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A B S T R A C T

Zero-shot learning provides models for targets for which instances are not available, commonly called
unobserved targets. The availability of target side information becomes crucial in this context in order to
properly induce models for these targets. The literature is plenty of strategies to cope with this scenario, but
specifically designed on the basis of a zero-shot classification scenario, mostly in computer vision and image
classification, but they are either not applicable or easily extensible for a zero-shot regression framework for
which a continuous value is required to be predicted rather than a label. In fact, there is a considerable lack
of methods for zero-shot regression in the literature. Two approaches for zero-shot regression that work in a
two-phase procedure were recently proposed. They first learn the observed target models through a classical
regression learning ignoring the target side information. Then, they aggregate those observed target models
afterwards exploiting the target side information and the models for the unobserved targets are induced.
Despite both have shown quite good performance because of the different treatment they grant to the common
features and to the side information, they exploit features and side information separately, avoiding a global
optimization for providing the unobserved target models. The proposal of this paper is a novel method that
jointly takes features and side information in a one-phase learning process, but treating side information
properly and in a more deserving way than as common features. A specific kernel that properly merges features
and side information is proposed for this purpose resulting in a novel approach that exhibits better performance
over both artificial and real datasets.
1. Introduction

Improving predictions of air pollutants in meteorological stations
makes arise the research of this work, in particular some damaging
pollutants (NO2, PST, NO, SO2, CO, O3) collected in the Principality
of Asturias, Spain. There are several factors that hardly condition the
concentration of these pollutants. Both weather conditions (tempera-
ture, humidity, pressure...) and the activities around the meteorological
stations (industry, leisure centers, residential areas, power plants, ad-
ministrative buildings....) seem to be the most influential. However,
there are from different nature. On the one hand, weather conditions
depend on the climate and vary along the day, weeks, months and
seasons. On the other hand, activities around the stations are constant
for each station, hardly vary along the time and are known beforehand
even if weather conditions have not been collected yet. Some studies ig-
nore the information about activities in the surroundings [1]. Just some
studies consider both kinds of factors, but they treat them separately
and in a different manner. An advanced work considers activities in
the surroundings to perform a previous split of the stations resulting in
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a set of models, one per station or group of stations, where just weather
conditions are taken as features [2]. Also, taking pollutant values from
the nearest neighbor station [3] is a preliminary work of including
information about the stations. A prior classification of the stations
taking into account roads, traffic flow and the area (urban, suburban
or industrial) where the station is located [4] is another advanced
strategy that considers the surroundings of the stations. However, this
information, called side (or privileged) information [5–9], can go away
along if it is exploited properly, for instance, including it in the learning
process, in order to improve the pollutant predictions. Side information
is neither features nor targets; it actually constitutes additional and,
prior information about how targets (a pollutant measure in stations)
are related to features (weather conditions). Also, treating surrounding
information about stations as side information allows us to make pre-
dictions over potential future locations of meteorological stations, for
which only side information is available. This perspective enables us to
state the problem as a zero-shot regression learning task.

Zero-shot [10] is a kind of learning that tries to provide predictions
for targets devoid of instances. These targets are commonly called
vailable online 7 October 2023
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unobserved targets. The lack of instances for the unobservable targets
really complicates the task of providing promising models to these
targets, since only instances for observable targets are available. Then,
one must draw on alternative resources to fill the gap. This is the point
where side information is crucial and comes into play. Side information
is commonly found in form of features [11,12], as it will be in our
case. But depending on the context, it can be found in different formats,
for instance in a hierarchy [13], in a response prediction [14] or in a
structure [15]. Besides, sometimes it is multimodal and heterogeneous,
as it happens in recommender systems [16]. In any case, all their special
properties make side information worth exploiting in a way far from
the way the features are exploited [17]. Its prominence is such in the
zero-shot framework that great efforts have been made in the literature
to collect it [12,18], or even, to extract or to learn it [19,20].

Lately, zero-shot learning has been a booming topic due to the in-
creasing number of applications that demand predicting unobservable
targets. This can be, for instance, the case of COVID-19 diagnosis classi-
fication, a recent topic that impacts the world notoriously [21]. Natural
language processing [22–26], videos [27–32], mobile and wireless se-
curity [33], emoji predictions [34,35], human activity recognition [36],
or neuroimaging data [37] are other applications. However, the great
majority of applications of zero-shot learning concerns to image clas-
sification, facial recognition and computer vision [30,32,38–47]. This
happens to such a high degree that researchers usually refer to just
these applications as zero-shot [40,46], despite the emerging existence
of some other classification applications [24,26,33,36]. Reviewing the
state-of-the-art of the zero-shot approaches, one can find that they are
mostly proposed for classification task (predicting a label) rather for re-
gression task (predicting a continuous value), as it is our case of predict-
ing pollutant concentrations. The main drawback of these approaches
is that they adopt decisions and establish strategies that are specific of
a classification task. Hence, extending or adapting them to a regression
task is non-obvious, non-direct and even unfeasible [48]. The so-called
regression-based zero-shot methods [12,26,39,40,46] have paved the
way among the existing strategies to cope with zero-shot learning.
Despite these approaches being labeled as regression-based methods,
they do not solve regression zero-shot learning; otherwise, they cope
with classification zero-shot. But they are referred as regression-based
zero-shot methods because they commonly include regression learning
to make projections to map instances in certain spaces depending
on the classes of the classification, typically feature or side informa-
tion spaces, as a previous step of performing the classification into
classes. So far, very few approaches are found in the literature for
zero-shot regression that would solve several other problems beyond
the pollutant concentration prediction. For instance, in an industrial
environment [49], predicting the performance of the parts of a machine
given different system’s states, where the parts are interchangeable and
have certain specifications or characteristics known beforehand, what
it can be extended to unknown and unobservable parts for unknown
and unobservable system’s states. Also, in agricultural production [50],
static environment (soil moisture, position characteristics, weather...)
and human defined factors (irrigation, fertilization, pest control). There
are lots of research on predicting the agricultural production from
the human defined factors, but these predictions are based on just
certain static environment. Considering different static environments,
or even, new locations for them, predicting the agricultural produc-
tion becomes a zero-shot regression task. Another application could
also be for monitoring, control and modeling of water treatment for
human, industrial, or agricultural water consumption [51]. The ability
to incorporate side information derived from the environment opens
up a promising range of applications for water treatment prediction
and control, such as pollution control, water quality prediction, and
water quality prediction. The pioneers of providing zero-shot methods
for regression are two preliminary works [48,52] not able to cope
with a general-purpose regression zero-shot task [17]. The former [48]
2

reduces the experiments to a single toy example based on a beta p
distribution with just two features for the side information and one
common instance feature. In fact, if one tries to perform experiments
over datasets with higher dimensions in features and side information,
the available software reports the message ‘‘expected 1D vector for 𝑥’’.

he latter [52] predicts the future position of a piece that is pushed
y a robotic arm, given the present location through deep learning
pproach specifically built for this purpose, avoiding to be used as a
eneral purpose zero-shot regressor. Quite recently, another work [17]
vercomes this issue and has presented two novel approaches with
ppealing performance in a general-purpose zero-shot regression frame-
ork. Both approaches treat side information different from common

eatures [53] and provide unobserved target models through a two-
tage procedure. They coincide in providing observed target models
n the first stage, whereas they differ in the way side information
s taken in the second stage for providing unobserved target models.
ne of them is a simple relationship approach inspired by the inverse
istance weighting. Particularly, predictions using the observed target
odels are weighted by the similarity of each observed target with the
nobserved target in order to provide unobserved target predictions.
he main disadvantage of this approach is that side information is just
onsidered a posteriori in the testing stage of the second phase. In
ddition, it just interpolates predictions of the observed target models,
hose values will be bounded in a certain range, then its generalization
ower is quite limited. The other method arose in an attempt of over-
oming these drawbacks. The result was a correspondence method that
akes the side information into the learning process of the second phase
n order to increase the generalization power of the predictions for the
nobserved targets. Particularly, the method learns the parameters of
he unobserved target models from both the observed target models and
he side information. This alternative actually improves the predictive
erformance of the unobserved targets. However, an assumption of a
inear relationship between features and targets must be established.
he main disadvantage of these two approaches is that they deal with
ide information (information of the surroundings of the meteorological
tations) separately (in different phases) from the common features
weather conditions), avoiding a global optimization. At this point,
ne can notice that, on the one hand, taking side information as
ommon features directly handles zero-shot regression in just one learn-
ng process obtaining a global optimization, but it does not provide
romising performance [17] because the same treatment of both kinds
f information is not a good practice. On the other hand, exploiting side
nformation in a more strategic and specific way taking it separately
rom the common features, although, so far, into separate phases, has
een shown to improve the predictive performance [17], but it does
ot provide a global optimization. This situation sheds the light of
ackling zero-shot regression directly in just one learning process, but
dequately handling features and side information, each one differently
nd according to their nature. The contribution of this paper goes in
his direction and the proposal consists of a novel one-stage learning
pproach for zero-shot regression based on a kernel definition that
roperly integrates both features and side information in the same
earning process. The proposed approach experimentally exhibits its
uperiority in performance with regard to other existing approaches for
ero-shot regression, one of them consisting of treating side information
s common features being the other the two the above-mentioned
elationship method and correspondence method.

The rest of the paper is organized as follows. Section 2 describes
ome related work. Section 3 details the zero-shot regression statement
nd the state-of-the-art methods available in the literature. Then, the
ew proposal consisting of a one-stage learning process that jointly in-
egrates side information and common features is detailed in Section 4.
n Section 5 the description of the experiments and the discussion of
he results are exposed. Finally, Section 6 draws some conclusions and

roposes some lines of research for future work.
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2. Related work

Zero-shot scenario opens the possibility of supposing an inductive
rather than transductive learning paradigm with regard to targets [10].
Target inductive learning induces models for generic unknown and un-
observable targets, whereas target transductive learning induces mod-
els for specific unknown and unobservable targets. Precisely, the own
goal that characterizes the zero-shot scenario of inducing models for
targets for which instances are not available (unobservable targets)
makes possible contemplate both scenarios with regard to the targets.
Notice that the side information of both observed and unobserved
targets is supposed to be available. Hence, the difference between
target transductive and target inductive learning is in fact reflected in
whether the side information of the unobserved targets is including
in the training phase of unobserved target models (transductive) or
not (inductive). This situation does not happen in classical machine
learning, for which models are required for just targets with available
instances (observable targets). The majority of the works about zero-
shot, including ours, assumes inductive learning for targets, but there
are some that deal with target transductive learning [54].

