reasons. 

Since trade profits are strongly constrained by distance costs (e.g., 
Hummels, 1999; Nitsch, 2000; Head and Mayer, 2002; Berthelon and 
Freund, 2008), bordering countries are expected to present more 
intensive trade relationships. In this sense, trade may foster productivity 
in domestic firms due to harsher international competition (Eaton and 
Kortum, 2002; Melitz, 2003), as well as incentivize the specialization in 
energy-intensive industries (Mulder and De Groot, 2012), leading to 
changes in country energy intensity levels (e.g., Adom and Kwakwa, 
2014; Pan et al., 2019; Chen et al., 2022). Furthermore, geographical 
proximity increases the likelihood of receiving and adopting foreign 
technological spillovers due to capital accumulation externalities (Ertur 
and Koch, 2007), as well as adopting new regulation and policies 
affecting energy efficiency (Sun et al., 2022). 

To our knowledge, there are few works of energy intensity 
β-convergence controlling for spatial spillovers. Yu (2012), Huang et al. 
(2017), and Jiang et al. (2018) focus their analysis on Chinese provinces, 
while Adhikari and Chen (2014) consider several Asian countries, and 
Wan et al. (2015) analyze energy productivity convergence for EU 
countries. All these works find strong evidence in favor of spatial 
correlation. 

Moreover, we have only found three studies applying this method-
ology for a large set of countries. On the one hand, Mulder et al. (2011) 
employ a panel dataset of 102 countries between 1971 and 2001, finding 
a significant spatial correlation. Yet, their estimations focus on simple 
spatial models, such as the spatial autoregressive and error specifica-
tions, overlooking the existence of spatial spillovers associated with 
variables such as technical progress or saving rates. On the other hand, 
Csereklyei and Stern (2015) only consider a spatial filter for 93 countries 
between 1971 and 2010, assuming that spatial spillovers are insuffi-
ciently justified in this context. Therefore, their study does not include 
estimates of the impact of neighboring economic agents on domestic 
energy intensity growth and convergence. Finally, Lee and Park (2022) 
study energy intensity convergence for 61 countries between 1974 and 
2019. However, their approach omits the employment of the complete 
set of spatial specifications, focusing only on models that assume the 
existence of endogenous and global spillovers. 

Therefore, as Wan et al. (2015) point out for sector-based studies, 
there is a lack of studies at a worldwide scale analyzing the importance 
of spatial spillovers in the evolution of cross-country differences in en-
ergy intensity levels. The main purpose of the present paper is to fill this 
gap. We thus extend this empirical literature by considering both global 
and local spatial models, employing several spatial weights matrices to 
test for different degrees of spatial correlation, and using the largest 
available dataset of countries with explanatory variables associated with 
the scale, composition, and technical characteristics of economies for 
the period 1999–2018. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the methods of study, the specifications for regressions and data. 
Section 3 features the results from the β-convergence analyses. Section 4 
presents the main conclusions. 

2. Materials and methods 

2.1. Energy intensity β-convergence considering spatial spillovers 

As stated earlier, the β-convergence approach seeks to test whether 
countries with initial differences in energy intensity levels tend to 
reduce the gap due to initial differences in convergent growth rates 
(absolute convergence), or rather converge to a stable gap determined 
by differences in the long-term characteristics of economies (conditional 
convergence) (Miketa and Mulder, 2005). Furthermore, absolute 
β-convergence is a necessary and sufficient condition for σ-convergence 
(the standard deviation of energy intensity tends to zero), while condi-
tional β-convergence is only a necessary condition (if differences in the 

Fig. 1. Evolution of interquartile average energy intensity (logarithm of MJ/ 
$2011 PPP GDP): 1999–2018. 
Notes: Q1, Q2 and Q3 are the first, second and third quartiles respectively. Data 
sources: see Section 2.4. Elaborated by the authors. 
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long-term characteristics of economies remain strong, the standard de-
viation of energy intensity tends to a positive value).1 

According to previous literature considering spatial spillovers 
(Mulder et al., 2011; Yu, 2012; Wan et al., 2015; Jiang et al., 2018), the 
spatial models that have been already considered are the SAR (Spatial 
Autoregressive Model), SEM (Spatial Error Model) and the SDEM 
(Spatial Durbin Error Model). The first one controls for endogenous and 
global spillovers, which imply that all areas will also be affected by 
changes in those regions that have not been defined as direct neighbors, 
as well as the emergence of feedback effects (LeSage, 2014); the second 
one only takes into account the existence of global diffusion of shocks to 
the model disturbances (not treated as local spillovers); and the latter 
controls for exogenous and local spillovers, meaning that changes in 
domestic explanatory variables will only impact on direct neighbors 
with no rebound effects. 

To confirm what type of spatial spillover prevails, we decide to es-
timate the SARAR2 (Spatial Autoregressive Model with Autoregressive 
Errors), SDM (Spatial Durbin Model) and SDEM general specifications, 
as well as their nested models. Due to the lack of space, in this section we 
only present the functional form of a general nesting spatial model for 
energy intensity β-convergence. 

ln(EIit/EIit− s)

S
= μi + b1lnEIit− s + b2

∑N

j=1
wijlnEIjt− s

+
∑K

v=1
ξvxivt− s +

∑K

v=1

∑N

j=1
θvwijxjvt− s

+ρ
∑N

j=1
wij

ln
(
EIjt− s

/
EIjt− s

)

S
+ λ

∑N

j=1
wijujt + vit

(1)  

where ln(EIit/EIit− s)/S is the growth rate of energy intensity in country i 
between time t and t − s for interval S; μi are the country fixed effects; b1 
is the coefficient associated to the natural logarithm of domestic energy 
intensity lnEIit− s; b2 is the coefficient associated to the spatially lagged 
term of neighbors’ energy intensity wijlnEIjt− s, with wij ∈ [0, 1] as the ij 
element of the row-standardized W spatial weights matrix; ξv are the 
parameters associated to the K remaining exogenous variables xivt− s, and 
θv are the parameters associated to the spatial lags explanatory variables 
wijxjvt− s; ρ is the parameter associated to spatially lagged neighboring 
growth rates of energy intensity wijln

(
EIjt/EIjt− s

)/
S. Finally, the error 

term is divided into two parts: the spatial autocorrelation part, with λ as 
the parameter controlling for the potential existence of spatial correla-
tion among spatially lagged neighboring residuals wijujt, and the pure 
random part, with the idiosyncratic error term vit. 

From (1), different nested models emerge (see Halleck Vega and 
Elhorst, 2015). If θv = 0, the SARAR specification is true; if λ = 0, the 
SDM is true; if ρ = 0, the SDEM is true. At a lower level, we find the 
additional nested spatial models: if θv = 0 and λ = 0, the SAR is true; if 
θv = 0 and ρ = 0, the SEM is true; and if λ = 0 and ρ = 0, the Spatial Lag 
of X model (SLX) is true. 

