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Abstract: Artificial neural networks (ANNSs) have become key methods for achieving global climate
goals. The aim of this review is to carry out a detailed analysis of the applications of ANNs to the
energy transition all over the world. Thus, the applications of ANNs to renewable energies such as
solar, wind, and tidal energy or for the prediction of greenhouse gas emissions were studied. This
review was conducted through keyword searches and research of publishers and research platforms
such as Science Direct, Research Gate, Google Scholar, IEEE Xplore, Taylor and Francis, and MDPI.
The dates of the most recent research were 2018 for wind energy, 2022 for solar energy, 2021 for tidal
energy, and 2021 for the prediction of greenhouse gas emissions. The results obtained were classi-
fied according to the type of structure and the architecture used, the inputs/outputs used, the region
studied, the activation function used, and the algorithms used as the main methods for synthesizing
the results. To carry out the present review, 96 investigations were used, and among them, the pre-
dominant structure was that of the multilayer perceptron, with Purelin and Sigmoid as the most
used activation functions.

Highlights:
. The application of different types of RNA is very effective in the energy transition.

ANN:Ss are a very effective/useful tool in the fight against climate change.
High capacity of ANNs to make predictions in different meteorological conditions.

Keywords: machine learning; artificial neural network; big data; energy transition

1. Introduction

Currently, the most accurate, most efficient, and most powerful machine for perform-
ing operations is the human brain, which can provide solutions to problems that PCs are
not capable of solving. Researchers and scientists have developed artificial intelligence
(AI) models to reproduce, to some extent, the processes that take place in the human brain [1].
Currently, Al is divided into different groups: artificial neural networks (ANNs) and dif-
ferent hybrid systems. Among them, ANNSs are the best method as they are accurate, fast,
and simple and have the ability to model a multivariate system [2].

The neural network (NN) concept has more than half a century of history; however,
it is only in the last 20 years that the largest number of applications have been developed
in the fields of defense, engineering, mathematics, economics, medicine, meteorology, and
many others.

The history of neural networks dates to the 1940s. It was Warren McCulloch and Wal-
ter Pitts who first built a very simple neural network using electrical circuits [3]. Later,
Donald Hebb proposed that neural pathways strengthen with each use, an important con-
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cept in human learning [4]. Then, in the 1950s, Nathaniel Rochester of IBM Research La-
boratories first attempted to simulate complex neural networks [5]. In 1959, Bernard
Widrow and Marcian Hoff developed models called “ADALINE” and “MADALINE”
[6,7]. After the publication of the book “Perceptrons” by Marvin Minsky and Seymour
Papert in 1969, there was a period of slowdown in research. This book argued that the
concept of a single perception approach to neural networks did not have an effective cor-
relation in multilayer neural networks [8]. In the 1970s, two competing models emerged
in the conception of neural networks, called symbolism and connectionism [9]. The con-
troversy ended with the acceptance of the symbolic paradigm as the most viable line of
research. In the early 1980s, however, connectionism resurfaced, based on Werbos’s 1974
studies. These studies made it possible to rapidly develop the formation of multilayer
neural networks using the so-called “backpropagation” algorithm [10,11]. Since then, the
field of neural networks has seen significant advances. Some of these advances were the
introduction and development of max-pooling in three-dimensional data recognition [12].
On the other hand, advances included the development of deep learning and its applica-
tion to a wide variety of fields such as renewable energy [12].

However, ANNSs are not the only ones that learn by example. There are other meth-
ods, such as the following. Supervised learning: this method trains algorithms on the basis
of sample input and output data labeled by humans [13]; deep learning: it uses neural
networks to learn from the data and to improve performance by increasing the number of
samples that are available during the learning process [14]; machine learning paradigms
for unsupervised classification such as conceptual clustering [15], which is an unsuper-
vised learning method that focuses on generating concept descriptions for the generated
classes. Other machine learning paradigms that learn by example are semi-supervised
learning [16], active learning [17], transfer learning [18], and online learning [19].

The data collection needed to train ANNs must be a sufficiently complete and con-
sistent set of information [20]. The development of machine learning models requires his-
torical data from several years, supplemented by information that is more recent. This
information amounts to thousands of data points [20]. In the context of different energy
transition scenarios and geographical locations, it is essential to ensure that the data col-
lection is as complete, impartial, and representative as possible. This is achieved by man-
aging diverse and reliable sources of information. Some of the most used sources are pub-
lic repositories, data from official agencies and organizations, research centers, and geo-
graphic databases [21,22]. To ensure that the data are impartial, complete, and representa-
tive of all the energy transition scenarios analyzed, it is necessary to perform careful data
selection and apply measures such as domain adaptation and data augmentation [23].
Model performance can also be improved, and training data can be augmented by using
pretrained models in other domains [23]. The authors, based on the objective pursued and
the exact geographical location, have analyzed all data obtained in the various studies,
with latitude and longitude coordinates provided in many of them. Similarly, much of the
data provided are based on measurements made by the authors themselves when using AL

ANNSs have gained momentum to the point where they have become popular and
useful models for classification, clustering, recognition, and prediction in a wide variety
of applications [24]. ANNs are increasingly being used for different applications due to
their ability and effectiveness in solving different problems. They have proven to be very
efficient when it is complex to cull through a mass of existing data, for example, in the
evaluation of public transportation of people and goods [25], image recognition [26], med-
ical analysis [27], efficiency analysis in nonlinear contexts, or to adjust production func-
tions, among other applications [28,29].

ANN consists, in most cases, of an input layer, at least one hidden layer (in the case
of a simplified model), an output layer, the weight, the connection biases, the activation
function, and the sum node. The layers in turn are made up of several connected units
(called neurons) [30], considered to be the fundamental building blocks for the correct
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functioning of a neural network. The link between neurons is achieved by so-called con-
necting links [2]. The basic diagram of a neuron is shown in Figure 1 [31].

Synaptic weights

Activation
Bias source function
Input 3
/\ Z () Output
Summing junction |
9;
Inputn Threshold

Figure 1. Schematic diagram of a neuron [31].

The main characteristic feature of ANNs compared to other approaches is their abil-
ity to learn by example. ANNSs can be applied to any situation where there is a relationship
between input and output variables [32]. The procedure for the learning process is what
is known as a learning algorithm, the purpose of which is to alter the synaptic weights of
the networks in order to achieve a previously set goal [33].

ANNSs must be trained by feeding the network a set of quantified data to achieve the
desired output using a pool of input data [34]. The learning process continues until the
NN output matches the expected output [35]. The problem with ANN models lies pre-
cisely in overtraining, i.e., when the network capacity for training is too high or too many
training iterations are allowed per network [36]. The degree of training accuracy obtained
in the different applications where the ANN technique is used is very high, in the order
of 107 to complete the training processes [2]. NNs can be grouped into different categories
depending on their structure [37]. This classification is shown in Figure 2. The most com-
monly used are single-layer feed-forward networks, multilayer feed-forward networks,
radial basis networks, and dynamic (differential) or recurrent neural networks. Of these,
single-layer power supply networks are the best known and most widely used. Single-
layer power supply networks were the first and simplest networks devised. Information
travels in only one direction: from input nodes, through hidden nodes, to output nodes.
This type of NN can be designed based on different unities, and among them, the percep-
tron is the most famous and simplest example [38]. Rosenblatt created the perceptron in 1958,
thanks to the creation of the training algorithm [39]. The perceptron is composed of a single
neuron with adjustable synaptic weights and thresholds [40]. The most frequently used algo-
rithm is the so-called backpropagation (BP) algorithm [41]. The BP algorithm consists of train-
ing and correcting the weights until the error function is below the desired tolerance limit [37].

Single-layer perceptron

Feed-forward networks |————| Multi-layer perceptron |

Radial basis function networks
Artificial —
Neural Competltlve networks

Networks

—| Kohonen’s selforganizing map (SOM) |

Recurrent/feedback networks |——| ART models |

—| Bayesian regularized neural network (BRANN)l

Hopfield network

Figure 2. Artificial Neural Networks classification.
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ANN models have proven to be a useful tool with great applications in different en-
gineering systems. Unlike mathematical models, ANNs are able to adapt to real-world
conditions [42]. Applications of NNs include forecasting [43,44], control [45], modeling
[46], and pattern classification [47]. ANNs have been applied to different branches of en-
gineering. In this work, given the wide variety of applications, it has been decided to clas-
sify them by energy type.