The approaches to cope with zero-shot task can be split into
instance-based or model-based methods [10,17] independently if they
are for a classification task (predicting a label) or a regression task
(predicting a continuous value). The former adopts diverse strategies
such as extraction or learning in order to provide instances for the
unobserved targets, from which unobserved target models are learned
afterwards, whereas the latter the unobserved targets are directly
learned from the information available. The model-based approaches,
in which fall our proposal, can be split into relationship, correspon-
dence and combination methods depending on how they manage to
provide unobserved target models [10]. On one hand, both relationship
and correspondence approaches learn observed target models. But
they differ in the way they exploit the side information. Relationship
assumes the existence of a relationship function between observed and
unobserved targets. This function together with the observed target
models are taken to obtain unobserved target models. However, cor-
respondence methods learn the correspondence between the observed
target models and the observed target side information. On the other
hand, combination methods decompose the observed and unobserved
targets into basic elements, learn a model per each basic element and
finally they combine the basic element models via an inference process
in order to obtain the unobserved target models.

As commented before, classification into a set of finite classes has
extensively been the focus of researches in the zero-shot learning, leav-
ing a lack of approaches to cope with zero-shot regression (predicting
continuous values as they are the concentration of the pollutants).
In general, classical classification methods has been adaptable and
extensible to classical regression or at least it was possible to transfer
the ideas established for the classical classification to the classical
regression. However, in the context of zero-shot learning, the ideas
taken for zero-shot classification are highly influenced by the classes of
the classification and not easily extensible for zero-shot regression, even
they are unfeasible to transfer. Great efforts have been made to provide
a fan of approaches for zero-shot classification overcoming the lack of
instances and exploiting the side information. Particularly, the so-called
generalized zero-shot classification methods [55,56] have captured the
attention of the research in the last years. They arise in an attempt of
fill the existing gap of the traditional zero-shot classification methods,
which have limited generalization power to the unobservable classes,
since they combine semantic (side) information with common features
of just the observable classes. Then, the models they induced tend
to classify instances of the unobservable classes as belonging to one
of the observable classes. Generalized zero-shot classification methods
can be split into embedding-based methods, generative-based methods
and common space methods. Embedding-based methods learn an em-
3

bedding space to relate the common (visual in image classification) t
features of observable classes with their corresponding semantic infor-
mation (side information) [57–59]. They learn a projection function
able to recognize unobservable classes by measuring the similarity
level between the semantic (side) information of the observable and
unobservable classes in the embedding space. These methods are biased
to the observable classes, so their generalization power to unobservable
classes is limited. Generative-based methods [60–62] learn a model
to generate instances (images) or common (visual) features for the
unobservable classes based on the instances of observable classes and
semantic (side) information of both kind of classes. By generating
instances for unobservable classes, the task is converted into a classical
classification task. In one sense, these methods overcome the bias
problem of the embedding-based methods, since the models are learned
to be able to classify instances from both observable and unobservable
classes. Finally, common-space methods [63,64] learn a common repre-
sentation space into which both common (visual) features and semantic
(side) information are projected in order to get an effective knowledge
transfer. Latent features are built, which are the ones that contains the
whole information coming from the unobservable classes.

Similar frameworks to zero-shot learning are few-shot learning [43,
65,66] and one-shot learning [67,68]. In both scenarios, unobservable
targets have some instances available, but a reduced and a limited
number of them. The difference lies in that in the former few instances
are available whereas in the latter just one instance is available.

Transfer learning [69,70] is a field closely related to zero-shot
learning. In transfer learning, the source domain and source task re-
spectively are the observable instances and targets. The counterpart of
the unobservable instances and targets are called the target domain and
target task. Hence, the aim of transfer learning consists of extracting
knowledge from the source domain and task and transferring it to
the target domain in order to cope with the target task. Transfer
learning also includes inductive and transductive paradigms, but adds
the unsupervised option [71]; all defined in terms of properties that
the source and target domains and tasks satisfy. Under an inductive
paradigm, source and target tasks differ, no matter if the respective
domains coincide or not. Under a transductive setting, source and
target domains differ, whereas the source and target tasks coincide.
Finally, under an unsupervised scenario, the target and source tasks
differ as it happens under an inductive paradigm, but the tasks fall
into unsupervised learning. In the context of this paper, the source
and target task differ, then leading to an inductive transfer learning
paradigm. Besides, the source and target domains coincide, since both
deal with the same features. More classical transfer learning required
the availability of some instances in the target domain whatever in-
ductive or transductive paradigms. Only more recent transfer learning
approaches [72–74] cope with situations deprived of instances in the
target domain, but unfortunately, they are designed exclusively for
classification, which is not easily adaptable to regression. Besides, they
are customized for what they were designed, for instance, for outlier
detection [73], extracting specific image features [74], or obtaining
synthesized dialogue instances [72]. Hence, they are not applicable to
a general-purpose zero-shot regression task.

3. Zero-shot regression statement and state-of-the-art methods

This section formally states the zero-shot regression task and also
formally discusses the strategies followed by the state-of-the-art meth-
ods. The formal statement of the zero-shot regression task will be
defined in terms of inductive learning, since, as commented in Sec-
tion 2, our assumption is that unobserved targets are supposed to be
unknown and generic. Let  ,  and  respectively denote the feature
pace of instances, the feature space of targets (side information) and

he image space of the predictions. Hence,
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• Let  𝑜 = {𝑡𝑜𝑖 ∈ }𝑚𝑜
𝑖=1 be the set of observed targets, where

𝑚𝑜 is the number of them. The notation 𝑡𝑜𝑖 ∈  represents the
side information of the observed targets, that will be in form
of features, as commented in Section 1. Let 𝑡𝑢 ∈  be the
side information (feature representation) of a generic unobserved
target such that 𝑡𝑢 ∉  𝑜.

• Let 𝑜 = {(𝑥𝑜𝑗 , 𝑦
𝑜
𝑗 ) ∈  × }𝑛𝑜𝑗=1 be the set of instances for the

observed targets, where 𝑛𝑜 is the number of them. Then, 𝑜,𝑡𝑜𝑖 ⊂
𝑜 will denote the set of instances of the observed target 𝑡𝑜𝑖 ∈  𝑜

for all 𝑖 = 1,… , 𝑚𝑜. Let 𝑥𝑢 be an instance of the unobserved target
𝑡𝑢 ∉  𝑜 whose prediction is 𝑦𝑢 ∈  such that (𝑥𝑢, 𝑦𝑢) ∉ 𝑜.

Therefore, the inductive zero-shot regression task consists of learn-
ing a function 𝑓 ∶  ×  →  from 𝑜 and  𝑜 able to predict 𝑦𝑢 ∈ 
for a generic instance 𝑥𝑢 ∈  of a generic unobserved target 𝑡𝑢 ∈  (in
he transductive scenario the function to learn would be 𝑓𝑡𝑢 ∶  → 
rom 𝑜,  𝑜 and an specific unobserved target 𝑡𝑢 able to predict 𝑦𝑢 ∈ 

for a generic instance 𝑥𝑢 ∈  , see [17] for more details). The next
subsections formally and briefly detail the state-of-the-art methods for
zero-shot regression.

3.1. Baseline method

The baseline method (BL) [17] was designed to be a point of
reference in an attempt of avoiding ignoring side information. The side
information is included as convectional features. Hence, the instances
of the same target will have the same values in these features (see
Fig. 1(a)). In the training phase, just one learning process takes place.
The features are built taking 𝑜

 = {𝑥𝑜𝑗 ∈ }𝑛𝑜𝑗=1 (matrix 𝑋𝑜) and
 𝑜 = {𝑡𝑜𝑖 ∈ }𝑚𝑜

𝑖=1 (matrix 𝑆𝑜) and joining (concatenating) each target
side information 𝑡𝑜𝑖 ∈  𝑜 to their correspondent instances 

𝑜,𝑡𝑜𝑖
 ⊂ 𝑜

 .
The goal consists of inducting a function 𝑓 ∶  ×  →  taking the
correspondent prediction values of 𝑜

 = {𝑦𝑜𝑗 ∈ }𝑛𝑜𝑗=1 (matrix 𝑌 𝑜). In
the testing phase, the features of an unobserved instance 𝑥𝑢 (vector 𝑋𝑢)
of an unobserved target 𝑡𝑢 are joined (concatenated) to the side infor-
mation of the unobserved target 𝑡𝑢 (vector 𝑆𝑢) to feed 𝑓 and provide the
prediction 𝑓 (𝑥𝑢, 𝑡𝑢). This method works under the hypothesis of existing
an equal kind of relationship between features and targets and between
this relationship and the side information, since common features and
side information are treated equally. However, this assumption is quite
limited and tied, since it is not usually satisfied. In fact, the nature of
side information is different from the common features.

3.2. Similarity relationship method

The similarity relationship method (SR) [17] is an appealing method
to cope with zero-shot regression due to its simplicity. The main point
of this method is the establishment of a relationship function 𝛿𝑜,𝑢

defining a similarity between observed and unobserved targets in terms
of the inverse of the distance, that is, 𝛿𝑜,𝑢(𝑡𝑜, 𝑡𝑢) = 1∕𝑑(𝑡𝑜, 𝑡𝑢).

The method works in two stages (see Fig. 1(b)). The first stage
takes place in the training phase and consists of learning the observed
target models 𝑓 𝑜 = {𝑓 𝑡𝑜𝑖 }𝑚𝑜

𝑖=1 from instance features 𝑜
 = {𝑥𝑜𝑗 ∈ }𝑛𝑜𝑗=1

(matrix 𝑋𝑜) and prediction values 𝑜
 = {𝑦𝑜𝑗 ∈ }𝑛𝑜𝑗=1 (matrix 𝑌 𝑜),

then, ignoring side information  𝑜 = {𝑡𝑜𝑖 ∈ }𝑚𝑜
𝑖=1 (matrix 𝑆𝑜). The

second stage happens in the testing phase and it is the stage in which
side information  𝑜 = {𝑡𝑜𝑖 ∈ }𝑚𝑜

𝑖=1 (matrix 𝑆𝑜) comes into play. The,
giving an unobserved instance 𝑥𝑢 (vector 𝑋𝑢) of an unobserved target
𝑡𝑢 (vector 𝑆𝑢), the set of prediction values 𝑓 𝑜(𝑥𝑢) = {𝑓 𝑡𝑜𝑖 (𝑥𝑢)}𝑚𝑜

𝑖=1 are ob-
tained and aggregated using a normalized weighting procedure induced
by the correspondent similarity {𝛿𝑜,𝑢(𝑡𝑜𝑖 , 𝑡

𝑢)}𝑚𝑜
𝑖=1 in order to produce the

prediction 𝑓 (𝑥𝑢, 𝑡𝑢).
The similarity function based on the inverse of a distance allows

guaranteeing that the models of the least similar observed targets to
the unobserved target make less influence on the prediction of the
4

unobserved instance than the models of the most similar observed e
targets. This method has shown to perform well in spite of its simplicity.
However, the generalization power may be compromised because the
method only interpolates values of the observed target models to
provide predictions for the unobserved instances of unobserved targets.
Besides, the side information is not included in the learning process;
otherwise, it is exploited in the testing phase. Hence, features and side
information are exploited separately in two different phases.

