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RESUMEN (en español) 

Los avances computacionales que han sucedido a lo largo de los últimos años, especialmente 
en la última década, han permitido el desarrollo de algoritmos de Inteligencia Artificial (IA) que 
han formado parte activa en el progreso de diferentes campos tales como la industria, la 
medicina o el arte. Ejemplos de ello pueden ser los sistemas de visión por computador que 
permiten a los coches autónomos modelar el entorno que les rodea, algoritmos de detección 
precoz del cáncer o la generación de imágenes realistas a partir de descripciones de texto. 

Debido a su buen rendimiento en la resolución de problemas complejos sin la necesidad de 
recurrir a conocimiento experto, estos avances han atraído enormemente el interés en el 
monitoreo de condición, que abarca problemas en los que se monitorizan las fuentes de 
información de un sistema para detectar cambios que provoquen fallos o deterioros. 
Históricamente es un concepto ligado a la industria, pero hoy en día las fuentes de información 
son muy diversas, por lo que la monitorización puede aplicarse a la inspección de fallos en un 
motor, así como también a la detección de anomalías en las constantes vitales de una persona 
en la UCI o en la predicción del mercado de valores. 

La IA puede tomar un tomar un papel fundamental en el desarrollo de este campo, sin 
embargo, existen una serie de limitaciones que hacen que su aplicación se vea aún restringida. 
Por ejemplo, muchos de los grandes progresos están ligados a la capacidad de reutilizar el 
conocimiento de modelos pre-entrenados, algo que se conoce como Transfer Learning. Esta 
reutilización es posible en datos estáticos como las imágenes o el texto, pero no en datos 
dinámicos como es el caso de los datos de monitorización, que normalmente son registros 
históricos que se almacenan a lo largo del tiempo. Esto se debe a que, a diferencia del texto o 
las imágenes, la cuantía física de los datos a monitorizar cambia entre problemas, es decir, un 
modelo entrenado sobre datos de motores es difícilmente aprovechable para el estudio de las 
constantes de una persona en la UCI. 

Por otra parte, los datos registrados por los sistemas a monitorizar están sujetos a una serie de 
inconvenientes que entorpecen su procesamiento. Por ejemplo, es habitual que la captura de 
datos sea una tarea dificultosa y, por consiguiente, pueden existir restricciones para crear 
modelos debido a defectos o imprecisiones en los datos, ya sea por su dimensionalidad, su 
complejidad o simplemente por su escasez. 

Además, la aplicación de modelos de IA se basa normalmente en predicciones o 
clasificaciones crudas donde existe una fuerte carencia en la interpretación de los resultados. 
Esta condición además se ve agravada cuando los datos son imprecisos o inexactos, puesto 
que los algoritmos tienen mayores dificultades a la hora de modelar la realidad o en el caso de 
hacerlo, están sujetos a sesgos. Por esta razón, se antoja necesario la creación de modelos 
que sean capaces de explicar las decisiones que toman. 



                                                                 

 

El desarrollo de esta tesis engloba el tratamiento de los problemas mencionados con 
soluciones generalistas que pueden ser aplicadas a diferentes campos. Las investigaciones 
realizadas persiguen la creación de modelos dinámicos capaces de reflejar el comportamiento 
real del sistema a monitorizar de forma que permitan explicar la naturaleza de los datos y a su 
vez de interpretar los resultados más allá de simples predicciones numéricas. Además, esto 
conlleva la dificultad añadida de trabajar con datos de baja calidad y con un alto nivel de 
incertidumbre. De esta manera, se pretende contribuir a ampliar el rango de aplicación de 
algoritmos de IA a problemas donde, a día de hoy, su aplicación es limitada. 

 
RESUMEN (en Inglés) 

 

 
The computational advances that have taken place over the last few years, especially in the last 
decade, have enabled the development of Artificial Intelligence (AI) algorithms that have played 
an active role in the progress of different fields such as industry, medicine or art. Examples 
include computer vision systems that allow autonomous cars to map their surroundings, early 
cancer detection algorithms or the generation of realistic images from text descriptions. 
 
Due to their remarkable performance in solving complex problems without the need for expert 
knowledge, these advances have attracted enormous interest in condition monitoring. Condition 
monitoring refers to the process of observing a system's information sources to identify changes 
that may cause an impending failure or deterioration. It is a concept that has its roots in 
industry, but with the diversity of information sources available today, monitoring can also be 
applied to other fields such as medicine for the detection of abnormalities in a person's vital 
signs or finance for stock market prediction. 
 
AI can play a fundamental role in the development of this field, however, there are still some 
limitations that hinder its effective application. For example, many of the major advances in AI 
are possible due to the ability to reuse knowledge from pre-trained models. This reutilization, 
known as Transfer Learning, can be applied to static data like images or text, but not to dynamic 
data such as monitoring information, which are usually historical records that are stored over 
time. This is because, unlike text or images, the physical quantities of the data to be monitored 
changes between problems, e.g., the knowledge of a model trained on engine data can hardly 
be used to study the constants of a person in the ICU. 
 
What is more, the data recorded by the systems often present some problems that hamper their 
processing. It is common for data capture to be a difficult task, so there may be restrictions to 
create models due to defects or inaccuracies in the data, either because of its dimensionality, its 
complexity or simply because of its scarcity.  
 
On the other hand, the application of AI models is usually based on raw predictions where there 
is a strong lack of interpretation of the results. This condition is further aggravated when the 
data are imprecise or inaccurate, since the algorithms have greater difficulty in modeling reality 
or, if they do, are subject to biases. For this reason, it is necessary to create models that can 
explain the decisions they make.  
 
The development of this thesis addresses the mentioned problems with solutions that can be 
applied to different fields. The research carried out is aimed at creating dynamic models 
capable of reflecting the real behavior of the system to be monitored in order to explain the 
nature of the data and, in turn, to interpret the results beyond simple numerical predictions. In 
addition, this entails the added difficulty of working with low quality data and with a high level of 
uncertainty. In this way, the aim is to contribute to broaden the range of application of AI 
algorithms to problems where, to date, their application is limited. 
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Chapter 1 

Introduction 

 

 

Advances in computing capabilities and new technologies have made possible the 

availability of different sources of information from which useful knowledge can be 

extracted for later decision-making. In fact, data collection is of increasing interest in a wide 

variety of fields and, consequently, data management seems to be necessary to ensure the 

correct performance of any company or organization. 

 

In this context, it is important to note that there is a large number of situations in which data 

is recorded over time and so, it is essential to keep track of possible changes for a proper 

analysis. Condition monitoring is a concept that precisely refers to this claim as it is 

understood as the process of controlling the information sources of a system in order to detect 

changes that may be significant for decision-making. Despite being historically linked to 

industry, nowadays the sources of information are very diverse, allowing to apply this 

monitoring to different problems such as preventive maintenance [1], the analysis of vital 

signs of a person in the ICU [2], or the prediction of the stock market [3], to name a few 

examples. 

  

On the other hand, Artificial Intelligence (AI) has been incorporated as another tool in data 

analysis, especially in recent years with the rise of new architectures and novel paradigms 

that allow its effective use. However, the greatest advances have been brought by the ability 

to reuse the knowledge of a model and adapt it to solve a different problem, something 

known as Transfer Learning [4]. This is possible because large, trained AI models can be 

leveraged in the creation of new models so that they do not learn from scratch but rather start 

from a more advanced stage. In contrast to these cases, when dealing with systems that store 

historical records, the physical nature of the data changes in every dataset, making such reuse 

impossible. For example, a Large Language Model (LLM) that encodes text can be easily 

reused for other tasks because the data is still text, the only thing that changes between 

datasets is the objective (sentiment analysis, text prediction, classification....). However, 

when dealing with data stored over time, it represents different physical quantities (heart 

monitoring, sensor readings, battery degradations...) therefore, in addition to the objective, 

the data also changes. 

 

Furthermore, unlike images or text, which are easily accessible, monitoring data is difficult 

to collect because it is often specific to each field of study. Additionally, it is vulnerable to 



 

 

 

deficiencies that hinder its processing. For example, it is common to find restrictions in data 

capture due to problems such as sensor failure, sensitivity to noise, or there may simply be 

data shortage. 

 

Finally, despite being incredibly good at some tasks most AI models, especially Deep 

Learning (DL) models behave like black boxes. This is because they rely on feeding an input 

to an algorithm that results in a numerical prediction [5], and this might not be enough in 

many problems. The ultimate goal of developing such models should be that they can be 

easily used by people in any field outside of AI. Therefore, it is essential to promote 

explainability, i.e., to describe how knowledge of their different parts affects the learning of 

the model as a whole; and also, interpretability of the results, which allow a cause to be 

easily associated with an effect. 

 

This thesis provides solutions to these problems, with a focus on DL solutions for data that 

is of low quality and changes over time. In addition, the algorithms developed have a strong 

explanatory component, providing an understanding of the inner workings of the models and 

a visual and intuitive interpretation of the results that help understand the knowledge 

generated about the system being monitored. 

 

 

1.1. CONTEXT  

 

One of the main goals of this thesis is to provide solutions that are not tailored to a specific 

field but to common limitations that may be present in different fields. Consequently, the 

methods developed have been studied in three different areas: atrial fibrillation, aircraft 

engines and lithium-ion batteries. These topics will be a recurring element throughout the 

development of the thesis and serve to illustrate the achievement of the proposed objectives. 

 

 

1.1.1. Atrial Fibrillation 

 

Heart diseases are among the leading causes of death worldwide [6]. Atrial Fibrillation (AF) 

is the most common cardiovascular disorder, and its treatment involves the use of 

pacemakers to regulate the heart rhythm. Unfortunately, there is currently no standard 

procedure for diagnosing the disease state beyond the check of the data captured by medical 

specialists. 

 

The disease usually evolves from paroxysmal arrhythmias (arrhythmias that come and go 

spontaneously) to persistent arrhythmias (episodes that last more than 7 days and do not end 

without external intervention) or to permanent arrhythmias (uninterrupted episodes). It is 

caused by a problem in the electrical system of the heart that leads to an irregular heartbeat 



 

 

 

in which the upper chambers of the heart, the atria, fibrillate. Because of the loss of 

synchrony in the heart rhythm, symptoms such as chest pains or dizziness may appear, and 

in the worst scenarios, it can cause the formation of clots inside the heart which, if they reach 

the bloodstream, can result in serious problems such as stroke [7]. 

 

The records stored by pacemakers are generally limited, as a long history would mean the 

individual is already in the final stage of the disease. This limitation makes it difficult to 

obtain a model that fits the characteristics of the data and understand the patient's condition. 

Furthermore, the disease evolves over time, making the data non-stationary and it is precisely 

the changes in the properties of the data that determine the progression from paroxysmal to 

permanent arrhythmias. 

 

There are even more difficulties, the algorithm used by pacemakers to determine the duration 

of arrhythmia episodes is not completely reliable [8]. The device parameters are adjusted 

prioritizing safety, so the false positive rate is high. This results in long AF episodes that are 

sometimes erroneously reported as sets of short episodes [9], so preprocessing is needed to 

account for these spurious events, which in turn causes the number of available episodes to 

be further reduced. 

 

Given these facts, the progression of AF is a complex process that depends on many different 

factors. Ideally, the aim is to find a model that would be able to learn, from a few dozen 

recordings, the specific properties of the disease and at the same time can extrapolate the 

breaking point between paroxysmal and permanent AF. In this way, it would be possible to 

provide, from intracardiac data, a diagnosis of the patient's situation that would make it 

possible to show how the disease will progress in the near future. This would enable medical 

specialists to prevent any future complications, and thus improve the health and quality of 

life of the patient. 

 

 

1.1.2. Aircraft engines 

 

The advancement of technology has resulted in significant improvements in the safety and 

maintenance of aircraft engines. Prognostic technologies have been essential in this process 

since aircrafts are subjected to different conditions throughout their life cycle that cause 

degradation and ultimately lead to failure. Thus, being able to provide safe monitoring in 

these systems translates to a notable increase in reliability and also an extension in their 

useful life, which in the end also means remarkable savings for manufacturing companies. 

 

In order to monitor performance and prevent operation under undesirable conditions, the 

engines have several built-in sensors from which data is routinely collected. Over the years, 

the amount of information collected has increased and this has paved the way for more 

complex analysis in favor of life-extending maintenance. However, traditional strategies 



 

 

 

such as scheduled preventive maintenance or corrective maintenance are increasingly unable 

to meet the growing industrial demand in terms of efficiency and reliability. In recent years, 

metrics such as Remaining Useful Life (RUL) [10] have gained popularity and have been 

established as key elements to improve maintenance and avoid engineering, safety and 

reliability failures. Consequently, this would make it possible to determine engine 

deterioration, increase flight time and reduce maintenance costs. 

 

Traditionally, anomaly detection is widely adopted in the field [11], [12] but not so much 

the study of the phenomena that cause the breakpoint between normal and abnormal 

operation. However, in RUL estimation the aim for a complete and interpretable diagnosis 

should be to model the evolution of the system over time to know at what speed it evolves 

towards anomalous situations. This means, not to pursue the identification of anomalies, but 

rather to find when the engine start deteriorating at a different rate than it did before. 

 

The presence of anomalies is indeed correlated with RUL as they usually correspond to low 

RUL values. However, two systems can be in the same initial state but have a different 

evolution over time, so successive system states cannot be studied independently as is done 

in anomaly detection. Instead, RUL estimation must be linked to the temporal analysis of 

complete historical periods. 

 

In addition, monitoring data is subject to limitations. Although the number of sensors is 

tending to increase, the number of recorded events is still limited and not all sensors are of 

equal diagnostic importance. Also, many of the records are incomplete, have spurious values 

or are sensitive to natural factors such as wind, the number of passengers or trajectory 

changes and can cause noticeable peaks in each signal, which ultimately corrupts the data. 

 

An end-to-end model capable of dealing with the above-mentioned problems should greatly 

reduce the likelihood of an aircraft experiencing an unforeseen event, which represents an 

invaluable economic saving for manufacturing companies. 

 

 

1.1.3. Lithium-ion batteries 

 

Since their commercialization in the early 1990s, lithium-ion batteries (LIBs) have been 

widely used in key commercial and industrial applications, ranging from portable electronics 

and transportation to storage systems. Unfortunately, the performance of LIBs decreases 

with operation due to parasitic reactions taking place at the positive and negative electrodes 

(PE and NE respectively), as well as in the electrolyte [13]. In addition, some specific side 

reactions, such as lithium plating, can create safety risks [14]. Both decreased performance 

and safety issues are a major concern for deployed LIB systems, especially when reliable 

and durable applications are critical. To assess LIB performance and ensure overall safety 

and reliability, it is necessary to determine the state of health (SOH) [15].  



 

 

 

 

Recently, a new paradigm of non-invasive methodologies for assessing battery SOH has 

emerged thanks to recent improvements in processor capabilities and communications, and 

AI is expected to have a profound influence on future LIBs diagnostic and prognostic 

systems. However, the existing methodologies are still in their early stages [16] and critical 

issues remain to be solved. 

 

Degradation of LIBs is the result of a complex interaction between physical and chemical 

mechanisms within the battery, leading to loss of capacity and power. Degradation is path 

dependent and different uses such as temperatures, charging currents or cut-off voltages, can 

inhibit or exacerbate specific degradation mechanisms. These mechanisms are varied and 

can be grouped into degradation modes, which are loss of lithium inventory (LLI) and loss 

of active material (LAM) at the negative and positive electrodes (LAMNE and LAMPE 

respectively). 

 

Although the degradation modes are widely known in the field, the underlying causes and 

effects in the battery are not always straightforward. As an example, LAM degradations are 

difficult to detect since they do not usually leave signals in the history of capacity loss but 

after a few cycles of regular operation, they manifest by causing the capacity to decay 

suddenly. Because of this, they are known in the literature as "silent" or "hidden" modes 

[17]. 

 

In addition to the increasing sophistication of the algorithms required, the amount of data 

needed for training is also critical, as battery data generation is challenging and time-

consuming. The reality is that existing datasets, while providing valuable information, are 

sparse and only provide data from a few cells [18]. This poses a major obstacle to the 

application of AI algorithms, as large amounts of data are generally required for the training 

process. In addition, models trained with these datasets can lead to a false sense of 

confidence in their performance, as the capacity loss decays linearly in most cases and tests 

are usually performed with a low variety of duty cycles that are quite often disconnected 

from real applications (e.g., constant current cycles). The actual data is much more sporadic 

and sub and supralinear degradations are more common. 

 

Both future datasets and AI algorithms must take these limitations into account to 

realistically contribute to the diagnosis and prognosis of LIBs. Thus, their life cycles can be 

extended, and they can even be reused in other systems with less demanding requirements. 

 

 

 

 

 



 

 

 

1.1.4. Similarities 

 

Having outlined the different topics of study, it is interesting to note that, despite having 

apparently little relation, they share common characteristics. Specifically: 

 

▪ The systems to be studied, regardless of whether it is a person, an engine or a battery, 

tend to degrade and are therefore susceptible to monitoring. There exists an interest 

in constant monitoring to detect changes that condition future events. 

 

▪ Degradation evolves over time. The data to be monitored, despite coming from 

different sources, share that they are events that occur over time, i.e., they are mostly 

time series. 

 

▪ The rate of deterioration is not stationary. System degradation is subject to a 

deterioration that evolves until it reaches a point where sudden degradation occurs. 

The interest of these problems lies in anticipating these events in order to extend the 

lifetime of the system to be monitored. 

 

▪ Since the properties of the systems are different between datasets, even if it is the 

same application field, the use of transfer learning is not possible. That is, the 

knowledge learned by pre-trained models cannot be used as a starting point for 

similar problems. 

 

▪ Data is imperfect. In all problems, there are data deficiencies, mainly associated with 

scarcity, but also with inaccuracy in capture and spurious events. 

 

 

1.2. CONTRIBUTIONS 

 

The main contributions of this thesis are: 

 

1. Development of mechanisms to manage data deficiencies. To model the behavior of 

a system, Deep Learning algorithms need a large amount of data that may not be 

sufficient, may not be completely labeled or may be inaccurate or faulty. Different 

solutions are proposed depending on the type of problem. 

 

2. Implementation of explainable AI algorithms. The solutions proposed in this thesis 

have a strong explanatory component in order to facilitate the understanding of the 

inner workings of the models and thus contribute to understanding the nature of the 



 

 

 

data, the relationship between the different variables and the interpretation of the 

results. 

 

3. Creation of visual tools for decision-making. The proposed solutions are oriented to 

data diagnosis and prognosis to provide an intuitive perspective of the operation and 

status of the system to be monitored and in turn its evolution in the future. These 

features are of high priority for decision-making to extend the useful life of the 

systems. 

 

4. Development of models capable of anticipating future failures. Unlike anomaly 

diagnosis, where problems can generally be identified with more traditional methods, 

what is proposed in this thesis is the focus on the detection of small changes that do 

not involve an alteration in the normal operation of the system to be monitored but 

that may suddenly impact as a severe problem in the future. 

 

5. Provide open-source code that guarantees the reproducibility of results and allows 

the practical application of the models developed. Open-source code eases 

accessibility to the research carried out and reinforces its credibility. Therefore, all 

the work developed is public both for the reproducibility of results and for their easy 

adaptation to problems of a similar nature. 

 

 

  



 

 

 

1.3. STRUCTURE OF THE DOCUMENT 

 

This PhD dissertation is structured as follows. The next chapter describes the related work. 

Chapter 3 contains the results of the research carried out during the course of the thesis, 

which in turn is divided into four main sections. Section 1 describes the mechanisms used to 

deal with data scarcity and inaccuracy. The Deep Learning models developed are discussed 

in section 2 while the explainability of the proposed approaches is commented in section 3. 

The discussion of results is presented in section 4. Finally, in Chapter 4 the conclusions are 

drawn, and future lines of work are identified. 

 

 

 

 



 

 

 

  



 

 

 

 

Chapter 2 

Related work 

 

 

In this chapter, related work on Deep Learning applied to condition monitoring will be 

presented and the main limitations of existing methods will be discussed. 

 

Condition monitoring emerges as a critical approach for any industry in order to ensure the 

safety and reliability of the systems to be monitored, as well as for cost reduction. Within 

this context, there are a few steps that are typically common regardless of the field of 

application. This includes collecting and manipulating data and subsequent fault detection, 

diagnosis and prognosis, with the aim of extracting knowledge that can be critical for 

decision-making [19]. 

 

The methods used for the analysis of the collected data can be classified as model-based, 

data-driven or hybrid approaches [20]. The former, although usually highly accurate, 

requires expert knowledge of the subject and may have limitations due to complex behaviors 

that can be easily overlooked in the modeling. On the other hand, data-driven methods rely 

on the study of historical records to determine the state of health and remaining useful life 

of the element to be monitored. Combining both model-based and data-driven approaches, 

hybrid approaches aim to utilize the advantages of both approaches. However, there are 

additional difficulties such as the extraction of useful features, for which expert knowledge 

is needed so that they can then feed other learning algorithms. These hand-crafted features 

can be subjective, which implies low efficiency and high labor cost, especially in methods 

that require a large number of labeled samples for training. It is difficult to meet this 

requirement in many real-world applications where experiments are expensive or even not 

allowed. For this reason, the current is turning in recent years in favor of data-driven methods 

[21]. 

 

Within the field of Artificial Intelligence, Deep Learning algorithms have made significant 

impacts largely because of their ability to automate feature engineering, learn internal 

representations, and create feature vectors from raw data without human intervention [22], 

thus alleviating the need for expert knowledge. 

 

The following subsections will briefly explain the main Deep Learning models applied to 

condition monitoring problems and describe some of their applications and limitations. 

 



 

 

 

 

2.1. DEEP LEARNING MODELS 

 

In recent years, several network architectures have been proposed for fault detection, 

diagnosis and prognosis. More specifically, these are variants of models that have had a 

significant impact and are known for their remarkable performance, especially in Computer 

Vision (CV) and Natural Language Processing (NLP). These architectures have been 

adapted to deal with different types of monitoring data such as vibration signals, health 

constants or multi-sensor fusion. The following section briefly explains the most widely used 

models: Autoencoders (AE), Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN), as well as their variants. 

 

 

 

2.1.1. Autoencoders 

 

Autoencoders are a family of neural networks that are designed to reconstruct the input data 

and, at the same time, learn a compressed representation, known as the latent space (see 

Figure 2.1). To do this, it has two elements: an encoder, which compresses the information 

to a lower dimensionality (the latent space), and the decoder, which reconstruct the data from 

that compression. 

 

Training an autoencoder requires minimizing the average reconstruction loss, usually the 

squared error function, over a given training set. The reconstruction loss of the decoder 

depends on the encoder output, so a good reconstruction means that the latent space learned 

by the encoder retains representative features of the input. 

 

The family of autoencoders is broad and includes several variants: 

 

1) Denoising autoencoder (DAE): they add arbitrary noise to the input data to corrupt 

it. This is intended to ensure that, just as humans can recognize objects that are not 

completely clear, the network learns to reconstruct them effectively. In addition, it 

prevents overfitting [23], thus making the reconstruction more robust. 

 

2) Sparse autoencoder (SAE): Again, in order to avoid overfitting and improve 

robustness, SAEs add sparsity constraints to the neurons [24]. This is achieved by 

adding a penalty term that causes learning sparse feature representations that favor 

data compression and reconstruction. 

 

3) Contractive autoencoder (CAE): Like the sparse autoencoder, the contractive 

autoencoder [25] encourages the learned representation to remain in a contractive 



 

 

 

space. It adds a term in the loss function, the Frobenius norm of the Jacobian of the 

nonlinear mapping to penalize the representation from being too sensitive to the 

input, and thus improve robustness to small perturbations around the input data. 

 

4) Variational autoencoder (VAE): Deeply rooted in variational Bayesian methods, 

VAEs [26], instead of learning to encode information to a fixed latent space, encode 

it to a probability distribution, thus forming a continuous latent space. This property 

allows the decoder to reconstruct data from an area of the latent space that does not 

belong to the compression of any input data but an interpolation. In this way, it can 

generate new data samples, which is why they are also known as generative models. 

 

 

 

 
Figure 2.1.- Autoencoder architecture. 

  

 

2.1.2. Convolutional Neural Networks 

 

CNNs are a type of neural network commonly oriented to analyze visual imagery. Since they 

were proposed in a handwritten digit recognition task [27], researchers have repeatedly 

demonstrated their success in various applications such as computer vision, NLP and speech 

recognition and with multiple derivative architectures like AlexNet [28] or U-NET [29]. 

CNNs consist of multiple layers of neurons in which two fundamental operations are 

performed: convolution and pooling (see Figure 2.2). The convolution layers consist of 

multiple filters, also known as kernels, that are applied to the image to highlight certain 

features that make it unique. The resulting images are known as feature maps. Pooling 

reduces the spatial size of the feature maps and learns to ignore irrelevant and redundant 

information, so the dimension of the data is reduced in each layer. 

 

Stacking multiple convolutional and pooling layers allows a CNN to learn hierarchical 

feature representations from the input. Filters applied on the first layers obtain the feature 

maps that primarily characterize the image, while the later layers typically include more 

filters to capture finer details such as color intensity or brightness. 



 

 

 

 

A variant of the CNNs is the 1D CNN, which employs 1D filters to convolve along a single 

dimension of its inputs. Although applicable to 2D inputs, 1D CNNs are mainly suited to 1D 

inputs such as sequential data. 

 

 

 

 
Figure 2.2.- CNN architecture. 

 

 

2.1.3. Recurrent Neural Networks 

 

Recurrent neural networks are designed to deal with sequential data. They have forward 

connections, but also backward connections so that the dynamic behavior of the sequences 

can be modeled, i.e., the output of a neuron can be calculated based on what it received in 

the past. Thus, we have a network structure where the outputs (or states) of the neurons 

depend not only on the input they receive but also on the states they had previously (see  

Figure 2.3). 

 

There are several topologies based on RNNs, such as Elman and Jordan networks [30] or 

Neural Touring Machines [31]. However, they have become obsolete due to the 

effectiveness demonstrated by LSTM [32] and GRU [33] networks. One of the reasons why 

LSTM and GRU work so well is that they avoid a problem known as Vanishing Gradient 

[34]. A small or zero gradient implies that the network parameters are not updated correctly, 

consequently, these architectures introduce a gating mechanism, which allows the neural 

network to avoid this problem by maintaining information through multiple units for a long 

series of steps. 

 

RNNs analyze data forward, preserving information from the past through hidden states. But 

it is also possible to preserve future information by processing the input data from front to 

back. This is the working principle of Bidirectional RNNs (BRNNs) [35]. They make a path 

first from past to future and then from future to past, preserving information from both 



 

 

 

periods. Using information from the future can help the network understand what kind of 

information to predict. 

 

 

 
 

Figure 2.3.- RNN architecture. 

 

 

2.2. DEEP LEARNING APPLICATIONS IN CONDITION 

MONITORING 

 

Deep learning is becoming increasingly popular in condition monitoring applications, 

however, there is no common framework that can be automatically applied to different 

problems. Most works study subfields individually, mainly associated with anomaly 

detection, diagnosis and prognosis. 

 

Anomaly detection refers to the process of detecting data instances that deviate significantly 

from the majority of data instances [36]. It can be understood as a binary classification task, 

i.e., classifying whether the item of interest is performing well or whether something has 

gone wrong. 

 

Once a failure is identified, it is necessary to diagnose the severity associated with it. This 

diagnosis aims to determine what went wrong and must be more rigorous than the detection 

of the anomaly in its predictive accuracy and results as it can directly affect the operation or 

maintenance adjustments. 

 

Finally, after the diagnosis, it is expected to infer the remaining useful life of the system to 

be monitored, i.e., to make a future forecast. This is known as prognosis, and it is key to 

provide an accurate estimate because a premature prediction can lead to excessive 

maintenance and a late prediction can lead to irreparable failures. 

 

There are different approaches based on Deep Learning to deal with this set of processes, 

which can be divided into supervised and unsupervised methods. In the first group, one can 

find contributions using mainly CNNs or RNNs to predict previously labeled instances. For 



 

 

 

example, in [11] the authors used RNNs, specifically LSTM and GRU networks to identify 

11 different types of faults associated with flight records of an aircraft, or in [37] a one-

dimensional CNN for fault diagnosis in rotating machinery was presented. 

 

On the other hand, in unsupervised methods, labeled data is not available, so dimensionality 

reduction techniques such as autoencoders [38], [39], [40] are usually used to model normal 

behavior and identify faults as deviations from normal instances based on different 

thresholds. Intuitively, the aim is to find a latent space that can encapsulate most of the 

informative features, from which samples can be then reconstructed with minimal 

information loss. If a test sample cannot be reconstructed well from its latent space, then it 

is likely an abnormality. From this process further downstream tasks can be performed for  

diagnosis and prognosis [41], [42], [43], [44]. 

 

There are still some open problems in most of these works given that there are several 

challenges, mainly associated with data quality and models explainability [45]. Many 

supervised methods assume that the labeled training data is clean, which can be vulnerable 

to noisy instances that are erroneously labeled as an opposite class label. In these cases, 

unsupervised methods can be employed, but there is often unlabeled data contaminated by 

large-scale anomalies [46]. Furthermore, in many domains it can be dangerous to use the 

developed algorithms as black-box models. For example, instances of data reported as 

anomalies can lead to potential bias against minority groups that show up in the data, such 

as underrepresented groups. An effective approach to mitigate this type of risk is to have 

explanatory algorithms that provide direct clues about the models’ decision. The 

development of inherently interpretable models is also crucial, but it remains a major 

challenge to balance model interpretability and effectiveness. 

 

  



 

 

 

 

  



 

 

 

 

Chapter 3 

Research findings 

 

The methodologies developed during this thesis have been validated in three different fields 

of study: atrial fibrillation, aircraft engines and lithium-ion batteries. This chapter is 

organized into four sections that cover the completion of the objectives pursued. The content 

of the published contributions will be explained according to these objectives and so the 

appearance of each of the different topics will be recurrent in each section. 

 

 

3.1. DATA PROCESSING 

This section presents details on the data used, as well as the mechanisms employed to deal 

with data inaccuracies and limitations. 

 

3.1.1. Simulation models 

 

One of the most recurrent claims in any condition monitoring problem is that the data is 

limited, inaccurate or of low quality. This is a major constraint when applying Deep Learning 

models, which generally require large amounts of data for training. One of the most common 

approaches to alleviate this problem is the development of physical or mathematical models 

that can faithfully model the system to be monitored, also known as digital twins. 

 

Digital twins are simply virtual replicas of a system that allow simulations that can predict 

how a product or process will work [47]. They are used to avoid failures in physical objects 

and to perform advanced analysis, monitoring and forecasting. The main benefit is that new 

data can be generated under certain configuration parameters which can then be used to train 

Deep Learning algorithms as if they were real data. 

 

Nevertheless, building a digital twin is complex, there is no standardized process to do so, 

nor is it entirely clear what technology is needed to build and implement them. Because of 

this, there is a heavy reliance on expert knowledge for their development. 

 

In the fields of study used in this thesis, two approaches have been taken: the use of models 

previously developed by experts or the elaboration of a digital twin that adapts to the needs 

of the problem to be modeled. After generating the necessary data to train Deep Learning 



 

 

 

algorithms, they must be able to be used in real environments, so the models developed in 

this thesis are also validated on real data. 

 

 

Atrial Fibrillation 

 

As mentioned in the introduction, there is no standard procedure for diagnosing AF beyond 

reviewing the intracardiac recordings produced by pacemakers. This is because it is a very 

specific field and consequently, there is no model capable of reflecting the behavior of the 

disease. 

 

The aim is to have a dataset that includes a wide range of different types of arrhythmias that 

AF patients may suffer. Gathering a dataset of these characteristics with records from real 

people is practically impossible, first because of the sensitivity of the data and then because 

of the scarcity of data from real patients, so the creation of a customized model is necessary. 

 

There are additional difficulties, unlike surface electrocardiograms (ECGs), which record all 

types of electrical activity (Figure 3.1, left), intracardiac electrocardiograms (iECGs) simply 

represent the potential difference between two points in contact with the muscular tissue of 

the heart, the myocardium, and this causes the morphology of cardiac activity to be lost 

(Figure 3.1, right). For this reason, the dates and lengths of arrhythmia episodes are 

considered to provide more information. 

 

Pacemaker data capture is not constant, but certain events trigger their recording, namely 

episodes of high atrial frequency. When they come into action, they emit an electrical 

discharge that activates the heart cells to promote cardiac contraction. The pacemaker 

algorithm has different modes of operation, which rotate according to the activity recorded. 

When an episode of arrhythmia occurs with a higher-than-normal atrial rate, it is an indicator 

that the patient is suffering an episode of AF, therefore, the pacemaker changes its mode of 

operation from rest to electrical discharge emission to force ventricular excitation. The 

change of mode to act in the presence of an arrhythmia is part of a process known as 

Automatic Mode Switching (AMS) and when it occurs, the information capture is activated, 

which will be the date on which the episode occurs, its duration and the resulting iECG. 

