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A B S T R A C T

A method for designing simple models of the remaining lifetime of a system is proposed. A health state model
is learned, the output of which varies consistently with the remaining useful life. The model and the criterion
used to measure how well it fits the data are jointly learned. The goal of this joint search is to find the criterion,
within a family of stochastic orderings, for which the model has the simplest expression. The performance of
the new method is comparable to recent AI-based models, such as recurrent networks, convolutional networks
or variational autoencoders, and depends on a much smaller number of parameters than these methods, so it
can be applied in systems with reduced computational capacity.
1. Introduction

Recent estimators of the Remaining Useful Life (RUL) of a system
employ machine learning techniques such as Convolutional Neural
Networks, Recurrent Networks or Variational Autoencoders [1]. The
accuracy and interpretability of these techniques is remarkable and,
in principle, they are the technology of choice for new designs. How-
ever, the computational complexity of machine learning-based lifetime
estimation algorithms may limit their practical application, because
the control electronics of many devices are not powerful enough to
implement state-of-the-art algorithms.

Taking the example of the well-known CMAPSS benchmark [2], a
RUL model based on multilayer perceptrons depends on a few hundred
parameters [3]. A convolutional neural network may require up to 3K
weights [4], and some recurrent networks need up to 50K variables
to be stored in memory [5]. The most recent techniques, for example
the variational autoencoder, may require up to 700K variables [1]
(see Fig. 1). Storage space is not necessarily a problem, but embedded
processors in many systems do not have the capacity to handle matrices
and vectors of the required size. There are software frameworks for AI
in edge or embedded devices [6], but using the latest AI-based lifetime
prediction techniques on small to medium-sized systems (think, for
instance, of an industrial fan or a light vehicle) is not realistic unless
the equipment is connected to the cloud and diagnostics are performed
remotely [7].

The problem addressed in this study is to exploit recent machine
learning techniques to find a simple model, dependent on a very
small number of parameters, that can be used to infer the lifetime of
equipment that does not have a permanent internet connection and
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has access to only moderate computing power. We will not apply
these limitations to the process of learning the model (since, except in
adaptive models, the learning is not done with the computer embedded
in the system) but to the task of autonomously inferring the RUL of the
equipment from the signals measured in it.

To achieve this result, we do not look for a precise predictor of
the remaining lifetime of the equipment, but we will limit ourselves
to synthesise a State of Health (SoH) variable that varies consistently
with the lifetime (i.e., whenever the expected lifetime of the equipment
decreases, this synthetic health variable also decreases in value). In
this way, as will be explained in the next sections, the expression of
the predictive model can be made considerably simpler, since it is no
longer necessary to model certain nonlinearities in the system; increases
in ageing need not necessarily be proportional to reductions in service
life.

Model learning will not be based on minimising prediction error,
but on maximising a correlation between model predictions and train-
ing data [8,9]. However, unlike previous work, the proposed algorithm
simultaneously searches for the model and the best function (within
a family of stochastic orderings) that defines the correlation between
the model and the data. The aim of this joint search is to find the
correlation for which the SoH model has the simplest expression. In this
study we employ the family proposed in [10], which is representable
by a type of neural network to be introduced later.

2. Related work

In this section, we present a literature review on probabilistic health
estimators in the context of condition-based maintenance optimisation
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Fig. 1. Historical evolution of the number of parameters of the neural networks used
to estimate the RUL of a system versus the accuracy obtained with the corresponding
models. The area of the circles is proportional to the number of parameters needed to
solve the CMAPSS problem. The Y coordinate is the root mean square error of each
model.

Fig. 2. Probability distributions of the RULs of two systems #1 and #2 whose RULs
follow distributions 𝛾(3, 2) and 𝛾(2, 3), respectively.

models for stochastically deteriorating systems. The novelty and con-
tributions of the proposed model are also presented, followed by the
organisation of the article.

2.1. Literature review

RUL estimation plays an important role in condition-based mainte-
nance (CBM) and in Prognostics and Health Management (PHM) [11].
The practical applications of the technique proposed in this paper
mainly concern the first line: simplify the planning of inspections
using CBM and define a maintenance policy that optimises system
performance based on certain criteria, such as cost, availability or
reliability.

The popularity of CBM is largely based on stochastic deteriora-
tion models [12]. It is common to divide CBM methods into three
categories [13]: discrete-state and steady-state deterioration models,
for environments where the system state is observable, and propor-
tional hazard models (PHM) for systems operating in dynamic environ-
ments [14]. Discrete-space methods are, in general, related to Markov
processes [15] and steady-state methods are based on stochastic pro-
cesses; in most cases, on Brownian motion [16], Gamma processes [17]
or Gaussian and Inverse Gaussian [18].
2

Deterioration models based on stochastic processes update the prob-
ability of system failure with continuously collected information about
the state of the system. In a real working environment, however,
there may be constraints that limit the use of steady-state models: the
theoretical model of the system may have an imperfect fit under real-
world conditions [19], or the environment may be time-varying [20],
requiring the use of adaptive models [21–23]; in this context, it has
also been studied how to combine stochastic methods with machine
learning, taking advantage of pre-existing run-to-failure data [24,25],
or how to make resilient estimates to imperfect inspection data [26].