3.3. Model parameter learning correspondence method

Model parameter learning correspondence method (MPLC) [17]
arose in an attempt of improving the generalization power of SR,
including the side information in a learning process. Particularly, the
approach tries to learn the correspondence between the observed tar-
gets and the correspondent observed targets model parameters, which
may potentially increase the generalization power of the unobserved
target models (see Fig. 1(c)).

The method also works in two stages, as SR. However, in this case,
both stages take place in the training phase, unlike SR, whose second
phase takes place in the testing phase. The first stage of MPLC coincides
to the first stage of SR. However, the second stage of MPLC differs from
the second stage of SR. In this case, another learning procedure takes
place whose aim is to learn the parameters of the unobserved target
models. The parameters 𝛩 = {(𝜃𝑖1,… , 𝜃𝑖𝑝)}

𝑚𝑜
𝑖=1 of the observed target

models 𝑓 𝑜 = {𝑓 𝑡𝑜𝑖 }𝑚𝑜
𝑖=1 resume the relationship between features and

targets for the observed targets. These parameters are taken together
with the side information  𝑜 = {𝑡𝑜𝑖 ∈ }𝑚𝑜

𝑖=1 (matrix 𝑆𝑜) of the observed
targets in the learning process in order to induce the 𝑝 models 𝑔𝜃 =
{𝑔𝜃𝑗 }

𝑝
𝑗=1 defined over .

In the testing phase, the side information of an unobserved target
𝑡𝑢 (matrix 𝑆𝑢) feeds all the 𝑔𝜃 = {𝑔𝜃𝑗 }

𝑝
𝑗=1 to provide the parameters

{𝜃𝑢𝑗 }
𝑝
𝑗=1 for the model of the unobserved target 𝑡𝑢. Finally, the function

𝑓 ∶  ×  →  is configured from these parameter value predictions
𝑔𝜃(𝑡𝑢) = {𝜃𝑢𝑗 = 𝑔𝜃𝑗 (𝑡

𝑢)}𝑝𝑗=1 leading to a function 𝑓 𝑔𝜃 (𝑡𝑢) ∶  →  that
gets ready to evaluate any unobserved instance 𝑥𝑢 (matrix 𝑋𝑢) of the
unobserved target 𝑡𝑢.

The main disadvantage of this method is that is necessary to assume
a linear relationship (see [17] for details) in order to state the learning
procedure of the second phase and this assumption do not hold in
general.

4. Direct side information learning for zero-shot regression

Despite MPLC includes the target side information into a learning
process in order to provide more generalization power than SR, it does
it in a separate stage different from the observed target model learning
process. Hence, learning processes are locally optimized. The proposal
of this paper unifies both instance and target (side information) features
(all the information available) in a one-stage learning process, then,
obtaining a globally optimized learning process, as BL method does
it. However, and meanwhile BL method treats equally feature in-
stance description and side information, our novel approach adequately
integrates features and side information thought a kernel definition
according to the nature of both kinds of information. Therefore, the
function 𝑓 ∶  ×  →  is directly learned from both instance
features and side information. If 𝑎𝑥 and 𝑎𝑠 respectively are the instance
feature and side information sizes, 𝑥 = (𝑥1,… , 𝑥𝑎𝑥 ) is a feature instance
description and 𝑠 = (𝑠1,… , 𝑠𝑎𝑠 ) is a target side information description,
let us restrict our proposal to the linear case,2 (i) in the relationship
between features and predictions and (ii) in the relationship between
the side information and the relationship of (i) (a non-linear scenario

2 This restriction is motivated by the fact that BL method works better with
inear kernel than with quadratic kernel, as it can be seen later on in the
xperiments.



Neurocomputing 561 (2023) 126873M. Fdez-Díaz et al.
Fig. 1. Baseline, similarity relationship and model parameter learning correspondence methods for zero-shot regression.
will be proposed as future work). Then, 𝑓 (𝑥, 𝑠) adopts the following
form

𝑓 ∶  ×  → 𝑢

(𝑥, 𝑠) → 𝑓 (𝑥, 𝑠) = 𝑓𝛽 (𝑠) +
∑𝑎𝑥

𝑖=1 𝑓𝑖(𝑠) ⋅ 𝑥𝑖
(1)

where 𝑓𝛽 (𝑠) and each 𝑓𝑖(𝑠) are in turn linear functions of 𝑠, that is,

𝑓𝑖(𝑠) = 𝛽𝑖 +
𝑎𝑠
∑

𝑗=1
𝛼𝑖,𝑗 ⋅ 𝑠𝑗 𝑖 = 1,… , 𝑎𝑥 (2)

𝑓𝛽 (𝑠) = 𝛽𝛽 +
𝑎𝑠
∑

𝛼𝛽,𝑗 ⋅ 𝑠𝑗 (3)
5

𝑗=1
where {𝛽𝑖}
𝑎𝑥
𝑖=1, {𝛼𝑖,𝑗}

𝑎𝑥 ,𝑎𝑠
𝑖,𝑗=1,1, 𝛽𝛽 and {𝛼𝛽,𝑗}

𝑎𝑠
𝑗=1 are the parameters of the

linear functions. Then, including the expressions of the Eqs. (2) and
(3) in Eq. (1), the expression of 𝑓 (𝑥, 𝑠) will be

𝑓 (𝑥, 𝑠) =

(

𝛽𝛽 +
𝑎𝑠
∑

𝑗=1
𝛼𝛽,𝑗 ⋅ 𝑠𝑗

)

+
𝑎𝑥
∑

𝑖=1

(

𝛽𝑖 +
𝑎𝑠
∑

𝑗=1
𝛼𝑖,𝑗 ⋅ 𝑠𝑗

)

⋅ 𝑥𝑖 (4)

or equivalently

𝑓 (𝑥, 𝑠) = 𝛽𝛽 +
𝑎𝑠
∑

𝛼𝛽,𝑗 ⋅ 𝑠𝑗 +
𝑎𝑥
∑

𝛽𝑖 ⋅ 𝑥𝑖 +
𝑎𝑥
∑

𝑎𝑠
∑

𝛼𝑖,𝑗 ⋅ 𝑠𝑗 ⋅ 𝑥𝑖 (5)

𝑗=1 𝑖=1 𝑖=1 𝑗=1
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At this point, we will define a mapping function 𝜙 from  × space
into a Hilbert space  and a linear function 𝑔 defined over the image
space  of 𝜙 such that the function 𝑓 will be expressed as

𝑓 (𝑥, 𝑠) = 𝑔(𝜙(𝑥, 𝑠)) (6)

For this purpose, the mapping function 𝜙 will be

𝜙 ∶  ×  → 
(𝑥, 𝑠) → 𝜙(𝑥, 𝑠) = ((1, 𝑥)𝑇 ⊗𝐾 (1, 𝑠)𝑇 )𝑇

(7)

where ⊗𝐾 denotes the Kronecker product of vectors. The Kronecker
product of vectors, also called matrix direct product, means to vectorize
the outer product of vectors, denoted by ⊗𝑂. Then, Eq. (7) can be
expressed in the following way3

𝜙(𝑥, 𝑠) =
(

𝑣𝑒𝑐
(

(1, 𝑥)𝑇 ⊗𝑂 (1, 𝑠)𝑇
))𝑇 . (8)

. Also, the outer product of vectors means to multiply each element
of a vector by each element of the other vector. Then, Eq. (8) can be
expressed as

𝜙(𝑥, 𝑠) =
(

𝑣𝑒𝑐
(

(1, 𝑥)𝑇 (1, 𝑠)
))𝑇 . (9)

Expanding Eq. (9) leads to the following expression of 𝜙

𝜙(𝑥, 𝑠) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑒𝑐

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

1
𝑥1
⋮
𝑥𝑎𝑥

⎤

⎥

⎥

⎥

⎥

⎦

[

1 𝑠1 ⋯ 𝑠𝑎𝑠
]

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

𝑇

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑒𝑐

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

1 𝑠1 ⋯ 𝑠𝑎𝑠
𝑥1 𝑥1 ⋅ 𝑠1 ⋯ 𝑥1 ⋅ 𝑠𝑎𝑠
⋮ ⋮ ⋱ ⋮
𝑥𝑎𝑥 𝑥𝑎𝑥 ⋅ 𝑠1 ⋯ 𝑥𝑎𝑥 ⋅ 𝑠𝑎𝑠

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

𝑇

(10)

and, finally, performing the 𝑣𝑒𝑐 function and the transpose operator
afterwards in Eq. (10), 𝜙 will be

𝜙(𝑥, 𝑠) =
(

1, 𝑥1, ⋯ , 𝑥𝑎𝑥 ,

𝑠1, 𝑥1 ⋅ 𝑠1, ⋯ , 𝑥𝑎𝑥 ⋅ 𝑠1,

… ,… ,… ,…

𝑠𝑎𝑠 , 𝑥1 ⋅ 𝑠𝑎𝑠 , ⋯ , 𝑥𝑎𝑥 ⋅ 𝑠𝑎𝑠
)

(11)

Let us notice that the components of 𝜙 are the unit and the compo-
nents of 𝑥, that is, (1, 𝑥1,… , 𝑥𝑎𝑥 ), concatenated by these same compo-
nents multiplied by the first component of 𝑠, that is, (𝑠1, 𝑥1⋅𝑠1,… , 𝑥𝑎𝑥 ⋅𝑠1)
and so on until the same components multiplied by the last component
of 𝑠, that is, (𝑠𝑎𝑠 , 𝑥1 ⋅ 𝑠𝑎𝑠 ,… , 𝑥𝑎𝑥 ⋅ 𝑠𝑎𝑠 ). Then, the components of 𝜙
are all the monomials of a 2−degree polynomial, except two kinds of
monomials, namely, (i) the squared ones of the kind 𝑥2𝑖 and 𝑠2𝑗 and (ii)
the ones of the kind 𝑥𝑖 ⋅ 𝑥𝑗 and 𝑠𝑖 ⋅ 𝑠𝑗 with 𝑖 ≠ 𝑗.

