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Abstract

In this paper we are concerned with an optimal control problem governed by a semilinear parabolic
equation, with boundary controls. Pointwise control constraints as well as integral constraints on the gradient
of the state are considered. The aim of the paper is to prove a Pontryagin principle. To achieve this goal
we use Ekeland’s variational principle combined with a method of diffuse perturbations. A detailed analysis
of the state and adjoint state equations is carried out. We obtain some regularity results, under minimal
assumptions, which are necessary to treat the constraints on the gradient of the state.
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1 Introduction.

Let Ω be an open, bounded and connected set in RN . We denote by Γ the boundary of Ω. Let T be a positive
real number. Set Q = Ω×]0, T [ and Σ = Γ×]0, T [. Let us introduce the elliptic operator

Ay = −
N∑

i,j=1

∂xj (aij(x, t)∂xiy) .

Let f, g, w be functions, f : Q × R × R −→ R, g : Σ × R × R −→ R and w : Ω −→ R. We are going to study
control problems for the parabolic equation

∂y

∂t
+Ay + f(x, t, y) = 0 in Q,

∂y

∂nA
+ g(s, t, y, v) = 0 on Σ,

y(·, 0) = w in Ω.

(1)

We shall usually refer to this equation as the state equation. Let Vad be a subset of L∞(Σ). For every v ∈ Vad
we denote by yv the solution of equation (1). Consider functions F : Q × R −→ R, G : Σ × R × R −→ R and

*The research of the first two authors was partially supported by Dirección General de Enseñanza Superior e Investigación
Cient́ıfica (Spain). This paper was partially written while the third author was visiting the Department of Applied Mathematics
and Computer Science of Cantabria University.
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L : Ω× R −→ R. Problem (P) consists in minimizing the cost functional

J(yv, v) =

∫ T

0

∫
Ω

F (x, t, yv) dx dt+

∫ T

0

∫
Γ

G(s, t, yv, v) ds dt+

∫
Ω

L(x, yv(x, T )) dx

with the control constraint
v ∈ Vad,

and the state constraint
∇xy ∈ C ⊂ (Lτ (0, T ;Lp(Ω)))N , (2)

where τ and p belong to (1,∞), and C is a closed, convex subset of (Lτ (0, T ;Lp(Ω)))N with a nonempty interior.
For instance, if C = B̄δ(0), the closed ball of radius δ in (Lτ (0, T ;Lp(Ω)))N , then the constraint is∫ T

0

(∫
Ω

|∇xy|pdx
)τ/p

dt ≤ δτ .

Our main results is a Pontryagin principle for such problems (Theorem 3). In recent years there has been
growing interest in Pontryagin principles for control problems governed by partial differential equations, with
pointwise or integral constraints on the state variable. Among many others we could mention Casas [1], Fattorini
[5, 7], Bei Hu and Yong [9], Li and Yong [11], Raymond and Zidani [13], Casas, Raymond and Zidani [3] and
references therein. Only few results are avalaible for problems dealing with gradient state constraints. See for
example Casas and Fernandez [2], Fattorini [6, 7], or White [18].

The proof of the Theorem 3 is based on Ekeland’s variational principle. To obtain an approximate Pontryagin
principle corresponding to optimality conditions following from Ekeland’s variational principle, we use the
method of diffuse perturbations, as in the papers of Raymond and Zidani [13] or Casas, Raymond and Zidani
[3]. In this approach we have to prove some Taylor expansion (Theorem 2) for the solution of the state
equation, with a remainder term converging to zero in the norm of Lτ (0, T ;W 1,p(Ω)) (the norm corresponding
to the state constraint). To establish this result, we use the compact embedding from Lτ (0, T ;W 1+ε,p(Ω)) ∩
W 1,τ (0, T, (W 1,p′(Ω))′) into Lτ (0, T ;W 1,p(Ω)) (see the proof of Theorem 2). Thus we have to establish regular
ity results in Lτ (0, T ;W 1+ε,p(Ω)) for the linearized state equation. These results are stated in Section 2.

The rest of the paper is as follows. The adjoint equation is studied in Section 2. Assumptions on the control
problem and the Taylor expansion are stated in Section 3. Section 4 is devoted to the proof of the main result
and Section 5 deals with some extensions and examples.

2 Linearized and adjoint equations.

In the paper, whenever it does not lead to confusion, we shall use the following shortening: Lτ (W s,p), L2(H1),

W 1,τ ((W 1,p)′) , Lk̃(Lk(Ω)), Lσ̃(Lσ(Γ)), and C(C0,ε(Ω̄)) respectively for Lτ (0, T ;W s,p(Ω)), L2(0, T ;H1(Ω)),

W 1,τ (0, T ; (W 1,p(Ω))′), Lk̃(0, T ;Lk(Ω)), Lσ̃(0, T ;Lσ(Γ)) and C([0, T ];C0,ε(Ω̄)).
We suppose that τ ∈ (1,∞) and p ∈ (1,∞) are given fixed throughout the paper.
We now state some hypotheses.

H1 - The boundary Γ is of class C1,ε̂ for some 0 < ε̂ < 1.

H2 - The coefficients aij belong to C([0, T ];C0,ε̂(Ω̄)) and satisfy

m∥ξ∥2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤M∥ξ∥2 for all ξ ∈ RN and all (x, t) ∈ Q

for some m,M > 0.

To deal with state constraints of the form (2), we need regularity results in Lτ (W 1+ε,p) for the solution of the
equation 

∂y

∂t
+Ay = f̂ in Q,

∂y

∂nA
= ĝ on Σ,

y(·, 0) = 0 in Ω.
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Recall the following regularity results. Assume that the boundary Γ is of class C2. Set āij = aij(x̄, t̄) and

Āy = −
∑N
i,j=1 ∂xj

(āij∂xi
y), where (x̄, t̄) is any point in Q̄. Then the mapping that associates f̂ with the

solution y of 
∂y

∂t
+ Āy = f̂ in Q,

∂y

∂nĀ
= 0 on Σ,

y(·, 0) = 0 in Ω,

is continuous from Lk̃1(Lk1(Ω)) into Lτ (W 1+εk,p) when one of the following conditions is satisfied

0 <
εk
2
<
N

2p
+

1

τ
+

1

2
− N

2k1
− 1

k̃1
, if k1 ≤ p and k̃1 ≤ τ, (3)

0 <
εk
2
<
N

2p
+

1

2
− N

2k1
, if k1 ≤ p and k̃1 > τ, (4)

0 <
εk
2
<

1

τ
+

1

2
− 1

k̃1
, if k1 > p and k̃1 ≤ τ, (5)

0 < εk < 1, if k1 > p and k̃1 > τ. (6)

For non homogeneous boundary data, the mapping that associates ĝ with the solution y of
∂y

∂t
+ Āy = 0 in Q,

∂y

∂nĀ
= ĝ on Σ,

y(·, 0) = 0 in Ω,

is continuous from Lσ̃1(Lσ1(Γ)) into Lτ (W 1+εσ,p) when one of the following conditions is satisfied:

0 <
εσ
2
<
N

2p
+

1

τ
− N − 1

2σ1
− 1

σ̃1
, if σ1 ≤ p and σ̃1 ≤ τ, (7)

0 <
εσ
2
<
N

2p
− N − 1

2σ1
, if σ1 ≤ p and σ̃1 > τ, (8)

0 <
εσ
2
<

1

2p
+

1

τ
− 1

σ̃1
, if σ1 > p and σ̃1 ≤ τ, (9)

0 < εσ <
1

p
, if σ1 > p and σ̃1 > τ. (10)

The previous regularity results may be proved by using the same techniques as in [12, Prop. 3.2].
In all what follows ε > 0 is given fixed, strictly less than min(ε̂, 2/τ, 2/p), and less or equal than min(εσ, εk),

where εσ, εk are chosen as in (3)–(10). We make the following hypotheses on k̃1, k1, σ̃1, σ1.

