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BSTRACT 

he cost reduction in sequencing and the extensive 

enomic characterization of a wide variety of cancers 

re expanding tumor sequencing to a wide number of 
esear ch gr oups and the c linical practice. Although 

pecific pipelines have been generated for the iden- 
ification of somatic mutations, their results usually 

iff er considerab ly, and a common approach is to use 

e veral caller s to achie ve a more reliable set of muta- 
ions. This procedure is computationally expensive 

nd time-consuming, and it suffers from the same 

imitations in sensitivity and specificity as other ap- 
roaches. Expert revision of mutant calls is therefore 

equired to verify calls that might be used for clini- 
al diagnosis. This step could take advantage of ma- 
hine learning techniques, as they pr o vide a useful 
pproach to incorporate e xpert-re vie wed information 

or the identification of somatic mutations. Here we 

resent RFcaller, a pipeline based on machine learn- 
ng algorithms, for the detection of somatic muta- 
ions in tumor–normal paired samples that does not 
equire large computing resources. RFcaller shows 

igh accuracy for the detection of substitutions 

nd insertions / deletions from whole genome or ex- 
me data. It allows the detection of mutations in 

river genes missed by other approaches, and has 

een v alidated b y comparison to deep and Sanger 
equencing. 

NTRODUCTION 

uring the last decade, the introduction of next-generation 

equencing (NGS) has transformed the study of cancer, 
ith the identification of hundreds of novel alterations driv- 

ng tumor transformation ( 1 ). Major international cancer 
rojects such as the International Cancer Genome Consor- 
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ium ( 2 ) and The Cancer Genome Atlas (TCGA) ( 3 ) have
xpanded the r epertoir e of genes mutated in cancer, as well 
s the biological processes involved in it ( 4–7 ). The contin- 
ous reduction in sequencing costs, together with the clini- 
al significance of certain mutations for prognosis or treat- 
ent decisions, has transformed the use of NGS from large 

equencing consortia to small-sized laboratories and clini- 
al centers. Howe v er, the utility of NGS relies on the avail- 
bility of somatic mutation calling pipelines with enough 

ensitivity to detect somatic mutations, and high specificity 

o pre v ent the calling of artifacts or germline variants as 
utations. 
Somatic single nucleotide variants (SSNVs) and small 

nsertions / deletions (indels) constitute the most abundant 
ype of mutation in tumor genomes, and different tools have 
een de v eloped in or der to call soma tic muta tions from
umor–normal paired samples. Most state-of-the-art vari- 
nt callings are based on traditional statistical methods, 
uch as CaVEMan ( 8 ), Mutect2 ( 9 ), MuSE ( 10 ), Strelka2
 11 ), Pindel ( 12 ) or SMuFin ( 13 ), among others. Howe v er,
here is no full consensus on the mutations detected by each 

aller, usually sharing 77% of mutations between two inde- 
endent callers, a percentage that is reduced as the number 
f programs increases ( 5 ). These differences are mainly due 
o the ability of each program to deal with the tumor hetero- 
eneity and purity, normal contamination, sequencing and 

apping artifacts, coverage and different tool configura- 
ions. Due to the fact that each caller usually detects specific 
alse positi v e muta tions, some collabora ti v e projects such 

s the Pan-Cancer Analysis of Whole Genomes (PCAWG) 
 5 ) or the T CGA P an-Cancer Atlas MC3 ( 14 ) do not use a
ingle caller but a combination of algorithms, keeping the 
ntersection between them as the set of mutations that is 

or e r eliable. Despite the utility of this m ulti-pipeline a p- 
roach to generate a consensus set of mutations, this strat- 
gy has a very large computational cost, demanding large 
ervers and consuming up to da ys f or the analysis of a single
uente@uniovi.es 
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In addition to classical statistics-based approaches, dur-
ing the last few years there has been an expansion in the use
of machine learning strategies for different purposes ( 15–
19 ), including the de v elopment of new variant calling tools.
The initial use of these methods was mainly focused on re-
finement, taking a list of potential variants extracted with
other pipelines to filter and select a final set of mutations.
Howe v er, these approaches still have a negative influence on
computing time and reproducibility. On the other hand, re-
cently de v eloped pipelines use other machine learning ap-
proaches ( 20 , 21 ) or e v en neural networ ks ( 22 , 23 ) to directly
perform variant calling for somatic mutations, although in
some cases the computational cost is too high or the instal-
lation r equir ements too demanding for a medium-sized lab-
oratory or institution. 

Here, we describe RFcaller, an accurate, fast, light com-
putational r equir ement and easy-to-use tool that uses
read-le v el features together with machine learning strate-
gies to identify soma tic muta tions (SSNVs and indels)
from normal–tumor paired samples. Our pipeline has been
trained for whole genome sequencing (WGS) data and its
results have been compared with those obtained by the
PCAWG, being very similar to those resulting by combining
se v eral tools. 

MATERIALS AND METHODS 

Selection of somatic mutations 

For the de v elopment of the algorithms, two different set
of mutations were used, a training set and a testing set.
To build them, we extracted with bcftools ( 24 ) all possible
soma tic muta tions from four WGS mantle cell lymphoma
samples sequenced at 30 × coverage (M032 and M439 for
training; M065 and M431 for testing). For the initial train-
ing, pre viously pub lished mutations ( 25 ) were defined as
true positi v e muta tions. With each itera tion, all discordant
calls were manually re vie wed by three experts, through vi-
sual inspection (Supplementary Table S1), and the database
was updated accordingly. This procedure resulted in the
identification of novel bona fide mutations that would con-
stitute false negati v es in the initial set, as well as the rejec-
tion of certain mutations, such as artifacts or germline mu-
tations present in the original dataset, that would r epr esent
false positi v es. After nine rounds of training the algorithms
and curating the set of mutations, all discordant variants
had already been examined, which allowed us to obtain a
reliable dataset for training and testing the final version of
the algorithms. 