Then, the linear function 𝑔 will be defined as a linear combination
of the monomial components of 𝜙(𝑥, 𝑠), that is,

𝑔(𝜙(𝑥, 𝑠)) = 𝛽𝛽 ⋅ 1 +
𝑎𝑥
∑

𝑖=1
𝛽𝑖 ⋅ 𝑥𝑖 +

𝑎𝑠
∑

𝑗=1

(

𝛼𝛽,𝑗 ⋅ 𝑠𝑗 +
𝑎𝑥
∑

𝑖=1
𝛼𝑖,𝑗 ⋅ 𝑥𝑖 ⋅ 𝑠𝑗

)

(12)

Finally, let us notice that reordering the terms of Eq. (12), one
can easily obtain the expression of 𝑓 (𝑥, 𝑠) in Eq. (5). Therefore, 𝑓 (𝑥, 𝑠)
can be expressed as a linear function 𝑔 defined over the image space
of 𝜙, as stated in Eq. (6). Now, let us propose three different ways
of inducing the function 𝑓 . The first one will consist of applying the
mapping function 𝜙 and inducing the linear function 𝑔 afterwards
according to Eq. (6). The second and third ways define a kernel 𝐾
that computes the inner product in the image space of 𝜙. However,
the second way explicitly applies the function mapping 𝜙, whereas the

3 𝑣𝑒𝑐 is the function that vectorizes a matrix, that is, it converts a matrix
nto a column vector by concatenating the columns.
6

third way straightly computes the inner product in the image space
and avoids applying the mapping function. The result is a one-phase
learning method that directly includes the side information in this
learning process. This is the reason why the method is called Direct Side
Information Learning (DSIL). Fig. 2 displays the training and testing
phases for this new approach. The structure is analogous to that of
the BL approach (see Fig. 1(a)), just changing the linear kernel by
the new proposed kernels. Next Sections 4.1 and 4.2 deal with the
second and third ways of inducing the function 𝑓 , which both involve
a kernel definition. Also, Section 4.3 describes a toy example in order
to illustrate the way DSIL works. Finally, Section 4.4 analyses the three
ways of inducing the function 𝑓 in terms of computational cost.

.1. A kernel definition using the mapping function 𝜙

This section proposes a kernel associated with the 𝜙 mapping func-
ion in order to establish a gangway from linearity to non-linearity in
erms of the inner dot product. The kernel definition allows performing
he mapping and the inner product simultaneously. In this case, the
ernel can be defined in terms of the linear kernel and 𝜙 using one of
he closure properties of the kernels [75] as

((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

= ⟨𝜙
(

𝑥(1), 𝑠(1)
)

, 𝜙
(

𝑥(2), 𝑠(2)
)

⟩ (13)

Using the expression of the mapping function 𝜙 exposed in Eq. (8)
nd dispensing with the 𝑣𝑒𝑐 function, the kernel can be expressed in
erms of the outer product of vectors and the Hadamard product (also
alled the element-wise product, entry wise product or Schur product)
f a matrix, which is denoted by ⊙ and consists of computing the
roduct of the matrixes element-by-element.
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

=
∑

(

(

1, 𝑥(1)
)𝑇 ⊗𝑂

(

1, 𝑠(1)
)𝑇 )⊙

(

(

1, 𝑥(2)
)𝑇 ⊗𝑂

(

1, 𝑠(2)
)𝑇 ) (14)

Computing the outer and Hadamard products and the summation
of the elements of the resultant matrix in Eq. (14), the expression of
𝐾

((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

becomes

𝐾
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

= 1 +
𝑎𝑥
∑

𝑖=1
𝑥(1)𝑖 𝑥(2)𝑖 +

𝑎𝑠
∑

𝑖=1
𝑠(1)𝑖 𝑠(2)𝑖

+
𝑎𝑠
∑

𝑖=1

𝑎𝑥
∑

𝑗=1

(

𝑥(1)𝑗 𝑠(1)𝑖

)(

𝑥(2)𝑗 𝑠(2)𝑖

)

(15)

The main disadvantage of this kernel definition is precisely the
necessity of computing the 𝜙 mapping, since the expression of Eq. (15)
must be computed for all pairs (𝑥, 𝑠) and in addition it is of quadratic
order with regard to the features. Hence, an alternative will be to
define the kernel thought an expression able to compute the inner
product in the image space of 𝜙 but avoiding the use of the 𝜙 mapping
and performing a linear order computation instead, which, in fact, it
is the well-known interest and advantage of the use of kernels. Next
subsection proposes an alternative at this respect.

4.2. A kernel definition using quadratic kernels instead of expanding the
mapping function 𝜙

This section proposes an alternative expression for the kernel of that
of Eq. (15), which will avoid expanding the mapping function 𝜙. Let
us notice that the image space of 𝜙 is the set of monomials of degree
between 0 and 2 formed with the components of 𝑥 and 𝑠, but removing
the monomials with more than one component of 𝑥 or with more than
one component of 𝑠, including the squared monomials (see Eq. (11)).
This fact sheds light on defining the kernel in terms of the existing
quadratic kernel, which adopts the form

𝐾𝑄,𝑐 (𝑢, 𝑣) = (⟨𝑢, 𝑣⟩ + 𝑐)2 =

( 𝑛
∑

𝑢𝑖𝑣𝑖 + 𝑐

)2

(16)

𝑖=1
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Fig. 2. Training and testing phases for the DSIL method.
The quadratic kernel expressed in Eq. (16) computes the inner
product in the original space, hence, it is of linear order with regard
to the features. The idea is to express Eq. (15) in terms of a sum or a
difference of several quadratic kernels, then, obtaining an expression
of linear order with regard to the features. Particularly, the alternative
kernel expression proposed is the following one

𝐾
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

= 1
2
⋅
(

𝐾𝑄,1
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

− 𝐾𝑄,0
(

𝑥(1), 𝑥(2)
)

−𝐾𝑄,0
(

𝑠(1), 𝑠(2)
)

+ 1
)

(17)

Effectively, let us now demonstrate that the expression of Eq. (17)
is equivalent to the expression of Eq. (15). For this purpose, let us first
use the binomial theorem of elementary algebra to Eq. (16). Then, the
expression of Eq. (16) becomes

𝐾𝑄,𝑐 (𝑢, 𝑣) =

( 𝑛
∑

𝑖=1
𝑢𝑖𝑣𝑖

)2

+ 2𝑐

( 𝑛
∑

𝑖=1
𝑢𝑖𝑣𝑖

)

+ 𝑐2 (18)

Now, let us apply the multinomial theorem to the first term of the
expression of Eq. (18) and regrouping the terms properly. The result
is the expression of the Eq. (19)

𝐾𝑄,𝑐 (𝑢, 𝑣) =
𝑛
∑

𝑖=1
(𝑢2𝑖 )(𝑣

2
𝑖 ) +

𝑛
∑

𝑖=2

𝑖−1
∑

𝑗=1
(
√

2𝑢𝑖𝑢𝑗 )(
√

2𝑣𝑖𝑣𝑗 )

+
𝑛
∑

𝑖=1
(
√

2𝑐𝑢𝑖)(
√

2𝑐𝑣𝑖) + 𝑐2 (19)

Next, and using the expression of Eq. (19), let us expand the terms
of Eq. (17)

(i) 𝐾𝑄,1
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

, that is, for 𝑐 = 1, 𝑢 =
(

𝑥(1), 𝑠(1)
)

and
𝑣 =

(

𝑥(2), 𝑠(2)
)

(ii) 𝐾𝑄,0
(

𝑥(1) , 𝑥(2)
)

, that is, for 𝑐 = 0, 𝑢 = 𝑥(1) and 𝑣 = 𝑥(2)

(iii) 𝐾𝑄,0
(

𝑠(1), 𝑠(2)
)

, that is, for 𝑐 = 0, 𝑢 = 𝑠(1) and 𝑣 = 𝑠(2)

Then, expanding these terms will respectively lead to the Eqs. (20),
(21) and (22).

𝐾𝑄,1
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

=
(

⟨(𝑥(1), 𝑠(1)), (𝑥(2), 𝑠(2))⟩ + 1
)2

=
𝑎𝑥
∑

𝑖=1

(

𝑥(1)𝑖

)2 (
𝑥(2)𝑖

)2
+

𝑎𝑠
∑

𝑖=1

(

𝑠(1)𝑖

)2 (
𝑠(2)𝑖

)2

+
𝑎𝑥
∑

𝑖=2

𝑖−1
∑

𝑗=1

(
√

2𝑥(1)𝑖 𝑥(1)𝑗

)(
√

2𝑥(2)𝑖 𝑥(2)𝑗

)

+
𝑎𝑠
∑

𝑖−1
∑

(
√

2𝑠(1)𝑖 𝑠(1)𝑗

)(
√

2𝑠(2)𝑖 𝑠(2)𝑗

)

7

𝑖=2 𝑗=1
+
𝑎𝑥
∑

𝑖=1

𝑎𝑠
∑

𝑗=1

(
√

2𝑥(1)𝑖 𝑠(1)𝑗

)(
√

2𝑥(2)𝑖 𝑠(2)𝑗

)

+
𝑎𝑥
∑

𝑖=1

(
√

2𝑥(1)𝑖

)(
√

2𝑥(2)𝑖

)

+
𝑎𝑠
∑

𝑖=1

(
√

2𝑠(1)𝑖

)(
√

2𝑠(2)𝑖

)

+ 1 (20)

𝐾𝑄,0
(

𝑥(1), 𝑥(2)
)

=
(

⟨𝑥(1), 𝑥(2)⟩ + 0
)2 =

𝑎𝑥
∑

𝑖=1

(

𝑥(1)𝑖

)2 (
𝑥(2)𝑖

)2

+
𝑎𝑥
∑

𝑖=2

𝑖−1
∑

𝑗=1

(
√

2𝑥(1)𝑖 𝑥(1)𝑗

)(
√

2𝑥(2)𝑖 𝑥(2)𝑗

)

(21)

𝐾𝑄,0
(

𝑠(1), 𝑠(2)
)

=
(

⟨𝑠(1), 𝑠(2)⟩ + 0
)2 =

𝑎𝑠
∑

𝑖=1

(

𝑠(1)𝑖

)2 (
𝑠(2)𝑖

)2

+
𝑎𝑠
∑

𝑖=2

𝑖−1
∑

𝑗=1

(
√

2𝑠(1)𝑖 𝑠(1)𝑗

)(
√

2𝑠(2)𝑖 𝑠(2)𝑗

)

(22)

Therefore, replacing the terms of 𝐾𝑄,1
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

