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Abstract— Pipeline inspection is crucial to ensure the
safe and efficient operation of pipelines, as well as to pre-
vent potential hazards and disruptions in the transportation
of materials. To address this challenge, this work proposes
an innovative semiautonomous inspection method that
uses unmanned aerial vehicles and infrared thermography
to efficiently inspect pipelines. The approach combines the
benefits of automated flight and high-speed data acquisi-
tion with advanced data processing techniques, enabling
the detection of hidden defects and abnormal temperature
patterns in pipelines. The proposed procedure presents a
comprehensive operational approach that covers the entire
inspection process, including flight configuration, data ac-
quisition, and processing. The proposed method for data
processing is automated, utilizing vision-based detection
and tracking techniques and leveraging the power of deep
learning algorithms to ensure robust analysis and inspec-
tion. A novel active learning procedure is also proposed,
further improving the efficiency and effectiveness of the
pipeline inspection process. Extensive tests demonstrate
the effectiveness of the proposed procedure in industrial
applications. The proposed thermographic system enables
the detection and localization of insulation defects and
product leaks in pipes, which are critical for maintaining
pipeline integrity.

Index Terms— Pipeline inspection, Unmanned aerial ve-
hicles, Infrared thermography, Detection and tracking, Ac-
tive learning

I. INTRODUCTION

Pipeline inspection helps to ensure the safety and integrity
of pipelines, which are critical infrastructure for the transporta-
tion of a wide range of materials including liquids, gases,
and slurries [1]. These materials can include raw materials,
such as oil, natural gas, and ore, as well as finished products,
such as gasoline, diesel fuel, and metal products. Pipelines
are often the most cost-effective and efficient means of trans-
porting these materials over long distances, as they are able
to transport large volumes of material quickly and reliably
[2]. This is especially important in the case of oil and natural
gas, which are often transported over great distances to reach
their destination. In addition to transportation, pipelines can
also be used to connect various stages of the production
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process, which helps to streamline production and make it
more efficient.

Several types of pipeline inspection methods are commonly
used to assess the condition and integrity of pipelines [3]. The
most common methods are based on visual inspection, non-
destructive testing (NDT) and in-line inspection (ILI). Visual
inspection methods observe the pipeline looking for visible
signs of damage or deterioration. This can be done by trained
personnel on foot or using aerial platforms such as drones.
NDT methods inspect the condition of a pipeline without
causing damage or disruption. Examples include ultrasonic
testing, radiographic testing and magnetic particle testing. On
the other hand, ILI methods involve the use of specialized tools
or devices, such as smart PIGs (Pipeline Integrity Gauges).
These devices are inserted into the pipeline and propelled
along its length to collect data on its condition, such as wall
thickness, corrosion, and deformities.

Drones, also known as unmanned aerial vehicles (UAVs),
are experiencing growing utilization for visual inspections
across various sectors such as construction, manufacturing,
and transportation [4]. Novel applications are also becoming
popular, such as remote sensing for wildlife and environmental
monitoring [5]. In the context of pipeline inspection, drones
can be equipped with cameras or other types of sensors to cap-
ture images or data about the condition of the pipeline. Visual
inspection using drones provides several advantages, as they
can access hard-to-reach or hazardous areas and provide more
cost-effective solutions than traditional inspection methods.
Moreover, they can cover large areas quickly while collecting
large amounts of data, making them an efficient option for
inspections that would otherwise be time-consuming. The
acquired data can be used not only for the generation of
detailed reports but also for the identification of trends over
time. Overall, visual inspection using drones provides a safe,
cost-effective, and efficient means of inspecting pipelines and
other structures [6].

Visual inspections using drones are generally carried out
by trained personnel that manually operate all aspects of
flight, including the control of the camera or other sensors.
This way, the position of the drone is adjusted to specific
areas of interest. An example of this approach can be found
in [7], where a drone-based bridge inspection protocol is
established, proposing a five-stage inspection methodology
to achieve optimum data collection. In [8] an analysis is
presented about the utilization of drone technology in the
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construction industry, with a focus on health and safety,
efficiency, and cost of the site inspection process. A major
challenge of all these approaches is scale, as only limited
areas can be fully inspected. A complete review of the history
of unmanned aerial vehicles, along with a comprehensive
review of studies focused on UAV-based NDI of industrial and
commercial facilities can be found in [9]. In recent research,
the application of this technology has extended to include
active thermographic inspection [10]. This work focuses on the
effectiveness and challenges associated with utilizing active
infrared thermography on an unmanned aerial vehicle (UAV)
platform. The main objective is to evaluate the performance
of small, low-powered excitation sources suitable for active
thermography and their ability to detect subsurface defects
on composite materials. Other practical issues are analyzed in
[11].

Autonomous and semiautonomous systems are recently be-
coming a possible alternative approach for visual inspections
using drones. This type of solution can increase inspection
speed and also improve cost efficiency. A solution for in-
specting straight oil and gas pipelines is presented in [12],
where an autonomous procedure is proposed combining image
processing and a controller that ensures the position and
orientation of the drone are aligned with the pipeline. Pipeline
inspection is also studied in [13] to monitor oil and gas
pipelines to detect leakages and cracks. In [14] an autonomous
approach is proposed for power line inspection, establishing a
perspective model and including a novel pan/tilt monocular-
based navigation scheme. Despite the promising research work
about autonomous and semiautonomous inspection systems,
there are still some shortcomings and challenges that need to
be solved, including reliability, safety and data management
issues.