Algorithm training 

To train the algorithms, we used the training set that con-
tained 66 096 potential SSNVs (Supplementary Table S2)
and 931 indels (Supplementary Table S3) for which read-
le v el featur es wer e pr e viously e xtracted (Supplementary Ta-
ble S4). These data were used as input by TPOT (v0.11.1)
( 26 ), with the default configuration of the TPOTRegressor
function, to find the best pipeline to train the r egr ession al-
gorithms. As a result, an extremely randomized tree ‘Extra-
Tr ee’ r egr essor for SSNVs and a random forest regressor for
indels were built. Both algorithms use a prediction model
based on decision trees with some minor differences. For ex-
ample, although both select the features randomly for each
branch, these are split by the optimal cut point in a random
forest, but randomly in an ‘Extra-T ree’. Additionally , a ran-
dom forest algorithm draws observations with replacement,
while an ‘Extra-Tree’ extracts them without replacement.
These differences allow ‘Extra-Tree’ algorithms to reduce
the bias and the variance. For both models, a transforma-
tion of the data was carried out before the r egr ession using
the StackingEstimator function. 

Once we had the algorithms, the test dataset, with 63 948
SSNVs and 2506 indels (Supplementary Table S5), was used
to select the best cutoffs for both pipelines. With this pur-
pose, the result from RFcaller was filtered to get the ‘QUAL’
field for those mutations that passed all filters (Supplemen-
tary Table S6). This parameter is calculated considering the
initial quality from bcftools and the r egr ession value for
SSNV and indels, and only the r egr ession value for ho-
mopolymer indels (polyindels): 

QUAL SNV 

= bcftools qual ∗ r egr ession value 2 

QUAL indel = bcftools qual r egr ession value 

QUAL polyindel = r egr ession value 

Then, recei v er oper ating char acteristic curves were gen-
erated and area under the curve (AUC) metrics were calcu-
lated using the R package OptimalCutpoints ( 27 ) with the
MaxEfficiency method. False / true positi v e / negati v e ratios
were calculated using the formulas described in the R pack-
age ROCR ( 28 ). 

Computational cost 

To compare the performance of RFcaller with other state-
of-the-art tools, the docker container corresponding to the
four callers used by PCAWG for the detection of SSNVs was
do wnloaded ( https://dockstore.or g/or ganizations/PCAWG/
collections/PCAWG ). After minor fixes of broken links in
the Sanger and DKFZ tools, all of them were run with the
default parameters for one random donor. In case the tools
allowed to choose the number of threads and RAM to be
used, 20 threads and 200 GB of memory were specified. In
addition, because RFcaller allows multiple samples to be
run sim ultaneousl y, four cases were run in parallel using the
default parameters to calculate the computational cost. To
improve data interpretation, some axes were broken using
the R package ggbreak ( 29 ). 

PCAWG analysis 

To valida te tha t the trained models are applicable for liquid
and solid tumors and to compare the results to those
obtained by the PCAWG pipeline, RFcaller was run for the
CLLE-ES and BRCA-EU studies, with an average tumor
coverage of 30 × and 50 ×, respectively, and 30 × for normal
samples in both. PCAWG BAM files were downloaded
from the ‘collaboratory’ repository using the score-client
program (Supplementary Table S7). RFcaller was run with
its default parameters for all samples and the obtained

https://dockstore.org/organizations/PCAWG/collections/PCAWG
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 esults wer e combined into a single VCF file for each study. 
 custom panel of normals was used to obtain a more 

eliable set of mutations by annotating variants in complex 

egions, allowing elimination of false positi v es deri v ed 

r om sequence backgr ound. The set of mutations detected 

y the PCAWG pipeline were extracted from the controlled 

onsensus callsets for SSNV / indel. To analyze coding and 

oncoding mutations, the Variant Effect Predictor tool 
 30 ) was launched for both datasets using the following 

ptions: --offline --format vcf --dir cache 

omo sapiens --symbol --force overwrite -- 

otal length --numbers --ccds --canonical 

-biotype --pick --vcf --assembly GRCh37 . 
To be able to compare both sets of mutations in the 
ost accurate manner, (i) dinucleotides and trinucleotides 

rom RFcaller were split as this feature is not available 
or PCAWG, (ii) RFcaller mutations located in alternati v e 
hromosomes and PCAWG’s variants that appear in our 
ustom dbSNP were removed and (iii) onl y m uta tions tha t
assed all filters were studied. For this comparison, a muta- 
ion was considered as low-VAF m utation w hen its variant 
llele frequency (VAF) was < 0.15, in accordance with the 
ensitivity of Sanger sequencing. 

For the purpose of calculating the precision and recall 
or both pipelines in each study, 1% or at least 50 discor- 
ant mutations from each section were manually re vie wed 

y a panel of experts, considering the features listed in Sup- 
lementary Table S1. This process was blinded as each per- 
on re vie wed a random set of mutations and did not know 

o which pipeline corresponded each mutation. After this 
rst step, uncertain mutations were examined individually 

y each of the three re vie wers to reach an agreement. A to-
al of fiv e b locks were checked: mutations detected only by 

Fcaller and mutations detected between one and four of 
he callers used by the PCAWG, as the ratio of false posi- 
i v es may be different between them. The results obtained 

ere then extrapolated to the whole set of mutations in or- 
er to calculate the total number of true and false positi v e
riva te muta tions. To extrapola te the da ta, the percentages 
f true and false positi v es were computed for the manu- 
lly re vie w ed mutations, and then these scores w ere mul-
iplied by the total number of variants detected for each 

f the fiv e b locks mentioned abov e. Mutations detected by 

oth pipelines were classified as true positi v es. False positi v e
CAWG-priva te muta tions would be RFcaller true nega- 

i v es, whereas PCAWG-pri vate true positi v es would be RF- 
aller false negati v e mutations, and vice versa. Using these 
alues, pr ecision and r ecall wer e calculated with the predic- 
ion and performance functions of the R package ROCR 

 28 ). These same data were used for the comparison be- 
ween RFcaller and the individual variant callers used by 

CAWG, since this consortium specifies which callers detect 
ach mutation. The procedure is detailed in Supplementary 

ata scripts. 
Finally, deep sequencing da ta genera ted by previous stud- 

es ( 31 , 32 ) for some CLLE-ES cases (Supplementary Ta- 
le S8) were used to analyze possible low-VAF mutations 

n dri v er genes. In or der to compar e both r esults, onl y m u-
ations in CLL dri v er genes and donors analyzed by both 