 

 



 

 

 

      
 

Figure 3.1.- The morphology of the superficial ECG (left) is not maintained in the intracardiac ECG (right), 

where there is only one peak per beat.  

 

 

For efficient operation of the algorithm, it is necessary to configure the pacemaker 

parameters, which are specific to each patient. Generally, iECGs are used to adjust these 

parameters. The problem with the AMS process is that, since false positives are prioritized 

so as not to generate ventricular excitation at inappropriate times, there are long arrhythmia 

episodes that are reported as several short ones. That is, it is common for the algorithm to 

detect the presence of an arrhythmia, therefore, it generates an AMS event and then consider 

it over, only to discover seconds later that the episode is still occurring, so it generates 

another AMS event to attenuate the arrhythmia and subsequently, when successful, the mode 

returns to the initial state. These cases do not have any transcendental consequences for 

either the patient or the device, but they do affect the fidelity of the recorded data, causing 

inaccurate information to be captured. 

 

All this information was obtained in collaboration with medical experts for the development 

of a model that is able to simulate the behavior that pacemakers follow to capture AF events. 

 

The model is presented in Figure 3.2 as a continuous Markov model where there are three 

states: "Normal", "Arrhythmia" and "False Normal". A patient is in the "Normal" state until 

an arrhythmia is detected and the device outputs an AMS event, then the patient switches to 

the "Arrhythmia" state. There are two possible paths out of this state: back to "Normal" when 

the episode ends, or a transition to "False Normal" when a false end of episode is emitted. 

In this second case, the patient remains in the "False Normal" state until a new AMS episode 

is dispatched and returns to the "Arrhythmia" state. In this way, AMS events mark the 

beginning of a true AF episode or the end of a "False Normal" state. This second class of 

AMS events is abnormal and should be removed, but there is no simple procedure to remove 

them from the pacing data, so these events will be present in real patients, and therefore the 

digital twin must produce these spurious events as well. 

 

 



 

 

 

 
 

Figure 3.2.- State diagram of the model of AF episodes. 

 

 

The time between two episodes is assumed to follow an exponential distribution with 

parameter λNA. The duration of an episode also follows an exponential distribution with 

parameter λA. The progression from paroxysmal to permanent AF is measured by the rate of 

change of these two parameters: as the cardiac condition worsens, the time between episodes 

is shorter and the episodes are longer. The speed of progression is modeled by a parameter 

α ϵ [0,1], 

 

 

 λNA(t)  =  λNA(0) ‧ α𝑡, (1) 

 

 λA(t)  =  λA(0) ‧ α−𝑡, (2) 

 

 

where α = 1 is a stable patient and values below 1 are patients with rapid progression to 

permanent arrhythmia. It is also assumed that the transition from "Arrhythmia" to "Normal" 

state can occur with a probability pAN. The probability of the transition from "Arrhythmia" 

to "False Normal" is therefore pAN = 1- pAG. pAG is the fraction of false positives, which is 

the probability that the AF detection algorithm in the pacemaker signals the end of an episode 

too early. 

 

In summary, the proposed generative model is a continuous-time Markov model 

characterized by 5 parameters (λNA, λGA, λA, pAG y α). With this model, it is possible to 

generate a list of events that can be interpreted as a hypothetical patient whose AF type is 

defined by the above parameters. Specifically, six classes are generated (see Table 3.1) by 

varying the main parameters of the model: α y λNA. α measures the speed of AF progression 

and the inverse of λNA is used to model the mean time (measured in days) between two AF 

episodes. The values of α used are 999, denoting slow progression and 998, denoting rapid 

progression. For simplicity, to refer to the inverse of λNA, β will be used and the values chosen 

are 10, 30 and 180 days. Validation is then performed on real intracardiac data obtained from 

pacemakers and defibrillator systems. 



 

 

 

 

 

α/β 10 30 180 

999 Class 1 Class 2 Class 3 

998 Class 4 Class 5 Class 6 

 
Table 3.1.- Classes generated to model AF behavior. 

 

 

Aircraft engines 

 

In the case of aircraft engines, the Commercial Modular Aero-Propulsion System 

Simulation, also known as C-MAPSS, is used. It is a realistic data simulation tool for large 

commercial turbofan engines developed by NASA [48]. Each simulated flight is a 

combination of a series of flight conditions with a reasonable linear transition period to allow 

the engine to change from one condition to the next. The flight conditions are arranged to 

cover a typical climb from sea level to 35K feet and a descent to sea level. The failures or 

degradations attempt to reflect realistic situations and are injected at specific times during 

flights and persist over consecutive flights, effectively increasing the aging of the engine. 

 

The C-MAPPS [49] dataset, generated with this simulation model, is widely known and used 

in the literature [50], [51], [52], [53]. The objective of this problem is to identify which flight 

and at what time of the flight the failure occurred and to infer its remaining useful life.  This 

dataset consists of multivariate time series obtained from twenty-one sensors and is further 

divided into 4 subsets (see Table 3.2). In each subset, a training set and a test set are provided, 

of which there is a slight difference. The training set comprises the operating and failure 

data. That is, although each engine unit starts with different degradation states that are 

unknown, these are considered healthy and, as time progresses, the engine units degrade to 

failure, so the last data sample corresponds to the time cycle in which the engine is declared 

unhealthy (RUL = 0). In contrast, the sensor records in the test sets terminate sometime 

before system failure and the actual RUL value for these engines is provided. The aim is to 

estimate the RUL of each engine in the test sets. 

 

C-MAPSS dataset is used for training and data sampled on actual Turbofan engines under 

different conditions of use is proposed for validation in a more realistic context. 

 

 

 

 

 

 

 

 



 

 

 

 FD001 FD002 FD003 FD004 

Train trajectories 100    260 100 249 

Test trajectories 100    259 100 248 

Operating 

conditions 

1    6 1 6 

Fault conditions 1    1 2 2 

 
Table 3.2.- C-MAPSS datasets details. 

 

 

Lithium-ion Batteries 

 

As in aircraft engines, a simulation model widely known in the literature, Alawa [54], is 

used. Alawa is a mechanistic model that can enable battery diagnostics and prognostics. The 

model can simulate various "what-if" scenarios of battery degradation modes through a 

synthetic approach based on the specific behavior of the electrodes with appropriate 

adjustment of the charge ratio and the degree of degradation at and between the two 

electrodes. With the mechanistic understanding of battery degradation processes and failure 

mechanisms, it offers a unique high-fidelity simulation to address the path dependence of 

battery degradation. 

 

Associated with this simulation model, the authors published a dataset for training diagnostic 

and prognostic algorithms [55]. The mechanistic approach combines modeling and 

experimental techniques to provide a universal tool for creating synthetic voltage curves that 

are practically indistinguishable from real data. This approach offers the advantages of broad 

applicability of the model to various cell chemistries, designs and modes of operation, as 

well as the high fidelity inherent in the detailed extraction of the experimental data. The data 

generated consists of two datasets, one intended for diagnostics, containing over 700,000 

individual voltage versus capacity curves and a prognostics dataset with over 130,000 

individual degradation trajectories for commercial batteries of different chemistries, LFP, 

NMC, and NCA. Despite being a recent dataset, its application is spreading rapidly [56], 

[57], [58]. 

 

For real data, cycling records from two commercial high-power graphite//LFP cells 

manufactured by A123 Systems (ANR26650M1, 2.3 Ah) were used. They were tested under 

different conditions, particularly under multistage fast charging and under dynamic stress 

test (DST) driving schedules. 

 

 

 

 



 

 

 

3.1.2. Data preprocessing 

 

Simulation models attempt to reproduce the behavior of real systems, therefore, the data they 

produce must also be consistent with the data recorded in these systems. Generally, raw 

registers provide very little information and need to be processed to obtain clean data that 

can be fed to Deep Learning models. This stage is known as data preprocessing and is 

particular to each problem, as we will see below. 

 

 

Atrial Fibrillation 

 

The data recorded by the pacemakers allow the start and end dates of each arrhythmia 

episode to be known. With this, it is possible to calculate for each day recorded the time that 

the patient was in AF to subsequently obtain the daily percentage of time in AF. This 

information can be plotted as in Figure 3.3 (left). 

 

 

 
 

Figure 3.3.- Daily percentage of time in arrhythmia of a sample patient (left). Same sample with a smoothing 

applied (right). 

 

 

As the events are sporadic, the morphology of the sequence does not resemble a classic time 

series because the sequence has very few time steps that provide important information. 

Moreover, this would be aggravated in those patients who are not in critical condition 

because the percentage of daily time spent in arrhythmia is very low or directly zero. This 

would cause that if it was decided to use this data as a training set, the performance of the 

network would be negligible. Therefore, from the previous step, a smoothing with Gaussian 

kernel is applied, taking as window width a few days. With this technique, the morphology 

of the previously obtained sequence is transformed in such a way that the evolution from 

paroxysmal to permanent arrhythmias can be appreciated. 

 

 



 

 

 

 

Figure 3.3 (right) shows an example of the result obtained: the beginning of the plot 

corresponds to spontaneous arrhythmias, which, as time goes by, occur more frequently and 

are of longer duration, with the end of the plot coinciding with the transition to chronic 

arrhythmias, where the daily time percentage in arrhythmia is dangerously high. 

 

With this transformation, the data would be ready to be fed to a neural network as they are 

also in a suitable range (between 0 and 1). The only drawback depends on the length of the 

sequences since each patient will have a different set of records. For this reason, the approach 

followed was to normalize and reduce the number of samples to a fixed size taking as the 

value of each sample the mean of the closest ones. Despite drastically reducing the length of 

the sequences, no information is lost because the morphology of the series is still maintained. 

 

 

Aircraft engines 

 

The records stored by the engines correspond to the readings of different sensors. It is worth 

mentioning that the engines can operate under different conditions, as shown in Table 3.2, 

therefore a simple Exploratory Data Analysis (EDA) would yield little or no information 

concerning the sensors because operating conditions may change throughout cycles, which 

makes analyzing and predicting RUL much more complex. This is essential when it comes 

to normalizing data, because, if all data is normalized in the same way, the meaning of the 

signals may be different depending on the mode of operation. As an alternative, a condition-

based standardization is used. With this approach, all records of the same operating condition 

are grouped together and scaled using a standard scaler. The application of this type of 

scaling will bring the average of the grouped operating conditions to zero. As this technique 

is applied for each operating condition separately, all signals will receive an average of zero, 

thus making them comparable. 

 

On the other hand, although sensor data does have a trend, it is known that it is subject to 

local oscillations, mainly caused by high-frequency sensors, which lead to noise [44], [59]. 

To ease the processing of the series, an exponential weighted moving average is carried out. 

It takes the current value and the previous filtered value into account when calculating the 

filtered value. Depending on the smoothing effect stationarity may be lost therefore the 

trade-off between smoothing and stationarity has to be taken into account. 

 

Also, the data is split into sequences for better prediction performance. That is, multivariate 

series are not processed for each engine but are sliced into fixed-size windows as shown in 

Figure 3.4. At each time step, data is picked from sensors within the time window to form a 

high-dimensional feature vector used as input to the network to predict the RUL. Thus, each 

input sample contains a fixed size of samples that are extracted from the sensors, which are 

another hyperparameter of the network. The aim is to find patterns in those time windows 

that can lead to an adequate RUL estimation. There may be cases in which the partitioning 



 

 

 

of the sequences for a particular engine in the last few cycles may not have enough data to 

complete the length of the window. In those cases, a masked value is used and will be treated 

in the network by simply ignoring those values. In this way, as much information as possible 

is used. 

 

 
 

Figure 3.4.- Time window framing. 

 

 

Lithium-ion Batteries 

 

The data collected by batteries is limited, especially in real-world situations, although 

voltage and capacity records can usually be obtained over the cycling history of the battery. 

The representation of capacity vs. voltage curves (Figure 3.5 , left), on the contrary, provides 

little information because the changes are not significant between different types of 

degradation. Because of this, a more widespread representation in the battery field is the use 

of the derivative of capacity vs. voltage curve (Figure 3.5, right), known as Incremental 

Capacity curve (IC). This representation produces a series of peaks, also known as Features 

Of Interests (FOIs), that depend directly on the chemistry from which the battery is made 

and are deeply studied in the literature [60], [61], [62]. The evolution of these FOIs 

throughout the cycles that the battery undergoes is investigated to know the type of 

degradation that is occurring and thus diagnose its state of health. 

 

 

            
 

Figure 3.5.- Capacity vs voltage curve (left). IC representation (right): voltage vs derivative of capacity. 
 



 

 

 

This process can be automated with the use of Deep Learning models and in fact there are 

several works that point in that direction [57], [63], [64], [65]. However, the representation 

of the data depends on several factors such as battery usage or the internal configuration 

parameters of the cell, so the application of a model trained on simulated data is hardly 

applicable to real-world data. Because of this gap, a new representation of battery 

degradation data was sought in order to benefit from advanced DL models. It was proposed 

a representation based on Dynamic Time Warping (DTW) consisting of an image 

highlighting the differences between the IC curves of a pristine and aged battery [58]. 

 

DTW [66] is an algorithm used to measure the similarity between two sequences. First, the 

Euclidean distance between each pair of points between the two sequences is calculated in a 

matrix. Among these distances different warping paths can be found, that is, possible 

deformations that a sequence should follow in order to be as similar as possible to the other. 

The method quantifies the similarity between the sequences by finding the best warping path, 

which corresponds to the one with the smallest accumulated distance. Figure 3.6 (left) 

presents the example of the application of DTW to two sine waves, referred to as Sin #1, 

located in the left part of the grid and Sin #2, located in the upper part of the grid, which 

shows a small deformation in the second period. The best path found in the matrix is marked 

in blue and indicates that for the Sin #2 to be the same as Sin #1, the deformation to follow 

is to slightly raise the values between 15 and 20. The similarity between the two sequences 

can be quantified with the resulting distance, i.e., the accumulated Euclidean distances of the 

path, which is 0.1946. At the lower left and upper right corners, the values are marked as inf 

(infinite) because there are no deformation paths that extend that far, so they are not 

calculated in order to reduce computation time. The method developed originally for speech 

recognition, and it is widely used for classification and clustering tasks [67],  [68], [69], [70]. 

 

 

 
 

Figure 3.6.- Euclidean distance between each pair of points of the two sequences displayed on a grid (a). 

Every warping path represented as a set of pixels (b). In both images the optimal warping path is marked in 

blue. 



 

 

 

 

 

DTW was already applied to the estimation of Li-ion battery capacity [71], [72], [73] as well 

as for augmenting the data obtained from different operating conditions [74]. However, these 

works make use of the similarities found in the best warping paths. Instead, it was proposed 

for the first time to use the full matrix, represented as a set of pixels (see Figure 3.6, right) 

and thus as an image. IC curves were used as sequences, one pristine and one aged. An image 

can be generated for each sample in the data and each image thus represents the similarity 

between the corresponding IC curve and the pristine one. Since each degradation path leads 

to a unique voltage response, it will also result in a unique image. As an example, Figure 3.7 

depicts the IC curves corresponding to 20% of each of the three degradation modes 

considered: LLI, LAMPE and LAMNE (dashed lines) with the reference IC curve (solid 

lines) and their resulting images, labeled with the final DTW distance. This is to showcase 

that, just as the IC curves after different degradation are unique, the images are too. In these 

images, changes are reflected in shape, symmetry and colors. Note in the first degradation, 

LLI, the main peak located at 3.37 V is lost while in LAMPE the peak that disappears is the 

minor one, located at 3.23 V. The images associated with these degradations also change, 

specifically in the intensity of the purple color, as well as in the symmetry, which is mainly 

lost in the first image, and consequently, the distance is greater, 0.77 vs. 0.31. In the LAMNE 

degradation, the appearance of the peak at 3.45 V represents a sign of lithium plating in LFP 

cells [75]; On the image, this translates to the appearance of a lighter color band that 

coincides exactly with the position of the peak. The changes in this degradation are much 

more significant, and accordingly, the final calculated distance is greater: 1.53. In the end, 

just as with studying FOI variations, the degradation modes are decipherable from these 

unique images and so image processing algorithms such as CNNs can be undertaken. 

 

 

 
 

Figure 3.7.- IC signatures from the initial state (solid line) for each degradation in the dataset: LLI (a), 

LAMPE(b) and LLI(c) at 20% degradation. 

 

 



 

 

 

A key property of these images is that they preserve the representation of the degradation 

modes regardless of the cell configuration. While the images were gathered from a dataset 

composed of synthetic curves, the differences between the pristine and aged IC curves 

should be similar for cells with slightly different cell configurations. In the simulation model, 

a cell is defined by its active materials and two additional parameters, the loading ratio (LR), 

which corresponds to the electrode capacity ratio and the offset (OFS), which corresponds 

to their slippage compared to one another. Based on cell-to-cell variations studies [76], 

variations of LR by +/-0.2 and OFS by +/-2% were estimated possible within a batch. As an 

example, images associated with different cell configurations for the same degradation (20% 

of LLI) are presented in Figure 3.8, with varied parameters to simulate cells from the same 

batch with slightly different properties (+/-0.01 for LR, +/-1% for OFS). Visually, the three 

images are almost identical, and this is confirmed by the final DTW distance that were 0.65, 

0.66, 0.62, respectively to be compared to the 0.77, 0.31, 1.53 for LLI, LAMPE and LAMNE 

degradations on Figure 3.7. This is a key factor when applying the procedure to batteries 

with different operating modes or cell configurations, especially since batteries from the 

same batch have some cell-to-cell variations and batteries from different manufacturer might 

not use the same materials, additives or loading. This differentiates the proposed method 

from other models trained on synthetic data that might not be applicable to real data. 

 

 
 

Figure 3.8.- DTW Images for 20% LLI degradation for three different cell configurations. 

 

 

To demonstrate the performance of the approach in a more realistic application context, a 

demo is provided in https://huggingface.co/spaces/NahuelCosta/DTW-CNN. Different 

cycles associated with three LFP test cells can be selected to display their IC curves, the 

corresponding DTW image and the final diagnosis given as the percentage of each predicted 

degradation mode using a CNN. 

 

 

https://huggingface.co/spaces/NahuelCosta/DTW-CNN


 

 

 

3.1.3. Summary 

 

Table 3.3 presents a summary of what has been explained in this section. The rows show 

the simulation models to produce the training data (labeled as “Digital twin”), the real data 

to evaluate the developed DL models, the preprocessing steps followed and the type of 

problem to be solved in each topic. 

 

 

 FA Aircraft engines Batteries 

 

Digital twin 

 

Markov model C-MAPSS Alawa 

Real data 

 

Registers from 

pacemakers 

 

Turbofan engines 
Commercial high-

power LFP cells 

Preprocessing 
Smoothing + 

downsampling 

 

Smoothing + 

condition 

standardization + 

time window 

framing 

 

IC + DTW 

Type of problem 
AF estimation: 

Classification 

RUL estimation: 

Regression 

 

Degradation modes 

estimation: 

Regression 

 

 
Table 3.3.- Summary of data, preprocessing steps and types of problems.  



 

 

 

3.2. DEEP LEARNING-BASED SOLUTIONS 

 

This section presents the models developed during the realization of this thesis, which have 

been validated on the different topics explained above. 

 

 

3.2.1. Variational Autoencoder (VAE) 

 

In Chapter 2 the relevance of autoencoders in condition monitoring was discussed. The 

workflow of these models resembles an hourglass structure where at the bottleneck (latent 

space) a compressed encoding of the input data is learned and then reconstructed back to its 

original dimension (remember Figure 2.1). The main limitation of conventional 

autoencoders is that the inputs are encoded to a fixed set of vectors in the latent space. This 

makes the model suitable for reconstructing the input data, however, if an area of the latent 

space not associated with any of the learned vectors is taken as a starting point for 

reconstruction, the output would be arbitrary. 

 

In contrast, VAEs [26] do not encode the information to a set of fixed vectors but learn the 

probability distribution of the input data. This allows the decoder to reconstruct data from 

areas of the latent space that do not belong to the compression of any input, thus generating 

completely new samples. An example of this can be seen in Figure 3.9: the left side of the 

figure corresponds to the latent representation of geometric figures by a conventional 

autoencoder. There are samples that are not similar that are encoded in nearby areas of the 

latent space, so that, if some intermediate point is chosen, for example, between the rectangle 

and the rounded triangle, the resulting decoding does not make sense (figure in red). On the 

other hand, on the right-side similar data are encoded in nearby areas, therefore, if it is 

interpolated again between the rectangle and the rounded triangle the resulting figure will be 

a cross between the two figures, thus favoring the generation of new data. 

 

This organization in the latent space is achieved by forcing the encoder produce not one 

vector of fixed size, but two vectors: a vector of means μ and another vector of standard 

deviations σ, which define the probability distribution of the data. In this way, the 

reconstruction is done from a sample of the latent space that follows the same distribution, 

which allows the VAE to be a generative model. 

 

Generative models in recent years have had an extraordinary impact in several areas [77], 

[78], [79], mainly due to models like VAEs, GANs [80] or the recent diffusion models [81], 

[82]. However, VAEs are also actively applied in anomaly detection [83], [84], [85], as by 

learning the distribution of the data they are trained on, they can detect instances that do not 

specifically follow the learned distribution. 

 

 



 

 

 

 

 
 

Figure 3.9.- Simplified representation of the compression resulting from a vanilla Autoencoder (left) and a 

VAE (right). When the latent space is continuous, the organization of the data allows decoding a meaningful 

figure, in this case a cross between a rectangle and a triangle, thus favoring the generation of new data. 

 

 

Achieving such a latent space is an example of a Representation Learning approach. The 

performance of Deep Learning models is highly dependent on the representations learned. 

Typically, an algorithm capable of learning the features that best represent the underlying 

distribution of the data is required, so it makes it easier to perform other tasks such as 

classification or regression. A model such as a VAE is potentially useful in this regard, as 

its feature extraction capabilities make it easily interpretable. Other unsupervised techniques, 

such as clustering algorithms, can also be applied for this purpose as they do prioritize 

grouping data of a similar nature, however, the visual disposition of the clusters can often be 

arbitrary. On the other hand, neither can the VAE latent space be used for clustering 

since the encoded data tend to be overlapped to prioritize the generative process. 

 

Furthermore, although VAEs have been shown to be efficient in multiple domains, mainly 

related to Computer Vision and NLP problems, there is a large gap in research on these 

models for sequential data. In [15] the authors presented a VAE that can map time series to 

a latent vector representation, but the model has become obsolete due to more recent 

advances in recurrent architectures. Other promising work has started to emerge: in [86] 

LSTM networks are used to model the temporal complexion of data, while in [87] the authors 

propose to use echo-state networks for the same purpose. Although these works combine 

recurrent architectures with VAEs, their goal differs from ours, as they aim to detect 

anomalies based on reconstruction errors or anomaly scores, while what we pursue is an 

interpretable assessment of the time series. 

 

The solution proposed is to introduce a recurrent version of the VAE to deal with temporary 

data. If a VAE is trained with monitoring data of several systems that have undergone a wide 

range of degradations, the resulting model will be capable of projecting different types of 

degradation of the systems in different areas of the latent space. The key is that similar 



 

 

 

samples are located in nearby areas of the latent space. Also, this representation can be used 

for other downstream tasks such as the classification of different types of arrhythmias or the 

estimation of RUL in the case of aircraft engines (Figure 3.10). In fact, the inclusion of a 

classifier or a regressor in the training process helps control the regularization of the latent 

space, thus preventing the resulting clusters from overlapping. 

 

 

 

 
 

Figure 3.10.- Network structure of the proposed recurrent VAE. The blue and green blocks are the encoder 

and decoder respectively and the red block represent a downstream task such as classification or regression. 

 

 

The model is trained with simulation data so that when a sample from a real system is fed to 

the model, the projection on the latent space is expected to be located on a specific group 

corresponding to those samples of the training set with similar properties. In this way, the 

latent representation can be considered as a projection of the simulation model parameters 

that best fit the criticality of the given sample, thus being able to know its degradation stage. 

 

The following subsection is intended to explain the core parts of the model, which are mainly 

the encoder and the loss function. 

 

 

3.2.1.1 Model settings 

 

In a VAE the training is regularized to avoid overfitting and to ensure that the latent space 

has good properties that allow the generative process. Precisely, these properties contribute 

to the input data being mapped in the latent space in such a way that similar data are nearby, 

and that this representation can be used as a feature extractor. 

 



 

 

 

A VAE given an input, tries to find a latent vector that can describe it and at the same time 

has the instructions to generate it again. The process can be described as: 𝑝(𝑥) =

 ∫ 𝑃(𝑥|𝑧)𝑝(𝑧)𝑑𝑧. Given that the integral of this formula is intractable due to the continuous 

domain of z, the Bayesian variational inference is needed via the lower bound of the log-

likelihood, LVAE, 

 

 LVAE = EqΦ(z|x)[logpθ(x|z)] – DKL(qΦ(z|x)||pθ(z)), (3) 

 

The first term is the reconstruction of x (the input data) that tends to make the coding-

decoding scheme as efficient as possible by maximizing the log-likelihood [logpθ(x|z)] with 

sampling from qΦ(z|x), which represents the encoder, whose output are the parameters of a 

multivariate Gaussian: a mean and a diagonal covariance matrix. The second term tends to 

regularize the organization of the latent space by causing the distributions returned by the 

encoder to approach a standard normal. It regularizes the latent variables (represented by z) 

by minimizing the KL divergence between the variational approximation and the prior 

distribution of z. With that being said, the focus is mainly placed on the encoder as its goal 

is to map the input data into a lower dimensional space, specifically to a two-dimensional 

latent space dominated by the mean and the variance of the approximated distribution. 

 

To deal with the time dependence of the monitoring data, instead of using convolutional 

layers, as vanilla VAEs do, the encoder is implemented with RNNs. Bidirectional LSTMs 

are chosen because of their ability to run from past to future but also from future to past, thus 

preserving information from both periods. This is very valuable due to the fact that the 

network is aware of how the data may look like in its future stages, so it can help to 

understand what kind of information to predict. The code of the model can be found in 

https://github.com/NahuelCostaCortez/RVAE. 

 

There is an additional problem, as mentioned above, VAEs are mainly oriented to enhance 

the generative process, and this causes the regularization of the latent space to lead the 

encoder to project the data as compressed as possible, resulting in obvious overlaps. This is 

a barrier to our objectives because these overlaps make it difficult to correctly differentiate 

the different stages of degradation. First visually: although similar instances will be close in 

the latent space, they will not be clearly differentiated from those that are far away. Then, 

because any model built on top of this will be guided by this representation and will most 

likely result in prediction failures. Therefore, the training of a vanilla VAE does not meet 

the stated needs so the use of variational inference must be adapted. The image on the left in 

Figure 3.11 represents why this is not suitable. It corresponds to the latent space the encoder 

learns for one of the aircraft datasets after training the model without any restrictions thence 

the regularization of the latent space for the generation of new data is prioritized. This causes 

the input data to be placed in areas where instances whose features are not similar are not 

clearly differentiated or even overlap. 

 

https://github.com/NahuelCostaCortez/RVAE


 

 

 

Instead, the proposed modification includes omitting the decoder, as it is not used and may 

wrongly interfere in the training process and focus the learning on obtaining an interpretable 

latent space. Thereby, the main difference with respect to a VAE is that the decoder is 

replaced by a classifier or a regressor model, depending on the needs of the problem, so the 

proposed model is trained to minimize a loss function composed of two objectives: 

 

 Lx = – DKL(qΦ(z|x)||pθ(z)) + Lclassification/regression (4) 

 

The first objective corresponds to the regularization of the latent space through variational 

inference, as explained before in Eq. (3) and the second can be the root mean square error 

(RMSE) in regression problems or the categorical cross-entropy in classification problems. 

The inclusion of the optimization of any of these models in the loss function adds a constraint 

to the autoencoder, as it will strive not only for a continuous latent space but also a space in 

which the different aging sequences are sufficiently separated to be differentiated so that the 

rate of deterioration can be observed over the life cycles of the system to be monitored. The 

code of this modification is available at https://github.com/NahuelCostaCortez/Remaining-

Useful-Life-Estimation-Variational. The right part of Figure 3.11 demonstrates the 

effectiveness of training the model in this way for the aircraft engines problem. In this case, 

the aim is to estimate the RUL, so a simple regression model is used: on top of the encoder 

base, a fully connected layer with a tanh activation function and another layer with a single 

neuron containing the RUL prediction are added. 

 

 

 
 

Figure 3.11.- Latent representations learned by the encoder for one of the aircraft datasets. The figure on 

the left shows the regular training of a VAE, while the figure on the right shows the result with the proposed 

model, which does not include the decoder but a regression model that adds a penalty for wrong 

predictions. 

 

https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational


 

 

 

The latent space can be interpreted as a diagnostic map from which to understand the nature 

of the data. This is one of the main objectives for the achievement of an explanatory and 

interpretable model and will be further explained in section 3.3 EXPLAINABILITY. 

 

 

3.2.2. Generative Adversarial Networks (GAN) 

 

As explained previously, generative models are a hot topic in Deep Learning. Together with 

VAEs, GAN networks [80] have been a major breakthrough in this regard with applications 

already widely integrated into different fields such as video game [88] and fashion industry 

[89], image editing [90], [91], or medical imaging [92]. 

 

The architecture consists of two neural networks that are able to learn based on the feedback 

received by each other. On the one hand, there is the generator network, which receives as 

input a vector of completely random numbers or noise, from which it tries to generate new 

data. 

 

On the other hand, there is the discriminator network, whose task is to identify whether the 

data generated by the generator belongs to the same distribution of the input data or not. 

 

 

 
 

Figure 3.12.- Workflow of GAN networks. 

 

 

Figure 3.12 illustrates how the model works. The discriminator has access to the data on 

which the model is trained, and its task is to learn the probability distribution that better 

describes it. The objective of the generator is to generate data that the discriminator considers 

to be from that distribution. At first, the generations will be completely random, and the 

discriminator will not be able to identify with a high level of confidence whether they are 



 

 

 

realistic, so both networks adjust their weights to improve on their objectives until they reach 

a point where the generator is able to fool the discriminator and the discriminator learns the 

distribution of the data. 

 

As with the decoder in the VAE, although the generator is the most used component of these 

models, for condition monitoring problems the discriminator is of greater interest due to its 

ability to faithfully learn the distribution of the data. If a GAN is trained with simulated data 

generated under certain parameters with a digital twin, the resulting discriminator will be 

able to recognize only that type of data. Therefore, if a set of GANs is trained with data 

covering a wide range of degradation types, a set of discriminators will be obtained that will 

be activated only if the data fed to the model match situations similar to those of the data 

with which they were trained (Figure 3.13). 

 

  

 
 

Figure 3.13.- Ensemble of GAN discriminators, each trained with different classes of AF. When feeding 

evaluation data to the ensemble at least one of the discriminators is expected to be activated. 

 

 

GAN research is largely oriented to convolutional networks for computer vision problems 

and hardly to sequential data, so the proposed model is customized with recurrent networks 

in order to deal with the temporality of the data. The code can be found in 

https://github.com/NahuelCostaCortez/FA-GAN. The following subsection describes the 

different parts of the model. 

 

 

3.2.2.1 Discriminator network 

 

The discriminator network is implemented with a recurrent network, specifically with LSTM 

cells. The input receives the data to be evaluated and as output produces a state vector with 

the information process by the LSTM units (Figure 3.14). 

https://github.com/NahuelCostaCortez/FA-GAN


 

 

 

 

 

 
 

Figure 3.14.- Discriminator network structure. 

 

 

First, the training data is fed to the model and then data produced by the generator. The 

objective is to classify the sequences coming from the training set as true and those coming 

from the generator network as false, therefore, the output of the network will establish the 

veracity of what it receives as input. 

 

For each sequence that is received (consisting of a fixed number of samples), there is an 

output for each sample in the sequence. Each output is a number indicating the probability 

of that sample being part of a real sequence. The hidden state of the last block of the RNN 

is normally used since it contains the relevant information of the previous elements of the 

sequence and then it is passed through a function or linear layer to predict an output. On the 

contrary, it is proposed to use all the outputs of the RNN (passed through a linear layer) in 

order to measure for each time interval whether the sequence to be evaluated is sufficiently 

realistic; this is important to then adjust the generator parameters, which may have learned 

to generate correctly specific parts of the sequence, but not others. 

 

As this architecture is applied to the AF estimation, which is a classification problem, each 

network is trained to minimize the average cross entropy between the predictions and the 

real values for each time step. Thus, the loss function can be defined as follows:  

 

 Dloss(X, y)  =  CE(Do(X), y), (5) 

 

where X are the sequences fed to the network, y are the real values of the sequences: it will 

be a vector of 1s for real sequences or a vector of 0s for synthetic sequences and CE is the 

cross-entropy between two values: Do, the output generated by the discriminator from the 

inputs and y. 