This article aims to provide a comprehensive review, as there is a lack of research in
the literature that unifies in a single article the different ways of applying ANNSs to the
energy transition. It is of vital importance due to the increasingly frequent and significant
environmental impacts and for the achievement of the United Nations (UN) Sustainable
Development Goals, thus allowing researchers to know the state of the art so far on the
different modalities of applying ANNSs in the field of energy transition.

This review will focus on the contribution of renewable energies to the energy tran-
sition as the main contributors to mitigating the effects of climate change, as well as the
applications of renewable energies to specific sectors such as buildings and transport. Fi-
nally, the different ways of using ANNs for the prediction of greenhouse gas emissions
will be studied. The review has been carried out through the search and research of key-
words in publishers and research platforms such as Science Direct, Research Gate, Google
Scholar, IEEE Xplore, Taylor and Francis, and MDPI.

The study models had different applications in terms of scale. Some were designed
to illuminate a single household, while others were designed for large-scale networks. The
only difference lies in the size of the inputs provided by the authors to the neural net-
works. The models are highly versatile and have the potential to address energy planning
needs and contribute to improvements in the energy transition. To ensure the reliability
and robustness of neural networks in predicting or optimizing renewable energy systems,
various methods and metrics can be used. Some of these methods are adversarial robust-
ness evaluation [48]; robustness measurement and assessment (RoMA) [49]; extreme value
theory approach [50]; and weight alterations [51]. These methods and metrics help evalu-
ate the reliability and robustness of neural networks, especially in the context of adversar-
ial attacks and environmental uncertainty.

The use of Al-powered neural networks in energy transition planning raises several
ethical considerations. These considerations include decision making and accountability
[52], as Al technology raises ethical questions related to decision making and accountabil-
ity [53]; fairness and bias [54]; data privacy and security [55]; social responsibility [56],
including job displacement and changes in economic structures; and environmental and
climate implications [53], as the energy consumption of training large amounts of neural
networks can be significant. By taking these ethical considerations into account, it would
be possible to ensure that the use of Al-powered neural networks in energy transition
planning is responsible, fair, and consistent with social values and environmental sustain-
ability. Human experts are essential in the design, programming, and operation of Al to
avoid unpredictable errors and to ensure that decisions made by Al are traceable [57]. In
addition, Al development must adhere to principles such as accountability, transparency,
verifiability, and predictability to serve society and fulfill human rights [57]. The concept
of collaborative intelligence is important, where Al enhances human creativity and capa-
bilities [58]. All of this achieves a responsible and ethical balance between the human ex-
perience and the capabilities of Al to serve the needs and preferences of society.

2. Applications of ANNs to Renewable Energies

This section details the different research carried out in the field of renewable ener-
gies and more specifically in wind, solar, and tidal energy. These three types of renewable
energies have been selected as they are the ones that have the largest contributions to the
national energy balances [59] as well as due to the greater abundance of works found.
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2.1. Applications of ANNs for Wind Power and Speed Prediction

Within the renewable energy mix, wind energy is currently considered the most eco-
nomical way to generate electricity. Recently, there has been new research into methods
capable of predicting wind speed. This is of great importance due to the continuous
growth of wind power generation worldwide [60]. For proper operation of wind farms, a
constant stream of data about wind speed and wind direction is required. Artificial neural
networks are an excellent method for short-, medium-, and long-term wind speed forecasting.

The following Table 1 summarizes the main research pieces found when performing
the review. The studies have been classified according to the ANN structure, journal and
region, input and outputs for the network, and the activation function employed.

Table 1. Uses of artificial neural networks for wind power and speed prediction.

ANNT I/0
Authors NN Type Country/ . Activation
and Journal ) Setting ) Notes
and Year Region Function
Structure Input Output
. Wind spe.ed . Trained by BP
Multilayer (W;), relative Ener logsig aleorithm
Perceptron Renewable Muppandal,  humidity &Y (hidden layer) 8
1 [61] . output of ) Input data
(MLP) Energy India (RH), . purelin .
. wind farms normalized to
3-4-1 generation (output layer)
[0, 1]
hours
Longltl'lde Trained by BP
(lon), latitude logsig algorithm
A R 1 1 1ti W, rel
2 [62] NN enewable Turkey (lat), altitude , related (hidden and Input and Output
4-X-2 Energy (A), power .
output layer) data normalized
measurement
_ to [0, 1]
height
logsig Resilient
3 [63] MLP Renewable Turkey Ws, month W. (hidden I.ayer) propagatlon (RP)
5-10-5-1 Energy M) purelin algorithm was
(output layer) adopted
Use Gaussian
. . Renewable .
Radial Basis . function for
Function and Proportional hidden laver
4 [64] uneto Sustainable Iran Wi and integral - en aye
(RBF) Ener (P1) gains Gravitational
1-7-2 Re iegy 8 search algorithm
Views (GSA) is adopted
Input data
normalized to
[0, 1]
. Trained by
tansig Levenberg-
W, (hidden T (gLM)
5 [65] MLP Renewable Medina city, Mean daily prediction layer) I:Pq.;aorithm
3-(2-100)-24  Energy Saudi Arabia Wi of the next purelin &
Compared and
day (output
outperforms
layer)
support vector
machine (SVM)
SVM used

Gaussian kernel
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2000 days used for
training and 728
days used for
testing
Input data
normalized to
[-1,1]
Imperialist
Wind power competitive
(Wp) algorithm (ICA),
MLP Renewable Wei (t-1), Short-term tansig GA, and particle
and Wei (t-2), ; . swarm
6-7-5-1 . Alberta, forecasting (hidden layer) .
6 [66] Sustainable Wre (t - 3), . optimization
MLP Canada of the Wy purelin
4-7-5-1 Energy Wi (£-4), time series (output layer) (PSO) are
Reviews Wri (t-5), putiay employed for
Wr1 training the neural
(t-6) network
1200 data used for
training and 168
data used for
testing
ADAM algorithm
ANN W, wind is adopted
Renewable = Coquimbo, o Turbine 103,308 data used
7 [67] 2-(16-32)- . direction - ..
(16:32)-1 Energy Chile (We) power for training and
52,560 data used
for testing
RBF Trained by LM
2-3-1 Forecast algorithm
8 [68] MLP Applied  North Dakota, Mean hourly  value of 5000 data used for
2-4-1 Energy USA W next hourly training and 120
ADALINE average Wi data used for
2-4-1 testing
Guadeloupean Ws, 30 min tansig
9 [69] MLP Renewable archipelago, moving W (t+ kb) (hidden l'ayer) Bay.esian
5-5-3 Energy French West average purelin regularized (BR)
Indies speed (output layer)
10 [70] ANN Renewable China Actual W, W. i Tramed. by BP
7-20-1 Energy Wp algorithm
Wspl, WspZ,
MLP Renewable Albacete, temperature W; forecast LM algorithm is
1 [71] 6-7-1 Ener Spain (T) Tz solar (48 h later) i adopted
&Y P ciclei, solar P
ciclez, Wap1
ANN
331 . 550 data used for
ANN Previous .
Renewable Oaxaca, Current training and 194
12 [72] 3-2-X Ener Méxi values of lue of W - dat d for
ANN ergy éxico hourly Wi value of Ws ata used fo
3.1 testing