GS and deep sequencing were selected. In addition, mu- 
ations detected by deep sequencing were removed from the 
nalysis if they were germline or there was insufficient cov- 
rage or reads supporting the mutation by WGS (Supple- 
entary Table S9). 
To compare the performance of RFcaller against other 

ools based on machine learning [SNooPer ( 21 ), NeoMu- 
ate ( 19 ), Cerebro ( 20 ) and DeepSVR ( 18 )], only DeepSVR
ould be benchmarked. We used the default configuration 

nd the SSNV positions detected after the initial calling step 

y RFcaller for CLLE-ES and BRCA-EU studies. No in- 
els were analyzed because it does not identify indels. 

anger validation 

o perform verification of private calls obtained from the 
nalysis of CLLE-ES cases, fiv e and two mutations detected 

nly by RFcaller and PCAWG, respecti v ely, were chosen to 

e verified by Sanger sequencing. These positions were cho- 
en because they appeared in known dri v er genes for CLL 

nd because tumor and / or normal DNA was available. The 
ist of primers and melting temperatures are listed in Sup- 
lementary Table S10. 

xome analysis 

o test the performance of RFcaller on exome sequenc- 
ng data, we selected fiv e CLLE-ES cases pre viously an- 
lyzed by WGS and for which exome data were available 
Supplementary Tab le S8). Av erage sequencing depth was 
0 × ( 33 ). RFcaller was run with default parameters and 

IKELY GERMINAL variants were removed. Only mu- 
ations within the targeted regions of the exome (Agilent, 
ureSelect Human All Exons V4) were taken into account. 
inally, for those mutations not detected by both methods, 

otal coverage and number of mutated reads were extracted 

n order to determine the cause for loss. 

ESULTS 

evelopment of a workflow for the detection of somatic mu- 
ations in tumor samples 

n ov ervie w of the RFcaller’s workflow is provided in Fig- 
re 1 . The pipeline takes as input the BAM files from the 
ormal–tumor paired samples and starts performing a ba- 
ic variant calling using bcftools (v1.10.2) with the -P op- 
ion set to 0.1 to enable calling positions with low VAF. 
hen, indels are normalized, and common SNPs (dbSNP 

153), and variants within 5 bp of an indel, are removed. To 

ncrease the speed of the pipeline, low-quality calls are fil- 
ered ( < 15 for SSNVs and < 40 for indels). Remaining mu- 
ations are divided into three different files to be processed 

ndependently: SSNVs, short indels ( < 7 bp) and long indels 
 ≥7 bp). 

SSNVs and indels have a specific pipeline where read- 
e v el featur es ar e extracted for those muta tions tha t meet
asic r equir ements that can be customized, such as having 

 minimum coverage ( ≥7), a maximum number of mutated 

eads in normal ( ≤3 for SSNVs and ≤2 for indels) or a min-
mum number of mutated reads in tumor ( ≥3 for SSNVs 
nd ≥4 for indels). These filters have been chosen because 
ositions that fail to meet these r equir ements cannot be con- 
dently classified as bona fide mutations from the available 
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Figure 1. Flowchart of the RFcaller pipeline. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/2/lqad056/7185855 by guest on 11 M

arch 2024

art/lqad056_f1.eps


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 5 

Table 1. Number of total and manually re vie wed mutations used for training and testing RFcaller 

Training set Test set 

SSNV Indel SSNV Indel 

TP TN TP TN TP TN TP TN 

Manually 
re vie wed 

915 730 321 242 924 959 528 490 

Total 8362 57 734 504 427 6909 57 039 696 1810 

TP, number of true positi v e mutations; TN, number of true negati v e mutations. 
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ata, which would r equir e additional techniques to make a 

eliable call. These arguments can be modified from com- 
and line options. 
Some of the selected featur es ar e very basic like the cov- 

rage or the number of mutated reads, considering in both 

ases only reliable reads (mapping quality ≥30). Other fea- 
ur es ar e the average ma pping quality w hen r eads ar e ex-
racted without mapping quality filters, for both normal 
nd mutated reads independently. This is useful to check 

he quality of the region or if onl y m utated reads have 
ower mapping quality. The percentage of mismatched nu- 
leotides around the mutations is also extracted together 
ith CIGAR information. In this regard, a region with a 

igher mismatch value or lower number of matched bases 
s less confident than a region with a lower mismatch ratio 

nd all their bases aligned properly. Another feature is the 
umber of repeated dinucleotides that can be found around 

he m utations, w hich is used to know w hether it is a mi-
rosatellite. Finally, the last two features are the distance 
etween the leftmost and rightmost mutations in the read- 

ng and mean position of the mutation along the mutated 

 eads. Manual r e vie w of discordant mutations during the 
rst rounds of training allowed us to discover many false 
ositi v e mutations located at one end of the read, which 

ould be removed after adding these features. In addition, 
1 more characteristics were extracted for indels to deter- 
ine their complexity (Supplementary Table S4). 
Once all features have been extracted, a CSV file is gen- 

rated to be used by the algorithm. The result is a VCF file 
ith the mutations that have passed the threshold for the 

QUAL’ field. 
To classify mutations that might be germinal but have 

assed the previous filters, a 95% confidence interval is ap- 
lied to calculate the expected number of mutant reads in 

ormal, considering the VAF of the mutation in tumor sam- 
le, the expected contamination of tumor in normal sample 
efined by the user and the normal coverage: 

expectedNormal VAF 

= Tumor VAF 

∗ Contamination 

z = 1 . 96 ∗
√ 

expectedNormal VAF ∗ ( 1 − expectedNormal VAF ) 
Normal coverage 

maxNormal mut reads = ( expectedNormal VAF + cte ) ∗ Normal coverage 

Thus, if the number of mutated reads in normal is 
reater than the expected upper boundary of 95% confi- 
ence interval (maxNormal mut reads ), the position is labeled 
s ‘LIKELY GERMINAL’. o
Finally, the RFcaller pipeline for SSNVs searches for din- 
cleotide or trinucleotide mutations within the results. With 

his step, if two mutations are found in cis , they are merged 

nto a single mutation to be accurate when predicting its 
unctional effect, a step that is usually missed by most com- 
only used somatic callers. 

Fcaller training and computational cost comparison 

or the initial training step, previous results from the ge- 
omic analysis of two mantle cell lymphomas ( 25 ) were used 

o annotate the set of mutations, and RFcaller was trained 

ith this initial dataset. The obtained r esults wer e com- 
ared with those used for training, and all discordant po- 
itions were manually re vie wed to improv e the accuracy of 
he dataset. These steps wer e r epeated until all discrepancies 
ere classified by an expert panel. After that, 2208 and 2901 

alls were re vie wed for training and testing, respecti v ely, re- 
ulting in a high-quality set of mutations to train and test 
he final versions of the algorithm (Table 1 ). 