,
𝐾𝑄,0

(

𝑥(1), 𝑥(2)
)

and 𝐾𝑄,0
(

𝑠(1), 𝑠(2)
)

in Eq. (17) by the expressions of
the Eqs. (20), (21) and (22) and removing the terms that are annulled,
𝐾

((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

adopts the following expression

𝐾
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

= 1
2
⋅

( 𝑎𝑥
∑

𝑖=1

𝑎𝑠
∑

𝑗=1

(
√

2𝑥(1)𝑖 𝑠(1)𝑗

)(
√

2𝑥(2)𝑖 𝑠(2)𝑗

)

+
𝑎𝑥
∑

𝑖=1

(
√

2𝑥(1)𝑖

)(
√

2𝑥(2)𝑖

)

+
𝑎𝑠
∑

𝑖=1

(
√

2𝑠(1)𝑖

)(
√

2𝑠(2)𝑖

)

+ 2

)

= (23)

Now, simplifying the constant, the expression becomes

𝐾
((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

=
𝑎𝑥
∑

𝑖=1

𝑎𝑠
∑

𝑗=1

(

𝑥(1)𝑖 𝑠(1)𝑗

)(

𝑥(2)𝑖 𝑠(2)𝑗

)

+
𝑎𝑥
∑

𝑖=1

(

𝑥(1)𝑖

)(

𝑥(2)𝑖

)

+
𝑎𝑠
∑

𝑖=1

(

𝑠(1)𝑖

)(

𝑠(2)𝑖

)

+ 1 (24)

Finally, one can easily observe that the expressions (15) and (24) of
𝐾

((

𝑥(1), 𝑠(1)
)

,
(

𝑥(2), 𝑠(2)
))

are identical after adequately ordering their
terms. Therefore, we have got defining a kernel using the expression
of Eq. (16) through a set of quadratic kernels whose computation is
of linear order with regard to the features instead of using either the
expression of Eq. (15) or (24) which are of quadratic order with regard
to the features.
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Fig. 3. A toy example that illustrates the direct side information learning method.
4.3. Toy example

This section presents a toy example that illustrates the way the
method DSIL works. Fig. 3 shows how DSIL works through a toy
example. Let the number of observed targets 𝑚𝑜 be equal to 2, whose
side information size 𝑎𝑠 is equal to 1 (each target is represented by
a one-dimensional vector). Let one of the observed targets be 𝑡𝑜1 = 0
and the other observed target be 𝑡𝑜2 = 2 (both represented in 𝑆𝑜 in
Fig. 3). Let us consider that each of these two targets has two instances
(the same for simplicity), whose number of features 𝑎𝑥 is equal to 1
(each instance is represented by a one-dimension vector). Let these two
instances be 𝑥𝑜1 = 0 and 𝑥𝑜2 = 2 (both represented in 𝑋𝑜 in Fig. 3).
Finally, let us suppose a linear relationship between features 𝑥 and
predictions 𝑦, whose coefficients are in turn a linear function of the side
information, that is, the linear function to be learned is 𝑦 = 𝑓 (𝑥, 𝑠) =
𝛼(𝑠) ⋅ 𝑥 + 𝛽(𝑠), where 𝛼(𝑠) and 𝛽(𝑠) are in turn linear functions. Let
𝛼(𝑠) = 𝑠+1 and 𝛽(𝑠) = 𝑠+1 for simplicity. Then, the predictions will be
1 and 3 for the two instances of the observed target 𝑡𝑜1 and 3 and 9 for
the two instances of the observed target 𝑡𝑜2 (represented in 𝑌 𝑜 in Fig. 3).
Then, the learning process to induce the function model 𝑓 takes place.
Notice that this schema also fits the method BL changing the kernel in
the learning process. Once the function 𝑓 is learned, for an unobserved
instance 𝑥𝑢 = 3 (represented by 𝑋𝑢 in Fig. 3) and for an unobserved
target 𝑡𝑢 = 2 (represented by 𝑆𝑢 in Fig. 3) the prediction using 𝑓 is
carried out. For this purpose, the feature description 𝑥𝑢 = 3 and the
side information 𝑡𝑢 = 2 for an unobserved target is concatenated for
feeding 𝑓 and obtaining 𝑓 (𝑥𝑢, 𝑠𝑢) = 𝑓 (3, 2).

Once the toy example is defined, let us compare the method BL with
linear kernel (BL𝐿), the method DSIL and the method BL with quadratic
kernel (BL𝑄). Fig. 4 displays the learning process of the three methods.
Firstly, the function mapping 𝜙 is applied according to the different
kernels that the three methods use. Let us remind that 𝑎𝑥 = 𝑎𝑠 = 1 in
the toy example. Then, both 𝑥 and 𝑠 are one-dimensioned. The mapping
function 𝜙(𝑥, 𝑠) for the method BL𝐿 is 𝜙(𝑥, 𝑠) = (𝑥, 𝑠), then, only the
monomials 𝑥 and 𝑠 are taken. In the case of the method DSIL, the
mapping function 𝜙(𝑥, 𝑠) equals (𝑥, 𝑥 ⋅ 𝑠, 𝑠, 1), then, the monomials that
this kernel considers are also 𝑥 and 𝑠, but in addition, the monomials
𝑥 ⋅ 𝑠 and 1. Finally, the mapping function 𝜙(𝑥, 𝑠) for the kernel of the
method BL𝑄 is (𝑥2, 𝑥, 𝑥 ⋅ 𝑠, 𝑠, 𝑠2, 1), that is, all possible combinations of
monomials of degree 2, namely, 𝑥2, 𝑠2 in addition to 𝑥, 𝑠, 𝑥 ⋅ 𝑠 and
1. Once the expansion is carried out, a linear learning takes place in
the image space of the mapping function 𝜙. The learned models were
respectively 𝑓BL𝐿 (𝑥, 𝑠) = 2 ⋅ 𝑥 + 2 ⋅ 𝑠, 𝑓DSIL(𝑥, 𝑠) = 𝑥 + 𝑠 + 𝑥 ⋅ 𝑠 + 1 and
𝑓BL𝑄 (𝑥, 𝑠) = 0.2⋅𝑥+0.2⋅𝑠+𝑥⋅𝑠+0.4⋅𝑥2+0.4⋅𝑠2+1. The evaluations of these
models over both the observed instances and the unobserved instance
are shown on the bottom of Fig. 4. This toy example shows that the
8

model induced by BL𝐿 cannot predict neither the observed instances
nor the unobserved instance properly. It also shows that the model
induced by BL𝑄 could not have enough generalization power, since it
correctly predicts the observed instances of the observed targets, but
it fails in the prediction of the unobserved instance of the unobserved
target (it overfits).

4.4. Computational complexity analysis

Three different implementations of DSIL have been proposed,
namely, directly using the mapping function 𝜙 (DSIL𝜙), defining a
kernel using the mapping function 𝜙 (DSIL𝐾𝜙

) and defining a kernel
that uses quadratic kernels instead of expanding the mapping function
𝜙 (DSIL𝐾𝑄

). All three have been shown to be equivalent, since they
induce the same models for the function 𝑓 . Hence, the performance
in terms of accuracy is equal, but they highly differ in terms of
computational cost. This section analyses this issue.

DSIL𝐾𝜙
and DSIL𝐾𝑄

need the same storage requirements than BL.
However, DSIL𝜙 requires more storage than BL due to the increasing
number of features. Particularly, the number of features changes from
𝑎𝑥 + 𝑎𝑠 (linear) in the case of BL to (𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1) (quadratic) in
the case of DSIL𝜙 due to the mapping function 𝜙 computation (let us
remind that 𝑎𝑥 and 𝑎𝑠 respectively are the instance feature and side
information sizes).

Regarding time complexity, the key of the differences is focused
on the kernel evaluation. The kernel is evaluated per each pair of
instances. Hence, the time complexity will be (𝑛2𝑜) ⋅(𝐾), where 𝑛𝑜 is
the number of instances and 𝐾 is the kernel. Then, let us now analyze
the different methods according to the kernel they use:

(i) The BL method when a kernel of linear time complexity is taken,
like linear kernel (BL𝐿) or quadratic kernel (BL𝑄), has the follow-
ing time complexity

(BL) = (𝑛2𝑜) ⋅ (𝑎𝑥 + 𝑎𝑠) = (𝑛2𝑜 ⋅ (𝑎𝑥 + 𝑎𝑠))

(ii) DSIL𝜙 has in addition a preprocess apart from the kernel evalu-
ations. This preprocess consists of expanding each instance using
the mapping function 𝜙 obtaining an instance in the image space
of 𝜙 of size (𝑎𝑥+1) ⋅ (𝑎𝑠+1). Then, the kernel evaluations will take
place in the image space of 𝜙. Hence, the time complexity will
have two terms, one for the preprocess (𝑛𝑜 ⋅ ((𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1)))
and the other for the kernel evaluations (𝑛2𝑜) ⋅((𝑎𝑥+1) ⋅ (𝑎𝑠+1)).
Therefore, the time complexity of DSIL𝜙 will be

(DSIL𝜙) = (𝑛𝑜 ⋅ ((𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1))) + (𝑛2𝑜) ⋅ ((𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1))

= (𝑛 ⋅ 𝑎 ⋅ 𝑎 ) + (𝑛2 ⋅ 𝑎 ⋅ 𝑎 ) = (𝑛2 ⋅ 𝑎 ⋅ 𝑎 )
𝑜 𝑥 𝑠 𝑜 𝑥 𝑠 𝑜 𝑥 𝑠
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Fig. 4. Differences of the methods BL𝐿, DSIL 𝑦 BL𝑄 through the toy example.
(iii) DSIL𝐾𝜙
expands each instance in the kernel evaluation. Hence, the

time complexity of the kernel evaluation is ((𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1)).
Then the time complexity of DSIL𝐾𝜙

will be

(DSIL𝐾𝜙
) = (𝑛2𝑜) ⋅ ((𝑎𝑥 + 1) ⋅ (𝑎𝑠 + 1)) = (𝑛2𝑜 ⋅ 𝑎𝑥 ⋅ 𝑎𝑠)

(iv) DSIL𝐾𝑄
applies the quadratic kernel, which is of the linear order

with regard to the features. It evaluates this kernel three times,
respectively taken 𝑎𝑥 + 𝑎𝑠, 𝑎𝑥 and 𝑎𝑠 features. Then, the time
complexity of the kernel evaluation will have three terms (𝑎𝑥 +
𝑎𝑠), (𝑎𝑥) and (𝑎𝑠). Therefore, the time complexity of DSIL𝐾𝑄
will be