 

Since in each iteration the network "visualizes" both real and synthetic data, the loss is 

calculated for each type of data and the final loss value will be the sum of both losses, the 

one obtained with real data and the one obtained with synthetic data: 



 

 

 

 

 Dloss_final = Dloss_real + Dloss_synthetic (6) 

 

 

3.2.2.2 Generator network  

 

In this case, although the generator is not used after training, it is key for obtaining an 

accurate discriminator. It is another RNN, formed by a LSTM structure similar to that of the 

discriminator. It receives an input tensor and generates a sequence (Figure 3.15). 

 

 

 

 
Figure 3.15.- Generating network structure. 

 

 

The input that the network receives is noise, in order to produce sequences that resemble as 

closely as possible the data of the real distribution. This noise is produced randomly from a 

normal distribution with mean 0 and variance 1. All the outputs of the network are also used 

here, since they will form the synthetic sequences that will then be passed as input to the 

discriminator. 

 

The goal of the generator is to fool the classifier in its task of sequence classification, so that 

it classifies what it generates as true. This translates into minimizing the average cross-

entropy between the predictions made by the discriminating network on the data passed to it 

by the generator and the target predictions. The target predictions will be a vector of 1s since 

the prediction for synthetic sequences should be as close to 1 as possible, which indicates 

that the sequence is evaluated as real. 

 

The loss function of the generator, therefore, is as follows: 
 

 Gloss(Z)  =  Dloss(Do(Go(Z)), 1)  =  CE(Do(Go(Z)), 1),  (7) 

 



 

 

 

where Z represents the noise, Go the output of the generator, and Do the output of the 

discriminator. 

 

 

3.2.3. Convolutional Neural Networks 

 

In the case of CNNs, no modification in the architecture has been proposed but it has been 

adapted to the problem to be solved. CNNs consist of multiple layers of neurons, the 

structure of the proposed model for Li-ion battery degradation modes identification is 

depicted in Figure 3.16. The detailed description of each layer is as follows: 

 

• Masking layer: this layer is used to mask data to be omitted by the next layer. This is 

particularly useful for the DTW images, where there are areas of the image that do not 

provide information and can therefore be omitted. 

• Convolutional layers (Conv1 to Conv4): these layers are composed each of a conv2D 

layer (light orange) and a Max-Pooling layer (dark orange). The conv2D layers consist 

of multiple filters, which are applied to the image to highlight certain features that make 

the image unique such as the direction of the lines or their shape. The resulting images 

are known as feature maps. 64 filters are applied in each of the first two layers to obtain 

the features maps that mainly characterize the image, while in the last two layers more 

filters are needed (128 each) to capture finer details like color intensity or brightness. 

The Max-Pooling layer reduces the spatial size of the feature maps and learns to ignore 

irrelevant and redundant information, that is why the dimension of the blocks is reduced 

in each layer. 

• Flatten layer: after the convolution and max pooling flow, the shape of the matrices is 

flattened to a single vector containing all the information needed for predictions. 

• Dense layer: this layer applies a sigmoid activation function to obtain a value between 0 

and 1 representing the percentage prediction of each of the degradation modes. 

 

 
Figure 3.16.- Model architecture for Li-ion degradation modes diagnosis. Conv1 to Conv4 represent the 

convolution layers followed by the max pooling layers. The features extracted are condensed in a flatten 

layer from which the 3 degradation modes are predicted. 

  



 

 

 

3.3. EXPLAINABILITY 

 

The evolution of AI systems has reached a point where human intervention is barely required 

for their design and deployment. In this context, when the decisions derived from these 

systems end up directly affecting business processes or even the lives of human beings, there 

is an emerging need for understanding how such decisions are made [93]. 

 

Traditional AI systems such as decision trees, decision rules and linear regression are easily 

interpretable, however, the empirical success of Deep Learning models such as neural 

networks have made this process difficult. These networks usually have a huge parameter 

space comprising hundreds of layers and millions of parameters, which makes them to be 

considered as complex black-box models [94]. 

 

As black-box DL models are increasingly used to make important predictions in critical 

contexts, the demand for transparency is increasing from the various AI stakeholders. The 

danger lies in creating and using decisions that are not justifiable, legitimate, or simply do 

not allow for detailed explanations of their behavior. Explanations that support the output of 

a model are crucial, especially in condition monitoring, where experts require much more 

information from the model than a simple numerical prediction. 

 

The methods developed during the course of this thesis have sought to contribute to this 

direction in order to provide a better understanding of how the models learn as well as the 

nature and relationship between the data. 

 

One of the common approaches to understand the models’ decisions is to examine the 

activation of internal parameters such as the neurons in different layers. Other models or 

techniques can be built over this to extract further information. Thus, the mechanisms 

developed in this thesis have used this approach to build visual explanatory tools. 

 

The use of digital twins offers the possibility to adjust the simulation parameters. This is an 

advantage because when evaluating real data, it is possible to identify within this set of 

parameters those that best explain the situation and therefore the criticality of the system to 

be monitored. 

 

 

3.3.1. GAN ensembles 

 

It is recalled that GAN networks were used not for data generation but to exploit the 

discriminator's ability to learn the distribution of the input data. Particularly, an ensemble of 

GAN networks was trained with data reflecting AF behavior in such a way that a set of 

discriminators was obtained, each being capable of detecting a simulated AF class. 

 



 

 

 

When patient data is fed to the ensemble, each of the discriminators, which is a binary 

classifier, will provide a numerical response corresponding to the degree of confidence with 

which the classifier recognizes the given records. Each classifier has a sigmoid activation in 

the last layer that will determine the output in the range [0,1], so it is expected that the 

classifier with the closest output to 1 will be the one that has been trained with the data that 

best describes the patient's situation. This data is simulated by the digital twin and therefore 

its properties are known, from which the properties of the actual patient are inferred. 

 

This numerical information is fundamental because, although it is of interest to classify the 

type of arrhythmia, it is also important to know the similarity to other types of arrhythmias 

in order to deduce the speed of its evolution. Thus, it is proposed to organize the activations 

of the last layer of each discriminator in a graphic map. 

 

Figure 3.17 presents two maps to illustrate the method. The horizontal axis is labeled β, 

which is the inverse of the parameter λNA, and can be understood as the expected number of 

days between two AF episodes. The vertical axis is denoted α and measures the speed of 

arrhythmia progression. The lower the α value, the faster the progression to permanent AF. 

The color code is shown in the bar at the right. Red areas are the highest activations, and 

blue areas the lowest. 

 

The ensemble outputs belong to six types of AF (remember Table 3.1) that are within a given 

set of simulation parameters. Working with only six values would provide a map that is not 

very explanatory because the activations would be concentrated in one area. To solve this 

problem, it was proposed to use a Kriging interpolator [95]. Kriging is a method that uses a 

limited set of sampled data points to estimate the value of a variable over a continuous spatial 

field. It is typically used in geostatistics but in this case it was applied to simulate that the 

map had activations of many more discriminators. 

 

The first map shows the output of the set of discriminators when the input is a synthetic 

sequence of AF recordings, generated by the Markov model, with λNA = 1/90 and α = 0.999. 

It is expected that only one of the detectors (or only a few) will react to this artificial 

sequence. The map obtained corresponds to what is expected, obtaining the predicted 

parameters from the most intense colored area in the map (red zone), with the estimation of 

these parameters corresponding to β = 90 and α = 0.999, i.e., the model prediction 

corresponds exactly to the type of arrhythmias fed to it. 

 

On the right side of the same figure is a second map with a projection of an AF sequence of 

events taken by a real pacemaker. Here there is not a clear identification as before, possibly 

because the records do not exactly follow the Markov model. However, the projection of the 

sequence in the given parameter space gives a decent insight on the evolution of the patient. 

In particular, the dark red area at the bottom of the map is compatible with a value of β ≈ 

120 and with a rapid progression to permanent AF, α = 0.998. 

 



 

 

 

The major difficulty of the model lies in the number of records for each patient. A large set 

of AF episodes is not compatible with an early diagnosis: if many captured records were 

treated, the information would surely be sufficient to know the patient's condition accurately. 

The interest of the study is focused on being able to get an insight of the patient's condition 

with as few records as possible in order to act prematurely and avoid potential future 

interventions. For this reason, it should be pointed out that the achievement of these maps is 

a step forward obtaining explanatory estimates with imprecise information. 

 

 
Figure 3.17.- Left: projection of AF events using the Markov model, with β = 90 and α = 0.999. Right: 

projection of a sequence of AF events from a real pacemaker. The map is consistent with a value of β ≈ 200 

and a rapid progression toward permanent AF, α = 0.998. 

 

 

3.3.2. Variational encoding 

 

The compression the proposed encoder does on the latent space is projected in two 

dimensions, which belong to the vector of means and variances of the learned data 

distribution. These vectors can be used to construct a two-dimensional map showing the 

location of the training data, whose diagnosis is known, so that when feeding data from a 

real system, the degradation it may be suffering can be immediately seen. This idea has been 

tested on intracardiac and aviation data and in both cases the proposed tool was able to show 

the deterioration rate of the system to be monitored. 

 

For the case of AF, the latent space is displayed as a map showing the actual state of the 

patient and the rate of change from paroxysmal to permanent AF. Once the encoder is trained 

with the data from the Markov model, a topological map is obtained in the latent space from 

which the groups corresponding to the different types of arrhythmias are identified, as can 

be seen in Figure 3.18 (left). As the map is organized, it is evident that the values of β are 

located from left to right from highest to lowest (180, 30, 10), which is equal to an 

organization from lowest to highest criticality as low values of α indicate short times between 

different episodes. On the other hand, the values of α are organized from top to bottom (999, 



 

 

 

998), from less to more critical. This information can be used to facilitate a better 

interpretation of the map. The upper right zone denotes the less critical arrhythmias, while 

the lower right zone shows those arrhythmias that represent a very advanced stage of the 

disease. At the same time, the rest of the parameters of the simulation model during the 

generation of the training set have been varied randomly, which slightly influences the 

condition of the arrhythmias, therefore this property can give rise to the interpretation of 

arrhythmias between two clusters as an interpolation between the parameters of two classes. 

 

When real data is used as input to the model, i.e., a patient's intracardiac data, the encoder 

will place them according to their characteristics, in an area of the latent space that will 

provide information about the type of arrhythmias the patient is suffering from. First, the 

parameters that best fit the state of the disease will be known according to the group into 

which the patient's intracardiac activity data fall. Second, according to the proximity to other 

groups of arrhythmias trained with different parameters, the most probable evolution of the 

disease will be known, providing medical specialists with an insight of how the disease could 

evolve if action is not taken prematurely. As an example, in the right part of  Figure 3.18 it 

is shown a projection of a randomly selected patient. In this case, it is more likely that the 

average time between arrhythmias of this patient, β, will occur at least every 30 days, but 

due to its proximity to the lower-left group (β = 180), it can be understood that its evolution 

is on the way to reach 30, possibly a value between 180 and 30. The most critical parameter, 

α, corresponds to a value of 0.998, which means that the evolution is closer to a permanent 

arrhythmia. This is not the most critical case, but it may need medical intervention in order 

to prevent future complications. 

 

  
 

Figure 3.18.- Learned representation of simulated AF events (left). Latent projection of a real patient (right). 

 



 

 

 

 

For the case of aircraft engines, the workflow is the same: the diagnostic tool is built with 

the activations of the latent space showing the actual state of the engine and also the rate of 

change from healthy to deteriorated. Each point in the map represents the status of an engine 

associated with a window of events during its flight history so that points of degraded aircraft 

are grouped in nearby areas and, on the contrary, points belonging to healthy aircraft are 

located in more distant areas. As the actual health status of the training aircraft will be 

known, since the CMAPSS simulation system was used, a color scale can be established to 

clearly differentiate healthy aircraft from deteriorated or totally deteriorated aircraft, 

coloring each point according to its corresponding RUL.  

 

An example of one of the maps produced by this algorithm is shown in Figure 3.19, left side. 

Aircraft with high RUL values are painted in yellow while aircraft with low RUL values are 

painted in dark purple. It can be observed that there is a clear progression in the colors along 

the map since events with no or low deterioration are located in the upper part of the map 

(high RUL values) while the most deteriorated ones are located in the lower part (low RUL 

values). The red trail corresponds to the evolution of the health status of a simulated engine. 

The compressed representation of the first thirty cycles corresponds to the first upper left red 

dot, while the compressed representation of the last thirty would be the last lower right red 

dot. Its latent representation begins in the upper left zone and, as it starts to degrade, this 

location moves to the right until the registers of the last cycles are located in the lower 

rightmost area, indicating that the engine is totally degraded (low RUL). 

 

This map is considered explainable, since the method's decisions are based entirely on the 

learned representations and can therefore be justified; and interpretable, because a simple 

glance at the map gives insight into the status of each engine unit. Other Deep Learning 

methods can also reveal interpretable information in intermediate layers; however, extra 

processing is needed in order to find the most suitable layers or to transform the content of 

these layers into human readable information. An example of this is the embedding projector 

of tensorflow [96], which applies different dimensionality reduction methods such as 

UMAP, T-SNE or PCA to provide a visualization of an embedding layer. In contrast to this, 

this method provides a direct 2-D compression, which does not need any further processing. 

 

Finally, another example is shown in Figure 3.19, right side, for a float of real engines. Six 

airplanes have been chosen to project their state into the latent space in two different time 

steps: t = 0, which corresponds to feeding the network with the data corresponding to the 

cycles from 0 to windows length and t = 1000, starting from data corresponding to the cycle 

1000. The evolution of each engine between the two time periods is marked with an arrow. 

Fixing the latent projection obtained after training gives some insight into the progression of 

the health status of these units. The latent projection of engine e1, e2, e3 and e4 during the 

time steps shown remain over the upper left quadrant, next to other aircraft with similar 

characteristics: RUL around two hundred cycles, with no signs of near degradation. On the 

contrary, there is a clear progression in samples e5 and e6, which move clearly downward, 



 

 

 

being placed together with engine units close to their end of life (low values of RUL), thus 

obtaining an accurate and explainable diagnosis beyond a possible label indicating the 

predicted health. In https://github.com/NahuelCostaCortez/Remaining-Useful-Life-

Estimation-Variational/tree/main/images/gifs there are some videos available showing the 

evolution of different engines in the map according to their life cycle history. Also, a demo 

of the model is available at https://huggingface.co/spaces/NahuelCosta/RUL-Variational. 

 

 

  
 

Figure 3.19.- Left: Latent projection of one of the CMAPSS training sets. The red trail corresponds to the RUL 

evolution of a testing engine. Right: RUL evolution of six real engines in two different time steps, cycle 0 and 

cycle 1000. 

 

  

https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
https://huggingface.co/spaces/NahuelCosta/RUL-Variational


 

 

 

3.4. NUMERICAL RESULTS  

 

After presenting the models and methodologies developed, this section presents a summary 

of the numerical results achieved, including comparisons with state-of-the-art methods in 

each topic. The section is organized according to the papers presented in this thesis. 

 

 

3.4.1. Graphical analysis of the progression of atrial arrhythmia using 

recurrent neural networks 

 

 
 

 

Different methods were included in this study for the diagnosis of AF. RNNs were compared 

together with two standard non-Deep Learning classification methods: Multilayer 

Perceptron (MLP) and Random Forest. Table 3.4 collects the performance of the different 

models for each class in terms of accuracy, i.e., each entry in the table is the number of times 

a series simulated with the parameters indicated in each class was recognized as such. Also, 

to illustrate the performance of each method, the ranking computed by Friedmans method 

for each class and the averaged resulting ranking was added. 

 

 
 

Table 3.4.- Accuracy of the different classifiers, six types of AF. 

 

 

In all cases RNNs improve the results of MLP and Random Forest. In terms of accuracy, 

GRU is the RNN that better exploits the incomplete information in truncated AF event series. 

Costa, N., Fernández Cortés, J., Couso Blanco, I., & Sánchez Ramos, L. (2020). 

Graphical analysis of the progression of atrial arrhythmia using recurrent neural 

networks. International Journal of Computational Intelligence Systems, 13 (1). 

DOI: 10.2991/ijcis.d.200926.001; JCR Impact Factor 1.838 (Q2). 

 

https://www.atlantis-press.com/journals/ijcis/125944871


 

 

 

It is better than MLP, Random Forest, and GAN with a p-value lower than 0.012, followed 

by LSTM, although the difference is not statistically significant.  

 

The GAN ensemble approach does not achieve the best numerical results, although in all 

cases the accuracy is close to one, therefore it is not the most important metric. Instead, the 

focus is placed on the specificity of the classifiers, as it has a higher impact in the visual 

coherence of the map. Note that a misclassification may have a great impact, e.g., if a patient 

whose AF episodes occur every 180 days is assigned 90, 30, or 10 days. 

 

In order to keep the perceptual coherence, the cost of misclassifying arrythmias must not be 

uniform. In this respect, Figure 3.20 contains the confusion matrices of the GAN ensemble 

(left) and Random Forest (right) for the six AF types. Although the average number of 

correctly classified series is better for Random Forest, this does not imply that the model is 

better as the specificity is not correct. Mind for instance the pair 998na10-999na10 (15). This 

means that the model classified wrongly the rate of evolution for the same time between 

episodes; or the pair 998na30-999na180 (15), the model got wrong the rate of evolution and 

the initial time between episodes. These are errors that cannot be accepted from a medical 

diagnosis point of view.  

 

 

 
Figure 3.20.- Left: GAN ensemble confusion matrix. Right: Random Forest confusion matrix. Similar classes 

should be nearby on the map, thus classification errors should be close to the diagonal. 

 

 

In contrast, the set of GAN discriminators provides an accurate diagnosis, since the 

classification errors are produced due to the fact that the patient's records have a high 

similarity with those of the nearby classes and precisely this can be used to build the 

graphical tool introduced in section 3.3 EXPLAINABILITY. 

 

 

 



 

 

 

3.4.2. Semi-supervised recurrent variational autoencoder approach for 

visual diagnosis of atrial fibrillation 

 

 
 

 

In this study, the VAE framework was compared with state-of-the-art classifiers for time 

series in the AF problem. It is important to note that the simulation model used was updated, 

so the dataset is not exactly the same as the one used in the paper on the previous subsection.  

 

Table 3.5 shows the performance of the different models for each class in terms of accuracy. 

It can be quickly seen that the best classifier was Resnet, followed by the proposed solution, 

labelled as RVAE.  

 

 

 
 

Table 3.5.- Accuracy of the different classifiers, six types of AF. 

 

 

Post-hoc tests were carried out to detect significant differences in pairs between all the 

classifiers. Table 3.6 shows the family of hypotheses formulated to compare the classifiers 

ordered by the corresponding p-values. If the significance test yields a p-value lower than a 

predefined threshold (usually 0.05), then the difference is considered significant, therefore 

one model is declared superior to another. In this case only Resnet was significantly higher 

than the other models, which are FCN, Encoder and TWIESN if a significance level of 0.05 

is considered since the p-values are below this threshold. The only solution to which it does 

not significantly exceed is ours. If the Bonferroni correction is considered, in which the 

number of comparisons is taken into account, the threshold which would have to be set is 

0.05 divided by the number of comparisons, i.e., 0.05/6 = 0.0083. Taking this value, Resnet 

would only be significantly higher than TWIESN. This is important to note because only 

Costa, N., Sanchez, L., & Couso, I. (2021). Semi-supervised recurrent variational 

autoencoder approach for visual diagnosis of atrial fibrillation. IEEE Access, 9, 

40227-40239. DOI: 10.1109/ACCESS.2021.3064854; JCR Impact Factor 3.367 

(Q1). 

 



 

 

 

TWIESN and the proposed solution use RNNs, so it can be stated that RVAE outperforms 

the best state of the art RNN classifier. 

 

 
 

Table 3.6.- Family of hypotheses ordered by p-value. 

 

 

As a conclusion of this comparative study, it can be stated that the proposed framework can 

compete with the best time series classifiers. Besides, the misclassification errors of the 

model correspond to arrhythmias that are organized in the latent space between classes 

similar to the one that really belongs, remember Figure 3.18, right side: the classifier learns 

from that representation, so it can be assumed that failures are most likely due to the overlap 

of instances of a similar nature, which can also be interpreted as an estimate of the class of 

arrhythmia that most resembles its parameters or even as the possible future evolution that 

they will have. 

 

 

3.4.3. Variational encoding approach for interpretable assessment of 

remaining useful life estimation 

 

 
 

 

The modification introduced in the recurrent VAE (explained in section Variational 

Autoencoder (VAE), where the decoder was discarded in the training process was tested on 

the aircraft engines problem. 

 

The comparison results of the proposed framework with other popular approaches on the test 

sets are listed in Table 3.7 where the selected metrics of all methods, included the proposed 

Costa, N., & Sánchez, L. (2022). Variational encoding approach for interpretable 

assessment of remaining useful life estimation. Reliability Engineering & System 

Safety, 222, 108353. DOI: 10.1016/j.ress.2022.108353; JCR Impact Factor 6.188 

(Q1). 



 

 

 

approach, labeled as RVE (Recurrent Variational Encoder), are listed for every dataset. 

Results in which RVE outperforms the others are highlighted in bold. It can be quickly noted 

that with datasets FD001 and FD003, although the metrics are considered good, they are not 

the best. However, the interest lies mostly in FD002 and FD004 as the increasing number of 

operating conditions and failure modes make these two datasets contain more complicated 

multiscale degradation features. RVE significantly improves prediction accuracy in these 

two for both metrics, due to its good feature extraction capability in the face of these complex 

fault prediction problems. 

 

The comparison also includes a row labeled "VAE+RNN", which corresponds to the same 

approach including the decoder. This is just to highlight the superiority of this modification 

in the architecture. Although both use variational inference, the numerical differences are 

explained by the different latent spaces obtained: one dispersed and the other one continuous 

(recall Figure 3.11), allowing the latter to improve the predictive capabilities of the model. 

 

 
 

Table 3.7.- Evaluation metrics of different approaches for RUL estimation on C-MAPSS datasets. 

 

In conclusion, it is demonstrated that, besides providing a visual assessment of the rate of 

degradation in aircraft engines, the proposed method can also accurately estimate the RUL, 

outperforming current state-of-the-art methods on the popular C-MAPSS dataset. 

 

 

3.4.4. Li-ion battery degradation modes diagnosis via Convolutional 

Neural Networks 

 

 
 

Costa, N., Sanchez, L., Anseán, D., & Dubarry, M. (2022). Li-ion battery 

degradation modes diagnosis via Convolutional Neural Networks. Journal of 

Energy Storage, 55, 105558. DOI: 10.1016/j.est.2022.105558; JCR Impact Factor 

8.907 (Q1). 



 

 

 

In this study, the DTW approach was used to train a CNN to accurately estimate the 

degradation modes in Li-ion batteries. The experimental validation was compared to state-

of-the-art methods using batteries with different cell configurations on three different 

chemistries: LFP, NCA and NMC. 

 

Results for degradation mode quantification for all methods are shown in Table 3.8 and 

Table 3.9 for the LFP cells. It should be noted that only the proposed approach uses DTW 

images while the other approaches use the raw IC curves. Table 3.8 lists the diagnosis 

accuracy (by the means of RMSE values) for the quantification of the three degradation 

modes at six different cycles (10, 50, 100, 200, 400 and 1000) for three different LFP cell 

configurations. The best predictions are highlighted in bold.  

 

The approach presented in this work, labeled as DTW-CNN, clearly outperforms the others 

with an average error of 2.00% (see Table 3.9). Yet, there are certain cycles where other 

methods perform slightly better. This may be due to some bias during training that may lead 

to unbalanced predictions and, consequently, to reasonable performance in one degradation 

mode but not in the others. For instance, the predictions of "1DConv" for cycle 400 in C1. 

Numerically in LAMPE it has a better result than the proposed approach (3.38% vs 3.59%), 

however, for LLI (1.68% vs 1.31%) and especially for LAMNE (2.83% vs 1.93%) the 

performance is considerably worse. This is quickly identified in the standard deviation, 

where DTW-CNN, with a value of 1.96, shows a lower dispersion compared to the other 

models. 

 

The results for the NMC cells are similar with an average error of 2.03%, compared to errors 

from 2.56 to 7.27% for the other methods. The approach seems to perform better for NCA 

cells with an average error of 1.11%, compared to errors from 1.31 to 7.01%. 

 

The main reason behind the consistent estimations in our approach is that the representation 

of degradations in the images is largely preserved between different cell configurations, 

something that is not the case in pure IC curve processing, where peaks, despite having 

similar morphologies, suffer from shifts that can cause models to misleading predictions. 

 

 
 

Table 3.8.- RMSE results for each degradation mode and cycle for the LFP test set. 
 
 



 

 

 

 
 

Table 3.9.- RMSE results summary for the LFP test set calculated as the average and the standard deviation 
of predictions in all cycles for all cells. 

 

In conclusion, the performance of the method was shown to be superior to state-of-the-art 

methods for degradation modes quantification, with RMSPE errors around 2% in average 

for 1000 duty cycles compared to between 2.64 to 7.27% for the other tested methods. The 

successful performance of the model is largely due to its adaptive nature to different cell 

configurations. Also, the model was tested on real cells, where the diagnosis corresponded 

to a large extent with previously existing studies on the same cells. This opens up new 

opportunities for collaboration between AI and battery research. 

 

  



 

 

 

 

Chapter 4 

Conclusions 

In this thesis, several solutions to condition monitoring problems have been presented. In 

particular, the applicability of various processing methods to deal with inaccuracies in 

monitoring data have been studied and different Deep Learning approaches have been 

developed to provide an explainable diagnosis and prognosis of the systems to be monitored. 

 

The techniques presented have been validated in 3 fields of study: atrial fibrillation, aircraft 

engines and lithium-ion batteries. Since there is a lack of data in these fields, simulation 

models have been used or created to generate the necessary training data for the algorithms 

developed. Furthermore, different techniques have been presented to reduce the gap between 

simulation models and real data and precisely all models have been tested using real 

monitoring data. 

 

In light of the proposed objectives, solutions strongly oriented to the explainability of the 

models and the interpretability of the data have been developed. Generative models such as 

GANs and VAE were chosen and adapted to sequential data given that their latent properties 

allow an excellent internal organization of the data, which can be later used for classification, 

regression and visualization tasks. In this sense, visual tools have been proposed to 

understand the decisions of the models and the interpretability of the results, which can be 

extremely useful for subsequent decision-making. 

 

The aim of the solutions proposed was not only to diagnose the systems to be monitored but 

also to reflect their future evolution in order to anticipate potential problems. This includes 

the identification of the rate of change between normal and anomalous operation, which can 

easily be associated with problems that do not involve a direct disturbance in the system to 

be monitored but can severely affect it in the long term. 

 

On the other hand, the models developed have proven to be competitive and even superior 

to the state-of-the-art in the problems to which they have been applied. 

 

Finally, all the code, both for the tools developed and for the reproducibility of results, as 

well as different demos associated with them have been made public. This will facilitate the 

dissemination of results and promote the use of these techniques to other fields in which they 

can easily be adapted. 

 

 

 



 

 

 

4.1. FUTURE WORK 

 

Although the work carried out during the completion of this thesis has successfully 

contributed to the proposed goals, there are still some limitations that can be further 

explored. 

 

To begin with, the recurrent models used in these studies are LSTM networks or slight 

related modifications. This was also the way to go in NLP problems until the appearance of 

Transformers in 2017 [97], a new architecture based on attention. Attention is a mechanism 

first introduced in [98] to represent the most relevant information in a vector. 

 

The advantages that transformers have over RNNs are the following: 

1. They have more memory, therefore they do not suffer from short-term memory. 

2. They can be parallelized because data is not processed sequentially. 

 

Since its publication, advances in NLP have been and still are oriented almost exclusively to 

Transformers and they are also beginning to stand out in Computer Vision [99]. However, 

although it is also ideal for time series, research it is still limited, with some recent work 

tailored to multi-step forecasting [100], [101]. This may be due to the use of pre-trained 

models such as BERT [102]. Transformers have an encoder-decoder architecture, but it is 

the encoder that learns the underlying representations from which other tasks can be done. 

Under this premise, BERT is a Transformer encoder pre-train with data from many different 

text sources and it can be leveraged to fine-tune it for various problems such as sentiment 

analysis, text prediction or translation tasks. 

 

In NLP or Computer Vision it is feasible to offer a generic model from which to apply 

transfer learning to a particular problem because text and images have the same nature 

regardless of its origin, but it is not the same for condition monitoring data. The physical 

composition of each problem can vary completely and that makes it difficult to pre-train a 

model with data from several different sources. 

 

However, this assumption is not absolute, and some works have applied transfer learning for 

time series [103]. Precisely, this is a potential line of research. Being able to develop a pre-

trained framework from which the knowledge generated can be leveraged for almost any 

problem, would greatly facilitate the application of different novel techniques in monitoring 

data research. 

 

On the other hand, after hundreds of publications claiming that "attention is all we need" 

(referred to Transformers), new ideas are emerging that question this assertion. The attention 

layer, although better than RNNs is still a bottleneck for network efficiency. That is why 

Google researchers replaced BERT's attention layers with Fourier transforms and report 

reaching 92% accuracy of BERT but 7 times faster [104]. Also, in [105] the authors propose 



 

 

 

an MLP-based architecture that improves Transformers in some NLP and vision tasks. It is 

clear that Deep Learning research is following an exponential pace and these recent advances 

can mean significant breakthroughs for condition monitoring as well. 

 

There is another trend that is achieving significant results in Computer Vision, known as 

Contrastive Learning [106]. The main idea of Contrastive Learning is to learn, in an 

unsupervised way, representations so that in the latent space similar samples stay close to 

each other, while different samples are distant, something quite similar to what it was 

achieved in the works presented in this thesis with VAEs. The main motivation for this mode 

of learning comes from the learning patterns humans have. We recognize objects without 

remembering all the small details, for instance, we find it easy to look at a picture and find 

a chair in it based on color, shape and some other features. Roughly speaking, some kind of 

representation is created in our mind and then we use it to recognize new objects. It would 

be of interest to apply this learning pattern to condition monitoring as well to provide a better 

understanding of the data or to use it in problems where labels are missing. 

 

Finally, a hot topic in Deep Learning lately is diffusion models, which are behind major 

breakthroughs in image generation from text descriptions such as Dall-e 2 [107], Stable 

diffusion [81] or Imagen [108]. Similar to Denoising Autoencoders, diffusion models work 

by repeatedly adding Gaussian noise to training data, and then learning how to get the data 

back by reversing this process. They offer substantial sample diversity and accurate mode 

coverage of the learned data distribution, which means that are suitable for learning models 

with lots of different and complicated data. This is barely explored in condition monitoring 

problems, with only a few recent contributions [109], [110], and could be a major 

breakthrough for the development of the field. 



 

 

 

  



 

 

 

 

Chapter 5 

Publications 

 

This section includes the research work published during the thesis as well as another 

publication that is still under review. 

 

4.2. JOURNAL PUBLICATIONS 

 

1. Costa, N., Fernández Cortés, J., Couso Blanco, I., & Sánchez Ramos, L. (2020). 

Graphical analysis of the progression of atrial arrhythmia using recurrent neural 

networks. International Journal of Computational Intelligence Systems, 13 (1). DOI: 

10.2991/ijcis.d.200926.001; JCR Impact Factor 1.838 (Q2). 

 

2. Costa, N., Sanchez, L., & Couso, I. (2021). Semi-supervised recurrent variational 

autoencoder approach for visual diagnosis of atrial fibrillation. IEEE Access, 9, 

40227-40239. DOI: 10.1109/ACCESS.2021.3064854; JCR Impact Factor 3.367 

(Q1). 

 

3. Costa, N., & Sánchez, L. (2022). Variational encoding approach for interpretable 

assessment of remaining useful life estimation. Reliability Engineering & System 

Safety, 222, 108353. DOI: 10.1016/j.ress.2022.108353; JCR Impact Factor 6.188 

(Q1). 

 

4. Costa, N., & Sánchez, L. (2022). RUL-RVE: Interpretable assesment of Remaining 

Useful Life. Software Impacts, 100321. DOI: 10.1016/j.simpa.2022.100321; JCR 

Not indexed. 

