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Hyperparameter Optimization (HPO) aims to tune hyperparameters for a system in order to improve the
predictive performance. Typically, only the hyperparameter configuration with the best performance is
chosen after performing several trials. However, some works try to take advantage of the effort made
when training all the models with every hyperparameter configuration trial and, instead of discarding
all but one, they propose performing an ensemble of all the models. However, this ensemble consists
of simply averaging the model predictions or weighting the models by a certain probability. Recently,
some of the so-called Automated Machine Learning (AutoML) frameworks have included other more
sophisticated ensemble strategies, such as the Caruana method or the stacking strategy. On the one hand,
the Caruana method has been shown to perform well in HPO ensemble, since it is not affected by the
issues caused by multicollinearity, which is prevalent in HPO. It just computes the average over a subset
of predictions, previously chosen through a forward stepwise selection with replacement. But it does not
benefit from the generalization power of a learning process. On the other hand, stacking approaches
include a learning procedure since a meta-learner is required to perform the ensemble. Yet, one hardly
finds advice about which meta-learner can be adequate. Besides, some possible meta-learners may suffer
from problems caused by multicollinearity or need to be tuned in order to mitigate or reduce this obsta-
cle. In an attempt to reduce this lack of advice, this paper exhaustively explores possible meta-learners
for stacking ensemble in HPO, free of hyperparameter tuning and able to mitigate the problems derived
from multicollinearity as well as taking advantage of the generalization power that a learning process
may include in the ensemble. Particularly, the boosting strategy shows promise in this context as a stack-
ing meta-learner, since it satisfies the required conditions. In addition, boosting is even able to com-
pletely remove the effects of multicollinearity. This paper provides advice on how to use boosting as a
meta-learner in the stacking ensemble. In any case, its main contribution is to propose an implicit regu-
larization in the classical boosting algorithm and a novel non-parametric stop criterion suitable only for
boosting and specifically designed for the HPO context. The existing synergy between these two improve-
ments performed over boosting exhibits competitive and promising predictive power performance as a
stacking meta-learner in HPO compared to other existing meta-learners and ensemble approaches for
HPO other than the stacking ensemble.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hyperparameter Optimization (HPO) [1] research rises from the
need to find promising hyperparameter configurations in machine
learning systems in order to achieve high predictive performance
[2]. The hyperparameters determine the structure of the model
and how the learning process will take place. They must be tuned
before the learning process starts and they must be differentiate
from the model parameters. Model parameters are estimated dur-
ing the learning process, they configure the model itself and must
be taken into account for making predictions.

HPO aims to obtain an optimal model that minimizes a prefixed
loss function or maximizes a performance measure. Typically, the
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hyperparameter tuning process involves i) defining a model struc-
ture, ii) establishing the hyperparameters to be tuned and the
domains for their values, iii) designing a hyperparameter value
sampling method, iv) establishing an estimation procedure given
an evaluation metric and, finally, v) configuring the final model.
Among all these steps in hyperparameter tuning, researchers have
focused their attention on developing promising strategies for
hyperparameter sampling (step iii)) [1,2]. The common procedure
in the literature for steps i), ii) and iv) involves respectively: check-
ing several model structures, several hyperparameter domains and
several evaluation procedures. Regarding the final configuration of
the model (step v)), a typical approach would involve selecting the
model with the best hyperparameter configuration based on the
averaged evaluation metric estimations and then discarding the
models with the rest of the hyperparameter configuration trials.
Despite the selected model does provide the best estimation on
average, it might not be the best option overall. This means that
more than one option might include at least some predictive power
and may contribute to better overall performance. Hence, ensem-
bling the models induced by the hyperparameter configuration tri-
als [3] seems like a straightforward favourable strategy to consider
(one must not confuse this practice with using a sampling strategy
in order to optimize an ensemble [4]). In fact, there is a theoretical
study based on ambiguity decomposition [5] that shows that an
adequate ensemble guarantees a better performance than the aver-
aged performance of the individual models.

Some existing works have already explored the impact of per-
forming ensemble in HPO [6–8], including the Basic Ensemble
Method (BEM) [9], which computes the average of the model pre-
dictions, the Generalized Ensemble Method (GEM) [9,10], which
performs regularized least squares regression under certain con-
straints, or weighting by a probability as in the Inverse Expected
Error Weighting (IEW) [8]. Also, and more recently, some Auto-
mated Machine Learning (AutoML) systems include the option of
performing an ensemble within their frameworks. However, only
few of them do. In fact, AutoML systems mainly focus on other
parts of the process, such as parallelizing or distributing the pro-
cess, or on improving the performance of exploring encouraging
hyperparameter configuration trials, or even on multi-output
HPO [11]. The few systems that include ensemble in their scenarios
do not perform an exhaustive study on them; instead they just
contemplate the option whether to perform ensemble or not. These
few AutoML systems either use the Caruana method [12] for the
ensemble (as in Auto-Gluon [13], Auto-Sklearn [14,15] or Auto-
Pytorch [16]) or adopt stacking ensemble [17] (as in Auto-Weka
[18,19] or H2O [20,21]). Despite the Caruana method having
shown to perform successfully due to the forward selection with
replacement strategy, it only computes the simple average after-
wards and does not profit from the generalization power of includ-
ing a learning procedure. Unlike the Caruana method, the stacking
procedure learns the ensemble, but in order for the system to learn
the ensemble the meta-learner, must be carefully chosen. In fact,
and to the best of our knowledge, the literature provides no guide-
lines as to which systems may be adequate in HPO. Furthermore, a
quite recent survey argues this shortage of studies about stacking
ensemble [22] for general purpose ensemble, hence, all the more
reason for HPO. Besides, if the system has hyperparameters, they
must be carefully tuned in order to get good predictive perfor-
mance, typically having to use an HPO procedure in turn.

Bagging and boosting [23] are other general-purpose ensemble
strategies widely used in the literature. The models to ensemble
under these strategies are dynamically generated, and hence not
applicable in the context of HPO, where the models to ensemble
are defined beforehand and induced by the hyperparameter config-
uration trials. Evolutionary algorithms [24] are another kind of
general-purpose ensemble strategies, but they are usually over-
2

filled with hyperparameters that need to be tuned. Other ensemble
methods exist [25], but they are developed specifically for certain
cases, such as time series, neural networks, deep learning or mul-
tiple kernel learning [25]. Therefore, we discard these ensemble
strategies, since they can not be adapted to HPO.

As a result, we shall now focus on stacking ensemble because
(and unlike BEM, IEW and Caruana) this method takes advantage
of the generalization power of ensemble through a learning pro-
cess, despite a lack of guidelines about adequate non-
hyperparametric meta-learners [22]. As a matter of fact, one of
the contributions of this paper is to review possible and adequate
candidates as meta-learners for stacking ensemble in HPO; but
before we delve into that, let us review the peculiarities of the
HPO stacking ensemble context. The first peculiarity is that some
of these hyperparameter trials may lead to excessively general
models (underfitted models) that turn out highly similar predic-
tions for all instances. The second peculiarity is that the values to
ensemble may be excessively similar for some hyperparameter
configurations. This happens because in the particular case of
HPO the models to ensemble are all learned using the same
machine learning system and, therefore, some variations in the val-
ues of the hyperparameters may not induce enough different mod-
els. These peculiarities give rise to the multicollinearity problem
[26]. Muticollinearity emerges in a multivariable regression when
the variables in the regression are highly correlated. This situation
affects the accuracy in estimating the regression coefficients, pro-
ducing skewed, misleading and unreliable results [27]. It com-
monly leads to overfitted models, hence, reducing the statistical
power of the regression. In HPO, this problem gets particularly
worse. The reason being, as stated before, the models to ensemble
may be quite similar, and hence will provide similar predictions,
which are in turn the values that must be ensembled.

Ordinal Least Squares (OLS) [28] is an option as stacking meta-
learner with no need to be tuned, but the above-mentioned pecu-
liarities of the HPO ensemble context may cause overfitting. In fact,
OLS is known to be highly affected by multicollinearity [29], since
it takes all the features to perform the regression. Adding con-
straints to OLS as a way of introducing a certain regularization pro-
cedure leads to GEM, which is slightly able to reduce the effects of
multicollinearity with regard to the original OLS but not to a satis-
factory degree. In fact, this approach has recently been proposed
for ensembling in HPO [10]. Some alternatives to OLS are Forward
Stepwise Regression (FSR) [30], Principal Component Regression
(PCR) [31], Partial Least Squares (PLS) [32] and Boosting (BOOST)
[33]. All of these approaches are iterative procedures that require
predefining a number of iterations beforehand. However, this
hyperparameter can be substituted by a stop criterion and, if this
stop criterion is non-hyperparametric, then, the ensemble can be
considered as non-hyperparametric. Other methods are able to
overcome the peculiarities of the HPO ensemble context but at
the cost of tuning real-valued regularization hyperparameters. This
is the case, for instance, of methods such as Ridge [34], Support
Vector Regression (SVR) [35] or Random Forests Regression (RFR)
[36]. In view of that, the first contribution of this paper is to discuss
and explore the impact of FSR, PCR, PLS and BOOST as meta-
learners for stacking ensemble in HPO, analyzing different non-
hyperparametric stop criteria so that the meta-learners become
non-hyperparametric.

The second and main contribution of the paper is to include two
improvements in BOOST in an attempt to exploit the specific
potential of this method as meta-learner for stacking ensemble
in HPO. Particularly, BOOST can be promising in this context, since,
unlike FSR, PCR and PLS, it carries out several regressions with just
one feature each time, rather than including several features in the
regression, as FSR, PCR and PLS do. The set of those different one-
feature regressions are combined afterwards. On the one hand,
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performing a regression with just one feature allows using OLS as
the base-learner regressor, removing the problems caused by the
existing multicollinearity. On the other hand, the robust way
adopted by BOOST to combine the one-feature regressions makes
it possible to detect collinear features as redundant, which enables
significantly reducing, or even removing, the influence of these fea-
tures in the ensemble. However, this reduction may not be as
promising as expected. This issue prompts one of the improve-
ments to BOOST, since one of the main contributions of this paper
consists of including an implicit regularization in BOOST in order to
balance the influence of the collinear features in the ensemble. This
practice leads to a method that we will call Regularized BOOST
(RBOOST). The second improvement stemming from the main con-
tribution of this paper consists of designing a novel stop criterion,
which we will call Increasing Coefficient Magnitude (ICM) and
which is specifically designed for BOOST, taking advantage of its
property about performing several regressions over just one fea-
ture. The result is that both novel improvements for BOOST,
namely, implicit regularization (RBOOST) and the novel stop crite-
rion (ICM), exert a synergy showing competitive and promising
predictive power performance as meta-learner for stacking ensem-
ble in HPO, compared to other existing non-hyperparametric meta-
learners and other ensemble strategies different from stacking
ensemble.