ANN




Appl. Sci. 2024, 14, 389 7 of 36
2-1
13 73] ANN Renewable Basque . W; data in Wein1h sigmoid Tramed. by BP
- Energy  Country, Spain thelast3h (output layer) algorithm
Standard W (k+1) Trained by BP
14 [74] MLP Renewable Rostamabad, deviation, V\S] (k+ 2') algorithm
X-8-X Energy Iran average, Ws (k+ 1)' 672 patterns used
slope ) for training
— tansig (first
Communicati W, RH, hidden layer)
onsm generation sigmoid
15 [75] MLP Nonhnear Ttaly hours, T, Total wind (second Tramed. by BP
5-3-3-1  Science and . energy . algorithm
. maintenance hidden layer)
Numerical ;
. . hours purelin
Simulation
(output layer)
Trained by LM
Average algorithm
temperature Scaled conjugate
(Tave), gradient (SCG)
maximum algorithm is
e e
P MLP  Renewable Himachal . ™ daily W; P e o 8
6-25-1 Energy  Pradesh, India M for 11 HLP. a4
temperature . normalized to
. locations
(ax), air -1, 1]
pressure 60% data used for
(Pair), solar training, 20% used
irradiance for testing, and
(G), A 20% used for
validation
. SCG and LM
tansig .
(hidden algorithms are
MLP Applied Lo Mean adopted
17 77 lat, lon, A 1
(771 4-15-15-1 Energy Nigeria at, lon, A, M monthly W 1}1:2 Input and target
(ouf ut layer) data normalized
putiay to [-1, 1]
Trained BP
algorithm
WSEAS Average 87.75% patfceI.'ns
18 [78] MLP Transactions  Portugal hourly values Average used for training,
14-15-1 & Y hourly W 9.75% used for
on Systems of Ws o
validation, and
2.5% used for
testing
M, mean Mean . Tramed. by BP
monthly monthly tansig algorithm
LP hi 1 %
19 [79] M - Cyprus values of Ws values of Wi (hidden . ayer) 90% pat'te_rns used
5-6-6-6-2 . logsig for training and
at two levels — of a third (output layer) 10% patterns used
(2 and 7 m) station P y °p .
for testing
MLP Marmara, . Trained by BP
20 [80] 9-10-1 Energy Turkey 9 stations Ws W - algorithm
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Conversion
and
Management
Trained by LM
algorithm
o . Input and output
MLP Theoretical Tabriz, ter:az;ltlre (hi dg)frflli er) data normalized
21 [81] and Applied Azerbaijan, P Monthly Wi . Y to [0, 1]
4-8-1 . (Tair), RH, purelin
Climatology Iran recipitation (output layer) 75% of data used
prectp P y for training and
25% used for
testing
Historical Daily .
Knowledge- daily average average Ws tansig
22 [82] MLP Based Mingin, China Ws during during (hidden 1 ayer) Tralned' by BP
31-63-31 logsig algorithm
Systems March March
. (output layer)
previous year target year
2014 4th IEEE Trained by BP
International T RH, W, w1th.m0mentum
MLP Conference wind eust tansi 1000 input/output
23 [83] on Colorado, USA susY Ws ) & pairs used for
X-25-1 . pressure (P), (hidden layer) ..
Information L training and 200
. historical Ws . .
Science and input/output pairs
Technology used for testing

The applications have different characteristics in several aspects, such as the ANN
structure, the input data, the activation function used, and the training algorithm. As can
be seen from the literature, various studies on wind speed prediction have been carried
out for more than twenty years in different parts of the world, most of them located in
Turkey, India, China, or Iran.

The main characteristics of the networks studied are detailed below.

e ANN type: from the 23 references analyzed, the MLP network has been used in 17 of
them, followed by the RBF in two of them. Five of them did not specify the type of
ANN used.

e  Structure of the ANN: the predominant type is simple with one hidden layer (70%)
and the rest with two hidden layers (26%) with the exception of the investigation of
[41], which uses three hidden layers. The number of neurons in the hidden layer is
usually around 15, while in other cases more than 63 are selected [44].

e Amount of data: the percentage of research that makes use of data for validation is
8.69%.

e ]/O configuration: the inputs to the models usually take in situ measured features
such as past wind speeds, temperature, relative humidity, altitude, month, or pres-
sure.

e  Activation function: only 13 of the 23 cases detail the activation function used. In the
hidden layer, linear functions are used, with tansig and logsig being the most com-
monly used, while in the output layer, linear functions of the purelin type are
adopted.

Figure 3 details the most common inputs and outputs used by ANNs in wind power
and wind speed prediction and the operating scheme.
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Inputs ANN type & Structure Outputs Wind power and
Speed prediction

TaiP Tmax’ Tmin Ws 5 Wp P P

RH, M, A PI

lon, lat

‘\ Q Application

Turbine

P, .G \/

. D00 L H AN
\ >

w.,W
prrd Total wind

\
W, \./ energy

others

Figure 3. Inputs and outputs in ANNs applied to wind energy and wind speed prediction.

ANNSs are highly recommended for predicting wind speed and power generation for
several reasons, including self-learning, low error, and high efficiency predictability [84].

2.2. Applications of ANNSs for Solar Energy Systems

Within solar energy, the ANN technique has proven to be an alternative to conven-
tional methods, providing great benefits in terms of precision, performance, and model-
ing. The study indicates that the advantage of ANN techniques over conventional tech-
niques is that they do not require knowledge of internal system parameters, require less
computational effort, and offer robust outputs to multivariate problems. NN modeling
requires data representing the history, the current performance of the real system, and a
correct selection of a NN model. Mellit et al. [85] conducted an overview of the different
Al techniques for sizing PV systems. The research shows that one of the advantages of Al
in modeling PV systems is that it allows good optimization in isolated areas, where mete-
orological data are not always available. Mellit and Kalogiriu [86] have applied Al tech-
niques to model, predict, simulate, optimize, and control photovoltaic systems.

The applications of ANNSs to solar energy go beyond that, as there is also research
such as the one carried out in [42], in which the application of the ANN technique seeks
to optimize and predict the performance of the different devices involved in a solar energy
system such as solar collectors, heat pumps, or solar air. The research shows how the ap-
plication of ANNSs can save time and reduce the financial costs of the system since it is not
necessary to carry out so many experimental tests to determine the relationship between
the input and output variables. Another application of ANNs is shown in the research of
[87], where the performance of solar collectors is predicted, thus improving the efficiency
of the system as a whole. The developed model also showed advantages over conventional
computational methods in terms of calculation and prediction time.

Solar radiation data are very important because in most cases they are not available
due to the lack of a meteorological station. It is therefore necessary to have techniques to
accurately predict solar radiation. ANNSs are the solution to the problems of conventional
methods [88].

Different ANN models have been applied for solar irradiance prediction, such as the
MLP neural network, the RBF neural network, or the general regression neural network
(GRNN). The different studies have been classified, taking into account different factors
such as network structure and type, input/output configuration, or the activation function
and tuning algorithm employed, as is shown in Table 2.
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Table 2. Uses of artificial neural networks for solar energy prediction.

A I i
Authors NN Country/ /O Setting Activation
Typeand Journal . . Notes
and Year Region Input Output  Function
Structure
G(t+1),
RBF s(t+1
Wit +1), Pwi(t+1), k-fold (validation)
6-11-24 Huazhong,  Tair (t+1),
1 [89] Solar Energy . Puwa(t+1), ... - Input and output data
RBF China RE(E+1), Pu2a(t+1) normalized to [0, 1]
6-15-24 power (Pw) ’
(®
G, module G, ambient
MLP  Renewable . cell ’ Trained by LM BP
2 [90] Jaen, Spain temperatur - ;
2-3-1 Energy temperature algorithm
e (Ta)
(To)
RH, Tramed‘by LM
sunshine tansig algorithm
MLP Corsica Island, duration (), (hidden Input data normalized
3-3-1 France nebulosit Global layer) o
3 [91] Energy Bastia Y radiation Y . [-1, 1]
MLP (Y) purelin
(GR) 80% data used for
4-3-1 L Y,S, P, (output . o
Ajaccio differential Jayer) training, 10% for
y validation, and 10%
pressure used for testin
(DGP) &
Trained by LM
algorithm
Clearness Use Gaussian function
Ajaccio, index (Kr) Daily global purelin for hidden laye.r
4 [92] MLP Solar Enerev Corsica Island Krt-1, Kri-2, solar (output Input data normalized
8-3-1 8y o o Kny Kiy, radiation | (}:r) to [0, 1]
Kres, Krt-s, (GSR) y 80% data used for
Kri-7, Kri-s training, 10% for
validation, and 10%
used for testing
Trained by LM BP
MLP . . G, Tur, hour > EY D& Algorithm k-fold
5 [93] Solar Energy Trieste, Italia (t+1),...,Gu - validation
3-11-17-24 or day (t)
(t+1) Input and output data
normalized to [-1, 1]
RBFN
(2-3-4) _ Daily global 1460 data used for
6 g WO e AlMedina, - o oy solar training and 365 data
MLP 8 Saudi Arabia "7 "' radiation use((ig for testin
(2-3-4)- (Go) &
(2-3-5)-1
Trained by BP
. logsig algorithm
7 [95] MLP Applied Turkey ~ Wlon Ao (hidden  SCG, Pola-Ribiere
6-5-1 Energy M,S, T . .
layer) conjugate gradient