(DSIL𝐾𝑄
) = (𝑛2𝑜) ⋅ ((𝑎𝑥 + 𝑎𝑠) + (𝑎𝑥) + (𝑎𝑠)) = (𝑛2𝑜 ⋅ (𝑎𝑥 + 𝑎𝑠))

(iv) SR performs 𝑚𝑜 learning procedures in the first phase (there are
any learning process in the second phase), one per each target,
where an average of 𝑛𝑜∕𝑚𝑜 instances are involved in each learning
procedure. The kernel evaluation in this case is (𝑎𝑥). Hence, the
complexity of the first phase is 𝑚𝑜 ⋅ ((𝑛𝑜∕𝑚𝑜)2) ⋅ (𝑎𝑥), that is,

(SR) = (𝑛2𝑜∕𝑚𝑜 ⋅ 𝑎𝑥)

(v) The first phase of MPLC is identical to the one of SR, then, the
complexity of the first phase will be (𝑛2𝑜∕𝑚𝑜 ⋅ 𝑎𝑥). The second
phase involves 𝑝 learning process (one per each parameter), each
one managing 𝑚𝑜 instances (as many as number of targets) and 𝑎𝑠
features. Then, the time complexity of the second phase will be
𝑝 ⋅ (𝑚2

𝑜 ⋅ 𝑎𝑠)

(MPLC) = (𝑛2𝑜∕𝑚𝑜 ⋅ 𝑎𝑥) + (𝑝 ⋅ 𝑚2
𝑜 ⋅ 𝑎𝑠)

Table 1 displays a summary of the time complexity of the algo-
rithms. On the one hand, the use of the mapping function 𝜙 in the
kernel evaluation (DSIL𝜙 and DSIL𝐾𝜙

) involves increasing the time
complexity order from linear to quadratic with regard to the number
of features 𝑎𝑥 and 𝑎𝑠. The expansion that takes place in the preprocess
of DSIL𝜙 is of linear order with regard to the number of instances.
DSIL𝐾𝜙

avoids this preprocess of DSIL𝜙, but this affects the kernel
evaluation of DSIL𝐾𝜙

in that DSIL𝐾𝜙
must perform the expansion per

kernel evaluation, which is of quadratic order with regard to the
number of instances. Hence, embedding the mapping function 𝜙 in
the kernel evaluation does not help to improve the time complexity;
otherwise, it worsens it, despite both DSIL and DSIL have the same
9

𝜙 𝐾𝜙
Table 1
Summary of time complexity of BL, DSIL𝜙, DSIL𝐾𝜙

and DSIL𝐾𝑄
together with SR and

MPLC.
Algorithm Preprocess Kernel Kernel Time complexity

size evaluation

BL – (𝑛2𝑜 ) (𝑎𝑥 + 𝑎𝑠) (𝑛2𝑜 ⋅ (𝑎𝑥 + 𝑎𝑠))
DSIL𝜙 (𝑛𝑜 ⋅ 𝑎𝑥 ⋅ 𝑎𝑠) (𝑛2𝑜 ) (𝑎𝑥 ⋅ 𝑎𝑠) (𝑛2𝑜 ⋅ 𝑎𝑥 ⋅ 𝑎𝑠)
DSIL𝐾𝜙

– (𝑛2𝑜 ) (𝑎𝑥 ⋅ 𝑎𝑠) (𝑛2𝑜 ⋅ 𝑎𝑥 ⋅ 𝑎𝑠)
DSIL𝐾𝑄

– (𝑛2𝑜 ) (𝑎𝑥 + 𝑎𝑠) (𝑛2𝑜 ⋅ (𝑎𝑥 + 𝑎𝑠))
SR – (𝑛2𝑜∕𝑚𝑜) (𝑎𝑥) (𝑛2𝑜∕𝑚𝑜 ⋅ 𝑎𝑥)

MPLC – (𝑛2𝑜∕𝑚𝑜) (𝑎𝑥) (𝑛2𝑜∕𝑚𝑜 ⋅ 𝑎𝑥) + (𝑝 ⋅ 𝑚2
𝑜 ⋅ 𝑎𝑠)(𝑚2

𝑜 ) (𝑝 ⋅ 𝑎𝑠)

time complexity order. On the other hand, DSIL𝐾𝑄
is of the same order

that BL𝑄. Hence, it was possible to build a specific kernel for properly
treating the side information without increasing the time complexity
order. Later on, the experiments will show the improved performance
that DSIL𝐾𝑄

exhibits with regard to BL𝑄. The complexity of SR and
MPLC is lower because they carry out the learning processes only taking
the instances of each target each time instead of taking the instances
of all the targets together.

5. Experiments

This section describes the experiments that were carried out in
order to compare the approaches. Particularly, the BL, SR, MPLC and
DSIL approaches were compared. Besides, both implementations of
DSIL were also compared in terms of computational time. Section 5.1
detailed the datasets taken for the experiments. In Section 5.2 the
parameter settings are established. Finally, Section 5.3 analyses and
discusses the results.

5.1. Description of datasets

There hardly are available datasets with side information in the
literature for zero-shot regression. Despite several applications can fit
this scenario, as it was illustrated in Section 1, the problem is that
the benchmark datasets do not include side information because it
could be ignored or even it has not been collected. Hence, and before
applying the methods to the air pollution datasets from the Principality
of Asturias of Spain, some artificial datasets were designed in order
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Table 2
Number of targets and side information size of the artificial datasets. The R𝑘,𝑙 datasets
eproduce a linear dependence of the side information, whereas S𝑘,𝑙 datasets simulate a
imilarity measure, where 𝑘 and 𝑙 respectively are the number of targets and the side
nformation size.
Dataset 𝑚𝑜 𝑎𝑠 Dataset 𝑚𝑜 𝑎𝑠 Dataset 𝑚𝑜 𝑎𝑠
{R, S}5,5 5 5 {R, S}5,15 5 15 {R, S}5,25 5 25
{R, S}10,5 10 5 {R, S}10,15 10 15 {R, S}10,25 10 25
{R, S}50,5 50 5 {R, S}50,15 50 15 {R, S}50,25 50 25
{R, S}100,5 100 5 {R, S}100,15 100 15 {R, S}100,25 100 25

to exhaustively analyze the performance of the methods. The number
of targets and the side information size were varied to build different
artificial datasets in order to study the effect of the methods under
different values of these parameters.

5.1.1. Artificial datasets
The artificial datasets are built following the same guidelines of

[17]. They only differ in the number of instances in order to make
the BL𝑄 computationally feasible, but the conclusions reported in [17]
remains. A uniform distribution in the range of (−2; −1] ∪ [+1; +2) was
aken to provide the feature values of the instances 𝑥 and the side
nformation 𝑠 (feature values of the target description) due to avoid
ero values or values near zero. Then, given the features of an instance
= (𝑥𝑖,… , 𝑥𝑎𝑥 ) and the side information of a target 𝑠 = (𝑠𝑖,… , 𝑠𝑎𝑠 ),

rediction value 𝑦 for this instance is built as a linear function of 𝑥,
hose coefficients {𝛼𝑖(𝑠)}

𝑎𝑥
𝑖=1 are in turn functions of 𝑠, that is,

=
𝑎𝑥
∑

𝑖=1
(𝛼𝑖(𝑠) ⋅ 𝑥𝑖) + 𝛽

Two different ways of obtaining {𝛼𝑖(𝑠)}
𝑎𝑥
𝑖=1 coefficients have been

ddressed in order to cover the domains that the methods SR, MPLC and
SIL are able to encompass.4 On the one hand, datasets will simulate

he most general structure that provides a linear dependence of side
nformation. On the other hand, the target will be generated in terms
f a similarity measure 𝛿 applied to the side information 𝑠 of the target
nd a set of other side information descriptions {𝜇𝑘}𝑑𝑘=1 (see [17] for
ore details). Formally,

𝑖(𝑠) =
𝑎𝑠
∑

𝑗=1
(𝛾𝑖,𝑗 ⋅ 𝑠𝑗 ) + 𝛽𝑖 𝛼𝑖(𝑠) =

∑𝑑
𝑘=1

(

𝜏𝑖,𝑘 ⋅ 𝛿(𝑠, 𝜇𝑘)
)

∑𝑑
𝑘=1 𝛿(𝑠, 𝜇𝑘)

The same uniform distribution in the range of (−2; −1] ∪ [+1; +2)
as for the feature values of 𝑥 and 𝑠 was taken for obtaining 𝛽, {𝛽𝑖}

𝑎𝑠
𝑖=1,

{𝛾𝑖,𝑗}
𝑎𝑥 ,𝑎𝑠
𝑖=1,𝑗=1, {𝜏𝑖,𝑘}

𝑎𝑥 ,𝑑
𝑖=1,𝑘=1 and {𝜇𝑘}𝑑𝑘=1 coefficients. The similarity func-

tion 𝛿 has been randomly chosen to be either the Manhattan (L1 norm)
or the Euclidean (L2 norm) in equal shares in order to avoid bias.

The number of instances 𝑛𝑜 and features 𝑎𝑥 were respectively fixed
to 500 (5000 in [17]) and 50 (the same value as in [17]) in both ways of
obtaining {𝛼𝑖(𝑠)}

𝑎𝑥
𝑖=1. The number of targets 𝑚𝑜 considered were 5, 10, 50

and 100, and the side information size 𝑎𝑠 were 5, 15 and 25, in order to
cover a range both below and above the real datasets (the same values
as in [17]). Table 2 shows the artificial datasets taken. The R𝑘,𝑙 datasets
reproduce a linear dependence of the side information, whereas S𝑘,𝑙
datasets simulate a similarity measure, where 𝑘 and 𝑙 respectively are
the number of targets 𝑚𝑜 and the side information size 𝑎𝑠.

Other artificial datasets were generated in order to compare the
computational time of the different implementations of DSIL. Let us
make vary the number of instances (𝑛𝑜) and features (𝑎𝑥) together with

4 This process has not been done for the BL method, since it would mean
hat the side information would not reproduce the relationship between the
nstances and targets; otherwise it would lead to a general-purpose regression
ask and not a general-purpose zero-shot regression task.
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Table 3
Properties of the air pollution datasets.