The rest of the paper is organized as follows: Section 2 describes
some related work concerning the main existing AutoML frame-
works and the main sampling strategies. Section 3 deals with the
ensemble paradigm. First, several ensemble approaches of the lit-
erature are discussed more in depth. Then, it focuses on stacking
ensemble and discusses non-hyperparametric meta-learners for
it, along with several possible non-hyperparametric stop criteria.
BOOST as meta-learner in stacking ensemble is deeply detailed in
Section 4. In particular, this section also details the novel stop cri-
teria ICM and RBOOST method as the result of carefully including
an implicit regularization to BOOST that was specifically designed
for HPO. Experimental settings together with the description of the
multicollinearity analysis carried out are described in Section 5.
Additionally, Section 6 presents the results and discusses the per-
formance of the approaches. Finally, Section 7 draws some conclu-
sions and proposes some lines of research for future work.
2. Related Work

A key step in HPO is hyperparameter sampling. Great efforts
have been made in the literature to design promising sampling
strategies, becoming the main aspect in the HPO field [1,2]. Some
hyperparameter sampling strategies do not take into account
model evaluations to obtain different hyperparameter configura-
tion samples; instead, each sample is drawn independently of the
rest. This property makes it possible to learn several configuration
trials in parallel but incurs the risk of wasting time on exploring
poorly performing configurations. This is the case of Grid Search
(GS) [55,56] and Random Search (RS) [57]. GS [55,56] is a simple
approach that takes a finite set of values for each hyperparameter
and computes the Cartesian product of them to configure a grid of
trials to be checked. RS [57] randomly draws a predefined number
of trials according to certain distribution following a Monte Carlo
technique. Unlike those methods that sample each configuration
trial independently, others include a guided search involving a
model evaluation of the current sample in order to draw the next,
as in Bayesian Optimization (BO) [58], Particle Swarm Optimiza-
tion (PSO) [59] and Hyperband (HB) [60]. BO [58] is a well-
known and successful optimization approach [61] that performs
a balance between exploration (taking other hyperparameter val-
ues) and exploitation (taking information from the hyperparame-
3

ters already explored) in order to avoid falling into a local
minimum. PSO [59] is a population-based method that simulates
a biological behaviour among particles that has also been success-
fully applied in HPO [62]. The particles in PSO just cooperate rather
than mutate or crossover. This provides information to guide the
search, but it must be properly initialized to minimize the risk of
leading to a local rather than to a global optimum. HB [60] is a
bandit-based technique that improves on the successive halving
method. It does so by dynamically choosing hyperparameter con-
figurations in an attempt to establish a trade-off between the num-
ber of configurations and the available resources (such as time).
This way, half of the poorly performing configurations are elimi-
nated each time, while the other half are kept.

Nowadays, HPO is one of the core parts of the AutoML frame-
works [63]. While HPO tries only to provide a predictive model
by optimizing their hyperparameters, AutoML goes further and
does something more than this. Particularly, AutoML covers solv-
ing all the tasks a researcher must tackle,obtaining a final solution
from the data, trying to avoid requiring expertise assistance. Even
though this task includes pre-processing, feature selection and
extraction before the predictive model is induced it also calls for
interpretability and decision making after the predictive model is
induced. Combined Algorithms Selection and Hyperparameter
Optimization (CASH) [64] is currently a top field of research that
goes a step beyond the task of HPO as well, since it also selects a
suitable system that provides the model in addition to the hyper-
parameters. However, CASH environments do not automate as
many tasks as an AutoML framework. In fact, it is quite common
for AutoML frameworks to be built over a CASH environment.

Some AutoML frameworks have been proposed in the literature.
For instance, Auto-Weka [18,19] is an AutoML environment built
on top of WEKA models. Auto Tuned Models (ATM) [37], Auto-
Sklearn [14,15] and Tree-based Pipeline Optimization Tool (TPOT)
[40] are frameworks that use the scikit-learn library [65].
Hyperopt-sklearn [38,39] is based on Auto-Weka applied to
scikit-learn. Some frameworks focus specifically on neural net-
works such as Auto-Pytorch [16] and TPOT-NN [41] (a particular
version of TPOT). Auto-Gluon [13] successfully includes a multi-
layer combination of models for image, text, time series, and tabu-
lar data. H2O [20,21] is an open source, in memory, distributed,
fast and scalable commercial platform also suitable to be managed
by non-experts in machine learning. Another recent AutoML
framework is MANGO [42], which is an open-source Python library
able to parallelize HPO on a distributed cluster. Syne-Tune [43] is
an open-source Python library as well, but for large-scale dis-
tributed hyperparameter and neural architecture optimization.
Also, Ray-Tune [46] is specifically designed for distributed model
selection. Additionally, ASHA [48] proposes an asynchronous suc-
cessive halving algorithm in order to improve the efficiency for
numerous parallel evaluations. Even more recently, Hyper-Tune
[44] has included improvements in regard to optimizing the BO,
such as automatic resource allocation, asynchronous scheduling
and multi-fidelity optimizer. MFest-HB [49] proposes a new sam-
pling strategy including multi-fidelity learning to HB sampling
strategy, which improves the Bayesian Optimization and Hyper-
band (BOHB) [51]. Finally, other systems are Google Vizier [45]
and OpenBox [47], which both include transfer learning and early
stopping to improve the hyperparameter search, but Google Vizier
only supports traditional black-box optimizations, whereas
OpenBox can cope with multiple objectives and constraints. The
fact is that all of these AutoML systems focus on improving the
configuration trials generation or on parallelizing or distributing
the computations, and only some of them include ensemble after
learning the models with the different generated configuration tri-
als. Particularly, only Auto-Gluon, Auto-Pytorch and Auto-Sklearn
include the Caruana method for ensemble, while only Auto-Weka
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and H2O allow the possibility of performing stacking, but without
any advice about which meta-learner is adequate to use. Concern-
ing CASH environments, Auto-Sklearn [14,15] and Hyperopt-
sklearn [38,39] also deal with CASH for supervised machine learn-
ing. Optunity [50], Bayesian Optimization and Hyperband (BOHB)
[51], Sequential Model-based Algorithm Configuration (SMAC)
[52], Robust Bayesian Optimization (RoBo) [53], Bayesian Tuning
and Bandits (BTB) [54] are other popular CASH frameworks. Table 1
summarizes the sampling and ensemble strategies supported by all
these AutoML and CASH environments.

3. Ensemble in Hyperparameter Optimization

A general definition of ensemble learning that covers super-
vised (classification and regression) and unsupervised learning
can be the process of integrating a set of models in order to provide
a final prediction [3,25]. Formally, this integration processI can be
defined for a given instance x as

f xð Þ ¼ I f 1 xð Þ; . . . :; f p xð Þ� �
where p is the number of models to ensemble, f i xð Þf gpi¼1 is the set of
models to ensemble and f xð Þ is the function obtained after the inte-
gration process.

The integration process is commonly assumed to involve a lin-
ear combination or fusion of the individual models. Hence, f xð Þ can
be rewritten as

f xð Þ ¼
Xp

i¼1

hi xð Þ � f i xð Þ

where hi xð Þf gpi¼1 is a set of functions that grant weights to the indi-
vidual models f i xð Þf gpi¼1.

Diversity is a key issue in ensemble learning [66]. However,
among the existing kinds of diversity, hyperparameter diversity
is the one that fits HPO, since in HPO different hyperparameter
configuration trials are the ones that provide the different models
to ensemble [25].

The common practice establishes the weighting functions
hi xð Þf gpi¼1 as constants, that is, hi xð Þf gpi¼1 ¼ aif gpi¼1. Non-constant
weighting functions have also been studied. Static methods (meth-
ods that define non-constant weighting functions during learning)
either split the input space by assigning models to predefined
regions [67] or perform static selection defining areas of expertise
for the models [68]. dynamic methods (methods that define non-
constant weighting functions in prediction time), on the other
hand, do it by searching for similar instances in the training set,
typically via k-nearest neighbour approaches [69]. In any case,
both types require hyperparameter tuning, for subsampling in
the case of the static methods and for the k-nearest neighbour
based approaches in the case of dynamic methods.

Hence, this paper will focus solely on constant-weighting func-
tions, and only on those that do not require adjusting hyperparame-
ters within them, since one of the goals of this paper is precisely to
propose a non-hyperparametric ensemble procedure. Section 3.1
reviews existing ensemble strategies, including stacking. Section 3.2
discusses meta-learners for stacking ensemble, for which a stop cri-
terion must be stated. Finally, Section 3.3 makes a review and discus-
sion of existing stop criteria for meta-learners in stacking ensemble.

3.1. Review of existing ensemble strategies in Hyperparameter
Optimization

BEM [9] has been employed for ensemble in HPO and provides
constant-weighting functions without tuning hyperparameters,
just by computing the simple average of the individual predictions
4

f i xð Þf gpi¼1. Hence, the aif gpi¼1 are all equal to the constant 1=p for all
i ¼ 1; . . . ; p. The ensemble function is then
f xð Þ ¼ Pp

i¼1
1
p � f i xð Þ ¼ 1

p �
Pp

i¼1f i xð Þ. The IEW strategy [70], which

consists of establishing the weights aif gpi¼1 as inversely propor-
tional to the expected error of f i xð Þf gpi¼1, has also been employed
as ensemble method in HPO and also provides constant-
weighting functions free of hyperparameter tuning. The Caruana
strategy [12] is an appealing approach that goes along the same
line as the previous methods, and has shown promising results
recently and has been included in some of the few AutoML systems
that provide ensemble in their frameworks [13,14,16]. It differs
from the above-mentioned methods in that it performs an ensem-
ble selection first, or, in other words, it establishes some weights to
be zero beforehand. More in detail, first the best models that will
not be weighted by zero are selected with replacement and the
simple average is then computed. As a result, the weights of each
model depend on the number of times the model was selected.

These strategies do not require hyperparameter tuning. Futher-
more, multicollinearity does not affect them. In the case of BEM, this
is so because the weights are constant and chosen independently of
the prediction values. In the case of IEW, the weight for each predic-
tion only depends on the prediction of this model, hence, it is chosen
independently of the rest. Finally, in the Caruana strategy zero weight
is implicitly assigned to some predictions, namely, to those that are
not involved in the selection under a replacement procedure. How-
ever, these ensemble methods, do not include a learning process that
may add generalization power to the ensemble. Bagging, boosting
and stacking [23] are typical ensemble strategies that include a learn-
ing procedure in the process, have been widely used for many appli-
cations [71] and have been recently stated as the most promising
kind of ensemble approaches regarding data, algorithm or output
level manipulation approaches [22]. Among the three strategies,
stacking is the only one suitable to be applied in HPO and has been
included in some of the few AutoML systems that use ensemble in
their frameworks. Bagging and boosting are not suitable for ensemble
in HPO, since models for these approaches are dynamically gener-
ated, whereas the models in HPO are learned beforehand according
to the range of hyperparameter configuration trials. Apart from the
conventional methods for ensemble (bagging, boosting and stacking),
other ensemble methods specifically designed for certain situations
are available [25]. This is the case of decomposition based methods,
typically adopted for time series datasets, which can be classified into
divide-and-conquer and hierarchical ensemble methods. The main
concept is to decompose the time series into a collection of time ser-
ies motivated by its seasonal properties. Hence, these methods are
not applicable to general-purpose datasets. There are also multi-
output optimization ensemble methods, which try to optimize sev-
eral performance measures and typically adopt evolutionary algo-
rithms to find the Pareto front of the individual models. We discard
these methods, since optimizing several performance measure falls
out of the scope of this work. Besides, evolutionary algorithms have
more than plenty of hyperparameters to tune. Negative correlation
ensemble method has been specifically designed for neural networks,
where all the individual models are trained simultaneously using
penalty terms in the respective error functions. This method is not
applicable in our context, since the individual models are trained tak-
ing into account the configuration trials that the sampling strategies
generate. Deep learning andmultiple kernel learning based ensemble
methods are also available, but they typically require tuning a con-
siderable number of hyperparameters.