In order to select the best cutoff for the pipeline , SSNVs , 
ndels and homopolymer indels wer e consider ed indepen- 
ently as they r epr esent mutations whose detection is in- 
uenced by different features. The separation between both 

ypes of indels (isolated or within a homopolymer trait) was 
ntroduced due to the bias of the initial calling performed 

y bcftools against indels within homopolymeric tracts, giv- 
ng very low scores to mutations that otherwise appear to 

e r eal. Furthermor e, differ ent formulas wer e consider ed to 

alculate the ‘QUAL’ threshold used by RFcaller (Supple- 
entary Table S11). 
Although the RFcaller score provided high accuracy, we 

bserved that by combining the r egr ession obtained by RF- 
aller with the score gi v en by bcftools, the accuracy was im- 
ro ved o ver each one independently, suggesting both scores 
omplement each other. We did not observe major differ- 
nces between formulas for SSNVs and indels according 

o the AUC metric, so we selected the formulas with the 
ighest F 1 score. Thus, the cutoffs were 10.726 for SSNVs, 
2.1418 for indels and 0.7723 for homopolymer indels (Sup- 
lementary Figure S1), which achie v ed 1.3%, 7.18% and 8% 

f false positi v e mutations, respecti v ely. We observ ed that 
any of the false positi v es belonged to complex regions 

uch as microsatellites or GC-rich sites, appearing also in 

ormal samples from other donors. Ther efor e, we used a 

anel of normals to filter these calls and improve accuracy. 
In terms of the number of variables selected, only 16 and 

7 read-le v el featur es wer e consider ed for SSNVs and in-
els, respecti v ely (Supplementary Table S4). They focused 

n specific properties such as coverage with certain base 
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Figure 2. Summary of mutations detected by PCAWG and / or RFcaller pipelines for SSNVs and indels. ( A , D ) Classification of mutations according to the 
pipeline that can detect them. Mutations are divided in high-V AF (V AF ≥ 0.15) and low-V AF (V AF < 0.15) mutations. ( B , E ) Distribution of the VAF of 
the mutations identified by both pipelines, or specifically by RFcaller or PCAWG pipeline. ( C , F ) Number of callers detecting each of the PCAWG-private 
mutations. 
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quality, CIGAR, mapping qualities or error ratio in tumor
and normal samples, ther efor e avoiding overlapping fea-
tures that can be counterproducti v e and lead to overfitting.
In this regard, although most of the features selected by RF-
caller were also included in other ML models, some of them
also use many mor e featur es, such as NeuSomatic ( 23 ) or
DeepSVR ( 18 ). 

Another important aspect we considered during the se-
lection of these features was the difficulty by which they
can be extracted, resulting in a fast pipeline for medium-
sized servers. Thus, the analysis of four WGS tumor–normal
paired samples using 20 threads consumes only ∼5 GiB of
RAM and takes ∼3 h per case, while using only 10 proces-
sors the analysis is extended up to ∼4.5 h per case (Supple-
mentary Figure S2D). 

When RFcaller was compared with the callers used by
PCAWG for the detection of SSNVs, only the MuSE vari-
ant caller ( ∼2.5 h) was faster than RFcaller ( ∼4.8 h) (Sup-
plementary Figure S2), while Sanger variant caller was the
slowest, taking > 70 h for a single case. In terms of mem-
ory consumption (RSS), Mutect variant caller is the most
demanding, consuming between 100 and 250 GiB dur-
ing half the time it is running ( ∼5 h). In this case, RF-
caller and MuSE variant caller consume the least mem-
ory with an average of 5 GiB. It is important to note
that although we have used the SSNV-specific callers, all
of them, except MuSE, also detect indels, which would
imply that RFcaller is the fastest and least r esour ce-
consuming tool for the simultaneous calling of SSNVs and

indels. 

 

Validation of RFcaller pipeline: PCAWG analysis 

To test RFcaller against a validated set of cancer WGS
cases, we used data from the PCAWG study. The pipeline
employed by this consortium incorporates fiv e of the best-
performing and e xtensi v ely tested variant callers, which also
gave us the possibility to compare RFcaller with each indi-
vidual tool. Specifically, two different projects (CLLE-ES
and BRCA-EU), r epr esentati v e of liquid and solid tumors,
with a total of 89 and 75 cases, respecti v el y, were anal yzed
(Supplementary Table S8). RFcaller results were compared
to those mutations labeled as ‘PASS’ by the PCAWG mu-
tation calling pipeline. Due to the inherent differences be-
tween SSNVs and indels, we performed each analysis inde-
pendently. 

Statistics for SSNVs. After merging RFcaller and
PCAWG ‘PASS’ muta tions, we observed tha t ∼70% of
SSNVs were detected by both pipelines in both studies.
Howe v er, and e v en though the number of shared mutations
was almost the same, for samples from the CLLE-ES
project 11% of mutations were detected only by the
PCAWG pipeline versus 16.3% mutations specifically
detected by RFcaller. For BRCA-EU-deri v ed mutations,
only 4.4% mutations were RFcaller-specific, versus 25.4%
for the PCAWG pipeline (Figure 2 A). A detailed analysis
of those differentially called mutations re v ealed that the
mean VAF for SSNVs detected by both pipelines was
0.41 and 0.27 for CLLE-ES and BRCA-EU, respecti v ely
(Figure 2 B). Howe v er, those detected by the PCAWG
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Table 2. Distribution of SSNVs detected by each pipeline and extrapolated after manual revision 

SSNVs TP FP TN FN Precision Recall 

CLLE-ES 
Private 

mutations 
2 callers 20 956 16 097 4859 76.81% 

3 callers 5715 5001 714 87.50% 

4 callers 2729 2519 210 92.31% 

RFcaller 41 772 41 153 619 98.52% 

Both 186 361 186 361 0 
Total PCAWG 257 533 209 977 5784 619 41 153 97.32% 83.61% 