This work proposes a semiautonomous solution for pipeline
inspection combining infrared thermography and unmanned
aerial vehicles. This work follows a passive approach, i.e., no
external heat sources are applied [15]. To address the challenge
of scale in pipeline inspection, this work proposes a semi-
autonomous approach where drones fly fully autonomously
without any human interactions. This is achieved by using
previously configured flight plans. The pre-programmed flight
follows a path where the pipeline is located. During the flight,
the drone acquires infrared video at high-speed rates, enabling
the drone to fly very quickly and cover long distances. In the
proposed procedure, while the battery is swapped, the storage
card with the recording is also substituted, and a new pre-
programmed flight is configured with a different section of the
pipeline system. During the new flight, the previous recording
is processed through automated workflows to robustly turn the
raw data into quantitative analytics, resulting in simplified,
decision-ready information, backed by data. Data processing
involves the use of vision-based detection and tracking meth-
ods, with deep learning serving as the foundation for robust
data analysis and inspection. The proposed work addresses
important challenges found in automated visual inspection,
such as navigation inaccuracies, variability caused by factors
such as different weather conditions, processing speed, image
quality, data management and object recognition and tracking

to provide measurements about individual pipes, including a
novel active learning methodology. The proposed approach is
based on infrared images that can be used to detect hidden
defects that may not be visible to the naked eye and also are
sensitive to temperature variations, allowing for the detection
of hot spots and abnormal temperature patterns. Moreover,
it can be used to inspect pipelines during the night and to
identify temperature trends over time, enabling the comparison
of temperature readings in different sections of the installation.
This work conducts extensive tests in an industrial facility as it
is a sector that heavily relies on pipelines for the transportation
of materials, demonstrating the effectiveness of the proposed
approach.

In this work, the utilization of infrared technology is
paramount, as it plays a crucial role in detecting and locat-
ing defects in pipe insulation and identifying leaks in the
transported product. Although the proposed approach does not
specifically address particular defects, it offers a comprehen-
sive characterization of each pipe’s temperature using vari-
ous temperature intensity features, including mean, median,
standard deviation, mode, maximum, minimum, quartiles, mo-
ments, skewness, kurtosis, and peak height. These measure-
ments enable the easy identification of abnormal temperature
patterns. Furthermore, this approach facilitates the creation
of historical records, which can be utilized for predictive
maintenance purposes. The incorporation of infrared thermog-
raphy significantly contributes to verifying the integrity of the
pipeline, ensuring that the entire transport system remains fully
sealed. This is of utmost importance as leaks not only result in
substantial energy and economic losses but also pose a threat
to the environment.

This work presents important contributions that collectively
advance the field of pipeline inspection and offer innovative
solutions to the challenges faced in this domain. the proposed
method tackles important challenges that are often overlooked
in the literature, providing a novel approach to overcome them.
Specifically, it focuses on effectively managing large datasets,
high-speed data acquisition, and GPS unreadability, making
a significant contribution to the field of pipeline inspection.
Furthermore, traditional inspection methods face limitations
in inspecting pipelines that span great distances. To address
this challenge, the proposed approach introduces a semiau-
tonomous inspection method using unmanned aerial vehicles
and infrared thermography. The proposed procedure offers
a comprehensive approach that covers the entire inspection
process, including flight configuration, data acquisition, and
processing. A novel active learning procedure is introduced,
further enhancing the efficiency and effectiveness of the
pipeline inspection process. This procedure optimizes data
processing, reducing the time and effort required for analyzing
large amounts of data. The proposed work also tackles various
challenges encountered in automated visual inspection, such as
navigation inaccuracies, variability due to weather conditions,
processing speed, image quality, data management, and object
recognition and tracking. By effectively addressing these chal-
lenges, the proposed method provides accurate measurements
regarding individual pipes. A novel tracking procedure is pro-
posed that combines semantic information about the pipeline
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Fig. 1. Flowchart of the proposed method.

configuration. By incorporating geometric information about
the pipeline, the tracking approach significantly enhances
the robustness of the procedure. Consequently, false positive
detections have a negligible influence on the identification of
correct pipeline joints.

II. PROPOSED APPROACH

In the proposed approach, a drone flies along the pipeline
route while acquiring infrared video at high-speed rates. When
the battery runs out, both the battery and the storage card are
swapped, and a new flight plan is configured for a different
section of the pipeline. Data processing is performed while the
new flight is executed. Therefore, at any given moment both
the recording and processing tasks are executed at the same
time for different sections of the pipeline. This improves the
efficiency of the inspection procedure, providing a near real-
time response.

The methodology proposed is intended to swiftly examine
the recorded data, thereby affording the opportunity for data
analysis prior to the drone’s return for a fresh battery replace-
ment. This capability grants the operator the ability to repeat
the examination of a specific section of the pipeline if deemed
necessary.

The proposed solution for the data processing task is out-
lined in Figure 1. When combined with mission planning, it
offers a complete operational strategy that encompasses the
entire inspection process. A comprehensive description of the
components involved in the proposed solution is provided in
the following sections.

A. Mission planning
The flight plan is created using a series of waypoints,

or specific locations, along the pipeline route. This ensures
that the drone flies over and inspects the entire pipeline.
Waypoints are connected using line segments. Thus, each
linear section of a pipeline is defined using two waypoints.
These waypoints mark the beginning and end of the linear
section of the pipeline that the drone will inspect. Using two
waypoints per linear section of the pipeline is an efficient
and effective way to ensure that the drone thoroughly inspects
the entire pipeline while minimizing the configuration needed.
Radiometric infrared video recording is activated from the first
waypoint to the last. Moreover, each frame in the infrared
video is tagged with a GPS coordinate using a GPS module
that is integrated with the camera.