 

5. Costa, N., Sanchez, L., Anseán, D., & Dubarry, M. (2022). Li-ion battery degradation 

modes diagnosis via Convolutional Neural Networks. Journal of Energy Storage, 55, 

105558. DOI: 10.1016/j.est.2022.105558; JCR Impact Factor 8.907 (Q1). 
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Graphical analysis of the progression of atrial arrhythmia through an ensemble of 

Generative Adversarial Network Discriminators. In Proceedings of the 11th 
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2. Costa, N., & Sánchez, L. (2021, September). Remaining useful life estimation 

using a recurrent variational autoencoder. In International Conference on Hybrid 

Artificial Intelligence Systems (pp. 53-64). Springer, Cham. 
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Supervision for Battery Deterioration Level Labeling. In International Conference 

on Information Processing and Management of Uncertainty in Knowledge-Based 
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ABSTRACT
Pacemaker logs are used to predict the progression of paroxysmal cardiac arrhythmia to permanent atrial fibrillation by means
of different deep learning algorithms. Recurrent Neural Networks are trained on data produced by a generative model. The
activations of the different nets are displayed in a graphical map that helps the specialist to gain insight into the cardiac condition.
Particular attentionwas paid toGenerativeAdversarial Networks (GANs), whose discriminative elements are suited for detecting
highly specific sets of arrhythmias. The performance of the map is validated with simulated data with known properties and
tested with intracardiac electrograms obtained from pacemakers and defibrillator systems.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Atrial fibrillation (AF) is an abnormal heartbeat, common in
the elderly, that sometimes progresses from paroxysmal arrhyth-
mia (episodes of arrhythmia that end spontaneously) to persis-
tent arrhythmia (episodes that last more than seven days and do
not end without external intervention) or permanent arrhythmia
(uninterrupted episodes). It is common for paroxysmal arrhythmia
to progress to persistent or permanent arrhythmia [1]. There are
numerous risk factors that influence the progress [2], and an early
diagnosis is beneficial for optimal treatment.

Surface electrocardiograms (ECGs) are a potential source of infor-
mation about the evolution of the arrhythmia [3]. Recent advances
in connected and pervasive healthcare allow for continuous moni-
toring of the ECG signal, that is helpful for detecting pathological
signatures and arrhythmias [4]. Portable ECG monitors are most
helpful with patients in the latter stages of permanent AF [5]. The
health risks for patients in the early states of paroxysmal arrhyth-
mia are minor and the drawbacks of carrying this kind of medical
equipment at all times outweigh the advantages. This situation may
change in the near future, as recent ECG sensors are small enough
to be embedded in smartwatches. The Apple Heart Study [6] has
shown that different AF types can be detected with wearable sen-
sors, but the battery consumption of ECG sensors is still high and
that prevents that the sensor is always on. Detection and timing of
short AF episodes remains an open problem.

*Corresponding author. Email: luciano@uniovi.es

The treatment of AF often involves the use of pacemakers or
Implantable Cardiac Defibrillators (ICDs) [8]. These devices keep
a record of the dates and lengths of the episodes and are a source of
data that, to the best of our knowledge, has not been used in the past
for assessing the evolution of AF. In addition to dates and episode
lengths, short intracardiac electrocardiograms (iECGs) spanning a
few seconds before and after the detection of each episode are stored
in the device memory (see Figure 1). These iECGs are not intended
for medical diagnosis, but for adjusting the operational parame-
ters of the ICD. The amount of information that an iECG carries
is reduced: the morphology of the heartbeat in iECGs is lost in the
high-pass filtering at the ICD electrode and the only relevant infor-
mation is kept in the instantaneous frequencies of atrium and ven-
tricle.

Given that the shape of the heartbeat is not available in ICD-based
iECGs [9], the most reliable source of information is given by the
dates and lengths of the recorded episodes. There is an additional
problem with this source patients with a long record of episodes
will be in the latest stages of AF, when the diagnostic is clear. The
challenge is to anticipate the future pace of the AF since the initial
episodes. The patients of interest have a short history, that might
not be large enough for fitting a nontrivial model (see Figure 2).
This is aggravated by the fact that the data is nonstationary and it is
precisely the change in the properties of this data (from paroxysmal
to permanent) that wewant to predict on the basis of a short sample.

There are also technical difficulties [10]. The algorithm that the
ICD uses for detecting AF episodes depends on certain parameters
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that are adjusted by the technician on the basis of the iECGs men-
tioned before. Safety concerns prevail, thus the rate of false posi-
tives is high. As a consequence of this, long AF episodes are often
reported as clusters of short episodes and a nontrivial preprocess-
ing is needed to remove spurious events. This kind of preprocessing
shortens the lists of episodes even more.

Because of the reasons mentioned before, the progression of AF is
a complex process that depends on many different factors, but each
patient will be associated to only a few tens of pacemaker records.
There are not many different techniques for classifying short time
series [11] and, according to our own experimentation, none of
them is capable of finding a reliable break point between paroxistic
and permanent AF.

The solution that is proposed in this paper consists in a genera-
tive map: a generative model produces data that is used to train a
topology-preserving map, where the distances between the inputs
are correlated with the distances between their projections in the
map [12]. The topological map can be derived either from the
activation of a single multi-class classifier or from an ensemble of
binary classifiers. In the latter case, each of the binary classifiers is
only exposed to arrhythmias of a certain type.When this array is fed
with ICD records from a real patient, it is expected that only a few
of these classifiers will react, meaning that the patient’s arrhythmia
is of the same type as the arrhythmia with which these classifiers
were trained.

Most AI-based systems have a black-box nature that allows pow-
erful predictions, but cannot be explained directly. For this rea-
son explainable AI (XAI) has been gaining increasing attention
recently. Layer-wise Relevance Propagation [13] is used as a pro-
posal to understand classification decisions of nonlinear classifiers
using heat maps that show the contribution of each pixel in com-
puter vision applications. Class Activation Map (CAM) [14] has
been also a popular method to generate saliency maps that high-
light themost important regions in the data formaking predictions,
usually images. This concept has been applied in medical diagnosis
[15]. Other methods rely on localization, gradients, and perturba-
tions under the category of sensitivity [16,17]. Our method can be
considered as a mixture of the latter and CAM.We project a visual-
ization of the data using the activations of the neurons of the studied
methods as a base to build these maps. The location of these acti-
vations will be arranged on the map to provide an intuitive visual
diagnosis.

AF episodes are sequential data. Recurrent Neural Networks
(RNNs) have been used in the literature in recent years for this type
of problem and typically architectures such as Long Short-Term
Memory (LSTM) [18] or Gated Recurrent Unit (GRU) [19] have
proven to be good alternatives. On the other hand, a deep neural net
architecture known as Generative Adversarial Network (GAN) [20]
is currently breaking intoMachine Learning inmany fields [21–23].
Nonetheless, its research in the medical field is still limited [24,25],
and their application for the diagnosis of cardiovascular diseases
has not been explored yet.

Figure 3 presents a summary of the operationmode followed to give
a better overall understanding:

1. A generative model(1) is used to simulate real clinical data(2).

2. The generated data is used for training different methods(3)
to evaluate intracardiac records. Among these methods, fur-
ther research is done to obtain a time series classifier based on
adversarial training.

3. A self-explanatory graphic map(4) is obtained when the pro-
posed methods are fed with data from real patients with AF.

The structure of this paper is as follows: in Section 2, the genera-
tive model of the AF episodes are described. In Section 3, differ-
ent approaches to solve the problem are presented. Performance of
the different methods is discussed in Section 4. Visual representa-
tions and assessments are reported in Section 5 while conclusions
are drawn in Section 6.

2. MODEL OF THE SEQUENCE OF ICD
EVENTS

The purpose of this study is to predict the progression of parox-
ysmal cardiac arrhythmia to permanent AF on the basis of iECGs
and other data collected by ICDs. AF episodes are easily detected in
surface electrograms (ECGs) but iECGs are less informative. ECGs
are representations of cardiac electrical activity from two electrodes
placed on the surface of the body which are located apart from the
heart (recall Figure 1, upper part). With this type of derivation, all
kinds of electrical activity are recorded, including noncardiac elec-
trical activity. On the contrary, iECGs (Figure 1, lower part) are
representations of the potential difference between two points in
contact with the myocardium in space over time.

2.1. AMS Events

ICDs do not store a continuous stream of data, but there are cer-
tain events that trigger that data is recorded. The primary purpose
of an ICD is to release an electrical current between two points to
activate the cardiac cells and therefore facilitate cardiac contrac-
tion. Depending on the electrical signal that is measured through
the leads, the pacemaker will respond in order to stimulate, inhibit,
or change its operation mode. In particular, in the presence of car-
diac arrhythmia, if a patient experiences a high intrinsic atrial heart
rate the pacemaker does not try to match the ventricle to the atrial
rate. Instead, the pacemaker changes its operation mode and uses
a different algorithm for generating the excitation of the ventricle.
This process is called AutomaticMode Switching (AMS) [26]. AMS
events are stored in the pacemaker memory and are used to mark
the beginning of AF episodes (Figure 2, upper part). The lengths of
the AF episodes are stored along with the AMS dates in the pace-
maker memory.

Although AMS is a simple concept, the mode switching depends
on a large number of variables that depend on the patient. It is pos-
sible that the pacemaker algorithm prematurely concludes that the
AF event has ended, only to discover past a few seconds that an AF
is still taking place. In this case, a second AMS event is generated
and the pacemaker mode is restored. This has not relevant conse-
quences for the efficiency of the device, but the stored information
is inaccurate, as there may be cases where a cluster of short arrhyth-
mias is reported instead of a long event.
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Figure 1 Top: Surface electrocardiogram (ECG) (taken
from Ref. [7]). Bottom: Intracardiac ECG. The
morphology of the surface ECG is not kept in the
intracardiac ECG (iECG), where there is only one peak
for each heartbeat.

2.2. Markov Model

The proposed dynamical model of the operation of an ICD is
depicted in Figure 4. There are three states: “Normal,” “Arrhyth-
mia,” and “False Normal.” A patient is in “Normal” state until an
AMS event is issued by the ICD and the patient transitions to state
“Arrhythmia.” There are two possible paths from this state: back to
“Normal” when the episode ends or a transition to “False Normal”
when a spurious end of episode is issued. In this second case, the
patient remains in the state “FalseNormal” until a newAMS event is
dispatched and then goes back to “Arrhythmia.” AMS events mark
either the beginning of a true AF episode or the end of a “False
Normal” state. This second class of AMS events are abnormal and
should be purged, but there is not a simple procedure to remove
them from ICD data [26]. Given that these events will be present in
actual patients, the generative model must produce these spurious
events as well.

It will be assumed that the dates of the AF episodes conform an
inhomogeneous Poisson process. The time between two episodes
follows an exponential distribution with parameter 𝜆NA(t). The
length of an episode also follows an exponential distribution with
parameter 𝜆A(t). The progression from paroxysmal to permanent

Figure 2 Top: Dates of pacemaker mode changes during a year.
Bottom: Recorded length of the atrial fibrillation (AF) episodes.

AF is measured by the speed of change in these two parameters: as
the cardiac condition worsens, the time between episodes is shorter
and episodes are longer. The speed of the progression is modelled
by a parameter 𝛼 ∈ [0, 1],

𝜆NA(t) = 𝜆NA(0) ⋅ 𝛼t, (1)

𝜆A(t) = 𝜆A(0) ⋅ 𝛼−t, (2)

where 𝛼 = 1 is an stable patient and values of 𝛼 lower than 1
are patients with a quick progression to permanent arrhythmia. It
will also be supposed that the transition from state “Arrhythmia”
to “Normal” can happen with a probability pAN. The probability
of the transition from “Arrhythmia” to “False Normal” is therefore
pAG = 1 − pAN. pAG is the fraction of false positives, which is the
probability that the AF detection algorithm in the ICD signals the
end of an episode too early.

From a formal point of view, this model is a continuous-time
Markov process that is characterized by a tuple of five parameters:
(𝜆NA(0), 𝜆GA, 𝜆A(0), pAG, 𝛼). The generative model that feeds the
RNNs described in Section 3 inputs a random seed and produces a
list of AMS events by Monte-Carlo simulation. Each of these ran-
domly generated lists can be regarded as an hypothetical patient,
whose AF type is defined by the mentioned parameters.
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Figure 3 Pipeline of the presented work.

Figure 4 State diagram of the dynamical model of the beginning
of atrial fibrillation (AF) episodes.

3. GENERATIVE MAP

The diagnosis tool that is introduced in this study is a color-coded
generative map that displays the actual state of the patient and the
speed of change in his/her condition from paroxysmal to perma-
nent AF. When the input is a Monte-Carlo simulation of AMS
events, only a small area in the map should become active; ide-
ally just one point. Otherwise, when actual AMS events are used,
a potentially larger area could activate because ICD data will not
match the output of any model in a perfect way. In other words,
the activation area in the map is small when the diagnostic is clear
and large when many different diagnostics are compatible with the
available data. In this respect, the map can be regarded as a projec-
tion of the ICD data in an space whose coordinates are the values of
𝜆NA, 𝜆GA, 𝜆A, pAG, and 𝛼. The values of 𝜆NA, 𝜆A, and 𝛼 in the pro-
jection measure the condition of the patient and the progression of
the AF. 𝜆GA and pAG measure the chance that an AMS event in the
ICD is spurious.

3.1. Uncertainty in the Data

Because of the behavior of the ICDs mentioned in the preceding
section, spuriousAMS events can be produced and it is possible that
a long AF episode is perceived as a series of short events. There is
not an easy procedure for knowingwhether a non-simulated patient
is in “Normal” or “False Normal” state.

In this study we will cope with this uncertainty by means of a fuzzy
postprocessing that replaces the list of ICD logs by a continuous-
time function that can be sampled at regular intervals. This trans-
form consists in computing the degree of truth of the assert “the
patient was undergoing an AF episode at time t” [27]. Thus, this
function measures the percentage of daily AF events, subsequently
becoming a soft window (with Gaussian membership) that extends
a few days before and after time t (see Figure 5).

3.2. LSTM and GRU Networks. Error
Minimization and GAN Architecture

Networks are sought that are able to estimate the parameters of
the Markov model given a truncated sample of postprocessed ICD
events. RNNs are arguably the technique of choice for this applica-
tion [28]. Let us remark that the difficulty of the problem at hand is
learning from short time series, i.e., from incomplete information.
The shorter the sample is, the more probable is that different mod-
els can produce the same sample.

Accurate and specific RNNs are sought. In our context, accuracy
measures how often the net reacts to AF episodes similar to those
in the training set. Specificity measures how different two models
must be for the net being able to separate one from the other. The
quality of the map depends on the RNN having the right amount
of specificity: if the classifiers are too specific, there will be patients
that are not visible in the map. If the specificity is too low, different
parts of the map will be visible at the same time and the diagnosis
will not be useful either.

LSTMs and GRUs are the most commonly used RNNs for classify-
ing time series. In both cases, the input is distributed over a chain of
cells and the main differences with previous RNNs are in the oper-
ations carried out within each cell, which will allow maintaining
or forgetting information. LSTM cells consist of three gates: input,
forget, and output gate. These multiplicative gates learn to manage
the information passed so each memory cell decides what to store.
GRUnetworks differmainly in the number of gates: GRUs have two
gates (input and forget gates are combined into a single gate) instead
of three, which means lighter storage and faster training. Although
LSTM has the ability to remember longer sequences, GRUs exhibit
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Figure 5 Top: Synthetic sequence of episodes
(simulation time: 10 years). Bottom: Continuous-time
function measuring the degree of truth that the patient
is undergoing an arrhythmia episode at time .

better performance on certain tasks [29,30], whichmakes us to con-
sider them as an alternative for short-time series.

Training data is comprised by the postprocessed continuous-time
functions defined in Section 3.1. In turn, two different methods
were considered for training the RNNs:

1. Error minimization: the networks are trained for minimizing
the squared error between the output of the net and the param-
eters of theMarkovmodel. Alternatively, a set of clusters can be
defined in the space of parameters of the model and the prob-
lem redefined as a multi-class classification task. The clusters
in the space of parameters represent medical cases of interest,
such as paroxysmal stable AF, paroxysmal AF with slow evo-
lution to permanent AF, paroxysmal AF with quick evolution
to permanent AF, permanent AF, and others. In this case, the
concepts “accuracy” and “specificity” can be traced down to
the confusion matrix of the classifier.

2. GANs: LSTMs or GRUs can be configured as GANs
(see Figure 6.) GANs consist of 2 RNN: a generative net
and a discriminative net. The generator net produces new
data instances from noise, while the discriminator receives
real data and the data from the generator and decides
whether the generator’s data belongs to the same distri-
bution as the real data. From this verdict, the parameters
of both networks are adjusted to improve in the next iter-
ation until the generator is able to produce realistic data,
that is to say, sequences of arrhythmia episodes. If a GAN
is trained with arrhythmias with specific features a discrim-
inator will be obtained that separates arrhythmias of that
type from any other kind of arrhythmia. It is remarked that
for this particular application we are not interested in the

generative network, that is discarded after training (because
the generative model introduced in Section 3.1 fulfills this
function) but in the discriminative element. This process is
repeated for each of the clusters in the space of parameters. A
different GAN discriminator is learned for each class, and the
generative map is the output of an ensemble that combines all
the nets.

4. NUMERICAL RESULTS

The experimental validation of the proposed generative map has
two parts. First, synthetic data with known properties is used to
assess each of the presented alternatives. Second, actual patients are
diagnosed, and their maps are validated by a human expert.

The experimental setup is described first. Second, the specificity of
the GAN architecture is analyzed. In third place, the properties of
LSTM and GRU networks are compared to that of GAN and also to
non-neuronal classifiers. Fourth and last, some representative real-
world cases are discussed.

4.1. Experimental Setup

The experimental setup is as follows: the code for training GAN
recurrent networks for time series has been adapted from the pub-
licly available code at https://github.com/ratschlab/RGAN [31].

A total of 14000 sequences have been generated for each combi-
nation of parameters chosen (60% was used for training, 20% for
validation, and remaining 20% of data was used for testing). For
multi-class problems, a softmax activation function is applied to the
last layer of the LSTM- andGRU-based solutions in order to predict
the class for the given pacemaker data. For GANs, each discrimi-
nator of the ensemble has its output passed through a sigmoid to
determine whether the input belongs to the distribution data with
which it was trained. Then all discriminator outputs are compared
to determine which is the predicted class for the input.

4.2. Sensibility of the GAN-Based Approach

A brief study about the sensibility of the GAN-basedmaps has been
included in Tables 1 and 2. The first table collects the results for
𝛼 = 0.998 (fast progression) and the second table contains the same
experiments for 𝛼 = 0.999 (slow progression).

The meaning of the rows and columns of these tables is as follows:
each column contains the fraction of correct classifications of a dis-
criminator that has been trained with sequences produced by the
generative model. The values of 𝜆NA(0) used for computing these
sequences are indicated in the column labels. The first and second
rows, “Train” and “Test” are the percentage of correct detections
of “True” sequences (generative models) versus “False” sequences
(produced by the generator net in the GAN architecture). The rows
labelled 𝛼 = 0.997… 0.999 are the fraction of sequences with the
same parameters as those used for training the net but a different
parameter 𝛼. The remaining rows are the fraction of correct classi-
fications when the net is fed with sequences with a different value
of 𝜆NA.
These results show that the nets are highly responsive when the
arrhythmia is paroxysmal (low values of 𝜆NA, thus time between



1572 N. Costa et al. / International Journal of Computational Intelligence Systems 13(1) 1567–1577

Figure 6 Generative adversarial network (GAN) architecture for obtaining one of the discriminant elements. The red block represents the
generator net which generates fake data that is passed to the discriminator (blue block). The latter decides what is true and what is false from the
input data and the gradients are adjusted according to the true labels until a discriminator that knows exactly what type of arrhythmia that is
being trained with is obtained.

Table 1 Sensitivity of the discriminator for 𝛼 = 0.998.

𝝀NA = 1.0/10 𝝀NA = 1.0/30 𝝀NA = 1.0/90 𝝀NA = 1.0/180 𝝀NA = 1.0/260

Train 0.9794 0.9804 0.9830 0.9868 0.9800
Test 0.9779 0.97978 0.9811 0.9847 0.9797
𝛼 = 0.997 0.5299 0.2523 0.5373 0.4324 0.4878
𝛼 = 0.999 1.0000 1.0000 0.9979 0.3475 0.4424
𝜆NA = 1/5 0.3333 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/10 - 0.8162 1.0000 1.0000 1.0000
𝜆NA = 1/30 0.9967 - 0.9505 0.9970 0.9983
𝜆NA = 1/90 1.0000 0.9703 - 0.1369 0.1969
𝜆NA = 1/180 1.0000 0.9994 0.0914 - 0.0312
𝜆NA = 1/260 1.0000 1.0000 0.1494 0.0008 -

Table 2 Sensitivity of the discriminator for 𝛼 = 0.999.

𝝀NA = 1.0/10 𝝀NA = 1.0/30 𝝀NA = 1.0/90 𝝀NA = 1.0/145 𝝀NA = 1.0/180

Train 0.9832 0.9823 0.9809 0.9825 0.9838
Test 0.9821 0.9818 0.9818 0.9853 0.9783
𝛼 = 0.997 0.9986 0.9987 0.9986 0.9986 0.9997
𝛼 = 0.998 0.9998 0.9998 0.9956 0.9485 0.9809
𝜆NA = 1/5 0.1543 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/10 - 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/30 1.0000 - 0.9988 0.9997 0.9996
𝜆NA = 1/90 1.0000 0.9978 - 0.1703 0.2002
𝜆NA = 1/120 0.9800 0.9800 0.0012 0.0516 0.0566
𝜆NA = 1/145 1.0000 1.0000 0.0001 - 0.0357
𝜆NA = 1/260 1.0000 1.0000 0.0000 0.0008 0.0089

episodes is high). This is the desired result, because these are the
cases with clinical interest. The net is less capable when 𝜆NA is high,
however these are the cases where the patient is in a permanent
arrhythmia condition at the beginning of the experiments thus the
evolution of the patient is self-evident.

4.3. Compared Results

In this section, 6 of the 10 AF categories used in the preceding
subsection are used. These classes are labelled 998na10, 998na30,
998na180, 999na10, 999na30, and 999na180. The class labels begin
with the first three decimals of 𝛼, which is the speed of the pro-
gression of the AF (998 is slow, 999 is fast). The second number in

the class label is 1/𝜆NA(0), which is the average time between two
AF episodes, measured in days (10, 30, and 180 days). Accuracy
and sensitivity of the classifier are assessed by means of a confusion
matrix where the number of times that an AF was correctly diag-
nosed is counted, and in this last case the deviation between the
prediction and the desired value is also accounted for.

The different RNNs discussed in the preceding section are com-
pared between them and also to two other standard nondeep learn-
ing classification methods, that have been included as a baseline:
Multilayer Perceptron (MLP) and Random Forest. Table 3 collects
the performance of the different models for each different class in
terms of accuracy, i.e., each entry in Table 3 is the number of times
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Table 3 Accuracy of the different classifiers, six types of AF.

Accuracy
MLP Random Forest GRU LSTM GAN Ensemble

998na10 0.9921 (3) 0.9918 (4) 0.9964 (1) 0.9943 (2) 0.9782 (5)
998na30 0.9654 (5) 0.9857 (3) 0.9911 (1) 0.9875 (2) 0.9686 (4)
998na180 0.9371 (5) 0.9800 (3) 0.9879 (1) 0.9946 (2) 0.9596 (4)
999na10 0.9739 (5) 0.9943 (3) 1.0000 (1.5) 1.0000 (1.5) 0.9803 (4)
999na30 0.9368 (5) 0.9979 (3) 0.9996 (1.5) 0.9996 (1.5) 0.9911 (4)
999na180 0.9911 (5) 0.9946 (3) 0.9982 (1) 0.9957 (2) 0.9796 (5)

Summary Results
Accuracy 0.9661 0.9907 0.9955 0.9953 0.9762
Average rank 4.6666 3.1666 1.1666 1.8333 4.3333
Note: AF, atrial fibrillation; MLP, multilayer perceptron; GRU, gated recurrent unit; LSTM, long short-term memory; GAN, generative
adversarial network.

that a series that was generated by the correct model was recog-
nized as such. Also, to illustrate the performance of each method
the ranking computed by Friedmans method for each dataset and
the averaged resulting ranking is added.

Observe that in all cases RNNs improve the results of MLP and
Random Forest. In terms of accuracy, GRU is the RNN that bet-
ter exploits the incomplete information in truncated ICD event
series. It is better than MLP, Random Forest, and GAN with a p-
value lower than 0.012 (according to Bonferroni correction [32]),
followed by LSTM, although the difference is not statistically sig-
nificant. LSTMs in GAN configuration apparently do not improve
simpler classifiers such as RandomForest but their specificity is bet-
ter and this metric has a higher impact in the visual coherence of
the map. This point will be made clearer in Subsection 4.4. Observe
also this metric is heavily dependent on the chosen division of the
AF in clusters. To illustrate this fact, in Table 4 the same experiments
carried out in Table 3 were repeated for a division in 8 classes (class
labels 998na90 and 999na90 were added, with 90 days between AF
episodes). The new classes are not easily separated from those with
180 days and the mean accuracy of the classifiers decreases.

Observe that the visual perception ismuch different if, e.g., a patient
whose AF episodes occur every 180 days is assigned 90, 30, or
10 days. In order to keep the perceptual coherence the cost of mis-
classifying arritmias must not be uniform. This will be illustrated
too in Section 4.4. In this respect, Figure 7 contains the confusion
matrices of GAN (left) and Random Forest (right) for the initial
division in six AF types. Observe that the number of correctly clas-
sified series is better for Random Forest, as expected, but there are
two cells with errors that cannot be accepted from themedical diag-
nosis point of view: the cell 998na10- 999na10 (wrong rate of evolu-
tion for the same time between episodes) and, of secondary impor-
tance the cell 998na30- 999na180 (wrong rate of evolution and the
initial time between episodes in the fast case is higher).

Observe that this behavior can be corrected if a cost matrix is intro-
duced in the problem, although the problem of choosing the best
cost matrix remains. For instance, if the cost matrix

ci,j =
N

∑
i≠j
|i − j|k, (3)

(whereN = 6, the number of classes) is used, the weighted accuracy
of the GAN method would be better for values of k > 1.73.

Table 4 Accuracy of LSTM and GRU, eight types of AF.

Accuracy
GRU LSTM

998na10 0.9982 0.9968
998na30 0.9764 0.9796
998na90 0.8343 0.8529
998na180 0.8754 0.8464
999na10 1.0000 0.9982
999na30 0.9989 0.9975
999na90 0.8521 0.8904
999na180 0.9471 0.9286
Summary Results
Accuracy 0.9353 0.9363
Note:AF, atrial fibrillation;GRU, gated recurrent unit; LSTM, long short-
term memory.

4.4. Graphical Representation and
Discussion

Three different experiments will be carried in this section. First,
maps generated with different architectures (GAN and minimal
error) are compared on data generated by the model. Second, two
maps with minimal error and different clusterings of the generative
model parameters are compared. Third, a true patient will be diag-
nosed by a human expert and by means of the proposed map.

4.4.1. Random forest versus LSTM-GAN

Twomaps (see Figure 8)were selected for illustrating the differences
between maps comprising RNNs and maps comprising other clas-
sifiers. The left map was obtained with an LSTM in a GAN config-
uration. The map in the right panel of the same figure was derived
from a Random Forest. The horizontal axis is labelled 𝛽, which is
the inverse of the parameter 𝜆NA, and can be understood as the
expected number of days between two AF episodes at time t = 0.
The vertical axis is labelled 𝛼 and measures the speed of the pro-
gression. The lower the value of 𝛼, the quickest the progression to
permanent AF. The color code is shown in the bar at the right. Red
areas are the highest activations, and blue areas the lowest.

Data is a random sample of the model with parameters 𝛼 = 0.998
and 𝛽 = 1/𝜆NA = 30. The proper diagnosis would be a red
dot at coordinates (30, 0.998). Observe that the confidence of the
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Figure 7 Left: Generative adversarial network (GAN) ensemble confusion matrix. Right: Random Forest confusion matrix. Similar classes
are nearby on the map, thus errors in prediction should be close to the diagonal.

Figure 8 Left: Generative adversarial network (GAN) map for simulated atrial fibrillation (AF) alpha = 0.998, beta = 30. Right: Random
Forest-based map for the same data.

detectors in the correct area is higher for the map in the right, but
there is also a clear red dot in the upper right corner that is an
artifact of the classifier. This pair of maps illustrates the problem
indicated in the preceding subsection: the presence ofmisclassifica-
tions that are far from the diagonal in the confusion matrix causes
that abnormal regions in the map are activated, while the misclas-
sifications near the diagonal are perceived as an increase the area
around the correct diagnostic. In this respect, LSTMs andGRUpro-
duce results with a higher quality in terms of the medical diagnosis
and furthermore it is not needed that a cost matrix is introduced in
the classification task.

4.4.2. Effect of the different clustering in the
generative model parameters

In Table 4 we shown that the division of the AF in categories influ-
enced the accuracy of the RNNs. In Figure 9 two LSTM-basedmaps
are compared. In the left panel, AF is divided into the six categories
998na10, 998na30, 998na180, 999na10, 999na30, and 999na180. In
the right panel of the same figure the two additional categories

were added, named 998na90 and 999na90. These two categories are
harder to separate and the global accuracy decreases. The resulting
maps are correct (both maps have maximum activations centered
at 𝛽 = 20 and 𝛼 = 0.9994 but the right map has a much higher area
of uncertainty).

4.4.3. Diagnosis of an actual patient

Actual data downloaded from the ICDof a patient with paroxystical
arrhythmia is displayed in Figure 10. The black spikes are clusters
of events (the isolated AMS events are not visible at this time scale).
About three years of data are included in the figure. Observe that
the time between events is higher in the first two years and the pace
increases quickly in the last part (around the mark of the day 1000).

In Figure 11 three maps are displayed with the same conventions
seen in the preceding subsection. The map in the left of the upper
panel has been obtained with GRU, and map in the right in the
same panel is produced by a LSTM network. The map in the bot-
tom panel was obtained with another LSTM in GAN configuration.
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Figure 9 Left: Long short-term memory (LSTM)-based map, 6 clusters of atrial fibrillation (AF). Generative model with. Right: Same data, 8 clusters
of AF.

Figure 10 Dates of the automatic mode switching (AMS) events
(black lines) and atrium beats per minute (bpm * 0.2) for an actual
patient.

The three maps are similar and produce coherent results. The inter-
pretation of these maps is as follows: the red region is centered in
𝛼 = 0.9994 and 𝛽 = 180. This means that the patient began suffer-
ingAF episodes every 6months, but the evolution of the arrhythmia
is moderate and is expected that the average time between episodes
is multiplied by 0.77 every year.

Observe that the map for an actual patient is not as specific as the
maps obtained from data from the generative model. This means
that it cannot be discarded that the patient has episodes every 3–4
months and his/her evolution is faster, up to a reduction factor of
0.58 per year. If Figure 10 is recalled, the number of episodes in the
first 100 days was of three, but the following three episodes hap-
pened in more than one year, thus this kind of uncertainty in the
diagnosis is correct, although the most probable diagnosis is that of
a slow evolution.

5. CONCLUDING REMARKS AND FUTURE
WORK

We have shown that iECGs from ICDs and pacemakers can be used
to a certain extent for predicting the change from paroxysmal to
permanent AF. The main difficulty is with the short length of the
pacemaker records, that has been addressed here by means of a
graphical projection of the sequence of AMS events in the param-
eter space of a generative model. If the data is enough for a clear
diagnosis, the map produces an estimation of the patient condition
and future evolution, and in those cases where the data is insuffi-
cient the map produces a set of estimations that can be subjectively
assessed in order to determine whether the evolution is positive or
not. Such a diagnosis can help specialists reduce the time spent ana-
lyzing intracardiac data.

LSTM and GRU have shown remarkable results as a standalone
multi-class classifier, and LSTM was adequate as a part an ensem-
ble of GAN detectors as well. GANs have an intrinsic advantage,
that is the obtention of the generator network, that may be a bet-
ter generative model than the continuous Markov model used in
this study. If a number of ICD records of actual patients was high
enough, it would make sense to bootstrap the model with the gen-
erative model described in this paper and fine-tune the GANs with
real-world data, for obtaining an improved generative model. Such
a GAN-based generative model could have an application on its
own, as a predictor of future AF episodes. Lastly, we are currently
working in other alternatives than GANs for obtaining the diagnos-
tic map, such as the use of Variational Autoencoders, than can also
be trained on model-generated data and be applied to ICD logs to
get a compact representation of the evolution of AF.
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Figure 11 Maps of the patient in Figure 10. Top panel, left: multi-class gated recurrent unit (GRU). Top panel, right: multi-class long
short-term memory (LSTM). Bottom panel: LSTM in generative adversarial network (GAN) configuration.
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ABSTRACT In this work we propose a semi-supervised framework to visually assess the progression of
time series. To this end, we present a recurrent version of the VAE to exploit the generative properties that
lead it to learn in an unsupervised way a continuous compressed representation of the data. We introduce
a classifier in the VAE training process to control the regulation of the latent space, allowing the network
to learn latent variables that set the basis for creating an explainable evaluation of the data. We use the
proposed framework to address the diagnosis of Atrial Fibrillation (AF) first validating it with simulated
data with known properties and subsequently testing it with intracardiac data obtained from pacemakers
and defibrillator systems.

