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Abstract: The Hullera Vasco Leonesa (HVL) underground coal mine in northern Spain is subject to
violent methane (CH4) outbursts. Vertical wells are used to extract CH4 from coal layers to improve
mine safety. Bentonite suspensions are used as drilling fluids in this degasification system. The
relationship between the soil and filter cake permeabilities, the filter cake thickness, and the filtrate loss
significantly affects the fluid’s rheological properties. Fann mud balance, marsh funnel viscometer,
and Fann 300 press filter tests have been carried out to determine the rheological properties of the
bentonite suspension. A drilling fluid study was carried out for three drilling zones (across which
the rheological properties of the drilling fluid vary for the reasons mentioned above): Zone 1, the
lower zone, wherein drilling cuts through the coalbed; Zone 2, the upper zone, wherein drilling
cuts through layers of sand; and Zone 3, an intermediate zone consisting mainly of rock. When
drilling cuts through the coalbed, the release of methane, which improves the safety of underground
operations, depends on the relationship between the permeability of the coal and the permeability of
the filter cake of the drilling fluid. The effect of sand contamination increases the filtrate loss, and
therefore also increases the permeability of the filter cake. The filtrate reducer decreases filtrate loss
by recovering the permeability.

Keywords: bentonite suspension; drilling fluids; filter cake; thickness and permeability; methane
degasification; vertical wells

1. Introduction

The coal layer that is exploited in HVL is La Pastora, with a notable 20 to 25 m
thickness, a slope of 40◦ to 60◦, a methane (CH4) concentration of 7 to 10 m3/t, and a
desorption rate V1 of 2. Three mining techniques are used: longwall retreat, shortwall, and
sublevel caving [1].

A CH4 emission in October 2013 resulted in the deaths of five miners. In collaboration
with the University of Oviedo, HVL conducted a research project on the outburst mecha-
nism, with the objective of predicting and controlling potential future outbursts [2]. Recent
studies establish these methane predictions using mathematical formulations [3,4], neural
networks [5], or three-dimensional geological seepage models [6].

One of the directions for increasing the safety and efficiency of rational integrated
development of coal deposits is the advance degassing of mine fields with wells drilled
from the surface [6].

Methane degasification using vertical wells was one of the CH4 control methods [7,8]
that was studied by HVL. This technique is widely used for the methane degasification,
and in this way, possible outbursts are avoided [9], therefore increasing the safety of
underground operations. It is important to add that once the methane has been drained,
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a further step would be to use this gas as an energy resource and reduce environmental
damage [5]. Studies are carried out in the mine for its future use.

Thus, advanced degassing of coal deposits using vertical wells is an effective tool for
increasing the productivity and safety of coal mine. To achieve the indicated objectives, it is
important that the relationship between the permeability of the carbon and the permeability
of the filter cake is optimal.

Vertical wells were dug to a 550 m depth with a diamond crown drill bit using
bentonite suspensions as drilling fluids [10]. In this study, the behavior of the bentonite
suspension in drilling zones 1, 2, and 3 (Figure 1) was investigated: Zone 1 is the lower zone
where the drilling cuts through the coalbed, zone 2 is the upper zone where the drilling
cuts through layers of sand, and zone 3 is an intermediate zone consisting mainly of rock.
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Figure 1. Vertical well and surface facilities, (a) annular space (b) coalbed.

Methane is adsorbed and stored in the matrix of the coal layer. The extraction of free
CH4 depends on the gas storage pressure [11,12] and the coal permeability [13–18]. During
borehole drilling or downtime, the bentonite suspension drilling fluids form a filter cake on
the sidewalls. If the permeability of the filter cake is high, some of the water in the bentonite
suspension can seep into the ground [19]. If the permeability of the filter cake is low, the
cake thickness increases, decreasing the diameter, and consequently the interior pressure of
the borehole [20]. A filter cake with adequate permeability stabilizes the borehole sidewalls,
preventing ground water from entering the borehole.

The interaction between the bentonite suspension and the soil plays a critical role in
stabilizing the borehole. The slurry pressure counteracts the soil and water pressures to
stabilize the borehole sidewalls. There are two models for how the confinement pressure is
transferred to the drilling face (Figure 2). (a) In the filter cake model (membrane model),
a thin waterproof layer is created that transfers excess suspension pressure to support
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pressure. (b) In the penetration zone model, excess slurry pressure is transferred to the soil
along the entire length of the penetration zone.
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(a) Membrane model (b) Penetration model (c) annular space of the well.

