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Abstract: In recent decades, the worldwide production of microalgae has been carried out on an
industrial scale. In recent years, the market for natural products has grown because of changes in
consumer preferences for more natural products. The objective of this study was to demonstrate the
hepatoprotective capacity of fucoxanthin extract obtained from an industrial culture of the microalgae
Phaeodactylum tricornutum (Culture Collection of Alga and Protists in Scotland). The microalga was
grown in an artificial and natural seawater mixture (1:9), using Walne’s culture medium in columns
and raceway photobioreactors (RWP) inside a greenhouse. The carotenoid content in the tested
systems continued to increase from day 5 of the culture, when the stationary phase was reached. The
final biomass powder contained 4.9 mg (2.59%) of pure fucoxanthin. The possible hepatoprotective
activity of fucoxanthin was then studied in the HepG2 cell line for 24 h in culture, and compared with
the cytotoxicity of methotrexate (MTX). In conclusion, the active ingredient showed hepatoprotective
activity against MTX in the human hepatocyte cell line HEPG-2 at a concentration of 0.25 mg/mL.
The current results also suggest that it has beneficial properties for liver health and is a suitable
ingredient for all types of nutraceutical products.

Keywords: microalgae; fucoxanthin; hepatoprotective; Phaeodactylum; biofactory

1. Introduction

The natural supplement industry has grown rapidly in recent years. According to
Transparency Market Research, the value of the global market for nutraceutical products
reached a remarkable figure of USD 493.06 billion in 2022 and is expected to reach 991.09
by 2030, growing at a compound annual rate of 6.3%.

As a result of COVID-19, natural supplement consumption has increased, and physical
and mental health have become more important [1]. Moreover, the Public Health Ministry
of Spain has reported that one of the most prevalent health problems is related to the liver
system [2]. This report clearly indicates that liver cirrhosis and chronic liver diseases were
responsible for 1% of deaths in 2017 in Spain and Europe. According to the American
College of Gastroenterology, liver cirrhosis can be defined as scarring of the liver resulting
in abnormal liver function due to chronic (long-term) liver injury [3].

A mortality rate of 9 per 100,000 inhabitants has been reported for this condition. It
should be noted that this rate is higher in males, with 1.5% of deaths being caused by this
disease (a mortality rate of 14 per 100,000 inhabitants), while the rate was almost three
times lower in women at 0.5%, (a mortality rate of 5 per 100,000 inhabitants) [2].
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Algae and microalgae have always been among the most frequently used natural
resources in the production of new nutraceutical compounds [4]. For this purpose, food
supplement compounds have been developed, which are present in a non-food matrix
(pills, capsules, powder, etc.) of a concentrated natural bioactive substance, usually present
in food. This, taken at a dose higher than that existing in these foods, has a more favorable
effect on health than normal food. In addition, the market has always positively accepted
all products related to marine resources.

Food supplements are legally defined in Europe as food products whose purpose
is to complement the normal diet and that consist of concentrated sources of nutrients
or other substances that have a nutritional or physiological effect. They can be in either
simple or combined form and are marketed in dosage form, that is to say, in capsules, pills,
tablets and other similar forms, powder sachets, liquid ampoules, dropper bottles, and
other similar forms of liquids and powders to be taken in small unit quantities [5].

The main objective of this study was to investigate the hepatoprotective activity of
a spirulina extract in combination with an oil rich in fucoxanthin. Fucoxanthin (FX) is a
marine carotenoid found in multiple micro- and macroalgae, such as Cylindrotheca closterium,
Phaeodactylum tricornutum, Undaria pinnatifida and Laminaria japonica [6]. Both microalgae
are cultivated continuously throughout the year in bioreactors. The final product is a mix of
Arthospira platensis (spirulina) cultivated in raceways (outside of the EU, in China), whereas
Phaeodactylum tricornutum is cultivated in column-type photobioreactors and raceways
inside a greenhouse in the Neoalgae facilities (Gijón, Spain).