H3 - The pair (k̃1, k1) satisfies one of the conditions (3)–(6) and

N

2k1
+

1

k̃1
< 1. (11)

H4 - The pair (σ̃1, σ1) satisfies one of the conditions (7)–(10) and

N − 1

2σ1
+

1

σ̃1
<

1

2
. (12)

Remark 1 Conditions (11) and (12) are needed to prove Propositions 5 and 7.

A regularity result in Lτ (W 1+ε,p) for the linearized state equation is proved in Proposition 5. We first establish
some preliminary estimates.
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Proposition 1 Assume that the boundary Γ is of class C2. Set āij = aij(x̄, t̄) and Āy = −
∑N
i,j=1 ∂xj

(āij∂xi
y),

where (x̄, t̄) is any point in Q̄. Let f̂ be in Lk̃1(Lk1(Ω)) and ĝ be in Lσ̃1(Lσ1(Γ)). Then the weak solution y to
the equation 

∂y

∂t
+ Āy = f̂ in Q,

∂y

∂nĀ
= ĝ on Σ,

y(·, 0) = 0 in Ω,

(13)

belongs to Lτ (W 1+ε,p) ∩ L2(H1), and satisfies

∥y∥Lτ (W 1+ε,p)∩L2(H1) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))), (14)

where C depends on Ω, T , ε, k̃1, k1, σ̃1, and σ1 but is independent of the point (x̄, t̄).

Proof. The proof may be performed by using estimates on analytic semigroup as in [12, Proposition 3.2].
Observe that the conditions stated in H3-H4, linking k̃1, k1, σ̃1, and σ1, with p, τ , εσ and εk are needed to
prove the above estimate.

Proposition 2 Suppose that the boundary Γ is of class C2, and define the coefficients āij as in Proposition 1.

Let f⃗ be in (Lτ (W ε,q) ∩ L2(Q))N , with min(p, 2N
N−2+2ε ) ≤ q ≤ p. Then the weak solution y to the variational

equation

−
∫
Q

y
∂ϕ

∂t
dx dt+

∫
Q

N∑
i,j=1

āij∂xiy∂xj
ϕdx dt =

∫
Q

f⃗ · ∇ϕdx dt for all ϕ ∈ C1(Q̄) such that ϕ(T ) = 0,

belongs to Lτ (W 1+ε,q) ∩ L2(H1) and satisfies

∥y∥Lτ (W 1+ε,q)∩L2(H1) ≤ C∥f⃗∥(Lτ (W ε,q)∩L2(Q))N ,

where C is independent of (x̄, t̄) ∈ Q̄ and of q ∈ [min(p, 2N
N−2+2ε ), p].

Proof. The estimate in L2(H1), when f⃗ belongs to (L2(Q))N is classical. Let us prove the estimate in
Lτ (W 1+ε,q). From maximal regularity results for equations with regular coefficients, we deduce that the mapping

f⃗ 7→ yf⃗ (where yf⃗ denotes the solution to the equation) is continuous from Lτ (W 1,q) into Lτ (W 2,q), and from

Lτ (Lq(Ω)) into Lτ (W 1,q) (see [17]). Moreover the constant in the corresponding estimates may be chosen
independent of q ∈ [min(p, 2N

N−2+2ε ), p]. Since (Lτ (W 1,q), Lτ (W 2,q))ε,q ≡ Lτ (W 1+ε,q) (see Triebel [16], or
Daners and Medina [4]), the result follows by means of real interpolation.

Proposition 3 Suppose that the boundary Γ is of class C2, and define the coefficients āij as in Proposition 1.
Let f be in L2(Q), and let y be the weak solution in L2(H1) to the variational equation

−
∫
Q

y
∂ϕ

∂t
dx dt+

∫
Q

N∑
i,j=1

āij∂xi
y ∂xj

ϕdx dt =

∫
Q

fϕ dx dt for all ϕ ∈ C1(Q̄) such that ϕ(T ) = 0.

If p ≤ 2, then
∥y∥Lτ (W 1+ε,p)∩L2(H1) ≤ C∥f∥L2(Q).

If τ ≤ 2 and p > 2, then
∥y∥Lτ (W 1+ε,q)∩L2(H1) ≤ C∥f∥L2(Q),

with q = 2N
N−2+2ε . If τ > 2 and p > 2, then

∥y∥Lτ (W 1+ε,q)∩L2(H1) ≤ C∥f∥L2(Q),

for any q ≥ 2 satisfying N
4 + 1

2 < N
2q + 1

τ + 1
2 − ε

2 . Moreover, in the above estimates, the constants C are

independent of (x̄, t̄) ∈ Q̄.
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Proof. If p ≤ 2, using estimates on analytic semigroups, we can prove that y belongs to Lτ (W 1+ε,2) for
every τ ≥ 2 such that 1/2 < 1/τ + 1/2− ε/2. Since ε < 2/τ , y belongs to Lτ (W 1+ε,2) for every τ ≥ 2. If τ ≤ 2
and p > 2, then y belongs to L2(W 2,2). In this case, the estimate follows from Sobolev embeddings. The last
case can also be treated by using estimates on analytic semigroups.

Proposition 4 Suppose that the boundary Γ is of class C3, and define the coefficients āij as in Proposition
1. Let f be in Lτ (W ε,q) ∩ L2(Q), with min(p, 2N

N−2+2ε ) ≤ q ≤ p. Then the weak solution y to the variational
equation

−
∫
Q

y
∂ϕ

∂t
dx dt+

∫
Q

N∑
i,j=1

āij∂xi
y ∂xj

ϕdx dt =

∫
Q

fϕ dx dt for all ϕ ∈ C1(Q̄) such that ϕ(T ) = 0,

belongs to Lτ (W 1+ε,q̃) ∩ L2(H1) with q̃ = Nq
N−q if q < N , q = p if q ≥ N , and satisfies

∥y∥Lτ (W 1+ε,q̃)∩L2(H1) ≤ C∥f∥Lτ (W ε,q)∩L2(Q),

where C is independent of (x̄, t̄) ∈ Q̄ and of q ∈ [min(p, 2N
N−2+2ε ), p].

Proof. Using real interpolation, as in the proof of Proposition 2, we can first prove that

∥y∥Lτ (W 2+ε,q)∩L2(H1) ≤ C∥f∥Lτ (W ε,q)∩L2(Q).

We conclude with Sobolev embeddings.

Lemma 1 Let ε < ε̃ < ε̂. For all q ∈ [min(p, 2N
N−2+2ε ), p], all a ∈ C([0, T ];C0,ε̃(Ω̄)), all y ∈ Lτ (W ε,q), ay

belongs to Lτ (W ε,q), and
∥ay∥Lτ (W ε,q) ≤ C∥a∥C([0,T ];C0,ε̃(Ω̄))∥y∥Lτ (W ε,q),

where C does not depend on q ∈ [min(p, 2N
N−2+2ε ), p].