The API normative [22–24], which is widely used and verified in the coal, gas, and
oil industry, has been used for determining the rheological properties of the drilling fluid
(bentonite suspension). For this, laboratory tests of the Fann mud balance, Marsh funnel
viscometer, and Fann 300 press filter have been used to determine these properties. Ad-
ditionally, the effect of sand contamination and the addition of filtrate reducers on three
different samples of bentonite suspensions were analyzed.

The main objective of this research work is the importance of the correct implemen-
tation of vertical wells, since these can cut different types of geological materials. Of
special interest is the study of the interaction between the bentonite suspension and the
drilled rock because this relationship between permeabilities (bentonite suspension and the
coalbed) plays a critical role in stabilizing the borehole. In this case study, special emphasis
is placed on the study of the rheological properties of the bentonite suspension for the
execution and durability of the vertical wells. In this way, an advanced methodology in the
degasification of coalbeds before future underground coal mining work, increasing safety,
can be developed.

For this reason, in this research, three areas with the following particular objectives
have been analyzed:

Zone 1. (i) The relationship between the permeabilities of the coal layer and the
filter cake are determined. (ii) The influence of both permeabilities on the stabilization of
the borehole sidewalls is investigated for two subzones, wherein the permeabilities are
different.
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Zone 2. (i) The relationship between the soil and filter cake permeabilities during
downtime is determined. (ii) Water formation at the top of the drilling region is investigated:
this water plays a significant role in stabilizing the borehole sidewalls.

Zone 3. (i) The variation in the penetration of the suspension into the soil from
filtrate loss is determined. (ii) The relationship between the annular velocity of the drilling
fluid and the variation in the particle cutting slip velocity from the filter cake thickness is
determined.

In all three zones, the influence of sand contamination and the action of a filtrate re-
ducer on the bentonite suspension are examined. The results are validated using laboratory
tests and measurements made in the mine.

2. Materials and Methods
2.1. Zone 1 Analysis. Coalbed

Figure 3 shows the underground mining gallery in the coal layer crossing the vertical
well, and the laboratory tests on the Pastora layer coal samples. A new methodology to
avoid gas loss while samples are collected by drill cutting was developed by [25]. The coal
properties used in this study are shown in Table 1. The other properties of this coal are:
0.75% sulfur, 10.41% volatiles, 12.39% ash, a density of 1.45 kg/m3, and a calorific value of
7455 Kcal/kg.
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Table 1. Average coal parameters in mined coalbed.

Q
(m3/tp)

V1
(cm3/10 g/35 s)

∆ DCVD
(a-b)

∆ GP
(a-b)

∆ PI
(a-b)

10–12 2–4 90 0.85 0.5
Q: CH4 concentration in coalbed; V1: desorption rate; PI: Protodyakonov index; DCV: drill cutting volume (l/m);
GP: gas pressure (MPa).

The coal permeability can be described by Equation (1) [11,26–28]:

K = (9.988 × 10−2)/(12 s)·b3, (1)

where b is the space between fractures in mm, s is the length of the fracture opening in mm,
and K is the permeability in cm2. Equation (1) shows that the permeability depends on
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the space and opening of the coal fracture system. However, these values vary between
subzones a and b. Table 2 shows the minimum and maximum coal permeabilities (for
subzones a and b), which are the average results obtained using three coal samples in each
zone.

Table 2. Coal permeability.

Coal Permeability (cm2)

Subzone b Subzone a

Min Max Min Max

0.06 × 10−13 1.04 × 10−10 1.79 × 10−10 4.44 × 10−10

2.2. Zone 1 Analysis. Bentonite Suspension Drilling Fluid
2.2.1. Density, Viscosity and Static Filtration

The Wyoming sodium bentonite used in this study was provided by Halliburton,
and had a particle size below 70 µm [22]. Bentonite suspensions were prepared using
deionized water, following the API 13A [22] and API 13I [23] guidelines for drilling fluids.
The densities and viscosities of the bentonite suspensions are shown in Table 3. The pH of
the suspensions was 7.00 [29,30].