INDEX TERMS Graphical Analysis, Heart Disease, Recurrent Neural Networks, Time Series, Variational
Autoencoder

I. INTRODUCTION

MOST AI-based systems have a black box nature that
allows powerful predictions, but cannot be directly

explained. This is especially true when it comes to time series
data, where the bulk of methods stick to rawly classifying
or predicting a number or a set of numbers. Unsupervised
learning approaches are a possible alternative for this. Within
this paradigm Autoencoders are one of the most promising
methods that we can find. Autoencoders are a family of
neural networks that have the ability to learn a simplified
representation of the data, typically for dimensionality re-
duction. These networks are designed to reconstruct the input
data while at the same time learn a compressed representation
of it; the so-called latent space. Variations of the original
model [1] [2] [3] have been developed in order to enhance
classification and clustering tasks until the emergence of
Variational autoencoders (VAEs), whose main purpose is the
generation of new data.

Variational autoencoders are rooted in Bayesian inference
[4] and are comprised of an encoder function qφ(z|x) and a
decoder function pθ(x|z) where z is the latent encoding vec-
tor, x is the input data and φ and θ are parameters that initial-
ize a probability distribution. By introducing the Kullback-

Leibler divergence into the loss function, which simply mea-
sures how much one probability distribution diverges from
another, the above-mentioned parameters corresponding to
the input data distribution can be learned. This, together with
a reconstruction error added to the loss function, allows the
model to produce a latent space in which similar data will be
located close to each other and also enables new data to be
sampled from points that do not belong to the original data,
thus having a generative model.

The main difference between VAEs and the rest of auto-
encoders lies in the learned latent space: The inputs are not
coded to a set of fixed vectors, but the compression depends
on a probability distribution qφ(z|x) instead, causing the data
to be organised in a continuous space, i.e. two nearby points
in the latent space should give similar contents when recon-
structed (Figure 1). Precisely, other unsupervised techniques
such as clustering algorithms lack this property. Although
they do prioritize grouping data of a similar nature, the visual
disposition of the clusters can often be arbitrary. On the other
hand, neither can the VAE latent space be used for clustering
since the encoded data tend to be overlap to prioritize the
generative process.

Therefore, a methodology capable of combining the above
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FIGURE 1: Simplified representation of the compression
resulting from a vanilla Autoencoder (left) and a VAE (right).
When the latent space is continuous, the organisation of the
data allows decoding of a meaningful figure, in this case a
cross between a rectangle and a triangle, thus favouring the
generation of new data.

properties, that is, depicting the input data into clusters,
while preserving a continuous representation according to its
underlying complexion, would be of interest to time series
data. In fact, there has been a recent interest in seeking such
a model, as can be shown in [5] [6] [7] [8], which make use
of Variational Autoencoders together with Gaussian Mixtures
in order to achieve an interpretable clustering. Nevertheless,
these approaches are not intended to be applied in time series.

Besides, although VAEs have proven to be efficient in
multiple domains, mainly related to computer vision [9] [10]
[11] and Natural Language Processing (NLP) [12] [13] [14],
as generative frameworks as well as data compressors, there
is a lack of research when it comes to time series. In [15] the
authors present a VAE model that can map time series to a
latent vector representation, but the model has become obso-
lete due to more recent advances in recurrent architectures.
Other promising work has begun to emerge: In [16] LSTM
networks are used to model the temporal complexion of the
data, whereas in [17] the authors propose to use echo-state
networks for the same objective. Despite the fact that these
works combine recurrent architectures with VAEs, their goal
differs from ours since they aim to detect anomalies based
either on reconstruction errors or on anomaly scores, while
what we are pursuing is an interpretable assessment of time
series.

The solution that we propose is to introduce a recurrent
version of the VAE to deal with temporary data along with the
inclusion of a classifier in the training process that controls
the regularisation of the latent space to prevent the resulting
clusters from overlapping. In this way, a representation that
can be used for displaying a graphic map that gives insight
into the evolution of the time series is obtained.

The creation of such a model is motivated by the need to
offer a solution to a problem in which the presence of efficient
algorithms is limited: the diagnosis of Atrial Fibrillation
(AF). AF is the most common type of arrhythmia in clinical
practice. It is a type of heartbeat in which the atria tremble,

causing an irregular and accelerated heart rhythm.
The treatment of the disease often involves the use of

pacemakers. These devices are a source of data that record
the dates and lengths of the episodes of high atrial rate,
comprising a historical record, that is, a time series. Effective
and accurate diagnosis of this condition remains challenging
these days. Also, a simple prediction may not be informative
enough for specialists to examine the state of the disease.
Thus, a variational-clustering approach is tailored to our
needs in order to accomplish a visual diagnosis capable of
assessing the evolution of AF.

The structure of this paper is organised as follows: Sec-
tion II introduces the importance in the treatment of this
condition and the difficulties associated with its diagnosis. A
detailed description of the proposed method comprising the
semi-supervised VAE framework for achieving an explain-
able diagnosis is described in Section III. Before reporting
experimental results in Section V, an illustrative problem
is presented in Section IV while conclusions are drawn in
Section VI.

II. AF DIAGNOSIS
AF is an abnormal heartbeat usually presented in the elderly.
The course of the disease can lead to a progression from
paroxysmal arrhythmia (arrhythmia episodes that appear and
disappear spontaneously) to persistent arrhythmia (episodes
that last at least seven days and do not end without exter-
nal intervention) or to permanent arrhythmia (uninterrupted
episodes). The progression of AF is a complex process that
depends on several risk factors [18], and an early diagnosis
may condition the provision of optimal treatment.

Episodes of AF are easily detected on surface electrocar-
diograms (ECGs), obtained from non-invasive devices, but
the activity recorded is over a very specific period of time,
which in no case is enough to capture the evolution of the dis-
ease. Portable ECG monitors are an advantage in this respect
and recent advances in healthcare facilitate continuous moni-
toring of intracardiac activities. This is beneficial in detecting
pathological signatures and arrhythmias [19], especially in
patients in the latter stages of permanent AF [20]. On the
contrary, the health risks for patients in the early stages of
paroxysmal arrhythmia are lower and the disadvantages of
wearing these devices continuously outweigh the advantages.

It seems that the situation may change in the near future as
new ECG sensors are small enough to be incorporated into
wearable devices. The Apple Heart Study [21] shows that
different types of AF can be detected in smartwatches, though
the battery consumption is high, which prevents the sensor
from being always on. To date, the detection and timing of
short AF episodes remains an open problem.

In those patients in latter stages of the disease, pacemakers
or IDCs (Implantable Cardiac Defibrillators) are normally
used to control the heart rate [23] in order to keep common
symptoms such as dizziness or chest pain under control.
These devices provide heart rhythm monitoring, being able to
detect episodes of arrhythmia, specifically of high atrial rate,
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FIGURE 2: Top: Intracardiac ECG. The morphology of the
surface ECG is not kept in the iECG, where there is only one
peak for each heartbeat. Bottom: Surface ECG (taken from
reference [22]).

which normally correspond to AF episodes. Intra-cardiac
electrocardiograms (iECGs) are stored in the memory of
these devices (see Figure 2, upper part) which are represen-
tations of the difference in potential between two points in
contact with the myocardium in space over time. They keep
a record of information seconds before and after the detection
of each episode. This includes only the instantaneous fre-
quencies of the atrium and ventricle because the morphology
of the heartbeat is lost in the high-pass filtering at the IDC
electrode, unlike surface ECGs(see Figure 2, lower part).
Moreover, this information is not used for diagnosis, but
rather to adjust the operational parameters of the device.

Given these facts, the most reliable source of information
to work with, are the dates and lengths of the recorded
episodes, which are also stored. This is a drawback because
patients with multiple episodes will probably be in the latest
stages of AF, but the interest lies in patients with a short
history (initial episodes) so that the worsening rhythm of AF
can be anticipated. This goal is very challenging because it
is difficult to find a model that fits such a small amount of
data (see Figure 3). Besides, the fact that the data are non-

FIGURE 3: Top: Dates of pacemaker mode changes during a
year Bottom: Recorded length of the AF episodes.

stationary makes the problem even more complicated, and
this is exactly what we want to predict on the basis of a
short sample, the transition from paroxysmal to permanent
arrhythmias.

There are additional difficulties [24] because the algorithm
used by the IDC to determine the duration of the episodes is
not completely reliable. The device parameters are adjusted
based on the iECGs mentioned above and safety concerns
prevail, so the false positive rate is high. This leads to long
episodes of AF that are sometimes mistakenly reported as
short episode sets, so preprocessing is needed to take these
spurious events into account, which in turn causes the number
of episodes to be reduced even further.

All these reasons being explained, it is clear that the
progression of AF is a complex process that depends on many
different factors. To ease the interpretation of these factors,
we are looking for a model capable of providing clinical
staff with a diagnostic tool that can accurately determine the
status of a patient with AF, therefore something more than a
straightforward prediction is pursued. A possible path is to
establish a Representation Learning approach since, unlike
others, the performance of models following this approach
depends directly on the internal representations, which in turn
can be leveraged in favour of a better understanding of the
problem itself. Typically, an algorithm capable of learning
the characteristics that best represent the underlying data
distribution is required, making it easier to perform other
tasks such as classification or prediction. Since Principal
Component Analysis (PCA) was developed, Representation
Learning has been investigated to overcome the challenges of
high dimensionality. Over the last decade, Deep Learning has
been taking an important role in this field through supervised
and unsupervised learning strategies, where it has had a great
impact due to the feasibility of processing temporal/spatial
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data or images more efficiently than superficial methods such
as ICA, LDA or LLE.

Representation Learning has been employed in several
areas of medicine for purposes such as risk factor selec-
tion, disease phenotyping, and prediction or classification
of disease risks [25]. This line of research is key to devel-
oping explainable AI, where the results can be interpreted
by human experts. There is a lack of work in this direction
concerning the diagnosis of cardiovascular diseases where
the few works that exist are focused on image processing [26]
or simple classifiers are developed for time series data [27].
Regarding the diagnosis of AF, the vast majority of papers
analyze ECG data from non-invasive devices [28], which are
compatible with patients in the early stages of the disease
or without previous pathologies, hence they are out of the
scope of this work. There are also incentive contributions
[29] where the authors study data from wrist-worn devices
with convolutional networks. Nonetheless, pacemakers are
still the devices that can provide valuable information in
those patients in more advanced stages of the disease.

In our previous work [30] we tried to contribute to this
path by presenting a graphical approach for analyzing the
progression of AF using the output of Recurrent Neural
Networks (RNN). Activations of the last layers of LSTM and
GRU classifiers were used to create a topological map that
provided an intuitive visual diagnosis. Although the results
achieved were significant in terms of accuracy, the interpo-
lation used to create the map obtained was highly sensitive
to the differences between the neuron activations, which
might provoke inconsistencies in the map. For that reason, a
recurrent version of Generative Adversarial Networks (GAN)
[31] was also introduced to use an ensemble formed by the
discriminative part of these nets trained on different types
of arrhythmia in order to learn a representation according to
the complexion of the data. Nevertheless, the classification
results were outperformed by the LSTM and GRU classifiers.

What we propose in this work is to exploit the repre-
sentation learning potential of VAEs in order to provide a
visual early diagnosis of the evolution of AF. VAEs have
the ability to condense data from a high dimensionality to
a much smaller dimension, maintaining consistency between
the distance of the data that is reduced. The influence of
Bayesian Variational Inference provokes the learned latent
space to depict a two-dimensional projection of the data
according to its nature, which is accurate to the AF problem:
this resulting latent space can be interpreted as an explainable
map where the distances between the compressed input data,
are correlated with the differences between the various types
of arrhythmia. When a sample of a patient’s data is presented
to the VAE, the resulting location on the map gives insight
into the state of the intracardiac activity of the patient and
how the disease might evolve in a short period of time, due
to proximity to other nearby points.

III. PROPOSED METHOD
This section describes the proposed framework for perform-
ing the task of evaluating the evolution of time series. Figure
4 shows the pipeline followed for applying this framework
to the diagnosis of patients with AF out of their intracardiac
data, where two main components are distinguished: First,
a model capable of simulating the behaviour of actual AF
clinical data (1) is used to generate a dataset that reflects
the variety of arrhythmias that a patient may suffer. Then,
a recurrent VAE (2) is trained with the generated dataset and
consequently, a latent representation that serves as a basis for
creating the proposed diagnostic tool is obtained.

A. AF SIMULATION MODEL
One of the main difficulties in applying Machine Learning
methods to medical problems is the data availability. It is
well known that the larger and more diverse the dataset with
which the model is trained, the better the learning. However,
medical data are often highly sensitive and there are privacy
concerns. In this case, although pacemakers registers can
be collected keeping the privacy of the patients, gathering
enough data that reflect the different progressions the disease
may have in different people is beyond our reach. Instead, we
opt to use the simulation model presented in [30].

This simulation model is based on a continuous Markov
model with 3 states: "Normal", "Arrhythmia" and "False
Normal" (see Figure 5). The first and second states refer
to the periods of time in which the patient is in a normal
state (out of arrhythmia) or suffering an episode. The "False
Normal" state refers to those cases, as stated in the previous
section, in which the pacemaker erroneously detects the end
of an episode of AF and which subsequently leads to a change
in the pacemaker’s operation mode to control the arrhythmia,
a process also known as Automatic Mode Switching (AMS).
There are AMS events in the transitions from "Normal" to
"Arrhythmia", but also in the transitions from "False Normal"
to Arrhythmia.

AMS events can therefore define the beginning of a true
episode of AF or the false end of an episode ("False Normal"
state). The latter case is not desired but there is no simple
procedure to purge these events from the IDC data in real pa-
tients [32], so the proposed generative model should produce
these spurious events as well.

It will be assumed that the times in the "Normal" and
"False Normal" states follow an exponential distribution with
parameters λNA(t) and λGA(t), respectively. The time in the
"Arrhythmia" state follows an exponential distribution as
well, with parameter λA(t). The probability that the next
state after "Arrhythmia" is "False Normal", where the end of
an episode is signaled before time, is pAG and the probability
that instead of "False Normal" it is "Normal" is pAN = 1−pAG.

Under these conditions, the parameter λNA(t) determines
the distribution of the time between two episodes and the
parameter λA(t) determines the duration of an episode. The
progression from paroxysmal to permanent AF is measured
by the rate of change in these two parameters: the time
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FIGURE 4: Pipeline of the proposed solution. A simulation model is used to generate synthetic arrhythmias that reflect different
stages of Atrial Fibrillation. These data are fed to the proposed recurrent VAE so that it learns a representation that will later be
used to evaluate the condition of new patients.
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FIGURE 5: State diagram of the dynamical model of the
simulation of AF episodes.

between episodes will be shorter and their duration longer
as the heart condition worsens. The rate of progression is
modeled by a parameter α ∈ [0, 1],

λNA(t) = λNA(0) · αt, (1)

λA(t) = λA(0) · α−t, (2)

where α = 1 denotes a stable patient while α values less than
1 evidence patients with a quick progression to permanent
arrhythmia.

To sum up, the proposed generative model is a Markov
model in continuous time characterized by 5 parameters:
(λNA(0), λGA, λA(0), pAG, α). With this model, it is possible
to produce a list of AMS events through Monte-Carlo simu-
lation by using a random seed. Each randomly generated list
can be viewed as a hypothetical patient whose type of AF is
defined by the above parameters. The data generated by this
model will be used to create the training set for the proposed
VAE.

B. RECURRENT VAE (RVAE)
The workflow followed in this component is quite simple: a
VAE is trained with the generated dataset to learn a simplified
representation of the data. Thus, the learned encoder acts as

a feature extractor that describes the input data according to
its properties, which are different stages of AF. This section
explains how this extraction, reflected in the resulting latent
space, can be leveraged to create the diagnostic map we
are pursuing. It also emphasizes the recurrent architecture
proposed to deal with time series as well as how the presence
of a classifier built over the frozen weights of the encoder in
the training process can influence the final solution.

1) Encoder as a feature extractor
In a VAE the training is regularised to avoid overfitting and
to ensure that the latent space has good properties that allow
the generative process. Precisely these properties contribute
to the input data being mapped in the latent space in such a
way that similar data are nearby and that this representation
can be used as a feature extractor.

A VAE, given an input, tries to find a latent vector that
is capable of describing it and at the same time has the
instructions to generate it again. The process can be described
as: p(x) =

∫
p(x|z)p(z)dz. Given that the integral of this

formula is intractable due to the continuous domain of z, the
variational inference is needed via the lower bound of the log
likelihood, Lvae,
Lvae = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||pθ(z)). (3)

The first term is the reconstruction of x that tends to
make the coding-decoding scheme as efficient as possible
by maximizing the log-likelihood log pθ(x|z) with sampling
from qφ(z|x), modeled by a neural network whose output
are the parameters of a multivariate Gaussian: a mean and
a diagonal covariance matrix. The second term tends to
regularise the organisation of latent space by causing the
distributions returned by the encoder to approach a standard
normal. It regularises the latent variables (represented by z)
by minimising the KL divergence between the variational
approximation and the prior distribution of z. The encoder,
represented by qφ(z|x) is the component that will be used as
a feature extractor since its goal is to map the input data into
a lower dimensional space.
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FIGURE 6: Network structure of the proposed method. The blue and green blocks are the encoder and decoder respectively
and the red blocks refer to the linear classifier.

One of the advantages Autoencoders have is the flexi-
bility provided by their architecture. The temporal nature
of the data suggests that the VAE can be combined with
time series modeling approaches such as RNNs. Among the
different types of RNN that can be found, LSTM networks
are the most outstanding ones. LSTM networks process data
from back to front preserving the information from the past
through the hidden states. Nevertheless, it is also possible
to preserve information from the future by processing data
from front to back. This property is the operating principle of
Bidirectional LSTMs: they run in two directions, from past
to future first, and then from future to past by preserving
information from both periods. This is very valuable due to
the fact that the network is aware of how the data may look
like in its future stages, so it can help to understand what kind
of information to predict (different progressions of AF).

With that being said, we decide to replace the encoder
of a vanilla VAE with a Bidirectional LSTM network. In
this way, the encoder approximates the Gaussian distribution
pθ(z) by feeding the output into two linear modules to esti-
mate its mean and covariance. The compression of the input
data results in a two-dimensional latent space dominated by
the axis represented by the mean and the variance of the
approximated distribution. It is expected that arrhythmias
are grouped in different clusters according to their features,
depicting a simpler representation of their nature.

Based on the representation learned by the encoder, the
data, x, is sampled from the conditional probability distri-
bution p(x|z). For generative purposes, this regularisation in
the latent space is very effective for easy random sampling
and interpolation for the creation of new data. This is the
objective of the decoder and is the most extended application
of VAEs in the literature. Yet, we decide to discard this part
after training the model because our efforts are focused on

the diagnosis of the input data instead of the generation of
new unseen cases.

2) Diagnostic map
The diagnostic tool introduced in this study is a color-coded
map that displays the actual state of the patient and the speed
of change in his/her condition from paroxysmal to permanent
AF. Once the VAE is trained with the Monte-Carlo simulation
of pacemaker events, a topological map is obtained in the
latent space from which evident clusters corresponding to
different types of arrhythmias are identified, as can be seen in
Figure 7 (part right). In this respect, the map can be regarded
as a graphic projection of the pacemaker data in a space
whose coordinates are the values of λNA, λGA, λA, pAG and
α. The values of λNA, λA and α in the projection measure
the condition of the patient and the progression of the AF.
λGA and pAG measure the chance that an AMS event in the
pacemaker is spurious. When actual pacemaker registers are
used as input, the encoder will place them according to their
features, giving information about what type of arrhythmias
the patient suffers depending on which cluster they fall
into. The following section provides further details on the
interpretation of this map.

3) Classifier: encoder quantitative diagnosis
In order to have a clustering-like approach from the la-
tent representation that the encoder learns we propose the
inclusion of a classifier in the model training process. A
similar approach was taken in [33] by Kingma et al. in what
they refer to as the latent-feature discriminative model. The
authors train a VAE and then feed a classifier with the outputs
obtained from the resulting encoder. That is to say, a classifier
is used to enhance the benefits of the VAE; however, what we
propose is to enhance the latent clustering properties of VAE
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FIGURE 7: Latent representation learned by the encoder following two different training approaches. In the left figure no
restriction was added to the model while in the right one a penalty for misclassifications was included.

by using a classifier, not once the VAE is trained, but while it
is being trained.

The image on the left in Figure 7 represents why the first
approach is not suitable for the problem at hand. It corre-
sponds to the latent space the encoder learns after training the
model without any restrictions, therefore the regularisation of
the latent space for the generation of new data is prioritized.
This results in the location of the input data in areas where
instances that do not belong to the same group of parameters
with which they were trained, are located nearby and in
many cases overlap. A classifier was trained over the frozen
weights of the encoder, nevertheless, this overlap severely
penalizes the performance in classification.

Instead, we decided to take another path: including the op-
timization of the classifier in the training process. Although
few previous works have taken this approach the results are
very promising [34]. Therefore, unlike what is proposed in
other works applied to VAEs where the problem is divided
into two steps: an unsupervised pre-training step (VAE),
followed by a supervised learning step (classifier), we decide
to merge both. The VAE is trained to minimise a loss function
composed of two objectives:

Lvae + Lcross−entropy(y, ŷ) (4)

The first objective corresponds to the VAE objective itself
and the second one is the categorical cross-entropy between
the labels and predictions for measuring the performance of
the classifier. By including the optimization of the classifier
in the loss function a restriction is added to the VAE because
it will strive not only for a continuous latent space but also
for a space where the different classes are separated enough

to be clearly differentiated, as can be seen in the right side of
Figure 7. The architecture of the classifier is simple: A single
Fully Connected layer and a softmax layer are added on top
of the encoder base.

In addition to the visual diagnosis that can be offered in
the map explained in the previous subsection, the classifier
obtained can report explicitly which parameters modeled by
the simulation model are the ones that best represent each
arrhythmia that is fed to the model. Also, the fact of building
a classifier will allow us to compare our method with other
state-of-the-art classifiers as we will see in the following
section.

Coming up with this result was not straightforward. Firstly,
a good choice of the Learning Rate (LR) is necessary, and
secondly, it must be taken into account that two optimizations
are being made: the VAE objectives and the classification
objective. This means that the contributions of each loss must
be assessed. Nevertheless, the relevance of each objective
is unbalanced and this causes the model representations to
preferentially optimize the task with the highest individual
loss. To solve this, we decided to use a penalty for misclas-
sification by using different weights for each problem, thus,
we can find the perfect balance for the objectives we pursue.

IV. ILLUSTRATIVE PROBLEM
Before addressing the diagnosis of arrhythmias, we present
a generic problem to demonstrate the ability of our model.
We aim to develop a solution that can analyze sequential
data by presenting a visual interpretation of its nature. To
this end, a dataset composed of sinusoidal sequences will be
used as an illustrative example of what can be obtained with
our framework. Thus, we have a dataset whose nature has
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a periodic factor and relies on three parameters: frequency,
amplitude and phase. We generate six classes by varying
the frequencies in [1.0, 4.0], amplitudes in [0.125, 0.5], and
random phases between [−π, π].

The aim of training the model with these data is to obtain a
representation that is capable of dividing the six classes into
different groups and at the same time keeping a coherence
between the distances of the different clusters. That is, if a
class has frequency 4 and amplitude 0.125, it is not desired
that samples belonging to this class are grouped near those
belonging to the class generated with frequency 1 and ampli-
tude 0.5 because the dissimilarities are evident and what we
pursue is that data be located near those that are most similar.

Figure 8 (part right) shows the resulting latent space after
training the model. At first sight, there are six clusters,
each one belonging to each generated class. In terms of
classification, the performance is optimal since each point
is classified within the group to which it belongs and the
proximity between clusters, which is the feature we will use
later for the diagnosis, is understandable. The 3 most external
clusters belong to examples that have the same amplitude:
0.5, but different frequency: 1, 2 and 3 from most external
to most internal. The 3 innermost clusters have the same
frequency: 4 and 0.125, 0.25 and 0.375 as amplitudes from
innermost to outermost. This arrangement shows that the
most similar classes are adjacent on the map, which may let
a new point be located in the area of the map that best fits its
parameters. Again, it is important to highlight the influence of
Bayesian Inference in the display of the clusters since other
clustering methods lack this property as can be seen in the
left side of the figure where PCA was used. Sequences with
frequency 4 and amplitude 0.125 and 0.25 are not clearly
differentiated and most importantly, the outermost cluster
belongs to sequences with amplitude 0.375 and frequency
4, however, according to the similarity between the data it
should be placed between the blue and red clusters. In conse-
quence, the importance of achieving a faithful representation
according to the similarity between the data is appreciated.

To conclude this section, it should be noted that although
the reconstruction is remarkable (see Figure 9), the addition
of the classifier provokes some division between clusters.
This penalizes the generative condition because if sequences
are generated from "empty" latent zones, that is, where there
are no points previously represented, the resulting recon-
struction may not make sense. Nevertheless, the generative
purpose of the framework does not fall within our objectives
nor will it be used for any purpose.

V. EXPERIMENTS
The experimental validation of the proposed framework has
two parts. First, synthetic data with known properties are
used to compare our framework with other state-of-the-art
classifiers. Second, actual patients are diagnosed and their
maps are validated by a human expert.

We begin by describing the experimental setup and then
introducing the numerical results. Finally, the diagnostic map

achieved is presented and the experimental validation is
discussed.

A. EXPERIMENTAL SETUP
In the experiments carried out for both, the toy problem
and the AF diagnosis, the datasets were composed of se-
quences of length 144 and one feature. The number of
samples for training was 84000 and 16800 for test, which
were completely balanced between the six classes that were
used. On the other hand, as hyperparameter tuning is a
very challenging task, we made use of Hyperopt [35], a
specific library for hyperparameter optimization. Also, an
accurate choice of the LR is particularly essential to im-
prove the optimization process, therefore for this parameter
we used an adaptive LR optimizer, Adam, and the Cyclic
Learning Rate technique proposed in [36] to help to select
the optimal LR with which to start the training. Also, to
attain the best possible performance of our model we used
callbacks in the Keras [37] Deep Learning library for all
our experiments to relegate the training stop condition to
the validation error instead of the number of epochs. These
implementations led us to find the best results in terms of the
functions to be optimized. All models and experiments were
implemented in python and the source code to reproduce the
experimental results is available in a public git repository:
https://github.com/NahuelCostaCortez/RVAE.

B. NUMERICAL RESULTS
In this section, we demonstrate that our framework can
compete with state-of-the-art classifiers for time series for the
case at hand. It should be noted that the baseline methods
we present do not include any representation of the data,
but simply predict the class to which each sample belongs,
which makes us appreciate the importance of Representation
Learning as it provides a more illustrative information than
just a numerical or categorical result, as we will see in the
next subsection.

In regard to the data, six AF categories were generated
using the model described in Section III. These classes
are labelled 998na10, 998na30, 998na180, 999na10,
999na30 and 999na180. The class labels begin with the
first three decimals ofα, which is the speed of the progression
of the AF (998 is fast, 999 is slow) while the second number
in the class label is 1/λNA(0), from now β for simplicity,
which is the average time between two AF episodes, mea-
sured in days (10, 30 and 180 days).

1) Baseline Methods
To evaluate the performance of our model, we used the tool
provided in [38] to implement 5 baseline methods,
• Resnet: a deep Residual Network proposed by [39]

composed of three residual blocks followed by a GAP
layer and a final softmax classifier whose number of
neurons is equal to the number of classes in a dataset.

• FCN: A Fully Convolutional Neural Network, with the
architecture also proposed in [39], which consists of
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FIGURE 8: Simplified representations of sine wave sequences by PCA (left) and our model (right). It is shown that in our
solution the organisation of the clusters is consistent according to the data while in PCA the organisation may not fit the nature
of the data.

FIGURE 9: Comparison of reconstructed and original senoid samples.

three convolutional blocks whose result is averaged
over the entire time dimension that corresponds to the
GAP layer. Finally, a traditional softmax classifier is
completely connected to the output of the GAP layer.

• Encoder: Originally proposed by [40], Encoder is a
hybrid deep CNN whose architecture is inspired by FCN
(Wang et al. 2017b) with a main difference where the
GAP layer is replaced with an attention layer.

• TWIESN: Time Warping Invariant Echo State Network,
a variant of the Echo State Networks (ESN) proposed
by [41] in which each timestep is projected in a space
whose dimensions are inferred from the size of a reser-
voir. Then for each element, a Ridge classifier is trained
to predict the class of each element in the time series.

It should be noted that in the previous section the im-
portance of RNN for time series processing was highlighted

whereas in this study TWIESN is presented as the only RNN
to be compared. RNNs are generally applied for time series
forecasting, however, when it comes to classification there
are some drawbacks that emerge:

• This type of architecture is primarily designed to predict
an output for each element in the time series [42].

• RNNs often suffer from the Vanishing Gradient problem
due to long time series training [43].

• RNNs are considered difficult to train and parallelize,
which leads to the avoidance of their use for computa-
tional reasons [44].

In our case the main objective is not classification but the
treatment of the evolution in the series that represent the ar-
rhythmias, which is why the application of other architectures
was not considered.

Table 1 shows the performance of the different models for
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each class in terms of accuracy. Each entry in the table is the
number of times an arrhythmia in a class was recognized by
each model for the appropriate class. In addition, to illustrate
the performance of each method, the ranking calculated by
the Friedman method (ranking by range) for each dataset and
the resulting averaged ranking are included.

It can be seen that the best classifier is Resnet, followed
by our solution, labelled as RVAE. To extend the comparison
between the different methods, post-hoc tests were carried
out to detect significant differences in pairs between all the
classifiers as recommended in [45]. Table 2 shows the family
of hypotheses formulated to compare the classifiers ordered
by the corresponding p-values. If the significance test yields
a p-value lower than a predefined threshold (usually 0.05),
then the difference is considered significant, therefore one
model is declared superior to another. In this case only
Resnet is significantly higher than the other models, which
are FCN, Encoder and TWIESN if a significance level of
0.05 is considered since the p-values are below this threshold.
The only solution to which it does not significantly exceed is
ours. If the Bonferroni correction is considered, in which the
number of comparisons is taken into account, the threshold
which would have to be set is 0.05 divided by the number of
comparisons, i.e. 0.05/6 = 0.0083. Taking this value, Resnet
would only be significantly higher than TWIESN. This is
important to note because only TWIESN and our solution
use RNNs, so it can be stated that our solution outperforms
the best state of the art RNN classifier.

As a conclusion of this comparative study, it can be stated
that our framework is capable of competing with the best time
series classifiers reported up to 2019. Besides, the misclassi-
fication errors of our model correspond to arrhythmias that
by their characteristics are located between classes similar
to the one that really belongs, see Figure 7 right side: the
classifier learns from that representation, so it can be assumed
that failures are most likely due to the overlap of instances of
a similar nature, which can also be interpreted as an estimate
of the class of arrhythmia that most resembles its parameters
or even as the possible future evolution that they will have, as
we will address next.

C. VISUAL DIAGNOSIS
As discussed in previous sections, the latent properties of
the VAE were prioritized to obtain a latent space whose
characteristics were suitable for a simplified representation
of the data. Figure 7 (right side) is the result of the latent
representations obtained by the encoder for the training data
and it can be understood as a projection of the 5 parameters
that govern the arrhythmias simulation model. There are six
clusters, which correspond to the six classes with which
the VAE was trained, labelled according to the two most
relevant parameters of the simulated arrhythmias: α and β.
The representations are organised according to the criticality
of these two parameters.

The clinical interest lies in being able to project a real
patient’s data onto the latent space to find out which param-

eters of the model fit best. The procedure is quite intuitive;
the arrhythmias are fed to the encoder, which predicts an
output that will be the mean and variance of each one adapted
to the distribution learned during the training. These two
parameters are the axes that govern the latent space therefore,
their codification in this space corresponds to a point with
coordinates X = mean and Y = variance. In short, each point
represents an arrhythmia from the training set. By projecting
these dimensions on the learned map, their location on the
clusters of arrhythmias that are present will give insight about
the parameters that best define the patient´s condition.

Figure 10 shows a projection (red dots) of two randomly
selected patients from their pacemaker records. On the left
side, it can be seen that the patient’s projection falls into
the group belonging to arrhythmias that have parameters α
= 0.999 and β = 180. Remember, α measures the speed of
progression of arrhythmias and values of α close to 0.999
indicate a slow progression of AF. β indicates the average
time between arrhythmias, in this case, it is more likely that
those of this patient will occur at least every 180 days, so it
is estimated that this is a patient that progresses positively
without involving much risk.

As the map is organised, it is evident that the values of β
are located from left to right from highest to lowest (180, 30,
10), which is equal to an organisation from lowest to highest
criticality as low values of β indicate short times between
different episodes. On the other hand, the values of α are
organised from top to bottom (999, 998), from less to more
critical. This information can be used to facilitate a better
interpretation of the map. The upper right zone denotes the
less critical arrhythmias, while the lower right zone shows
those arrhythmias that represent a very advanced stage of
the disease. At the same time, the rest of the parameters of
the simulation model during the generation of the training
set have been varied randomly, which slightly influences the
condition of the arrhythmias, therefore this property can give
rise to the interpretation of arrhythmias between two clusters
as an interpolation between the parameters of two classes.