Let us now focus on stacking ensemble. Stacking [17], also called
stacked ensemble, stacked regression or superlearning, aims to find
an optimal combination of the models f i xð Þf gpi¼1, while providing
constant-weights, but including a learning process in the ensemble,
typically known as a second-level meta-learner. The inclusion of this



Table 1
Summary of sampling and ensemble strategies for the main AutoML and CASH frameworks

Framework Sampling Ensemble

AutoML ATM [37] BO, multi-armed bandit -
Auto-Gluon [13] - Caruana [12]
Auto-Pytorch [16] BO, HB Caruana [12]
Auto-Sklearn [14,15] BO, Successive Halving Caruana [12]
Auto-Weka [18,19] BO Stacking [17]
Hyperopt-Sklearn [38,39] BO -
H2O [20,21] GS, RS Stacking [17]
TPOT [40] Genetic Algorithm -
TPOT-NN [41] Genetic Algorithm -
MANGO [42] BO -
Syne-Tune [43] BO, HB, Population-based -
Hyper-Tune [44] Improved BO -
Google Vizier [45] BGPBa, others -
Ray-Tune [46] GS, RS, BO, HB -

Blend-search, BO Dragonfly
OpenBox [47] BO, PRFb -
ASHA [48] Succesive Halving -
MFest-HB [49] BO, HB -

Framework Sampling Ensemble

CASH Optunity [50] PSO -
BOHB [51] Bayesian -

Hyperband
SMAC [52] Bayesian -
RoBo [53] Bayesian -
BTB [54] Bayesian -

Multi-armed Bandit

a Batched Gaussian Process Bandits
b Probabilistic Random Forest
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meta-learner provides the ensemble strategy with a promising gen-
eralization power. However, the main drawback is establishing an
adequate meta-learner for HPO, since it may be affected by the exist-
ingmulticollinearity. Currently, the literature does not provide advice
on this issue. In fact, in a very recent survey of ensemble methods
[22], it is stated that stacking has not been extensively studied so
far and it is suggested as a future research line. Furthermore, this
meta-learner may have hyperparameters to be tuned, as it is the case
with Ridge [34], SVR [35] or RFR [36], in order to avoid, or at least
mitigate, the problems derived from the multicollinearity. An alter-
native could consist of using classical OLS, which is highly affected
by multicollinearity, or even, classical OLS with constraints such as
the weights to be positive ( ai P 0f gpi¼1) and sum to one
(
Pp

i¼1ai ¼ 1) in order to express the generalized error, which leads
to themethod called GEM [9]. GEM also encounters multicollinearity,
but it deals with it by imposing the constraints of the weights to be
positive and sum to one. In fact, it is one of themethods that has been
recently applied to ensemble in HPO [10]. Section 3.2 discusses pos-
sible meta-learners for stacking ensemble.

3.2. Discussing possible meta-learners for stacking ensemble in
Hyperparameter Optimization

As commented before, there is no advise in the literature about
which meta-learners may be suited to ensemble stacking and, in par-
ticular, to HPO ensemble stacking. Therefore, some possibilities are
exposed in this section. Apart from OLS [28] and GEM, which are
highly affected by the multicollinearity problem, and discarding meth-
ods that require to tune hyperparameters, FSR [30], PCR [31], PLS [32]
and BOOST [33] remain possible meta-learners for stacking ensemble.
At this point, we shall clearly state that BOOST is only used here as a
meta-learner for stacking ensemble, and not as an HPO ensemble [23].

FSR involves starting with no features in the model, testing the
addition of one single feature at a time, using a chosen model fit cri-
terion that adds the feature (if any) that contributes the most statis-
tically significant improvement of the fit, and repeating this process
until a stop criterion is satisfied. If every feature is included, then FSR
5

becomes OLS. FSR has been recently adopted for ensemble in HPO
[72]. However, this work does not focus on the ensemble itself; it just
adopts FSR for ensemble and takes the number of iterations as a stop
criterion, hence, adding an additional hyperparameter. The work
focuses on deep neural networks and on the claims noticeable benefit
when combining (ensembling) different hyperparameter values
(coming from a RS sampling strategy) together with different possi-
ble initializations of the deep neural network.

PCR computes the so-called principal components, which are the
eigenvectors of the covariate matrix, which in turn are the directions
of the axes of the most variance, and hence, provide the most infor-
mation. The principal components are uncorrelated and the informa-
tion of the original features is expected to be squeezed or compressed
into the first components. In this way, the first principal component
accounts for the largest possible variance, and consequently, for the
most information. The second principal component is uncorrelated
with the first principal component and accounts for the next highest
variance, and so on until a stop criterion is satisfied. Finally, a regres-
sion, typically using an OLS, is performed using the first principal
components as features instead of using the original features. Despite
this strategy may seem to reduce the multicollinearity because the
regression is performed over uncorrelated and transformed features,
the main drawback is that no information about the target is taken,
so the components are taken in an unsupervised way. Therefore,
there is no guarantee on whether the principal components will be
related to the target. In this sense, PLS and PCR work similarly, but
in PLS the principal components try to extract those features that
explain as much as possible the covariance between the features
and target, rather than the variance between the features. Then,
unlike PCR, PLS takes into account the relationship between the fea-
tures and the target, making the principal components closer to the
target. This property makes PLS a stronger meta-learner than PCR.

Finally, BOOST works quite differently from FSR, PCR and PLS,
since BOOST performs a regression using just one feature each time,
therefore, completely removing the multicollinearity problem. This is
a promising property, not only because it makes BOOST free of mul-
ticollinearity, more importantly it allows including regularization
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strategies and stop criteria that involve just one feature. Section 4 for-
mally explains the BOOST strategy. It also details our novel proposal
RBOOST as a meta-learner in HPO stacking ensemble, which consists
of adding an implicit regularization in BOOST (see Section 4.2).
Finally, our novel stop criterion ICM is exhaustively and specifically
built for BOOST and RBOOST (see Section 4.1).

3.3. Discussing several possible stop criteria for the meta-learners for
stacking ensemble in Hyperparameter Optimization

All FSR, PCR, PLS and BOOST require a stop criterion as an alterna-
tive to the number of iterations (features), or, in the case of PCR and
PLS, the number of principal components. Several non-
hyperparametric stop criteria are specifically available in the literature
for FSR [73], PCR [74] and PLS [75]. The process works as follows. A
stop criterion of this kind is computed for all possible values of the
number of features (in the case of FSR) or number of components
(in the case of PCR or PLS). The possible values in both cases will range
from 1 to p, where p is the number of models involved in the ensem-
ble. Then, the best features from FSR, (or components using PCR or
PLS) are obtained for each of these possible values of the number of
features (or components). Next, an OLS is carried out over these fea-
tures (or components), which yields a performance score. After that,
the stop criterion is computed from the number of features or compo-
nents, the features or components themselves and the performance
score. Finally, the best option will be the number of features or com-
ponents that provides the best stop criterion value. These stop criteria
are Akaike Information Criterion (AIC) [76], Akaike Information Crite-
rion corrected (AICc) [77], Bayesian Information Criterion (BIC) [78],
Hannan-Quinn Information Criterion (HQIC) [79] and generalizedMin-
imum Description Length (gMDL) [80]. AIC determines the relative
information value of themodel using themaximum likelihood estima-
tion and the number of features. The best-fit model according to AIC is
the one that explains the greatest amount of variation using the fewest
possible features. AICc introduces a correction into AIC in order to
avoid overfitting when the number of instances is small in comparison
with the number of features. BIC is similar to AIC, but it penalizesmore
aggressively the number of instances. HQIC introduces a correction
over BIC to smooth the influence of the number of instances. Finally,
gMDL combines AIC and BIC and tries to adaptively select the best
between the two. All these stop criteria are designed for general pur-
pose regression rather than for HPO ensemble. Specifically, they penal-
ize the number of features and tend to discard adding new features if
the prediction performance hardly improves. However, one of the
challenges of HPO ensemble is to include in the final model the max-
imum information contained in the models trained with the variety of
hyperparameter configuration trials, even if the performance with
fewer models may be accurate enough. In this sense, our proposed
stop criterion ICM does not penalize the number of features and there-
fore allows including information coming from both the previous or
new features until an overfitting situation is detected. Section 4.1
exposes in detail how this novel stop criterion was deduced.

3.4. Overall process of ensemble in Hyperparameter Optimization

This section summarizes the whole process of HPO with ensem-
ble. Particularly, Fig. 1 illustrates the integration of the sampling
strategies mentioned in Section 2 (GS, RS, BO, PSO and HB). These
sampling strategies generate several configuration trials

ki1; . . . ; k
i
j; . . . ; k

i
h

n op

i¼1
for the hyperparameters k1; . . . ; kj; . . . ; kh of

certain base-learners (Ridge, SVR and RFR). The base-learners are
trained from an XTR;YTRð Þ dataset taking into account these config-

uration trials ki1; . . . ; k
i
j; . . . ; k

i
h

n op

i¼1
, leading to the set of models

f if gpi¼1. Then, the models f if gpi¼1 are applied to XTR (typically using
6

a cross validation strategy) to provide the set of predictionsbYTR ¼ bY i
TR

n op

i¼1
. Hence, the data set bYTR;YTR

� �
feeds an ensemble

strategy outlined in Section 3.1 (BEM, IEW, Caruana and staking
ensemble). As far as Best is concerned, it applies the classical pro-
cedure in HPO of choosing the best model from f if gpi¼1 according to
a loss function. Focusing on staking ensemble, several possible
meta-learners discussed in Section 3.2 (OLS, GEM, FSR, PCR, PLS,
BOOST and our novel proposal RBOOST, built on the basis of
BOOST) can be applied. Concerning FSR, PCR, PLS, BOOST and even
RBOOST, a non-hyperparametric stop criterion must be established
in order for the meta-learner to be non-hyperparametric. This stop
criterion can be one of those presented in Section 3.3 (AIC, AICc,
BIC, HQIC, gMDL and of course our novel stop criterion ICM).
Finally, an ensemble model f e is induced. As a result, the overall
model f is formed by the f if gpi¼1 models induced by the different
configuration trials and the ensemble model f e. Hence a test data-
set XTE is applied to the configuration trial models f if gpi¼1, whose
predictions are ensembled using the ensemble model f e providing

the prediction bY e
TE for XTE.

4. Boosting as meta-learner for stacking ensemble in HPO

This section discusses BOOST and the proposed implicit regular-
ization for BOOST, which leads to the RBOOST method as a meta-
learner in stacking ensemble (see Section 4.2). Additionally, this
section exposes in detail how the novel stop criterion ICM, specif-
ically designed for BOOST and RBOOST, is derived (see Section 4.1).
In fact, it is not applicable to other meta-learners.