Proof. Using the definition of the norm in Lτ (W ε,q), with straightforward calculations we obtain

∥ay∥τLτ (W ε,q) =

∫ T

0

(∫
Ω×Ω

|a(x, t)y(x, t)− a(x′, t)y(x′, t)|q

|x− x′|n+εq
dx dx′

)τ/q
dt

≤ C

∫ T

0

(∫
Ω×Ω

|a(x, t)− a(x′, t)|q

|x− x′|ε̃q
|y(x, t)|q

|x− x′|n+(ε−ε̃)q dx dx
′
)τ/q

dt

+C

∫ T

0

(∫
Ω×Ω

|a(x′, t)|q |y(x, t)− y(x′, t)|q

|x− x′|n+εq
dx dx′

)τ/q
dt

≤ C∥a∥τC(C0,ε̃(Ω̄))maxξ∈Ω̄

(∫
Ω

dx′

|ξ − x′|n+(ε−ε̃)q

)τ/q ∫ T

0

(∫
Ω

|y(x, t)|qdx
)τ/q

dt+ C∥a∥τC(Q̄)∥y∥
τ
Lτ (W ε,q).

The proof is complete.

Proposition 5 Let a be in Lk̃1(Lk1(Ω)), b be in Lσ̃1(Lσ1(Γ)), f̂ be in Lk̃1(Lk1(Ω)) and ĝ be in Lσ̃1(Lσ1(Γ)).
Then the solution y in L2(H1) ∩ C([0, T ];L2) to the equation

∂y

∂t
+Ay + ay = f̂ in Q,

∂y

∂nA
+ by = ĝ on Σ,

y(·, 0) = 0 in Ω,

(15)

satisfies the estimate
∥y∥Lτ (W 1+ε,p) ≤ C(∥f̂∥

Lk̃1 (Lk1 (Ω))
+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))), (16)

where C only depends on Ω, T , A and an upper bound for ∥a∥
Lk̃1 (Lk1 (Ω))

+ ∥b∥Lσ̃1 (Lσ1 (Γ)).
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Proof. Due to (11) and (12), first notice that y ∈ L∞(Q) (see Casas, Raymond and Zidani [3]), and that

∥y∥L∞(Q) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))), (17)

where C depends on an upper bound for ∥a∥
Lk̃1 (Lk1 (Ω))

+ ∥b∥Lσ̃1 (Lσ1 (Γ)). Therefore it is sufficient to consider

the case where a ≡ 0 and b ≡ 0. We now suppose that we are in this case. To prove (16) when the coefficients
aij satisfy H2, we use a technique of freezing coefficients as in Vespri [17, Theorem 3.1]. Up to Step 3, we
suppose that the boundary Γ is regular.

Step 1. First we prove an estimate in Lτ (W ε,p). From Ladyz̆enskaja et al. [10, Chapter 3, Theorem 5.1], we
know that the weak solution to (15) belongs to L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), and satisfies

∥y∥L2(0,T ;H1(Ω))∩C([0,T ];L2(Ω)) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))). (18)

Choose r̃ and r, such that ε̃
2 + 1−ε̃

r = 1
p , and

ε̃
2 + 1−ε̃

r̃ = 1
τ , where ε̃ is an exponent strictly greater than ε.

Since ∥y∥Lr̃(Lr(Ω)) ≤ C∥y∥L∞(Q) and [Lr(Ω),W 1,2(Ω)]ε̃ ↪→ W ε,p(Ω), from (17) and (18), and by interpolation
it follows that

∥y∥Lτ (W ε,p) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))).

Step 2. For any ρ > 0, let 0 = t1 < t2 < . . . < tk < . . . < tK = T be a regular subdivision of [0, T ], such that
tk − tk−1 = ℓ(ρ) and

max{∥aij(t, ·)− aij(t
′, ·)∥C0,ε̂(Ω̄) | t ∈ [tk−1, tk], t

′ ∈ [tk−1, tk], 1 ≤ i, j ≤ N, 2 ≤ k ≤ K} ≤ ρ.

Let
{
Csρ
}µ
s=1

be a collection of open sets of class C∞, of diameter less or equal than ρ > 0 such that

Ω̄ ⊂ ∪µs=1C
s
ρ ,

and let {φs}µs=1 be a partition of unity subordinate to this covering. Let ψk be the continuous function on
[0, T ], affine on each interval [tk, tk+1], which is equal to 1 on tk and 0 on tj if j ̸= k. For a given fixed point
xs ∈ Csρ , set

āskij = aij(xs, tk) and ysk(x, t) = ψk(t)φs(x)y(x, t) for 1 ≤ s ≤ µ, 1 ≤ k ≤ K. (19)

Let us fix 1 ≤ k ≤ K and 1 ≤ s ≤ µ. For every ξ ∈ L2(H1), define the operator T ksξ by

T ksξ (ϕ) =

∫
Q

ψkφsf̂ϕ dx dt+

∫
Σ

ψkφsĝϕ ds dt

+

∫
Q

ψk

N∑
i,j=1

aijy∂xi
φs∂xj

ϕdx dt−
∫
Q

ψk

N∑
i,j=1

aij∂xi
y∂xj

φsϕdx dt

+

∫
Q

φsy
∂ψk
∂t

ϕ dx dt+

∫ tk+1

tk−1

∫
Cs

ρ

N∑
i,j=1

(āskij − aij)∂xi
ξ∂xj

ϕdx dt,

with the convention t0 = t1 = 0 and tK+1 = tK = T . For every ξ ∈ L2(H1), let z(ξ) be the unique solution in
L2(H1) to the variational equation

−
∫
Q

z
∂ϕ

∂t
dx dt+

∫
Q

N∑
i,j=1

āskij ∂xiz∂xjϕdx dt = T ksξ (ϕ) for all ϕ ∈ C1(Q̄) such that ϕ(T ) = 0. (20)

Observe that z(ysk) ≡ ysk. Let us prove that, if ρ is small enough, then the mapping ξ 7→ z(ξ) admits a fixed
point in Lτ (W 1+ε,p1)∩L2(H1), where p1 = min(p, 2N

N−2+2ε ). Due to Lemma 1, if ξ ∈ Lτ (W 1+ε,p1)∩L2(H1), then∑N
i=1(ā

st
ij−aij)∂xi

ξ belongs to Lτ (W ε,p1)∩L2(Q) for all 1 ≤ j ≤ N . Notice that ψkφsf̂ belongs to Lk̃1(Lk1(Ω)),

ψkφsĝ belongs to L
σ̃1(Lσ1(Γ)). Due to step 1 and Lemma 1, ψk

∑N
i=1 aijy∂xi

φs belongs to L
τ (W ε,p)∩L2(Q) for

6



1 ≤ j ≤ N . Also observe that ψk
∑N
i,j=1 aij∂xi

y∂xj
φs belongs to L2(Q), and φsy

∂ψk

∂t belongs to L∞(Q). From

Propositions 1 to 3, it follows that z(ξ) belongs to Lτ (W 1+ε,p1) ∩ L2(H1) for all ξ ∈ Lτ (W 1+ε,p1) ∩ L2(H1).
On the other hand, due to Proposition 2 and to Lemma 1, it follows that

∥z(ξ1)− z(ξ2)∥Lτ (W 1+ε,p1 )∩L2(H1) ≤ C

N∑
i,j=1

∥(āskij − aij)(∂xi
ξ1 − ∂xi

ξ2)∥Lτ (W ε,p1 )∩L2(]tk−1,tk+1[×Cs
ρ)

≤ C
(
maxi,j∥āskij − aij(tk, ·)∥C0,ε̃(C̄s

ρ)
+maxi,j∥aij(tk, ·)− aij(·)∥C([tk−1,tk+1];C0,ε̃(C̄s

ρ))

)
×∥∇ξ1 −∇ξ2∥(Lτ (W ε,p1 )∩L2(Q))N

≤ C(ρε̂−ε̃ + ρ)∥∇ξ1 −∇ξ2∥(Lτ (W ε,p1 )∩L2(Q))N ,

for some ε̃ ∈]ε, ε̂[. Therefore, for ρ small enough, the mapping ξ → z(ξ) is a contraction in Lτ (W 1+ε,p1)∩L2(H1).
Since the solution z of the equation

−
∫
Q

z
∂ϕ

∂t
dx dt+

∫
Q

N∑
i,j=1

āskij ∂xi
z∂xj

ϕdx dt = T ksysk(v) for all ϕ ∈ C1(Q̄) such that ϕ(T ) = 0,

is unique in L2(H1) and is equal to ysk, this fixed point is ysk. From the equality y = ΣKk=1Σ
µ
s=1ysk, it follows

that y belongs to Lτ (W 1+ε,p1).