The cyanobacterium spirulina has been cultivated in different parts of the world as
far away as Lake Texcoco in Mexico, and Lake Chad in Africa, where it grows naturally
and has formed the basis of feeding diverse cultures for centuries [7]. According to [8],
spirulina is an excellent matrix for food supplements. This is not only due to its nutritional
characteristics and high amino acid concentrations, but also because it allows the creation
of mixtures and new food formulas. Using these characteristics, the microencapsulation of
spirulina and fucoxanthin extracts will be studied in this paper.

Fucoxanthin is a marine carotenoid that belongs to the xanthophyll family (carotenoids
possessing at least one oxygenated functional group). This carotenoid is mainly present in
brown edible seaweeds, such as wakame (Undaria pinnatifida, Kombu Laminaria digitata and
Hijiki Sargassum phusiphorme) and diatoms (such as P. tricornutum), and is widely consumed
in Asian countries. The FX content in microalgae is much higher than that in brown
seaweeds; therefore, microalgae have been regarded as potential commercial producers, as
indicated by [9]. FX, whose molecular structure was fully described in 1990 [10], has an
allenic bond, a conjugated carbonyl, a 5,6-monoepoxide, and an acetyl group that contribute
to the unique structure of the molecule (Figure 1).
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It is also considered one of the most abundant carotenoids in nature, accounting
for more than 10% of the total carotenoids produced in nature [12]. There are also other
plant sources of fucoxanthin, such as Undaria pinnatifida (wakame) and other macroalgae.
Consumption of these species has been very common for many years, particularly in Japan
and other East Asian countries [13]. Other sources of fucoxanthin, such as P. tricornutum, do
not have a history of use as human food, but rather as food for fish and mollusks intended
for human consumption [14]. P. tricornutum is also a source of polyunsaturated fatty acids
such as omega-6 [15]. Fucoxanthin has been evaluated in vitro for its biological activity [16].
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In a biorefinery environment, P. tricornutum can be stimulated to elicit lipid biosyn-
thesis through nutrient depletion and increased CO2 supply, whereas eicosapentaenoic
acid (EPA) synthesis can be induced by supplying CO2 and urea as well as strong light [17].
Similarly, in a study in which P. tricornutum was supplemented in the diet of rats, P. tricor-
nutum was estimated to be equivalent to a daily EPA intake of 33 mg/rat [18]. This study
found the EPA content of P. tricornutum to be high (2.04% of dry weight). Fucoxanthin
has been found in different dietary supplements marketed in the United States. A search
for fucoxanthin in the Dietary Supplement Label Database (DSLD) returned 121 dietary
supplements. The daily serving sizes of fucoxanthin in these products vary, containing
15–30 mg fucoxanthin per day. Fucoxanthin and its metabolites have shown anti-obesity
effects, primarily by promoting energy expenditure in the adipose tissue and modulating
blood glucose and insulin levels [19]. Fucoxanthin is an ingredient that is relevant to the
supplement market in the United States, and it targets a population of people 4 years of
age and above (Table 1).

Table 1. Sample list of dietary supplements marketed in the U.S. that contain fucoxanthin.

Product Company Serving Size DSLD
Identification

BRI Nutrition Fucoxanthin BR International, LLC.
(Dallas, USA)

5 mg, up to 4 capsules a day for a total
daily amount of 20 mg 219,005

Life Extension
Fucoxanthin-Slim

Quality Supplements and
Vitamins, Inc. (FL, USA)

200 mg Xanthigen blend of Wakame
fucoxanthin extract and pomegranate
oil punicic acid extract. One soft gel,

3 times daily = 600 mg total
serving level

64,368

BioRhythm Ultra Lean FX BioRhythm-ADS
(Pittsburgh, USA)

150 mg, one capsule twice daily for a
total daily amount of 300 mg 13,412

Dr. Mercola Premium
Supplements Biothin with
Irvingia and Fucoxanthin

Mercola Health Resources,
LLC. (FL, USA) 30 mg fucoxanthin daily 175,720

FucoZan Vita Logic (UT, USA)

Capsule blend containing 5 mg of
fucoxanthin, taken 3 times daily for a

total daily amount of 15 mg
fucoxanthin

3287

MaritzMayer Laboratories the
Original FucoXanthin

Formula 1332

MaritzMayer Laboratories
(GA, USA)