We shall begin with detailing BOOST. Let F ¼ f i xð Þ
n op

i¼1
be the

set of p features that describe the predictions provided by the
model induced from the different hyperparameter configuration
trials. Initially, the set of featuresS for the ensemble is empty, that
is,S 0ð Þ ¼ £, since the algorithm follows a forward-search strategy.
In each stage j, a set of regression procedures involving one single
feature is performed: one regression per feature in F (a feature is

selected with replacement). A feature f i
�; jð Þ

xð Þ of F is selected in
stage j according to a certain criterion in terms of a loss function

L and included in S, that is, S jð Þ ¼ S j�1ð Þ [ f i
�; jð Þ

xð Þ
n o

. The target

for performing the set of regressions in each stage remains con-
stant for the set of regressions performed in each stage, although
it does vary from one stage to another. Hence, the bias is also cor-
rected from one stage to another. In the first stage, the target for
the set of regressions is the original one, that is, r 0ð Þ ¼ y. Then, in
each stage, the target for the next stage r jð Þ is computed as the dif-
ference between current stage’s target r j�1ð Þ and the prediction per-
formed using the regression model that was induced with the

feature selected in the actual stage h
f i
�; jð Þ

xð Þ f i
�; jð Þ

xð Þ
� �

. More in detail,

the set of regressions performed in certain stage j is

h jð Þ
f i xð Þ f i xð Þ

� �
¼ r j�1ð Þ : f i xð Þ 2 F

n o
where the initial residual is r 0ð Þ ¼ y and the residual in stage j is

defined in terms of the selected feature f i
�; jð Þ

xð Þ in stage j, that is,

r jð Þ ¼ r j�1ð Þ � h
f i
�; jð Þ

xð Þ f i
�; jð Þ

xð Þ
� �

. The process continues until the stop

criterion is satisfied. Consequently, BOOST builds a family of func-
tions g jð Þ f xð Þð Þ� ����

j¼1 in a stage-wise rather than in a step-wise proce-

dure, such as

g jð Þ f xð Þð Þ ¼ g j�1ð Þ f xð Þð Þ þ h jð Þ f xð Þð Þ
where g 0ð Þ f xð Þð Þ ¼ 0.



Fig. 1. Overall scheme of the process. A sampling strategy (GS, RS, BO, PSO or HB) generates several hyperparameter configurations for inducing several models using a base-
learner (Ridge, SVR or RFR). These models are aggregated using an ensemble method (Best, BEM, IEW, Caruana or stacking). In the case of stacking ensemble, a meta-learner
(OLS, GEM, FSR, PCR, PLS, BOOST or RBOOST) is required, and some require a stop criterion (AIC, AICc,BIC, HQIC, gMDL or ICM).
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Considering linear regression, the model induced in each stage
takes the form

h
f i
�; jð Þ

xð Þ f i
�; jð Þ

xð Þ
� �

¼ a jð Þ
i�; jð Þ � f i

�; jð Þ
xð Þ þ b jð Þ

i�; jð Þ

where a jð Þ
i�; jð Þ and b jð Þ

i�; jð Þ are the regression coefficients for the f i
�; jð Þ

xð Þ fea-
ture taken in stage j. The features in S after the process ends will be

the features taken in the ensemble with the weights a jð Þ
i�; jð Þ successively

computed in the process. As commented before, the process selects
adequate features in each stage with replacement, which means that
a selected feature in a certain stage might be chosen again in succes-

sive stages. The respective weights a jð Þ
i�; jð Þ for this kind of features are

accumulated to provide a unique weight to the feature.

a
f i
�
xð Þ ¼

X
f i

�; jð Þ
xð Þ 2 S

f i
�; jð Þ

xð Þ ¼ f i
�
xð Þ

a jð Þ
i�; jð Þ
7

Bias is included in the procedure since it is not possible to
ensure that the features are meaningfully unbiased. All the bias

b jð Þ
i�; jð Þ of the regression in each stage are also successively accumu-

lated. Then,

b ¼
X

f i
�; jð Þ

xð Þ2S

b jð Þ
i�; jð Þ

Therefore, including the bias in the procedure implicitly alters
the expression of the ensemble when compared to the one dis-
played in the previous section. The new expression for the ensem-
ble will be

f xð Þ ¼
X

f i
�
xð Þ2S�

a
f i
� � f i� xð Þ þ b

where S� is the set of selected features, where f i
�
xð Þ represents a

different feature (without replacement).



Algorithm1: BOOST for stacking ensemble

Neurocomputing 551 (2023) 126516
Choosing the feature in each stage, the regressor and the loss func-
tion. The criterion applied in order to select a feature in each stage
is defined in terms of a loss functionL, which will be the same one
to be optimized in the HPO process. Hence, the criterion adopted
will be the usual one: choosing the feature that produces the low-
est value for this loss function [33]. This criterion is expressed as:

f jð Þ
i�; jð Þ xð Þ ¼ arg min

f xð Þ2F
L r j�1ð Þ;a jð Þ

f � f xð Þ þ b jð Þ
f

� �
Regarding the regressor employed in the process, OLS is now

adequate, since i) it has no hyperparameters to tune and ii) the
regression is performed over just one feature each time, so that,
the problems derived from multicollinearity disappear. Conse-
quantly, the loss function L to minimize will be the typical
squared-error L2 loss function [81].

The algorithm. Algorithm1 displays the pseudocode of the
BOOST procedure. Only one feature is involved in each stage (see
the first argument of the call to the OLS function in line 7). Hence,
8

just one a-coefficient is provided in each stage. In the end, every a-
coefficient computed in each stage is returned (see lines 13 and
16). The values of the b bias computed in all the stages, are added
up in order to obtain the final value (see lines 14 and 16). Also, the
target varies from one stage to another (see line 5 for the initial tar-
get, the second argument of the call to the OLS function in line 7,
and the target is updated for the next stage in line 11).

Let us now discuss the novel stop criterion and the proposed
implicit regularization included in the process.
4.1. Increasing Coefficient Magnitude as stop criterion

Concerning the stop criterion, when the selected feature in a
given stage, despite being the most highly correlated to the target
in said stage, is even poorly correlated to the target, the weight of
this feature approaches to zero and therefore the residual of this
stage will be close to the that of the previous stage. This fact
opened the door to including a heuristic to establish a stop crite-



Table 2
Number of instances and features for UCI repository datasetsa

Dataset Inst. Feat. Dataset Inst. Feat.

Abalone 4177 11 Forest 517 13
Airfoil Self Noise 1503 6 Qsar 908 7
Auto MPG 392 8 Servo 167 5
Automobile 158 26 Slump 103 8
Concrete Data 1030 9 Traffic 135 18
Com. and crime 1993 119 Red wine quality 1599 12
Fertility 100 10 White wine quality 4898 12
Flow 103 8

a Flow and Slump refer to the two outputs of the so-called Slump dataset of the UCI repository for multioutput regression. Notice that both have the same number of
instances and features.
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rion. One may suggest stopping when the loss estimation increases
from one stage to another. But this never take place with OLS as the
regressor and when L2 function is taken as the loss function. When
this is the case, the loss estimation is always dismissed from one
stage to another, since OLS obtains the linear function with pre-
cisely the minimum L2 function value. Instead, our proposal con-
sists of establishing a stop criterion in terms of the selected
feature coefficients. The existing stop criteria AIC, AICc, BIC, HQIC
and gMDL basically depend on the error value, the number of fea-
tures and the number of examples. But in this context, the number
of examples is a constant. This means that only the error value and
the number of features have any influence. In the case of FSR, PCR
and PLS, a different feature is added in each iteration. Hence, the
error value is the element that conditions when the algorithm
stops. Clearly, a feature is highly relevant if the error considerably
diminishes. However, if that error is just reduced slightly, these
stop criteria may not be able to distinguish whether a feature pro-
vides promising information or not, causing an overfitting situa-
tion. The same happens with BOOST and RBOOST, but an
additional issue affects these ensemble strategies. In fact, both
BOOST and RBOOST are capable of taking the same feature more
than once. Then, if a feature chosen in a certain stage has already
been chosen in a previous stage, these stop criteria will always
admit this choice because i) since the feature is not a new one
the number of features remains constant and, as stated before, ii)
the error value always decreases from one stage to the next. Hence,
these stop criteria are not useful under this particular situation. In
this sense, the fact that our novel stop criterion includes the
selected feature’s coefficient proves useful when the feature is
selected more than once. This is so because the coefficients vary
greatly with each selection of the same feature.

Let us now deduce the novel stop criterion. In OLS, the coeffi-
cient of the regression a can be expressed in terms of the feature
and target standard deviations rf xð Þ and ry as [82]

a ¼ R � ry=rf xð Þ

where R2 is the correlation coefficient or coefficient of determina-
tion. It represent the share of the variation of y that can be
explained through the regression model, and it also satisfies
R2 ¼ r2

f xð Þ;y. Taking into account the ANOVA decomposition, the total
variability SST is the sum of the variability associated with the
model SSM and the variability of the residuals SSR, that is,
SST ¼ SSM þ SSR, where SST; SSM and SSR are expressed as follows
9

SST ¼
Xn
i¼1

yi � yð Þ2 SSM ¼
Xn
i¼1

ŷi � yð Þ2 SSR ¼
Xn

i¼1

yi � ŷið Þ2

where yi are the actual target values, ŷi are the predictions, y is the
target value average, and n is the number of instances.

Then, SSR=SST is the proportion of the variation in the target
that is not explained by the regression model. Therefore, R2 can
be expressed as

R2 ¼ SSM=SST ¼ 1� SSR=SST

Turning back to the expression of a in terms of the correlation
coefficient, one can state that

a � rf xð Þ ¼ R � ry ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSR

SST

	 

� r2

y

s

Since r2
y ¼ SST=n, then

a � rf xð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSR

SST

	 

� SST
n

s
Taking into account that SST – 0, then

a � rf xð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SST � SSR

n

r
Let us notice that SST is invariant regardless of the regression

model, since SST is the variability contained in the data. Besides,
n is also constant. Considering that SSR is positive, the expression
jaj � rf xð Þ (rf xð Þ is always positive) is maximum when SSR is mini-
mum. Therefore, as BOOST gets the minimum value for SSR, it also
obtains the maximum value for jaj � rf xð Þ. This means that jaj � rf xð Þ

in stage j� 1 for the selected feature in stage j� 1 (f i
�; j�1ð Þ

xð Þ) is
greater than or equal to jaj � rf xð Þ for the rest of the features, includ-

ing the selected feature in stage j (f i
�; jð Þ

xð Þ); otherwise, the selected

feature in stage j� 1 will be a different feature from f i
�; j�1ð Þ

xð Þ, for
instance, the one selected in stage j (f i

�; jð Þ
xð Þ). Then,

ja j�1ð Þ
i�; j�1ð Þ j � rf i

�; j�1ð Þ
xð Þ P ja j�1ð Þ

i�; jð Þ
j � r

f i
�; jð Þ

xð Þ
1

On the other hand, jaj � rf xð Þ typically decreases from one stage
to the next. This is because the variability of the residuals (SSR)
always decreases in each stage, since the successive target values
contain less information attributable for features as the algorithm
1 Notice that a j�1ð Þ
i�; jð Þ is the coefficient of the regression performed in stage j� 1 for

the feature selected in stage j, which may not be the best option in stage j� 1.