Step 3. If p = p1 the proof is complete. Otherwise, we set p2 = Np1
N−p1 if p1 < N , and p2 = p if p1 ≥ N . We

repeat Step 2. We want to prove that the mapping ξ 7→ z(ξ) admits a fixed point in Lτ (W 1+ε,p2) ∩ L2(H1).

Due to Lemma 1, if ξ ∈ Lτ (W 1+ε,p2) ∩ L2(H1), then
∑N
i=1(ā

st
ij − aij)∂xi

ξ belongs to Lτ (W ε,p2) ∩ L2(Q) for all

1 ≤ j ≤ N . Since y belongs to Lτ (W 1+ε,p1), ψk
∑N
i,j=1 aij∂xi

y∂xj
φs belongs to L

τ (W ε,p1)∩L2(Q), and due to

Sobolev embeddings, ψk
∑N
i=1 aijy∂xiφs belongs to Lτ (W ε,p2) ∩ L2(Q) for 1 ≤ j ≤ N .

As before ψkφsf̂ belongs to Lk̃1(Lk1(Ω)), ψkφsĝ belongs to Lσ̃1(Lσ1(Γ)), and φsy
∂ψk

∂t belongs to L∞(Q).
From Propositions 1, 2 and 4, it follows that z(ξ) belongs to Lτ (W 1+ε,p2) ∩ L2(H1) for all ξ ∈ Lτ (W 1+ε,p2) ∩
L2(H1). We conclude by proving that the mapping ξ 7→ z(ξ) is a contraction in Lτ (W 1+ε,p2) ∩ L2(H1) for the
same ρ as in step 2, and that y belongs to Lτ (W 1+ε,p2). Repeating this argument a finite number of times, we
finally prove that y belongs to Lτ (W 1+ε,p) and that

∥y∥Lτ (W 1+ε,p) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))).

Observe that the first iteration of Step 2 (with p1) is different from the second one. Indeed, for the first iteration

we only know that ψk
∑N
i,j=1 aij∂xi

y∂xj
φs belongs to L

2(Q), and we use Proposition 3. For the second iteration

of Step 2, we know that ψk
∑N
i,j=1 aij∂xiy∂xjφs belongs to Lτ (W ε,p1) ∩ L2(Q), and we use Proposition 4.

Step 4. If the boundary Γ is of class C1,ε̂, by making a change of variable in the variational formulation of
equation (15), the equation can be reduced to an equation similar to (15) but with a regular boundary. Due to
steps 1-3, the corresponding solution belongs to Lτ (W 1+ε,p). By making the reverse change of variable, we can
prove that the solution to equation (15) satisfies (16).

Suppose that H1 and H2 are replaced by

H1’ - The boundary Γ is of class C1.

H2’ - The coefficients aij belong to C(Q̄) and satisfy

m∥ξ∥2 ≤
N∑

i,j=1

aij(x, t)ξiξj ≤M∥ξ∥2 for all ξ ∈ RN and all (x, t) ∈ Q

for some m,M > 0.

In this case, we can adapt the proof of Proposition 5 to establish the following result.
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Proposition 6 Suppose hypotheses H1’ and H2’ are satisfied. Let a be in Lk̃1(Lk1(Ω)), b be in Lσ̃1(Lσ1(Γ)),

f̂ be in Lk̃1(Lk1(Ω)) and ĝ be in Lσ̃1(Lσ1(Γ)). Then the solution y in L2(H1)∩C([0, T ];L2(Ω)) to the equation
∂y

∂t
+Ay + ay = f̂ in Q,

∂y

∂nA
+ by = ĝ on Σ,

y(·, 0) = 0 in Ω,

(21)

satisfies the estimate
∥y∥Lτ (W 1,p) ≤ C(∥f̂∥

Lk̃1 (Lk1 (Ω))
+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))), (22)

where C only depends on Ω, T , A and an upper bound for ∥a∥
Lk̃1 (Lk1 (Ω))

+ ∥b∥Lσ̃1 (Lσ1 (Γ)).

Proposition 7 Suppose hypotheses H1 and H2 are satisfied. Let a be in Lk̃1(Lk1(Ω)), b be in Lσ̃1(Lσ1(Γ)), f̂

be in Lk̃1(Lk1(Ω)) , and ĝ be in Lσ̃1(Lσ1(Γ)). Then the solution y to equation (21) satisfies the estimate

∥y∥Cε̄(Q̄) ≤ C(∥f̂∥
Lk̃1 (Lk1 (Ω))

+ ∥ĝ∥Lσ̃1 (Lσ1 (Γ))), (23)

where 0 < ε̄ < ε, C only depends on Ω, T , A, ε̄ and an upper bound for ∥a∥
Lk̃1 (Lk1 (Ω))

+ ∥b∥Lσ̃1 (Lσ1 (Γ)).

Proof. For the proof we refer to Corollary 3.2 in [13].

Before studying the adjoint equation, consider the following equation
−∂φ
∂t

+A∗φ = div η⃗ in Q,

∂φ

∂nA∗
= −η⃗ · n⃗ on Σ,

φ(·, T ) = 0 in Ω,

(24)

where n⃗ is the outward unit normal to Γ, and η⃗ is supposed to be regular. (As usual A∗ denotes the formal
adjoint of A.) By definition, a function φ ∈ L1(W 1,1) is a solution to (24) if, and only if,∫

Q

(φ
∂y

∂t
+

N∑
i,j=1

aij∂xjφ∂xiy) dx dt = −
∫
Q

η⃗ · ∇y dx dt (25)

for every y ∈ C1(Q̄) such that y(0) = 0. The variational equation (25) is still meaningful if η⃗ belongs to Lr(Q)
for some r > 1, even if the normal trace η⃗ · n⃗ is not defined.

For simplicity, we still continue to write the variational equation (25) in the form (24), even if the writing
η⃗ · n⃗ may be abusive when η⃗ is not regular.

In the rest of the paper k̃2, k2, σ̃2, σ2 and ν are exponents satisfying

N

2k2
+

1

k̃2
≤ 1,

N − 1

2σ2
+

1

σ̃2
≤ 1

2
, and ν ≥ 2. (26)

We also suppose that k̃1, k1, σ̃1, and σ1 satisfy the following additional conditions

k̃1 ≥ τ, σ̃1 ≥ τ,

k1 ≥ Np′

Np′ −N + p′
and σ1 ≥ (N − 1)p′

(N − 1)p′ −N + p′
if p′ < N.