This fact can be seen in the patient depicted on the right
side of the same figure. This second case is located in the
cluster with parameters α = 0.998 and β = 30. Firstly, the
parameter β is closer to 30, but due to its proximity to
the lower-left group (β = 180), it can be understood that
its evolution is on the way to reach 30, possibly a value
between 180 and 30. Secondly, the most critical parameter,
α, corresponds to a value of 0.998, which means that the
evolution is closer to a permanent arrhythmia. This is not the
most critical case, but it may need medical intervention in
order to prevent future complications.

The organisation of the latent space reveals that the model
is capable of setting apart the different values of α and β, al-
lowing us to know if the condition of a certain patient evolves
dangerously towards permanent AF. It is important to high-
light the latent organisation obtained and its interpretability.
As mentioned previously, the most dangerous arrhythmias
are located on the lower right and those that do not suggest
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Accuracy
Resnet FCN Encoder TWIESN RVAE

998na10 0.9681(2) 0.9867 (1) 0.9361(5) 0.9517(4) 0.9543(3)
998na30 0.9664(1) 0.8788(5) 0.9456(3) 0.9438(4) 0.9553(2)
998na180 0.9846(1) 0.9719(4) 0.9729(3) 0.9611(5) 0.9779(2)
999na10 0.9849(1) 0.9849(2) 0.9364(5) 0.9505(4) 0.9770(3)
999na30 0.9879(1) 0.9778(3) 0.9826(2) 0.9791(4) 0.9733(5)
999na180 0.9904(1) 0.9886(4) 0.9895(3) 0.9786(5) 0.9895(2)

Summary Results
Accuracy 0.9803 0.9647 0.9603 0.9607 0.9712

Average rank 1.166 3.166 3.500 4.333 2.833

TABLE 1: Accuracy of the different classifiers, 6 types of AF.

i hypothesis z = (R0 – Ri)/SE p
1 Resnet vs TWIESN 3.465 0.0005
2 Resnet vs Encoder 2.556 0.0106
3 Resnet vs FCN 2.191 0.0285
4 Resnet vs RVAE 1.826 0.0679
5 RVAE vs TWIESN 1.640 0.1010
6 FCN vs TWIESN 1.275 0.2023
7 Encoder vs TWIESN 0.912 0.3618
8 RVAE vs Encoder 0.731 0.4648
9 FCN vs Encoder 0.366 0.7144

10 FCN vs RVAE 0.365 0.7151

TABLE 2: Family of hypotheses ordered by p-value.

FIGURE 10: Projection of arrhythmias of actual patients.
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too much danger on the upper left. This evolution from one
corner to the other can be interpreted as an interpolation of
the parameters used to offer a diagnosis onto the latent space:
α on the Y-axis and β on the X-axis. Figure 11 reinforces this
idea: new simulated arrhythmias are projected onto the latent
space by varying the parameters of the simulation model,
but unlike the process followed to generate the training data
where the parameters λGA, λA(t) and pAG were randomly
altered within a certain range, on this occasion they were left
fixed. As a result, instances are represented as crosses and
labelled according to the parameter β with which they were
generated. The parameter α is omitted since the membership
towards 0.998 or to 0.999 is evident. The projection on the
map shows that the interpretation of the parameters of a given
arrhythmia can be established according to the proximity
to a specific cluster. That is, despite the fact that the first
group characterizes those arrhythmias with parameters α
= 0.999 and β = 10, if an arrhythmia is located in the
limit between this group and the one on its left it is very
likely that it has an intermediate parameter β between both,
(e.g. 20), or if an arrhythmia is located between a superior
and an inferior group it would mean that the parameter α
evolves dangerously towards values of 0.998. In this way, it
is possible to know how the progression of a given arrhythmia
could evolve.

VI. CONCLUDING REMARKS AND FUTURE WORK
We have described, trained and evaluated a recurrent VAE
architecture based on Bidirectional LSTMs to assess the
progression of time series by means of a graphic projection.
We introduced a classifier to regularise the formation of the
latent space and thus obtain a representation according to
the nature of the data. The diagnosis of AF disease has
been addressed with this model using intracardiac pacemaker
records from actual patients and not only was an explainable
diagnosis achieved but also our method was shown to be
able to compete with solutions dedicated exclusively to time
series classification, outperforming three of the four methods
presented in terms of accuracy.

Lastly, the flexibility of the resulting model provides an
opportunity to explore other future work contributions. La-
tent properties can be addressed in even more detail with
recent architectures [46] [47] and the decoder, which has
been discarded for this work, can be used for other tasks such
as the detection of anomalies in data reconstruction or the
prediction of the next time steps in the analysed time series.
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A B S T R A C T

A new method for evaluating aircraft engine monitoring data is proposed. Commonly, prognostics and health
management systems use knowledge of the degradation processes of certain engine components together with
professional expert opinion to predict the Remaining Useful Life (RUL). New data-driven approaches have
emerged to provide accurate diagnostics without relying on such costly processes. However, most of them
lack an explanatory component to understand model learning and/or the nature of the data. To overcome this
gap we propose a novel approach based on variational encoding. The model consists of a recurrent encoder
and a regression model: the encoder learns to compress the input data to a latent space that serves as a
basis to build a self-explanatory map that can visually evaluate the rate of deterioration of aircraft engines.
Obtaining such a latent space is regularized by a new cost function guided by variational inference and a
term that penalizes prediction errors. Consequently, not only an interpretable assessment is achieved but
also a remarkable prognostic accuracy, outperforming most of the state-of-the-art approaches on the popular
simulation dataset C-MAPSS from NASA. In addition, we demonstrate the application of our method in a
real-world scenario with data from actual Turbofan engines.

1. Introduction

Prognostic technologies are crucial in any physical system. In air-
craft engines this is a must since throughout their life cycle they are
subjected to different conditions that cause degradation and ultimately
lead to failure. For this reason, data is routinely collected from various
built-in sensors to monitor performance and avoid operating in unde-
sirable conditions. Over the years, the amount of information collected
has increased and this has paved the way for making more complex
analyses in favor of maintenance that extends the useful life of these
systems. However, traditional strategies such as scheduled preventive
maintenance or corrective maintenance of failures [1] are increasingly
unable to meet growing industrial demand in terms of efficiency and
reliability. In this regard, Prognostics and Health Management (PHM)
technologies are proving to have promising capabilities for application
in industries [2]. As a result, metrics like remaining useful life (RUL) of
systems have been established as key elements to improve maintenance
schedules and avoid engineering, safety and reliability failures. Conse-
quently, this would make it possible to determine engine deterioration,
increase engine flight time and reduce maintenance costs.

∗ Corresponding author.
E-mail address: costanahuel@uniovi.es (N. Costa).

1 All authors have participated equally in all tasks.

1.1. Literature review

In the last decade, several techniques have been proposed to model
the degradation of these complex systems, from which two currents
arise: model-based approaches and data-driven approaches. Among
the former, works such as [3,4] stand out, although these techniques
require extensive prior knowledge about the physical systems, infor-
mation that is often not available in practice. Precisely for this reason,
data-driven approaches have become so popular in recent years, as
they are able to model degradation features based purely on historical
records from which the underlying causalities and correlations can be
modeled. That is, knowledge can be inferred from sensor data to predict
valuable system information such as RUL [5].

Especially, the use of Machine Learning models has had a great
impact given that they are able to model highly nonlinear, complex
and multi-dimensional systems with little prior prognostic experience.
If we focus on RUL estimation, initial work was oriented towards the
application of multi-layer perceptrons (MLP) as in [6], where the au-
thors reported higher prediction results than model-based approaches.
In [7,8] both diagnostics and prognostics were approached with PCA
and hidden Markov models. Over the years, other techniques have
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been also explored: some researchers have integrated fuzzy logic to
capture more information for Engine Health Monitoring (EHM) [9,10],
others applied Support Vectors [11] or Gradient Boosting trees [12].
Nevertheless, despite being all of them considered relevant work for
the sake of RUL estimation, the greater impact has undoubtedly been
produced by the use of Deep Learning models [13]. This is due to
the fact that the raw data obtained from machine health monitoring
share a high dimensionality, similar to that of other problems in which
these models have had a significant impact and are known to perform
remarkably well, especially in Computer Vision and Natural Language
Processing (NLP).

Certainly, RUL estimation is a hot-topic, partly thanks to the appli-
cation of these new deep models where two trends clearly stand out:
the use of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN). High-impact work can be easily found in both direc-
tions, calling for the use of CNNs for feature extraction [14–16] and
recurrent networks for modeling the temporal nature of the data [17–
19]. From there, promising modifications have been proposed [20–22],
where both architectures are combined for better prediction capa-
bilities. In addition, approaches that go beyond RUL estimation are
beginning to emerge such as [23] where a semi-supervised method is
developed to avoid relying on data labeling or [24] where the authors
present a model to mine different levels of degradation trends.

However, there is a clear gap between all Deep Learning oriented
approaches: although they do achieve remarkable results, models are
treated as black boxes where inputs are used to obtain some output, in
this case, the RUL. It is challenging to find algorithms that go beyond
providing good numerical performance and this is vitally important.
Despite the fact that the current is to dispense with prior knowledge
about the system to be monitored, in the end, these models are designed
to be used by people outside academia. Therefore, it is of great interest
to be able to provide a tool that gives certain interpretability of the
models’ decisions as well as some insights about the nature of the data.
In fact, these are attributes of particular interest, if not demanded, for
decision making in safety-critical applications [25].

1.2. Suitable approaches and limitations

To meet the goals stated one can think of unsupervised learning
techniques as a possible way to approach this. Especially, when it
comes to reveal insights about the nature of the data, Representation
Learning approaches such as autoencoders come in handy. Autoen-
coders are models designed to reconstruct the input data while learning
a compressed representation of it, the so-called latent space. Their
applications are quite widespread in anomaly diagnosis, being the
most common case that in which the probability distribution of non-
anomalous data is learned in order to detect, through reconstruction
errors, patterns that do not correspond to that distribution [26–28].

The key element of these models is that their performance is based
directly on internal representations, which in turn can be used to
better understand the problem itself. Accordingly, they have been used
to identify anomalous elements within a set of systems with similar
characteristics, such as fleets of vehicles or aircraft engines [29,30]. In
these cases, the compression capacity of the autoencoder is exploited,
thus enhancing the interpretability of the latent space: assuming that
anomalies are infrequent, those points in the latent space furthest away
from the most populated clusters can be identified as such. However,
the main limitation is that, unlike other dimensionality reduction meth-
ods like PCA [31,32], the relative distances between the input patterns
are not necessarily preserved in the projection of the encoder, therefore
this cluster analysis is not always possible. This problem was solved
with Variational Autoencoders (VAEs). In VAEs, variational inference is
added to the error function through the Kullback–Leibler term, which
guarantees that data with similar patterns will also be encoded nearby
in the latent space. VAEs are a recent but well-known alternative with
numerous applications in anomaly analysis [33–35].

The problem of determining the RUL of a system, on the other hand,
has been studied in less depth. This problem has many points in com-
mon with the diagnosis of anomalies and has also been solved by using
autoencoders [36,37]. Despite these similarities, both problems have a
fundamental difference: in anomaly diagnosis, the aim is to look for
individuals in unlikely areas of the latent space. In RUL prediction, on
the contrary, the objective for a complete and interpretable diagnosis
should be to project the evolution of the system in the latent space
over time in order to know how fast it is moving towards anomalous
zones. The presence of anomalies is indeed correlated with the RUL
since anomalous latent states usually correspond to low RUL values.
However, two systems can be in the same initial condition but have a
different temporal evolution, so that the successive states of the system
cannot be studied independently as is done in anomaly detection.
Instead, RUL estimation must be linked to the temporal analysis of
complete state trajectories in the latent space.

In this line of research, we have recently proposed a new VAE
architecture where the input and output layers are recurrent [38], as
VAE applications are mainly oriented to the image domain and not so
much to time series data, which is the case of RUL estimation. This
architecture allows obtaining projections of state sequences and solves
to some extent the problem of applying VAEs to RUL estimation since
variational inference guarantees that systems with similar degradation
patterns are going to be projected in close areas of the latent space. The
recurrent VAE thus allows differentiation of systems with anomalous
trajectories, however, this method is not a complete solution to the RUL
estimation problem, mainly for two reasons:

1. It does not produce a numerical estimation of the system life-
time. It only separates low RUL systems from high RUL systems,
but does not quantify what the RUL value is at each time step.

2. There is no guarantee that the time evolution of the trajectory
projections are correctly separated (see Fig. 1), so it does not
provide a solution to the problems of fleet health prognosis.

Concerning the second reason, it should be noted that RUL esti-
mation, in real-world cases, is an online process: the useful life of
each system is continuously updated as new data is received. For this
reason, it is not enough that the new points are located in the vicinity
of the previous ones: the successive projections of each system in the
latent space, as time progresses, must form a continuous trajectory,
which can be extrapolated into the future. In this way, it will be
possible to diagnose continuous degradations over time (such as wear,
efficiency losses, etc.) that affect the RUL, but which do not correspond
to occasional events and therefore cannot be identified by anomaly
detection analysis.

In this study, we solve the two open problems mentioned above by
the combined use of a new neural architecture based on a recurrent
variational encoder and a fresh way of regularizing training. To this
end, we propose a new cost function related to the association of the
Kullback–Leibler term with a second term that favors that the projec-
tions of successive states of the engines in the latent space constitute a
continuous trajectory. This second term, as will be further explained,
penalizes the successive RUL prediction errors over time, having a
positive influence both on the ability of the new network to predict
the lifetime of the engines and on the quality of the latent space.
Thus, we take full advantage of the use of novel recurrent network
architectures without giving up Representation Learning properties due
to the construction of a latent space with suitable properties to provide
a visual, hence explainable and interpretable diagnosis. The method
is first validated with the popular C-MAPSS dataset from NASA and
subsequently tested on a real environment.

The structure of this paper is organized as follows: Section 2 in-
troduces the settings carried out to approach this problem. A detailed
description of the proposed method for achieving an explainable di-
agnosis of aircraft engines is described in Section 3. The experimen-
tal set-up is explained in Section 4. Experimental results concerning
both a benchmark problem and a real-world problem are presented in
Section 5 while conclusions are drawn in Section 6.
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Fig. 1. In a vanilla VAE, training is regularized to prioritize generative purposes. This
results in a dispersed latent projection of the system trajectory as in the figure on
the left, in which there is no clear evolution between the state of the equipment at
the beginning (white dot) and at the end of evaluation (red dot). On the contrary, a
projection like the one in the figure on the right is what we are aiming for.

2. Problem settings

Before delving into the details of the model and results, it is of
particular interest to highlight some important issues which are of
great impact in achieving optimal performance and will help to better
understand the problem itself.

2.1. RUL estimation

RUL stands for Remaining Useful Life and is a popular metric in
prognostics, especially in aircraft monitoring [39]. Normally, sensors
such as turbine pressure or compressor temperature are used to collect
flight information about the engine. This data form a multi-valued
series. The 𝑗th element of the series is a vector of h elements, each
of which is the reading of one of the available sensors taken at the
𝑗th time instant. Having this information for several engines, a dataset
could be formed from which to train a model to estimate the number
of remaining time cycles in which a new unseen aircraft works well
before failure, i.e its RUL.

In this paper, the proposed method is evaluated on the popular
NASA’s engine degradation dataset [40], known as C-MAPPS. Although
it was published several years ago, it is still relevant today, (perhaps
motivated by the fact that there are hardly any other similar datasets in
the field), being the standard problem on which to test new RUL estima-
tion models. This dataset contains simulated data of Turbofan engines
produced by Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS), a model-based simulation program. It is composed of multi-
variate temporal data obtained from twenty-one sensors and is further
divided into 4 sub-datasets. As can be seen in Table 1, in each sub-
dataset a training set and a test set are provided, from which there is
a slight difference. The training set comprises run-to-failure data. That
is, although each engine unit starts with different degradation states
that are unknown, these are considered healthy and as time progresses,
the engine units degrade to failure, therefore the last data sample
corresponds to the time cycle in which the engine unit is declared
unhealthy (RUL = 0). On the contrary, sensor records in the test sets
terminate at some point before system failure and the actual RUL value
for these engines is provided. The aim of this problem is to estimate the
RUL of each engine in the test sets. It should be noted that training
on a particular sub-dataset might be not applicable on another sub-
dataset because the operating and failure conditions are different. There
are promising approaches such as [41] in which adaptive methods are
adopted to avoid these differences between training and test sets and
thus avoid offline training. However, this is out of the scope of this
work. Since there are four different sub-datasets, we train our model
on each training set and evaluate on the test sets as they have exactly
the same conditions.

Table 1
Data sets details.

FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Fig. 2. RUL target function.

2.1.1. RUL target function
In prognostic problems, as the system always tends to deteriorate,

it is quite usual to assume degradation behavior. Thus, a target RUL
can be constructed based on these assumptions to guide the model
training and enhance its predictions in a supervised manner. The most
naive approach would be to assume that RUL decreases linearly over
time, however, when analyzing the sensor signals, there is a common
pattern: many sensors seem rather constant at the beginning until a
breakpoint occurs that makes the engine degrade linearly with usage.
The piecewise linear degradation model proposed in [42] follows this
idea and is the most extended target function used in the literature. It
simply limits the maximum value of the RUL function as illustrated in
2. We use this degradation model to obtain the RUL label with respect
to each training sample at each time-step. The maximum RUL is set
at 125 cycles. This is used to make fair comparisons with respect to
other models that used the same methodology, but it should be noted
that this is just a guideline value. Different equipment in the system
has different lifetimes and different degradation trajectories, therefore
this value may be too high or too low for different individuals. In [43]
the authors propose a new methodology to construct the target RUL for
each individual in order not to rely on a single value. However, there is
still no consensus on the best way to teach the algorithm the behavior
of the system. Precisely, this can be considered a bottleneck and that is
why it is desirable to provide learning that does not depend exclusively
on this function. In this work, we learn the nature of the data in an
unsupervised manner with variational inference and fine tune it with
the labels to improve predictions. Thereby, what the model learns is
guided more by the nature of the data than by the labels themselves.

2.2. Metrics

In order to establish a fair comparison with the rest of the ap-
proaches the same metrics used in most similar works are chosen. On
the one hand, there is the original metric proposed by NASA in PHM
2008 Data Challenge, which is described in Eq. (1), where 𝑁 is the
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number of engines in the test set, 𝑆 is the computed score, and 𝑑 =
(Estimated RUL - True RUL).

𝑠 =
𝑁
∑

𝑖=1
𝑠𝑖,

𝑠𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑒−
𝑑𝑖
13 − 1, for 𝑑𝑖 < 0

𝑒
𝑑𝑖
10 − 1, for 𝑑𝑖 ≥ 0

(1)

The main objective of this function is to differentiate late predictions
from early predictions. The former are more penalized because it is
understood that it is too late to perform maintenance while early
predictions are not a major problem. Although maintenance resources
could be wasted, priority is given to penalizing false negatives. This
has some drawbacks since, if there is an outlier leading to a late
prediction, this would dominate the overall performance score, thus
masking the true overall accuracy of the algorithm. In addition, the
level of confidence with which the algorithm is able to estimate the
RUL value before the failure point is also not taken into account.

Due to these shortcomings, the use of RMSE is also proposed as it
gives equal weight to early and late predictions:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑑𝑖)2 (2)

The use of RMSE together with the scoring function (Eq. (1))
would avoid favoring an algorithm that artificially lowers the score by
underestimating, which is quite likely due to the reasons exposed, by
resulting in a higher RMSE. In summary, both metrics complement each
other by providing more information about the accuracy of the model.

3. Model

The proposed model consists of three components: an encoder net-
work, a regression model and a latent space. The encoder learns to
compress the data into the latent space so that it is described by
the parameters that initialize the probability distribution to which
the data belongs. Variational inference is added to the loss function
through the Kullback–Leibler divergence, which measures how much
one probability distribution diverges from another, to learn the above-
mentioned parameters. A second term is also added to penalize wrong
estimations of the regression model. In the end, all this allows a latent
space to be learned in which similar data is located in nearby areas
from which to efficiently perform other tasks.

The workflow followed for this problem is depicted in Fig. 3. The
model is trained with data from aircraft engines to learn a simplified
representation of their trajectories. Thus, the resulting encoder acts as
a feature extractor compressing into the latent space the data according
to their properties, which are different stages of degradation in the
engines. The latent space contains the compressed representation of the
aircraft, particularly in 2 dimensions. This representation will be used
after training is completed to visually evaluate the degradation patterns
of the engines. Finally, a numerical prediction of the RUL that best
represents each engine that is fed to the model is provided by training a
regression model directly with the features learned in the latent space.
This section explains the main differences between our model and a
VAE and how the encoder output can be leveraged to create the visual
diagnosis we propose. Emphasis is placed on the implementation of the
recurrent architecture for dealing with time series, as well as how latent
features lead to perform RUL estimation.

3.1. Variational encoding

Variational encoding refers to the process of compressing input data
based on variational inference, a key element in our research, as stated
in the introduction. This process is the basis for the operation of VAEs,

therefore it is important to know how they work in order to clarify the
differences with respect to our model. In a VAE the training process is
regularized to avoid overfitting and to ensure that the latent space has
the necessary properties that enable the generative process. To obtain
them, the encoder must map the data in the latent space in such a way
that similar data is close to each other. This allows the decoder not only
to reconstruct the data efficiently but also to generate new instances
from points in the latent space that do not correspond to the encoding
of any training sample.

VAEs compress the input data into a latent vector, which is a
simplified representation, described as 𝑝(𝑥) = 𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑧, where the
domain of z is continuous and therefore intractable. For this reason
variational inference is used since this intractability can be solved via
the lower bound of the log-likelihood [44], 𝑣𝑎𝑒,

𝑣𝑎𝑒 = 𝐸𝑞𝜙(𝐳|𝐱)[log 𝑝𝜃(𝐱|𝐳)] −𝐷KL(𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳)) (3)

The first term is the reconstruction of x that tends to make the
coding–decoding scheme as efficient as possible by maximizing the
log-likelihood log 𝑝𝜃(𝐱|𝐳) with sampling from 𝑞𝜙(𝐳|𝐱), modeled by the
encoder, whose output is the parameters of a multivariate Gaussian: a
mean and a diagonal covariance matrix. In other words, the main goal
of the encoder is to map the input data into a lower-dimensional space,
acting as a feature extractor. The second term tends to regularize the
organization of the latent space by causing the distributions returned
by the encoder to approach a standard normal. It regularizes the latent
variables (represented by z) by minimizing the KL divergence between
the variational approximation and the prior distribution of z.

The data is reconstructed from the conditional probability distri-
bution p(x–z), learned by the encoder. For generative purposes, the
regularization produced in the latent space facilitates random sampling
and interpolation for the creation of new data. This is why VAEs are
understood as generative models and their use is widespread as such.

Nevertheless, we do not strive to generate new aircraft data, but
to diagnose it by making use of latent representations. VAEs latent
space, in contrast, is not usually used for clustering or visualization
despite it has promising properties for this. In fact, there are works
in which this has been taken advantage of, as in [45] in what they
refer to as the latent-feature discriminative model. The authors trained
a VAE and then fed a classifier with the outputs obtained from the
resulting encoder. Still, this is not further explored in the literature
since VAEs are mainly oriented to generative tasks and this causes the
regularization of the latent space to lead the encoder to project the data
as compressed as possible, resulting in obvious overlaps.

This is a barrier to our objectives because these overlaps make
it difficult to estimate the RUL. First visually: although aircraft with
similar RUL values will be close on the map, they will not be clearly
differentiated from those that are far away. Then, because any model
built on top of this will be guided by this representation and will most
likely result in prediction failures. Therefore, a vanilla VAE does not
meet our needs and we must adapt the use of variational inference
for our problem: what we want is to enhance the latent organizational
properties of variational encoding by using a regressor, not a classifier,
and not once the model is trained, but while it is being trained.

The image on the left in Fig. 4 represents why the approach men-
tioned in [45] is not suitable for the problem at hand. It corresponds
to the latent space the encoder learns after training the model without
any restrictions thence the regularization of the latent space for the
generation of new data is prioritized. This causes the input data to be
placed in areas where instances whose features are not similar (differ-
ent RUL values) are not clearly differentiated or even overlap. As this
approach suggests, a simple regressor was trained on the frozen encoder
weights, however, this overlap severely penalizes the performance in
RUL estimation, making it unable to compete with other state-of-the-
art methods. There are promising works that propose to solve this by
including regression errors in the training process as in [46], although
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Fig. 3. Workflow followed for the proposed approach: aircraft data is fed into the encoder, which learns a latent representation based on deterioration patterns in order to build
a graphical map reflecting the evolution of their trajectories. The regressor directly influences obtaining such a latent space and allows to report numerically the RUL of each
engine.

Fig. 4. Latent representations learned by the encoder for FD001. The figure on the left shows the regular training of a VAE, while the figure on the right shows the result with
our model, which does not include the decoder but a regression model that adds a penalty for wrong predictions.

the decoder is still used, which may wrongly interfere with our ultimate
goal: the diagnosis of the aviation history of the engines.

Instead, the path we decide to take includes the omission of the
decoder to focus learning on obtaining an interpretable latent space.
Thereby, the main difference with respect to a VAE is that we replace
the decoder with a regression model, as shown in Fig. 3, and the
training is done differently. Our proposed model is trained to minimize
a loss function composed of two objectives:

𝑥 = −𝐷KL(𝑞𝜙(𝐳|𝐱)||𝑝𝜃(𝐳)) + 𝑅𝑀𝑆𝐸 (4)

The first objective corresponds to the regularization of the latent
space through variational inference, as explained before in Eq. (3)
and the second one is the Root Mean Square Error (RMSE) between
the known RULs and the RULs predicted by the model. Including the
regressor optimization in the loss function adds a constraint to the

model, as it will strive not only for a continuous latent space, but
also for a space in which different types of trajectories, and so with
different associated RUL values, are sufficiently separated to be clearly
differentiated so that the evolution of degradation in an aircraft can
be observed. The right part of Fig. 4 demonstrates the effectiveness
of training the model in this way. The architecture of the regressor is
simple: on top of the encoder base, a fully connected layer with a tanh
activation function and another layer with a single neuron containing
the RUL prediction are added.

As for the encoder, we decide to implement it with recurrent
networks given that most recent studies make use of them to model
the time complexity of historical aircraft data [47,48]. Among the
different types of RNNs that can be found, LSTM networks are the
most popular. These networks process data from backward to forward
conserving information from the past through hidden states. However,
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Bidirectional LSTM networks are in high demand because they provide
not only information about the past but also about the future: data
is first processed from past to future and then from future to past,
thus preserving the information from both periods. This is quite helpful
because the network is aware of what the data may look like in its
future stages, which helps it to understand what kind of information to
predict (different stages of engine deterioration). All in all, we decide
to implement the model with this type of network.

In summary, the encoder, built with bidirectional LSTMs, approx-
imates the Gaussian distribution 𝑝𝜃(𝐳) by feeding the output into two
linear modules to estimate its mean and covariance. This means that
the compression of the engine data by the encoder results in a two-
dimensional latent space whose axes would be the mean and covariance
of the approximate distribution. Consequently, the learned latent space
is expected to group engine trajectories into different clusters accord-
ing to their underlying nature, illustrating a simplified representation.
Furthermore, the regressor influences directly over the organization of
the latent space and can report explicitly which RUL value is the one
that best represents the cycles belonging to each engine unit that is fed
to the model.

3.2. Interpretable diagnosis

The diagnostic tool introduced in this work is a map that shows the
actual state of the engine and also the rate of change from healthy to
deteriorated. What we pursue is a map in which each point represents
the status of an engine associated with a window of events during
its flight history so that points of degraded aircraft are grouped in
nearby areas and, on the contrary, points belonging to healthy aircraft
are located in more distant areas. As the actual health status of the
training aircraft will be known, since we used the RUL target function,
a color scale can be established to clearly differentiate healthy aircraft
from deteriorated or totally deteriorated aircraft, coloring each point
according to its corresponding RUL. Thinking about how variational
inference works, this can be easily put into practice: once the model
has been trained with the engine data, each input can be encoded
into the latent space, being represented in terms of the mean and
variance of the approximate distribution learned. This means that the
data can be projected into the latent space and each point will be
clustered near those with a similar degradation pattern. An example
of one of the maps produced by this algorithm is shown in Fig. 4,
right side. Aircraft with high RUL values are painted in yellow while
aircraft with low RUL values are painted in dark purple. It can be
observed that there is a clear progression in the colors along the map
since events with no or low deterioration are located in the upper
part of the map (high RUL values) while the most deteriorated ones
are located in the lower part (low RUL values). This representation
can be used later: when new unseen engine events are used as inputs,
the encoder will place them according to their characteristics, giving
information about their RUL depending on the proximity to other
nearby points whose diagnosis is known. This is why it is considered
explainable, since the method’s decisions are based entirely on the
learned representation and can therefore be justified; and interpretable,
because a simple glance at the map gives insight into the status of each
engine unit. Other Deep Learning methods can also reveal interpretable
information in intermediate layers, however, extra processing is needed
in order to find the most suitable layers or to transform the content
of these layers into human readable information. An example of this
is the embedding projector of tensorflow [49], which applies different
dimensionality reduction methods such as UMAP, T-SNE or PCA to
provide a visualization of the embedding layer. In contrast to this, our
method provides a direct 2-D compression, which does not need any
further processing. More details on the interpretation of this map are
given in the following section.

4. Experimental design

Table 1 shows the different levels of difficulty of the datasets
according to the last two rows. Each dataset can operate under dif-
ferent operating conditions and the system failure can be caused by
two components: the turbine and the compressor. Thus, FD001 and
FD003 operate under the same conditions although FD003 includes
engines whose failure could be caused by either of the two mentioned
components. Then, FD002 operates under 6 operating conditions as
does FD004, while in FD004, as in FD003, the failure conditions cover
both turbine and compressor failure. In this sense, it is believed that
according to their characteristics, the level of difficulty of the datasets,
in increasing order, is: FD001, FD003, FD002, FD004. Some studies
focus on a particular dataset [50,51] and others explore in detail the
impact of different hyperparameters such as the number of sensors to
use or the upper limit for the target function for each dataset [43].
Still, this is a benchmark problem and the interest lies in finding a pre-
processing procedure that can be applied to similar problems, rather
than finding the ideal series of steps for a particular dataset.

For this reason, the decision we make, since the different failure
conditions do not have a major impact on pre-processing, is to focus
on those samples where the operating conditions are different. In
those cases, even a simple exploratory analysis would yield little or
no information concerning the signals because apparently operating
conditions change between cycles, which makes analyzing and pre-
dicting RUL much more complex. It is important to take this into
account when normalizing data, although it is something that seems to
be overlooked in other papers since min–max normalization is usually
used [15]. Instead, we take another path by using a condition-based
standardization. With this approach, all records of the same operating
condition are grouped together and scaled using a standard scaler.
The application of this type of scaling will bring the average of the
grouped operating conditions to zero. As this technique is applied for
each operating condition separately, all signals will receive an average
of zero, making them comparable [52].

On the other hand, although sensor data have a general trend, it is
known that they are subject to local oscillations, mainly caused by high-
frequency sensors, which lead to noise [23,43]. To ease the processing
of the series, an exponential weighted moving average is carried out.
It takes the current value and the previous filtered value into account
when calculating the filtered value:

𝑋′
𝑗 = 𝛼 ∗ 𝑋𝑗 + (1 − 𝛼) ∗ 𝑋′

𝑗−1

where 𝑋′
𝑗 is the filtered value of 𝑋𝑗 and 𝛼 the strength of the filter.

Lower values for 𝛼 will have a stronger smoothing effect and conse-
quently, stationarity is lost. Nevertheless, stronger smoothings lead to
better model performance. It is important to note that what we intend
to model is not the detection of failure points, but the changes in the
degradation rate, i.e. those breakpoints where after some time, the
engine parts deteriorate at a different rate than they did before. For
this reason, the smoothing we apply does not adversely affect the data.
Furthermore, the sole purpose of the filter is to reduce oscillations in
the sensor measurements, therefore in no case is smoothing applied that
would compromise the trend of the data.

In time series problems it is quite recurrent to split the data into
sequences for better prediction performance. That is, multivariate series
are not processed for each engine but are sliced into fixed-size windows
as shown in Fig. 5. At each time step, data is picked from sensors within
the time window to form a high-dimensional feature vector used as
inputs to the network to predict the RUL. Thus, each input sample in
our network contains thirty single-cycle data which is extracted from
the following six sensors: T30, T50, P30, EPRA, PS30, phi and the aim
is to find patterns in those time-windows that can lead to an adequate
RUL estimation. There may be cases in which the partitioning of the
sequences for a particular engine in the last few cycles may not have
enough data to complete the length of the window. In those cases a
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Fig. 5. Time window framing.

masked value is used and will be treated in the first layer of the model
by simply ignoring those values. In this way, as much information as
possible is used.