Fig. 2. Percentage of features with the specified VIF values among all features taken
for the predictions of Ridge, SVR and RFR varying all the hyperparameter values
explored by GS, RS, BO, PSO and HB.
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progresses. Conversely, an increase of jaj � rf xð Þ from one stage to
another is a sign of a poor SSR decrease. If this situation takes place,

then jaj � rf xð Þ in stage j for the selected feature in stage j (f i
�; jð Þ

xð Þ) is
greater than or equal to jaj � rf xð Þ in stage j� 1 for the selected fea-

ture in stage j� 1 (f i
�; j�1ð Þ

xð Þ), that is

ja jð Þ
i�; jð Þ j � rf i

�; jð Þ
xð Þ > ja j�1ð Þ

i�; j�1ð Þ j � rf i
�; j�1ð Þ

xð Þ

Therefore, taking into account the previous inequality leads us
to the following one

ja jð Þ
i�; jð Þ j � rf i

�; jð Þ
xð Þ > ja j�1ð Þ

i�; j�1ð Þ j � rf i
�; j�1ð Þ

xð Þ P ja j�1ð Þ
i�; jð Þ j � r

f i
�; jð Þ

xð Þ

Hence,

ja jð Þ
i�; jð Þ j � rf i

�; jð Þ
xð Þ > ja j�1ð Þ

i�; jð Þ j � r
f i
�; jð Þ

xð Þ

Now, and since r
f i
�; jð Þ

xð Þ is positive, the following inequality

holds:

ja jð Þ
i�; jð Þ j > ja j�1ð Þ

i�; jð Þ j
This means that the coefficient of the same feature in the current

stage is greater than its coefficient in the previous stage. At this point,
one can only wonder why this feature takes this greater value in the
current stage and has not in the previous stage. Hence, the fact that
the influence of a feature increases from one stage to another, and
taking into account that SSR always decreases (sometimes poorly)
from one stage to another can be interpreted as a sign that the model
overfits the data. Consequently, the proposed stop criterion ICM, aims
precisely to prevent this kind of situation. As a result, the algorithm
will stop when the following inequality holds

ja jð Þ
i�; jð Þ j � rf i

�; jð Þ
xð Þ > ja j�1ð Þ

i�; j�1ð Þ j � rf i
�; j�1ð Þ

xð Þ

Given that the typical deviations rf
� �

f2F remain constant dur-

ing the BOOST process, ICM can be expressed as

ICM rf xð Þf gf xð Þ2F
a jð Þ
i�; jð Þ ;a

j�1ð Þ
i�; j�1ð Þ

� �
� ja jð Þ

i�; jð Þ j � rf i
�; jð Þ

xð Þ > ja j�1ð Þ
i�; j�1ð Þ j � rf i

�; j�1ð Þ
xð Þ

h i
Notice that a j�1ð Þ

i�; j�1ð Þ does not exist when j ¼ 1. In this case, the

stop criterion is defined as ICM rf xð Þf gf xð Þ2F
a 1ð Þ
i�; 1ð Þ ;a

0ð Þ
i�; 0ð Þ

� �
� False. This

means that this stop criterion guarantees the selection of at least
one feature. Remove line number for one line.

4.2. Implicit regularization

The Caruana method has been shown to performwell in ensem-
ble HPO. This means that combining several features, even if they
are highly correlated can be promising. BOOST presents a draw-
back in this respect because it tries to extract the maximum
amount of information from each selected feature in each stage
while preventing other highly correlated features from bearing
any influence on. An implicit regularization is proposed in order
to overcome this drawback and make it possible to include corre-
lated features in the ensemble, which may improve the predictive
performance. An a priori idea may consists to be weight the coef-
ficient influence using the probability of this feature being relevant
in the ensemble, taking into account that all the features selected
before have been included in the ensemble. A probability of 1 for
all the features results in the BOOST approach, since all the
selected features have the maximum influence on the ensemble.
An alternative stems from the well-known sunrise problem formu-
lated by Laplace, which consists of estimating the probability that
the sun will rise tomorrow given that it has previously risen j� 1
10
times. This estimation was solved by Laplace himself through his
own rule of succession [83]. This probability has been stated as:

pL jð Þ ¼ j� 1ð Þ þ 1
j� 1ð Þ þ 2

¼ j
jþ 1

Initially, the first selected feature will have an influence of 1=2,
allowing in successive stages for other highly correlated features to
be selected (including this very same feature). We must remember
that each successive target of BOOST in the following stages are the
resulting residuals and hence, the regression coefficients using OLS
keep decreasing. Taking this into consideration, weighting the coeffi-
cients with this probability will avoid having to reduce the influence
of those features that are successively selected in more advance stages
(even when they are previously selected), since, this probability
asymptotically increases to 1. This implicit regularization is then
included when it comes to compute the target (residual) of the next
stage. In addition to that, this regularization satisfies being indepen-
dent from every other stage. This condition is mandatory for BOOST
because BOOST requires that the regularization procedure may be
applied to each selected feature independently of all the features from
the remaining stages. This is different from applying the procedure
jointly, such as in GEM, which globally adjusts the influence of the fea-
tures in order to satisfy the constraints of being positive and sum to
one. Furthermore, this regularization also satisfies the condition of
not including a priori information. This condition is relevant in HPO
since there is no a priori available information in this context to be
included in the regularization procedure. In this sense, typical regular-
ization procedures either include hyperparameters whose values must
be a priori fixed or impose certain conditions to be satisfied before-
hand. Algorithm2 displays RBOOST. Particularly, lines 11 and 13 of
Algorithm1 become, respectively, line 12 and 14 of Algorithm2, where

pL jð Þ weights a jð Þ
i�; jð Þ . Line 9 is included in Algorithm2. This is because if

the stop criterion is satisfied in stage j, then the influence of the feature
selected in the previous stage j� 1 will have all the influence. Hence,
the correspondent coefficient must go back to its original value.

5. Experimental settings and multicollinearity analysis

This section covers the experimental settings (see Section 5.1)
and also describes and discusses a multicollinearity analysis car-
ried out (see Section 5.2).

5.1. Experimental settings

This section goes through the settings established for the exper-
iments, namely, the datasets, the base-learners with their hyperpa-
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rameters to be tuned, the methods for performing the ensemble
and the evaluation loss description. All code was implemented in
Python language using the scikit-learn library2.
Algorithm2: RBOOST for stacking ensemble

4 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.
Datasets. Datasets coming from the UCI repository3 were taken
for performing the experiments. Table 2 displays the number of
instances and features of every dataset. The values for both proper-
ties vary from one dataset to another, which enables having different
scenarios in order to check the behaviour of each approach. Specifi-
cally, the number of instances ranges from 100 to 4898 and the num-
ber of features varies from 4 to 119.

Sampling hyperparameter strategies. Several sampling hyperpa-
rameter strategies have been included in the experiments. The
approaches chosen were those popular and widespread in the
AutoML and CASH frameworks. Two of these strategies are Grid
Search (GS) [55,56] and Random Search (RS) [57], which are the
kind that do not perform a guided search. On the other hand, Baye-
2 https://scikit-learn.org/stable/
3 https://archive.ics.uci.edu/ml/datasets.php
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sian Optimization (BO) [58], Particle Swarm Optimization (PSO)
[59] and Hyperband (HB) [60] are part of the methods that carry
out a guided search.
Base-learners and their hyperparameters. Different base-learners
were tested in the experiments. Particularly, the approaches taken
were Ridge Regression (Ridge)4, Support Vector Regressor (SVR)5

and Random Forests Regression (RFR)6. Table 3 displays the hyperpa-
rameter configuration trials for each sampling strategy. A total of
6 � 6 ¼ 36 trials for Ridge, 7þ 7 � 4 ¼ 35 trials for SVR and 7 � 5 ¼ 35
trials for RFR are explored for the GS sampling method. The same
number of trials were taken for the RS sampling approach using a
uniform distribution on the specified sets. Finally, the same number
of iterations was defined for the search over the specified sets of
hyperparameter values that were fixed for BO, PSO and HB.
html
5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
6 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomFor-

estRegressor.html

https://scikit-learn.org/stable/
https://archive.ics.uci.edu/ml/datasets.php
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


Table 3
Hyperparameter values for the base-learners: Ridge (alpha: Regularization strength and solver: Solver used in the computational routines). SVR (C: Regularization
hyperparameter, kernel: Kernel type used and gamma: RBF kernel parameter). RFR (min_samples_leaf: The minimum fraction of samples at a leaf node and max_features: The
fraction of features in the best split).

Hyperparameter Values

Hyperparameter name GS RS sBO, PSO and HB

Ridge alpha 0;10 �4:0½ �
n o

U 0;1½ �ð Þ 0;1½ �
solver fsvd, cholesky, lsqr, U fð svd, cholesky, lsqr, fsvd, cholesky, lsqr,

sparse_cg, sag, sagag sparse_cg, sag, sagagÞ sparse_cg, sag, sagag
SVR C 10 �3:3½ �

n o
10U �3;3½ �ð Þ

10�3;103
h i

kernel flinear, RBFg U fð linear, RBFg) flinear, RBFg
gamma 10 �3:0½ �

n o
U 0:01;1½ �ð Þ 0:01;1½ �

RFR min_samples_leaf 2 �2:�8½ �
n o

2U �8;�2½ �ð Þ 2�8;2�2
h i

max_features 1;0:8;0:6;0:4;0:2f g U([0.2,1]) 0:2;1½ �
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Ensemble methods. Several non-hyperparametric stop criteria
were checked for Forward Stepwise Regression (FSR), Principal
Component Regression (PCR), Partial Least Squares (PLS), Boosting
(BOOST) and Regularized Boosting (RBOOST). Specifically, Akaike
Information Criterion (AIC) [76], Akaike Information Criterion cor-
rected (AICc) [77], Bayesian Information Criterion (BIC) [78],
Hannan-Quinn Information Criterion (HQIC) [79] and generalized
Minimum Description Length (gMDL) [80] were compared. The
best stop criterion among AIC, AICc, BIC, HQIC and gMDL for FSR,
PCR, PLS, BOOST and RBOOST were compared with the proposed
stop criterion called Increasing Coefficient Magnitude (ICM), with
the Ordinal Least Squares (OLS) and the Generalized Ensemble
Method (GEM). Also, a comparison was carried out among the
method that just chooses a model (Best), the Basic (BEM) and Gen-
eralized (GEM) Ensemble methods [9], the method that provides
weights inversely proportional to the expected error (IEW) [8]
and the Caruana [12] method.

Evaluation score. The evaluation score was the relative mean
squared error computed using a 3-fold cross validation procedure.
A higher number of folds would probably provide a lower predic-
tion error. But would also mean training an excessive number of
models, which can be computationally heavy and time-
consuming. This is especially relevant in this context, since the
cross validation is performed along the whole process of Fig. 1. Par-
ticularly, in the phase previous to ensemble, a total of 3 base-
learners (Ridge, SVR and RFR) were trained. Respectively, a total
of 36, 35 and 35 configuration trials (see Table 3) were generated
with 5 different sampling strategies (GS, RS, BO, PSO and HB) for
15 different datasets. This leads to 36þ 35þ 35ð Þ � 5 � 15 ¼ 7950
cross validation experiments. In the ensemble phase, there are 5
ensemble strategies different from stacking (BEM, IEW, GEM, OLS
and Caruana). In the case of the stacking ensemble method, there
are 5 different meta-learners (FSR, PCR, PLS, BOOST and RBOOST),
each one with 5 stop criteria (AIC, AICc, BIC, HQIC and gMDL). Addi-
tionally, the meta-learners BOOST and RBOOST also work with the
ICM stop criterion, which adds up 2 more ensemble possibilities. In
total, there are 5þ 5 � 5þ 2 ¼ 32 ensemble strategies. All these
ensemble strategies were performed for the 3 base-learners (Ridge,
SVR and RFR) and the 5 different sampling strategies (GS, RS, BO,
PSO and HB), and 15 datasets, which leads to
3 � 5 � 15 � 32 ¼ 7200 cross validation ensembles. Therefore, the
7950 experiments of the phase previous to ensemble and the
7200 ensembles had to be repeated as many times as the number
of folds. Hence, and in the interest to compare the approaches
rather than to get optimal predictions, a cross validation of just 3
folds was performed in order to reduce the magnitude of the
experiments.