The use of intelligent techniques to make up for the lack of in-
formation about the physical process or its state has the trade-off, as
mentioned in the introduction, that the algorithms required are increas-
ingly complex [27,28]. The balance between the cost of equipment
inspections and the cost of the electronic equipment for CBM embedded
in the system is important in some applications, and this study proposes
to simplify, by means of a new machine learning algorithm, the equip-
ment health estimation algorithm. Some previous work has evaluated
simplified models of the RUL [29], but to the best of our knowledge
the approach to be followed in this work, which is to design a machine
learning algorithm that produces a health model that is dependent on
few parameters and that is comonotone with the RUL, has not been
studied before. From a methodological point of view, the techniques
employed are related to the Ref. [30].

2.2. Novelty and contribution

The contributions of this study are:

• Development of a learning algorithm for a health model depen-
dent on a reduced set of parameters, usable in systems with low
computing power and/or without data connection to an external
computing centre.

• Methodology for joint learning of a health model and the best
ordinal correlation between health and RUL.

• Definition of a parametric family of ordinal correlations through
a neural encoding of the generating function of a stochastic order.

2.3. Overview

The structure of the paper is as follows: Section 3 introduces a
family of stochastic comparisons between random variables that can
be represented by monotone neural networks. Section 4 defines the
SoH model and its learning algorithm. Section 5 presents testable
experimental results on a classical benchmark (the CMAPSS problem
mentioned above) and two applications to real data, from the diagnosis
of aviation turbofan engines and road tunnel ventilation fans. The
paper concludes in Section 6, where future work on this topic is also
indicated.

3. Learning by comparing random variables

Knowledge of RUL, in general, is not deterministic: there can be
no absolute certainty about when equipment will develop a fault. It is
common to characterise our knowledge about the RUL by a probability
distribution, whereby it is possible to define concepts such as the
expected lifetime or the probability that the RUL is higher than a given
value.

For ease of explanation, let us assume we have two systems, whose
RULs are characterised by two probability distributions 𝛾(3, 2) and
𝛾(2, 3). See Eq. (19) for the mathematical expression of the density
function of the 𝛾 distribution and Fig. 2 for the graphical representation
of both.

The expected lifetime of both systems is the same: 6 units of time
(vertical line in Fig. 2). However, the probability that the life of the
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Fig. 4. Sill’s monotone neural network [31] can encode an increasing function in one
argument and decreasing in the other if the sign of the weights connecting the input
‘‘Y’’ to the neurons of the first layer is reversed.

first system is higher than the life of the second is (assuming that their
respective lifetimes are independent from each other)

∫

∞

0
𝑑𝑥∫

𝑥

0
𝛾(𝑥; 3, 2) ⋅ 𝛾(𝑦; 2, 3) 𝑑𝑦 = 0.525, (1)

while the probability that the second system lasts longer than the first
is 1 − 0.525 = 0.475, so the first equipment is more likely to last longer.
On the other hand, the probability that the first equipment lasts more
than 10 units of time is

∫

∞

10
𝛾(𝑥; 3, 2) 𝑑𝑥 = 0.125, (2)

while the probability that the second system lasts more than 10 units is
0.155, then the second system is more likely to last more than 10 units
of time. In the case that we have several equipments and we have to
order them from lowest to highest RUL, it is clear from this example
that there is not an order that is inherently better than the others.

Continuing with the same example, let the RULs of the first and
second systems be two independent random variables 𝐴 and 𝐵. If the
ordering criterion consisted of assigning each system its expected life
(this criterion is called ‘‘dominance in expectation’’),

𝐴 ≺𝐸 𝐵 ∶= 𝐸(𝐴) ≤ 𝐸(𝐵) (3)

oth equipments would have the same rank. If it is decided to compare
hem according to the probability that one lasts more than the other,
.e.
3

≺𝑆 𝐵 ∶= 𝑃 (𝐴 ≤ 𝐵) ≥ 𝑃 (𝐵 ≤ 𝐴) (4)
hen 𝐵 ≺𝑆 𝐴 (the criterion used is statistical precedence). Finally, if we
decide to select the one with higher probability of lasting more than 10
units of time,

𝐴 ≺10 𝐵 ∶= 𝑃 (𝐴 ≥ 10) ≤ 𝑃 (𝐵 ≥ 10) (5)

then 𝐴 ≺10 𝐵 (which is a weak type of first-order statistical dominance).
The three orderings mentioned are stochastic preferences [32].