In the experiments performed, although there are not so many
hyperparameters to adjust, the impact of those that are present is
very noticeable in the final performance of the model. Thus, the time
window length, the intensity of smoothing or the internal number
of neurons of the recurrent layers are key elements. Hyperparameter
tuning is an arduous task that in this case was driven by our own
experience along with the use of the Hyperopt Bayesian optimization
library [53] to find the final configuration. On the other hand, an
accurate choice of the LR is particularly essential to improve the
optimization process, therefore for this parameter an adaptive LR opti-
mizer, Adam, and the Cyclic Learning Rate technique proposed in [54]
were used to help to select the optimal LR with which to start the
training. In addition, to achieve the best possible performance of our
model, we used callbacks to customize our experiments in terms of
relegating the training stop condition to the validation error instead
of the number of epochs. These tweaks led us to find the best results
for the functions to be optimized.

The choice of the sensors is not arbitrary, we only use the following
six: T30, T50, P30, EPRA, PS30 and phi, which are precisely the ones
available in the real problem we introduce later on. Note that in both
datasets the engines are Turbofan aircraft engines. Surprisingly, we
found that out of the twenty-one provided sensors, of which most of
them are used in similar works, using only these not only reduces com-
putational costs but also gives sufficient information to predict the RUL
efficiently. Moreover, for datasets FD001 and FD003 the EPRA sensor
is not necessary since it measures the engine thrust under different
operating conditions while FD001 and FD003 operate under the same
condition and so this sensor does not provide relevant information, the
captured values simply remain constant.

Finally, 20% of the training data was used for validation, resulting
in 17692 training samples and 4128 validation samples for FD001 and
FD003, 37432 training samples and 8787 validation samples for FD002
and finally 43523 training samples and 10505 validation samples for
FD004. All models and experiments were implemented in TensorFlow.
Further details regarding the experimental setup and the source code to
reproduce the experimental results are available in the following pub-
lic git repository: https://github.com/NahuelCostaCortez/Remaining-
Useful-Life-Estimation-Variational

5. Experimental results

The experimental validation of the proposed framework has two
parts. First, C-MAPSS datasets are used to compare our framework
with other state-of-the-art approaches for RUL estimation. Secondly,
C-MAPSS engines as well as actual engines from the real problem we
present are diagnosed based on their projections in the latent space.
We begin by introducing the numerical results, the diagnostic map
achieved is then presented and finally, the experimental validation is
discussed.

5.1. Results on C-MAPSS

In this section we demonstrate that our framework can compete
with state-of-the-art methods for RUL estimation. Both the training and
test sets used are the same for all methods, since both sets are provided
in the original dataset, as stated in Table 1. It is worth mentioning
that the baseline methods we present, which collect the most impactful
approaches to date, do not provide any representation of the data, but
merely predict the RUL corresponding to the next time step. This makes
us appreciate the importance of Representation Learning as it provides
a piece of more illustrative information than a simple numerical or
categorical result.

The comparison results of the proposed framework with other pop-
ular approaches on the test sets are listed in Table 2 where the selected
metrics of all methods, included ours, labeled as RVE (Recurrent Vari-
ational Encoder), are listed for every dataset. Results in which our
method outperforms the others are highlighted in bold. It can be
quickly noted that with datasets FD001 and FD003, although the
metrics are considered good, they are not the best. However, the
interest lies mostly in FD002 and FD004 as the increasing number of
operating conditions and failure modes make these two datasets contain
more complicated multiscale degradation features. RVE significantly
improves prediction accuracy in these two for both Score and RMSE,
due to its good feature extraction capability in the face of these complex
fault prediction problems. The comparison also includes a row labeled
‘‘VAE+RNN’’, which corresponds to the adaptation of a recurrent VAE
to this problem. The superiority of our model can be clearly seen.
Although both use variational inference, the numerical differences are
explained by the different latent spaces obtained: one dispersed and
the other one continuous (recall Figs. 1 and 4), allowing the latter to
improve the predictive capabilities of the model.

RUL estimations for the life-time of some testing engine units cor-
responding to the different datasets are shown in Fig. 6. It is very
common to see figures like these in papers working with C-MAPSS,
exhibited to obtain an understanding of the model’s performance. The
RUL constructed from the piece-wise function is represented in orange,
of which C-MAPSS provides the RUL corresponding to the last cycle.
RUL values predicted at each time instant by our method are presented
in blue. It is clearly seen that the network is able to model this
degradation to, finally, accurately predict the real RUL of the engine.
However, this is not enough to explain the performance of the model
and this is where we differ from other methods.

These kind of figures seem very clear and promising but despite
being good predictions, there is a gap when it comes to explainability
of the model´s decisions and internal representations. A gap that can
be filled with techniques such as the one we propose. As explained
in Section 3, the latent space build by the encoder serves as a basis
for creating a map that allows us to understand the evolution of the
data over time and Fig. 7 is a sample of this. Each map represents the
latent space obtained for the set of cycles traveled by each aircraft
shown in Fig. 6. That is, for example, for plane #7 the compressed
representation of the first thirty cycles corresponds to the first upper
left red dot, while the compressed representation of the last thirty
would be the last lower right red dot. The remaining points correspond
to the representations of each data sample seen during training. The
encoder learns to locate in the latent space each data window passed
to it according to its characteristics. Thus, in all the exposed maps, in
which the RUL is labeled in the color bar, it can be seen that when
the airplane is operating in favorable conditions (high RUL values), its
latent representation is located in the upper left zone and, as it begins to
degrade, this location moves to the right until the data indicating that
the airplane is degraded (low RUL) are located in the lower rightmost
area.

In this way, a model that can be fed with data from the trajectories
of an aircraft that has flown at least thirty cycles is achieved. From
there, the model can be fed each time a new data sample is available

https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational
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Fig. 6. Four examples of life-time RUL predictions for testing units: #34 corresponding to FD001, #7 corresponding to FD002, #99 corresponding to FD003 and #40 corresponding
to FD004.

in order to obtain the two diagnostics we are looking for. First, a visual
diagnosis is presented in which, based on the proximity to samples
whose condition is known, the state of the aircraft at that particu-
lar moment is perceived. In https://github.com/NahuelCostaCortez/
Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
there are some gifs available corresponding to the engines from Figs. 6
and 7 in which the speed of deterioration suffered by these airplanes
along the cycles can be appreciated. Second, a quantitative diagnosis

is obtained that explicitly reports the RUL value that determines the
remaining life time of the aircraft.

5.2. Results on a real-world problem

To illustrate how the proposed model may work in a more realistic
context, an example for actual engines is presented below. The data
is sampled on Turbofan engines under actual conditions of use. Un-
fortunately, for confidentiality reasons, we are unable to disclose the

https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
https://github.com/NahuelCostaCortez/Remaining-Useful-Life-Estimation-Variational/tree/main/images/gifs
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Fig. 7. Latent predictions for every time-step of the samples presented in 6.

name of the company or make the data set public. Nevertheless, a brief
description of the engines is provided in Table 3.

The pre-processing applied is the same as the one explained in
Section 4. The objective is to convert the data from each engine into
inputs that can be processed by the network. During training, as in
the NASA´s dataset, the model learns different deterioration patterns
which leads the encoder to project the engine units into the latent
space according to their degradation, maintaining coherence in the

distances between healthy and compromised engines. This projection
is again used as a basis to find out, given undiagnosed units, how
their degradation evolves as the number of flights increases. Fig. 8, as
the above-mentioned gifs, pictures this idea: six airplanes have been
chosen to project their state into the latent space in two different time
steps: t = 0 would correspond to feeding the network with the data
corresponding to the cycles from 0 to windows length and so it is the
same with t = 1000, starting from data corresponding to the cycle 1000.
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Table 2
Evaluation metrics of different approaches for RUL estimation on C-MAPSS datasets.

FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

MLP [17] 37.56 18 000 80.03 7 800 000 37.39 17 400 77.37 5 620 000
SVR [17] 20.96 1380 42.00 590 000 21.05 1600 45.35 371 000
RVR [17] 23.80 1500 31.30 17 400 22.37 1430 34.34 26 500
CNN [17] 18.45 1299 30.29 13 600 19.82 1600 29.16 7890
Deep LSTM [17] 16.14 338 24.49 4450 16.18 852 28.17 5550
Semi-supervised [23] 12.56 231 22.73 3366 12.10 251 22.66 2840
DCNN [55] 12.61 273.7 22.36 10 412 12.64 284.1 23.31 12466
MS-DCNN [55] 11.44 196.22 19.35 3747 11.67 241.89 22.22 4844
VAE+RNN 15.81 326 24.12 4183 14.88 722 26.54 5634
RVE 13.42 323.82 14.92 1379.17 12.51 256.36 16.37 1845.99

Table 3
Summary of the main properties of the engines provided by the manufacturer.

Model/properties Type I engine Type II engine

Thrust ratings between 14,750 and
15,000 lb

between 14,000 and
21,500 lb

Flying hours 11m+ 11m+
N◦ fans 1 2
Fan diameter 48 in. 58 in.
Two-shaft, high-bypass-ratio
engine

Yes Yes

The RUL provided by the model is shown in the colorbar. Fixing the
latent projection obtained after training gives us some insight into the
progression of the health status of these units: The latent projection of
engine e1, e2, e3 and e4 during the time steps shown remain over the
upper left quadrant, next to other aircraft with similar characteristics:
RUL around two hundred cycles, with no signs of near degradation. On
the contrary, there is a clear progression in samples e5 and e6, which
move clearly downward, being placed together with engine units close
to their end of life (low values of RUL), thus obtaining an accurate and
explainable diagnosis beyond a possible label indicating the predicted
health.

In the figure presented only two time steps have been selected to
show the update of the health status of the engines according to the
data from their sensors. However, it is noteworthy that once enough
data is available to be fed into the network in each subsequent trip this
update can be performed because we are using recurrent networks. This
is where the interest really lies because this update allow us coping
with the non-stationarity of the data distribution and in the end this
can be used as a diagnostic tool. As mentioned in the introduction, this
is an online process, being the useful life of each system continuously
monitored. Particularly in the company, these motors have periodic
maintenance cycles and also have parallel systems that warn in case
of detecting any anomalous operation. The fact of having a diagnostic
system of these characteristics, however, represents an invaluable eco-
nomic saving for the company. This is because the aim of the method is
to prevent such anomalies from occurring. To this end, the degradation
speed of the engines is modeled, so that the acceleration in the normal
degradation speed of an engine can be easily detected. In this way,
the probability of the aircraft having an unexpected event is highly
reduced.

An example of interpretation of the method is as follows: Arrows
were used in Fig. 8 to depict the evolution of each sample, but as
demonstrated in the previous sub-section, a footprint of every step is
recorded (that is, a latent projection is available for t = 1, t = 2, t
= 3 and so on) so there is a clear evolution over time and the rate
of these updates may trigger alerts in a real-world scenario: as long
as the engine projection remains in the healthy range, its evolution
will be considered positive; on the contrary, if the projection moves
towards the red zone rapidly, it may be a clear sign of deterioration,
information that will be used by the mechanics to make a decision
regarding its follow-up, either to make it more exhaustive or to take

the aircraft to the workshop for a more complete overhaul, to name
some alternatives. This translates into a prolongation of the useful life
of these engines by being able to anticipate the breaking point at which
severe deterioration may occur.

6. Concluding remarks and future work

We have proposed a novel architecture based on variational encod-
ing with a new way of regularizing latent representations to address
aircraft engine diagnostics. These are obtained through variational
inference and are shaped by a term in the cost function that penal-
izes erroneous RUL estimates. The result is a latent space capable of
projecting the history of engines trajectories continuously and without
abrupt jumps, like other models such as VAEs. As a consequence, the
latent space learned by the encoder is used as a diagnostic tool. It
learns a two-dimensional representation of engine data with different
deterioration stages to, given an unseen engine, project its encoding
near engines with similar degradation patterns. Thus, prevailing an
explainable diagnosis.

We have demonstrated that, besides providing a visual assessment
of the rate of degradation in aircraft engines, our method can also
accurately estimate the RUL. To this end, we used the popular C-MAPSS
simulation dataset on which we outperformed most of the current state-
of-the-art methods. We have shown that the learned latent space can
comprehensively model aircraft degradation history and consequently
improve prediction capabilities. Furthermore, we include a report of
its application to data belonging to actual engines to illustrate its
performance in a real-world scenario.

Lastly, in future works we aim to explore the suitability of the
model in other areas related to condition monitoring and predictive
maintenance. Additionally, it would be of interest to motivate the
model to learn latent features that, beyond differentiating the stages
of degradation, can also explain the different causes of failure.
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Fig. 8. RUL evolution of six selected engines. As the cycles progress, the aircraft are placed in areas close to other aircraft with similar degradation patterns whose diagnosis is
known, thus making it easy to identify those that degrade more rapidly, as in the case of e5 and e6.
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A B S T R A C T

This paper presents RUL-RVE, a Python tool for the assessment of Remaining Useful Life (RUL). Physical
systems are normally subject to degradations that ultimately lead to failure, therefore prognostic technologies
are crucial to estimate the lifetime of the system to be monitored. The problem with most existing data-driven
approaches is that they lack an explanatory component to understand model learning and/or the nature of
the data. RUL-RVE is a framework based on recurrent neural networks and variational inference that can
achieve remarkable forecast accuracy while providing an interpretable assessment, which is highly valuable
in real-world environments.

Code metadata

Current code version v0.1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-58
Permanent link to Reproducible Capsule https://codeocean.com/capsule/4781584/tree/v1
Legal Code License MIT License
Code versioning system used git
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1. Introduction

Remaining useful life (RUL) is an estimate of the length of time an
item, component, or system is estimated to be able to function accord-
ing to its intended purpose before requiring repair or replacement. It is
considered a key metric in prognosis that helps improve maintenance
schedules and avoid engineering, safety, and reliability failures [1].
This has many real-world applications such as monitoring machining
tools, batteries, turbofan engines, and rotating bearings [2].

Many techniques have been proposed to model the degradation of
these complex systems, from which two currents arise: model-based
approaches and data-driven approaches [3]. The former techniques
usually require extensive prior knowledge about the physical systems,
information that is often not available in practice. On the contrary,
data-driven approaches have become popular in recent years, as they
are able to model degradation features based purely on historical

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail address: costanahuel@uniovi.es (N. Costa).

records from which the underlying causalities and correlations can be
modeled.

The greater impact has undoubtedly been produced by the use of
Deep Learning models [4] given that the high dimensionality of raw
data obtained from machine health monitoring can be modeled by
methods that are known to perform remarkably well, especially in
Computer Vision and Natural Language Processing (NLP).

Nevertheless, there is a clear gap between most Deep Learning
approaches: although they do achieve very accurate results, models are
usually treated as black boxes where it is not trivial to obtain explana-
tions of the decisions that led the model to predict such outputs [5].
Although the current practice is to dispense with prior knowledge about
the system to be monitored, in the end, these models are designed to
be used by people outside academia. Consequently, it is essential to
provide tools that offer some interpretability of the models’ decisions,

https://doi.org/10.1016/j.simpa.2022.100321
Received 27 April 2022; Received in revised form 16 May 2022; Accepted 19 May 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100321
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100321&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-58
https://codeocean.com/capsule/4781584/tree/v1
mailto:costanahuel@uniovi.com
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:costanahuel@uniovi.es
https://doi.org/10.1016/j.simpa.2022.100321
http://creativecommons.org/licenses/by/4.0/


N. Costa and L. Sánchez Software Impacts 13 (2022) 100321

Fig. 1. Workflow followed in the framework: monitoring data is fed into the encoder, which learns a latent representation based on deterioration patterns in order to build a
graphical map reflecting the evolution of the samples. The regressor learns from such latent space to report numerically the RUL of each sample.

as well as some insights into the nature of the data. In fact, these are
attributes of particular interest, if not demanded, for decision making
in safety-critical applications [6].

RUL-RVE [7] is a framework for the task of accurately estimat-
ing RUL while providing an explainable and interpretable diagnosis.
Its performance was validated on the popular C-MAPSS dataset from
NASA [8]. This dataset contains simulated data of Turbofan engines
produced by Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS), a model-based simulation program. It is composed of mul-
tivariate temporal data obtained from twenty-one sensors and is further
divided into 4 sub-datasets that differ in operating and fault conditions.
RUL-RVE demonstrated that, besides providing a visual assessment of
the rate of degradation in aircraft engines, it can also accurately esti-
mate the RUL, where it outperformed most state-of-the-art approaches
in terms of RMSE. In addition, its application to data belonging to
actual Turbofan engines was also tested to illustrate its performance in
a real-world scenario. The model’s ability to continuously monitor the
useful life of each system makes it possible to detect potential future
anomalies, which translated into significant economic savings for the
company studied.

2. Description

2.1. Workflow

Fig. 1 illustrates the workflow followed to estimate numerically and
visually the RUL. The framework is based on variational inference and
is composed of two neural networks: a recurrent encoder and a regres-
sion model. The encoder learns to compress the sensor monitoring data
to a latent space led by the mean and the variance of an approximated
Gaussian distribution, thus resulting in a 2-D representation in which
input samples are organized based on their deterioration patterns. The
regressor directly influences the training process for obtaining such
representation and can also report explicitly which RUL value is the
one that best represents each sample that is fed to the model.

In short, the user will have two prediction elements: a numerical es-
timation of the RUL and a visual map. This allows to visually assess the
evolution of the input data, as the samples will be placed in areas close
to other samples with similar degradation patterns whose diagnosis is
known, thus making it easy to identify those that degrade more rapidly.
The fact of having a diagnostic system of these characteristics is crucial
for reducing unexpected events to happen because the degradation
speed of the components is modeled so that the acceleration in the
normal degradation speed of a component can be easily detected.

2.2. Implementation

The RUL-RVE model was implemented in Tensorflow 2 [9]. To
introduce variational inference into the loss function, a custom model
was created in which the training and testing steps were overridden.
Also, a regression penalty was included to cause systems with similar
degradation patterns to project into nearby areas of the latent space.
Bidirectional LSTM layers were chosen for the encoder as they provide
not only information about the past but also about the future, allowing
the network to be aware of what the data may look like in its future
stages, which helps it to understand what kind of information to predict
(different stages of deterioration). For the regressor, a simple Feed
Forward network with an intermediate layer with a tanh activation was
implemented.

Additional pre-processing methods are included to deal with the
most common input data, i.e., multivariate time-series, including scal-
ing, smoothing, window framing and data splitting.

2.3. Usage example

In this section, we provide an example of use of the RUL-RVE to
train and test on a given dataset. First, we recommend setting up a new
python environment with packages matching the requirements.txt file
included in the attached Github repository. It can be easily done with
anaconda [10]: conda create –name –file requirements.txt. Another
alternative is to run exactly the same environment under which this
project was made with Docker [11]. A Docker file is provided, which
contains the set of instructions for creating a container with all the
necessary packages and dependencies. The fastest way to set it up is
to download the project from GitHub, open Visual Studio Code editor,
and from the command palette select ‘‘Remote-containers: Open folder
in Container’’. Once the environment is configured, within a few lines
of code (Fig. 2) the framework can be easily used for training and
evaluation.

2.4. Impact overview

Artificial Intelligence research has taken a path in recent years in
which the main focus is established on neural networks applied mostly
to Natural Language Processing (NLP) and Computer Vision, while the
application of some of these powerful algorithms for time series is not
yet fully exploited. In addition, the scalability of these models makes
the computational requirements increasingly higher, which is a major
barrier for most research and industry groups. This is exacerbated by
the fact that despite being incredibly good at some tasks, most AI
models behave as black boxes that are based on feeding an input to
an algorithm that outputs some number or class. However, there are
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Fig. 2. Based on a given dataset, the framework is trained and evaluated.

Fig. 3. Gradio demo of the model presented in [7].

many fields where this is not enough and this is where the importance
of explainability comes into play. It is crucial to know in some way how
these models work internally in order to bring transparency to research
and provide certain interpretability of the models’ decisions so that they
can be easily used by people of any area outside AI.

RUL-RVE emerges as a solution to these problems: it proposes the
use of a powerful yet lightweight Deep Learning model: an encoder,
implemented with recurrent networks to deal with the temporality of
the data, that provides an interpretable evaluation of the component to
be monitored. The framework is still young and has been recently pub-
lished [7] so it has not yet been used in any other existing publications,
however, it can be leveraged both in industry and research.

The tool has already been tested in a real industrial test case for
RUL prediction of Turbofan engines. This opens up new opportunities

to apply the model to other industrial problems of similar nature.
Precisely, RUL prediction is present in a wide variety of domains such
as manufacturing, power generation, automotive, or transportation.
RUL-RVE focuses on the interpretability part to facilitate its use by
practitioners in these sectors. The model allows updating the learned
patterns as more data becomes available, which makes the successive
projections of each system on the visual map form an easily guessable
trajectory into the future, something much more valuable than a simple
numerical prediction. Also, the lightness of the model in terms of
memory facilitates its implementation on any hardware with limited
computational capabilities, which is of interest for online monitoring.

On the other hand, since the main value of the tool is to monitor a
system in order to detect possible future failures early enough to make
decisions to expand its lifetime, RUL-RVE can extend its application to
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other contexts. In this sense, the tool is made available to academic
researchers so that they can develop and adapt the model to different
domains such as health or economics, since the system to be monitored
is not limited only to aircraft engines but can also be applied to the
stock market or a pacemaker, to name a few examples.

2.5. Illustrative examples

A demo of the model presented in [7] is available at https://
huggingface.co/spaces/NahuelCosta/RUL-Variational. The user is pre-
sented with the 4 subsets of the CMAPSS dataset, from which they can
choose which engine of the test set they want to know the RUL and
its representation in the latent space. An illustrative example is shown
in Fig. 3. The engine #70 of the FD001 subset is chosen to predict its
RUL and visualize its location in the latent space. The RUL estimate is
106 and the location of the engine (marked with an x) is at the top of
the map, along with other engines with similar RUL values. The area
appears safe, indicating that the engine shows no signs of concern for
maintenance at this time.
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A B S T R A C T

Lithium-ion batteries are ubiquitous in modern society with a presence in storage systems, electric cars,
portable electronics, and many more applications. Consequently, to enable safe and reliable use of LIB
systems, diagnosis and prognosis have become critical. Within the field of Artificial Intelligence, Deep Learning
algorithms have achieved significant impacts for image or object recognition, yet their application for battery
diagnosis is still at an early developing stage. In this paper, we propose a novel approach for battery
degradation diagnosis based on the representation of battery data as images, in order to leverage the use of
well-established Convolutional Neural Networks. Accuracy for diagnosis, via the quantification of degradation
modes was tested on synthetic data. Our approach was shown to be more accurate than current methodologies
with Root Mean Squared Errors around 2% on average for 1000 duty cycles compared to between 2.64 to
7.27% for other state-of-the-art algorithms. We also show that the proposed methodology adapts to various
cell chemistries and constructive configurations, and validate its applicability to a real-world scenario with
experimental data from commercial LIBs.

1. Introduction

Since their commercialization in the early 1990s, Lithium-ion bat-
teries (LIBs) have been widely used in key commercial and industrial
applications, ranging from portable electronic and transportation to
storage systems [1]. Unfortunately, the performance of LIBs declines
with operation because of parasitic reactions taking place at the posi-
tive and negative electrodes (PE and NE respectively) as well as in the
electrolyte [2,3]. In addition, specific side reactions such as lithium
plating may create safety hazards [4,5]. Both performance decline
and safety issues present a major concern for deployed LIB systems,
particularly where long-lasting reliable applications are critical. To
assess LIB performance and to overall ensure safety and reliability,
the determination of the state of health (SOH) and/or state of charge
(SOC) is required [6], and numerous methodologies have been pro-
posed in the literature [7–9]. These methodologies can be based on
testing (both invasive and non-invasive), physics-based models, data-
driven approaches, and hybrid methods [7,10]. Each method provides
a set of key advantages, drawbacks, and range of applicability [11].
Model-based techniques tend to be more accurate, although they re-
quire extensive prior knowledge and often invasive tests while only
non-invasive techniques must be considered for application-oriented

∗ Corresponding author.
E-mail address: costanahuel@uniovi.es (N. Costa).

approaches. For this reason, data-driven methods have become popular
in recent years, as they can model degradation features based solely
on past records from which underlying causalities and correlations can
be modeled [12]. Specifically, new methodologies based upon AI for
the SOH [13,14] and SOC [15] have emerged thanks to the latest
improvements in processor capabilities [16], communications [17,18],
novel devices [19] and Artificial Intelligence (AI) [20,21]. It is expected
that AI and Machine Learning (ML) approaches to compute SOH will
have a profound influence on shaping the future LIB systems diagnosis
and prognosis [22]. However, these methodologies are still in their
early days [23–25] and critical issues remain to be addressed.

AI and Deep Learning (DL) have been exponentially applied to fields
such as health [26], biology [27] or art [28]. Expansion of AI tools to
such a wide range of fields has been possible because the problems to
be solved can be highly abstracted from the field’s domain. In battery
research, however, this is not as easy as most problematics are technical
and require an extensive knowledge of chemistry and physics [29].

Another barrier to the application of DL algorithms is the nature of
the data. DL algorithms are typically oriented to work with 3 major
categories: images, text and time series. For batteries, current, voltage
and temperature records are usually obtained through measurements
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over charge/discharge cycles or a mix of cycling time and calendar
aging time. Accordingly, most Deep Learning-battery related papers
take the available variables and apply time series-oriented neural net-
works, typically, Recurrent Neural Networks (RNNs), in order to predict
capacity loss [30–36]. Unfortunately, this approach often does not
allow satisfactory prognosis because of the possible nonlinearity of the
capacity loss [37]. A SOH tracking method is only useful if it can predict
or accommodate batteries with nonlinear degradations. This could be
done by investigating variations of capacity vs. voltage curves or their
derivatives (electrochemical voltage spectroscopies, EVS). EVS were
proven extremely successful for prognosis of nonlinear degradations
with the tracking of degradation modes [38,39] but, unfortunately,
they do not use time series and thus do not fit into any of the 3 cat-
egories mentioned above. EVS are typically requiring constant current
cycle to be applied properly. For most applications, this is done during
a reference performance test which could be considered independent
of the rest of the aging experiment. This makes EVS data similar to
images because they provide an independent representation of the
variations of capacity vs. voltage. Therefore, analyzing this type of
data as images would allow the use of Convolutional Neural Networks
(CNNs), which are powerful models that have been applied in many
fields with remarkable results since they are able to automatically
find distinctive patterns within images without the need for expert
knowledge.

In addition to the growing sophistication of the needed algorithms,
the amount of data needed for training and validation is also critical as
battery data generation is challenging and time-consuming [40]. The
reality is that existing datasets, while providing invaluable informa-
tion, are scarce and only provide data for a few cells under limited
testing conditions [40]. This is a major barrier to the application of DL
algorithms, where large amounts of data are required for the training
process. Furthermore, models trained on these datasets can lead to a
false sense of confidence in their performance, as the capacity loss
decays linearly in most cases and tests are usually carried on a low
variety of duty cycles which are quite often disconnected from real
applications (e.g., constant current cycling). Real data will be much
more sporadic and sub and supra-linear degradation will be common.
Moreover, since cells are different among datasets, the data cannot be
compounded and knowledge from one dataset cannot be transferred to
another [41].

Recent initiatives like battery archive [42] or battery data genome
[29] should make data more available in the near future. In addition,
the apparition of synthetic cycles [29,43–45] in the public domain
could alleviate the shortage of data, and in particular the lack of
variety in the duty cycles, as they can deliver data under an infinity
of different degradation scenarios. A dataset consisting of millions
of voltage vs. capacity curves with a complete spectrum of degrada-
tion for three major battery chemistries: LiFePO4, Nickel Aluminum
Cobalt Oxide, and Nickel Manganese Cobalt Oxide 811 was recently re-
leased [44] and will be used in this work. An important difference with
respect to previous datasets is that this synthetic data not only provides
information about capacity loss but also about degradation modes.
This enables diagnosability [29] and opens the gate for informed
prognosability [10].

Herein, we propose solutions to improve the application of DL
algorithms to battery data. To this end, we sought a new representation
of battery degradation data that would allow us to apply DL algorithms
that have already been validated in other domains. Our representation
consists of an image highlighting the differences between the EVS
curves of a pristine and aged battery. Subsequently, we exploit the use
of the HNEI’s synthetic dataset [43] to train a Convolutional Neural
Network (CNN) that predicts the battery health state based on its
degradation mechanisms and not just capacity fade. This should enable
the prediction of accelerated degradations. Finally, the adaptability of
the method to deal with different cell configurations was validated with
new synthetic data and subsequently on real cells.

2. Degradation mechanisms and degradation modes

Degradation in LIBs is the result of a complex interplay between
physical and chemical mechanisms within the cell, that leads to capac-
ity and power fade. Degradation is path-dependent and different usages
(e.g., temperatures, load currents, duty cycles, depth of discharges,
cut-off voltages, etc.) might inhibit or exacerbate specific degradation
mechanisms [46,47]. Degradation mechanisms include solid electrolyte
growth and decomposition, binder decomposition, graphite exfoliation,
or grain isolation to name just a few [2,3,48]. Regardless of their
origins and nature, the degradation mechanisms can only have a limited
number of impacts on the electrochemical response [6,49]. These wide-
ranging degradation mechanisms can be clustered into degradation
modes, which are the loss of lithium inventory (LLI), the loss of active
material (LAM) on the negative and positive electrodes (NE and PE
respectively) and kinetic alterations.

Although degradation modes have been extensively reported in the
literature [2,3,48], including experimental proofs [49], the underlying
outcomes from the degradation modes on full cell effect are not al-
ways straightforward. For instance, LLI is generally the main source of
degradation, is caused by parasitic reactions that consume lithium, is
nearly always responsible for the entirety of capacity fade [49,50] and
it can be modeled in half-cell configuration as NE ‘‘slippage’’ [51,52].
In contrast, LAM needs to be decomposed at the electrode or blend
component level and is caused by changes in the availability of active
mass for (de)intercalation. LAMs can be modeled as an individual
‘‘shrinkage’’ of the affected electrode or electrode components [50].
LAMs usually do not lead to a straight capacity loss in graphite-based
batteries, hence that they may be referred to as ‘‘silent’’ or ‘‘hidden’’
modes. That is because LIBs yield an excess of relative capacity for each
electrode outside the voltage window of the full cell. For the PE, that
excess is the result of the NE lost during the SEI formation (i.e., the
slippage) and of LLI. For the NE, that excess is there by design to
protect against plating and it is also increased by LLI. Hence, most LAMs
initially do not produce direct capacity loss, even if cell degradation
is occurring. If LAMs eventually start to play a role in capacity loss,
a second stage of accelerated aging arises [37]. The tracking and
extrapolation of degradation modes were proven successful to forecast
knees in the capacity loss [37].

Currently, several non-invasive testing methodologies to character-
ize battery degradation are available, including direct capacity test-
ing characterization [53,54], high precision Coulomb counting [55,
56], electrochemical impedance spectroscopy [57,58] and pulse power
tests [59,60], or EVS [38,39]. In particular, the incremental capacity
(IC) technique has been proven extremely successful [38,39] for quan-
tifying degradation modes. EVS detects gradual changes in cell behavior
with great sensitivity by studying the evolution of minute changes of
the voltage response with cycling.

The relation between battery degradation and changes in the volt-
age response can be explained by changes in the electrode matching,
i.e., how the PE and NE relate to each other and modeled using a
mechanistic model. These models can be used to establish degradation
mapping [61,62] that allows to select Features of Interest (FOIs) [61,
63,64] which correspond to section of the signature especially sensitive
to a specific degradation mode. Typical diagnosis methods must track
FOIs and deconvolute their variations in detail to enable quantification
of the degradation modes.

In most studies, this manual FOI tracking requires both an ex-
haustive analysis and expert knowledge. Data-driven methods could
alleviate this issue and allow faster diagnosis by identifying patterns
associated with degradation. However, data-driven methods are not
always easy to implement and must be carefully designed to ensure the
results have a physical meaning. For this reason, both expert knowledge
and data-driven knowledge must evolve hand in hand. The first exam-
ple of FOI analysis of large synthetic dataset was presented in [61].
Looking at data-driven methods, in [65] the dataset from [43] was used
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Fig. 1. Pipeline of the proposed solution. In the preprocessing step the IC curves are fed to the proposed algorithm to compute their representation as an image. Subsequently,
the processed IC images are treated by a CNN that numerically quantifies the percentage of each degradation mode.

to train well-known Machine Learning methods such as Decision Trees
and Random Forest regressors. In [45] the authors proposed a neural
network composed of 1D convolutions for automatic classification and
quantification of battery-aging modes. [66] proposed a method based
on a simple multilayer feed-forward network for electrode-level Li-
ion battery degradation diagnostics using EVS. The main limitation in
these works is that the knowledge generated by the models cannot be
extrapolated to new cell configurations. The method we propose aims
to fill these gaps by transforming the voltage changes into images that
reflect the degradation regardless of the cell configuration. This will
create patterns that can be analyzed by traditional CNNs.