5 mg fucoxanthin per capsule at up to
4 capsules per day, for a total daily

amount of 20 mg fucoxanthin
31,716

Vitabase Fucoxanthin Plus Vitabase.com (GA, USA)
5 mg fucoxanthin per capsule, taken

3 times daily for a total daily amount of
15 mg fucoxanthin per day

5990

In this study, we evaluated the combination of spirulina and fucoxanthin. spirulina
and plant sources of fucoxanthin are valued for their health benefits, as well as their
nutritional value. These health benefits have been reported as one of the reasons for the
long life expectancy of the Japanese population, which is the highest in the world [20]. This
has been attributed to their chemical composition, which produces antitumor, antiallergic,
and antithrombotic activities [21–23].

There are different types of encapsulation in which different compounds are used,
such as maltodextrin and guar gum. One of the reasons for using encapsulation was to
provide protection to the active ingredients (especially fucoxanthin) against environmental
conditions (oxygen, light, temperature, and water), thus avoiding their oxidation and
increasing their useful life. The encapsulation of extracts containing different microalgae
products and marine active principles has been mentioned by [24], who used an emulsion
phase separation technique involving an ionotropic gelation method to prepare chitosan
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microcapsules to stabilize fish oil, such as krill oil, and [25], who used a solvent evaporation
method to encapsulate astaxanthin in a chitosan matrix cross-linked with glutaraldehyde.
In our case, we used spirulina as a microencapsulation agent using a European patent [26],
and obtained a green powder containing between 1.65% and 2.25% fucoxanthin (including
analytics that are now ready to be incorporated into any food or nutraceutical matrix).
The objective of this study was to generate a complete development process to produce
fucoxanthin as a nutritional supplement. This new procedure goes from cultivation to
the final production of the supplement. Subsequently, the nutritional supplement was
evaluated to demonstrate its capacity for liver protection.

2. Materials and Methods
2.1. P. tricornutum Cultivation and Lipid Production
2.1.1. Organism and Culture Conditions

The diatom Phaeodactylum Tricornutum was obtained from the Scottish Association
of Science (SAMS) Culture Collection of Algae and Protists (CCAP, 56.45155615297254,
−5.440805919920754) as CCAP1052/1A. Microalgae were grown in an artificial and natural
seawater mixture (1:9). Natural seawater was filtered and sterilized using UV, and artificial
seawater was prepared using tap water and NaCl (35 g/L NaCl). The mixture was then
sterilized in an autoclave (121 ◦C, 20 min) when the final culture volume was less than
2 L, followed by bleaching (40 g/L NaClO) and sodium thiosulfate sterilization protocol
for larger volumes (v:v). We used Walne’s medium [27] with several modifications and a
vitamin solution in this experiment (Table 2).

Table 2. Composition of the culture medium designed by [28] for the massive cultivation of marine
phytoplankton commonly used as food for several species of shellfish.

Component Quantity (g/L)

NaNO3 100
MnCl2·4H2O 0.36

H3BO3 33.6
MgNa2EDTA·H2O 45

NaH2PO4·H2O 20
FeCl3·6H2O 1.3

Trace metal solution 1 mL
ZnCl2 21

(NH4)6Mo7O24 9
CuSO4·5H2O 20
CoCl2·6H2O 20

2.1.2. Scale-Up Procedure

Microalgae were stored in 200 mL flasks stored at 15 ◦C under a light intensity of
6500 lx with a photoperiod of 16:8 h−1 (light/dark), allowing them to stay in a dormant
state. In the first step, 100 mL of the dormant microalgae was diluted in a 400 mL graduated
beaker of previously sterilized culture medium. An aeration source was added, and the
temperature was raised to 25 ◦C. The next step was performed under the same culture
conditions using a final volume of 2 L. CO2 was not used during the experiments. All
volumes were established in triplicate. The following steps of the scale-up process were
developed inside a glasshouse, where the control of the culture parameters was limited.
Aeration was performed in the same way. Methacrylate bottles (Nalgene) were used for
10 L and 20 L of culture. For higher volumes in the column photobioreactor (2 m height,
0.2 m internal diameter), two sequential culture steps were performed (50 and 100 L). The
last step took place in open raceways of two different dimensions (6 m length, 1.1 m width,
1.1 or 1.4 m height), with a final volume between 1200 and 1500 L.
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2.1.3. Harvesting