Recently a study has been developed in which it is justified that many
comparisons between random variables in the literature share a simple
definition, which is based on a function of two arguments 𝑓 (𝑥, 𝑦),
monotonic increasing in 𝑥 and monotonic decreasing in 𝑦 [10]. This
definition is

𝐴 ≺ 𝐵 ∶= 𝐸(𝑓 (𝐴,𝐵)) ≤ 𝐸(𝑓 (𝐵,𝐴)). (6)

As an example, Fig. 3 shows three functions 𝑓1(𝑥, 𝑦) = 𝑥, 𝑓2(𝑥, 𝑦) =
1𝑥>𝑦 and 𝑓3(𝑥, 𝑦) = 1𝑥>𝛼 that are associated with the ≺𝐸 , ≺𝑆 and ≺𝛼
criteria introduced in this example. The importance of this definition is
that many stochastic preferences and orders can be constructed from a
function 𝑓 with the above-mentioned properties, which allows for joint
learning of the SoH model and the criterion used to measure how well
the model fits the data.

3.1. Joint learning of the SoH model and a stochastic comparison criteria

The training set comprises a sample of 𝑆 systems whose RULs are
independent random variables R1,… ,R𝑆 . There is a vector 𝐱𝑠 for each
system containing a sequence of measurements taken on the 𝑠th system
over time.

The objective of the learning problem is to obtain:

(1) A model of the SoH, which is a mapping that assigns a random
variable SoH ∼ 𝑝𝜃(𝐱) to a system characterised by a vector of
measurements 𝐱. The probability distribution of this random
variable depends on a parameter 𝜃(𝐱). This parameter is, in turn,
a function of 𝐱.

(2) A function 𝑓 , defining a criteria for comparing two random
variables.

he need to obtain this second function is explained below. Consider
he following matrix, formed by pairwise comparisons of the random
ariables comprising the training set:

=

⎛

⎜

⎜

⎜

⎜

⎝

0 R1 ≺ R2 … R1 ≺ R𝑆

R2 ≺ R1 0 … R2 ≺ R𝑆

⋮ ⋮ ⋱ ⋮
R𝑆 ≺ R1 R𝑆 ≺ R2 … 0

⎞

⎟

⎟

⎟

⎟

⎠

(7)

Let be

𝑔(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) − 𝑓 (𝑦, 𝑥) (8)
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Fig. 5. Block diagram of the proposed method. The learning is performed from time-to-end RUL data, and results in two models: (A) a model of the health state, which produces
an output that is comonotonic with the RUL, and (B) a transformation that converts the health state values into RUL values.
Fig. 6. Top: True expected RULs for the systems in the example in Section 3.3. Bottom: expected SoHs estimated with the proposed method. The estimates are comonotonical
with the expected life of the system.
and

𝐺 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝐸(𝑔(R1,R2)) … 𝐸(𝑔(R1,R𝑆 ))
𝐸(𝑔(R2,R1)) 0 … 𝐸(𝑔(R2,R𝑆 ))

⋮ ⋮ ⋱ ⋮
𝐸(𝑔(R𝑆 ,R1)) 𝐸(𝑔((R𝑆 ,R2))) … 0

⎞

⎟

⎟

⎟

⎟

⎠

(9)

𝐺 contains essentially the same information as 𝑃 : the elements
𝐺𝑖𝑗 of this matrix are positive when the RUL of the 𝑖th system is
‘‘higher’’ (in a stochastic sense) than that of the 𝑗th, zero if equal or
non-comparable and negative if lower.
4

Let SoH𝑠 ∼ 𝑝𝜃(𝐱𝑠) be the output of the model when the input is 𝐱𝑠.
The matrix

𝐻 = [𝐻𝑖𝑗 ] = [𝐸(𝑔(SoH𝑖,SoH𝑗 ))] (10)

encodes the pairwise comparisons between the model’s predictions. We
propose that the evaluation function of a model counts the coincidences
and discrepancies between the signs of the elements of the 𝑃 and
𝐻 matrices. The precise method by which these differences will be
counted will be defined later, in Section 4.2. As will be seen, the metric
is analogous to statistical tests that measure the correlation between
ordinal values, and the proposed algorithm is also related to certain
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Fig. 7. Representation of the values of 𝐸(R) as a function of 𝐸(SoH), showing that
one can be obtained from the other by a monotonic transformation.

algorithms of the ‘‘learning to rank’’ type [33], although in this case the
comparisons are not between numerical values, but between random
variables.

3.2. Using monotone neural networks to represent a stochastic order

Neural networks are a convenient way to parameterise the 𝑓 func-
ions mentioned in the previous section, so that the joint learning of
he health state model and the stochastic ordering can be posed as
n optimisation problem of a vector of real numbers; a part of the
omponents of this vector will serve to define the function 𝜃(𝐱) and
he remaining part will be the weights of the neural network defining
.

There are several neural architectures for representing monotonic
unctions with respect to each of their inputs. The case we are con-
erned with in this study (a monotonic function increasing with respect
o one variable and decreasing with respect to the other) is not ex-
licitly covered in any previous work, to our knowledge. Among the
ifferent options available, we have chosen the architecture proposed
y Sill [31], because it can be easily adapted to the problem at hand. In
his neural network, monotonicity is guaranteed because the weights of
he input layer are positive (thanks to an exponential transformation).
f, using a similar transformation, the weights connecting the second
nput to the MAX layer (see Fig. 4) are forced to be negative, the
esulting function is monotonic increasing with respect to the first input
nd monotonic decreasing with respect to the second input, as desired.