According to LeSage and Pace (2009) and Halleck Vega and Elhorst 
(2015), when endogenous spatial interactions arise (ρ ∕= 0), the total 
effect of an explanatory variable is computed according to the average of 
the row sums from the following matrix 

∂ln(EIt/EIt− s)/S
∂xvt− s

= (I − ρW)
− 1
(Iξv +Wθv) (2)  

where I is an identity matrix. On the contrary, when exogenous spatial 
interactions are the only relevant spillovers, total effects from an 
explanatory variable are 

∂ln(EIt/EIt− s)/S
∂xvt− s

= ξv +
∑N

j=1
wijθv (3)  

which is a special case of (2) when ρ = 0. 
Since the rate of convergence is implied in the estimated coefficient 

of lnEIit− s, as in Mulder and De Groot (2007, 2012) and Jiang et al. 
(2014), conditional β-convergence regressions with spatial spillovers 
must present a modified rate of convergence β = − ln(1 + γ)/S, where γ 
is now the total effect associated to lnEIit− s. In the simplest case of 
exogenous spatial interactions (SDEM and SLX specifications), this can 
be written as 

β = − ln

⎛

⎜
⎜
⎜
⎜
⎝
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wijb2
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/

S (4)  

where b1 and b2 are the coefficients associated with domestic and 
neighboring initial levels of energy intensity. When endogenous spatial 
interactions arise (SARAR, SDM and SAR specifications), γ then equals 
the average of the row sums from matrix (I − ρW)

− 1
(Ib1 + Wb2), similar 

to (2). 
Having set the general nesting spatial specification for our estima-

tions, the main hypotheses that we test are:  

I. β > 0: Countries converge in terms of energy intensity.  
II. For β > 0, if ξv ∕= 0: Convergence is conditional to the domestic 

steady state or long-term equilibrium of economies.  
III. For β > 0, if ρ ∕= 0 and/or b2 ∕= 0 and/or θv ∕= 0: Convergence is 

conditional to the spatial distribution of countries. As highlighted 
in Wan et al. (2015), the effect of geography on convergence rates 
is likely to be a consequence of more intense trade relationships 
between nearby countries 

2.2. Control variables of conditional convergence 

According to (1), we include several exogenous variables to control 
for economic differences across countries, which are very likely to in-
fluence rates and significance of convergence.  

• Capital substitution and the embodiment hypothesis. 
Ratio between gross investment and capital stock (lnIK): This 

ratio tries to capture the turnover rate of physical capital as in 
Metcalf (2008). Higher ratios are expected to imply a faster 
replacement of old equipment for newer and more efficient gear 
leading to a decay in energy intensity growth. 

Saving rates (s): Related to the former, and as in Miketa and 
Mulder (2005) and Mulder and De Groot (2007), the share of gross 
investment over aggregate GDP is included to test the embodiment 
hypothesis, which poses that the role of technical progress is partially 
considered in the value of new vintages of capital stock (Mulder 
et al., 2003). If new vintages of capital stock foster more efficient 
production processes, then we should expect a negative relationship 
between saving rates and energy intensity growth in the case of good 
possibilities of substitution. 

Capital stock per capita (lnk): Capital stock has been argued to be 
a likely substitute for energy (Thompson and Taylor, 1995; Metcalf, 
2008), thus we expect that higher capital per person can lead to 
slower or even negative growth rates of energy intensity.  

• Scale effects. 
Population growth (gL): According to Metcalf (2008), countries 

with fast population growth rates can "be less efficient in their use of 
energy if their capital investment does not keep pace with growth (e. 
g., traffic congestion)”. Additionally, Herrerias (2012) finds that 
energy intensity convergence is more significant after controlling for 

1 See Barro and Sala-i-Martin (2004) for a comprehensive theoretical and 
empirical justification.  

2 See Kelejian and Prucha, 2010. 
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population. Therefore, we include this variable to test whether its 
inclusion leads to faster or slower growth rates of energy intensity.  

• Technical progress, composition and structural change effects. 
Total factor productivity (TFP) growth (gA): If TFP can be 

measured as a composite of different innovations at a micro level, as 
assumed in some models of endogenous growth (e.g., Romer, 1990; 
Howitt and Aghion, 1998), both aggregate and disaggregated tech-
nological progress should be correlated. If aggregate technical 
change is driven by efficiency-improving ideas, we must expect a 
negative relationship between aggregate technical progress and en-
ergy intensity growth. 

Renewable energy share (RE): Changes in the energy mix have 
previously been observed to be a strong determinant for reductions 
in energy intensity levels (Cleveland et al., 2000; Kaufmann, 2004). 
Moreover, Miketa and Mulder (2005) employ this factor as a control 
variable to test the existence of conditional β-convergence in the 
energy intensity for manufacturing industries, finding contradictory 
results in terms of the sign and statistical significance for a few sec-
tors. We include this variable to control for specific technical change 
in the energy sector. If renewable sources are more efficient, shifts in 
the energy mix are expected to lead to lower energy intensity growth 
rates. 

Services sector share (SVC): According to Schäfer (2005), the net 
contribution of sectoral shifts to changes in worldwide energy in-
tensity levels accounts for a scarce 5%. Nevertheless, it is still sig-
nificant and negative as economies progress towards the tertiary 
sector. In addition, despite Mulder and De Groot (2012) find strong 
evidence in OECD countries of the services sector facing sustained 
decreases in energy intensity levels, they show that aggregate 
convergence patterns are weakly related to convergent structural 
transformations across countries. Therefore, we include the share of 
the added value of the services sector with respect to GDP as a 
control variable for β-convergence regressions.  

• Institutional quality. 
Rule of Law perception (ROL): Past developments in economic 

growth modeling have hypothesized the importance of efficient 
institutional frameworks (inclusive political and economic rules) in 
the long-term accumulation of capital stock per effective worker as 
well as in the generation of new ideas and techniques (e.g., Ace-
moglu, 2005, 2006). Nevertheless, among empirical researchers (e. 
g., Gyimah-Brempong and Dapaah, 1996; Acemoglu et al., 2001; 
Knutsen, 2013), there is no strong consensus that supports the exis-
tence of the aforementioned negative correlation. Glaeser et al. 
(2004) find this relationship weak, as well as detect likely causality 
in the opposite direction. Regarding studies of β-convergence in 
energy intensity, we only find that Markandya et al. (2006) takes into 
consideration the role of institutions in analyzing the correlation 
between the estimated speed of convergence of European transition 
countries with respect to the EU average, here controlling for insti-
tutional variables such as the quality of the competition policy 
enforced on markets or the degree of privatization among firms. 
Their results point towards a positive and statistically significant 
relationship; thus, better institutions proxied through the quality of 
the rule of law should imply faster convergence.  