In this experiment, 100 L of culture was harvested using a disk stack centrifuge from
the GEA Westfalia Separator GMBH model OSE 5-91-037. This equipment separates the
liquids from the solids owing to the high speed (8000–9000 rpm) of the drum. The fresh
microalgae paste is concentrated in the discs with a solid concentration between 15 and
17% depending on the concentration of the culture.

• Growth parameters

Optical density (OD) values were obtained using 2 mL of culture volume with a
spectrophotometer (Biochrom Libra S11 Visible Spectrophotometer) at three different wave-
lengths (680, 668, and 750 nm). DW was measured using a 10 mL sample of culture filtered
through previously dried glass fiber filters (47 mm PRAT DUMAS, France) and washed
with 10 mL of distilled water for productivity analysis. Light (Light Meter HS1010A), pH,
and temperature (ADWA AD11) measurements were also performed in this experiment.

• Pigment analytical measurements

Chlorophyll extraction and quantification were performed using ethanol as the organic
solvent, as described by [29]. Five milliliters of the culture was centrifuged at 3000 rpm
for 10 min. After discarding the supernatants, 5 mL of distilled water was added and
centrifuged at 4500 rpm for 10 min. This rinse was repeated twice, and after discarding
the supernatant, 5 mL 98% ethanol was added to the pellet. The tubes were stored in the
absence of light at 6 ◦C for 24 h and then centrifuged at 4500 rpm for 10 min. Chlorophyll
quantification was then performed spectrophotometrically using the supernatants and the
following equation:

µgclorofila/mLmedium = (11.64A663 − 2.16A645 − 0.10A630)ν/(lV), (1)

where Axxx is the absorbance at xxx nm after removing the sample absorbance at 750 nm,
against a blank of the solvent used; ν means the volume of solvent used (mL); l is the
spectrophotometric cell length (cm); and V is the sample volume (mL).

Carotenoid extraction and quantification were performed using dimethyl sulfoxide
(DMSO) as an organic solvent following the method described by [30], assuming fucoxan-
thin as the main carotenoid produced by P. tricornutum [31]. Fifty milliliters of the culture
was centrifuged at 3600 rpm for 15 min. After discarding the supernatants, the pellets were
stored in a freezer and dried via lyophilization. Five milliliters of DMSO was added to
each 3.5 mg of biomass, homogenized and incubated at 70 ◦C for 5 min. The tubes were
centrifuged at 4600 rpm for 10 min. Quantification of total carotenoids was performed
spectrophotometrically using the supernatants and the following equation:

CChl a (mg · L−1) = 13.34A666 − 4.85A650 (2)

CChl b (mg · L−1) = 24.58A650 − 6.65A666 (3)

Total car (mg · L−1) = (1000 × D480 − 1.29 × CChl a − 53.76 × CChl b)/220 (4)

• Lipid extraction

Total lipid extractions were performed following the method described by [32], where
13.5 mL of chloroform, 6.5 mL of methanol, and 5.25 mL of distilled water (68% NaCl) were
mixed with 1 g of dried biomass. The mixture was magnetically stirred for 10 min and
then centrifuged at 3000 rpm for 10 min. The resultant organic lower phase was transferred
to a clean glass vial and evaporated on a rotary evaporator to remove chloroform. The
difference between the weight of the vial after evaporation and the weight of the empty
vial was taken to be the weight of the lipids. The lipid content (% of dry weight) was the
weight of lipids divided by the weight of the starting dry algal biomass (1 g).
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• Stress