RFcaller 257 533 227 514 619 5784 23 616 99.73% 90.60% 

BRCA-EU 

Private 
mutations 

2 callers 50 823 42 804 8019 84.22% 

3 callers 28 490 26 469 2021 92.91% 

4 callers 23 580 23 080 500 97.88% 

RFcaller 17 699 12 613 5086 71.26% 

Both 282 547 282 547 0 
Total PCAWG 403 139 374 900 10 540 5086 12 613 97.27% 96.75% 

RFcaller 403 139 295 160 5086 10 540 92 353 98.31% 76.17% 

TP, number of true positi v e SSNVs; FP, number of false positi v e SSNVs; TN, number of true negati v e SSNVs; FN, number of false negati v e SSNVs. 

p
0
2
f
t
B
S
h
E
t
R
c
h
t
a

p
c
t
t
P
p
i
t
a
R
e
t
o
B
n
s
E  

P
u
f

d
a
p

f
t
R
b
b
c
v
a
(
m

s
w
m
f
t
t
s
c
a
t

S
v
t
d
h
3
o
E
f
a
t
d

l
f
T
t
v

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/2/lqad056/7185855 by guest on 11 M

arch 2024
ipeline but not RFcaller had a mean VAF of 0.16 and 

.10 for CLLE-ES and BRCA-EU, respecti v ely (Figure 
 B), suggesting that they constitute low-VAF mutations. In 

act, only 29% and 50% of them could be detected by more 
han two callers in the PCAWG pipeline for CLLE-ES and 

RCA-EU, respecti v ely (Figure 2 C). Furthermore, those 
SNVs detected by RFcaller but not the PCAWG pipeline 
ad a mean VAF of 0.46 for CLLE-ES and 0.28 for BRCA- 
U, similar to those detected by both pipelines, suggesting 

hat they constitute high-VAF mutations detected by 

Fcaller. Some of them showed minor tumor in normal 
ontamination (one to three mutant reads), common in 

ematological tumors, resulting in most callers missing 

hese true positi v e soma tic muta tions, while RFcaller is 
ble to retain most of them. 

To explore the set of discordant mutations between both 

ipelines, we randomly selected 1–2% of the pipeline-private 
alls ( n = 776 for CLLE-ES and n = 1233 for BRCA-EU) 
o be manually re vie wed by a panel of experts (Supplemen- 
ary Table S12 and Supplementary Figure S3). As expected, 
CAWG-specific variants detected by four callers are more 
recise than those identified by two tools (Table 2 ). Surpris- 

ngly, the difference in precision for RFcaller-private muta- 
ions between studies was very high, 98.5% for CLLE-ES 

nd 71.3% for BRCA-EU, probably reflecting the fact that 
Fcaller was trained using a hematological tumor. How- 
 v er, despite the a pparentl y higher number of false posi- 
i v es, RFcaller-pri vate calls only r epr esent 18.3% and 5.9% 

f the total number of SSNVs detected in the CLLE-ES and 

RCA-EU projects, respecti v ely. Considering the observ ed 

umber of false positi v es within these sets, the real preci- 
ion of RFcaller for SSNVs is 99.7% and 98.3% for CLLE- 
S and BRCA-EU, respecti v el y, w hile the precision of the
CAWG pipeline is 97.3% for both studies (Table 2 and Fig- 
re 3 ). RFcaller performance is similar for tumors with dif- 
erent mutation burden. 

The comparison between RFcaller and each of the in- 
ividual tools used by PCAWG showed that these vari- 
nt callers have slightly lower recall than the ensemble ap- 
roach, as it was expected (Supplementary Table S13). In 
act, in BRCA-EU where RFcaller recall was lower due to 

umor purity, DKFZ and Sanger tools had similar recall to 

Fcaller for SSNVs ( ∼75%), MuSE and Mutect2 pipelines 
eing the ones that identify most of the mutations detected 

y PCAWG ( ∼95%). In CLLE-ES, all the individual variant 
allers had lower recall than RFcaller for SSNVs (70–80% 

ersus 90%). On the other hand, precision was very similar 
mong all the callers for both studies and type of mutation 

SSNVs or indels) (Supplementary Table S13 and Supple- 
entary Figure S4). 
After testing DeepSVR for CLLE-ES and BRCA-EU 

tudies, using the same SSNV dataset as for RFcaller, it 
as observed that DeepSVR is not suitable for the refine- 
ent of basic variant callings, since its precision falls to 50% 

or both studies (Supplementary Table S14 and Supplemen- 
ary Figure S5A). Moreov er, when DeepSVR-pri vate muta- 
ions wer e r emoved from the analysis, considering a r eliable 
et of mutations previously detected by PCAWG and RF- 
aller, the precision of the tool was the same as for PCAWG 

nd RFcaller (Supplementary Table S14 and Supplemen- 
ary Figure S5B). 

tatistics for small indels. The analysis of small indels re- 
ealed that there were more differences between pipelines 
han those seen for SSNVs. In this regard, only ∼50% of in- 
els were detected by both RFcaller and PCAWG pipelines; 
owe v er, for CLLE-ES, RFcaller-private calls r epr esented 

9.1% of the total number of indels, w hereas onl y 11.5% 

f them were PCAWG-specific. In contrast, in BRCA- 
U, RFcaller and PCAWG-priva te muta tions accounted 

or 13.8% and 31.4%, respecti v ely (Figure 2 D). Moreover, 
mong them, < 45% of PCAWG-private indels were de- 
ected by more than two callers (Figure 2 F), reflecting the 
ifficulty to identify somatic indels in tumor samples. 
To further explore pipeline-private indels, we selected at 

east 50 indels from each group for expert review ( n = 283 

or CLLE-ES and n = 429 for BRCA-EU) (Supplementary 

able S12 and Supplementary Figure S3). We observed that 
he precision within PCAWG-private indels was very high, 
arying between 70% and 99% depending on the number of 
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Figure 3. Accuracy of RFcaller and PCAWG pipelines for SSNVs and indels against CLLE-ES and BRCA-EU datasets. RFcaller shows a higher recall 
in both SSNVs and indels for CLLE-ES, whereas in BRCA-EU the PCAWG manages to detect a higher number of mutations. The precision of the two 
pipelines is similar in all conditions. 
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individual callers supporting the call (Table 3 ). In contrast,
the precision observed for RFcaller was 89%, despite the
fact that the total number of indels detected by this pipeline
was much higher. Similar to SSNVs, the observed VAF was
significantly higher in CLLE-ES compared to BRCA-EU
(0.42 v ersus 0.29), probab ly reflecting higher tumor purity.
Nonetheless, we did not observe differences in VAF between
pipeline-private indels (Figure 2 E), suggesting that pipeline-
specific mutations were not due to their allele frequency, as
they were for SSNVs, but due to other factors such as align-
ment issues, size of the indel, the presence of microsatel-
lites or if they were within homopolymer tracks. Despite the
higher precision obtained by the PCAWG pipeline for indel
calling, this might be at the expense of a larger number of
false negati v e calls in otherwise high-VAF and bona fide so-
matic indels, as shown by the number of true positi v e calls
detected by RFcaller (Table 3 and Figure 3 ). 