• Spatial spillovers: technical spillovers and policy mimicry. 
The inclusion of spatial lags on explanatory variables seeks to 

capture the different sources of technical spillovers that have pre-
viously been argued to be potential determinants of domestic 
development on energy-saving improvements (Bosetti et al., 2008; 
Hall and Helmers, 2013; Verdolini and Galeotti, 2011). These spill-
overs may arrive embodied in imported capital goods (WlnIK, Wlnk), 
foreign investment (Ws), changes in the transboundary movement of 
the labor force (WgL) or disembodied in patents associated with more 
efficient productive processes at an aggregate level (WgA) and the 
energy mix (WRE). Moreover, changes in worldwide patterns of 
trade and sectoral specialization (WSVC) can also lead to shifts in 

energy productivity levels across firms. According to Keller (2002, 
2004), geographical space is a relevant constraint for technology 
adoption or goods trade, acting as a strong discount factor on 
neighborhood relationships. Regarding institutional quality, studies 
such as Maddison (2006) or Shipan and Volden (2012) have posed 
the point that regulations depend on policy-mimicking across 
neighboring countries. Therefore, we also include the effect of spatial 
spillovers associated to institutional quality (WROL) as likely con-
straints to the evolution of domestic energy intensity. 

2.3. Spatial weights 

Similar to Wan et al. (2015), we consider three spatial weights 
matrices according to the chosen neighborhood criterion: the 5-nearest 
neighbors matrix (W5N), the first-order rook contiguity matrix (WCont) 
and the geographic distance matrices (WDist). All matrices are row- 
standardized. 

The first two matrices consider binary spatial relationships according 
to the following rule 

wij =

{
1
/

Nij
0

if j is neighbor of i
if else (5)  

where Nij is the number of j neighbors associated to the i country. The 
geographic distance spatial weights are constructed according to 

wij =

⎧
⎪⎨

⎪⎩

1
/

dij

∑N

j=1
1

/

dij

if j ∕= i

0 if j = i

(6)  

where dij is the existing Euclidean distance between i and j centroids. 

2.4. Data sources 

Table 1 shows the employed variables and their definition, while 
Table 2 presents the main statistics. Based on data availability, the data 

Table 1 
Variables and their definitions.  

Variable Name Definition 

EI Energy intensity 
Megajoules of primary energy supply divided by 
GDP in constant 2017 international dollars 

gEI Energy intensity 
growth 

Natural logarithm of the ratio of energy intensity 
at t and t-s 

IK Capital stock 
turnover 

Gross capital formation divided by gross capital 
stock 

k 
Per capita capital 
stock 

Private and public capital stock in constant 2017 
international dollars divided by total population 

s Saving rate Gross capital formation divided by GDP 

gA Technical progress 
Natural logarithm of the ratio of total productivity 
at t-s and t-s-1 

gL Population growth Natural logarithm of the ratio of population at t-s 
and t-s-1 

RE 
Share of 
renewable energy 

Renewable energy consumption divided by 
energy consumption 

SVC 
Share of services 
sector 

Added value of services (ISIC divisions 50–99) 
divided by GDP 

ROL Rule of law quality 

Perceptions of the extent to which agents have 
confidence in and abide by the rules of society and 
in particular the quality of contract enforcement, 
property rights, the police, and the courts, as well 
as the likelihood of crime and violence. (0% no 
confidence. 100% absolute confidence) 

Notes: Data sources: Energy Statistics Database (United Nations Statistics Divi-
sion, 2018); World Development Indicators (World Bank, 2021); IMF Investment 
and Capital Stock Dataset, 1960–2019 (International Monetary Fund, 2021); 
Worldwide Governance Indicators Dataset (United Nations Statistics Division, 
2018). 
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span the period 1999–2018 for 153 countries.3 Data for primary energy 
supply is obtained from the Energy Statistics Database (United Nations 
Statistics Division, 2018). Population growth rates, the share of 
renewable energy over aggregate energy consumption and the added 
value of the services sector with respect to gross GDP are obtained from 
the World Development Indicators Database (The World Bank, 2021). The 
share of gross capital formation, capital stock and gross domestic 
product come from the IMF Investment and Capital Stock Dataset, 
1960–2019 (International Monetary Fund, 2021). The data on percep-
tion of the rule of law quality are obtained from the Worldwide Gover-
nance Indicators Dataset (United Nations Statistics Division, 2018), which 
we standardize between zero and one. The lowest value represents the 
weakest perceived governance performance, while higher values are 
associated with a strong performance. 

Following Aghion and Howitt (2007), who show that total factor 
productivity (TFP) growth accounts for almost 70% of per capita GDP 
growth, technical progress is constructed according to a similar three- 
step procedure: first, we estimate the capital-per-person elasticity of 
per capita GDP (α) employing a simple fixed-effects panel data specifi-
cation lnyit = μi + δt + αlnkit + vit . Second, we extract the natural loga-
rithm of TFP from the Harrod-neutral Cobb-Douglas production 
function, that is lnAit =

lnyit − αlnkit
1− α . Third, we compute the growth rates of 

total productivity according to gA = ln(Ait/Ait− 1). 
To eliminate business cycle fluctuations and serial correlation from 

the error term, panel data estimations must be carried out over periods 
of time longer than one-year intervals (Islam, 1995; Pettersson et al., 
2013). With the aim of maintaining a sufficiently large sample of data, 
we choose the five-year interval, as in Miketa and Mulder (2005) and 
Mulder and De Groot (2007); Mulder and De Groot, 2012). 

3. Results and discussion 

3.1. Tests for spatial dependence 

As a preliminary test, we study the Moran’s I spatial autocorrelation 
coefficient to confirm the significance of spatial proximity on energy 
intensity growth rates. The spatiotemporal Moran’s I assuming no time 
autocorrelation (López et al., 2011) can be read as 

STMI =
N
S*

00

∑N
i
∑N

j
∑R

r (gEIir − ḡEI)wij
(
gEIjr − ḡEI

)

∑N
i
∑R

r (gEIir − ḡEI)2 (7)  

where S*
00 =

∑N
i
∑N

j wij, gEIir is the growth rate of energy intensity at 
subperiod r in country i, R = T/S the number of subperiods of interval S 
for a number of total periods T, and ḡEI = 1

NR
∑N

i
∑R

r gEIir the panel-data 
mean of energy intensity growth rates. 

Results from Table 3 show a clear positive spatial autocorrelation 
among neighboring countries, with p-values lower than 1% regardless of 
the employed spatial weights matrix. This confirms that countries with 

similar rates of energy intensity growth tend to be clustered, which is an 
initial support to the idea of stronger energy intensity convergence 
among neighboring economies. 

Fig. 2 also serves as further evidence in favor of this phenomenon.4 

As can be observed, on the one hand, the majority of countries in the 
areas of North America, Sub-Saharan Africa and Central-East Asia 
remained in the fourth and fifth quintiles of energy intensity between 
the years 1999–2018. On the other hand, most countries in Latin 
America and the Caribbean, as well as the European members of the 
OECD, have remained in the first and second quintiles over the same 
period. Other similar patterns are also observed at a lower scale. 