Experiments to study the effect of culture age were performed using three open
raceways photobioreactors (RWP) inoculated with inoculum from a back-up system (RWP4).
Two of them, RWP1 and RWP2 (R1 and R2) were inoculated again, while R3 was renewed.
The final volume was 1000 L in all systems, and they were maintained for 15 days without
handling. Four harvests were performed throughout this experiment: T0 (after culture
establishment), T1 (when the steady state was reached), T2 (on the 10th day), and T3 (on
the 15th day). To avoid excessive water evaporation from the culture systems, 150 L of
artificial seawater was added on the 7th day. Experiments to study the effect of nitrogen
deprivation were performed using three open raceways, two of which were established as
experimental systems (N1 and N2), while the last one was maintained as a control system
(Control). In this experiment, algae were harvested on the 5th day.

2.2. Hematoprotection Assay

The experimental system used in this study was HepG2 cells (human hepatocyte cell
line HB-8065, ATCC, Manassas, VA, USA). These cells were stored in the GAIKER culture
bank and checked for the absence of contaminating mycoplasmas when thawed. HepG2
cells were grown at 37 ◦C in a humidified atmosphere containing 5% CO2. Cells were
maintained in the culture medium for a minimum of two weeks before starting the assays
to allow optimal cell growth. The cells were subcultured before reaching 70% confluence
(cell concentration/volume).

A cell suspension was prepared 24 h before the hepatoprotective activity assay was
performed. The cell suspension (200 µL/well; 20,000 cells/well) was dispensed into 96-well
plates using a multichannel pipette. The plates were then incubated at 37 ◦C and 5% CO2
for 24 h.

Cells cultured in 96-well plates were treated with four concentrations of the product
under study for 24 h (37 ◦C, 5% CO2) together with 5 mg/mL methotrexate (MTX, M8407,
Sigma, St. Louis, MO, USA), a known hepatotoxic agent [33–35], at 5 mg/mL. The product
was assayed at a maximum concentration of 0.25 mg/mL. Serial dilutions (1:2) of the
product were prepared in the culture medium and assayed at concentrations of 0.25, 0.125,
0.0625, and 0.03125 mg/mL.

After incubation with the test products or positive control, the cells were washed with
PBS and stained with Thiazolyl Blue Tetrazolium Bromide (MTT, M2128, SIGMA) solution.
The plates were then incubated at 37 ◦C for 2 h. At the end of this period, the medium was
removed and 100 µL of dimethyl sulfoxide (DMSO, D2650, SIGMA Aldrich, Burlington,
MA, USA) was added to solubilize the colored precipitate. The plates were left in the dark
and stirred for 15 min. Absorbance was measured at 540 nm using a spectrophotometer
plate reader. Finally, the cell viability percentage was calculated from these results using
a spectrophotometer and plotted on a graph against the positive test/control product
concentration. Three independent experiments with at least four replicates were performed
for each experimental point.

2.3. Statistical Analysis

Growth measures and chlorophyll extraction were conducted in triplicate, total
carotenoid extraction was carried out in duplicate, and lipid extraction was performed as a
single measure. All values are given as mean ± standard deviation with error bars denoting
the standard deviation. Microsoft® Excel® (Microsoft 365 MSO, 16.0.14228.20200, 64 bits)
was used for data processing and graphical representation. Parametric one-way analysis
of variance (ANOVA) and Kruskal–Wallis non-parametric tests were performed using
RStudio (R-4.0.3). Means were compared using Tukey’s and Dunn’s tests, respectively, at a
significance level of p < 0.05. Similarly, for hepatoprotection assays, values are given as the
mean of the percentage of viability ± standard error mean (SEM). A one-factor analysis of
variance (ANOVA) with Bonferroni–Dunn’s correction was performed to assess differences
in the percentage of cell viability with respect to the MTX Group (p < 0.05).
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3. Results
3.1. Scaling-Up and Fucoxanthin Production by P. tricornutum
3.1.1. Environmental Parameters

There was no significant difference in any of the environmental parameters mea-
sured between the culture systems during the culture-age experiment (pH, temperature,
and irradiance).