.3. Outline of the method

Fig. 5 contains a block diagram of the proposed method. The
earning is performed from time-to-end RUL data, and results in two
odels: (A) a simple health state model, which produces an output that

s comonotonic with the RUL, and (B) a transformation that converts
he health state values into RUL values. The learning of health model
s unsupervised, as the model does not approximate the known RUL
alues, but their correlation with the SoH. This correlation between
UL and SoH is measured by a function that depends on the monotone
eural network described in the preceding section; this network is only
sed during learning, and is not part of the model that is deployed.

Having stated the main ideas, we illustrate the steps of the proposed
ethod by means of an illustrative example. Let us suppose that have
systems with the same properties, each of them characterised by a

equence 𝐱𝑠, 𝑠 = 1, 2, 3 of measurements of a variable, and whose RULs
ollow uniform probability distributions:
𝑠 −

∑

𝑖 𝑥
𝑠
𝑖

5

∼ 𝑈 [0, 𝑒 ] (11)
Table 1
Table with the measurements of the example in Section 3.3.

System Measurements RUL

# 1 𝑥1 = [0.1, 0.2, 0.2, 0.3, 0.1] R1 ∼ 𝑈 [0, 0.406] 𝐸(R1) = 0.203
# 2 𝑥2 = [0.2, 0.3, 0.0, 0.1] R2 ∼ 𝑈 [0, 0.549] 𝐸(R2) = 0.274
# 3 𝑥3 = [0.1, 0.1, 0.2, 0.2, 0.1, 0.1] R3 ∼ 𝑈 [0, 0.449] 𝐸(R3) = 0.224

The data for a conventional algorithm would be the three measure-
ment sequences and the expectation of their RULs (see Table 1). On
the contrary, the proposed algorithm is only provided with an ordering
between the RULs. In this particular case, let us assume that R1 ≺ R3 ≺
2, which is encoded in the following matrix of pairwise comparisons:

=
⎛

⎜

⎜

⎝

0 1 1
−1 0 −1
−1 1 0

⎞

⎟

⎟

⎠

(12)

he conventional RUL prediction algorithm would ideally conclude
ith the numerical estimator

(R) = 1
2
𝑒−

∑

𝑖 𝑥𝑖 (13)

whereas the proposed algorithm would end up with two outcomes: (a)
a potentially simpler definition of the probability distribution of the
SoH, for instance

SoH ∼ 𝑈 [0, 1 −
∑

𝑖
𝑥𝑖] (14)

and (b) a monotone neural network-based definition of the function
defining the best stochastic order, for instance

𝑓 (𝑥, 𝑦) =

{

1 𝑥 ≥ 𝑦
0 𝑥 < 𝑦

(15)

because, for this particular choice of 𝑓 , the signs of the elements of the
matrix

𝐻 =
⎛

⎜

⎜

⎝

0 1.875 0.75
−1.875 0 −0.75
−0.75 0.75 0

⎞

⎟

⎟

⎠

(16)

coincide with the signs of 𝑃 . Note that the elements of the matrix 𝐻
have been calculated as indicated in Eq. (10), and in this particular case

𝐴 ∼ 𝑈 [0, 𝑣1] 𝐵 ∼ 𝑈 [0, 𝑣2]

𝐸(𝑓 (𝐴,𝐵)) = ∫

𝑣1

0
𝑑𝑥∫

𝑣2

𝑥

1
𝑣1

1
𝑣2

𝑑𝑦 = −
𝑣1
2𝑣2

(17)

𝐸(𝑔(𝐴,𝐵)) =
𝑣2
2𝑣1

−
𝑣1
2𝑣2

(18)

ig. 6 shows, graphically, the expected RUL values for each of the three
ystems in this example and the estimates of the SoH using Eq. (14).
ote that the expectation of the SoH is different than the expectation of

he true RUL, but both expectations are comonotonic, thus monotonic
egression can be used to find a transformation that converts 𝐸(R) to
𝐸(SoH), as shown in Fig. 7.

The SoH estimator (recall Eq. (14)) can be implemented in different
ways. In this work we propose a simple expression that produces
reasonable results in many practical problems, as discussed in the next
section.