3. Deep learning approach

This section describes the proposed framework for material-based
diagnosis in intercalation batteries (Li-ion and Na-ion). The process
is summarized in Fig. 1 and consists of two separate steps. First,
a pre-processing step, where charge data from the HNEI diagnosis
dataset [43] is selected, converted to IC curves, and transformed into
images. Second, a treatment step where the resulting images are used
as inputs for a CNN trained to numerically identify and quantify the
degradation modes.

3.1. Battery data to images — dynamic time warping

As stated in the introduction, one of the main difficulties towards
AI to battery research is the type of data. Herein, this is circumvented
by representing cell information as images. This opens up new oppor-
tunities for a consistent application of Deep Learning algorithms such
as CNNs.

Dynamic Time Warping (DTW) [67] is an algorithm used to measure
the similarity between two sequences. First, the Euclidean distance

between each pair of points between the two sequences is calculated in
a matrix. Among these distances different warping paths can be found,
that is, possible deformations that a sequence should follow in order
to be as similar as possible to the other. The method quantifies the
similarity between the sequences by finding the best warping path,
which corresponds to the one with the smallest accumulated distance.
Fig. 2a presents the example of the application of DTW to two sine
waves, referred to as Sin #1, located in the left part of the grid and
Sin #2, located in the upper part of the grid, which shows a small
deformation in the second period. The best path found in the matrix
is marked in blue and indicates that for the Sin #2 to be the same
as Sin #1, the deformation to follow is to slightly raise the values
between 15 and 20. The similarity between the two sequences can be
quantified with the resulting distance, i.e., the accumulated Euclidean
distances of the path, which is 0.1946. At the lower left and upper right
corners, the values are marked as inf (infinite) because there are no
deformation paths that extend that far, so they are not calculated in
order to reduce computation time. The method developed originally
for speech recognition, and it is widely used for classification and
clustering tasks [68–72].

DTW was already applied to the estimation of Li-ion battery capac-
ity [73–75] as well as for augmenting the data obtained from different
operating conditions [76]. However, these works make use of the
similarities found in the best warping paths, rather than the full matrix
representation. In this work, we propose for the first time to use the
full matrix, represented as a set of pixels (see Fig. 2b) and thus as an
image. Instead of sine functions, IC curves will be used as sequences,
one pristine and one aged. IC curves were chosen over straight voltage
vs. capacity curves because the derivation enhances small voltage
variations and as a result will provide images with more details. An
image can be generated for each sample in the dataset and each image
will thus represent the similarity between the corresponding IC curve
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Fig. 2. Euclidean distance between each pair of points of the two sequences displayed on a grid (a). Every warping path represented as a set of pixels (b), note that the resolution
depends directly on the length of the sequences, so the resulting image has the same resolution as the length of the sequences in (a), i.e., 30x30. In both images the optimal
warping path is marked in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and the pristine one. Since each degradation path leads to a unique
voltage response, it will also result in a unique image. As an example,
Fig. 3 depicts the IC curves corresponding to 20% of each of the three
degradation modes considered in the dataset: LLI, LAMPE and LAMNE
(dashed lines) with the reference IC curve (solid lines) and their result-
ing images, labeled with the final DTW distance. This is to showcase
that, just as the IC curves after different degradation are unique, the
images are too. Straight IC curve plots cannot be used directly because
they do not contain enough pixels with information. In our images,
changes are reflected in shape, symmetry and colors. Note in the first
degradation, LLI (Fig. 3a), the main peak located at 3.37 V is lost while
in LAMPE the peak that disappears is the minor one, located at 3.23 V.
The images associated with these degradations also change, specifically
in the intensity of the purple color, as well as in the symmetry, which is
mainly lost in the first image, and consequently, the distance is greater,
0.77 vs. 0.31. In the LAMNE degradation, the appearance of the peak
at 3.45 V represents a sign of lithium plating in LFP cells [4]; On
our image, this translates to the appearance of a lighter color band
that coincides exactly with the position of the peak. The changes in
this degradation are much more significant, and accordingly, the final
calculated distance is greater: 1.53. In the end, just as with studying
FOI variations, the degradation modes are decipherable from these
unique images and so image processing algorithms such as CNNs can
be undertaken.

A key property of these images is that they preserve the represen-
tation of the degradation modes regardless of the cell configuration.
While the images were gathered from a dataset composed of synthetic
curves, the differences between the pristine and aged IC curves should
be similar for cells with slightly different cell configurations. In the
mechanistic approach, a cell is defined by its active materials and two
additional parameters, the loading ratio (LR), which corresponds to
the electrode capacity ratio and the offset (OFS), which corresponds to
their slippage compared to one another. Based on cell-to-cell variations
studies [77], variations of LR by +/-0.2 and 𝛥𝑂𝐹𝑆 by +/- 2% were
estimated possible within a batch. As an example, images associated
with different cell configurations for the same degradation (20% of
LLI) are presented in Fig. 4, with varied parameters to simulate cells
from the same batch with slightly different properties (+/-0.01 for LR,

+/-1% for OFS). Visually, the three images are almost identical and
this is confirmed by the final DTW distance that were 0.65, 0.66, 0.62,
respectively to be compared to the 0.77, 0.31, 1.53 for LLI, LAMPE
and LAMNE degradations on Fig. 3. This is a key factor when applying
the procedure to batteries with different operating modes or cell con-
figurations, especially since batteries from the same batch have some
cell-to-cell variations and batteries from different manufacturer might
not use the same materials, additives or loading. This differentiates our
method from other models trained on synthetic data that might not be
applicable to real data.

It is noteworthy mentioning that the resolution of the data used
in this work is of 1001 points over the voltage window. To reduce
computation time calculating the images the resolution was downscaled
to a point every 2.3 mV per IC curve using a 1-D monotonic cubic
interpolation with the Scipy Pchip Interpolator [78]. This kept the main
features of interest intact while limiting the file size. As a result, the
generated images, Figs. 3 and 4 included, are of 128 by 128 pixels.
The dtaidistance package [79] was used to compute the DTW matrix.

3.2. Model

With the new approach for the generation of high-quality training
data established, attention can be set to the DL model. DL methods
are sophisticated ML approaches that can handle high-dimensional data
and are capable of automatically capturing underlying features to make
accurate predictions. Convolutional Neural Networks (CNN) are a sub-
set of DL models that are particularly well-suited for image recognition
tasks and with multiple derived architectures such as AlexNet [80],
U-NET [81] or the recent vision transformers [82].

CNNs consist of multiple layers of neurons. The structure of the
proposed model is depicted in Fig. 5. The detailed description of each
layer is as follows:

• Masking layer: this layer is used to mask data to be omitted by
the next layer. In the DTW matrix, paths farther away from the
diagonal lose importance (the inf values) and can be omitted.

• Convolutional layers (Conv1 to Conv4): these layers are com-
posed each of a conv2D layer (light orange) and a Max-Pooling



Journal of Energy Storage 55 (2022) 105558

5

N. Costa et al.

Fig. 3. IC signatures from the initial state (solid line) for each degradation in the dataset: LLI (a), LAMPE (b) and LLI(c) at 20% degradation (dashed line) together with the
associated DTW image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. DTW images for 20% LLI degradation for three different cell configurations.

Fig. 5. Model architecture. Conv1 to Conv4 represent the convolution layers followed by the max pooling layers. The features extracted are condensed in a flattened layer from
which the 3 degradation modes are predicted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

layer (dark orange). The conv2D layers consist of multiple filters,
which are applied to the image to highlight certain features that
make the image unique such as the direction of the lines or their
shape. The resulting images are known as feature maps. 64 filters
are applied in each of the first two layers to obtain the features
maps that mainly characterize the image, while in the last two
layers more filters are needed (128 each) to capture finer details

like color intensity or brightness. The Max-Pooling layer reduces
the spatial size of the feature maps and learns to ignore irrelevant
and redundant information, that is why the dimension of the
blocks is reduced in each layer.

• Flatten layer: after the convolution and max pooling flow, the
shape of the matrices is flattened to a single vector containing
all the information needed for predictions.
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• Dense layer: this layer applies a sigmoid activation function to
obtain a value between 0 and 1 representing the percentage
prediction of each of the degradation modes.

The activation function used after every convolution is ReLU and
also a dropout layer was included to randomly set input units to 0,
which can generally help to prevent overfitting. Nevertheless, we found
that including this layer led to a premature regularization and as a
result to a sub-optimal model, therefore it was not used in the final
model.

The WandB framework [83] was used to find the optimal config-
uration of filters and layers. In addition, to achieve the best possible
performance of our model, callbacks to relegate the training stop
condition to the validation error were used instead of the number of
epochs.

In summary, each sample in the dataset consists of an image re-
flecting the differences between an aged IC curve and the pristine one.
These images, along with the associated diagnosis, are fed to the model
which learns the features that characterize each type of degradation
and then compress all the knowledge in the last layer to predict the
percentages of each degradation mode.

4. Experimental design

The training data used in this work is publicly available [44] and
is composed of more than 700,000 unique voltage vs capacity C/25
charge curves each for LFP, NMC, and NCA. They were generated with
different combinations of LLI, LAMPE and LAMNE at a resolution of at
least 0.85% between 0 and 85%, encapsulating the full spectrum of
degradation. The resulting capacity losses were capped to 85%.

The end of life (EoL) of a battery is usually driven by the application,
however, usage after 40% capacity loss is rarely allowed. In practice,
the benefit of diagnosing a battery lies in predicting its remaining useful
life or, if it is partially deteriorated, knowing whether it can be put to a
second use. Since our goal is to provide a methodology to detect subtle
evidence to forecast durability, data above 40% capacity loss was not
used for training.

The choice of the testing data was carefully made. To statistically
validate the performance of a ML algorithm, it is common to divide
the data into two independent parts: the first is used for training and
the second for testing. A possible approach would be to consider one
resolution for the training set and another for the test set to test the
interpolation capability of the model. The main drawback of such a
setting is that the test set is a sparser subset of the same initial data,
therefore training is not as complete as it could have been and test
sets are not independent. As a consequence, the model accuracy may
be optimistic because samples in the test set are close to those in the
training set, a well-known problem in ML called overfitting [84].

To avoid this problem and to differentiate whether the model has
actually learned the degradations we elected to calculate new synthetic
data sets for each of the chemistries with slightly different configura-
tions than the cells in the training sets. This allows having completely
independent training and validation sets to provide a benchmark for
the fair and equal evaluation of different ML models. Details about the
test sets, each consisting of 1000 duty cycles, can be seen in Table 1.
Fig. 9(a) in Appendix A shows the capacity losses associated with the
duty cycles calculated in [44]. As prognosis is the ultimate goal, we
decided to select a 1000 subset of these duty cycles to provide a test set
that can be used both for diagnosis (as is the case of this work) and for
prognosis (for future works). Combinations of the [LLI, LAMPE, LAMNE]
degradations were selected to generate the duty cycles for the new cell
configurations to show a wide range of both sublinear and supralinear
degradations. Emphasis is placed on the latter due to their interest in
identifying knees in capacity loss, correlated with the so-called silent
modes. Calculations are done for the following cycles: 10, 50, 100, 200,
400 and 1000 (Fig. 9(c)) with capacity losses up to 40% (Fig. 9(d)).

Table 1
Details about test sets. Three cells, labeled as C1, C2, C3, were generated using the
‘alawa toolbox [50] for each chemistry. The values of LR (Loading Ratio) and OFS
(offset) with which they were generated are included. Parameters used for the training
data are also added to highlight the differences with respect to the test sets.

Training data C1 C2 C3

LR OFS LR OFS LR OFS LR OFS

LFP 0.95 12.5 0.96 11.5 0.94 12.5 0.95 11.5
NCA 1.05 1.5 1.06 0.5 1.04 2.5 1.05 0.5
NMC 0.90 10 0.91 9 0.89 11 0.90 9

5. Results

The experimental validation of the proposed framework will be
performed first on synthetic data, then on real data. In both cases,
our framework will be compared to the state-of-the-art for degradation
modes quantification. The metric chosen for evaluation, defined in
Appendix B, is the Root Mean Squared Percentage Error (RMSPE).

5.1. Validation on synthetic cycles

In this section, the performance of our method was compared to
state-of-the-art methods apple to apple using the same synthetic dataset
with different cell configurations.

Results for degradation mode quantification for all methods are
presented in Tables 2 and 3 for the LFP cells. Results for NCA and
NMC are included in Appendix C.1. Among the tested methods were
the works described at the end of Section 2 and the one described
in this work, labeled in the tables as ‘‘RF’’ for the Random forest Re-
gressor [65], ‘‘1DConv’’ for the 1D convolutional neural network [45],
‘‘FNN’’ for the Feed-forward neural network [66] and ‘‘DTW-CNN’’ for
our Dynamic Time Warping-convolutional neural network approach. It
should be noted that only our method uses DTW images while the other
approaches use the IC curves directly. In addition, a CNN is also used
in [45], but 1D convolutions are applied, which are not suitable for
images. These methods did not provide any public code implementa-
tion, consequently, the steps described in their corresponding papers
were followed to reproduce their models adapted to these test sets
(see Appendix C.2 and https://github.com/NahuelCostaCortez/DTW-
Li-ion-Diagnosis for details). Table 2 lists the diagnosis accuracy (by the
means of RMSPE values) for the quantification of the three degradation
modes at six different cycles (10, 50, 100, 200, 400 and 1000) for
the three different LFP cell configurations (C1 to C3 in Table 1).
The best predictions are highlighted in bold. Overall, the approach
presented in this work clearly outperforms the others with an average
error of 2.00% (see Table 3). Yet, there are certain cycles where other
methods perform slightly better. This may be due to some bias during
training that may lead to unbalanced predictions and, as a consequence,
to reasonable performance in one degradation mode but not in the
others. For instance, the predictions of ‘‘1DConv’’ for cycle 400 in
C1. Numerically in LAMPE it has a better result than our approach
(3.38% vs 3.59%), however for LLI (1.68% vs 1.31%) and especially for
LAMNE (2.83% vs 1.93%) the performance is considerably worse. This
is quickly identified in the standard deviation, where our model with a
value of 1.96 shows a lower dispersion compared to the other models.
Tables 4 and 6 in Appendix C.1 present the same analysis for the NCA
and NMC cells, respectively. The results are similar with an average
error of 2.03% (see Table 7) for NMC, compared to errors from 2.56
to 7.27% for the other methods. The approach seems to perform better
for NCA cells with an average error of 1.11% (see Table 5), compared
to errors from 1.31 to 7.01% for the other methods.

The main reason behind the consistent estimations in our approach
is that the representation of degradations in the images is largely pre-
served between different cell configurations, something that is not the
case in pure IC curve processing, where peaks, despite having similar

https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis


Journal of Energy Storage 55 (2022) 105558

7

N. Costa et al.

Table 2
RMSPE results for each degradation mode and cycle for the LFP test set.

LLI LAMPE LAMNE

FNN [66]
C1 1.89 1.93 2.00 1.82 1.67 3.91 2.53 2.90 3.09 3.28 3.58 11.11 2.30 2.32 2.32 2.10 2.15 6.31
C2 2.06 2.16 2.23 1.81 1.55 3.67 3.30 2.94 2.94 2.73 3.46 11.32 3.41 3.29 3.28 2.77 2.35 6.19
C3 1.45 1.93 1.88 1.68 1.73 4.02 2.27 3.14 3.40 3.52 3.78 11.31 3.04 3.06 2.98 2.64 2.44 6.37

RF [65]
C1 6.32 5.69 4.94 3.62 3.23 9.21 5.89 5.13 4.26 3.15 5.16 9.13 7.00 6.06 5.02 3.82 6.24 11.83
C2 6.32 5.69 4.94 3.64 3.14 9.22 5.89 5.13 4.26 3.17 4.97 9.79 7.00 6.06 5.02 3.82 6.38 11.55
C3 6.32 5.69 4.94 3.62 3.20 9.13 5.89 5.13 4.26 3.15 5.07 9.37 7.00 6.06 5.02 3.82 6.18 11.66

1DConv [45]
C1 1.18 0.95 0.73 1.06 1.68 3.21 1.90 1.23 1.80 2.80 3.38 10.73 1.18 1.33 1.27 1.71 2.83 6.60
C2 0.63 0.59 0.86 1.11 1.62 3.15 0.41 1.28 2.76 2.62 3.50 10.85 2.05 1.83 2.03 2.36 2.86 6.58
C3 1.95 0.89 0.60 0.96 1.75 3.35 2.08 1.15 2.01 2.95 3.44 10.86 2.86 1.97 1.59 2.07 2.93 6.61

DTW-CNN
C1 0.14 0.53 0.72 1.16 1.31 2.47 0.96 0.98 1.82 2.67 3.59 8.64 0.17 0.70 1.40 1.98 1.93 3.86
C2 0.44 0.84 0.91 1.18 1.32 2.15 0.78 2.06 2.76 3.22 3.92 8.89 0.21 0.57 0.80 1.11 1.41 4.01
C3 0.80 0.56 0.56 0.95 1.12 2.58 2.30 1.32 2.03 2.72 3.67 8.63 0.59 0.55 1.00 1.43 1.64 3.94

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000

Table 3
RMSPE results summary for the LFP test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DConv DTW-CNN

Mean ± std 3.32 ± 2.21 5.87 ± 2.23 2.64 ± 2.42 2.00 ± 1.96

morphologies, suffer from shifts that can cause models to misleading
predictions.

The method performs remarkably well and surpassed the tested
state-of-the-art approaches; however, it still has room for improvement.
For instance, note the large errors in later cycles (400 and 1000),
which correspond to degradations around 40% of capacity loss. Al-
though these errors are still much lower than in the other methods
the estimations for these cycles could be further improved. Some other
comparative tests could also be added to the discussion; however, the
main objective of this work was to enable the use of images to exploit
the potential of CNNs. We have developed and used one of the many
architectures that can be found in the literature, but predictions could
be improved by other newer and more robust models. Furthermore, the
key factor, and in fact, one of the essential features of Deep Learning,
is precisely reusability. The knowledge of large models trained on a
specific task can be transferred to a new, similarly related task. This
is known as Transfer Learning [85] and is especially useful when
little data is available, instead of training a model from scratch it can
leverage the knowledge generated by a pre-trained model for fine-
tuning on the available data. This technique is mainly focused on
images, therefore the preprocessing we propose, besides providing an
adaptive method, also allows the application of this technique: we
have pre-trained a large model on the training set (DTW-CNN), so its
knowledge can be now used by other models on the test sets or on
new data. This path, as well as other complementary ones such as the
explainability of the models or the choice of the CNN architecture, will
be explored in future work.

Finally, to demonstrate the performance of the model in a more real-
istic application context, we provide a demo in https://huggingface.co/
spaces/NahuelCosta/DTW-CNN. The cycles associated with the three
LFP test cells can be selected to display their IC curves, the correspond-
ing DTW image and the final diagnosis given as the percentage of each
predicted degradation mode.

5.2. Validation on real battery data

As demonstrated above, one of the strengths of the model is its
applicability to cells with configurations other than those seen during
training. This also includes real cells so in this section our model was
tested on cycling data from two commercial high-power graphite//LFP
cells manufactured by A123 Systems (ANR26650M1, 2.3 Ah) that
have been previously studied. The cells will be referred as CReal#1

Fig. 6. Model predictions for Cell#1 for every available cycle.

and CReal#2 for simplicity; CReal#1 was tested under multistage fast
charging [86] while CReal#2 was tested under dynamic stress test
(DST) driving schedule [38]. In these studies, the degradation modes
were quantified using the ’alawa toolbox [50]. It should be noted
that the toolbox uses the same mechanistic model than the one that
generated the training data used in this study. Therefore, in the end,
the predictions of our model are an automatic way of making the same
diagnosis without relying on prior knowledge in the field.

CReal#1 was cycled to simulate fast charge and discharge condi-
tions. Every 300 cycles, a reference performance test (RPT) was done
to determine the state of health (SOH) of each cell. Fig. 6 shows the
model predictions for each of the voltage curves of the available cycles.
The diagnosis established by our model in terms of degradation mode
quantification and capacity loss estimation matched the experimental
observations. The capacity estimation adjusted remarkably well to the
evolution along the cycles and for the degradation modes, despite some
fluctuations, they tended to follow a linear degradation with LAMNE
and LLI being the main actors, while the effect of LAMPE is almost
negligible. These predictions meet the results reported in [86], where
the degradation was concluded to be caused by a linear loss of LLI of
0,0032% per cycle followed by a linear loss of LAMNE of 0,0022%.

CReal#2 was cycled differently to study the impact of fast charge
with an EV type discharge rather than constant current. The degra-
dation path was quite different than of CReal#1 and significant Li
plating occurred. Plating is considered one of the most detrimental
phenomena in lithium-ion batteries, as it increases cell degradation and
might lead to safety issues. RPTs were again performed every 300 full
DST cycles. Model predictions are presented in Fig. 7 together with
the diagnosis reported in [38]. Despite the few cycles available, the
capacity estimation is quite correct. Looking at the degradation modes,
their evolution is more complex than of CReal#1. LAMNE is calculated

https://huggingface.co/spaces/NahuelCosta/DTW-CNN
https://huggingface.co/spaces/NahuelCosta/DTW-CNN
https://huggingface.co/spaces/NahuelCosta/DTW-CNN
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Fig. 7. Model predictions for Cell#2 for every available cycle (a). Diagnosis estimated in [38] (b).

Fig. 8. IC curves for cycles 1 and 1800 in the real cell (a) and in the synthetic cell generated for the predicted degradation percentages (b).

Table 4
RMSPE results for each degradation mode and cycle for the NCA test set.

LLI LAMPE LAMNE

FNN [66]
C1 0.13 0.69 1.05 1.17 0.89 1.19 1.27 1.66 1.55 1.67 1.78 1.41 0.21 1.10 2.01 2.37 1.82 2.48
C2 0.11 0.51 0.67 0.81 0.82 1.30 0.52 0.64 0.76 0.87 0.84 1.09 0.19 1.21 2.18 2.96 2.56 2.87
C3 0.16 0.62 0.90 1.04 0.77 1.19 1.98 1.51 1.36 1.45 1.52 1.19 0.19 1.20 2.28 3.07 2.47 2.72

RF [65]
C1 5.58 8.58 8.04 8.65 8.90 9.35 5.08 7.77 7.10 7.15 6.55 11.58 5.64 5.82 4.82 4.63 7.16 13.34
C2 4.58 4.41 5.67 6.81 7.87 9.23 4.16 3.93 4.95 5.61 6.41 11.68 5.40 4.56 4.07 3.8 7.35 13.75
C3 5.43 7.53 6.97 8.05 8.71 9.29 4.95 6.76 6.13 6.60 6.73 11.58 5.60 5.42 4.50 4.12 6.82 13.48

1DConv [45]
C1 0.32 0.33 0.56 0.77 0.80 1.5 2.31 2.07 2.05 2.01 1.90 1.43 0.37 0.74 1.36 1.99 1.95 3.06
C2 0.33 0.42 0.44 0.53 0.69 1.10 0.94 0.79 0.83 0.82 0.79 0.87 0.22 1.09 1.69 2.56 2.77 3.44
C3 0.34 0.36 0.47 0.68 0.71 1.36 2.08 1.74 1.72 1.67 1.57 1.18 0.20 1.01 1.75 2.69 2.68 3.37

DTW-CNN
C1 0.35 0.34 0.56 0.99 1.43 2.36 0.47 0.64 0.67 0.96 1.41 2.06 1.79 1.50 1.40 1.41 1.52 2.57
C2 0.69 0.93 1.03 1.24 1.80 1.93 0.21 0.43 0.63 0.73 0.94 1.43 0.27 0.69 0.78 1.06 1.37 2.68
C3 0.12 0.44 0.72 0.97 1.28 2.05 0.60 0.40 0.65 1.03 1.40 2.00 0.40 0.59 0.69 1.00 1.39 3.16

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000

as linear with a higher slope than of CReal#1. LLI started linear and
then accelerated after 700 cycles. LAMPE evolution fluctuates a lot but
seems rather linear with a much higher slope than of CReal#1. The
overall evolution of the degradation modes matched quite well the
analysis performed in [38] where the high pace of LAMNE induced some
Li plating of which most passivated in LLI. The main difference is the
LAMPE estimation. LAMPE is extremely difficult to quantify for LFP type
cells as was considered in [38] as it was inducing neither capacity loss
nor was at the origin of the knee.

In contrast, our model took every possible degradation into account
during training and predicted some LAMPE. The true extend of it could
not be verified on the electrochemical data as no post-mortem study
was carried on the aged cell. Fig. 8 shows the IC curves for cycles 1

Table 5
RMSPE results summary for the NCA test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DCov DTW-CNN

Mean ± std 1.31 ± 0.77 7.01 ± 2.51 1.32 ± 0.86 1.11 ± 0.67

and 1800 in the real cell and in the synthetic cell generated for the
predicted degradation percentages. It is expected that the curves will
not be exactly the same due to the differences between the simulation
and the real data, the interest lies in the peak appearing at around
3.47 V, which is known to imply some reversible plating in the cell.
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Fig. 9. Evolution of capacity loss over the 127662 duty cycles presented in [44] for the LFP cell (a). Same plot as in (a) for the first 1000 cycles and at 60% of capacity (b).
Evolution of capacity loss over the 1000 duty cycles selected for test (c). Same plot as in (c) for the first 1000 cycles and at 60% of capacity (d).

Table 6
RMSPE results for each degradation mode and cycle for the NMC test set.

LLI LAMPE LAMNE

FNN [66]
C1 0.39 0.48 0.84 1.18 2.00 2.12 3.02 3.57 3.54 3.28 2.98 3.08 0.26 1.16 2.27 3.68 4.91 7.18
C2 2.71 2.60 2.48 2.25 1.91 2.34 1.29 1.24 1.51 1.30 1.21 2.41 5.43 5.30 5.12 4.77 5.07 8.23
C3 0.29 0.30 0.60 0.93 1.91 1.99 2.69 2.90 3.09 2.95 2.69 2.97 0.17 1.11 2.20 3.43 4.51 6.76

RF [65]
C1 8.30 7.52 6.57 4.83 3.79 11.41 6.91 6.16 5.29 3.96 5.96 9.42 9.25 8.37 7.35 5.72 5.62 14.37
C2 8.30 7.52 6.57 4.83 3.49 11.68 6.91 6.16 5.29 3.96 5.36 8.96 9.25 8.37 7.35 5.72 5.63 15.26
C3 8.30 7.52 6.57 4.83 3.73 11.41 6.91 6.16 5.29 3.96 6.11 9.54 9.25 8.37 7.35 5.72 5.67 14.25

1DConv [45]
C1 0.47 0.40 0.52 0.73 1.23 2.68 4.01 4.02 3.95 3.83 3.91 3.60 0.29 1.18 2.11 3.02 3.75 7.82
C2 1.96 2.00 1.94 1.72 1.59 2.47 0.57 0.38 0.41 0.48 1.14 1.80 4.54 4.35 4.33 4.39 4.84 7.91
C3 0.47 0.35 0.54 0.70 1.27 2.76 3.90 3.74 3.61 3.55 3.54 3.34 0.19 1.03 1.80 2.43 3.17 7.36

DTW-CNN
C1 0.65 0.67 0.72 0.64 0.96 4.32 1.70 1.92 1.99 1.92 2.29 3.91 0.44 0.48 1.06 2.18 3.55 7.58
C2 1.00 1.00 0.82 0.74 1.23 3.00 0.80 0.59 0.52 0.86 2.36 4.54 2.19 1.94 1.71 1.91 2.91 7.48
C3 0.76 0.90 0.82 0.64 1.17 4.47 1.86 2.03 2.00 1.85 2.05 3.78 0.77 0.79 0.93 1.82 3.28 7.37

10 50 100 200 400 1000 10 50 100 200 400 1000 10 50 100 200 400 1000

Table 7
RMSPE results summary for the NMC test set calculated as the average and the standard
deviation of predictions in all cycles for all cells.

FNN RF 1DConv DTW-CNN

Mean ± std 2.68 ± 1.81 7.27 ± 2.66 2.56 ± 1.90 2.03 ± 1.72

Hence, model predictions also suggest that the occurring degradation
mechanism is irreversible lithium plating.

All things considered, it appears that the model adapted well to
conditions different from those seen during training, with the predic-
tions meeting to a large extent the previous diagnosis. Since different
combinations of degradation modes can lead to the same capacity loss,
which gives room to confusion in results interpretation, the model
needs not only to estimate a concrete percentage of the degradation
modes to offer a possible range of degradations with a certain degree

of confidence. This only can enable prognosis [44], which will be the
topic of future work.

6. Concluding remarks and future work

Data-driven methods are a promising avenue for lithium-ion battery
diagnostics and prognostics. Thus, efforts to use AI for state estimation
and lifetime prediction have emerged in recent years. However, the
application of modern AI algorithms is still at an early stage. In this
work, we proposed a novel method for battery degradation diagnosis,
that represents battery data as images, with the aim of enabling the use
of powerful AI models in this domain. Especially, the IC curves from
HNEI’s synthetic datasets were used to train a CNN that successfully
predicts the main degradation mechanisms on several commercial cells
of different chemistries and with different characteristics. The perfor-
mance of the model was compared to other state-of-the-art methods,
where the superiority of our approach was clearly demonstrated, with
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Table 8
Configurations of the models used. In [66] and [45] ‘‘layers config’’ refers to the number of neurons per layer. Also, in [45], the authors built a 1D
CNN to quantify LLI only while here we used the same model to predict the three degradation modes.

Method Hyperparameters

FNN [66] num_layers layers layers config
3 Fully Connected layers 64 × 32 × 3

RF [65] max_depth random_state n_estimators
10 42 100

1DConv [45] num_layers layers layers config
5 2 1D CNN layers and 3 Fully Connected layers 32 × 32 × 128 × 64 × 3

RMSPE errors around 2% in average for 1000 duty cycles compared to
between 2.64 to 7.27% for the other tested methods. The successful
performance of the model is largely due to its adaptive nature to
different cell configurations. To validate this claim, the model was also
tested on real cells, where the diagnosis corresponded to a large extent
with previously existing studies on the subject. This opens up new
opportunities for collaboration between AI and battery research.

In future works we aim to explore the use of Transfer Learning as
well as the suitability of the approach for prognosis, evaluating the
evolution of the peaks throughout the cycles, rather than independent
cycle diagnosis. In addition, for this study the data used were only
from charge cycles, however, considering discharge data is also of great
interest for a more complete diagnosis. Lastly, our interests are aligned
with the extension of the study of degradation modes, a key subject to
contribute to the electrochemical understanding of cell deterioration.
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Appendix A. Duty cycles selection

See Fig. 9.

Appendix B. Model evaluation

In regression problems, the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) metrics, or their versions expressed as
a percentage MAPE and RMSPE are commonly used. MAE measures
the mean magnitude of errors in a set of model estimates while RMSE
is the root of the averaged quadratic score. In RMSE the errors are
squared before averaged, whereas in MAE all individual differences
are equally weighted in the mean. This makes RMSE more sensitive
to large errors. Consequently, RMSE is considered more effective for
testing model performance, especially when large errors are undesir-
able. For simplicity in the interpretation of results, RMSE expressed as
a percentage (RMSPE) is chosen:

𝑅𝑀𝑆𝑃𝐸 =

√

√

√

√

√

√

1
N

N
∑

𝑖=1

⎛

⎜

⎜

⎝

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

⎞

⎟

⎟

⎠

2

× 100

number of samples

real value

predicted value

(1)

However, using this metric requires dividing the prediction error
by the actual value. In the dataset used in this problem, there are
combinations where the actual value (the degradation mode) is simply
0, so the calculation would be invalid. Because of this, the denominator
is replaced by the nominal capacity of the cell understood as the
initial capacity expressed in percentage, i.e., 100%. Predicted values
are already given in percentages (for the degradation modes) therefore
the definitive metric used is:
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Appendix C. Supplementary tables

C.1. RMSPE results for NCA and nmc

See Tables 4–7.

C.2. Summary of model configurations used

See Table 8.
Code availability
All models and experiments were implemented in TensorFlow [87].

Further details regarding the experimental setup and the source code
to reproduce the experimental results are available in the following
public git repository: https://github.com/NahuelCostaCortez/DTW-Li-
ion-Diagnosis.

http://dx.doi.org/10.17632/bs2j56pn7y.3
http://dx.doi.org/10.17632/bs2j56pn7y.3
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https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
https://github.com/NahuelCostaCortez/DTW-Li-ion-Diagnosis
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