Statistical significant test methods. A Friedman test that rejects
the null hypothesis that states that not all learners perform equally
12
[84,85] has been carried out over the evaluation score. The Fried-
man test is a non-parametric hypothesis test that ranks all algo-
rithms for each data set separately. If the null-hypothesis (all
ranks are not significantly different) is rejected, the Nemenyi test
[86] is adopted as the post hoc test. According to the Nemenyi test,
the performance of two algorithms is considered significantly dif-
ferent if the corresponding average ranks differ by at least the
so-called critical difference.

5.2. Multicollinearity analysis

We have argued before how multicollinearity is an issue to
avoid, or, at least, mitigate, since it may lead to unstable models
under small variations [27]. Despite the predictive performance
may be not affected, it does call into question the significance of
highly correlated features. This problem looms in HPO, as com-
mented before, in Section 1. This is because certain hyperparame-
ter configurations may produce underfitted models that might give
similar prediction values for all the instances, and, in addition, may
not induce different models, since the same machine learning sys-
tem is used, with just little variations in its hyperparameter values.

Several ways of detecting multicollinearity have been studied
[87], but the Variable Inflation Factor (VIF) has shown to be the
most promising and it is the most widely adopted. This is because
VIF is based on calculating the linear regression of a single feature
directly against the rest of them. The VIF is the inverse of the tol-
erance. The tolerance is computed as 1� R2, where R2 is the coef-
ficient of determination, which measures how well correlated is a
certain feature with the remaining ones. R2 indicates the percent-
age of the variance in a feature that can be attributed to the set
of the remaining features. The VIF represents the factor by which
the correlations amongst the remaining features contribute to
the variance of the feature for which the VIF is computed. This vari-
ance is the error in the coefficient estimation. And this error is
taken to establish the confidence intervals of the coefficient esti-
mation. Hence, the higher the error, the wider the confidence inter-
val is. Consequently, coefficient estimation becomes unstable and
less accurate. The coefficient of determination R2 is computed from
the residual sum of squares (rss) and the total sum of squares (tss)
as R2 ¼ 1� rss

tss. If R2 is equal to 0, the variance of the remaining
independent features cannot be predicted from the independent
feature for which the R2 is computed. Therefore, when the VIF is
equal to 1, the independent feature for which the R2 is computed
is not correlated to the remaining ones, which means multi-
collinearity does not exist in this regression model. As R2 becomes
close to 1, the independent feature becomes highly correlated with
the rest of the features, and multicollinearity tends to infinity.
Experience indicates that a VIF greater than 5 or 10 [88] indicates



Table 4
Averaged Friedman ranks for the relative mean squared error over all datasets for FSR, PCR, PLS, BOOST and RBOOST using several stop criteria (AIC, AICc, BIC, HQIC and gMDL),
taking into account some base-learners (Ridge, SVR and RFR) and several sampling strategies (GS, RS, BO, PSO and HB). The best averaged rank in each row is bolded.

FSR

HPO MLS AIC AICc BIC HQIC gMDL

GS Ridge 3.00 3.00 3.00 3.00 3.00
SVR 3.00 3.00 3.00 3.00 3.00
RFR 3.00 3.00 3.00 3.00 3.00

Mean GS 3.00 3.00 3.00 3.00 3.00
RS Ridge 3.00 3.00 3.00 3.00 3.00

SVR 3.00 3.00 3.00 3.00 3.00
RFR 3.00 3.00 3.00 3.00 3.00

Mean RS 3.00 3.00 3.00 3.00 3.00
BO Ridge 3.00 3.00 3.00 3.00 3.00

SVR 3.00 3.00 3.00 3.00 3.00
RFR 3.00 3.00 3.00 3.00 3.00

Mean BO 3.00 3.00 3.00 3.00 3.00
PSO Ridge 3.00 3.00 3.00 3.00 3.00

SVR 3.00 3.00 3.00 3.00 3.00
RFR 3.00 3.00 3.00 3.00 3.00

Mean PSO 3.00 3.00 3.00 3.00 3.00
HB Ridge 3.00 3.00 3.00 3.00 3.00

SVR 3.00 3.00 3.00 3.00 3.00
RFR 3.00 3.00 3.00 3.00 3.00

Mean HB 3.00 3.00 3.00 3.00 3.00
Mean ! tal 3.00 3.00 3.00 3.00 3.00

PCR

HPO MLS AIC AICc BIC HQIC gMDL
GS Ridge 2.80 2.47 2.93 2.77 4.03

SVR 3.20 2.13 3.30 2.63 3.73
RFR 2.93 2.20 3.47 2.73 3.67

Mean GS 2.98 2.27 3.23 2.71 3.81
RS Ridge 3.03 2.60 3.07 2.60 3.70

SVR 3.13 2.40 3.13 2.67 3.67
RFR 3.03 1.83 3.67 2.43 4.03

Mean RS 3.07 2.28 3.29 2.57 3.80
BO Ridge 3.00 2.67 3.10 3.03 3.20

SVR 3.07 1.90 3.53 2.60 3.90
RFR 3.00 2.07 3.57 2.87 3.50

Mean BO 3.02 2.21 3.40 2.83 3.53
PSO Ridge 2.97 2.73 3.30 2.63 3.37

SVR 3.40 2.20 3.03 2.53 3.83
RFR 3.23 2.20 3.67 2.30 3.60

Mean PSO 3.20 2.38 3.33 2.49 3.60
HB Ridge 3.07 2.77 2.97 2.87 3.33

SVR 3.10 2.50 3.30 2.60 3.50
RFR 2.97 2.23 3.50 2.57 3.73

Mean HB 3.04 2.50 3.26 2.68 3.52
Mean ! tal 3.07 2.33 3.33 2.65 3.62

PLS

HPO MLS AIC AICc BIC HQIC gMDL

GS Ridge 3.00 2.97 2.93 3.00 3.10
SVR 2.97 2.47 3.03 3.33 3.20
RFR 3.30 2.70 2.87 2.93 3.20

Mean GS 3.09 2.71 2.94 3.09 3.17
RS Ridge 2.93 3.27 2.77 3.10 2.93

SVR 2.83 2.97 3.13 2.87 3.20
RFR 2.67 2.93 3.23 3.00 3.17

Mean RS 2.81 3.06 3.04 2.99 3.10
BO Ridge 2.93 2.80 3.13 2.93 3.20

SVR 2.40 2.63 3.27 2.83 3.87
RFR 3.23 2.67 2.80 3.03 3.27

Mean BO 2.86 2.70 3.07 2.93 3.44
PSO Ridge 2.97 2.97 2.80 2.97 3.30

SVR 3.03 2.77 3.00 3.13 3.07
RFR 2.80 2.73 3.23 2.93 3.30

Mean PSO 2.93 2.82 3.01 3.01 3.22
HB Ridge 2.77 3.10 3.10 2.77 3.27

SVR 2.80 2.67 3.27 3.00 3.27
RFR 3.13 2.90 2.87 3.13 2.97

Mean HB 2.90 2.89 3.08 2.97 3.17
Mean ! tal 2.91 2.85 3.04 2.97 3.23

BOOST

(continued on next page)
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Table 4 (continued)

FSR

HPO MLS AIC AICc BIC HQIC gMDL

HPO MLS AIC AICc BIC HQIC gMDL

GS Ridge 2.93 2.93 3.10 2.93 3.10
SVR 2.90 2.90 2.87 3.07 3.27
RFR 2.93 2.93 3.10 2.93 3.10

Mean GS 2.92 2.92 3.02 2.98 3.16
RS Ridge 3.00 3.00 3.00 3.00 3.00

SVR 2.73 2.43 3.23 3.10 3.50
RFR 3.13 3.07 2.93 2.93 2.93

Mean RS 2.96 2.83 3.06 3.01 3.14
BO Ridge 3.00 3.00 3.00 3.00 3.00

SVR 2.83 2.83 3.07 2.77 3.50
RFR 3.00 3.00 3.00 3.00 3.00

Mean BO 2.94 2.94 3.02 2.92 3.17
PSO Ridge 3.00 3.00 3.00 3.00 3.00

SVR 2.93 3.10 2.93 2.93 3.10
RFR 3.10 3.10 2.93 2.93 2.93

Mean PSO 3.01 3.07 2.96 2.96 3.01
HB Ridge 2.93 2.93 3.10 2.93 3.10

SVR 2.83 2.73 3.13 3.10 3.20
RFR 2.97 2.87 3.10 2.97 3.10

Mean HB 2.91 2.84 3.11 3.00 3.13
Mean ! tal 2.95 2.92 3.04 2.97 3.11

RBOOST

HPO MLS AIC AICc BIC HQIC gMDL

GS Ridge 2.87 3.00 3.00 3.00 3.13
SVR 2.67 2.83 3.23 2.97 3.30
RFR 2.90 2.90 3.07 3.07 3.07

Mean GS 2.81 2.91 3.10 3.01 3.17
RS Ridge 2.97 2.97 2.97 2.97 3.13

SVR 3.10 3.10 2.77 2.93 3.10
RFR 3.00 3.00 3.00 3.00 3.00

Mean RS 3.02 3.02 2.91 2.97 3.08
BO Ridge 2.93 2.93 3.13 2.93 3.07

SVR 2.83 3.07 2.90 3.03 3.17
RFR 2.87 2.87 3.03 3.03 3.20

Mean BO 2.88 2.96 3.02 3.00 3.14
PSO Ridge 2.93 2.93 3.07 2.93 3.13

SVR 2.80 2.97 3.13 2.97 3.13
RFR 3.00 3.00 3.00 3.00 3.00

Mean PSO 2.91 2.97 3.07 2.97 3.09
HB Ridge 2.87 3.00 3.00 3.00 3.13

SVR 2.77 2.57 3.20 3.00 3.47
RFR 3.00 3.00 3.00 3.00 3.00

Mean HB 2.88 2.86 3.07 3.00 3.20
Mean ! tal 2.92 2.95 3.02 2.99 3.12
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multicollinearity [89]. In the case of HPO, the values of VIF drasti-
cally exceed these limits, as can be seen in Fig. 2. Particularly, just
1% or 2% of the features, among all the features taken for the pre-
dictions of Ridge SVR and RFR varying all the hyperparameter val-
ues explored by GS, RS, BO, PSO and HB, have a VIF below 10.
Furthermore, between 84% and 95% of the features present values
of VIF greater than 1000.
6. Result analysis

This section displays and discusses the performance of the
approaches (see Section 6.1) and also analyses the methods in
terms of the models involved in the ensemble (see Section 6.3).
6.1. Performance analysis

The relative mean squared error, calculated using a 3-fold cross
validation procedure, was computed for each dataset, each base-
learner (Ridge, SVR and RFR), each sampling strategy (GS, RS, BO,
PSO and HB) and each ensemble method FSR, PCR, PLS, BOOST
14
and RBOOST, using several stop criteria (AIC, AICc, BIC, HQIC and
gMDL), each ensemble method OLS, GEM, BEM, IEW, Caruana and
the proposed RBOOST with the novel ICM stop criterion. The Fried-
man ranks of the ensemble methods over each dataset were also
computed for all base-learners and for all the sampling strategies.
The tables with the relative mean squared error and the corre-
sponding Friedman rank are not displayed in the paper due to lack
of space. They are available at https://github.com/laurafernandez
diaz/Ensemble. Instead, Tables 4–6 show the Friedman ranks aver-
aged over all the datasets. These tables also show the average ranks
over the base-learner for each sampling strategy. Finally, the total
average ranks over the sampling strategies are displayed at the
bottom of the tables.