3.2. Endogeneity 

According to Caselli et al. (1996) and Islam (2003), the issue of 
endogeneity bias is prone to appear in the context of growth panel re-
gressions. Variables such as investment or saving rates and GDP growth 
rates are very likely to be jointly determined. We therefore decide to 
follow a common strategy employed in economic growth convergence 
studies, which consists in using the time lags of explanatory variables as 
instruments (e.g., Caselli et al., 1996; Barro and Sala-i-Martin, 2004). 
The estimation procedure consists in a first-stage regression where each 
exogenous regressor xivt− s (without considering their spatial lags) is 
regressed against the complete set of their first-order time lags xivt− s− 1 
(results are presented in Appendix C). The predicted values from this 
first-stage regression are then considered for the estimation of each 
specification.5 

Moreover, since we lack data on energy prices, endogenous re-
gressors are also expected to arise due to the omission of relevant 
explanatory variables. Works such as Hang and Tu (2007) and Filipović 
et al. (2015) find a significant negative influence of energy prices on 
energy intensity levels for China and the European Union. Furthermore, 
Wan et al. (2015) show that high-price energy indicators are significant 
when explaining conditional β-convergence in the European Union. 
They argue that energy prices are a major determinant for a country’s 
incentives to adopt more productive patterns of production in terms of 
energy usage. In this sense, they include a dummy variable identifying 
those countries with energy prices above the median of each period. 
Therefore, we consider a similar instrument equaling one for those 
countries with energy intensity levels above the median (dEI). 

According to the results shown in Appendix D, the joint Hausman test 
leads to a rejection of the null hypothesis of exogeneity of explanatory 
variables for all specifications. Moreover, the Sargan test for over-
identifying restrictions is not rejected for almost all specifications and 
spatial weight matrices.6 Therefore, our further analysis will only 
consider the first-stage fitted values x̂ivt− s for the correction of 
endogeneity. 

Table 2 
Main statistics.  

Variable Mean SD Min Max 

gEI − 0.016 0.038 − 0.337 0.250 
lnEI 1.636 0.608 − 0.208 5.252 
lnIK − 2.482 0.417 − 4.332 − 0.951 
Lnk 9.85 1.446 6.237 12.252 
s 0.191 0.080 0.017 0.604 
gA 0.014 0.012 − 0.020 0.069 
gL 0.027 0.074 − 0.687 0.365 
RE 0.344 0.308 0 0.978 
SVC 0.571 0.147 0.126 0.927 
ROL 0.502 0.199 0.096 0.925  

Table 3 
Moran’s I statistics of energy intensity growth rates.  

Weights matrices Moran’s I SD Z-Value p 

W 5 N 0.104 0.023 4.565*** 0.000 
W Cont 0.152 0.036 4.217*** 0.000 
W Dist 0.035 0.007 4.597*** 0.000 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

3 See Appendix A for the list of countries in the sample. 

4 See also Appendix B for the absolute and relative frequencies of countries 
according to their distribution by energy intensity percentile and geographical 
areas.  

5 The first-stage regression for capital stock per capita presents a high R2 due 
to the persistence of this variable.  

6 The null hypothesis is rejected for the SARAR and SEM with the distance 
spatial weights matrix. However, as we show in Subsection 3.3, these two 
specifications fit worse to data compared to the SLX. 
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3.3. Specification selection 

Following Snipes and Taylor (2014), we use the corrected Akaike 
information criterion (AICc) methodology to choose between functional 
specifications. This strategy requires the construction of the following 
associated statistics 

AICcq = 2

⎛

⎝K*
q − lnLq +

K*
q

(
K*

q + 1
)

NT − K*
q − 1

⎞

⎠ (8)  

ΔAICcq = AICcq − Min(AICc) (9)  

AIWq =
exp

(
− 1

2 ΔAICcq
)

∑M
q=1exp

(
− 1

2 ΔAICcq
) (10)  

ERq =
Max(AIW)

AIWq
(11)  

LERq = log10
(
ERq

)
(12)  

where AICcq is the corrected AIC score, K*
q is the number of parameters 

of the q model, lnLq is the maximum log-likelihood, AIWq is the Akaike 

weight of evidence in favor of a model being the actual best model for 
the given data, and ERq is the evidence ratio which measures the 
strength of rejection of a given model opposed to the best model in terms 

Fig. 2. Worldwide distribution of the logarithm of energy intensity distribution: 1999 and 2018. 
Notes: Elaborated by the authors. 

Table 4 
β-convergence estimations of energy intensity growth without spatial spillovers.  

Determinants ABS FE 

lnEI − 0.017*** (− 7.16) − 0.164*** (− 16.49) 
lnIK   − 0.095*** (− 9.23) 
lnk   − 0.099*** (− 10.72) 
s   0.561*** (7.09) 
gL   − 0.582 (− 1.67) 
gA   − 0.117** (− 2.44) 
RE   − 0.111*** (− 3.19) 
SVC   − 0.065 (− 1.16) 
ROL   − 0.024 (− 0.63) 
Speed of 

Convergence (β) 
0.34 3.58 

Half-life years 231.04 19.36 
Fixed Effects NO YES 
Obs. 612 
R2 (Adjusted) 0.076 0.372 
Log-likelihood 1153.6 1365.6 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. ABS and FE 
are for absolute and conditional convergence models without spatial spillovers. 
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of the Akaike criterion. For a LERq equal to 0, 0.5, 1 and 2, differences 
between models are characterized as minimal, substantial, strong and 
decisive. 

Results from the AICc methodology (see Appendix E) show strong 
support in favor of the SLX specifications, regardless of the chosen 
spatial weight matrix. However, since differences with the SARAR 
specifications are not decisive (LERq < 2), we will focus our analysis on 
both SARAR and SLX specifications for the β-convergence estimations. 

3.4. Energy intensity β-convergence estimations, σ-convergence and 
average elasticities 

In this section, we first analyze estimations on the β-convergence of 
the world’s energy intensity. Tables 4, 5 and 6 show estimation results 
considering absolute convergence, as well as the non-spatial and spatial 
specifications of conditional convergence. All regressions are estimated 
according to the 2SLS procedure described in Subsection 3.2. Spatial 
specifications follow the SLX and SARAR models according to Subsec-
tion 3.3. We also explore the evolution of the σ-convergence process 
between the years 1999–2018, as well as carry out several ex-post 
forecasts to analyze which spatial weights matrix captures better the 
evolution of worldwide energy intensity dispersion. 

The estimated b1 which contains the implicit rate of convergence is 
negative and statistically significant for any specification. The relatively 
low explanatory capacity of the absolute convergence model (R2=

0.076), and the significance of many regressors in conditional specifi-
cations point towards the existence of strong differences regarding the 
scale, structure, and composition of economies, as proven in studies such 
as Miketa and Mulder (2005), Markandya et al. (2006) and Mulder and 
De Groot (2012). Moreover, as pointed out in Mulder and De Groot 
(2012), Yu (2012) and Jiang et al. (2018), overlooking the existence of 
spatial spillovers, seems to reduce the explanatory capacity of energy 
intensity convergence models in terms of the log-likelihood. 

In the light of these results, we cannot reject the hypothesis of clubs 
of convergence conditional to domestic and neighboring economic 
steady states. This implies that as long as differences in variables 
determining long-term growth in energy intensity remain strong, 

worldwide differences in the distribution of energy intensity across 
countries will persist. Depending on the specification and the chosen 
spatial weight matrix, we observe substantial changes in the implicit 
speeds of convergence. The SLX specification with distance matrix yields 
the highest rate of conditional convergence of 9.1% (>2.5 times that of 
the non-spatial conditional specification), while the SARAR with the 
distance matrix presents the lowest conditional rate of 2.71%. There-
fore, our estimations show that convergence to the steady state levels of 
energy intensity of each economy is expected to take between 15 and 50 
years (twice the half-life years required for convergence to the steady 
state7). 