(CGP), and LM
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algorithms are
adopted
Input and output data
normalized to [-1, 1]

Renewable Trained by BP
MLP and Mean algorithm
8 [96] Sustainable Morocco lon, lat, A annual and - &
3-20-1 Input and output data
Energy monthly G .
Reviews normalized to [0, 1]
Energy
Sources, Part .
MLP  A:Recovery, T RE Diffuse logsi TrZ;nzfi;};fP
2361 Utilization, Abha Saudi , " 7 solar 8518 &
9 [97] . hour or day . (hidden 1462 days used for
MLP and Arabia radiation .
390-1 Environment (t) (DSR) layer)  training and 250 days
al used for testing
Effects
tansig
(hidden
MLP Expert . Anatolia, lat, lon, A, layer) Trained by BP
10 [98] Systems with S, average G . .
5-8-1 . Turkey . purelin algorithm
Applications cloudiness
(output
layer)
SCG and LM
algorithms are
tansig adopted
(hidden Input data normalized
MLP Applied . lat, lon, A, layer) to [-1, 1]
1 (991 7-5-1 Energy Nigeria M, S, T, RH G purelin 11,700 datasets used
(output  for training and 5850
layer) datasets used for
validation and
testing
International lat, lon, day logsig .
12 [100] iv[; 1; Journal of Malaysia  or hour (t), Kr (hidden Trzns;ii;}rlnBP
Photoenergy S layer) &
tansig
International (hidden
13 [101] MLP Journal of India lat, lon, S, A G Iayer') LM algorithm is
4-4-1 Computer purelin adopted
Applications (output
layer)
GSR, like
MLP 10ng—wav§ lefgse sigmoid Trained by BP
14 [102] Energy Egypt atmospheric fraction (output .
5-40-1 . algorithm
emission, (Kp) layer)
Tair, RH, P
t (day), t Solar Trained by BP
MLP . (hour), Kr, L algorithm (with
15 [103] 7.15-1 Solar Energy Jaen, Spain hourly radiation - momentum and
maps .
clearness random presentations)
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index (k) Input data normalized
ki1, ke, kes, to [0, 1]
S
Waq, Wi, Ta, . . Trained by LM BP
MLP sigmoid algorithm
16 [104] 6-X-1 Solar Energy Helwan, Egypt cloudiness, G (output Input data normalized
layer)
water vapor to [0, 1]
MLP S, .
2-X-1 theoretical tansig Tr;gsi;};nBP
LP Athal hi
17 [105] M Solar Energy thalassa, suns 1 ne Gp (hidden 90% data used for
3-X1 Cyprus duration layer)  training and 10% used
MLP (Soa), M, ! fgr testin, 0
3-X-X-1 T oresthe
tansig
lat, lon, A, (hidden
18 [106] MLP Renewable India M, S, K layer‘) Trameq by BP
7-9-1 Energy rainfall purelin algorithm
ratio, RH (output
layer)
tansig Trained by BP
(hidden algorithm
Monthly .
19 [107] MLP Enngy China K, S (%) mean daily Iayer.) TRAINLM algorithm
2-5-1 Policy K purelin is adopted
D
(output  Input and output data
layer) normalized to [0, 1]
ST Monthly tansig
Total Cloud  2Verase (hidden Trained b.y LM BP
MLP daily GSR layer) algorithm
20 [108] Solar Energy =~ Uganda Cover ) .
6-15-1 ona purelin  Input data normalized
(TCQC), lat, .
horizontal  (output to[-1,1]
lon, A
surface layer)
logsig
lat, lon, A, (hidden
MLP  Applied M, DSR, layer) 5CG and RP
21 [109] Turkey G . algorithms are
6-6-1 Energy mean beam purelin
. adopted
radiation (output
layer)
lat, lon, A,
surface
emissivity
GRNN (e4), surface
22 [110] 6-1.0-1 Energy Turkey emissivity G - -
(e5), land
surface
temperature
‘ logsig .
Energy Tmax, Tmm, (hldden Tralneq by BP
MLP  Conversion REL VD, layer) algorithm
23 [111] Iran total GSR ayer 65 months used for
7-4-1 and . purelin ..
Manacement precipitatio (output training and 7 months
& n, Ws, S P used for testing

layer)
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SCG, CGP, and LM
algorithms are

. logsig adopted
24 [112] ANN - Applied Turkey ~ lavlom A G (hidden Trained by BP
6-6-1 Energy M,S, T .
layer) algorithm
Input and output data
normalized to [-1, 1]
Trained by LM BP
Tmax, Tmin, algorlthm .
extra- logsig Input data normalized
25 [113] MLP  Renewable  Khuzestan, .01 Gsr (hidden to [0, 1]
3-6-1 Energy Iran L 70% data used for
radiation layer) - o
training and 30%
(Ra)
patterns used for
testing
faNSI8  ained by LM BP
M, t (day) (hidden algorithm
MLP E Bech ’ ! 1
26 14 peeer o SRR t(hour), T, GSR zi’slrl)n 81% data used for
& RH p training and 19% used
(output .
for testing
layer)
Renewable T,RH, S,
MLP and Republic of Wy Trained by BP
27 [115] Sustainable P . precipitatio = GSR - Y
9-11-1 Indonesia algorithm
Energy n, lon, lat,
Reviews A, M
Energy
Sources, Part DSR, direct Use Gau'ssmn function
RBE A: Recovery, T. RH normal for hidden layer
28 [116] Utilization, Saudi Arabia v .. - 1460 values used for
4-50-2 GSR, t radiation ..
and training and 365
. (DNR) .
Environment values used for testing
al Effects
Location
29 [117] MLP Renewable Sultanate of (L), M, P, T, GR Trained by BP
8-15-1 Energy Oman VP, RH, Ws, algorithm
S

In contrast to the previous case, there is more literature available and the existing
research from 1998 to 2012 has been collected. Most of the studies focus on countries that
enjoy strong and prolonged hot climates such as the countries bordering the Mediterra-
nean Sea as well as Saudi Arabia and China. As in the previous section and as mentioned
at the beginning, the different applications are analyzed. The main characteristics of the
networks studied are detailed below.

e ANN type: in most of the investigations, the MLP network has been used (24 out of
29 cases) followed by the RBF.
e  Structure of the ANN: most studies use simple structures with a single hidden layer
(96%), and the remaining with two hidden layers. The number of neurons in the hid-
den layer is usually in the order of 10, reaching 50 neurons in the research of [116]. In
some cases, the number of neurons in the hidden layer is not specified, as in [105]

and [104].
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e Amount of data: the percentage of research that make use of data for validation is
6.9%.

e ]/O configuration: altitude, latitude, longitude, relative humidity, or month of the
year are used as the most common inputs.

e  Activation function: only 19 of the 29 investigations detail the activation function
used. In the hidden layer, linear functions are used, with tansig and logsig being the
most commonly used, while in the output layer, linear functions of the purelin type
are adopted.

Figure 4 details the most common inputs and outputs used by ANNSs in solar energy
prediction and the operating scheme.