Drone batteries typically do not last very long, only around
30 minutes. This is a key consideration when planning a
mission. For a long pipeline, multiple flights are needed. This
way, the drone is configured to inspect only a particular section
at a time. After each flight, the battery of the drone is swapped
for a fresh one before continuing the mission. The number of
flights depends on the specific characteristics of the pipeline,
the flight conditions and the capabilities of the drone. It is also
important to consider that high flying speeds result in motion
blur in the acquired video, leading to inaccurate measurements.
As a result, the configuration of the drone’s velocity must be
based on the rate at which images can be acquired.

The altitude of the drone must be carefully considered when
conducting temperature measurements using infrared thermog-
raphy as it influences the spatial resolution of the camera.
The necessary sensor resolution and lens are determined by
the size of the pipeline and the distance between the camera
and the pipeline. An erroneous spatial resolution may result
in either an overestimation or underestimation of temperature
if the pipeline temperature differs from the background since
the measurement will be an average of both the pipeline and
the background.

B. Detection of regions of interest in the video
A drone flight results in a radiometric infrared video

recorded along the pipeline path, which corresponds to a
section of the entire pipeline. The processing of the videos
starts by dividing the video into a series or segments.

This work employs a robust detection and tracking method
to identify the pipe number present in any image, effectively
addressing the challenge of linking an image to a specific pipe
without relying on GPS coordinates associated with the image.
The approach starts by identifying regions of interest in the
video, which correspond to the path between waypoints in
the flight plan. Thus, the division of the video into regions
of interest effectively breaks down the video into a series
of segments, each corresponding to a specific part of the
pipeline. This allows for more accurate and efficient tracking
of the pipe number throughout the entire video. The use of
detection and tracking in combination with the division of
the video into regions of interest, greatly improves the overall
performance and accuracy of the pipe number identification
process, without the need for GPS coordinates.

The proposed approach for the detection of regions of
interest in the video is as follows:

1) The GPS coordinates of the waypoints in the flight plan
are transformed into a projected coordinate system (Web
Mercator projection), where the units are in meters. This
process uses the EPSG (European Petroleum Survey
Group) codes. The result is a sequence of 2D line
segments that represents the model, where the points
correspond to waypoints in the flight plan.

2) The GPS coordinates of all frames in the video are
also transformed into the same projected coordinate
system. The result is a sequence of 2D points that
represents the data, i.e., the location of the drone in the
projected coordinate system. The position of these points
is affected by noise introduced by GPS inaccuracies.
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(a) (b)

Fig. 2. Pipeline with two joints recognizable. (a) Image in the visible
spectrum. (b) Image in the infrared spectrum (temperature goes from 0
to 10ºC).

3) The Iterative Closest Point (ICP) algorithm [16] is used
to align the data with the model. The algorithm finds the
best alignment between the data and the model by iter-
atively minimizing the distance between corresponding
points in the data and the model.

4) The closest points in the data to the points in the
model correspond to the waypoint positions. The video
is divided into a series of segments according to these
points, where each segment corresponds to a specific
part of the pipeline.

5) To ensure precise detection and tracking of the pipes,
every segment undergoes thorough processing. The pro-
posed approach for analyzing these video segments is
extensively described in the subsequent sections. De-
pending on the configuration, specific segments that are
deemed irrelevant to the inspection procedure can be
directly ignored.

The proposed approach allows for more precise and efficient
tracking of the pipe number throughout the video by breaking
it down into segments that correspond to specific parts of
the pipeline, and by using the ICP algorithm to detect these
segments in the video. The approach used in this work limits
errors in pipe identification to specific segments, preventing
them from propagating to other parts of the pipeline. Further-
more, this method allows for parallel processing as different
segments of the pipeline can be processed simultaneously.

C. Detection of objects of interest in the images
In this work, the considered objects of interest in the images

are not the pipes, but the pipeline joints, as they have distinct
shapes and features that make them easier to detect and
recognize compared to the pipes themselves, particularly in the
infrared spectrum. A pipeline joint is a section of a pipeline
that is designed to connect two separate pieces of pipe. Thus
by detecting pipeline joints, the position of an individual pipe
can also be determined and located, making it an effective
approach for object detection.

Figure 2 shows a pipeline in the visible and infrared
spectrum where two welded joints can be appreciated. As can
be seen, the joints can be better discriminated in the infrared
spectrum. The proposed approach in this work leverages the
distinct shapes and characteristics of the joints to streamline
measurements and analysis of individual pipes.

The proposed method for pipeline joint detection in infrared
images utilizes deep learning techniques, which have been
proven to provide superior accuracy and efficiency compared

to traditional object detection methods. Studies such as [17]
have demonstrated that deep learning can overcome the lim-
itations of traditional methods and achieve high performance
at a reduced computational cost. Additionally, research has
shown that deep learning-based object detection is particularly
effective in handling low-contrast infrared images [18]. In this
work, a state-of-the-art object detection model is trained on a
dataset of infrared images of pipeline joints. The trained model
is then applied to all frames of the infrared video, providing
the location of pipeline joints in the images.