Given the estimated ρ parameter of the SARAR specification is non- 
significant for all spatial weight matrices, the spillover or indirect effects 
associated with the explanatory regressors in these models are also non- 
significant (see Tables 4 and 5). This points towards the SARAR as 
proving to be an over specified model in this context. In this sense, 
Corrado and Fingleton (2012), as well as Halleck Vega and Elhorst 
(2015), encourage the employment of the SLX model in those instances 
when spatial spillovers are statistically significant but an endogenous 
structure cannot be theoretically or empirically defended. Additionally, 
Rüttenauer (2022) also proves via a Monte Carlo experiment that the 
SLX specification yields less biased estimates of indirect impacts (spatial 
spillovers) compared to other spatial models. Therefore, we decide to 
focus our attention on the effects derived from the SLX model, which are 
robust regardless of the chosen spatial weight matrix. 

We firstly cannot reject the hypothesis of capital stock being a good 
substitute for energy inputs for the world as a whole. According to 
Table 6, the direct effect of an increase in domestic capital stock per 
capita (k) is significantly negative and reduces energy intensity growth 
rates between − 0.073 and − 0.086 percentage points. Furthermore, 
neighboring capital deepening also reinforces the effect of domestic 
input substitution, creating trade areas for those nearby countries with 
lower energy intensity growth rates. In this sense, when the spatial 

Table 5 
β-convergence SARAR estimations of energy intensity growth.  

Determinants SARAR WDist SARAR WCont SARAR W5N 

lnEI − 0.163*** (− 14.95) − 0.160*** (− 13.79) − 0.161*** (− 14.16) 
lnIK − 0.081*** (− 6.37) − 0.092*** (− 7.95) − 0.093*** (− 7.82) 
lnk − 0.074*** (− 5.89) − 0.098*** (− 9.02) − 0.096*** (− 8.6) 
s 0.481*** (5.07) 0.549*** (6.02) 0.557*** (6.12) 
gL − 0.461 (− 1.15) − 0.621 (− 1.61) − 0.577 (− 1.41) 
gA − 0.109* (− 1.95) − 0.113** (− 2.13) − 0.107* (− 1.86) 
RE − 0.068* (− 1.67) − 0.097** (− 2.4) − 0.097** (− 2.36) 
SVC 0.020 (0.30) − 0.035 (− 0.58) − 0.04 (− 0.64) 
ROL − 0.045 (− 0.99) − 0.025 (− 0.55) − 0.025 (− 0.56) 
WlnEI 0.036 (0.76) − 0.036 (− 1.3) − 0.022 (− 0.67) 
WlnIK 0.018 (0.73) − 0.021 (− 1.28) − 0.013 (− 0.67) 
Wlnk 0.016 (0.72) − 0.022 (− 1.25) − 0.013 (− 0.67) 
Ws − 0.104 (− 0.72) 0.122 (1.24) 0.074 (0.66) 
WgL 0.098 (0.50) − 0.141 (− 0.9) − 0.081 (− 0.5) 
WgA 0.025 (0.69) − 0.026 (− 0.99) − 0.015 (− 0.57) 
WRE 0.014 (0.56) − 0.022 (− 1.01) − 0.014 (− 0.62) 
WSVC − 0.007 (− 0.29) − 0.009 (− 0.45) − 0.008 (− 0.43) 
WROL 0.009 (0.36) − 0.006 (− 0.45) − 0.004 (− 0.29) 
ρ − 0.385 (− 1.2) 0.208 (1.63) 0.1 (0.66) 
λ 0.692*** (4.8) − 0.001 (− 0.01) 0.105 (0.64) 
Speed of 

Convergence (β) 2.71 4.36 4.04 

Half-life years 25.57 15.89 17.15 
Fixed Effects YES 
Obs. 612 
R2 (Adjusted) 0.346 0.359 0.366 
Log-likelihood 1369.4 1371.8 1367.7 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. SARAR coefficients are those of the estimated direct and indirect effects. 

7 Half-life time is derived from H = ln(2)/β (see Barro and Sala-i-Martin, 
2004; Miketa and Mulder, 2005). 
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weight matrix becomes laxer in the definition of neighboring countries, 
the indirect impact of capital deepening increases (− 0.183 for the SLX 
WDist, and − 0.061 for the SLX W5N). 

Regarding the embodiment hypothesis, we find contradictory re-
sults. The direct effect of the investment-capital ratio (IK) is significant 
and negative, showing that increasing the domestic turnover rate of 
capital stock by 1% reduces energy intensity growth between − 0.083 
and − 0.089 percentage points. However, this vintaging seems to be 
partially offset by the direct effect associated with higher saving rates 
(s). In this sense, increasing the domestic share of gross output devoted 
to capital accumulation by one percentage point leads to an acceleration 
in energy intensity growth between 0.476 and 0.508 percentage points. 
Regarding the indirect effects of the turnover and saving rates, Table 6 
shows that these are usually significantly different than zero tending to 
reinforce the direct effects, with the largest marginal effects related to 
the distance spatial weight matrix (− 0.211 for the turnover rate and 
1.039 for the saving rates). 

The scale hypothesis is rejected from a domestic viewpoint, with 
non-significant population growth rates (gL) in almost all models. 
Nevertheless, spatially lagged population growth (WgL) presents a sig-
nificant and positive impact in the SLX WDist and W5N. More precisely, 
an increase of one percentage point in neighboring population growth 
rates leads to increases in domestic energy intensity growth rates higher 
than 1.7 points. This rejects the idea of technical spillovers embodied in 
neighboring human capital and might be an approximation of the 
increasing demand for energy associated with growing economic ac-
tivity in surrounding countries. Metcalf (2008), for instance, finds a 
change in the pattern of energy intensity clustering across the United 
States from the slow-growing northern states, in terms of population, to 
the fast-growing and industrializing southern and southwestern regions. 

The negative and significant coefficient associated with domestic 
technological change (gA) seems to support the idea of TFP moving 
economies towards more efficient ways of production in terms of energy 
usage. More precisely, an increase of one percentage point in domestic 
TFP growth leads to a reduction of domestic energy intensity growth 
rates of between − 0.103 and − 0.134 points. On the contrary, we do not 
find a significant impact of neighboring TFP growth (WgA) on the do-
mestic evolution of energy intensity, this probably being captured by the 
indirect effects of per capita capital stock, turnover and saving rates. 

Regarding technical change associated with the energy mix, we find 
that increases in both the domestic and neighboring relative weights of 
renewable energy consumption (RE and WRE) are significant at the 5% 
level thereby reducing energy intensity across economies. The total ef-
fect shows that an increase of one percentage point in the share of 
renewable energy consumption in a given country and its neighbors 
leads to an overall reduction in domestic energy intensity growth 
ranging between − 0.363 (SLX W5N) and − 0.932 (SLX WDist) points. 
This could serve as further evidence of renewable energy proving to be a 
more productive source compared to traditional fuels, with the existence 
of technological spillovers also being associated with their use. 