Table 3. Bentonite suspension: density (Fann mud balance) and viscosity (Marsh funnel viscometer).

Bentonite Suspension Samples Density (g/cm3) Viscosity (s)

Sample #1 1.021 47
Sample #2 1.029 95
Sample #3 1.034 179

After formation, the bentonite suspensions were allowed to rest in closed containers
for 24 h to ensure good hydration and that the filter cake was adequately formed.

The tests on the filtrate loss and the filter cake thickness were carried out using a Fann
300 press filter (Figure 4), following the guidelines in API [24].

Figure 4a shows the relationship between the filtrate loss and the time (s) obtained
from the laboratory API test with a duration of 1800 s. The repeatability and accuracy of
the measurements was ensured by averaging the filtrate loss results for three tests. The first
linear section reflects the instantaneous filtrate fluid loss before the formation of the filter
cake, and the second linear section reflects the remaining filtrate loss that is proportional to
the square root of the time.

Figure 4b shows the relationship between the filtrate loss and t (h) obtained for the
laboratory API test with a duration of 24 h. The filtrate loss tended to stabilize after 8 h.

2.2.2. Filter Cake Thickness

Figure 5 shows the filter cake thickness for bentonite suspension samples #1, #2, and
#3 as a function of time (h). The cake thickness increased with time, and after 8–10 h, the
asymptotic thickness was between 4.9 and 6.8 mm for sample #1, between 9.7 and 11.1 mm
for sample #2 and between 11.8 and 13.8 mm for sample #3.

Figure 6 shows the filter cake thickness as a function of the slurry pressure (bentonite
suspensions #1, #2, and #3) for the standard API tests. In this figure, the highest value of R2
is shown by sample #2, while in the previous figure, related to the root of time, sample #1 is
the one that shows a higher value of R2.
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2.2.3. Effect of Sand Contamination by an Addition of Filtrate Reducer on Bentonite
Suspension

The filtrate loss and spurt loss of bentonite suspension #1 was significantly increased
by sand contamination and decreased by the addition of a filtrate reducer.

In the laboratory tests, 1.96% by volume of G-type sands with granulometry between
80 and 160 microns [30] were added to bentonite suspension sample #1. The sand content
of the mineral suspension did not exceed four percent by volume.

In the tests, 0.41% of QT (QUIK-TROL, Halliburton, Houston, TX, USA) was used to
reduce filtrate loss.

Table 4 shows the variations in the density and viscosity of bentonite suspension #1
upon addition of the filtrate reducer and sand at the aforementioned concentrations.

Table 4. Density and viscosity of bentonite suspension #1 with added sand and QT.

Bentonite Suspension Samples Density (g/cm3) Viscosity (s)

Sample #1 1.021 47

Sample #1 with QT 1.031 119

Sample #1 with sand 1.04 60

Sample #1 with sand and QT 1.045 192

Figure 7 shows the filtrate loss under sand contamination and the action of the filtrate
reducer as a function of t1/2 for a 24-h test on bentonite suspensions #1 and #3. Sand
contamination significantly increases filtrate loss (from 7.2% to 11.4%), and the filtrate
reducer considerably decreases filtrate loss (from 23.1% to 24%). The filtrate loss and filter
cake thickness stabilized between four and eight hours.

The filter paper with the filter cake was washed five times with a water jet from a
distance of approximately 10 cm and at an incidence angle of 45◦. After washing, four
measurements of the filter cake thickness were taken at different points and averaged.

Figure 8 shows the effects of sand contamination and the filtrate reducer on the filter
cake thickness for bentonite suspensions #1 and #3.
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The presence of sand (detritus) increases the slurry density, making the slurry difficult
to circulate. A high sand content also results in a thick filter cake, which significantly
increases filtrate loss and the filter cake permeability.
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2.2.4. Permeability of Bentonite Suspension Filter Cake Compared to Coal Permeability
Filter Cake Model

The mathematical equation that governs the flow of fluids through porous media is
known as Darcy’s Law, and can be expressed for a one-dimensional flow by Equation (2):

k = QW·QC·µ/(2·t·∆P·A2), (2)

where q is the volumetric flow rate, t is the time, k is the permeability, ∆P is the pressure
gradient, µ is the viscosity, h is the length of sample, QW is the filtrate volume, QC is the
filter cake volume, and A is the filter cake area.