D. Tracking and identification

The proposed approach avoids relying on GPS coordinates
to identify pipes in an image due to the unreliable nature of
GPS readings. The GPS readings on the drone often produce
inaccurate positions, with errors sometimes exceeding 5 me-
ters. Additionally, the acquisition frequency of GPS readings
is lower than that of the camera, leading to multiple images
being associated with the same GPS coordinate even when the
drone is in motion. These issues become more pronounced
when the drone is moving at high speeds.

This work proposes an identification and tracking method
based on the tracking-by-detection paradigm, which has be-
come the leading paradigm in multi-object tracking. In the
proposed approach, the object detector is applied to each video
frame. Then, the tracking method associates these detections
to tracks, in this case, pipeline joints. The underlying detector
may produce false positive and missed detections, thus the
tracking method needs to fill detection gaps and ignore false
positives. The robust association of detections and pipeline
joints is carried out using a motion model, predictions about
the future positions of the objects, and semantic informa-
tion about the pipeline. Motion prediction is estimated using
Kalman filtering in the image space and frame-by-frame data
association is based on the Hungarian method considering the
bounding box overlap. This work does not use appearance
information for tracking, unlike in [19], as all the objects
being considered have the same appearance. Additionally,
using such methods significantly increases the computational
time required. In the proposed tracking approach, the state
of the pipeline joint being tracked in the scene is modeled
using a vector that contains the bounding box coordinates of
the object in the image and the velocity. The prediction of
the future state of the object uses the standard Kalman filter
with a constant velocity motion model. The object detector is
applied to each video frame and the resulting detections are
compared with the predicted state of the tracked objects. The
matching procedure can result in three potential outcomes:

1) A newly detected object matches a tracked object
(match). In this case, the state of the tracked object is
updated with the position of the newly detected object.

2) A newly detected object does not match any tracked
object. A new track hypothesis is initiated in a tentative
state given the position of the object is aligned with
the semantic information about the pipeline. A tentative
tracked object is considered a valid pipeline joint only if
it is both consistently detected over multiple consecutive



USAMENTIAGA: SEMIAUTONOMOUS PIPELINE INSPECTION USING INFRARED THERMOGRAPHY AND UNMANNED AERIAL VEHICLES 5

Fig. 3. Semantic information about the pipeline during tracking.

frames and aligned with the semantic information about
the pipeline. Once a tentative tracked object is confirmed
as a valid pipeline joint, it is assigned a pipeline joint
identification number.

3) If no detected object matches a tracked object, it is
marked as missed in that frame. If a tracked object
goes beyond a certain number of consecutive missed
detections, it is deemed to have exited the scene and
removed from the list of tracked objects.

The matching procedure is solved based on the bounding
box coordinates of the newly detected objects and the tracked
objects. A cost matrix is calculated using the intersection-over-
union (IOU) distance between them. The optimal assignment
is determined using the Hungarian algorithm, considering an
IOU threshold to reject insufficient overlapping.

The key contribution of the proposed tracking method is
the use of semantic information. Incorporating the geomet-
ric information about the pipeline in the tracking approach
significantly enhances the robustness of the procedure, with
false positive detections having a negligible influence on the
identification of the correct pipeline joints. The method uses
the prior gathered information to confirm or reject the tentative
pipeline joint, rather than relying solely on the initial detection.

When determining if a tentative pipeline joint can be con-
firmed, various features of the pipeline are taken into account.
Figure 3 shows an example where two pipeline joints are
confirmed and the line passing through both coordinates is
calculated. Since the drone flight is not perfectly aligned with
the pipeline, and sudden motion corrections may occur during
the flight navigation, an uncertainty factor is taken into account
when calculating the valid region for new pipeline joint
detections. Any detections outside this region are considered
false positives and ignored, as they are unlikely to be actual
pipeline joints.

When tracking and assigning identification numbers to
pipeline joints, a single mistake has a cascading effect on
the accuracy of the identification of the remaining objects.
This is because pipeline joints are identified sequentially, and
one misidentified pipeline joint leads to a chain reaction of
incorrect identifications for the next joints. Therefore, the
tracking procedure is crucial for a robust and accurate identi-
fication system. The incorporated semantic information in the
procedure minimizes the effect of false positive detections and
the potential for a cascading effect of inaccuracies on pipeline
joint identification.

E. Active learning

In this work, a methodology is proposed to address two
of the most challenging issues when creating a dataset: (i)
the cost of labeling, and (ii) the diversity of the samples.
The methodology combines concepts from active learning,
incremental learning and continual learning [20]. The goal is
to improve the performance of the detection model over time,
designing a methodology where the model can continuously
learn new information without forgetting old information, the
stability-plasticity dilemma, at the minimum possible cost.

In the proposed methodology, the annotation process is
simplified using assisted labeling. A model is first trained
on a small amount of labeled data, and then it is used to
generate initial labels for the remaining data. The human
annotator then reviews the generated labels and corrects any
errors. This process is repeated multiple times as new data
becomes available, with the detection model becoming more
accurate with each iteration as it incorporates feedback from
the human annotator. This approach speeds up the annotation
process, increases the accuracy and consistency of the labels
and reduces the overall cost. The process is further simplified
with the usage of an interactive image annotation tool.