Regarding structural change, the degree of tertiarization SVC is not 
significant at the domestic level. This result is in line with Mulder and De 
Groot (2012), who find that structural changes for OECD countries only 
explain a limited change in β-convergence for the 1995–2005 period; or 
Duro et al. (2010), who detect that structural change led to an increased 
disparity in energy intensity for a similar set of countries. Finally, both 
domestic and neighboring institutional qualities measured through 
perceptions of the extent of the rule of law across states (ROL), are 
statistically non-significant. 

The ex-post forecasts in Fig. 3 also show that conditional conver-
gence models estimated in Tables 4 and 6 fit well to the data.8 Both SLX 
models with the 5-nearest neighbors matrix (SLX W5N), and the conti-
guity matrix (SLX WCont) reproduce the best approximation to the real 
evolution of standard deviations in energy intensity. Therefore, local, 
instead of global, spillovers are preferred when explaining the 
σ-convergence of logarithmic energy intensity over the period 
1999–2018 (an average reduction of 11.48%). This implies that most 
economies closed the gap to the world mean, and differences between 
clubs of convergence also decreased as well. In this sense, works such as 
Liddle (2010), have also observed the existence of geographical barriers 
in the validation and speed of convergence. Mulder et al. (2011), Wan 

Table 6 
β-convergence SLX estimations of energy intensity growth.  

Determinants SLX WDist SLX WCont SLX W5N 

lnEI − 0.168*** (− 17.03) − 0.164*** (− 16.48) − 0.167*** (− 16.78) 
lnIK − 0.083*** (− 7.53) − 0.084*** (− 7.63) − 0.089*** (− 8.07) 
lnk − 0.073*** (− 6.29) − 0.086*** (− 8.19) − 0.083*** (− 7.18) 
s 0.486*** (5.95) 0.476*** (5.83) 0.508*** (6.19) 
gL − 0.282 (− 0.81) − 0.719** (− 2.04) − 0.541 (− 1.56) 
gA − 0.103** (− 2.12) − 0.134*** (− 2.71) − 0.121** (− 2.47) 
RE − 0.084** (− 2.29) − 0.104*** (− 2.93) − 0.086** (− 2.38) 
SVC 0.003 (0.05) − 0.065 (− 1.12) − 0.013 (− 0.22) 
ROL − 0.039 (− 0.98) − 0.018 (− 0.48) − 0.039 (− 0.98) 
WlnEI − 0.199** (− 2.49) − 0.059*** (− 2.72) − 0.055** (− 2.45) 
WlnIK − 0.211** (− 2.99) − 0.069*** (− 3.56) − 0.051** (− 2.18) 
Wlnk − 0.183*** (− 3.52) − 0.071*** (− 3.48) − 0.061*** (− 3.13) 
Ws 1.039* (1.74) 0.443** (2.49) 0.301 (1.59) 
WgL 5.476* (1.74) 0.133 (0.18) 1.788** (2.16) 
WgA 0.259 (0.66) − 0.079 (− 0.93) 0.079 (0.78) 
WRE − 0.848*** (− 2.98) − 0.279*** (− 4.21) − 0.277*** (− 3.79) 
WSVC − 0.274 (− 0.61) − 0.336*** (− 2.96) − 0.231* (− 1.77) 
WROL − 0.227 (− 0.89) 0.046 (0.54) − 0.032 (− 0.39) 
Speed of 

Convergence (β) 9.14 5.04 5.02 

Half-life years 7.58 13.83 13.32 
Fixed Effects YES 
Obs. 612 
R2 (Adjusted) 0.393 0.392 0.386 
Log-likelihood 1382.4 1381.9 1378.8 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

8 Ex-post forecasts of lnEI are constructed considering the estimated fixed 
effects and coefficients from final models of Tables 4 and 6. The sum of the 
squared residuals comparing the forecasted and observed standard deviation 
(σ) are 0.0058, 0.0059, and 0.0070 for the W5N, WCont, and WDist SLX 
models. 
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et al. (2015) and Jiang et al. (2018) also found strong evidence in favor 
of local spillovers in the context of energy intensity convergence. 

4. Conclusions 

In this paper we study whether energy intensity has converged for 
the world as a whole conditioned to the existence of spatial spillovers. 
Previous literature lacks a comprehensive analysis of the influence of 
trade, technological diffusion, and policy mimicry on cross-country 
differences in energy intensity on a global scale. Focusing on the idea 
of trade being strongly correlated to geographical distance, the existence 
of clubs of convergence in energy intensity should be influenced by the 
spatial distribution of countries, as already found in previous studies for 
smaller sets of countries or regions (Mulder et al., 2011; Wan et al., 
2015; Jiang et al., 2018). As Wan et al. (2015) highlight, further tech-
nical adoption and deeper intra-industry trade both link energy intensity 
convergence to commerce. 

Contrary to previous work, we use different spatial specifications to 
test whether spatial spillovers are endogenous or exogenous for a large 
set of countries. If the former is true, all entities are influenced by 
changes in any country through a feedback process. If the latter is true, 
technological diffusion and policy mimicry are limited in the space, 
creating more defined clusters of interacting countries. Besides, different 
spatial weights matrices and explanatory variables are considered to 
analyze their influence on energy intensity growth and convergence. 

We find support for conditional energy intensity convergence, as in 
Miketa and Mulder (2005), Markandya et al. (2006), Mulder and De 
Groot (2007); Mulder and De Groot, 2012), Liddle (2010, 2012), Voigt 
et al. (2014) and Csereklyei et al. (2016) for previous periods of time. 
This convergent path is described by an increasing number of countries 
approaching in terms of logarithmic energy intensity. As in Mulder et al. 
(2011), Adhikari and Chen (2014) and Wan et al. (2015), we find a 

positive spatial correlation for energy intensity growth. On the contrary, 
our results favor estimations with exogenous spatial spillovers following 
the SLX specification with spatially lagged explanatory variables. In 
addition, the 5-nearest neighbors and the contiguity matrix are 
preferred for ex-post forecasts on convergence. The estimated rates of 
conditional convergence increase by >40%, and the half-life time of 
convergence decreases by up to 30% after controlling for spatial spill-
overs, thereby supporting the idea of clubs of convergence constrained 
to geography. 

We also detect contradictory effects regarding capital accumulation. 
While raising saving rates explains a large portion of increases in energy 
intensity growth, as well as its convergence, higher endowments of 
capital stock per capita and turnover ratios lead to small reductions in 
energy intensity growth. In this sense, we find weak support for the 
substitution hypothesis between capital stock and energy, while the 
embodiment hypothesis must be rejected. Therefore, new vintages of 
capital stock are not conducive to more energy-saving production pro-
cesses. Moreover, these effects are bolstered among neighboring coun-
tries, indicating that, on average, fostering foreign investment seems to 
worsen global energy intensity levels, while trading capital goods cre-
ates energy-saving clusters of countries. Furthermore, total factor pro-
ductivity growth and an energy mix based on renewable sources lead to 
convergence in lower energy intensity levels, with technological diffu-
sion only proving significant when associated with renewable energy 
use. Furthermore, we do not find enough evidence of structural change 
and institutional quality as significant determinants of energy intensity 
growth and convergence. 