The performance of RFcaller against individual callers
for indels was very similar to that of SSNVs. The MuSE
pipeline was excluded from this analysis as it cannot detect
indels. In CLLE-ES, the three callers (Mutect2, Sanger and
DKFZ) sho wed lo wer recall than RFcaller ( ∼50% versus
89%), whereas in BRCA-EU only the Sanger pipeline (76%)
had a better recall than RFcaller (69%), which was similar
to the other two tools (64%) (Supplementary Table S13 and
Supplementary Figure S4). 

RFcaller performance on e x ome-derived data 

RFcaller was trained with WGS data, but as the features
used for the pr ediction ar e at r ead le v el, this pipeline could
also be used for exome analysis. In order to test the ability
of RFcaller to detect mutations by whole exome sequencing
(WES), exomes from five cases previously analyzed by WGS
were run with default parameters. Results were compared
with those obtained by RFcaller and PCAWG in the WGS
analysis after filtering for mutations within target regions in
WES . Thus , 63% ( n = 110) of mutations detected by WES
were also detected by WGS. Additionally, we were able to
identify 47 novel mutations for which there was neither cov-
erage nor any mutated read in WGS (Figure 4 A). When we
made the comparison in the opposite direction, we found
that 55% ( n = 136) of the mutations detected by WGS did
not appear by WES. Howe v er, 93% ( n = 126) of these miss-
ing mutations had no coverage or any mutated read in the
exome or were clearly germinal (Figure 4 B). Only 10 muta-
tions detected by WGS had enough coverage in WES and
were not detected, constituting false negati v es (RFcaller e x-
ome recall = 94%). Similarly, considering the 17 mutations
that were labeled as germinal by WGS but detected by WES
as false positi v es, RFcaller achie v es a precision of 90% (RF-
caller exome analysis.R, Supplementary Data). 

Detection and verification of mutations in driver genes 

From the above data we can conclude that RFcaller has a
similar accuracy to detect SSNVs, and an increased sensitiv-
ity to detect indels at the cost of a slightly lower specificity.
To explore whether these differences might allow the de-
tection of previously missed mutations with potential clin-
ical impact, we analyzed somatic mutations on the set of
dri v er genes pre viously described in these two tumor types
( 34 , 35 ) (Supplementary Table S15). This analysis resulted
in the identification of 155 coding mutations in dri v er genes
in the CLLE-ES project and 162 in the BRCA-EU study.
Out of those calls, 83% of them wer e shar ed between both
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Table 3. Distribution of indels detected by each pipeline and extrapolated after manual revision 

Indels TP FP TN FN Precision Recall 

CLLE-ES 
Private 

mutations 
1 caller 392 276 116 70.37% 

2 callers 1044 1002 42 96.00% 

3 callers 546 495 51 90.74% 

4 callers 211 207 4 98.18% 

RFcaller 7335 6916 419 94.29% 

Both 9267 9267 0 
Total PCAWG 18 795 11 248 212 419 6916 98.15% 61.92% 

RFcaller 18 795 16 183 419 212 1981 97.48% 89.10% 

BRCA-EU 

Private 
mutations 

1 caller 1125 1008 117 89.56% 

2 callers 3046 2792 254 91.67% 

3 callers 2133 2097 36 98.31% 

4 callers 1184 1174 10 99.14% 

RFcaller 3257 2707 550 83.11% 

Both 12 925 12 925 0 
Total PCAWG 23 670 19 995 418 550 2707 97.95% 88.08% 

RFcaller 23 670 15 632 550 418 7070 96.60% 68.86% 

TP, number of true positi v e indels; FP, number of false positi v e indels; TN, number of true negati v e indels; FN, number of false negati v e indels. 

Figure 4. Comparison of mutations detected by analysis of WGS and WES in selected donors. Comparison is limited to exomic regions. ( A ) Mutations 
detected by WES and analysis of their status in WGS. ( B ) Mutations detected by WGS and analysis of their status in WES samples. 
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ipelines, while 53 (17%) in 35 dri v er genes were pipeline- 
pecific (Supplementary Table S16). 

Those pipeline-specific mutations were manually re- 
iewed, resulting in the identification of 19 high-VAF muta- 
ions detected by RFcaller (12 SSNVs and 7 indels) versus 
our high-VAF SSNVs detected by the PCAWG pipeline in 

LLE-ES. For the BRCA-EU project, eight high-VAF mu- 
ations were detected by RFcaller (fiv e SSNVs and three 
ndels) versus four high-VAF detected by the PCAWG 

ipeline (three SSNVs and one indel). 
For se v en pri vate calls detected in the CLLE-ES study 

fiv e by RFcaller and two by the PCAWG pipeline), tumor 
nd normal DNA was available for verification by Sanger 
equencing, except two cases in w hich onl y tumor DNA was 
vailable (Supplementary Table S8). This analysis resulted 
n the verification of all RFcaller-private calls (Supplemen- 
ary Figure S6), as well as one of the PCAWG-private SS- 
Vs. The last call could not be verified because it was a very 

ow-VAF m utation (8.7%), w hich falls below the detection 

imit of this technique. 
To further perform an orthogonal validation of these 

ipelines, we took advantage of a previous study in which 

6 CLL dri v er genes had been analyzed by deep sequenc- 
ng in some of the CLL cases used by PCAWG ( 31 , 32 ).
 total of 77 mutations, excluding germline calls, were de- 

ected in 28 cases, for which enough coverage was available 
n WGS to make a call (Supplementary Table S9). Due to 