In the considered approach, data labeling and model training
is repeated over time as new and relevant data becomes avail-
able. However, a recording for just a few minutes generates
thousands of images. Thus, it is important to actively select
the most informative examples to be labeled and used for
training. The two most common approaches in active learning
are uncertainty sampling and diversity sampling. Uncertainty
sampling involves identifying instances where the model is un-
certain or most likely to make an error. Diversity sampling, on
the other hand, involves identifying instances that represent the
diversity of the unannotated data. Both uncertainty sampling
and diversity sampling are difficult to implement, particularly
in the context of object detection. One of the main challenges
in implementing uncertainty sampling for object detection is
determining the model’s level of uncertainty, particularly for
missed detections. Since the model does not detect the object,
it does not have a confidence score for the object, making it
difficult to determine the model’s level of uncertainty for that
object. Additionally, in object detection, there may be multiple
objects in an image, and determining which objects the model
is most uncertain about can be challenging. Diversity sampling
can also be difficult to implement in object detection, as it
involves identifying instances that represent the diversity of the
unannotated data. This can be challenging, as object detection
datasets often contain a large number of images with similar
objects in similar poses and contexts. Additionally, identifying
the diversity of objects in an image can be difficult, as some
objects may be small or occluded, making them difficult to
detect.

F. Segmentation and measurement

The combined detection and tracking procedure is used
to determine the position of individual pipes in the images.
However, this only indicates a region where the pipe is located
as the pipeline joints are identified with an approximated
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Fig. 4. Segmentation of pipe using profiles and derivative.

bounding box. To accurately measure the temperature of each
individual pipe, a more precise segmentation procedure is
required. This work proposes an image processing method
to segment each pipe in order to determine its temperature
and other relevant variables. This approach provides a precise
analysis of the pipes, enabling accurate measurements and
reliable results.

The segmentation process is triggered when the left and
right joints of the pipe are identified in the image. These
detections provide an approximate position of the pipe, and
the line connecting their centers represents the center profile
of the pipe. The procedure is shown in Figure 4, where the
red dashed line denotes the center profile. To determine the
exact region of the pipe in the image, the method considers the
center profile and its derivatives in relation to parallel profiles
(orange lines above and below the center profile). When these
profiles reach the end of the pipe, there is a pronounced peak
in the derivative, which precisely indicates the position of the
pipe boundaries in the image.

The result of the segmentation procedure is a set of regions
or segments, each of which corresponds to a different pipe in
the image. With these segments, various measurements can be
performed. However, before conducting these measurements,
it is necessary to convert the measured radiation signal in
the infrared images into temperature, taking into account all
relevant parameters. This procedure needs to consider that
radiation measured by the infrared sensor comes from different
sources, not only the pipe in the scene. As such, a rigorous
temperature compensation procedure is required [21].

Converting radiometric data into temperature is crucial for
several reasons, even though it may not be necessary for the
segmentation or identification of joints. Converting radiometric
data into temperature allows for quantitative analysis, which
provides precise and objective measurements. It also enables
comparisons with reference values. These reference values
can be the temperature of a similar component under the
same conditions or the maximum allowable temperature for
the component. By comparing the measured temperatures
to these references, it becomes possible to determine if the
component’s temperature readings exceed critical thresholds
or deviate from expected values, indicating potential issues
or abnormalities. Further more, temperature conversion allows
for standardized reporting and analysis of thermal data and
enhances the diagnostic capability of infrared thermography.
The details about the procedure to convert radiometric data
into temperature can be found in [22].

Temperature measurement is implemented only for the
pixels within the segmented regions, as it is computationally
intensive. Afterward, various intensity features that charac-

terize the temperature within the pipes are calculated. These
features include the mean, median, standard deviation, mode,
maximum, minimum, quartiles, moments, skewness, kurtosis,
and peak height. Additionally, measurements are also per-
formed considering different positions in the pipe to compare
temperature differences, such as between the center and the
edges.

III. RESULTS AND DISCUSSION

The proposed approach is evaluated with data acquired from
a laboratory prototype and real data acquired in a large pipeline
system in an industrial facility. The laboratory prototype was
used to evaluate the performance of the semiautonomous
algorithm under controlled conditions, while the real pipeline
system provided an opportunity to evaluate the method in a
realistic industrial setting. The results of this study provide
valuable insights into the potential of this method for the
reliable inspection of pipelines in industrial environments.

The drone model used in the industrial facility was the DJI
Matrice 300 RTK equipped with a Zenmuse XT2 camera,
which is a dual-sensor design with a thermal and a visual
camera. Some key features of the FLIR infrared camera
include a resolution of 640 × 512 and a frame rate of 30 Hz.
The manufacturer reports a sensitivity lower than 50 mK.
The long-wave infrared camera operates in the range of 7.5-
13.5µm, using an uncooled microbolometer detector.

Data processing is performed using a computer with an
Intel Core i9-11900K CPU running with 8 cores at 3.5 GHz
and 128 GiB of RAM. The computer is also equipped with
a GeForce RTX 3090 GPU with 24 GiB of RAM. All experi-
ments are run under Linux 5.4.0.

A. Detection of regions of interest in the video

Figure 5 shows the coordinates of a drone during the
inspection of a pipeline in an industrial facility. The planned
flight path is depicted by waypoints (shown as large red points
in the figure). The drone follows this path from left to right
and bottom to top, but deviations and inaccuracies in the
drone’s position can be observed. Additionally, the drone’s
speed changes as it moves from one waypoint to the next,
slowing down at turns, which results in varying densities of
positions along the path in different areas. Despite these issues,
the proposed approach for detecting regions of interest in the
video effectively aligns the GPS coordinates measured by the
drone with the flight plan. The video can then be divided into
segments based on the positions of the frames closest to the
waypoints. Each segment corresponds to a specific part of the
pipeline and can be analyzed independently.