Inputs ANN type & Structure Outputs Solar energy
prediction

Tﬂlr’ T(" Tmax KT > KD

RH, t, K; Py

Y, P, GSR . Ta Application

DGP, DSR GSR

Ww,, VP . '
B (ID

lon, lat, A DSR

M.5.T DNR

others

Figure 4. Inputs and outputs in ANNs applied to solar energy systems.

2.3. Applications of ANNs for Wave Prediction

Tidal energy, like other renewable energies, is fundamental to achieving the Euro-
pean climate targets for 2030 and 2050. Recently, the use of NNs for wave height (H) and
period prediction has gained importance. ANNs have also been applied in different fields
of ocean, coastal, and environmental engineering [118]. The following table summarizes
the main research pieces found when performing the review. The studies have been clas-
sified according to the ANN structure, journal and region, input and outputs for the net-
work, and the activation function employed. The following Table 3 shows the H predic-
tions.

Table 3. Uses of artificial neural networks for wave height prediction.

ANNT I i
Authors NN Type Country/ /O Setting Activation
and Year and Journal Region Input Output Function Notes
Structure 8 Py upa
ANN Journal of togsis Input di(’ia[(r)lo;]mahzed
28-15-4  Atmospheri Gulf of Maine, 7 days of . . ’ .
1 [119] 28-9-4 cand  Gulf of Alaska, significant 6},11f<2)’ri§;,;152t4 (hljjtenuind C(;T]ififn%rvi?tlﬁm
28-4-4 Oceanic  Gulf of Mexico H p 8 .
layer) Fletcher-Reeves is
28-7-4  Technology
adopted
Deep water .
wave w]jlf/eea}lzrilgght sigmoid Trained by BP
2 [120] MLP O'cean_ Bombay, India height (Flo) (Hv), water  (output algorithm
3-5-5-2  Engineering Input and output data
depth atthe layer) )
energy . normalized to [0, 1]
time of

period (Te)
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breaking
(dv)
H and zero-
up- .
. logsig
48 h histor Zifif;ie (hidden
MLP Ocean y pea layer) Trained by resilient
3 [121] i ) Ireland wave period (Tp) . .
48-97-24 Engineering purelin BP algorithm
parameters over hourly
. (output
intervals layer)
from 1 h to ay
24h
Proceedings
of the Enerev flux Conjugate gradient
MLP Institution (F )gc})lver sigmoid  algorithm is adopted
4 [122] of Civil  Anzali, Iran H, Tp I (output 80% data used for
6-5-1 , horizon of .. o
Engineers- lto12h layer)  training and 20% used
Maritime for testing
Engineering
Trai BP
MLP 3-hourly r:irglgfi:;l}r,n
5 [123] 243 O.cean. Karwar, India W values of F1 - 80% data used for
MLP Engineering and average .
. training and 20% data
4-4-4 cross-period .
used for testing
SCG BP algorithm is
Deep Neural Pacific and H, _Te' Fe adopted ,
Network Ocean  Atlantic coasts weighted Input data normalized
6 [124] (DNN) Engineeringand the Gulf of av.erage Fe, Te, H ) to [0, 1]
6-64-30-30-1 Mexico period, Ty, 75% data used for
Wi, Wa training and 25% data
used for testing
Stochastic gradient-
_Lake Wind field, ReL.U based algorithm is
7 [125] MLP Ocean Michigan, db. ice H T (hidden adopted
3-300-300-2 Engineering United Sates of coxl:;zra o e layer) 80% data used for
America & Y training and 20% data
used for testing
Trained by BP cascade
sigmoid correlation algorithms
g [126] MLP Marine Goa, India o F. (output 80% Pa.tterns used for
1-x-1 Structures training and 20%
layer)
patterns used for
testing
Hy, He, Conjugate gradient
Hez, and LM algorithms
Ucos(@t-0) Hforthe  sigmoid &
MLP Ocean . are adopted
9 [127] i ) Persian Gulf , Uticos(Pt next (output
6-5-1 Engineering 80% data used for
-1-6t), 3,6,12,24 h layer) o o
training and 20% data
Urzcos(@t = sed for testin
2-02) " &
MLP Applied . . Trained by BP
10 [128] 3441 Soft Spain H, Te, Om Fe tansig algorithm
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Computing (hidden 67% data used for
layer)  training and 33% data
purelin used for testing
(output
layer)
Trained by BP
algorithm
Input and output data
normalized to [-1, 1]
. . Compared with SVM,
W;, weather sigmoid Bayesian networks
MLP Ocean  Lake Superior, . (hidden and Y _ ’
11 [129] i ) station H and adaptive neuro-
3-3-1 Engineering USA . output .
index (W) layer) fuzzy inference
y system (ANFIS)
345 patterns used for
training and 54
patterns used for
testing
Wind shear fansig  Tined by LM BP
. (hidden :
MLP Renewable velocity (U)  Wave layer) algorithm
12 [130] Brazil Ui, Uz, Uy, energy y . 90% data used for
5-2-1 Energy : purelin .
Y (t—1), potential training and 10% data
. (output .
Y (t-1) used for testing
layer)
Gradient descent with
tansig momentum and BP
. (hidden algorithm are adopted
Applied 0
13 [131] MLP Ocean Canary ' H T, Predict Fe layer') 89A> data used for
X-15-1 Islands, Spain purelin  training and 11% data
Research .
(output used for testing
layer)  Inputand output data
normalized to [-1, 1]
H values of Trained by LM BP
Applied the H algorithm
14 [132] MLP Ocean India preceding subsequent - 60% data used for
4-4-1 3,6,12 and -
Research 3,6,12, and training and 40% data
24th hour -
24th hour used for testing
Use Gaussian function
for hidden layer
BP, SCG, conjugate
gradient Powell-Beale
RBF (CGB), Broyden-
21-13-1 Marine . Fletcher-Goldfarb
15 sl MLP  Structures India Hoy o HSW3) ) (BFG), and LM
21-9-1 algorithms are
adopted
80% data used for
training and 20% data
used for testing
16 [134] MLP C.)C€an. Taiwan Significant Hl/a sigmoid Tramed. by BP
8-4-1 Engineering wave (station C) algorithm
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MLP height (output Input data normalized
2-2-1 (Hap), layer) to [0, 1]
highest
one-tenth
wave
height
(Hino),
highest
wave
height
(Hrev),
mean wave
height
(Hmean)
(stations A
and B)
Trained by BP
algorithm
Conjugate gradient
. and cascade
17 [135] MLP Marine Yanam, India  H, Ha Hen - correlation algorithms
2-5-1 Structures
are adopted
80% data used for
training and 20% data
used for testing
ANN Trained by LM
9-1-1 t—24, logsig algorithm
ANN Applied Ratnagiri, t-21, t+24 (hidden Input data normalized
18 [136] 4-1-1 Ocean Pondicherry, t-18, (24hahead Ilayer) to [0, 1]
ANN Research Gopalpur, t-15, predicted purelin 70% data used for
9-8-1 Kollam, India t-12,t-9, error) (output training and 15% used
ANN t-6,t-3 layer) for validation and
9-1-1 testing
MLP . Trained' by BP
193 tansig/ algorithm
MLP Ws, Wy, sigmoid 10-fold cross-
Applied . fetch H, Ty, (hidden validation used
19 [137] 471 Ocean Lake Ontario, length, (wave layer)  Input data normalized
MLP Canada/USA ; L .
951 Research wmffl direction) ® purelin to [0, 1]
MLP duration (output 611 data used for
481 layer)  training and 326 data
used for testing
Compared and
P o e sigmoid outperfiorlms with
cean ake Superior, model tree
20 [138] 1-3-1 Engineering Canada/USA W H (tran.sfer 4045 data used for
function)

training and 3259 data
used for testing

While it is true that studies appear in the literature since 2001, unlike the two previ-
ous cases, there has been an increase in the number of studies carried out in recent years.
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Most of the research is concentrated in India, Canada, and the United States and applies
to both lakes and the open sea. The main characteristics of the networks studied are de-
tailed below.

e ANN type: as in previous cases, the MLP has been the structure chosen by most re-
searchers (17 out of 20 cases). Research using the DNN [124] and RBF [133] has also
been found.

e  Structure of the ANN: most of the studies analyzed use simple structures with a sin-
gle hidden layer. Research has also been found that uses two hidden layers or even
the research of [124], which uses three. The number of neurons in the hidden layer is
usually in the order of 10, reaching 300 neurons in the research of [125].

e  Amount of data: in most research, the volume of data is in the order of hundreds or
thousands. Normally, a major part of the data is used for training, with the remainder
applied to testing. The percentage of studies that make use of data for validation is
5%.

e I/O configuration: temperature, wind speed, wind direction, and historical wave data
are normally used as inputs. Outputs predict wave heights from one hour to 24 hours
in advance.

e  Activation function: the activation function is specified in 15 out of the 20 research.
In the hidden layer, linear functions are used, with tansig and logsig being the most
commonly used, while in the output layer, linear functions of the purelin and sig-
moid types are adopted.