In Figure 2, the bars represent the chlorophyll extraction values (mg/L), and the lines
represent the optical density values at 680 nm (red line), 750 nm (black line), and 668 nm
(blue line).
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Figure 2. Growth diagram of P. tricornutum in column-type photobioreactors for 10 days.

Flocculation was recorded in system R1 at the beginning and end of the experiment.
This phenomenon was not observed during the nitrogen deprivation experiments. How-
ever, significant differences were observed between the levels of irradiance registered by
the systems (p value = 0.049), whereas higher differences were noticed between the control
and N2 systems (Figure 3). There were no significant differences in pH or temperature
between the systems, although the highest values were observed between the control and
N2 systems.

3.1.2. Culture Growth

Similar behaviors were observed in the R1 and R2 systems during all culture-age
experiments (Figure 4). R3 registered significantly higher OD values throughout the
experiment (p value < 0.05) and continued to increase, whereas R1 and R2 showed a strong
decrease between the 11th and 13th days. The R2 systems showed a slight increase in OD
on the last day of culture, whereas no variation was observed in R1. The productivity
values (DW) varied for all systems throughout the experiment.
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3.2. Pigment and Carotenoid Content

In Figure 5, the black lines represent the chlorophyll content, whereas the red lines
represent the carotenoid content. Error bars indicate the standard deviation. During
the nitrogen deprivation experiment, the chlorophyll content (mg/L) increased in the
control system, but no changes were observed in the N1 and N2 systems. Between the 5th
and 7th days, the control system experienced a marked decline. There were significant
differences in the chlorophyll content (p value = 0.030), which was greater between the
system and N2 (p value = 0.032). There was no significant difference in carotenoid content
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(p value = 0.218), although greater differences were recorded between the control and N2
treatments (p value = 0.286).
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3.3. Characteristics of the Biomass Obtained

This biomass contained 99% powder and 1% humidity, and the 350 mg of mix con-
tained 172.9 mg from Arthrospira platensis, 172.9 mg of microalgae oil from P. tricornutum,
and 4.2 mg of tocopherol.

The powder contained 4.9 mg (2.59%) of pure fucoxanthin. These contents were
analyzed by Ofice SL Laboratori d’investigació cerealista in Castellgali, who used HPLC-
UV (DAD) with the PNT-M-841 method.
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3.4. Extraction and Encapsulation

Fucoxanthin was extracted from P. tricornutum via solid–liquid extraction using an
organic solvent (hexane) (Table 3). We decided to use hexane because it does not leave any
solvent residue and its use is permitted in the food industry.

Table 3. Analytics of residues after carrying out the extraction and encapsulation process.

Trials
Results

Value Units Method

SiO2 2.36 mg SiO2/Kg ITEM151: AAS 1

Al2O3 533 mg Al2O3/Kg ITEM273: ICP-MS
Fe2O3 2.02 mg Fe2O3/Kg ITEM250: OIDA-ICP-MS
SO3 2.22 % UNE EN 1744-1
CaO 38.10 mg CaO/Kg ITEM273: ICP-MS
MgO 12.68 mg MgO/Kg ITEM273: ICP-MS
Na2O 42.80 mg Na2O/Kg ITEM273: ICP-MS

1 Atomic Absorption Spectrophotometry.

The first step of the extraction process after harvesting the P. tricornutum culture
involves a breakdown phase. Microalgae were diluted in distilled water and subsequently
disrupted. Once the biomass was broken, it was lyophilized.

Subsequently, the product was extracted with ethanol. The extraction occurred at a
temperature between 25 and 50 ◦C and while stirring at 30–50 rpm. The supernatant was
then decanted and centrifuged. Once all the liquid phase was collected, it was placed in a
rotary evaporator for 1–4 h at 25–50 ◦C between 0.02 and 0.08 MPa (vacuum), resulting in
the removal of hexane. The hexane is evaporated and passes through a spiral where it is
cooled, condenses, and becomes liquid. The liquid hexane was recovered and reused. This
process yielded an oily black fucoxanthin-rich extract.