In the following proposition we state regularity properties for the adjoint state. The proof is similar to the
proof of Proposition 5.
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Proposition 8 Let a be in Lk̃1(Lk1(Ω)), b be in Lσ̃1(Lσ1(Γ)), F̂ be in Lk̃2(Lk2(Ω)), η⃗ be in (Lτ
′
(Lp

′
))N , Ĝ be

in Lσ̃2(Lσ2(Γ)) and L̂ be in Lν(Ω). Then there exists a unique φ ∈ Lτ
′
(W 1,p′)+L2(H1) satisfying the equation

−∂φ
∂t

+A∗φ+ aφ = F̂ + div η⃗ in Q,

∂φ

∂nA∗
+ bφ = Ĝ− η⃗ · n⃗ on Σ,

φ(·, T ) = L̂ in Ω,

(27)

and the following estimate holds

∥φ∥Lτ′ (W 1,p′ )+L2(H1) ≤ C(∥η∥(Lτ′ (Lp′ ))N + ∥F̂∥
Lk̃2 (Lk2 (Ω))

+ ∥Ĝ∥Lσ̃2 (Lσ2 (Γ)) + ∥L̂∥Lν(Ω)),

where C depends only on Ω, T , A and an upper bound for ∥a∥
Lk̃1 (Lk1 (Ω))

+ ∥b∥Lσ̃1 (Lσ1 (Γ)).

Moreover, if y is the solution to equation (15), the following Green formula is satisfied∫
Q

φ

(
∂y

∂t
+Ay + ay

)
dx dt+

∫
Σ

φ

(
∂y

∂nA
+ by

)
ds dt =∫

Q

F̂ y dx dt−
∫
Q

η⃗ · ∇y dx dt+
∫
Σ

Ĝy ds dt+

∫
Ω

L̂y(T ) dx.
(28)

Proof. [of Proposition 8] We first consider the case where F̂ ≡ 0, L̂ ≡ 0, and Ĝ ≡ 0.
If a ≡ 0 and b ≡ 0, and if the coefficients of the operator A are regular and independent of time, the

existence of φ ∈ Lτ
′
(W 1,p′) satisfying (27) can be obtained using duality techniques, interpolation and maximal

regularity results as in Vespri [17, Theorem 3.3] and references therein. The passage from regular to continuous
coefficients (also depending on time) for A may be performed by localization and a fixed point theorem as in
[17, Theorem 3.1].

The case a ̸≡ 0 and b ̸≡ 0 may be deduced from the previous one by using a fixed point argument. Indeed,
observe that if ξ ∈ Lτ

′
(W 1,p′) then ξ ∈ Lτ

′
(Lp

′∗
(Ω)), ξ|Σ ∈ Lτ

′
(Lβ(Γ)), where p′∗ = p′N/(N − p′) and

β = ((N − 1)p′)/(N − p′) if p′ < N , p′∗ and β are any real in (1,+∞) if p′ ≥ N . Since a ∈ Lk̃1(Lk1(Ω)), b ∈
Lσ̃1(Lσ1(Γ)), we verify that aξ ∈ Lr̃(Lr(Ω)) and bξ|Σ ∈ Ls̃(Ls(Γ)), where 1/r̃ = 1/k̃1+1/τ ′, 1/r = 1/k1+1/p′∗,
1/s̃ = 1/σ̃1 + 1/τ ′ and 1/s = 1/σ1 + 1/β. Using (11) and (12), it follows that

N

2r
+

1

r̃
<

N

2p′
+

1

τ ′
+

1

2
and

N − 1

2s
+

1

s̃
<

N

2p′
+

1

τ ′
.

Suppose that 1/k1 ≥ 1/p′ − 1/p′∗ and 1/σ1 ≥ 1/p′ − 1/β. In this case, the mapping that associates the solution
φξ of the equation

−∂φξ
∂t

+A∗φξ = div η⃗ − aξ in Q,
∂φξ
∂nA∗

= −η⃗ · n⃗− bξ on Σ, φξ(·, T ) = 0 in Ω,

with ξ is affine continuous from Lτ
′
(W 1,p′) into itself. Using this property, we can prove that ξ → φξ is

a contraction in Lτ
′
(0, t̄;W 1,p′) for t̄ small enough. The estimate in Lτ

′
(W 1,p′) may next be deduced by a

standard technique. If 1/k1 < 1/p′ − 1/p′∗ or 1/σ1 < 1/p′ − 1/β, the above fixed point method may be
performed by replacing k1 by min(k1, (1/p

′ − 1/p′∗)−1), and σ1 by min(σ1, (1/p
′ − 1/β)−1).

Consider the case where F̂ , L̂, and Ĝ are different from zero. The equation

−∂φ
∂t

+A∗φ+ aφ = F̂ in Q,
∂φ

∂nA∗
+ bφ = Ĝ on Σ, φ(·, T ) = L̂ in Ω,

admits a unique solution φ satisfying

∥φ∥L2(H1) ≤ C(∥F̂∥
Lk̃2 (Lk2 (Ω))

+ ∥Ĝ∥Lσ̃2 (Lσ2 (Γ)) + ∥L̂∥Lν(Ω))

(see [10]). The Green formula is true for regular functions y, and it follows from a denseness argument.
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3 Taylor expansion of the state and the functional.

Now we are ready to study the state equation. Let us suppose that

H5 - For every y ∈ R, f(·, ·, y) is measurable on Q. For almost every (x, t) ∈ Q, f(x, t, ·) is of class C1 on R.
The following estimates hold:

|f(x, t, 0)| ≤M1(x, t), C0 ≤ f ′y(x, t, y) ≤M1(x, t)η(|y|),

where C0 ∈ R, η is an increasing function from R+ into R+, and M1 ∈ Lk̃1(Lk1(Ω)).

H6 - For every y, v ∈ R, g(·, ·, y, v) is measurable on Σ. For all v ∈ R and almost every (s, t) ∈ Σ, g(s, t, ·, v) is
of class C1 on R. For almost every (s, t) ∈ Σ, g(s, t, ·) and g′y(s, t, ·) are continuous on R2. The following
estimates hold:

|g(s, t, 0, v)| ≤ N1(s, t) + |v|, C0 ≤ g′y(s, t, y, v) ≤ (N1(s, t) + |v|)η(|y|),

where N1 ∈ Lσ̃1(Lσ1(Γ)).

H7 - The initial state w is given fixed in L∞(Ω) ∩W 1,p(Ω).

Then we have

Theorem 1 The mapping that links the solution yv of equation (1) with v is continuous from Lα(Σ) into
Lτ (W 1,p) ∩ Cb(Q̄ \ Ω̄ × {0}), for any N + 1 < α < ∞ such that the pair (σ1, σ̃1) = (α, α) obeys one of the
conditions (7)–(10).

Proof. Taking into account Proposition 5, the proof can be performed as in Casas, Raymond and Zidani [3],
or Raymond and Zidani [13, 14].

We are now in position to establish Taylor expansions for the cost functional and the state equation. Let us
state the following hypotheses on the control problem.

H8 - For every y ∈ R, F (·, ·, y) is measurable on Q. For almost every (x, t) ∈ Q, F (x, t, ·) is of class C1 on R.
The following estimates hold:

|F (x, t, 0)| ≤M2(x, t), |F ′
y(x, t, y)| ≤M2(x, t)η(|y|),

where M2 ∈ Lk̃2(Lk2(Ω)).