As a summary of all the previous sections, in the case of renewable energies, the pre-
dominant structure chosen is the multilayer perceptron structure with one or two hidden
layers, because it may act as a universal function approximator. In addition, together with
the backpropagation algorithm, it is able to learn any type of continuous function between
a set of input and output variables.

Figure 5 details the most common inputs and outputs used by ANNs in wave height
prediction and the operating scheme.

Inputs ANN type & Structure Outputs Wave height
rediction
LT, Y H. H, d, E
H’ HO. Hmax. Hmean Fe. Te
W, W, W, T, Application
Fo dy |:> Wave I:>
Wind field energy
Ice coverage potential
U,cos(D,-6) hr forecast

O U
Wave parameters

Figure 5. Inputs and outputs in ANNs applied to wave prediction.

3. Applications of ANNs for GHG Prediction

Traditionally, different techniques have been used to estimate greenhouse gas (GHG)
emissions, such as the synergies and interactions model of air pollution and greenhouse
gases [139]. The technique of ANN s is different from the GAINS (greenhouse gas and air
pollution interactions and synergies) model in that ANNs are less complex, require a
smaller amount of input data, and the inputs are undetermined [140]. The different re-
search in the literature from 1996 to 2021 is detailed in Table 4.

Table 4. Uses of artificial neural networks for GHG prediction.
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ANNT I i
Authors NN Type Country/ /O Setting Activation
and Year and Journal Region Input Output Function Notes
Structure 8 np uipt
Machinery,
human labor,
diesel fuel,
pesticide,
nitrogen (N), Trained by BP
phosphate .
algorithm
(P20:5), . o
MLP Acricultural otassium Energy, tansig 60% data used for
1 [141] & Iran P GHG (hidden training, 25% data
12-8-2 Systems (K20), ..
farmvard emission layer) used for cross-
y validation, and 15%
fmanure data used for testin
(FYM), water &
for irrigation,
electricity,
seed, farm
size
Dummy
variable,
ozone (Os)
level at 9:00
am,
carbon
MLP  Environmental Texas, d10.x1f1e ((,:OZ)’ D:,ﬂly ta.n51g Trained by BP
2 [142] 9-4.1 Pollution USA nitric oxide maximum  (hidden aleorithm
(NO), Os level layer) &
nitrogen
dioxide (NO2),
oxide of
nitrogen
(NOx), W5,
Wd, Tmax
Low cloud
amount tansig
L
( (ff)‘l’x:sfe (hidden  SCG algorithm is
3 [143] MLP Atmpsphenc London, cloud (BASE), NOs, NO: .layeF) adopted
6-20-20-2  Environment UK UKMO identify Input and output data
o (output  normalized to [-1, 1]
visibility layer)
(VIS), Ts, VP, y
W
. . sigmoid  Direct algorithm or
4 [144] MLP Atn}ospherlc Santl.ago, Osg, Te, Tt Oszn (output series-parallel was
3-x-1 Environment  Chile
layer) used
MLP Wi (t), Wa (t), BR
Neural G (), G(t-1), Sulphur tansig SCG algorithm is
10-25-1 ) Ravenna, L
5 [145] MLP Computing Y Ital G(t-2), dioxide (output adopted
10-11-1 Applications y G(t-3), (SO (t+1) layer) 20% data used for
SO (t), testing
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SO (t-1), logsig
SOz (t-2), (output
SO: (t-3) layer)
sigmoid
. . (hidden
Environmental Predict SOz
El Delhi 1 Trai L
6 [146] man NN Modelling Y N W, T, RH, Wa concentratio ayer.) ramed.by M
4-13-3 India purelin algorithm
Software n
(output
layer)
Ws, Wd, T,
RH, P, G,
thermal
gradient, Os,
I\(I)(f)zer;:;zlebser tansig SCG algorithm is
MLP . . (hidden adopted
Environmental _. occupation  Os (t +Kk)
5-X-1 . Bilbao, layer) 85% data used for
7 [147] Modelling Y . percentage, NO:2 (t+Kk) . .
MLP Spain G purelin  training and 15% data
Software velocity sin  (k=1,...8) L
9-X-1 (output used for validation
(27t/24), cos layer) and testin
(2mt/24), sin y &
(2mt/7),
cos (2mtt/7),
NO: (t + k),
Os(t+k)
Mon-methane
hydrocarbons,
carbon Trained by BP
monoxide algorithm with
(CO), rgnomentum
Advances in methane Os logsig .
8 [148] ANN Environmental Kuwait (CHs), COz, concentratio (hidden Input data normalized
13-25-1 to [0, 1]
Research SOz, NO, NOg, n layer)
90% data used for
T, RH, .
training and 10% data
suspended .
used for testing
dust, solar
energy, Waq,
Wi
Gross
domestic GA was used
product Annual Input data normalized
Science of The (GDP), gross  (particle P .
9 [149] GRNN Total EU-27 inland ener matter) per capita
(7-13)-154-1 _ . 8y 84% data used for
Environment consumption PMuo .. o
. training and 16% data
(GIEQ), emission o
. . used for validation
incineration
of wood...
PMao,
. boundary Daily .
10 [150] 1;{?; EA:S?SE:S;?( Belgium layer height  average - Trainsli;};nBP
(BLH), Ws, T,  PMio dayt &8

cloud, Wy, t
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. . Trained by BP
sigmoid )
Intake ) algorithm
i (hidden .
pressure, 1, Raw Input data normalized
MLP . layers)
11 [151] 4.5-10-1 Energy Europe fuel emissions relin to[-1, 1]
consumption, NOx pu 70% data used for
. (output iy N
engine power training and 30% data
layer) .
used for testing
Trained by LM BP
Pre-injection algorithm
timing (PrlT), CO, COy, Input data normalized
. Tamil maininjection unburned  sigmoid to [-1,1]
12 [152] 41\_/%2 %ﬁgﬁled Nadu, timing (MIT), hydrocarbon (hidden 70% data used for
8y India  post-injection (UBHC), layer) training, 15% data
timing (PIT), NO, smoke used for validation,
test fuels and 15% data used for
testing
Trained by BP
Injection algorithm
MLP Applied pressure, 0., COs, l(?gs1g SCG, C(;P, and LM
13 [153] - engine speed, (hidden algorithms are
3-(13-7)-1 Energy 502
throttle layer) adopted
position (TP) Input and output data
normalized to [0, 1]
Brake
power,
torque,
brake-
specific fuel
consumption sigmoid .
Engine speed, (BSFC), (hidden Trzgzi;};fl)
14 [154] MLP Applied Iran ethanol brake layer) 709, data used for
2-20-9 Energy gasoline thermal purelin .
.. training and 30% data
blend efficiency (output used for testin
(BTh), layer) &
volumetric
efficiency
(ne) CO, CO,
hydrocarbon
s (HC), NO«
Lowerheating popo pry, Trained by LM BP
. value (LHV), . . :
MLP Applied eneine toraue CO, HC, sigmoid algorithm
15 [155] Thermal - g, U exhaust gas (hidden 70% data used for
4-15-5 ) . engine speed, . o
Engineering i inlet temperature  layer)  training and 30% data
(EGT) used for testing
temperature
Load, 51gm01d Trained by BP
blend % (hidden algorithm
16 [156] MLP Applied compres ? n NO smoke,  layer) Input dagta normalized
4-22-3 Energy OMPpTEssIo UBHC purelin P © “
ratio, injection (output to[-1, 1]
timing P 70% data used for