Substituting the API static filtration specifications into Equation (2) yields Equation (3):

k = QW·µ·e·8.95 × 10−5, (3)

where k is the filter cake permeability in mD, QW is the fluid loss in cm3, e is the filter cake
thickness in mm, and µ is the viscosity of the liquid phase of the fluid in cP.

Figure 9 shows the calculated filter cake permeabilities obtained using Equation (3)
for bentonite suspensions #1, #2, and #3; bentonite suspension #1 with 3.42% sand, 0.41%
QT, and both 3.42% sand and 0.41% QT. Direct laboratory measurements of the filter cake
permeability by [31] are also shown.
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In subzone b (Figure 4), the permeability of coal (Figure 10) is below that of the
bentonite suspension filter cake. Coal plays an important role in stabilizing the borehole
sidewalls in subzone b. However, at maximum coal permeability, the sidewall stability is
controlled by the filter cake permeability and therefore the cake thickness (Table 5).

Table 5. Shows the bentonite suspension penetration in SI units (mm).

Coal Permeability (cm2)

Subzone b Subzone a

Min Max Min Max

0.06 × 10−13 1.04 × 10−10 1.79 × 10−10 4.44 × 10−10

Bentonite Suspension Penetration e (mm)

Subzone b Subzone a

0.89 158.46 570.47 713.08
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Penetration model:
The API static filtration specifications are given below.

• bentonite suspension volume: QT (API test), cm3

• filtrate area: A (API test)
• filtrate loss volume: QW, cm3

• filtrate loss per filtrate unit area: QW/A = e cm
• filter cake volume: Qc, cm3

• filter cake volume per filtrate unit area: QC/A cm
• filtrate volume after t = 1800 s

Substituting these specifications into Equation (1) (Darcy’s Law) yields Equation (4):

e = QW/A = (2·k·∆P·t)/(µ·QC/A) = (2·k·∆P·t )/(µ·(QT − QW)/A) = (2·k·∆P·3600·A)/(µ·(QT − QW)) (4)

where k is the permeability (D), e (mm) is the penetration distance of the slurry in to ground
(coal), ∆P at is the difference between the slurry pressure and the ground water pressure
(subzone b), and µ (cp) is the viscosity of the bentonite suspension.

The bentonite suspension penetration in coal was measured for eight samples taken
at the intersection of the underground mining gallery and the perforated borehole. The
minimum penetration of 0.52 mm was obtained in subzone b, and the maximum penetration
of 624.5 mm was obtained in subzone a (Figure 10).

2.3. Zone 2. Analysis during Downtimes

During downtime, the bleeding of the bentonite suspension may create a problematic
water zone [32] at the top of the drilling region where the water and soil pressure > support
pressure (subzones c and d, Figure 11). A water zone is created when the filter cake
permeability falls below the soil permeability. Filtrate loss occurs at the top of the drilling
region in the form of bleeding water. For equal soil and filter cake permeabilities, the filtrate
loss value can be obtained using Equation (2).

The example of a borehole drilled using bentonite suspension #1, with an annular
space between the hole and the drill string of 25.4 (De) cm × 14.7 (Di) cm, has been
considered. The piezometric head is hp = −3 m.

Figure 12 shows the relationship between the granulometry and the permeability (in
terms of the minimum, average, and maximum permeability coefficients).
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The variation in hs with d10 of the soil is shown in Figure 13:

• For bentonite suspension #1, the filter cake is absent in subzone c (3 m), and water
can enter the soil from the borehole. The filter cake is absent in subzone d (4.5 to 6 m),
and both water and soil can enter the borehole. The borehole sidewalls are unstable in
both subzones.
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• Sand contamination of bentonite suspension #1 increases the size of subzone d, and
therefore the significance of the abovementioned problems.