H9 - For every y, v ∈ R, G(·, y, v) is measurable on Σ. For all v ∈ R and almost every (s, t) ∈ Σ, G(s, t, ·, v) is
of class C1 on R. For almost every (s, t) ∈ Σ, G(s, t, ·) and G′

y(s, t, ·) are continuous on R2. The following
estimates hold:

|G(s, t, 0, v)| ≤ N2(s, t) + |v|, |G′
y(s, t, y, v)| ≤ (N2(s, t) + |v|)η(|y|),

where N2 ∈ Lσ̃2(Lσ2(Γ)).

H10 - For every y ∈ R, L(·, y) is measurable in Ω. For almost every x ∈ Ω, L(x, ·) is of class C1 in R. The
following estimates hold:

|L(x, y)| ≤M3(x), and |L′
y(x, y)| ≤M4(x)η(|y|),

where M3(x) ∈ L1(Ω) and M4 ∈ Lν(Ω).

H11 - Vad is a bounded subset in L∞(Σ) of the form

Vad = {v ∈ L∞(Σ) : v(s, t) ∈ KΣ(s, t) for almost all (s, t) ∈ Σ} ,

where KΣ are measurable multimapping with nonempty compact values in P(R).
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For the proof of the following Lemma, see for instance [13].

Lemma 2 For all ρ ∈ (0, 1), there exists a sequence of measurable sets Ekρ ⊂ Σ such that

LN (Ekρ ) = ρLN (Σ),

and

lim
k→∞

1

ρ
χEk

ρ
= 1 weak-star in L∞(Σ). (29)

(LN denotes the N -dimensional Lebesgue measure and χEk
ρ
is the characteristic function of the set Ekρ .)

Theorem 2 For every ρ ∈ (0, 1), and all v1, v2 ∈ Vad, there exists a measurable set Eρ ⊂ Σ such that

LN (Eρ) = ρLN (Σ),

yρ = y1 + ρz + rρ with lim
ρ→0

1

ρ
∥rρ∥Lτ (W 1,p) = 0, (30)

and
J(yρ, vρ) = J(y1, v1) + ρ∆J + o(ρ), (31)

where

vρ(s, t) =

{
v1 in Σ \ Eρ
v2 in Eρ

, yρ = yvρ , y1 = yv1 ,
∂z

∂t
+Az + f ′y(x, t, y1)z = 0 in Q,

∂z

∂nA
+ g′y(s, t, y1, v1)z = g(s, t, y1, v1)− g(s, t, y1, v2) on Σ,

z(·, 0) = 0 in Ω× {0},

and

∆J =

∫
Q

F ′
y(·, y1)z dx dt+

∫
Σ

G′
y(·, y1, v1)zds dt+

∫
Ω

L′
y(·, y1(·, T ))z(·, T ) dx

+

∫
Σ

(G(s, t, y1, v2)−G(s, t, y1, v1)) ds dt.

Proof. Let us prove (30). Take a sequence (Ekρ )k as in Lemma 2. Set

vkρ(s, t) =

{
v1 in Σ \ Ekρ
v2 in Ekρ

, ykρ = yvkρ and ξkρ =
ykρ − y1

ρ
− z.

The function ξkρ satisfies the equation
∂ξkρ
∂t

+Aξkρ + akρξ
k
ρ = fkρ in Q,

∂ξkρ
∂nA

+ bkρξ
k
ρ = gkρ + hkρ on Σ,

ξkρ (·, 0) = 0 in Ω,

with

akρ(x, t) =

∫ 1

0

f ′y(x, t, (y1 + θ(ykρ − y1))) dθ,

fkρ = (f ′y(x, t, y1)− akρ)z,

bkρ(s, t) =

∫ 1

0

g′y(s, t, (y1 + θ(ykρ − y1)), v
k
ρ) dθ,
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gkρ = (g′y(s, t, y1, v1)− bkρ)z,

and

hkρ = (1− 1

ρ
χEk

ρ
)(g(s, t, y1, v2)− g(s, t, y1, v1)).

We denote by ξk,1ρ the solution to
∂ξk,1ρ
∂t

+Aξk,1ρ + akρξ
k,1
ρ = fkρ in Q,

∂ξk,1ρ
∂nA

+ bkρξ
k,1
ρ = gkρ on Σ,

ξk,1ρ (·, 0) = 0 in Ω,

by ξk,2ρ the solution to 
∂ξk,2ρ
∂t

+Aξk,2ρ + akρξ
k,2
ρ = 0 in Q,

∂ξk,2ρ
∂nA

+ bkρξ
k,2
ρ = hkρ on Σ,

ξk,2ρ (·, 0) = 0 in Ω,

(32)

and by ζkρ the solution to 
∂ζkρ
∂t

+Aζkρ + aζkρ = 0 in Q,

∂ζkρ
∂nA

+ bζkρ = hkρ on Σ,

ζkρ (·, 0) = 0 in Ω,

(33)

where a(x, t) = f ′y(x, t, y1(x, t)), and b(s, t) = g′y(s, t, y1(s, t), v1(s, t)). From (32) and (33) it follows that:
∂(ξk,2ρ − ζkρ )

∂t
+A(ξk,2ρ − ζkρ ) + akρ(ξ

k,2
ρ − ζkρ ) = (a− akρ)ζ

k
ρ in Q,

∂(ξk,2ρ − ζkρ )

∂nA
+ bkρ(ξ

k,2
ρ − ζkρ ) = (b− bkρ)ζ

k
ρ on Σ,

(ξk,2ρ − ζkρ )(·, 0) = 0 in Ω.

Due to Proposition 7 ζkρ belongs to C ε̄(Q̄). From Proposition 6, it follows that ξk,1ρ , ξk,2ρ and ζkρ belong to
Lτ (W 1,p) and the following estimates hold:

∥ξk,2ρ − ζkρ ∥Lτ (W 1,p) ≤ C1

(
∥a− akρ∥Lk̃1 (Lk1 (Ω))

+ ∥b− bkρ∥Lσ̃1 (Lσ1 (Γ))

)
∥ζkρ ∥C(Q̄), (34)

∥ξk,1ρ ∥Lτ (W 1,p) ≤ C2(∥fkρ ∥Lk̃1 (Lk1 (Ω))
+ ∥gkρ∥Lσ̃1 (Lσ1 (Γ))), (35)

where the constants C1 and C2 do not depend on k.
The operator T which associates ζ, the solution in Lτ (W 1+ε,p) ∩W 1,τ ((W 1,p′)′) of

∂ζ

∂t
+Aζ + aζ = 0 in Q,

∂ζ

∂nA
+ bζ = h on Σ,

ζ(·, 0) = 0 in Ω,

(36)

with h, is continuous from Lσ̃1(Lσ1(Γ)) into Lτ (W 1+ε,p) ∩ W 1,τ ((W 1,p′)′). The continuity into Lτ (W 1+ε,p)
follows from Proposition 5. With equation (36) we prove that ζ belongs toW 1,τ ((W 1,p′)′), and the corresponding
estimate follows from the estimate in Lτ (W 1+ε,p). Since the imbedding from W 1+ε,p(Ω) into W 1,p(Ω) is
compact, (see Grisvard [8]), then the imbedding from Lτ (W 1+ε,p) ∩W 1,τ ((W 1,p′)′) into Lτ (W 1,p) is compact
(see Simon, [15, Corollary 4]). Thus T may be considered as a compact operator from Lσ̃1(Lσ1(Γ)) into

12



Lτ (W 1,p). Observe that T is also a continuous linear operator from Lσ̃1(Lσ1(Γ)) into C ε̄(Q). Thus T is a
compact operator from Lσ̃1(Lσ1(Γ)) into C(Q̄). From (29) it follows that

lim
k→∞

hkρ = 0 weakly in Lσ̃1(Lσ1(Γ)),

and hence
lim
k→∞

(∥ζkρ ∥Lτ (W 1,p) + ∥ζkρ ∥C(Q̄)) = 0.