Particularly, Table 4 shows the averaged Friedman ranks over
all datasets for FSR, PCR, PLS, BOOST and RBOOST using several
stop criteria (AIC, AICc, BIC, HQIC and gMDL), taking into account
some base-learners (Ridge, SVR and RFR) and several sampling
strategies (GS, RS, BO, PSO and HB). The results reported in this
table enable analyzing the behaviour of the stop criteria when used
in different meta-learners. The stop criterion that reports the best
performance was selected for each meta-learner in order to be



Table 5
Averaged Friedman ranks for the relative mean squared error over all datasets for OLS, GEM and the best stop criteria among AIC, AICc, BIC, HQIC and gMDL, for FSR, PCR, PLS,
BOOST and RBOOST, as well as the novel stop criterion ICM for BOOST and RBOOST, taking into account some base-learners (Ridge, SVR and RFR) and several sampling strategies
(GS, RS, BO, PSO and HB). The best averaged rank in each row is bolded.

HPO MLS OLS GEM FSR PCR PLS BOOST RBOOST BOOST RBOOST
(*) (AICc) (AICc) (AICc) (AIC) (ICM) (ICM)

GS Ridge 8.93 5.53 4.13 7.27 4.53 3.77 4.03 3.73 3.07
SVR 8.13 4.60 4.87 7.67 5.00 4.63 4.23 3.33 2.53
RFR 6.27 2.93 5.10 8.00 5.80 5.10 4.93 4.20 2.67

Mean GS 7.78 4.36 4.70 7.64 5.11 4.50 4.40 3.76 2.76
RS Ridge 8.70 5.03 4.27 6.97 4.57 3.97 4.17 3.90 3.43

SVR 8.10 5.17 4.53 7.83 4.17 3.40 4.47 3.57 3.77
RFR 6.53 3.53 4.63 7.80 5.47 5.13 4.63 3.67 3.60

Mean RS 7.78 4.58 4.48 7.53 4.73 4.17 4.42 3.71 3.60
BO Ridge 9.00 6.07 4.10 6.33 4.33 4.10 3.93 3.20 3.93

SVR 7.87 4.13 4.77 7.40 5.40 3.97 4.20 4.00 3.27
RFR 5.53 3.47 5.20 8.33 5.20 5.20 4.87 4.33 2.87

Mean BO 7.47 4.56 4.69 7.36 4.98 4.42 4.33 3.84 3.36
PSO Ridge 9.00 6.33 3.63 6.60 5.20 3.63 3.40 3.87 3.33

SVR 7.93 4.13 4.73 8.27 5.33 4.73 4.47 2.87 2.53
RFR 7.60 4.73 4.23 8.27 6.33 4.33 4.23 2.60 2.67

Mean PSO 8.18 5.07 4.20 7.71 5.62 4.23 4.03 3.11 2.84
HB Ridge 8.93 5.67 3.93 7.47 4.47 3.63 3.83 3.67 3.40

SVR 7.87 5.47 4.57 7.67 5.00 4.27 3.97 3.87 2.33
RFR 5.47 3.67 5.10 8.00 6.33 4.87 5.17 3.47 2.93

Mean HB 7.42 4.93 4.53 7.71 5.27 4.26 4.32 3.67 2.89
Mean ! tal 7.60 4.64 4.52 7.61 5.20 4.33 4.33 3.63 3.13

Table 6
Averaged Friedman ranks for the relative mean squared error over all datasets for Best, BEM, IEW, GEM, Caruana and RBOOST(ICM), taking into account some base-learners (Ridge,
SVR and RFR) and several sampling strategies (GS, RS, BO, PSO and HB). The best averaged rank in each row is bolded.

HPO MLS Best BEM IEW GEM Caruana RBOOST (ICM)

GS Ridge 2.97 4.93 4.47 3.67 2.97 2.00
SVR 3.40 5.07 4.27 3.47 2.60 2.20
RFR 3.80 4.77 3.87 2.90 2.67 3.00

Mean GS 3.39 4.92 4.20 3.34 2.74 2.40
RS Ridge 3.20 4.87 4.53 3.37 2.67 2.37

SVR 3.53 4.97 3.67 3.87 2.80 2.17
RFR 3.33 4.93 3.93 3.00 2.90 2.90

Mean RS 3.36 4.92 4.04 3.41 2.79 2.48
BO Ridge 3.10 4.40 4.00 3.67 3.37 2.47

SVR 3.60 5.13 4.40 2.47 2.93 2.47
RFR 3.87 4.87 4.07 2.93 2.73 2.53

Mean BO 3.52 4.80 4.16 3.02 3.01 2.49
PSO Ridge 5.20 4.60 3.87 2.93 2.47 1.93

SVR 5.93 4.93 3.93 2.53 2.13 1.53
RFR 6.00 4.53 3.87 2.73 2.07 1.80

Mean PSO 5.71 4.69 3.89 2.73 2.22 1.76
HB Ridge 3.40 4.80 4.47 3.33 2.93 2.07

SVR 3.67 5.30 3.47 3.90 2.53 2.13
RFR 3.93 4.80 3.73 3.20 2.27 3.07

Mean HB 3.67 4.97 3.89 3.48 2.58 2.42
Mean ! tal 4.04 4.84 3.98 3.14 2.65 2.34
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compared to the new proposed stop criterion ICM. As seen, there is
not so much difference in performance among the stop criteria.
Particularly, FSR reports the same result independently of the stop
criterion, base-learner and sampling strategy taken. Analyzing in
detail this curious behavior, we found that FSR just takes one fea-
ture, the best one, and then all stop criteria are satisfied. This may
happen because the best feature (the best prediction) completely
explain the target, and consequently, the rest of the predictions
(which are all quite similar) do not seem to provide any relevant
information. This is not the case in the other methods (see Sec-
tion 6.3 about the analysis and study of the features and iterations
taken by the methods). In the case of PCR and PLS, the features are
combined to obtain the first component, after that, the second
component is obtained orthogonally to the first component and
so on, which implies that the maximum information of the features
15
is extracted in each step from what had not already been extracted
in the previous steps. With BOOST and RBOOST the target varies
from one stage to the next. In particular, the information explained
by the feature selected in each stage is removed from the target in
order to obtain the target for the next stage. As a result, the fea-
tures are taken successively in each stage according to the informa-
tion contained in the updated target. Both mechanisms guarantee,
in a certain sense, that the maximum remaining information can
be collected until certain stage, when the stop criterion is satisfied.
The ranks of the different stop criteria for PCR, PLS, BOOST and
RBOOST are quite similar. In fact, our own stop criterion behaves
quite similarly. AIC is the point of departure and the rest just add
some correction factors to consider the balance between instances
and features or whether the number of instances is exceeded. In
any case, AICc seems to provides the best results for PCR and
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PLS. As to BOOST and RBOOST, both AIC and AICc slightly outper-
form the rest. gMDL is the worst, followed by BIC, so penalizing
the number of instances does not seem to be a good practice. There
are significant differences, up to 90% and 95%,7 between AICc and
AIC, BIC and HQIC, but only in the case of PCR.

Table 5 displays the averaged Friedman ranks over all datasets
for OLS, GEM8 and for the best stop criteria (according to the results
of Table 4) among AIC, AICc, BIC, HQIC and gMDL for FSR, PCR, PLS,
BOOST and RBOOST, as well as the novel stop criterion ICM for
BOOST and RBOOST, taking into account some base-learners (Ridge,
SVR and RFR) and several sampling strategies (GS, RS, BO, PSO and
HB). In this table, one can observe that both BOOST and RBOOST out-
perform the rest of the methods, for the best stop criterion among
AIC, AICc, BIC, HQIC and gMDL and also for the novel stop criterion
ICM (see the last row of the last four columns of Table 5). Indeed,
all of them, BOOST(AICc), RBOOST(AIC), BOOST(ICM) and RBOOST
(ICM), present significant differences at the confidence levels of
90% and even 95%9 when compared to OLS, PCR and PLS. Besides,
using ICM as stop criterion makes BOOST and RBOOST significantly
better at these confidence levels than GEM and FSR, in addition to
OLS, PCR and PLS. The poor performance of OLS may be the result
of multicollinearity, which is highly present in HPO. This drawback
is corrected by GEM regularizing in OLS by constraining of the
weights to be positive and sum to one. In the case of FSR, it just hap-
pens that regardless of the stop criteria only one feature is selected
(see the comments of Table 4), hence multicollinearity disappears. In
fact, GEM and FSR perform considerably better than OLS. The differ-
ence in performance between PCR and PLS is caused by the former
not taking into account the target in order to build the components,
whereas the latter does. These results confirm two well-known con-
clusions, namely, i) the target contains critical information and ii)
regularization helps to alleviate the problems derived from multi-
collinearity. In this sense, BOOST and RBOOST (more so, because
RBOOST includes a regularization procedure) succeed because they
squeeze the information contained in the target. In order to achieve
this, each stage the information explained by the selected feature is
removed from the target, and the remaining information is left to be
explained by the features selected in the following stages. Compar-
ing BOOST and RBOOST, RBOOST stands out as the best option
because of the regularization element added to BOOST. Hence,
smoothing the influence of the features selected in the first stages
in order to allow subsequent features to take part of the ensemble
clearly improves the overall performance of the ensemble. In addi-
tion, the novel stop criterion ICM improves both BOOST and RBOOST.
The results state that ICM is a robust criterion, since it is based on the
coefficient from the feature selected in each stage, which enables it
to discern promising choices of features, both when a feature has
already been selected or if a feature is selected for the first time.
In any case, it seems that RBOOST benefits from ICM to a higher
degree than BOOST. In fact, RBOOST(ICM) works significantly better
that BOOST (AICc) and RBOOST(AIC), whereas BOOST(ICM) does not.
Hence, the synergy between both the implicit regularization and the
ICM helps to improve the predictive performance of the ensemble.
Both improvements are independent from each other, which allows
applying both of them simultaneously and combining the benefits
provided by them.

Finally, Table 6 presents the averaged Friedman ranks over all
datasets for Best (not performing ensemble), BEM, IEW, GEM10,
7 The respective critical differences for confidence levels of 90% and 95% are 0:36
and 0:40

8 GEM is included here for being a version of OLS with the constraint of the weights
to be positive and sum to one.

9 The respective critical differences for confidence levels of 90% and 95% are 0:73
and 0:80.
10 GEM is included here for its performance and as an improvement of BEM.