B. Active learning

The active learning approach proposed in this work was
implemented for one year. During this time, the size of
the dataset increased steadily. The final dataset consists of
15201 images, with 34983 pipeline joint instances. For almost
30 iterations, more varied data and different scenarios were
introduced. New relevant data was automatically determined
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Fig. 5. Detection of regions of interest during the inspection of a pipeline

based on the performance of the tracking procedure. When
inspections included new types of pipeline joints and different
weather conditions, the performance degraded. In some cases,
the object detector was able to generalize, detecting new type
of pipeline joints slightly different than the samples in the
dataset or successfully processing data acquired at different
times of the day. However, in other cases, the detection
model did not perform well, with missed detections for new
pipeline joints and false positives, particularly in the case of
reflections depending on the position of the sun. In all these
scenarios, which were easily determined based on the results
of the tracking procedure, new samples were actively selected
to extend and diversify the dataset with a wider variety of
samples.

During the active learning approach, in each iteration, a
group of new samples is actively selected as the most informa-
tive examples. The samples are automatically labeled using the
current detection model, and both the images and the labels
are uploaded to the interactive image annotation tool CVAT
(Computer Vision Annotation Tool). No human intervention
is required for any of these tasks. A human annotator is
then required to review and correct any errors in the labels
generated by the model. This process is faster and easier than
performing full annotation, as a high percentage of the samples
are already correctly labeled. For example, a group of 500
images could take a human annotator 10 minutes to review
and correct.

The process of updating the object detector begins by
retraining it with the new dataset. Once the retraining is
complete, the model’s performance is evaluated using a test
set that is separate from the training set. This process was
repeated multiple times with updated versions of the dataset.
The evaluation results of this iterative approach showed that
the model can learn new information without forgetting the
old information. This agile approach emphasizes iterative,
incremental development and frequent delivery of an updated
and improved object detector model.

C. Detection of objects of interest in the images
Table I shows the performance of object detection for

different model architectures and the final version of the
dataset.

The performance metrics presented in the table encompass
precision, which measures the percentage of correct detections

TABLE I
OBJECT DETECTION PERFORMANCE FOR DIFFERENT MODEL

ARCHITECTURES.

Model Par. (M) P R F1 AP50 AP50:95

YOLOv5n 1.77 0.993 0.991 0.992 0.995 0.869
YOLOv5s 7.23 0.992 0.992 0.992 0.995 0.880
YOLOv5m 20.85 0.995 0.990 0.992 0.995 0.886
YOLOv5l 46.11 0.993 0.991 0.992 0.995 0.882
YOLOv5x 86.17 0.993 0.991 0.992 0.995 0.886

YOLOv8n 3.01 0.993 0.989 0.991 0.995 0.881
YOLOv8s 11.14 0.992 0.992 0.992 0.995 0.886
YOLOv8m 25.86 0.993 0.988 0.990 0.995 0.867
YOLOv8l 43.63 0.992 0.990 0.991 0.995 0.885
YOLOv8x 68.15 0.993 0.990 0.991 0.995 0.887

out of the total number of detections; recall, which calculates
the percentage of correct detections among the total number
of elements; and F1, the harmonic mean of precision and
recall. For object detection tasks, the output of object detectors
consists of bounding boxes that can partially intersect with
the real objects. Therefore, determining a correct detection
relies on the chosen intersection threshold. Currently, the most
common approach is to evaluate the Intersection over Union
(IoU ) metric for each detected object. Average precision (AP )
represents the area under the precision-recall curve, which is
generated by varying the confidence threshold. This metric
provides a single scalar value that summarizes the system’s
performance across different thresholds. Typically, AP is
calculated for a specific IoU threshold, with 0.5 being the
most commonly used value, referred to as AP50. However, in
certain cases, AP is averaged for multiple IoU thresholds. For
instance, AP@50:5:95 denotes the average AP across IoU
thresholds ranging from 50% (0.5) to 95% (0.95) in increments
of 5% (0.05). These performance metrics, which describe the
effectiveness of object detectors, are extensively discussed in
[17].

Multiple models with a varying number of parameters
and computational requirements, ranging from the smaller
YOLOv5n (1.8 million) to the larger YOLOv8x (more than
250 million) are considered. The number of parameters is a
measure of the complexity of the model, with more parameters
generally leading to better accuracy but also higher computa-
tional cost.

The results presented in Table I are obtained using a
consistent configuration for the training hyperparameters. The
initial learning rate was set to 0.01, the solver used was SGD
(Stochastic Gradient Descent), the momentum was set to 0.9,
the batch size was 16 and a one-cycle learning rate scheduler
was employed with 1000 epochs. To prevent overfitting during
training, an early stopping approach was used. This approach
involved monitoring the performance of the model with a vali-
dation set during training. If there was no improvement on the
validation set for a specified number of iterations, the training
process was terminated. During training, data augmentation
techniques such as clipping, rotation, flipping, adjusting hue,
saturation, exposure, and altering aspect ratio are applied to
artificially increase the picture data. Additionally, mosaic data
enhancement is also utilized. These techniques are also used
to prevent overfitting by introducing variation to the training
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Fig. 6. Inference time versus batch size for various model architectures.

data. The complexity disparity between the models is reflected
in their training time. Simpler models take approximately 10
hours to converge, while the convergence of more complex
models requires over 50 hours.