layer)
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training, 15% data
used for validation,
and 15% data used for

testing
CGP, CGB, GDM, GD,
and LM algorithms are
e ogsis o
17 [157] MLP Applied _SOft Iran  temperature, NO« (hidden and normalized to [0, 1]
4-(7-60)-1  Computing output
mass fuel, layer) 90% patterns used for
brake power Y training and 10%
patterns used for
testing
Proceedings of Oil, soh.d.fuel, . Trained by BP
the 28th electricity, logsig .
MLP . algorithm
18 [158] International ~ Italy = natural gas, CO: (output .
6-14-1 . N Input normalized to
Symposium on population, layer) [0, 1]
Forecasting GDP ’
Year, coal,
liquid fuels,
Journal of natural gas, Compared with SVM
MLP renewable GHG 85% data used for
19 [159] Cleaner Turkey .. - .
6-9-1 . energy and  emissions training and 15% data
Production .
wastes, total used for testing
electricity
production
COz (t-1),
AGRIS on-line CO2 (t-2), . . Trained by LM
MLP Papers in Apulia, CO:2(t-3) sigmoid algorithm
20 [160] pet pria, ' CO:()  (output & _
4-20-1 Economicsand Italia ma (CO2z(t-3)), layer) Input data normalized
Informatics CO:(t-2), y to [0, 1]
CO2 (t-1))
tansig
lat, lon, (hidden Trained by LM BP
MLP reservoir age, layer) algorithm
21 [161] 5-40-30-1 Water mean depth, CHs purelin  Input data normalized
surface area (output to [-1, 1]
layer)
Concentration
s at 14:00,
meteorologica
1 conditions at siomoid
14:00, B
Science of The Seoul, variation Os (outpu
MLP . . layer)
22 [162] 36.36-1 Total South velocity ~ concentratio urelin -
Environment Korea between 13:00 n at15:00 (Fz)ut ut
and 14:00, o fr)
08:00 and y
14:00, 11:00

and 14:00, Os
concentration
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s at 08:00,
11:00 and
13:00
Traffic
volume, t
(hour), t
(day), T, P, Trained by BP
Ws, Wy, G, algorithm
Transportation rainfall, RH, Input data normalized
MLP Research Part Guangzho concentration CO, NOs, sigmoid to [0, 1]
23 [163] D: Transport . 1st hour (output 495 groups used for
16-8-1 u, China PMio, O3 .
and before, 2nd, layer) training, 24 groups
Environment 3rd, distance used for evaluation,
to road center and 42 groups used for
line, street testing
direction,
street aspect
ratio
Correlation-based
Car numbers, .
) feature selection (CES)
heavy vehicle Daily traffic  tansig model algorithm is
24 [164] MLP Applied ) 1 aysia  UmPers, Co (hidden adopted
6-3-1 Sciences S/M, T, Ws, L. o
.. emissions layer) 70% data used for
digital surface training and 30% data
model (DSM) & °

used for testing

Due to limitations on the length of the article, only 24 investigations have been se-

lected as the most representative. However, other findings, such as those of [165-168], are also
in the same direction. The main characteristics of the networks studied are detailed below.

ANN type: as in all previous sections, the MLP has been the structure chosen by most
researchers (21 out of 24 cases). Research has also been found that has made use of
the GRNN [149] and Elman NN [146]. The use of GRNN is motivated by the fact that
they only require a selection of parameters [169], do not need training, and work well
with small data [170].

Structure of the ANN: most of the studies analyzed use simple structures with a sin-
gle hidden layer (21 out of 24 cases), with two hidden layers used in all other cases.
The number of neurons in the hidden layer is of the order of 10.

Amount of data: in most research, the volume of data is in the order of hundreds or
thousands. Normally, a major part of the data is used for training, with the remainder
being applied to testing. The percentage of research that makes use of data for vali-
dation is 35.3% (6 out of 17 cases).

I/O configuration: the networks take different greenhouse gases such as COz, CO,
CHy, NOx, SO, O3, PM, and F-gases as output, while in most research, the inputs
are macroeconomic or meteorological variables.

Activation function: only 3 of the 24 investigations do not specify the activation func-
tion used. In the hidden layer, linear functions are used, with tansig and logsig being
the most used, while in the output layer, the purelin and sigmoid types are adopted.

4. Contest Analysis

In this section, the results obtained from the analysis of trends in the use of ANNs in

renewable energies and for GHG prediction detailed in the previous sections were com-
pared. As can be seen and already confirmed by Srisamranrungruang and K. Hiyama in
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2022, artificial neural networks (ANN) are an essential element of deep learning in artifi-
cial intelligence (Al), reaching enormous relevance in applications such as the use of re-
newable energy.

In addition, Olanrewaju et al. concluded in 2022 that ANNs were very useful when
modeling renewable energy systems, such as complex mapping of energy resources, and
demonstrated that the errors that could be made with the use of ANNs were within the
limits of acceptable tolerances.

4.1. Analysis of the Research Trend Based on the Year of Publication, Country, and Number of
Publications by Type of Application

The review of the research articles revealed that the level of publications in relation
to the three aspects analyzed was similar. Wind power and speed prediction generated 25
articles, very similar to the 24 articles for GHG prediction, followed by 20 articles on wave
prediction and 17 on solar energy prediction. The first research article was published in
1996 and, except for 1997 and 2017, in every year until 2021, research was published on
the topics analyzed.

The annual trend for each type of research is shown in Figure 6.
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Figure 6. Number of annual publications for each type of research.

4.2. Countries with the Highest Number of Research

Research carried out by 30 countries has been published and interest in the subject
extends to all continents. Figure 7 shows that the interest in the different research analyzed
maintains a constant distribution. However, a special interest in wave prediction is ob-
served in the USA as well as in India. This last country also stands out for the number of
publications on GHG prediction. Turkey’s first place as the country with the highest num-
ber of publications on solar energy prediction is also particularly relevant.
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Figure 7. Number of research published by country.

4.3. Methodological Preferences in Research Carried out with ANNs and Types for the Different
Applications

Figure 8 presents the different network structures used. Most of the investigations
opted for MLP as the ANN type. The use of MLP is especially predominant in GHG pre-
diction and solar energy prediction.

B MLP mRBF ®™RBFN ADALINE mGRNN mDNN ®ELMANNN m®ANN

2
16

WIND POWER AND SOLAR ENERGY WAVE GHG PREDICTION
SPEED PREDICTION PREDICTION
PREDICTION

Figure 8. Network structures used with each research.

4.4. Trends in Publishing on Applications of Artificial Neural Networks to Energy Transition
and Journals with Higher Productivity

The interest in the subject matter is evident from the large number of prestigious
journals that have published research articles, as can be seen in Figures 9-11. Although
some journals are repeated in the three investigations, each one of them presents a type of
journal influenced by its area of research.
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Figure 9. Journals with higher productivity in ANNSs for wind power and speed prediction.
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4.5. Most Used Activation Functions

Figure 12 shows the trend regarding the use of the 37 types of activation functions
used in the different investigations. purelin (output layer) and tansig (hidden layer)
turned out to be the most used for wind power and speed prediction. For wave prediction,
purelin (output layer) and sigmoid (output layer) stood out, while for solar energy pre-
diction, the most used were purelin (output layer), tansig (hidden layer), and logsig (hid-
den layer). For GHG prediction, the most used were purelin (output layer), tansig (hidden

layer), and sigmoid (hidden layer).
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Figure 12. Trend in the use of activation functions.
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5. Conclusions

The ANNSs turned out to be a reliable and mature model for forecasting energy re-
sources and the level of associated pollutant emissions.

The great interest in the subject has led to the publication of research in a wide variety
of prestigious scientific journals. In particular, the level of productivity of two magazines
stands out: Renewable Energy and Applied Energy, with 18% and 10%, respectively, of the
total published. These two journals belong to the Elsevier publishing house. Their areas
of knowledge are energy and fuel and green and sustainable science and technology and
energy and fuel and chemical engineering, presenting JCR indexes and Q1 quartiles.