Dataset 𝑛𝑜 𝑎𝑥 𝑚𝑜 𝑎𝑠
NO2, PST, NO, SO2, CO, O3 41 325 12 5 16

the number of targets (𝑚𝑜) and side information size (𝑎𝑠). Let us remind
that the number of features that feed the DSIL approach is the number
of features (𝑎𝑥) plus the side information size (𝑎𝑠), that is, 𝑎𝑥 + 𝑎𝑠.
Besides, the number of instances that feed the DSIL approach is the
number of instances (𝑛𝑜) multiplied by the number of targets (𝑚𝑜), that
is 𝑛𝑜 ⋅𝑚𝑜 (assuming that the same instances are shared by all the targets,
for simplicity). Hence, a range of representative values for each 𝑎𝑥, 𝑎𝑠,
𝑜 and 𝑚𝑜 were taken to perform the comparison. Particularly, both
𝑥 and 𝑎𝑠 took values 10, 100, 250 and 500, whereas the values for 𝑛𝑜
ere 10, 20, 30 and 40 and the values for 𝑚𝑜 were 5, 10, 15 and 20.
hen, the values for the number of features that feed the DSIL approach
𝑎𝑥+𝑎𝑠) were 20, 200, 500 and 1000, whereas the values for the number
f instances (𝑛𝑜 ⋅ 𝑚𝑜) were 50, 200, 450 and 800.

.1.2. Air pollution datasets
A total of 11 pollutants are collected every 15 min (and hourly

veraged) between 2010 and 2018 in 18 pollution and meteorological
tations located in the Principality of Asturias, Spain. However, just 6
ollutants (NO2, PST, NO, SO2, CO and O3) and 5 stations (𝑚𝑜 = 5) are
aken to get the largest common set of pollutants and stations, since
ot all stations collect all the pollutants. The instance features are a
otal of 12 (𝑎𝑥 = 12) hourly averaged weather conditions, such as wind
irection according to Cartesian axes, the season or the precipitation.
he goal is to predict the hourly pollutant concentration. The stations
re the targets for which surrounding characteristics were collected to
orm the side information. The fact is that environmental experts [3,4]
rgue that pollutant concentration not only depends on the weather
onditions; otherwise it is highly influenced by the environment where
t is gathered. Particularly, the surrounding information collected con-
isted of establishing if an urban center or highway or factory or sea
or river) is nearby the station in the North, South, East and/or West
irections. Then, a total of 16 features (4 cardinal points multiplied by 4
ossible kinds of surroundings) have formed the side information (𝑎𝑠 =
6). Hence, the goal is to predict pollutant concentration from certain
eather conditions taken in a station for which weather conditions
ave not been collected (unobserved station). Table 3 displays the
roperties of the 6 pollutants (NO2, PST, NO, SO2, CO and O3) datasets.

.1.3. Communities and crime dataset
The Communities and Crime dataset of the UCI Machine Learning

epository5 includes socio-economic data from the 1990 US Census,
aw enforcement data from the 1990 US LEMAS survey and crime data
rom the 1995 FBI UCR. The instances are counties of the USA and the
arget to predict is the violent (murder, rape, robbery and assault) crime
atio in these counties. The original version of this dataset was adapted
o be suitable for zero-shot regression. Particularly, the instances are
ounties whose features are socio-economic characteristics. The targets
re the states that are divided into counties. The side information for
he states is also socio-economic features. Hence, the goal is to predict
he crime ratio for a county that belongs to an unobserved state. A total
f 1420 counties (𝑛𝑜) described by 101 features (𝑎𝑥) and belonging to
3 states (𝑚𝑜) described by 15 features (𝑎𝑠) conform this dataset for
redicting the crime ratio.

5 https://archive.ics.uci.edu/ml/index.php
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5.2. Parameter settings

All the approaches were implemented in Python using Scikit Learn
ibrary.6 All the code is available in GitHub repository .7 Support Vector
egression (SVR)8 is required in order to make possible the use of
quadratic kernel in the BL approach and also to implement the

ersions of DSIL that involve kernels. Hence, SVR is taken for all
he approaches in order to get a fair comparison. BL𝐿 and BL𝑄 are

the BL approach respectively using linear and quadratic kernels. Only
these kernels are considered, since DSIL is in between both, that
is, DSIL considers the monomials of order 1, as the linear kernel,
but it also includes some monomials of order 2, but not all possible
monomials of order 2 that the quadratic kernel includes. SR𝐸 and
SR𝑀 are the SR approach respectively using the typical Euclidean (L2
norm) and Manhattan (L1 norm) distances to define the relationship
between observed and unobserved targets. MPLC has just one version.
Finally, DSIL admits three different implementations, namely DSIL𝜙,
DSIL𝐾𝜙

and DSIL𝐾𝑄
, which respectively are the implementation that

computes 𝜙 mapping directly, the implementation that computes the
kernel using 𝜙 mapping and the implementation that computes the
kernel though a linear combination of quadratic kernels. However,
the three implementations report the same performance scores since,
in fact, it is the same method. Then, they just differ in the com-
putational time that will be also compared. The hyperparameter 𝑐
of SVR was optimized through a grid search procedure taking the
values {10−3, 10−2,… , 102, 103} for 𝑐 and using a 3-fold cross validation
for estimating the mean squared error. The score for comparing the
approaches was the relative mean squared error computed following
again a 3-fold cross validation. The cross validation performed under
the existence of side information is slightly different from the common
cross validation. Under this paradigm, not only instances are taken into
account; otherwise, both instances and targets must be considered. Be-
sides, some prediction values for the testing fold must be discarded for
consistency. These values are (i) for the observed (training) targets and
unobserved (testing) instances and (ii) for the unobserved (testing) tar-
gets and observed (training) instances (see [17] for more information).
None cross-validation was performed for comparing the computational
time of the DSIL approaches (DSIL𝜙, DSIL𝐾𝜙

and DSIL𝐾𝑄
) in order to

avoid the little differences in number of instances and targets that may
be in the different folds. A training-test procedure repeated 3 times
was carried out instead. A Friedman-Nemenyi test [76] was performed.
The Friedman test is a non-parametric hypothesis test that ranks all
algorithms for each data set separately. If the null-hypothesis (all ranks
are not significantly different) is rejected, the Nemenyi test is adopted
as the post-hoc test. According to the Nemenyi test, the performance of
two algorithms is considered significantly different if the corresponding
average ranks differ by at least the so-called critical difference.

5.3. Result analysis and discussion

This section analyses and discusses the results of the experiments.

5.3.1. Artificial datasets
Table 4 displays the mean relative square error and Friedman ranks

for artificial datasets using BL𝐿, BL𝑄 and DSIL. The interest of this
comparison lies in finding out to what extent the DSIL approach repro-
duces a linear relationship between features and targets with regard to
a linear approach (BL𝐿) and a quadratic approach (BL𝑄). Clearly, DSIL
outperforms both BL𝐿 and BL𝑄. Besides, the differences are statistically
significant at the level of 95% in the case of the BL𝑄 for both kinds
of artificial datasets and in the case of BL𝐿 for 𝑅𝑘,𝑙 datasets, since

6 https://scikit-learn.org/stable/.
7 https://github.com/UO231492/DSILZSR.
8
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https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html.
Table 4
Mean relative square error and Friedman ranks for artificial datasets using BL𝐿, BL𝑄
and DSIL.

Dataset BL𝐿 BL𝑄 DSIL

R5,5 112.03(2) 113.85(3) 58.55(1)
R10,5 131.46(3) 0.04(2) 3.32E−12(1)
R50,5 108.35(3) 4.70E−05(2) 8.61E−15(1)
R100,5 111.40(3) 2.58E−05(2) 2.54E−15(1)
R5,15 115.68(3) 89.13(2) 78.73(1)
R10,15 184.42(3) 72.66(2) 61.71(1)
R50,15 100.68(3) 2.02E−05(2) 2.00E−14(1)
R100,15 117.02(3) 1.30E−05(2) 3.21E−15(1)
R5,25 104.87(1) 107.74(3) 105.50(2)
R10,25 194.14(3) 80.82(2) 65.25(1)
R50,25 102.47(3) 1.11E−04(2) 6.47E−13(1)
R100,25 108.13(3) 1.34E−05(2) 4.89E−15(1)

Avg. Rank (2.75) (2.17) (1.08)

Dataset BL𝐿 BL𝑄 DSIL

S5,5 6.07(1) 114.58(2) 136.56(3)
S10,5 2.97(2) 76.97(3) 2.45(1)
S50,5 1.74(2) 85.13(3) 0.41(1)
S100,5 1.42(2) 73.45(3) 0.20(1)
S5,15 0.20(1) 107.15(3) 63.40(2)
S10,15 0.33(1) 87.87(3) 70.75(2)
S50,15 0.31(2) 89.43(3) 0.04(1)
S100,15 0.38(2) 93.31(3) 0.03(1)
S5,25 0.63(1) 69.63(3) 54.71(2)
S10,25 1.96(1) 71.69(3) 54.55(2)
S50,25 1.70(2) 83.00(3) 0.50(1)
S100,25 1.21(2) 89.55(3) 0.16(1)

Avg. Rank (1.58) (2.92) (1.50)

Mean rank (2.17) (2.55) (1.29)

Table 5
Mean relative square error and Friedman ranks for artificial datasets using SR𝐸 , SR𝑀 ,
MPLC, and DSIL.

Dataset SR𝐸 SR𝑀 MPLC DSIL

R5,5 105.76(3) 102.90(2) 111.74(4) 58.55(1)
R10,5 115.20(4) 105.75(3) 3.61E−08(2) 3.32E−12(1)
R50,5 72.04(4) 67.05(3) 1.84E−10(2) 8.61E−15(1)
R100,5 78.90(4) 72.72(3) 9.79E−11(2) 2.54E−15(1)
R5,15 105.26(4) 104.94(3) 88.97(2) 78.73(1)
R10,15 197.03(3) 197.18(4) 85.73(2) 61.71(1)
R50,15 93.10(4) 89.17(3) 2.97E−10(2) 2.00E−14(1)
R100,15 104.29(4) 101.45(3) 1.06E−10(2) 3.21E−15(1)
R5,25 101.56(1) 101.60(2) 107.88(4) 105.50(3)
R10,25 157.36(4) 156.97(3) 87.09(2) 65.25(1)
R50,25 100.03(4) 97.81(3) 6.03E−09(2) 6.47E−13(1)
R100,25 102.22(4) 100.21(3) 1.22E−10(2) 4.89E−15(1)

Avg. Rank (3.58) (2.92) (2.33) (1.17)