4. A simple SoH model

As seen in the previous example, the proposed method does not
seek an accurate model of the RUL but a model that decreases in time
consistently with the RUL, together with a stochastic ranking criteria
under which the model estimates are in the same order as the training
set data. In this section we propose a model that depends on a small
number of parameters but, as will be seen in the experimental results
section, it offers a good practical behaviour. In any case, the proposed
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Fig. 8. Left: Signals 𝐱 of the engine 𝑠 = 3 of the CMAPSS/FD001 problem, with number of cycles 𝑀3 = 179 and measured up to failure, and therefore with label L̂3 = 0. Centre:
ignal derivative �̇�(𝑡) (×103). Right: Estimated health for each time instant according to Eq. (21).
ethod is applicable to any lifetime estimator; this model is given as
reference, but can be replaced by any other function appropriate to

he problem.
Let SoH𝑡 be the SoH of a system at time instant 𝑡. Let we assume

hat SoH𝑡 ∼ 𝛾(𝑘, 𝜃𝑡) (which is a common assumption in this kind of
roblems [17]). The density function of this distribution is

(𝜏; 𝜃𝑡, 𝑘) =
𝜏𝑘−1𝑒−𝜏∕𝜃𝑡
𝜃𝑘𝑡 𝛤 (𝑘)

, (19)

so that the expected SoH at time 𝑡 = 0 is 𝐸(SoH0) = 𝑘𝜃0.
At each time instant 𝑡𝑖, 𝑖 = 1,… , 𝑁 the system undergoes a degra-

dation 𝐷𝑖 ∈ [0, 1], such that

𝑓 (𝜏; 𝜃𝑖+1, 𝑘) = 𝑓 (𝜏; 𝜃𝑖𝐷𝑖, 𝑘), (20)

thus the SoH at time 𝑡𝑖 also follows a gamma distribution,

SoH𝑖 ∼ 𝛾(𝑘, 𝜃0
𝑖−1
∏

𝑗=0
𝐷𝑗 ) = 𝛾(𝑘, 𝜃0𝑒

∑𝑖−1
𝑗=0 log𝐷𝑗 ). (21)

The term 𝐷𝑖 measures the reduction in the expected health of the
ystem between instants 𝑡𝑖 and 𝑡𝑖+1. A value of 𝐷𝑖 = 1 means that
o event affecting the life of the equipment has occurred during that
eriod, and a value of (for example) 𝐷𝑖 = 0.5 means that the expected

health has been halved at that instant of time.
We also propose that the logarithm of the instantaneous degradation

𝐷𝑖 depends only on the derivatives of the sequence of measurements of
the system at time 𝑡𝑖. Given two parameter vectors 𝛼 and 𝛽, we define
the logarithm of the deterioration as

log𝐷𝑖 = −‖relu(𝛼 ⋅ �̇�𝑖 − 𝛽)‖ (22)

where relu(𝑥) = max(𝑥, 0).
This model is based on a low number of parameters, compared

to recent AI-based methods (the number of parameters is twice the
number of signals) and has a simple physical interpretation: at each
instant of time the system does not deteriorate (log𝐷𝑖 = 0) unless the
erivatives of the signals (affected by a scaling factor 𝛼, with sign)
xceed a threshold 𝛽. If this threshold is exceeded, the higher the
scaled) derivative of the signal, the greater the deterioration (see Fig. 8
or an example).

Note also that with this model it is not necessary to assume that the
seful life is piecewise linear [34], and that it is immediate to use the
eterioration profile to identify at what time instant the damage has
ccurred and how large it has been (as already seen in Fig. 8).

.1. Fitting the model to a data sample

Let R𝑠
𝑖 ∼ 𝛾(𝑘, 𝜃𝑠𝑖 ), 𝑠 = 1,… , 𝑆, be the remaining life of a system
6

at time 𝑡𝑖. The training set consists, as mentioned, of 𝑆 sequences
of measurements of the signals 𝐱𝑠 = [𝑥𝑠𝑖 ]𝑖=1…𝑀𝑠
(recall the left part

of Fig. 8), accompanied by a label L𝑠 each, measuring the health of each
system in the last period of the sequence 𝑀𝑠. As we are only going to
use the signs of the pairwise comparisons of these measurements, it is
not necessary to have a numerical estimate of the expected lifetime of
the equipment; ordinal labels such as ‘‘GOOD’’, ‘‘NORMAL’’ or ‘‘BAD’’
are enough.

Let us assume that

• The labels are ordered: L1 ⪯ L2 ⪯ ⋯ ⪯ L𝑆

• The equipment is not completely deteriorated at the initial in-
stant, but that the life expectancy of the equipment at that time
is not known.

• The initial SoH linearly depends on the expected number of time
instants 𝑀𝑠+𝐸(SoH𝑠) = 𝑀𝑠+𝑘𝜃𝑠𝑀𝑠

that elapse from the beginning
of the sequence of measurements until the end of life of the
equipment, that is:

𝑘𝜃𝑠0 = 𝜂(𝑀𝑠 + 𝑘𝜃𝑠𝑀𝑠
) + 𝛿 (23)

and

𝜃𝑠𝑀𝑠
= 𝜃𝑠0𝑒

∑𝑀𝑠−1
𝑗=0 log𝐷𝑗 (24)

therefore,

𝑘𝜃𝑠𝑀𝑠
=

(𝜂𝑀𝑠 + 𝛿)𝑒
∑𝑀𝑠−1

𝑗=0 log𝐷𝑗

(1 − 𝜂𝑒
∑𝑀𝑠−1

𝑗=0 log𝐷𝑗 )
(25)

The learning objective is to estimate the set of parameters 𝛼, 𝛽, 𝜂, 𝛿
and 𝑘 for which the matrix 𝐻 of precedences between the SoH of the
equipment and the matrix 𝑃 of precedences between the labels (recall
Eqs. (9) and (10)) are concordant, as explained in the next section.