Further work on worldwide energy intensity and spatial spillovers is 
required for a better understanding of the role of trade and technology 
diffusion on sustainable growth. Due to data availability for large sets of 
countries, the present study faces some limitations. We propose the 
following improvements: the consideration of disaggregated data at a 
sectoral level for richer estimations and policy recommendations; the 
construction of trade flow spatial weights matrices, as in Wan et al. 
(2015), to better measure the influence of trade on worldwide energy 
intensity convergence; and the inclusion of other relevant control vari-
ables, such as trade specialization, which has helped to explain energy 
intensity convergence for some sectors, as in Miketa and Mulder (2005), 
Markandya et al. (2006), Mulder and De Groot (2012) or Wan et al. 
(2015). 

Funding 

This work was supported by the European Commission and the 
Spanish Ministry of Science, Innovation and Universities (MCIU-19- 
PCI2019–103676); and the Spanish Ministry of Science, Innovation and 
Universities (PID2020-115183RB-C21). 

CRediT authorship contribution statement 

Roberto Balado-Naves: Conceptualization, Methodology, Formal 
analysis, Writing – original draft, Writing – review & editing. Jose 
Francisco Baños-Pino: Conceptualization, Writing – review & editing. 
Matías Mayor: Conceptualization, Writing – review & editing.  

Appendix A. Appendix  

Table 7 
List of countries by geographical area.  

North America Canada, United States 

LAC 
Antigua and Barbuda, Argentina, Barbados, Bahamas, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominica, Dominican Republic, Ecuador, El 
Salvador, Grenada, Guatemala, Guyana, Honduras, Mexico, Nicaragua, Paraguay, Peru, Panama, Saint Kitts and Nevis, Saint Lucia, Uruguay, Saint Vincent 
and the Grenadines, Venezuela 

(continued on next page) 

Fig. 3. Ex-post forecasts of the standard deviation (σ) of the logarithm of en-
ergy intensity: 1999–2018. 
Notes: Elaborated by the authors. 
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Table 7 (continued ) 

Europe OECD 
Denmark, Ireland, Estonia, Austria, Czech Republic, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Slovakia, Malta, Belgium, 
Luxembourg, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom 

Europe No OECD 
Azerbaijan, Albania, Armenia, Bosnia and Herzegovina, Bulgaria, Cyprus, Georgia, Croatia, The former Yugoslav Republic of Macedonia, Romania, Russia, 
Ukraine 

MENA Algeria, Bahrain, Djibouti, Egypt, Iran (Islamic Republic of), Jordan, Kuwait, Lebanon, Morocco, Oman, Saudi Arabia, Tunisia, Yemen 
South Asia Bangladesh, Sri Lanka, Afghanistan, Bhutan, India, Maldives, Nepal, Pakistan 
Central-East Asia China, Japan, Korea, Republic of, Kazakhstan, Mongolia, Hong Kong, Tajikistan, Uzbekistan 
Southeast Asia- 

Oceania 
Australia, Burma, Brunei Darussalam, Cambodia, Fiji, Lao People’s Democratic Republic, Malaysia, New Zealand, Philippines, Singapore, Thailand, Vietnam, 
Indonesia 

Sub-Saharan Africa 

Angola, Benin, Congo, Democratic Republic of the Congo, Burundi, Cameroon, Chad, Central African Republic, Cape Verde, Equatorial Guinea, Eritrea, 
Ethiopia, Gambia, Gabon, Ghana, Guinea, Kenya, Liberia, Madagascar, Mali, Mauritius, Mauritania, Mozambique, Malawi, Nigeria, Guinea-Bissau, Rwanda, 
Seychelles, South Africa, Lesotho, Botswana, Senegal, Sierra Leone, Togo, Sao Tome and Principe, United Republic of Tanzania, Uganda, Burkina Faso, 
Namibia, Swaziland, Zambia  

Appendix B. Appendix  

Table 8 
Distribution of countries by energy intensity percentile and geographical area.  

Region/Percentile PC20 PC40-PC20 PC60-PC40 PC80-PC60 >PC80 

Year 1999 
North America (2) 0.00% (0) 0.00% (0) 0.00% (0) 100.00% (2) 0.00% (0) 
LAC (28) 39.29% (11) 32.14% (9) 17.86% (5) 7.14% (2) 3.57% (1) 
Europe OECD (28) 25.00% (7) 28.57% (8) 14.29% (4) 28.57% (8) 3.57% (1) 
Europe No OECD (12) 0.00% (0) 8.33% (1) 25.00% (3) 33.33% (4) 33.33% (4) 
MENA (13) 7.69% (1) 53.85% (7) 15.38% (2) 15.38% (2) 7.69% (1) 
South Asia (8) 37.50% (3) 0.00% (0) 25.00% (2) 25.00% (2) 12.50% (1) 
Central-East Asia (8) 12.50% (1) 0.00% (0) 12.50% (1) 12.50% (1) 62.50% (5) 
Southeast Asia-Oceania (13) 7.69% (1) 0.00% (0) 69.23% (9) 7.69% (1) 15.38% (2) 
Sub-Saharan Africa (41) 17.07% (7) 12.20% (5) 12.20% (5) 19.51% (8) 39.02% (16) 

Year 2018 
North America (2) 0.00% (0) 0.00% (0) 0.00% (0) 0.50% (1) 0.50% (1) 
LAC (28) 28.57% (8) 25.00% (7) 28.57% (8) 10.71% (3) 7.14% (2) 
Europe OECD (28) 32.14% (9) 28.57% (8) 28.57% (8) 7.14% (2) 3.57% (1) 
Europe No OECD (12) 8.33% (1) 25.00% (3) 33.33% (4) 8.33% (1) 25.00% (3) 
MENA (13) 7.69% (1) 30.77% (4) 15.38% (2) 15.38% (2) 30.77% (4) 
South Asia (8) 37.50% (3) 12.50% (1) 12.50% (1) 12.50% (1) 25.00% (2) 
Central-East Asia (8) 12.50% (1) 12.50% (1) 0.00% (0) 37.50% (3) 37.50% (3) 
Southeast Asia-Oceania (13) 23.08% (3) 15.38% (2) 7.69% (1) 53.85% (7) 0.00% (0) 
Sub-Saharan Africa (41) 12.20% (5) 9.76% (4) 17.07% (7) 24.39% (10) 36.59% (15) 

Notes: number of countries in brackets. 

Appendix C. Appendix  

Table 9 
First-stage estimation of 2SLS conditional convergence (A).  