he high depth of sequencing, VAF was very variable (range 
.0029–0.9665); ther efor e, mutations wer e classified as high- 
AF mutations if VAF ≥ 0.15 ( n = 44, median 0.43) and 
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low-VAF mutations if VAF < 0.15 ( n = 33, median 0.03).
As expected, most low-VAF mutations could not be de-
tected from WGS data, as each pipeline was only able to
detect 6 / 33 low-VAF mutations (18%). In contrast, most
high-VAF mutations detected by deep sequencing could
also be identified by RFcaller (39 / 44, 89%), while the per-
formance of the PCAWG pipeline was slightly lower (31 / 44,
70%). The mutations specifically detected by RFcaller af-
fected NOTCH1 (3), ATM (2), TP53 , RPS15 , MGA and
DDX3X (Supplementary Figure S3), some of which have
been associated with poor prognosis and whose presence
might impact clinical decisions. The PCAWG pipeline was
able to identify a mutation in ATM (Supplementary Fig-
ure S3) that was not detected by RFcaller due to a very low
VAF (0.065). Together, these results support the utility of
RFcaller to identify novel high-VAF driver mutations of po-
tential clinical value. 

DISCUSSION 

The application of NGS techniques for clinical diagnosis
in tumor samples r equir es procedur es that provide enough
sensitivity and specificity, while at the same time do not re-
quire large computing resources to achie v e the analysis in
a reasonable amount of time. To increase accuracy, a fi-
nal step of manual re vie w through visual inspection is usu-
ally carried out for muta tions tha t might be clinically in-
formati v e. This manual r evision incr eases the specificity,
but at the cost of a labor-intensi v e process. Recent ad-
vances in machine learning approaches are suitable to in-
corpora te fea tures tha t experts consider when distinguish-
ing between bona fide mutations and false positi v es. How-
e v er, most availab le pro grams that use machine learning a p-
proaches for somatic mutation calling have been trained
with high depth of coverage WES using in silico ( 19 , 20 ) or
ortho gonal validated m utations ( 21 ). Ther efor e, these pro-
grams cannot be used directly for the analysis of whole
genome sequences, as they are not prepared for complex
intronic or intergenic regions, nor modest coverage where
their sensitivity is very low. 

In this wor k, we hav e taken advantage of a manually cu-
ra ted da taset of real muta tions with fea tures tha t an expert
curator might consider w hen manuall y re vie wing a muta-
tion in a r esear ch or clinical conte xt. Thus, we hav e achie v ed
a very high sensitivity to detect SSNVs and small indels,
while at the same time maintaining a low footprint, with
low CPU and RAM consumption, being able to analyze
a whole genome in < 5 h. Moreover, although it has been
trained with WGS data, it has shown a good performance
in exome samples. 

On the other hand, e v en though our selected features are
often used by similar programs, these tools usually process
SSNVs and indels in the same manner, when clearly the two
types of mutations have different characteristics. Addition-
ally, instead of integrating as many features as possible to
train the algorithms like other variant callers based on ma-
chine learning techniques ( 18 , 20 ), we have carefully selected
the features used to train the algorithms, which simplify the
models and improve their training and performance. We an-
alyzed SSNVs and indels separatel y, w hich allowed us to de-
tect indels with higher accuracy without affecting the abil-
ity to detect SSNVs. Indeed, we have shown that RFcaller
performance is similar to that of a combination of com-
plex pipelines used in the PCAWG project to detect high-
VAF mutations, with the ability to detect new ones, some
of them in dri v er genes, which might contribute to improve
the detection of actionable mutations ( 36 ). Furthermore, we
showed that RFcaller is able to detect mutations e v en in the
presence of some tumor contamination in the normal sam-
ple, a common problem in some hematological tumors that
might lead to false negati v es with other pipelines. Finally,
we have demonstrated that most RFcaller false negati v es
were very low-VAF mutations mainly associated with lower
tumor purity. This suggests that RFcaller performance is
better in high-purity tumor samples such as those deri v ed
from hematological tumors, while the overall performance
in low-purity solid tumors is similar to the individual vari-
ant callers employed by PCAWG, which only achie v es a bet-
ter recall than RFcaller due to their ensemble pipeline. In
this regard, RFcaller represents a fast and accurate tool for
the detection of most mutations in tumor samples, allowing
the detection of mutations in most dri v er genes, and could
be complemented with additional tools focused on the de-
tection of very low-VAF mutations that could be relevant in
tr eatment r esistance. 

In conclusion, we have developed a pipeline called RF-
caller that is provided under a docker system, which allows
its easy and fast installation without version incompatibili-
ties. This tool allows the identification of clonal mutations
with the same efficiency as state-of-the-art pipelines, but
with a smaller footprint in computing r esour ces. 

DA T A A V AILABILITY 

RFcaller and the scripts used to train the algorithms
are available at the GitHub repository ( https://github.com/
xa-lab/RFcaller ), and a docker with all the r equir ements
and necessary files to run the pipeline has been built
to impr ove repr oducibility and facilitate the use of the
program ( https://hub.dock er.com/repository/dock er/labxa/
rfcaller ). Additionally, the scripts with the files we have used
to obtain the results shown above can be found in the Sup-
plementary Data. 

SUPPLEMENT ARY DA T A 

Supplementary Data are available at NARGAB Online. 

ACKNOWLEDGMENTS 

E.C. is an Academia Researcher of the ‘Instituci ́o Catalana
de Recerca i Estudis Avan c ¸ats’ (ICREA) of the Generalitat
de Catalunya. IUOPA is funded by the Asturian Govern-
ment and Fundaci ́on Cajastur. The funders had no role in
stud y design, da ta collection and analysis, decision to pub-
lish or preparation of the manuscript. 
Authors’ contributions : A.D.-N. de v eloped the software,
performed the bioinformatical work, interpreted data, de-
signed the figures and wrote the manuscript. P.B.-M., F.N.
and S.L.-T. contributed to data analysis and performed ex-
perimental work. S.B. and E.C. collected samples and in-
terpreted data. X.S.P. designed the study, interpreted data,

https://github.com/xa-lab/RFcaller
https://hub.docker.com/repository/docker/labxa/rfcaller
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad056#supplementary-data


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 11 

w
r

F

M
R
C
[
R
t
(
E
l
y
E
0
u
A
A
s
A
2
n
[
C
u
r
s
s
r
r
S
i
i
t
t

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/5/2/lqad056/7185855 by guest on 11 M

arch 2024
rote the manuscript and directed the research. All authors 
ead, commented on and approved the manuscript. 