• The addition of the filtrate reducer (QT) to the uncontaminated and sand-contaminated
bentonite suspension #1 decreases the size of subzone c to 0.5 m. The absence of a filter
cake allows water to enter the soil from the borehole and destabilizes the borehole
sidewalls.
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3. Zone 1, 2, and 3: Transport Ratio and Cutting Slip Velocity

The ground sections that are cut during drilling are displaced upwards by the drilling
fluid at a rate equal to the difference between the upward fluid velocity and the downward
particle slip velocity. The consistency index k and the flow behavior index n are normally
used in the Chien [33] correlation [34–36] (Equation (5)) as follows:

vsl = (2.90·ds·(ρs − ρf)
0.667)/(ρf

0.333·µa
0.333), (5)

where vsl is the slip velocity, ds is the particle volume, ρs is the particle density, and ρf is the
bentonite suspension density. µa depends on the annular space between the hole and the
drill string, as well as on the coefficients n and k of the power-law model.

The transport ratio for geological drilling is calculated for the following example: the
diameter and thickness of the cuttings are approximately 6.35 mm with a specific gravity of
2.58 g/cm3; a bentonite suspension with a density of 1.078 g/cm3 is pumped at an annular
velocity of 0.609 m/s into a 25.4 cm × 14.7 cm annulus.

The following data (Table 6) were obtained in the laboratory for bentonite suspension
#1 and bentonite suspension #1 with QT, with sand, and with sand and QT.
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Table 6. Rheological parameters of the bentonite suspensions.

Bentonite Suspension d n k AVN MV CT FCP

Sample #1 1.020 0.485 247.5 27.83 47 2.5 0.43604
Sample #1 with QT 1.031 0.514 288.9 37.32 119 3 0.31146

Sample #1 with sand 1.040 0.502 267.0 32.28 56 5 1.1993
Sample #1 with sand and QT 1.045 0.447 689.9 64.71 192 3 0.35442

Density d (g/cm3), apparent newtonian viscosity at an annular velocity of 0.610 m/s AVN (10−3 Pa·s), flow
behavior index n, consistency index k, marsh viscosity MV (s), cake thickness CT (mm), filter cake permeability
FCP (×10−6 cm2).

Figure 14 shows the effect of contamination by sand and the effect of a filtrate reducer
on the slurry annular velocity, the cutting slip velocity, the difference of both speeds, and
the transport ratio, when the thickness variation in the filter cake is taken into account.
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It can be seen that:

(a) The filtrate reducer increases the transport ratio.
(b) Contamination by sand of the slurry decreases the cutting slip velocity, and therefore

increases the transport ratio.
(c) If the increase in the filter cake thickness is taken into account, (a) and (b) are fulfilled.

It also decreases the transport ratio except in the case of sample #1 with filtrate reducer.

During drilling after downtimes of more than 8 h, and due to the increase in the filter
cake thickness, the problems associated with the increase in the filter cake thickness become
greater.

The relationship between values obtained by the models of annular velocity and
cutting slip velocity, and those obtained by measuring between points one and two with
plastic pipe tracers is a R2 of 81.3.

4. Conclusions

In the analysis of the effect of drilling fluid on degasification by vertical wells, three
zones with different requirements for the properties of the drilling fluid were considered.

Zone 1: In the filter cake model, coal permeability is lower than the filter cake perme-
ability of the bentonite suspension. Coal is important in the stabilization of the borehole
sidewalls in that zone. However, there are maximum values of coal permeability where the
fundamental aspect is the filter cake permeability, and therefore its thickness. Penetration
values of the bentonite suspension (penetration model) are at a minimum in subzone b
(0.89 mm) and at a maximum in subzone a (713 mm).
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Zone 2: For bentonite suspension sample #1, the borehole sidewalls are unstable in
both subzones c and d. For bentonite suspension sample #1 contaminated with sand, the
above-mentioned problems are more important due to the increase in subzone d.

When a filtrate reducer (QT) is added to bentonite suspension sample #1 and to sample
#1 contaminated with sand, subzone c decreases to values of 0.5 m. There is no filter cake,
there is possible water entry from the borehole to the soil, and the borehole sidewalls are
unstable.

Zone 3. It can be seen that the filtrate reducer increases the transport ratio. Contami-
nation by sand of the slurry decreases the cutting slip velocity, and therefore increases the
transport ratio. If the increase in the filter cake thickness is taken into account, the transport
ratio decreases. During drilling after downtimes of more than 8 h, and due to the increase
in the filter cake thickness, the problems become greater.