The results in Table I indicate that there is no substantial
increase in performance when utilizing a more complex model
for the considered dataset. Variations in AP50:95 can be
observed for more complex models, which represent a minimal
performance improvement when taking into account the added
complexity of the model. Moreover, no major differences
could be found for YOLOv5 and YOLOv8 architectures,
except for their AP50:95 scores. The metric AP50:95 is a
specific variation of the AP metric that calculates the average
precision (area under the precision-recall curve) at different
intersection over union (IoU) thresholds, specifically at 50%
and 95%. It is used to evaluate the model’s performance in
detecting objects of varying sizes, as well as its ability to
accurately assign bounding boxes to objects. It is a more
comprehensive metric than using a single IoU threshold, such
as the AP50, because it measures the model’s performance
across a range of different object sizes. When two models
have the same AP50 but different AP50:95, it means that they
have similar performance in detecting objects with an IoU
threshold of 50%, but they perform differently at different
IoU thresholds. The model with the higher AP50:95 is likely
to have a better overall performance, as it is able to detect
objects of different sizes more accurately. Objects of different
sizes can also refer to objects observed at different distances,
for example images acquired when a drone is at different
altitudes. AP50:95 measures the performance of the model
at different IoU thresholds, which also corresponds to the
model’s performance at detecting objects at different scales
and distances.

The impact of model complexity can be observed in Fig-
ure 6, which shows the computational cost for the three
smallest model architectures. This figure shows the inference
time when considering different batch sizes, which refer to the
number of samples passed through the model at one time. As
can be seen, all models benefit from large batch sizes, with
the YOLOv5n being the most efficient. However, there is a
point where increasing the batch size does not result in further
decreases in inference time, with an optimal configuration of
batch size around 16.

A hyperparamter tuning approach using genetic algorithms
was applied to YOLOv5n. The results provided an optimal
configuration of training hyperparameters with a 0.0102 learn-

TABLE II
PERFORMANCE COMPARISON BETWEEN YOLOV5N TRAINED WITH

DIFFERENT HYPERPARAMETERS.

P R F1 AP50 AP50:95

Default 0.993 0.991 0.992 0.995 0.869
Tuned 0.995 0.990 0.993 0.995 0.881

Improvement +0.20% -0.10% 0.10% 0.00% +1.38%
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Fig. 7. Performance of the resulting model for different confidence
configurations.

ing rate, 0.98 momentum and an alternative configuration for
the augmentation. Table II shows the performance of the model
trained with these alternative training hyperparameters. Results
indicate that the performance of the model improved by only
1.38% in the metric AP50:95. This suggests that while the
automated tuning approach was able to find a better configu-
ration of hyperparameters, the performance improvement was
limited. However, the slight increase in performance makes the
performance of YOLOv5n when considering AP50:95 compa-
rable to that of the default configuration of the more complex
model, YOLOv8n, and even surpasses it when considering F1.

The final step in the deep learning pipeline is to evaluate the
performance of the resulting model on the test subset, which
represents a completely independent and unseen subset of data.
To evaluate the model, various metrics such as precision (P ),
recall (R), and F1 score are calculated for different confidence
thresholds. Figure 7 shows the results of these evaluations.
The figure shows a large plateau where all three metrics are
maximized simultaneously, indicating excellent performance.
The confidence threshold that maximizes the F1 score is 0.71,
which represents the ideal setting for reducing false positives
and missed detections.

The performance achieved by the model indicates that the
model is able to accurately identify the positive instances
while also keeping the number of false positives low. This
combination of high precision and high recall represents the
optimal balance as it indicates that the model can make
accurate predictions while also identifying as many relevant
instances as possible.

D. Tracking and identification
Tracking and identification are evaluated using a laboratory

prototype where different pipeline configurations are tested,
introducing synthetic false positive and missed detections. This
prototype is used to tune and evaluate the proposed approach.
The system is then evaluated with a large pipeline system in
an industrial facility.
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Fig. 8. Evolution of the tracking and identification approach. (a) Four
pipeline joints are detected and marked as tentative joints in the first
frame. (b) After some consecutive matches, the pipeline joints are
confirmed and the pipe identification number is assigned considering
the movement direction. (c)-(f) The process continues as the drones
move along the pipeline path dealing with missed detections and false
positive detections.

Figure 8 shows a tracking and identification example using
the laboratory prototype. In the first image, the system detects
the pipeline joints with a high level of confidence (number
above the bounding box). These newly detected objects are
marked as tentative joints (red boxes), and a tentative identifi-
cation is assigned. At this moment, the system does not know
the direction of advance. Thus, these numbers are assigned
in random consecutive order. After some frames, the tentative
joints are confirmed (green boxes) as they are consistently
detected over multiple consecutive frames. The identification
of the pipes takes into account the direction of advance (to the
right), assigning numbers from left to right. Semantic infor-
mation is now extracted from the joints for further processing
including the relative distance between joints and direction
advance. This information is used to estimate the position
of the next pipeline joint, protecting the inspection system
from false positive detections in other regions of the image.
Once the pipes are identified, they are segmented, providing
the boundaries of the objects in the images. This results in
an area where various measurements can be performed. In
this case, the average temperature is shown below the pipe.
The process continues as the drone moves along the pipeline
path. The inspection process is robust to small rotations and
changes in trajectory, and can handle objects of different scales
as the drone changes its flying altitude. The difference in size

between the joints in the first and last image is noticeable. The
extracted semantic information is constantly adjusted based on
the confirmed pipeline joints.