UNDING 

inisterio de Ciencia e Innovaci ́on [SAF2017-87811- 
 and PID2020-117185RB-I00 to X.S.P.]; Fundaci ́on 

ient ́ıfica Asociaci ́on Espa ̃

 nola Contra el C ́ancer (AECC) 
to X.S.P. and S.B.]; Centro de Investigaci ́on Biom ́edica en 

ed de C ́ancer (CIBERONC) [to X.S.P. and E.C.]; Insti- 
uto de Salud Carlos III and co-funded by European Union 

ERDF / ESF, ‘Investing in your future’) [PMP15 / 00007 to 

.C., PI17 / 01061 to S.B.]; ‘La Caixa’ Foundation CLLEvo- 
ution [HR17-00221 to E.C.]; Ministerio de Econom ́ıa 

 Competitividad (MINECO) [RTI2018-094274-B-I00 to 

.C .]; Generalita t de Catalunya AGAUR [2021-SGR- 
1293 to S.B., 2017-SGR-1142 to E.C.]; Department of Ed- 
cation of the Basque Government [PRE 2017 1 0100 to 

.D.-N.]; Asturian Government [to S.L.-T.]; 2021 AACR- 
mgen Fellowship in Clinical / Translational Cancer Re- 

earch [21-40-11-NADE to F.N.]; European Hematology 

ssociation (EHA) Junior Research Grant 2021 [RG- 
02012-00245 to F.N.]; Lady Tata Memorial Trust (Inter- 
ational Award for Research in Leukaemia 2021–2022) 

LADY T AT A 21 3223 to F.N.]. 
onflict of interest statement. X.S.P. is co-founder and eq- 
ity holder of DREAMgenics . F.N . has recei v ed hono- 
aria from Janssen, AbbVie and SOPHiA GENETICS for 
peaking at educational activities. E.C. has been a con- 
ultant for Takeda, AbbVie, Genmab, and Illumina; has 
ecei v ed research support from AstraZeneca, and hono- 
aria from Takeda, Bristol Meyier Squib, Janssen, and EU- 
Pharma for speaking a t educa tional activities; and is an 

nventor on a Lymphoma and Leukemia Molecular Profil- 
ng Project patent ‘Method for subtyping lymphoma sub- 
ypes by means of expression profiling’ licensed to NanoS- 
ring Technologies. 

EFERENCES 

1. Mardis,E.R. (2019) The impact of next-generation sequencing on 
cancer genomics: from discovery to clinic. Cold Spring Harb. 
Perspect. Med. , 9 , a036269. 

2. The International Cancer Genome Consortium (2010) International 
network of cancer genome projects. Nature , 464 , 993–998. 

3. Cancer Genome Atlas Research Network, Weinstein,J.N., 
Collisson,E.A., Mills,G.B., Shaw,K.R.M., Ozenberger,B.A., 
Ellrott,K., Shmulevich,I., Sander,C. and Stuart,J.M. (2013) The 
Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. , 45 , 
1113–1120. 

4. Alexandrov,L.B., Kim,J., Haradhvala,N.J., Huang,M.N., Tian 
Ng,A.W., Wu,Y., Boot,A., Covington,K.R., Gordenin,D.A., 
Bergstrom,E.N. et al. (2020) The r epertoir e of mutational signatures 
in human cancer. Nature , 578 , 94–101. 

5. ICGC / T CGA P an-Cancer Analysis of Whole Genomes Consortium 

(2020) Pan-cancer analysis of whole genomes. Nature , 578 , 82–93. 
6. Li,Y., Roberts,N.D., Wala,J.A., Shapira,O., Schumacher,S.E., 

Kumar,K., Khurana,E., Waszak,S., Korbel,J.O., Haber,J.E. et al. 
(2020) Patterns of somatic structural variation in human cancer 
genomes. Nature , 578 , 112–121. 

7. Rheinbay,E., Nielsen,M.M., Abascal,F., Wala,J.A., Shapira,O., 
Tiao,G., Hornshøj,H., Hess,J.M., Juul,R.I., Lin,Z. et al. (2020) 
Analyses of non-coding somatic dri v ers in 2,658 cancer whole 
genomes. Nature , 578 , 102–111. 

8. Jones,D., Raine,K.M., Davies,H., Tarpey,P.S., Butler,A.P., 
Teague,J.W., Nik-Zainal,S. and Campbell,P.J. (2016) 
cgpCaVEManWr apper : simple execution of CaVEMan in order to 
detect somatic single nucleotide variants in NGS data. Curr. Protoc. 
Bioinformatics , 56 , 15.10.1–15.10.18. 

9. Benjamin,D., Sato,T., Cibulskis,K., Getz,G., Stewart,C. and 
Lichtenstein,L. (2019) Calling somatic SNVs and indels with 
Mutect2. bioRxiv doi: https://doi.org/10.1101/861054 , 02 December 
2019, preprint: not peer re vie wed. 

0. Fan,Y., Xi,L., Hughes,D.S.T., Zhang,J., Zhang,J., Futreal,P.A., 
Wheeler,D.A. and Wang,W. (2016) MuSE: accounting for tumor 
heterogeneity using a sample-specific error model improves sensitivity 
and specificity in mutation calling from sequencing data. Genome 
Biol. , 17 , 178. 

1. Kim,S., Scheffler,K., Halpern,A.L., Bekritsky,M.A., Noh,E., 
K ̈allberg,M., Chen,X., Kim,Y., Beyter,D., Krusche,P. et al. (2018) 
Strelka2: fast and accurate calling of germline and somatic variants. 
Nat. Methods , 15 , 591–594. 

2. Ye,K., Schulz,M.H., Long,Q., Apweiler,R. and Ning,Z. (2009) 
Pindel: a pattern growth approach to detect break points of large 
deletions and medium sized insertions from paired-end short reads. 
Bioinformatics , 25 , 2865–2871. 

3. Moncunill,V., Gonzalez,S., Be ̀a,S., Andrieux,L.O., Salaverria,I., 
Royo,C., Martinez,L., Puiggr ̀os,M., Segura-Wang,M., Stütz,A.M. 
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