Thus, for all ρ ∈ (0, 1), there exists a k(ρ) such that

∥ζk(ρ)ρ ∥Lτ (W 1,p) + ∥ζk(ρ)ρ ∥C(Q̄) ≤ ρ. (37)

Notice that
lim
ρ→0

vk(ρ)ρ = v1 in Lα(Σ) for any α <∞.

Therefore, due to Theorem 1, we have

lim
ρ→0

yk(ρ)ρ = y1 in Cb(Q̄ \ Ω̄× {0}). (38)

Relation (38) implies that

lim
ρ→0

fk(ρ)ρ = 0 in Lk̃1(Lk1(Ω)), lim
ρ→0

gk(ρ)ρ = 0 in Lσ̃1(Lσ1(Γ)), (39)

and
lim
ρ→0

(a− ak(ρ)ρ ) = 0 in Lk̃1(Lk1(Ω)), lim
ρ→0

(b− bk(ρ)ρ ) = 0 in Lσ̃1(Lσ1(Γ)). (40)

With (34), (35), (37), (39) and (40), we obtain

lim
ρ→0

∥ξk(ρ)ρ ∥Lτ (W 1,p) = 0. (41)

Set Eρ = E
k(ρ)
ρ , we have rρ = ρξ

k(ρ)
ρ . Thus (30) follows from (41). Due to (29) and (30), we can verify (31).

4 Main Result.

We define the boundary Hamiltonian function by

HΣ(s, t, y, v, φ, ν) = νG(s, t, y, v)− φg(s, t, y, v)

for every (s, t, y, v, φ, ν) ∈ Γ × [0, T ] × R4. The main result of this paper is the Pontryagin principle stated in
the following theorem.

Theorem 3 Assume that H1–H11 are satisfied. If (ȳ, v̄) is a solution to the control problem (P), then there

exists φ̄ ∈ Lτ
′
(W 1,p′), ν̄ ∈ R+, and f⃗ ∈ (Lτ

′
(Lp

′
))N , such that

(f⃗ , ν̄) ̸= (0, 0), (42)∫
Q

(z −∇xȳ)f⃗ ≤ 0 for all z ∈ C, (43)


−∂φ̄
∂t

+A∗φ̄+ f ′y(x, t, ȳ)φ̄ = ν̄F ′
y(x, t, ȳ) + div f⃗ in Q,

∂φ̄

∂nA∗
+ g′y(s, t, ȳ, v̄)φ̄ = ν̄G′

y(s, t, ȳ, v̄)− f⃗ · n⃗ on Σ,

φ̄(·, T ) = ν̄L′
y(x, ȳ(T )) in Ω,

(44)

and
HΣ(s, t, ȳ(s, t), v̄(s, t), φ̄(s, t), ν̄) = min

v∈KΣ(s,t)
HΣ(s, t, ȳ(s, t), v, φ̄(s, t), ν̄) (45)

for almost all (s, t) in Σ.
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Proof. We define Ekeland’s distance on the space Vad:

dE(v1, v2) = LN{(s, t) : v1(s, t) ̸= v2(s, t)}.

The space (Vad, dE) is a complete metric space, and convergence in (Vad, dE) implies convergence in Lα(Σ) for
any α <∞. Consider the penalized functional

Jn(y, v) =


[(

J(y, v)− J(ȳ, v̄) +
1

n2

)+
]2

+ dC(∇xy)
2


1/2

,

where dC(·) is the distance in (Lτ (Lp))N to the set C defined by

dC(z) = inf
φ∈C

∥z − φ∥(Lτ (Lp))N .

The functional dC(·) is Lipschitz, convex and Gâteaux-differentiable at every z ̸∈ C, and at those points
∥∇dC(z)∥(Lτ′ (Lp′ ))N = 1. Consider the problem

(Pn) : min
v∈Vad

Jn(yv, v).

With such a choice, (ȳ, v̄) is a 1
n2 -solution of (Pn). Theorem 1 and assumptions H8–H10 imply that Jn(yv, v) is

continuous for Ekeland’s metric. Thus, due to Ekeland’s variational principle there exists vn ∈ Vad such that

dE (vn, v̄) ≤
1

n
and Jn(yn, vn) ≤ Jn(yv, v) +

1

n
dE (v, vn) for all v ∈ Vad, (46)

where yn = yvn .
Let v be in Vad. Due to Theorem 2, for every ρ ∈ (0, 1), there exists a measurable set Eρ ⊂ Σ such that

LN (Eρ) = ρLN (Σ), (47)

yρ = yn + ρzn + rρ with lim
ρ→0

1

ρ
∥rρ∥Lτ (W 1,p) = 0, (48)

and
J(yρ, vρ) = J(yn, vn) + ρ∆JN + o(ρ), (49)

where

vρ(s, t) =

{
vn in Σ \ Eρ
v in Eρ

, yρ = yvρ ,
∂zn
∂t

+Azn + f ′y(x, t, yn)zn = 0 in Q,

∂zn
∂nA

+ g′y(s, t, yn, vn)zn = g(s, t, yn, vn)− g(s, t, yn, v) on Σ,

zn(·, 0) = 0 in Ω,

and

∆JN =

∫
Q

F ′
y(·, yn)zndx dt+

∫
Σ

G′
y(·, yn, vn)znds dt+

∫
Ω

L′
y(·, yn(·, T ))zn(·, T ) dx

+

∫
Σ

(G(·, yn, v)−G(·, yn, vn)) ds dt.

Relations (46) and (47) imply that

Jn(yn, vn)− Jn(yρ, vρ)

ρ
≤ 1

n
LN (Σ). (50)
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We have

Jn(yn, vn)− Jn(yρ, vρ)

ρ
=

J2
n(yn, vn)− J2

n(yρ, vρ)

ρ (Jn(yn, vn) + Jn(yρ, vρ))

=

[(
J(yn, vn)− J(ȳ, v̄) + 1

n2

)+]2 − [(J(yρ, vρ)− J(ȳ, v̄) + 1
n2

)+]2
ρ (Jn(yn, vn) + Jn(yρ, vρ))

+
dC(∇yn)2 − dC(∇yρ)2

ρ (Jn(yn, vn) + Jn(yρ, vρ))
.

From (49) it follows that

lim
ρ→0

[(
J(yn, vn)− J(ȳ, v̄) + 1

n2

)+]2 − [(J(yρ, vρ)− J(ȳ, v̄) + 1
n2

)+]2
ρ (Jn(yn, vn) + Jn(yρ, vρ))

= −νn∆JN , (51)

with

νn =

(
J(yn, vn)− J(ȳ, v̄) + 1

n2

)+
Jn(yn, vn)

.

With (48), and the properties of the distance function dC(·), we can write

lim
ρ→0

dC(∇yn)2 − dC(∇yρ)2

ρ (Jn(yn, vn) + Jn(yρ, vρ))
= lim
ρ→0

dC(∇yn)− dC(∇yρ)
ρ

dC(∇yn) + dC(∇yρ)
(Jn(yn, vn) + Jn(yρ, vρ))

=

∫
Q

f⃗n · ∇zn dx dt, (52)

where

f⃗n =


dC(∇yn)
Jn(yn, vn)

∇dC(∇yn) if ∇yn ̸∈ C,

0 else.