Figure 8d depicts a scenario where object detection fails to
detect objects, leading to missing detections. Despite this, the
tracking method continues to update the position of confirmed
pipeline joints estimating future positions given the current
velocity. When the issue is resolved, tracking resumes without
any incorrect identification. Figure 8e displays a situation
where the object detector produces false position detections.
These false positives are easily detected based on the semantic
information about the pipeline. In this case, these detections
violate multiple constraints, such as distance to the pipeline
line. Constraints are evaluated using a short-circuit strategy,
where the failure of one constraint results in false position
categorization.

As the drone progresses along the pipeline, the same pipe
becomes visible in successive images, depending on the flight
speed. With each image, the system utilizes the tracking
approach to identify the pipe number and measure its tem-
perature. As the drone moves forward, the tracking procedure
consistently identifies the same pipe across different images.
Consequently, temperature measurements can be obtained for
the same pipe multiple times. In this work, our proposal is
to combine all these measurements to generate a robust final
value.

To characterize the temperature within the pipes, vari-
ous temperature intensity features are calculated. These in-
clude the mean, median, standard deviation, mode, maximum,
minimum, quartiles, moments, skewness, kurtosis, and peak
height. Furthermore, temperature measurements are compared
at different positions within the pipe, such as between the
center and the edges. Since these values are calculated for
numerous images during each capture, multiple measurements
are available for each pipe.

To enhance accuracy and mitigate the impact of outliers,
the multiple measurements are combined. Inconsistent mea-
surements are identified and eliminated, ensuring a more
reliable and representative estimation of the true temperature
value. By leveraging this combination of measurements, the
proposed approach provides improved accuracy and a more
robust assessment of the measured temperature within the
pipes.

The proposed pipeline inspection method is being used for
more than a year on a large industrial pipeline system. During
this operation, a test dataset has been created with carefully
annotated data. This dataset includes 71 flights, with 1.18
million frames recorded, equating 11 hours of video. These
inspections evaluated 1164 pipeline sections, totaling 385 km.
Throughout these tests, the drone’s altitude fluctuated between
15 and 20 meters. The results showed that the detection and
tracking system correctly identified all pipes in every section,
which can be confirmed as the number of pipes per section is
known beforehand. The inspections were conducted in various
weather conditions and with different types of pipeline joints,
while the sun’s position also posed challenges due to its reflec-
tions on the pipelines. Despite these challenges, the proposed
inspection system performed exceptionally well, providing
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accurate temperature measurements for each individual pipe.
Figure 9 shows the temperature map for a section of the

inspected pipeline. The acquired data is divided into different
segments according to the waypoints, each containing a dif-
ferent number of pipes according to their length. In this case,
individual pipes are 5 meters in length. The figure represents
the average temperate in each pipe. Temperature comparison
between the pipes reveals that pipe 7.31 (segment 7, number
31) has an unusual temperature compared to the others. Further
investigation into this pipe confirmed the presence of a defect,
specifically insulation problems.

Real-world testing reveals that the drone’s velocity changes
as it moves from one waypoint to the next. Figure 10 shows
the estimated velocity of the drone during the inspection
of a pipeline section. In this experiment, the drone was
programmed to fly at a speed of 15 meters per second and
18 meters above the ground. However, a decrease in velocity
is observed as the drone switches direction at waypoints. The
same pattern is evident throughout the duration of the flight.
The inspection process is designed to address this type of
variability, adapting both the tracking method and the semantic
information extracted from the video footage.

Performance testing with the full inspection system, which
combines detection, tracking, and measurements, demonstrates
a processing speed of 240 fps. Given that the image acquisition
rate of the drone is 30 fps, this means processing is 8 times
faster than image acquisition. As a result, a 30-minute video
recording can be processed in just 3.75 minutes. Given the
processing speed and the real-time operating capability of
the designed inspection procedure, the proposed system has
the potential to process data directly on drone hardware.
This capability would eliminate the need for post-processing,
providing quicker and more efficient inspections with real-time
feedback if necessary.

IV. CONCLUSIONS

Overall, pipeline inspection is a critical aspect of maintain-
ing and operating a safe and reliable pipeline system. This
work proposes a novel solution that presents a comprehensive
operational approach that covers the entire inspection process.
The proposed work combines the benefits of automated flight
and high-speed infrared data acquisition with advanced data
processing techniques, addressing the challenge of scale in
pipeline inspection.

The proposed inspection procedure has undergone extensive
testing, both in the laboratory and in real-world conditions.
These tests have confirmed its robustness and exceptional
performance in various challenging conditions. The results of
these tests demonstrate the proposed inspection procedure’s
reliability and effectiveness, making it a valuable tool for
pipeline inspections in industrial facilities.

The proposed method addresses important challenges com-
monly neglected in the literature and offers a novel approach
to overcoming them. The focus on the effective management
of large datasets, high-speed data acquisition and GPS unread-
ability, makes this approach a significant contribution to the
field of pipeline inspection. The use of deep learning algo-
rithms and an active learning procedure enhances the ability

to detect hidden defects and monitor temperature patterns over
time, making it a reliable solution for large-scale pipeline
inspection.

This work presents important contributions that collectively
advance the field of pipeline inspection and offer innovative
solutions to the challenges faced in this domain.
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Fig. 9. Temperature map for a section of the inspected pipeline. All values a given in Celsius.
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pipeline section.
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