Determinants lnEI lnIK lnk s 

lnEI(lag) 0.793*** − 0.028 − 0.013*** 0.008  
(40.36) (− 0.64) (− 6.04) (0.99) 

lnIK(lag) − 0.130*** 1.033*** 0.064*** 0.045***  
(− 7.20) (25.63) (32.08) (6.01) 

lnk(lag) − 0.091*** 0.029 0.991*** 0.027***  
(− 5.49) (0.79) (535.15) (4.01) 

s(lag) 0.730*** − 1.895*** 0.060*** 0.448***  
(6.53) (− 7.60) (4.88) (9.65) 

gL(lag) − 1.273** 0.812 − 1.074*** 0.138  
(− 2.20) (0.63) (− 16.82) (0.57) 

gA(lag) − 0.050 0.897*** − 0.001 0.095***  
(− 1.19) (9.62) (− 0.34) (5.50) 

RE(lag) − 0.215*** 0.170 0.011* 0.050**  
(− 3.69) (1.31) (1.69) (2.09) 

SVC(lag) 0.029 0.161 − 0.059*** − 0.005  
(0.38) (0.94) (− 7.05) (− 0.18) 

ROL(lag) 0.166** 0.433*** − 0.004 0.069**  
(2.28) (2.66) (− 0.53) (2.28) 

dEI 0.066*** 0.047* 0.001 0.008  
(5.32) (1.69) (1.42) (1.59) 

Fixed Effects YES 
Obs. 612 612 612 612 
R2 (Adjusted) 0.882 0.709 0.999 0.543 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Table 10 
First-stage estimation of 2SLS conditional convergence (B).  

Determinants gL gA RE SVC ROL 

lnEI(lag) − 0.001 − 0.016 − 0.001 0.004 − 0.004  
(− 0.06) (− 0.88) (− 0.19) (0.39) (− 0.92) 

lnIK(lag) 0.001 − 0.039** − 0.012* 0.003 0.007*  
(0.01) (− 2.32) (− 1.86) (0.33) (1.81) 

lnk(lag) 0.001 − 0.046*** − 0.019*** − 0.032*** 0.002  
(1.49) (− 2.89) (− 3.13) (− 3.39) (0.75) 

s(lag) 0.004 − 0.070 0.036 0.065 − 0.049*  
(0.79) (− 0.65) (0.86) (1.02) (− 1.92) 

gL(lag) 0.727*** − 0.817 0.076 − 0.581* − 0.174  
(22.56) (− 1.48) (0.35) (− 1.75) (− 1.31) 

gA(lag) 0.002 0.335*** − 0.032** − 0.081*** − 0.013  
(1.22) (8.43) (− 2.08) (− 3.35) (− 1.36) 

RE(lag) 0.002 0.159*** 0.852*** − 0.154*** 0.008  
(0.88) (2.88) (39.34) (− 4.61) (0.64) 

SVC(lag) − 0.007* 0.049 − 0.057** 0.594*** − 0.005  
(− 1.72) (0.67) (− 2.03) (13.51) (− 0.29) 

ROL(lag) 0.011*** − 0.118* 0.033 0.073* 0.872***  
(2.90) (− 1.70) (1.22) (1.74) (51.63) 

dEI 0.001 0.003 − 0.002 0.017** 0.002  
(0.26) (0.25) (− 0.56) (2.46) (0.74) 

Fixed Effects YES 
Obs. 612 612 612 612 612 
R2 (Adjusted) 0.475 0.227 0.767 0.301 0.833 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

Appendix D. Appendix  

Table 11 
Hausman and Sargan test results for second-stage 2SLS regressions.  

Model - Statistic / Weights matrix W5N WCont WDist 

SARAR – F(9, 591) 27.801*** 26.500*** 26.079***  
(0.000) (0.000) (0.000) 

SARAR – Sargan χ2(1) 1.079 1.321 4.279**  
(0.298) (0.250) (0.038) 

SDM – F(18, 573) 15.898*** 15.498*** 14.347***  
(0.000) (0.000) (0.000) 

SDM – Sargan χ2(1) 0.583 1.170 0.564  
(0.445) (0.279) (0.452) 

SDEM – F(18, 574) 15.744*** 15.428*** 14.261***  
(0.000) (0.000) (0.000) 

SDEM – Sargan χ2(1) 0.634 1.141 0.514  
(0.425) (0.285) (0.473) 

SAR – F(9, 592) 27.643*** 27.439*** 27.593***  
(0.000) (0.000) (0.000) 

SAR – Sargan χ2(1) 1.027 1.319 1.093  
(0.311) (0.251) (0.295) 

SEM – F(9, 592) 27.405*** 27.406*** 27.055***  
(0.000) (0.000) (0.000) 

SEM – Sargan χ2(1) 1.160 1.223 2.827*  
(0.281) (0.268) (0.092) 

SLX – F(18, 575) 15.747*** 15.495*** 14.319***  
(0.000) (0.000) (0.000) 

SLX – Sargan χ2(1) 0.608 1.076 0.564  
(0.435) (0.299) (0.452) 

FE – F(9, 593) 27.496***  
(0.000) 

FE – Sargan χ2(1) 1.112  
(0.291) 

ABS – F(1, 608) 146.268***  
(0.000) 

ABS – Sargan χ2(1) 0.026  
(0.871) 

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. ABS and FE are for the absolute and conditional 
convergence models without spatial spillovers. 
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Appendix E. Appendix  

Table 12 
Akaike Information Criteria for model selection.  

Model AICc ΔAICc AIW ER LER 

SARAR W5N − 2716.065 4.424 0.096 9.134 0.960 
SDM W5N − 2699.901 20.587 0.0002 29,546.509 4.470 
SDEM W5N − 2699.304 21.184 0.0002 39,829.076 4.600 
SAR W5N − 2695.438 25.051 0.00003 275,296.555 5.439 
SEM W5N − 2694.506 25.982 0.00002 438,654.782 5.642 
SLX W5N − 2720.489 0 0.883 1 0 
FE W5N − 2712.897 7.591 0.019 44.513 1.648 
ABS W5N − 2416.690 303.798 9e-67 9e+65 65.968 
SARAR WCont − 2725.119 1.590 0.310 2.215 0.345 
SDM WCont − 2712.958 13.752 0.0007 969.063 2.986 
SDEM WCont − 2713.924 12.786 0.001 597.661 2.776 
SAR WCont − 2704.202 22.507 0.000008 77,186.788 4.887 
SEM WCont − 2701.820 24.890 0.000002 254,017.373 5.404 
SLX WCont − 2726.710 0 0.687 1 0 
FE WCont − 2712.897 13.812 0.0006 998.680 2.999 
ABS WCont − 2416.690 310.019 3e-68 2e+67 67.319 
SARAR WDist − 2719.065 8.670 0.012 76.362 1.882 
SDM WDist − 2702.565 25.171 0.000003 292,301.948 5.465 
SDEM WDist − 2703.031 24.705 0.000004 231,558.804 5.364 
SAR WDist − 2692.128 35.608 0.00000001 53,981,784.190 7.732 
SEM WDist − 2696.301 31.435 0.0000001 6,701,619.123 6.826 
SLX WDist − 2727.736 0 0.986 1 0 
FE WDist − 2712.897 14.839 0.0005 1668.276 3.222 
ABS WDist − 2416.690 311.045 2e-68 3e+67 67.542 

Notes: ABS and FE are for the absolute and conditional convergence models without spatial spillovers. 

Appendix F. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2023.106807. 
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