4.2. Learning algorithm

There are different ways of counting the number of discrepancies
between 𝑃 and 𝐻 . We will use the subtraction between the number of
matrix elements with matching sign and the number of elements with
discordant sign, divided by the number of matrix elements, which is the
well-known Kendall’s 𝜏𝐴 statistic mentioned before. We will consider,
as in Ref. [35], that there are non-comparable elements. Since we
intend to use descent algorithms to solve the optimisation problem,
we will make the smooth approximation sign(𝑥) ≈ tanh(𝜅𝑥) (for a
sufficiently high value of a constant 𝜅) thus

𝜏𝐴(𝑃 ,𝐻) = 1
𝑆2

( 𝑆
∑

𝑖=1

𝑆
∑

𝑗=1
tanh

( 𝜅𝑃𝑖𝑗

max(|𝑃 |)

)

⋅ tanh

(

𝜅𝐻𝑖𝑗

max(|𝐻|)

)

+ 𝐶0 −𝐷0

)

(26)
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Fig. 9. From top to bottom and from left to right: measured signals, derivatives of the signals and synthesised health signal for engines FD001-34, FD002-7, FD003-99 and
FD004-40 from the test sets of these problems. Fig. 10 shows the estimation of the RUL for the same problems using the RVE method.
e

where 𝐶0 and 𝐷0 measure the discrepancies in the pairs of values where
any of the graph elements is zero:

𝐶0 =
𝑆
∑

𝑖=1

𝑆
∑

𝑗=1
1𝑃𝑖𝑗=𝐻𝑖𝑗=0

𝐷0 =
𝑆
∑

𝑖=1

𝑆
∑

𝑗=1
|𝐻𝑖𝑗 | ⋅ 1𝑃𝑖𝑗=0 +

𝑆
∑

𝑖=1

𝑆
∑

𝑗=1
|𝑃𝑖𝑗 | ⋅ 1𝐻𝑖𝑗=0

(27)

The purpose of the learning problem is to maximise 𝜏𝐴(𝑃 ,𝐻) with
respect to the parameters 𝛼, 𝛽, 𝜂, 𝛿, 𝑘 and the weights of the neural
network codifying 𝑓 . In the experiments presented in the next section,
this optimisation has been performed by alternating two steps: in the
7

p

first one, the parameters defining the monotone neural network 𝑓
are left frozen and 𝜏𝐴 is maximised with respect to the parameters
𝛼, 𝛽, 𝜂, 𝛿, 𝑘. In the second, the opposite is done: the ageing model is
frozen and the parameters of the neural network 𝑓 are optimised. The
process is repeated until one of the two optimisations cannot improve
the initial error value.

4.3. Conversion of model output to numerical estimations

Recall that the maximisation of 𝜏𝐴(𝑃 ,𝐻) does not make use of the
xpected values of the RULs in the training set, only the signs of their

airwise comparisons. In this sense, the prediction provided by Eq. (21)
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Fig. 10. Estimation of the RUL of engines FD001-34, FD002-7, FD003-99 and FD004-40 using the RVE method.
s a health signal, which varies consistently with the remaining lifetime
ut the expected value of SoH is not a RUL estimator.

As seen in the example in Section 3.3, to convert the predictions
roduced by Eq. (21) into RUL predictions one must solve a monotonic
egression problem where the input variables are the expectations of
he SoH for the elements of the training set and the output variables
re the expected RULs in the training set. Note that this step does not
ignificantly increase the complexity of the diagnostic algorithm, since
he results of this monotonic regression problem can easily be stored
n a look-up table of only a few hundred values, and this table can be
tored in the non-volatile memory of the system computer. Moreover, in
any practical applications this last step is not necessary, as an alarm

an be triggered by a threshold in SoH and health does not need to be
efined in time units.

. Experimental results

The proposed method is validated in three ways. In the first part,
he CMAPSS problem is used to measure how much accuracy is lost
hen different recent machine learning techniques are replaced by a

implified model. In the second part, the new solution is evaluated on
8

a real turbo-fan engine diagnosis problem and compared to previous
solutions of the same problem. Finally, the third part shows a real case
where this method is implemented for CBM of a fan for road tunnels.

5.1. Measuring the simplicity-accuracy balance

To assess the balance between simplicity and accuracy of the pro-
posed procedure we use the CMAPSS benchmark. This problem is
representative of the problems we want to solve because it is small
in size, then it is amenable to a simple method, and at the same time
it is probably the benchmark to which the most extensive catalogue
of AI-based RUL learning methods has been applied. A selection of
intelligent techniques, from the multilayer perceptron (which has a
complexity comparable to our method) to variational autoencoders
(VAEs), is shown in Table 2 (taken from Ref. [1]). The methods are
ordered from lowest to highest complexity and, in the last row, the
results of the proposed method are shown both in terms of the root
mean square error and the score proposed in [2] by the authors of the
benchmark problem.