Dataset SR𝐸 SR𝑀 MPLC DSIL

S5,5 6.73(1) 6.84(2) 136.56(3.5) 136.56(3.5)
S10,5 2.30(1) 2.33(2) 6.79(4) 2.45(3)
S50,5 1.33(4) 1.30(3) 0.28(1) 0.41(2)
S100,5 1.10(4) 1.08(3) 0.20(1.5) 0.20(1.5)
S5,15 0.19(1) 0.20(2) 109.21(4) 63.40(3)
S10,15 0.30(1.5) 0.30(1.5) 70.73(3) 70.75(4)
S50,15 0.29(3.5) 0.29(3.5) 0.04(1.5) 0.04(1.5)
S100,15 0.35(4) 0.34(3) 0.03(1.5) 0.03(1.5)
S5,25 0.65(1) 0.66(2) 54.71(3.5) 54.71(3.5)
S10,25 1.90(1.5) 1.90(1.5) 54.55(3.5) 54.55(3.5)
S50,25 1.52(4) 1.51(3) 0.50(1.5) 0.50(1.5)
S100,25 1.16(4) 1.15(3) 0.16(1.5) 0.16(1.5)

Avg. Rank (2.54) (2.46) (2.50) (2.50)

Mean rank (3.06) (2.69) (2.42) (1.84)

the critical difference of the Nemenyi test at this level is 0.95. The
exception is with regard to BL𝐿 for 𝑆𝑘,𝑙 datasets, for which DSIL and
BL𝐿 perform highly similar. In this case, DSIL and BL𝐿 split up the
best performance. DSIL outperforms BL𝐿 when there are many targets,

whereas BL𝐿 gets the best performance when the number of targets is

https://github.com/UO231492/UO231492/DSILZSR
https://scikit-learn.org/stable/
https://github.com/UO231492/DSILZSR
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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Fig. 5. Time (in seconds) of BL𝑄, DSIL𝜙, DSIL𝐾𝜙
and DSIL𝐾𝑄

together with SR and MPLC when the number of instances that feed the approaches varies and for different values
of 𝑎𝑥 + 𝑎𝑠.
low. Globally, DSIL is also statistically better than both BL𝐿 and BL𝑄
at the significant level of 95% with a critical difference of the Nemenyi
test of 0.67.

Table 5 displays the mean relative square error and Friedman ranks
for artificial datasets using SR𝐸 , SR𝑀 , MPLC, and DSIL. DSIL exhibits
the best performance for 𝑅𝑙,𝑘 datasets. Besides, DSIL is significantly
better than both SR𝐸 and SR𝑀 at the significant level of 95%, since the
critical difference is 1.35. However, all the approaches perform highly
similar for 𝑆𝑙,𝑘 datasets, where SR𝑀 is slightly better than the rest. In
certain sense, this result is expected because of the way the artificial
datasets were built. In any case, DSIL continues providing the best
global performance. However, the differences in global performance
are only significant in the case of SR𝐸 at the level of 95%, for which
the critical difference is 0.95. Reducing the significant level to 90%,
DSIL provides significant differences with regard to both SR𝐸 and SR𝑀
because the critical difference in this case is 0.85. Finally, there are no
significant differences between DSIL and MPLC.

5.3.2. Real datasets
Table 6 exhibits the mean relative square error and Friedman ranks

for air pollution datasets and the Communities and Crime dataset of
the UCI Machine Learning repository using BL𝐿, BL𝑄, SR𝐸 , SR𝑀 , MPLC
and DSIL. Clearly, DSIL provides the best performance for most of the
12

real datasets. The exceptions are the SO2 and O3 pollutant dataset, for
which SR𝑀 slightly outperforms DSIL. The critical differences at the
level of 99%, 95% and 90% respectively are 3.93, 3.37 and 3.06. Hence,
DSIL is significantly better than BL𝑄 at the level of 90% and 95% even
though BL𝑄 is slighly better than DSIL for the Communities and Crime
dataset. Despite DSIL outperforms all the methods, SR𝑀 and MPLC also
reach good performance with regard to BL𝑄, BL𝐿 and SR𝐸 . These results
confirm the hypothesis that properly treating side information will lead
to an improvement in performance. However, as it can be seen, it
varies from one pollutant to another, probably because the relationship
between features and targets and between this relationship and the side
information varies from one pollutant to another.

5.3.3. Computational time analysis of DSIL𝜙, DSIL𝐾𝜙
and DSIL𝐾𝑄

Figs. 5 and 6 show the computational time (in seconds) employed by
the three implementations of DSIL (DSIL𝜙, DSIL𝐾𝜙

and DSIL𝐾𝑄
) over the

specific datasets built in order to carry out this analysis. It also shows
the computational time of BL, SR and MPLC. Particularly, Fig. 5 shows
the computational time varying the number of instances (𝑛𝑜 ⋅𝑚𝑜) for the
different values of the number of features (𝑎𝑥 + 𝑎𝑠). Conversely, Fig. 6
displays the computational time varying the number of features (𝑎𝑥+𝑎𝑠)
for the different values of the number of instances (𝑛𝑜 ⋅ 𝑚𝑜).

On the one hand, DSIL𝐾𝜙
clearly reaches the worst computational

time as the number of instances increases (see Fig. 5). In fact, this

behavior was expected because, as commented before, the interest in
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together with SR and MPLC when the number of features that feed the approaches varies and for different values of
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Table 6
Mean relative square error and Friedman ranks for air pollution datasets using BL𝐿,

L𝑄, SR𝐸 , SR𝑀 , MPLC and DSIL.

Dataset BL𝐿 BL𝑄 SR𝐸 SR𝑀 MPLC DSIL

NO2 86.11(5) 117.49(6) 81.07(4) 76.52(3) 76.43(2) 71.70(1)
NO 90.86(4) 100.42(6) 91.17(5) 88.95(3) 87.15(2) 86.64(1)
PST 96.20(5) 98.71(6) 93.84(4) 90.28(2) 91.68(3) 89.45(1)
SO2 95.01(4) 100.95(6) 95.53(5) 92.19(1) 93.49(3) 92.87(2)
CO 90.08(2) 100.11(6) 99.27(5) 98.48(4) 90.22(3) 85.36(1)
O3 68.91(2) 100.50(6) 69.83(3) 68.10(1) 90.50(5) 76.79(4)
Crime 33.36(4) 24.39(1) 33.43(5) 35.86(6) 25.40(3) 24.57(2)

Avg. Rank (3.71) (5.29) (4.43) (2.86) (3.00) (1.71)

using kernels is precisely to avoid computing the kernel via 𝜙 mapping.
On the other hand, dispensing with kernels (DSIL𝜙) is the best option
for low values of features, but soon, the computational time starts to
rocket as the number of features increases (see the evolution of the
computational time of DSIL𝜙 from Fig. 5(a) to Fig. 5(d)). Indeed, the
graph of DSIL𝜙 is quite closer to DSIL𝐾𝜙

for the highest value of the
umber of features (𝑎𝑥 + 𝑎𝑠 = 1000). Finally, DSIL𝐾𝑄

is the steadier
13

ption whatever the number of features is. m
Varying the number of features (see Fig. 6), the implementations of
SIL that apply the 𝜙 mapping (DSIL𝜙 and DSIL𝐾𝜙

) have a quadratic
rder computational time, whereas the computational time is of linear
rder in case of the implementation defined though a linear combina-
ion of quadratic kernels (DSIL𝐾𝑄

). Also, DSIL𝐾𝜙
is highly affected by

hatever value of the number of instances (see the evolution of the
omputational time of DSIL𝐾𝜙

from Fig. 6(a) to Fig. 6(d) and especially
rom 𝑛𝑜 ⋅ 𝑚𝑜 = 50 to 𝑛𝑜 ⋅ 𝑚𝑜 = 200).

SR and MPLC spent the lowest time, since, as commented before,
hey do not learn taken the instances of all the targets together, but
hey perform a learning procedure per target only taking instances of
his target.

. Conclusions and future work

This paper proposes a one-phase method for zero-shot regression, a
ask whose goal is to induce models for predicting continuous values
or unobserved targets, a kind of targets for which instances have not
een collected. Under this lack of instances, zero-shot regression takes
dvantage of the existence of side information, which is neither features
or targets, but provides information about the relationship between
eatures and targets. The straightforward way of exploiting such infor-

ation consists of taking them as common features in a unique process.
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However, some recent approaches have empirically shown that side
information deserves to be mined in a different way than the way
common instance features are treated. These approaches firstly learn
models for the observed targets just taking into account the instance
description features and they secondly integrate side information with
these models, leading to a two-phase process. The main disadvantage
of these approaches is precisely the existence of two different phases,
which leads to locally optimize the exploitation of the information
instead of as a whole. This paper proposes an alternative in between,
that is, it deals with zero-shot regression in a one-phase procedure
integrating instance description features and side information simul-
taneously in order to get a global optimal process, but treating side
information properly according to its nature and in any case in a
different way that instance features are treated. The method is firstly
defined in terms of the existing but unknown relationship between
features and targets and between this relationship and side information.
Then, a mapping function is deduced from this definition. However, the
high storage requirements of this definition make necessary look for an
alternative. For this purpose, the method is then built on the basis of
a kernel designed from that mapping function. The main drawback of
this kernel is its own definition in terms of the mapping function, which
incurs in a high computational cost. In fact, the aim of the kernels
is precisely to avoid explicitly applying the mapping function and to
perform the inner product in the image space of the mapping function
instead. Hence, another alternative definition is provided for the kernel
in terms of the existing quadratic kernel, providing an implementation
of linear instead of quadratic order with regard to the number of
features.

Several experiments over both artificial and real datasets exhibit the
superiority of the novel approach with regard to other recent existing
approaches, being statistically significant with regard to some of them.
Additional experiments were accomplished to compare the computa-
tional time of the different implementations of the new method (the
one consisting of directly mapping the instances using and assuming a
linear relationship in the image space of the mapping afterwards, the
one consisting of defining a kernel via the mapping function and the
one consisting of defining the kernel via the existing quadratic kernel).
The conclusion is that the computational time is much steadier if the
kernel is defined in terms of the existing quadratic kernel both varying
the number of instances or features.

In future work, the plan is to extend the kernel design beyond
the linear scenario. This means to cope with non-linearity both in the
relation between targets and features and between the side information
and the observed target model parameters. Adapting the method for
classification or even ordinal regression is neither a trivial nor straight-
forward task, since it would means to provide predictions for new
unobserved classes, something that a simple change of the kernel in the
method never provides. On the other hand, a zero-shot multi-regression
scenario can be contemplated as a task for future research, where more
than one continuous value is predicted simultaneously. Extending the
method to this scenario is quite easy but entails studying how the side
information influences the relationship between the multiple outputs.
Another context to extend the method may be in a preference learning
framework, where instances of an unobserved target can be ordered
from the orders provided for the instances of the observed targets. In
this context, the model that provides the order changes from one target
to another, but, unlike in classification or ordinal regression, it does
not require predictions for new unobserved classes, since in preference
learning there are not class values.
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