In order to derive an approximate Pontryagin’s principle we introduce the approximate adjoint equation.
Due to hypotheses H3, H4, H8, H9, H10, and to the regularity result in Proposition 8, there exists a unique φn
satisfying

−∂φn
∂t

+A∗φn + f ′y(x, t, yn)φn = νnF
′
y(x, t, yn) + div f⃗n in Q,

∂φn
∂nA∗

+ g′y(s, t, yn, vn)φn = νnG
′
y(s, t, yn, vn)− f⃗n · n⃗ on Σ,

φn(·, T ) = νnL
′
y(·, yn(T )) in Ω.

With Green formula (28) in Proposition 8 we have∫
Q

νnF
′
y(x, t, yn)zn dx dt−

∫
Q

f⃗ · ∇zn dx dt+
∫
Σ

νnG
′
y(s, t, yn, vn) ds dt+

∫
Ω

νnL
′
y(x, yn(T )) dx

=

∫
Q

φn

(
∂zn
∂t

+Azn + f ′y(x, t, yn)zn

)
dx dt+

∫
Σ

φn

(
∂zn
∂nA

+ g′y(s, t, yn, vn)zn

)
ds dt

=

∫
Σ

φn (g(s, t, yn, vn)− g(s, t, yn, v)) ds dt.

By passing to the limit when ρ tends to zero in (50), with (51), (52) and the previous Green formula, we obtain
the following approximate Pontryagin’s principle:∫

Σ

(νnG(s, t, yn, vn)− φng(s, t, yn, vn)) ds dt ≤
∫
Σ

(νnG(s, t, yn, v)− φng(s, t, yn, v)) ds dt+
1

n
LN (Σ)

for all v ∈ Vad.
(53)

Notice that ν2n+∥f⃗n∥2(Lτ′ (Lp′ ))N
= 1. Thus there exist subsequences, still indexed by n, such that (νn)n converges

to ν, and (f⃗n)n converges weakly to f⃗ in (Lτ
′
(Lp

′
))N . If ν > 0 then (42) is satisfied. Otherwise, using that
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limn→∞ ∥f⃗n∥2(Lτ′ (Lp′ ))N
= 1, and that the interior of C is nonempty, we can prove that f⃗ ̸= 0 in a standard way

(see [13], for instance).
Condition (43) is fulfilled due to the definition of the subdifferential of the convex functional dC(·).
With (46), we can prove that (yn)n converges to ȳ in Cb(Q̄ \ Ω̄×{0}). With assumptions H3–H10 and with

Proposition 8, we can prove that (φn)n converges in Lτ
′
(W 1,p′) + L2(H1) to the solution φ̄ of (44).

Taking the previous convergence results for (yn)n, (vn)n, (φn)n, (νn)n into account, we can pass to the limit
in (53) when n tends to infinity, and we obtain a Pontryagin principle in integral form.∫

Σ

(ν̄G(s, t, ȳ, v̄)− φ̄g(s, t, ȳ, v̄)) ds dt ≤
∫
Σ

(ν̄G(s, t, ȳ, v)− φ̄g(s, t, ȳ, v)) ds dt for all v ∈ Vad.

Pointwise Pontryagin’s principle can now be deduced as in Raymond and Zidani [13, p. 1875]. The proof is
complete.

5 Some extensions and examples.

In this paper we have only treated of bounded boundary controls. The treatment of unbounded controls can
also be done as in [13], but this implies some technical difficulties. We refer to [13] for such extensions. All the
results could be performed for distributed controls, with no important changes in the proofs.

To illustrate these remarks, consider the control problem corresponding to:

� the state equation: 
∂y

∂t
+Ay + f(x, t, y, u) = 0 in Q,

∂y

∂nA
+ g(s, t, y, v) = 0 on Σ,

y(·, 0) = w in Ω,

(54)

with u ∈ Uad ⊂ Lq(Q), v ∈ Vad ⊂ Lσ(Σ), q > N/2 + 1 and σ > N + 1. We suppose in addition that the
pair (k̃1, k1) = (q, q) obeys one of the conditions (3)–(6), and the pair (σ̃1, σ1) = (σ, σ) obeys one of the
conditions (7)–(10). The control sets Uad and Vad are defined by

Uad = {u ∈ Lq(Σ) : u(x, t) ∈ KQ(x, t) for almost all (x, t) ∈ Q} ,

Vad = {v ∈ Lσ(Σ) : v(s, t) ∈ KΣ(s, t) for almost all (s, t) ∈ Σ} ,

where KQ and KΣ are measurable multimapping with nonempty compact values in P(R).

� the cost functional:

J(yuv, v) =

∫ T

0

∫
Ω

F (x, t, yuv, u) dx dt+

∫ T

0

∫
Γ

G(s, t, yuv, v) ds dt+

∫
Ω

L(x, yuv(x, T )) dx, (55)

� the state constraint: ∫ T

0

(∫
Ω

|∇xy − gd|pdx
)τ/p

dt ≤ δ, (56)

where gd is a given function in (Lτ (Lp))N , and δ > 0.

We define the distributed and the boundary Hamiltonian function by

HQ(x, t, y, u, φ, ν) = νF (x, t, y, u)− φf(x, t, y, u)

for every (x, t, y, u, φ, ν) ∈ Ω× [0, T ]× R4,

HΣ(s, t, y, v, φ, ν) = νG(s, t, y, v)− φg(s, t, y, v)

for every (s, t, y, v, φ, ν) ∈ Γ× [0, T ]×R4. With the obvious modifications of assumptions on f , g, F and G, we
can prove the following result.
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Theorem 4 If (ȳ, ū, v̄) is a solution to the control problem, then there exists φ̄ ∈ Lτ
′
(W 1,p′), ν̄ ∈ R+, µ̄ ∈ R+

such that
(ν̄, µ̄) ̸= (0, 0), (57)

µ̄

(∫ T

0

(
|∇xȳ − gd|pdx)τ/p

)
dt− δ

)
= 0, (58)


−∂φ̄
∂t

+Aφ̄+ f ′y(x, t, ȳ, ū)φ̄ = ν̄F ′
y(x, t, ȳ, ū) + µ̄div f⃗ in Q,

∂φ̄

∂nA
+ g′y(s, t, ȳ, v̄)φ̄ = ν̄G′

y(s, t, ȳ, v̄)− µ̄f⃗ · n⃗ on Σ,

φ̄(·, T ) = ν̄L′
y(x, ȳ(T )) in Ω,

(59)

where f⃗ = 0 if ∇xȳ = gd and

f⃗ =

(∫
Ω

|∇xȳ − gd|p dx
) τ

p−1 (
|∇xȳ − gd|p−2(∇xȳ − gd)

)
otherwise,

HQ(x, t, ȳ(x, t), ū(x, t), φ̄(x, t), ν̄) = min
u∈KQ(x,t)

HQ(x, t, ȳ(x, t), u, φ̄(x, t), ν̄)

for almost all (x, t) in Q, and

HΣ(s, t, ȳ(s, t), v̄(s, t), φ̄(s, t), ν̄) = min
v∈KΣ(s,t)

HΣ(s, t, ȳ(s, t), v, φ̄(s, t), ν̄)

for almost all (s, t) in Σ.
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