In view of the comparison table, co-learning a simple comonotone
model and a stochastic comparison criteria produces results comparable
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Fig. 11. FD001 problem: Graphical comparison between RUL predictions made with a variational autoencoder and with the proposed method. The dotted line corresponds to the
actual RUL values (ordered from lowest to highest). The empty circles are the RVE prediction and the filled circles are the proposed method.
Table 2
Comparison of results on a selection of intelligent techniques applied to the CMAPSS problem.
Source: Upper part of the table reproduced from Ref. [1].

FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

MLP [3] 37.56 18 000 80.03 7 800 000 37.39 17 400 77.37 5 620 000
SVR [3] 20.96 1380 42.00 590 000 21.05 1600 45.35 371 000
RVR [3] 23.80 1500 31.30 17 400 22.37 1430 34.34 26 500
CNN [3] 18.45 1299 30.29 13 600 19.82 1600 29.16 7890
Deep LSTM [3] 16.14 338 24.49 4450 16.18 852 28.17 5550
Semi-Supervised [5] 12.56 231 22.73 3366 12.10 251 22.66 2840
DCNN [4] 12.61 273 22.36 10 412 12.64 284 23.31 12 466
MS-DCNN [4] 11.44 196 19.35 3747 11.67 241 22.22 4844
VAE+RNN [1] 15.81 326 24.12 4183 14.88 722 26.54 5634
RVE [1] 13.42 323 14.92 1379 12.51 256 16.37 1846

Simple Ageing Model 16.79 437 19.51 1555 17.48 588 22.82 3960
to those of a CNN or a Deep LSTM [3]. In particular, in the most
complex problems (FD002 and FD004, with six operating points) the
proposed model is not substantially different from techniques three
orders of magnitude more complex. Fig. 9 shows the health signals
synthesised by this method, which can be compared with the estimates
of a VAE on the same problem in Fig. 10. The predictions are similar
over a wide range of values and, from a practical point of view the
gain of the more complex methods hardly justifies their additional
complexity for this particular problem, as can be seen in Fig. 11.

We would also like to point out that, unlike most methods in the
literature, the proposed method generalises better than the alternatives
to unseen data because an RUL estimator trained with any of the
problems can be applied, without a substantial loss of efficiency, to any
of the other three, as shown in Table 3. To our knowledge, none of the
methods published to date have this capability.

5.2. Mechanical deterioration of turbofan aircraft engines

In this section we address the problem of predicting the mechanical
deterioration of two-shaft high bypass ratio turbofan engines with
real data taken from the aircraft industry. The two main sections of
any engine prone to failure are the high pressure compressor (HPC)
and the turbine (HPT). HPC deterioration is mainly due to increased
tip clearance or loss of material in a blade or in the span. Turbine
9

deterioration can be due to combustion problems or damage to the
Table 3
Evaluation of a model trained on one problem on test data from a different problem.
Results on each problem’s own test set are marked in bold. The cross-tabulated results
show that a simplified RUL estimator can have remarkable generalisation capability.

FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

Trained on FD001 16.79 437 19.29 1688 22.91 897 23.26 4232
Trained on FD002 17.65 517 19.51 1555 24.63 1259 24.94 4607
Trained on FD003 18.85 676 22.16 5297 17.48 588 22.74 8724
Trained on FD004 17.12 490 20.04 1764 19.03 992 22.82 3960

blade. HPT deterioration is slower and more difficult to diagnose by
analysing the signals monitored in the engine.

Forty-three aircraft with a slow deterioration pattern and no readily
detectable anomalies were selected. Each of these aircraft has been
given two labels to quantify the health of its HPC and HPT. Each label is
one of the words (from best to worst health) ‘‘good’’, ‘‘good to normal’’,
‘‘normal’’, ‘‘normal to high’’, ‘‘high’’ or ‘‘bad’’.

A comparative analysis of the following five techniques has been
carried out:

• A cycle-count deterioration model. This is a baseline method:
each engine has an expected life of 5000 cycles at the start of
the series, and the RUL is the result of subtracting the number of

cycles performed by the engine from this initial value.
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Table 4
Mean absolute errors of RUL prediction of aircraft HPC and HPT systems with different
techniques.

Method HPC HPT

Cycle counting 1737 1693
Neural network 1387 1526
Random Forest 1422 1582
Fuzzy Ageing Model 1380 1697
Simple Ageing Model 1283 1504

• A random forest regression model, in which the input features
were obtained from the aircraft data using the method explained
in [36].