16
Caruana and RBOOST with the novel stop criterion ICM (the best
result in Table 5), again taking into account the same base-learners
(Ridge, SVR and RFR) and the same sampling strategies (GS, RS, BO,
PSO and HB). Both the Caruana method and RBOOST (ICM) clearly
outperform Best, BEM, IEW and GEM. Besides, the differences at s
of 90% and 95%11 are significant. RBOOST(ICM) performs better than
Caruana in almost all cases, but there are no significant differences
between them. Best, BEM and IEW show the worst results. These
are very simple ensemble methods that do not include a learning
procedure in the ensemble and they select each feature only once.
GEM performs slightly better, it includes a learning procedure, which
adds a higher generalization power. Particularly, it performs an OLS
with constraints as a regularization procedure, but if a feature is
taken, it is taken only once, such as in Best, BEM and IEW. Unlike
these methods, both Caruana and RBOOST (as well as BOOST) are
able to take the same feature more than once, and then fully exploit
the information contained in it. Nevertheless, RBOOST, like GEM,
includes a learning procedure which may add more generalization
power and a regularization procedure.
6.2. Computational time analysis

This section deals with a comparison of the ensemble strategies
in regard to the computational time. Table 7 shows the computa-
tional time (in seconds) spent on training the models that would
feed the ensemble for all datasets and all the configuration trials
generated by each sampling strategy (GS, RS, BO, PSO and HB)
and for each base-learner (Ridge, SVR and RFR). It also shows the
total time spent by each sampling strategy and each base-
learner. As it shows, the total computational time spent on training
all the models is almost 50 days (4297456 s). Each sampling strat-
egy spent similar computational time. However, the base-learner
SVR spent considerably much more computational time that Ridge
and RFR (more than 90% of the computational time). We are
reminded that the number of configuration trials for the base-
learner are almost equal (36 for Ridge and 35 for SVR and RFR).
Table 8 displays the computational time in seconds for the differ-
ent ensemble approaches. The time is computed adding up the
time spent by all base-learners, all datasets and all sampling strate-
gies. Obviously, the least costly approaches are those that do not
include a learning procedure in the ensemble, that is, Best, BEM
and IEW (note that the Best method performs no ensemble). Con-
versely, the most costly approaches are GEM and Caruana. Com-
paring the computational time reported in Table 7 with the
computational time reported in Table 8, the computational time
spent by the ensemble approaches is considerably lower than the
computational time spent on training the models for all the config-
uration trials. This allows concluding there is a great benefit in per-
formance when carrying out an ensemble procedure, in
comparison with the small loss in computational time, since the
models that feed the ensemble must be trained in any case.
6.3. Analysis of the models involved in the ensemble

An analysis of the number of models involved in the ensemble
was performed. Table 9 displays the averaged (over all datatasets
and all base-learners) number of different features (models) taken
by the Caruana method, and by BOOST and RBOOST for all the stop
criteria studied (see the top of Table 9). It also shows the averaged
(again over all datatasets and all base-learners) number of features
with replacement taken, which is in fact the number of iterations
carried out by the methods (see the bottom of Table 9).
11 The respective critical differences for confidence levels for 90% and 95% are 0:45
and 0:50.



Table 7
Time (in seconds) of execution for the training of all the 36 (for Ridge) or 35 (for SVR and RFR) models (the sum regarding all datasets) for each base-learner and each sampling
strategy

Ridge SVR RFR total

GS 29904 779056 30725 839685
RS 44275 799202 43934 887411
BO 24230 770431 21950 816611
PSO 25178 766460 22795 814433
HB 62496 812348 64472 939316

total 186082 3927498 183876 4297456

Table 8
Time (in seconds) of execution for the ensemble approaches (the sum regarding all base-learners, all datasets and all sampling strategies)

Best BEM IEW OLS GEM Caruana

2.25 4.50 155.25 254.25 4950.00 4050.00

FSR PCR PLS BOOST RBOOST

AIC 207.00 560.25 2400.75 150.75 576.00
AICc 405.00 828.00 117.00 310.50 371.25
BIC 2517.75 175.50 274.50 171.00 193.50
HQIC 279.00 594.00 450.00 159.75 542.25
gMDL 623.25 801.00 423.00 162.00 378.00
ICM - - - 571.50 492.75

Table 9
Averaged (over all datatasets and all base-learners) number of different features (models) and number of features with replacement (iterations) for the Caruana method, and for
BOOST and RBOOST taking all the stop criteria.

Different features

Caruana BOOST RBOOST

AIC AICc BIC HQIC gMDL ICM AIC AICc BIC HQIC gMDL ICM

GS 11.20 1.17 1.17 1.06 1.14 1.00 3.10 1.19 1.17 1.09 1.15 1.00 3.48
RS 11.65 1.17 1.14 1.05 1.09 1.00 3.19 1.09 1.09 1.07 1.07 1.00 3.46
BO 9.54 1.20 1.20 1.12 1.17 1.03 2.96 1.18 1.15 1.09 1.12 1.03 3.28
PSO 9.33 1.22 1.21 1.19 1.19 1.17 3.93 1.25 1.24 1.20 1.24 1.17 3.57
HB 11.95 1.17 1.16 1.06 1.15 1.00 3.19 1.21 1.17 1.07 1.12 1.00 3.78
Mean 10.74 1.19 1.18 1.10 1.15 1.04 3.27 1.18 1.16 1.10 1.14 1.04 3.51

Features with replacement

Caruana BOOST RBOOST

AIC AICc BIC HQIC gMDL ICM AIC AICc BIC HQIC gMDL ICM

GS 25.80 1.17 1.17 1.06 1.13 1.00 285.29 1.18 1.16 1.08 1.12 1.00 5.69
RS 24.97 1.10 1.14 1.03 1.06 1.00 302.65 1.57 1.57 1.55 1.56 1.51 5.72
BO 23.46 1.11 1.11 1.05 1.09 1.00 423.55 1.14 1.11 1.06 1.09 1.00 5.57
PSO 19.51 1.01 1.02 1.01 1.01 1.00 352.93 1.05 1.04 1.02 1.04 1.00 5.43
HB 26.75 1.16 1.21 1.07 1.15 1.00 303.32 1.17 1.13 1.07 1.10 1.00 6.15
Mean 24.10 1.11 1.13 1.05 1.09 1.00 333.54 1.22 1.20 1.16 1.18 1.10 5.71
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Two conclusions can be drawn for the analysis of the different
features considered in the ensemble, and: i) the Caruana method
is by far the approach that takes the highest number of different
features (around 10) and ii) the common stop criteria just select
an average of one feature, which is very similar to using the Best
method. Hence, these stop criteria do not allow neither BOOST
nor RBOOST to fully exploit the information contained in the mod-
els. In this sense, the novel stop criterion ICM makes BOOST and
RBOOST behave conservatively as to how many different features
are to be taken in the ensemble compared to the Caruana method,
but not as restrictive as with the typical stop criteria.

Regarding the number of features considered in the ensemble,
and taking into account the replacement procedure, it is quite
noticeable the number of iterations that BOOST with ICM stop cri-
terion spends (in the hundreds) to end up taking only about 3 dif-
ferent features. However, the number of iterations drastically falls
17
for RBOOST with ICM. In fact, RBOOST with ICM hardly performs
replacement when compared to the Caruana method.
7. Conclusions and future work

This paper proposes an improved boosting approach as a meta-
learner in HPO stacking ensemble, which may be included in an
Automated Machine Learning (AutoML) system and which gets
better predictive performance. In particular, an implicit regulariza-
tion would be included in the classical boosting (BOOST) method,
leading to the method called Regularized Boosting (RBOOST).
Besides, a novel non-hyperparametric stop criterion for both
BOOST and RBOOST methods called Increasing Coefficient Magni-
tude (ICM) is also proposed. Both RBOOST and ICM are specifically
designed for HPO. The result is a new meta-learner for stacking
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ensemble that is shown to be superior to other possible non-
hyperparametric (with an adequate non-hyperparametric stop cri-
terion) meta-learners, such as Forward Search (FSR), Principal
Component Regression (PCR) or Partial Least Squares (PLS). Unlike
these methods, RBOOST with ICM is built on the basis of BOOST,
since our proposal works under the hypothesis that BOOST is a
promising regressor in HPO stacking ensemble. The reason for this
is that it performs a regression with just one feature in each stage
and uses the successive residuals as targets. These are promising
properties, since they allow the use of least squares (which is free
of hyperparameter tuning) without being affected by the problems
derived frommulticollinearity. ICM has shown to be a robust crite-
rion, since it is based on the coefficient of the selected feature in
each stage rather than only on the error value, number of features
and instances, which is what other state-of-the-art stop criteria are
typically based on. In fact, ICM is able to discern special situations,
which other stop criteria are not. The power of RBOOST lies in fully
exploiting the information contained in the target. Specifically, it
smoothes the weight of the features selected in the first stages in
order to provide other features with an opportunity to supply fur-
ther information.

It is worth noting that AutoML systems hardly include ensem-
ble in their frameworks. Only some of them do it. The ensemble
strategies they typically include are the simple (weighted or not)
average or, as in the Caruana method, which computes an average
with replacement and has been widely used among researchers.
Additionally, some AutoML systems include stacking ensemble,
where the interest lies in the included learning process, which
might provide the ensemble with higher generalization power.
The main drawback of stacking ensemble is the choice of an ade-
quate meta-learner, for which there is a lack of advice in the liter-
ature in general, and in the AutoML frameworks in particular.
Besides, adequate meta-learners may include real-value hyperpa-
rameters that need to be tuned in order to avoid the problems
derived from multicollinearity. In this respect, the contribution of
this paper is not limited to proposing RBOOST with ICM; in addi-
tion, it begins by performing an exhaustive study of possible
non-hyperparametric (with an adequate non-hyperparametric
stop criterion) meta-learners, such as FSR, PCR, PLS and even the
original BOOST, a study that, to the best of our knowledge, has
not been carried out in HPO so far. In fact, this study has helped
to lay down the foundations for developing the novel approach
RBOOST with the novel stop criterion ICM. In this respect, all those
methods feature of the generalization power of a learning proce-
dure and are non-hyperparametric with an adequate non-
hyperparametric stop criterion. Moreover, PCR, PLS, BOOST and
RBOOST are able to cope with the problems derived from multi-
collinearity. However, in the case of HPO, BOOST and RBOOST pro-
vide better performance than PCR and PLS. Furthermore, RBOOST,
especially using ICM as stop criterion, exhibits superiority, even
over BOOST, and also with regard to other state-of-the-art ensem-
ble procedures typically included in AutoML frameworks. A com-
putational time study was carried out, concluding that
performing an ensemble process is worth, since the additional time
spent on the ensemble is considerably lower than the time spent
on training the models in order to feed the ensemble, which must
be taken into account since these models must be trained in any
case.

As future work, it would be interesting to include the ensemble
procedure inside the guided search performed by the sampling
strategies such as BO, PSO or HB. Hence, the next hyperparameter
configuration trial in the sampling strategy would be chosen
according to the best ensemble from the predictions provided by
the models induced using the previous configuration trials.
Another proposal for a future line of work would be to provide a
non-linear ensemble strategy. Finally, this approach could be
18
extended onto data under distribution changes, such as covariate
shift.
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