In the final formulation, the oily fucoxanthin-rich extract was included within the
matrix of the broken spirulina, as the support for obtaining the powdered product. To
prepare the powder ingredients (spirulina and P. tricornutum extract), a second phase of
mixing was performed. Spirulina and oil extracts were prepared in a liquid medium
(distilled water). The water/spirulina/oily extract mixture was produced in proportions
of 80:10:10 (water 80%, spirulina 9.9%, Phaeodactylum 9.9%, tocopherol 0.25%, with the
initial fucoxanthin content in the plant material being 0.1–0.3%). These percentages can
vary depending on the desired amount of fucoxanthin.

Once the mixture was combined, it was lyophilized. After the product was dehydrated,
a powder was obtained containing 49.4% spirulina, 49.4% Phaeodactylum extract and 1.2%
tocopherol. The mixed powder was then vacuum packed, and the parameters of the
packaging machine were controlled in each process (% vacuum:98 and sealing time:4 s).

After vacuum packaging, the product was frozen to preserve its properties. At that
time, the final encapsulated mixture was ready for hepatoprotective capacity tests.

3.5. Hepatoprotective Assay

Cytotoxicity assays are basic and essential evaluations performed to determine the
toxicity of compounds intended for use in the biomedical field. The cytotoxicity of MTX
and possible hepatoprotective activity of fucoxanthin were studied in HepG2 cells for 24 h
in culture. The effects of fucoxanthin and free MTX on cell metabolic activity were assessed
using the MTT assay as an indicator of cellular cytotoxicity. The results of the MTT assay
for nanocarriers are presented in Figure 6.
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Figure 6. Hepatoprotective effect (MTT reduction assay) in HepG2 cell line exposed to methotrexate
(MTX) for 24 h.

The cells were exposed to the indicated concentrations of the active substance and
the hepatotoxic compound MTX for 24 h. C and MTX conditions represent untreated and
MTX-treated cells, respectively. The mean (top of the bars) and SEM (whiskers) of four
replicates and three independent trials (n = 3) are shown. Asterisks represent statistically
significant differences compared to MTX at the same dose (p value < 0.05).

4. Discussion
4.1. Environmental Parameters and Culture

Figure 3 shows that there were no significant differences between the values for light
(p value = 0.949), pH (p value = 0.241), and temperature (p value = 0.896) taken in the
different systems with a 95% confidence interval (significance level = 0.05). The greatest
differences in pH were detected between systems R2 and R3 (p value = 0.218). The light
measurements recorded between systems R1 and R2 differed the most (p value = 0.750).
The temperature was very similar in the R1 and R2 systems (p value = 0.869), and was
slightly different from that of the R3 system (p value = 0.6).

The pH values are represented by the black bars. A maximum value of pH = 10.8
was recorded on day 7 for R1, and a minimum value of 9 was recorded on day 13, which
represents a variation in pH of 1.8 throughout the experiment. In the case of R2, the extreme
pH values were 10.9 and 8.5, on days 7 and 1 of the culture, respectively, which represents
an oscillation of 2.4. Finally, for R3, the maximum pH value was 10 on days 7, 6, and 13,
and the minimum was 8.7 on day 15, a variation of 1.3. The microalgae in this study are a
species that can tolerate these small changes in pH in the culture; however, these changes
can modify the growth of the microalgae, as indicated by [36].

pH is one of the most important factors in microalgae cultures because microalgae
membranes are not completely impermeable to hydrogen ions and hydroxy groups. Al-
though P. tricornutum is a tolerant species, these changes can be leveraged in the culture.
A pH increase occurs as a result of the absence of CO2 input because the ions are pulled
out as bicarbonate by the microalgae. Calcium carbonate precipitation occurs when pH
reaches 10, and microalgae may be affected [36]. There are studies in the literature that
indicate the onset of flocculation (microalgae aggregation) when pH values are higher than
10.5 [37]. However, this may not be the only explanation for the phenomenon. Flocculation
was observed only at the beginning and end of the culture experiment, regardless of pH
value, according to [38]. In the absence of nitrogen, this was not observed, although the pH
values remained lower than the previously mentioned umbral pH values.
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Irradiance values can only be used to establish whether the culture conditions remain
constant in all systems. To use this variation to infer its influence on the culture, it would be
necessary to constantly record this parameter, because slight changes in light intensity can
lead to changes in culture growth and productivity rates [39]. In various studies, light has
been shown to influence not only the growth and cell division of P. tricornutum, but also the
pigment content (i.e., fucoxanthin). High irradiance levels are harmful to orbital aerated
cultures in fucoxanthin production and culture aeration is essential for growth under high
light intensity [40]. However, high light intensity can induce photoinhibition and photo-
damage, leading to cellular death [41]. In Haematococcus sp., Dunaliella sp. and Muriellopsis
sp., increased primary carotenoid production was detected under high-irradiance condi-
tions. However, light seems to affect fucoxanthin production in P. tricornutum in a different
manner. Some studies have reported increased carotenoid production under medium light
conditions [40], while others have suggested that the highest accumulation rates occur at
low light intensities [42].