• An ageing model based on fuzzy rules [37].
• The model proposed in this study.

ig. 12 shows two boxplots with the test errors of fifty repetitions of
he five models applied to the prediction of HPC and HPT degradation.
n Table 5 the average values of the test errors of these models are
hown; to obtain the numerical equivalence, the RUL values of 5000,
000, 1000, 1000, 250, 10 and 0 cycles have been assigned to the
abels ‘‘good’’, ‘‘good to normal’’, ‘‘normal’’, ‘‘normal to high’’, ‘‘high’’
r ‘‘bad’’, respectively. The results are consistent with experience: the
rediction of turbine deterioration is not substantially different from
he trivial ‘‘cycle counting’’ method, but compressor deterioration is
ore predictable. The good generalisability of the method proposed

n this study, already shown in the previous experimentation, allows
btaining results that, on average, are better than the alternatives . The
rediction error of the compressor RUL is statistically lower than the
est alternative (Wilcoxon test 𝑝-value less than 1%). The RUL of the

turbine is also lower on average, but the difference is not statistically
representative (see Table 4).

5.3. Condition monitoring of road tunnel fans

The operation of a fan can be affected by various mechanical
anomalies, including imbalances, poor lubrication, vibrations caused
by operation close to the stall area, vibrations caused by a loosened
support, sudden starts or stops. To these factors must be added elec-
trical and electronic problems (electric motor or inverter failures) and
couplings or parasitic vibrations that can occur in installations where
several fans operate in coordination.

The left-hand side of Fig. 13 shows a 30 kW axial fan used for
ventilation in road tunnels. The right-hand side of the same figure
shows a detail of the accelerometers installed to measure vibrations
during operation. This type of equipment has a capture card with an
industrial microprocessor, which controls the operating point (defined
by the flow rate and pressure) and monitors eight health signals: the
temperature in the three AC motor windings, the temperature in three
bearings and the vibrations in two of the bearings.

In order to implement the fan monitoring system, tests have been
carried out in which non-destructive failures of the fan (removal of
lubricant from the bearings, loosening of brackets, etc.) have been
provoked. The data measured in these experiments were used to iden-
tify a model of the fan, which in turn was used to extrapolate the
deteriorations up to the end of the fan’s lifetime, for eight different
types of deterioration and four operating points. Dataset 1P-1F has
one operating point and one deterioration type (front bearing). The
4P-8F dataset has four operating points and eight different types of
failure. Datasets 1P-8F and 4P-1F are intermediate between the two.
The data files comprise the eight health variables mentioned above and
the operating point, and have been made publicly available on [38].

The results of the experimentation are shown in Table 5. This table
contains three methods: the ‘‘cycle counting’’ method assumes that the
fan lifetime is the average lifetime of the elements in the training
set, minus the number of cycles performed in the test set. The RVE
10
Fig. 12. Left part: Compressor deterioration (HPC): boxplots with the error dispersions
of the results in the test set after ten repetitions of the algorithms ‘‘cycle counting’’ (CC),
‘‘neural network’’ (NN), ‘‘Random Forest’’ (RF), ‘‘Fuzzy Rule-Based System’’ (FUZZY)
and ‘‘Simple Ageing Model’’ (SAM) methods. Right hand side: Turbine deterioration
(HPT).

Table 5
Mean absolute errors of RUL prediction, fan deterioration problems.

Method 1P-1F 4P-1F 1P-8F 4P-8F

Cycle counting 66.12 55.97 46.62 48.95
VAE 35.48 37.29 30.31 20.50
Simple Ageing Model 31.56 28.78 29.80 26.96

method [1] is used as a measure of the state of the art in RUL prediction
with intelligent data-driven methods. Finally, the result of the method
developed in this study is presented. As can be seen in the table, the
proposed method produces a coherent health signal in all cases. In
the three simplest problems it is of equal or better quality than the
more complex method, and is compatible with the limitations of the
microprocessor embedded in the fan.

6. Conclusions and future work

Life estimation is usually part of predictive maintenance routines
and therefore it is not critical that RUL models are run in real time; in
fact, two of the practical problems presented in this paper pertain to
the aircraft industry, where it is common for this type of analysis to be
performed by specialised companies that are only supplied with data
on a monthly basis, or less. In such a case, it is not justified to simplify
the model if this leads to a loss of accuracy. However, other equipment
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Fig. 13. 30 kW axial fan for road tunnel ventilation. Left side: fan with silencers. Right side: detail of the fan engine and the accelerometers used to measure vibrations.
(industrial fans, light transport vehicles, etc.) are not connected to the
Internet and do not have sufficient computing power to apply recent AI
methods. The proposed method is oriented towards these applications.
A locally synthesised status signal can trigger an alarm before a failure
occurs, and it is important to know how far in advance a failure can be
anticipated with a local maintenance system versus a connected system.

From a conceptual point of view, the co-learning of a probabilistic
model and a criterion for comparing random values, which has been
used here to restrict the search for a model to a reduced space, has a
wide range of applications. In future work we wish to explore other uses
of this technique and, for example, use it to learn models from records
where there are missing or censored values, for which a representation
based on probability distributions is natural. On the other hand, it
has been assumed that deterioration is a stochastic process in which
the probability distribution of time to failure is Gamma. The proposed
ageing model, where the logarithm of the ratio of life expectancies
between two instants is modelled by a linear threshold function, can
be extended to other families of probabilities, such as the inverse
Gaussian, which can potentially produce better results in some practical
problems.
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