The descriptive analysis of the journal articles together with the analysis of their con-
tent allowed for the finding of similarities regarding the use of ANN type. Both in the
applications of ANN to renewable energies and in the applications of ANNs for GHG
prediction, the most used ANN type was the MLP, used in 80% of the research.

This article aims to provide a detailed description of the existing literature on the
different applications of ANNSs to the energy transition. It includes relevant aspects such
as the use of renewable energies and the reduction in GHG. Additionally, the analysis of
results will provide future research with data on current trends in the management of
ANN and existing limitations.

Although the research results have been published throughout the world and in 30
different countries, 80% of the research is concentrated in India, Turkey, Iran, USA, China,
Spain, Italy, and Saudi Arabia. Especially relevant is the contribution of India with almost
20% of the total.

The analyzed research began in 1996, focusing on GHG prediction and extended until
2022. The years with the highest number of publications were 2005 and 2009. In addition,
the rate of publications remained constant over the years, with a significant resurgence of
publications in 2020, confirming the interest in the topic. In this way, the use of ANNs
presents a sufficient temporal development to demonstrate its usefulness and compete
with the use of other algorithms. Some variables were difficult to model with ANN, for
example, environmental variables due to the large number of associated uncertainties.
However, the ANN turned out to be a valid prediction aid. Thus, ANNs occupy a central
place in the transition due to their ability to learn and decide and are increasingly present
in intelligent systems. As it has been shown, ANNSs are very useful in the field of renewa-
ble energies for predicting wind speed, solar radiation, or wave height. This is of great
importance for the design of efficient energy systems, capable of anticipating and adapt-
ing to future phenomena. Therefore, it is considered necessary that further research
should reinforce efforts to develop networks capable of a wider range of predictions with
a smaller number of variables.

Likewise, there is also abundant literature for predicting energy consumption in
buildings and traffic as well as forecasting the pollutant emissions of a given activity. Alt-
hough a large number of contributions have been found in the aforementioned sectors, it
would be necessary to extend the use of ANNSs to all sectors that make up a country’s
energy scenario, such as manufacturing, construction, agriculture, and mining, among
others. This is really useful as it opens the way to the development of new applications
capable of predicting the energy of a complete national energy system, thus making our
energy systems more competitive, safe, and sustainable. As a result, world energy systems
will be in a position to meet current global environmental commitments.

On the other hand, the type of architecture most chosen by the researchers was the
multilayer perceptron, while the algorithms most used for training were backpropagation
and Levenberg-Marquardt. The choice of MLP as the most used network is based on the
fact that it is the most suitable ANN for classification and prediction. Moreover, the most
used activation functions were purelin (output layer) and tansig (hidden layer). They
stood out in the four investigations carried out. In addition, logsig (hidden layer) was also
widely used in the case of solar energy prediction, as was sigmoid (output layer) for wave
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prediction and sigmoid (hidden layer) for GHG prediction. It is also noteworthy that re-
search in which the greatest variety of activation functions was observed was the wave
prediction with nine different activation functions, compared to the solar energy predic-
tion with only four types.

The results and analysis performed with ANNSs in this study can serve as a guide for
the parties involved in the energy transition, in decision making, and in planning concrete
actions to achieve the goals of increasing the contribution of renewable energy sources to
the energy system, reducing GHG, and improving energy efficiency. Several methods can
be used to communicate ANN results and recommendations to stakeholders. These can
range from detailed technical reports for technical stakeholders to user manuals or graphs
and diagrams for less technical or business-oriented end users. Data and information can
also be reflected in technical equipment, through control panels of generation and distri-
bution units, feedback loops, or other types of technical and informational channels.

As it has been seen, the largest number of contributions of ANR to the energy transi-
tion are focused on both renewable energy and greenhouse gas emissions. While these are
the pillars of EU and international energy policy, it would be desirable to further develop
new applications with a view to achieving fully efficient, secure, and sustainable energy
systems.

Future research work could analyze research trends with ANNs in other aspects re-
lated to the energy transition, such as the generation and use of energy-recoverable bio-
mass. In addition, the study of these techniques in the use of both residual biomass and
specific crops could be useful to properly value the use of this resource and avoid increases
in food prices. Another line of work could be the analysis of the application of the ANN in
new sustainable mobility. Thus, the efficient control of freight traffic and private travel would
be of great importance in reducing the level of polluting emissions associated with transport.
Other future lines of research could be to try to find sufficient data to measure the diagnostic
performance of ANNSs using the receiver operating characteristic (ROC) method.

Author Contributions: Conceptualization, [M.I-S.C. and AM.-F.; methodology, IM.I-S.C, AJ.G.-
T.,, JCR.-F. and A.M.-F.; software, [.M.I-S.C.; validation, AJ.G.-T.; formal analysis, IM.I-S.C,
AJ.G.-T, J.CR-F. and A.M.-F.; investigation, [M.I-S.C, A.J.G.-T,, J.C.R.-F. and A.M.-F.; resources,
[.M.I-S.C.; data curation, M.1.-S.C., AJ.G.-T,, J].CR.-F. and A.M.-F.; writing—original draft prepa-
ration, [M.L-S.C., AJ.G.-T, J.C.R.-F. and A.M.-F.; writing—review and editing, A.].G.-T. and ].C.R.-
F.; supervision, A.].G.-T.; project administration, A.J.G.-T. and J.C.R.-F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public, com-
mercial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interests.

Abbreviations

ANNSs artificial neural networks

MDPI Multidisciplinary Digital Publishing Institute
Al artificial intelligence

GA  genetic algorithms

FL fuzzy logic

BP backpropagation

UN  United Nations

MLP multilayer perceptron

Ws  wind speed

Lon longitude
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Lat  latitude

A altitude

RBF  radial basis function

Wa  wind direction

Wp wind power

M month

RP resilient propagation

LM  Levenberg-Marquardt

ICA  imperialist competitive algorithm
PSO  particle swarm optimization

BR Bayesian regularized

T temperature

Tavc average temperature

Tmax  maximum temperature

Tmin  minimum temperature

Pair air pressure

G solar irradiance

Toair air temperature

SCG scaled conjugate gradient

IEEE International Conference on Information Science and Technology
P pressure

I/O  input/output

GRNN general regression neural network
Pw power

S sunshine duration

Y nebulosity

DGP differential pressure

Kr clearness index

t hour or day

Go daily global solar radiation

ke hourly clearness index

Sod theoretical sunshine duration
TCC total cloud cover

Kb diffuse fraction

4 surface emissivity

€5 surface emissivity

Ra terrestrial radiation

L location

H height

DNN deep neural network

Ho deep-water wave height

Te wave energy period

Hb breaking wave height

do water depth at the time of breaking
Tp H and zero-up-crossing peak wave period
Fe energy flux

4 weather station index

8] wind shear velocity

ANFIS adaptive neuro-fuzzy inference system
His  significant wave height

Hino  highest one-tenth wave height
Hmax  highest wave height

Hmean mean wave height

CGB conjugate gradient Powell-Beale
BFG Broyden-Fletcher-Goldfarb

Tp wave direction

GHG greenhouse gases
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GAINSgreenhouse gas and air pollution interactions and synergies
N nitrogen

P:0s  phosphate

K20 potassium

FYM farmyard manure

Os ozone

CO2  carbon dioxide

NO  nitric oxide

NO: nitrogen dioxide

NOx oxide of nitrogen

LOW low cloud amount

BASE base of lowest cloud

VIS  visibility

CO  carbon monoxide

CH: methane

GDP gross domestic product

GIEC gross inland energy consumption
BLH boundary layer height

PrlT  pre-injection timing

MIT  main injection timing

PIT  post-injection timing

UBHC unburned hydrocarbon

P throttle position

LHV lower heating value

BSFC brake-specific fuel consumption
BTh  brake thermal efficiency

Mo volumetric efficiency

EGT exhaust gas temperature

CFS  correlation-based feature selection
Al artificial intelligence
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