The culture temperature remained constant throughout all experiments, and its influ-
ence on P. tricornutum has already been described. The highest division rate was registered
at 23 ◦C, carbon fixation increased in direct relation to temperature (14–25 ◦C), and cells
tended to have larger chloroplasts above 21 ◦C and lower light intensities [43]. Recent
studies have noticed higher chlorophyll content in cultures growing at 20–23 ◦C, due to
higher productivity levels [44]. It has also been documented that microalgae morphology
is affected by temperature [44], although we did not observe this in our experiments. Here,
culture temperature ranged between 19.5 ◦C and 26.6 ◦C in both experiments, and the
temperature was very close to the best-established culture conditions for P. tricornutum;
however, slight fluctuations were registered, so its influence cannot be dismissed.

No significant differences in DW were observed between the systems (Figure 4). In the
nitrogen deprivation experiment, DW showed higher levels on the 1st day of culture, while
it remained constant during the rest of the samplings. In this case, OD showed different
behaviors in all systems: a marked increase in OD in the control system, a slight increase in
N1, and no increase in N2. The control and N1 systems showed a drastic decline between
the 5th and 7th days. No significant differences in OD were found among the systems or in
the DW values.

No significant differences were found in carotenoid content. During the P. tricornutum
culture, the carotenoid content in the tested systems continued to increase from day 5 of the
culture, when the stationary phase was reached. This increase continued throughout the
experiment until day 11 in all cases, at which point a stabilizing trend was detected in two
of the systems (R2 and R3). The results indicate that the best time to carry out carotenoid
extraction occurred on day 11 of culture, under the growth conditions established in
the experiment.

Sudden changes in light resulted in a rapid decrease in carotenoid content, so continuous
monitoring of the state of the crop is crucial to avoid the loss of fucoxanthin content, an aspect
that must be taken into account when carrying out commercial fucoxanthin exploitation.

4.2. Hepatoprotective Assay

As shown in Figure 6, spirulina–fucoxanthin significantly increased the percentage of
cell viability (reduced the hepatotoxic impact) at the highest assayed concentration com-
pared to the MTX group (cells treated only with MTX), suggesting hepatoprotective activity.
On the one hand, the healthy group (C-) presented 119.6 ± 6.26% cell viability. On the
other hand, when hepatocytes were incubated with MTX, cell viability was 100.00 ± 5.27%.
However, when stressed hepatocytes (incubated with MTX) were incubated with test prod-
uct at 0.25 mg/mL, the cell viability was 124.74 ± 12.21% (similar to the healthy control). A
significant increase in cell viability was observed at 0.25 mg/mL of spirulina–fucoxanthin.
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5. Conclusions

We draw the following conclusions from this study:
MTX (5 mg/mL) produced adequate hepatotoxic stress, and a decrease in cell viability

of the human hepatocyte cell line was observed.
The active ingredient (spirulina–fucoxanthin) showed hepatoprotective activity against

the hepatotoxic compound MTX in the human hepatocyte cell line HEPG-2 at a concentra-
tion of 0.25 mg/mL.

The current results also suggest that spirulina–fucoxanthin has beneficial properties
for liver health and is a suitable ingredient for all types of natural functional foods.
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