The next step would be to determine predictive models to increase the efficiency of
the vertical wells of the methane degasification, as well as seek to use this gas for energy
and reduce environmental damage.
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25. Szlząk, N.; Korzec, M.; Piergies, K. The Determination of the Methane Content of Coal Seams Based on Drill Cutting and Core

Samples from Coal Mine Roadway. Energies 2022, 15, 178. [CrossRef]
26. Gray, I. Reservoir Engineering in Coal Seams, Part 1-The Physical Process of Gas Storage and Movement in Coal Seams. SPE

Reserv. Eng. 1987, 2, 28–34. [CrossRef]
27. Wang, S.; Elsworth, D.; Liu, J. Permeability evolution during progressive deformation of intact coal and implications for instability

in underground coal seams. Int. J. Rock Mech. Min. Sci. 2013, 58, 34–45. [CrossRef]
28. Zhou, H.; Gao, J.; Han, K.; Cheng, Y. Permeability enhancements of borehole outburst cavitation in outburst-prone coal seams.

Int. J. Rock Mech. Min. Sci. 2018, 111, 12–20. [CrossRef]
29. Alderman, N.; Ram, B.D.; Hughes, T.; Maitland, G. The rheological properties of water-based drilling fluids—Effect of bentonite

chemistry. Spec. Chem Prod Mark. Appl. 1989, 9, 314–326.
30. Kumar, R.; Kumar, V.; Rajak, D.K.; Guria, C. An improved estimation of shear rate using rotating coaxial-cylinder Fann viscometer:

A rheological study of bentonite and fly ash suspensions. Int. J. Miner. Process. 2014, 126, 18–19. [CrossRef]
31. ISO 3310-1:2016; Test Sieves. Technical Requirements and Testing. Part 1: Test Sieves of Metal Wire Cloth. ISO (International

Organization for Standardization): Geneva, Switzerland, 2016.
32. Baptiste, N.; Chapuis, R.P. What maximum permeability can be measured with a monitoring well? Eng. Geol. 2015, 184, 111–118.

[CrossRef]
33. Chien, S.F. Annular Velocity for Rotary Drilling Operations. J. Rock Mech. Min. Sci. Geomech. Abstr. 1972, 9, 403–416. [CrossRef]
34. Kelessidis, V.C.; Tsamantaki, C.; Pasadakis, N.; Repouskou, E.; Hamilaki, E. Permeability, porosity and surface characteristics of

filter cakes from water–bentonite suspensions. WIT Trans. Eng. Sci. 2007, 56, 173–182.
35. Moore, P.L. Drilling Practices Manual, 1st ed.; Petroleum Publishing Co.: Tulsa, OK, USA, 1974.
36. Bourgoyne, A.; Miliheim, K.; Chenevert, M.; Young, K.S. Applied Drilling Engineering, 2nd ed.; Society of Petroleum Engineers:

Richardson, TX, USA, 1986.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.coal.2023.104234
https://doi.org/10.1016/j.petrol.2015.11.015
https://doi.org/10.1016/j.coal.2009.10.019
https://doi.org/10.1007/s11242-006-9030-2
https://doi.org/10.1016/0148-9062(75)91244-9
https://doi.org/10.1016/S0920-4105(97)00005-3
https://doi.org/10.1016/j.coal.2008.09.006
https://doi.org/10.1016/j.coal.2009.12.010
https://doi.org/10.1016/j.enggeo.2012.04.015
https://doi.org/10.3390/en15010178
https://doi.org/10.2118/12514-PA
https://doi.org/10.1016/j.ijrmms.2012.09.005
https://doi.org/10.1016/j.ijrmms.2018.07.008
https://doi.org/10.1016/j.minpro.2013.11.004
https://doi.org/10.1016/j.enggeo.2014.11.006
https://doi.org/10.1016/0148-9062(72)90005-8

	Introduction 
	Materials and Methods 
	Zone 1 Analysis. Coalbed 
	Zone 1 Analysis. Bentonite Suspension Drilling Fluid 
	Density, Viscosity and Static Filtration 
	Filter Cake Thickness 
	Effect of Sand Contamination by an Addition of Filtrate Reducer on Bentonite Suspension 
	Permeability of Bentonite Suspension Filter Cake Compared to Coal Permeability 

	Zone 2. Analysis during Downtimes 

	Zone 1, 2, and 3: Transport Ratio and Cutting Slip Velocity 
	Conclusions 
	References

